WO2019107250A1 - Negative photosensitive resin composition, method for producing said composition, and method for producing cured relief pattern - Google Patents

Negative photosensitive resin composition, method for producing said composition, and method for producing cured relief pattern Download PDF

Info

Publication number
WO2019107250A1
WO2019107250A1 PCT/JP2018/043050 JP2018043050W WO2019107250A1 WO 2019107250 A1 WO2019107250 A1 WO 2019107250A1 JP 2018043050 W JP2018043050 W JP 2018043050W WO 2019107250 A1 WO2019107250 A1 WO 2019107250A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
polyimide precursor
photosensitive resin
resin composition
negative photosensitive
Prior art date
Application number
PCT/JP2018/043050
Other languages
French (fr)
Japanese (ja)
Inventor
秀二郎 塩崎
竜也 平田
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2019557187A priority Critical patent/JP6968196B2/en
Priority to KR1020207009110A priority patent/KR102402138B1/en
Publication of WO2019107250A1 publication Critical patent/WO2019107250A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a negative photosensitive resin composition, a method for producing the same, and a method for producing a cured relief pattern.
  • polyimide resins, polybenzoxazole resins, phenol resins, etc. having excellent heat resistance, electrical properties and mechanical properties are used for insulating materials of electronic parts, passivation films, surface protective films, interlayer insulating films etc. of semiconductor devices. It is used.
  • resins those provided in the form of a photosensitive resin composition easily form a heat-resistant relief pattern film by thermal imidization treatment by application, exposure, development, and curing of the composition. be able to.
  • Such a photosensitive resin composition has a feature of enabling significant process reduction as compared to conventional non-photosensitive materials.
  • a semiconductor device (hereinafter, also referred to as “element”) is mounted on a printed circuit board by various methods according to the purpose.
  • Conventional devices are generally manufactured by a wire bonding method in which thin wires are connected from the external terminals (pads) of the devices to the lead frame.
  • the difference in wiring length of each terminal in mounting has come to affect the operation of the elements. Therefore, in the case of the mounting of elements for high-end applications, it becomes necessary to control the length of the mounting wiring accurately, and it has become difficult to meet the requirement in the wire bonding.
  • the metal wiring layer is generally plasma etched on the surface of the resin layer to roughen the surface, then a metal layer to be a seed layer for plating is formed by sputtering with a thickness of 1 ⁇ m or less, and the metal layer is used as an electrode. It is formed by electrolytic plating.
  • titanium (Ti) is generally used as a metal to be a seed layer
  • copper (Cu) is used as a metal of a redistribution layer formed by electrolytic plating.
  • Such a metal redistribution layer is required to have high adhesion between the metal layer re-wired after the reliability test and the resin layer.
  • a reliability test for example, high temperature storage test stored in air at a high temperature of 125 ° C. or more for 100 hours or more; a wiring is conducted while applying a voltage, in air, at a temperature of about 125 ° C.
  • High temperature operation test to confirm the operation under storage over temperature
  • temperature cycle in which the low temperature condition of about -65 ° C to -40 ° C and the high temperature condition of about 125 ° C to 150 ° C are cycled in air Test: store at 85 ° C or higher in a water vapor atmosphere with a humidity of 85% or higher, high temperature and high humidity storage test; perform the same test as high temperature and high humidity storage test while applying voltage while forming wiring, high temperature and high humidity Bias test; and solder reflow test which passes through a solder reflow furnace at 260 ° C. in air or under nitrogen a plurality of times can be mentioned.
  • the demand for finer metal redistribution layers is also increasing. For this reason, it is required that the photosensitive resin composition used particularly for the formation of the semiconductor metal rewiring layer has high resolution while suppressing the occurrence of voids.
  • the metal redistribution layer is required to have high chemical resistance.
  • An object of the present invention is to provide a negative photosensitive resin composition (hereinafter, also simply referred to as "photosensitive resin composition" in the present specification) capable of suppressing the generation and a method for producing the same. It is also an object to provide a method for forming a cured relief pattern using the negative photosensitive resin composition of the present invention.
  • a negative photosensitive resin composition having high chemical resistance, high resolution, and high void suppression effect, a method for producing the same, and a cured relief pattern using the negative photosensitive resin composition It is an object to provide a formation method.
  • the present inventors solve the above problems by combining a polyimide precursor and a photopolymerization initiator with a specific compound having an acid or base or an amino group protected by a thermally deprotected group. It has been found that the present invention can be accomplished. Examples of embodiments of the present invention are listed below.
  • A polyimide precursor
  • B A plurality of amino groups protected by an acid or a base or a group to be deprotected by heat, having a molecular weight of 250 to 600, and the plurality of protected amino groups having an aliphatic chain or alicyclic structure
  • a negative photosensitive resin composition comprising a base-protected compound which is an amino group of the formula and has a solubility parameter value of 20.0 to 24.0; and
  • C a photopolymerization initiator.
  • the (A) polyimide precursor is represented by the following general formula (2): Wherein X 1 is a tetravalent organic group, Y 1 is a divalent organic group, n 1 is an integer of 2 to 150, and R 1 and R 2 are each independently hydrogen It is an atom or a monovalent organic group, and at least one of R 1 and R 2 is a monovalent organic group having a polymerizable group at its end.
  • X 1 is a tetravalent organic group
  • Y 1 is a divalent organic group
  • n 1 is an integer of 2 to 150
  • R 1 and R 2 are each independently hydrogen It is an atom or a monovalent organic group, and at least one of R 1 and R 2 is a monovalent organic group having a polymerizable group at its end.
  • R 1 and R 2 has the following general formula (3): Wherein L 1 , L 2 and L 3 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 1 is an integer of 2 to 10.
  • the (A) polyimide precursor is represented by the following general formula (4): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). ⁇ 5.
  • the negative photosensitive resin composition according to item 3 or 4 comprising a polyimide precursor having a structural unit represented by [6]
  • the (A) polyimide precursor is represented by the following general formula (5): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). ⁇ 5.
  • the (A) polyimide precursor is represented by the following general formula (6): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). ⁇ 5.
  • the negative photosensitive resin composition according to item 3 or 4 comprising a polyimide precursor having a structural unit represented by [8]
  • the (A) polyimide precursor is represented by the following general formula (4): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2).
  • the negative photosensitive resin composition according to item 3 or 4 which comprises both of the polyimide precursors having a structural unit represented by [9]
  • the (A) polyimide precursor is represented by the following general formula (4): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2).
  • the negative photosensitive resin composition according to item 3 or 4 which comprises both of the polyimide precursors having a structural unit represented by [10] 100 parts by mass of the above (A) polyimide precursor 0.1 to 30 parts by mass of the above base protection compound (B) with respect to 100 parts by mass of the above (A) polyimide precursor,
  • A polyimide precursor;
  • D One or more amino groups protected by an acid or a base or a group which is deprotected by heat, and the following general formula (1):
  • Z is a hydrogen atom or a methyl group.
  • the bond at both ends represents a single bond to another part in the molecule.
  • a negative photosensitive resin composition comprising an ether compound containing in the molecule one or more structural units represented by and a photopolymerization initiator (C).
  • C photopolymerization initiator
  • the (A) polyimide precursor is represented by the following general formula (2): Wherein X 1 is a tetravalent organic group, Y 1 is a divalent organic group, n 1 is an integer of 2 to 150, and R 1 and R 2 are each independently hydrogen It is an atom or a monovalent organic group, and at least one of R 1 and R 2 is a monovalent organic group having a polymerizable group at its end.
  • at least one of R 1 and R 2 has the following general formula (3): Wherein L 1 , L 2 and L 3 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 1 is an integer of 2 to 10.
  • the (A) polyimide precursor is represented by the following general formula (4): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2).
  • the (A) polyimide precursor is represented by the following general formula (5): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2).
  • the (A) polyimide precursor is represented by the following general formula (6): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2).
  • the (A) polyimide precursor is represented by the following general formula (4): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). ⁇ A polyimide precursor having a structural unit represented by The following general formula (5): ⁇ Wherein R 1 , R 2 and n 1 are as defined in the above general formula (2), provided that R 1 , R 2 and n 1 in the general formula (5) are 4) R 1 , R 2 and n 1 in 4) are independently selected. ⁇ The negative photosensitive resin composition as described in 14 or 15 which contains both of the polyimide precursor which has a structural unit represented by these.
  • the (A) polyimide precursor is represented by the following general formula (4): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2).
  • the negative photosensitive resin composition as described in 14 or 15 which contains both of the polyimide precursor which has a structural unit represented by these.
  • the (E) urethane compound has at least one tert-butoxycarbonyl group, benzyloxycarbonyl group or 9-fluorenylmethyloxycarbonyl (Fmoc) group bonded to an aliphatic chain or alicyclic amino group in the molecule.
  • Item 22 The negative photosensitive resin composition according to Item 22.
  • 24 The negative photosensitive resin according to item 22 or 23, wherein at least one of the nitrogen atoms of the protected one or more amino groups of the (E) urethane compound is at the ⁇ or ⁇ position of the hydroxyl group in the molecule. Resin composition.
  • the negative photosensitive resin composition according to any one of items 22 to 24, wherein the one or more protected amino groups is an amino group protected by a tert-butoxycarbonyl group.
  • the (A) polyimide precursor is represented by the following general formula (2): Wherein X 1 is a tetravalent organic group, Y 1 is a divalent organic group, n 1 is an integer of 2 to 150, and R 1 and R 2 are each independently hydrogen It is an atom or a monovalent organic group, and at least one of R 1 and R 2 is a monovalent organic group having a polymerizable group at its end.
  • at least one of R 1 and R 2 has the following general formula (3): Wherein L 1 , L 2 and L 3 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 1 is an integer of 2 to 10.
  • the (A) polyimide precursor is represented by the following general formula (4): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2).
  • the (A) polyimide precursor is represented by the following general formula (5): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2).
  • the (A) polyimide precursor is represented by the following general formula (6): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2).
  • the (A) polyimide precursor is represented by the following general formula (4): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). ⁇ A polyimide precursor having a structural unit represented by The following general formula (5): ⁇ Wherein R 1 , R 2 and n 1 are as defined in the above general formula (2), provided that R 1 , R 2 and n 1 in the general formula (5) are 4) R 1 , R 2 and n 1 in 4) are independently selected. ⁇ The negative photosensitive resin composition as described in 26 or 27 containing both of the polyimide precursor which has a structural unit represented by these.
  • the (A) polyimide precursor is represented by the following general formula (4): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2).
  • the (E) urethane compound is N ⁇ - (tert-butoxycarbonyl) -L-triptophanol, 1- (tert-butoxycarbonyl) -4-hydroxypiperidine, or the following chemical formula (1):
  • the photosensitive resin composition according to any one of items 22 to 32 which is a urethane compound represented by [34] 100 parts by mass of the above (A) polyimide precursor 0.1 to 30 parts by mass of the (E) urethane compound, based on 100 parts by mass of the (A) polyimide precursor,
  • the negative photosensitive resin according to any one of items 22 to 33 comprising 0.1 to 20 parts by mass of the (C) photopolymerization initiator based on 100 parts by mass of the (A) polyimide precursor Composition.
  • [35] 34 A method for producing a polyimide, which cures the negative photosensitive resin composition according to any one of items 1 to 34.
  • a high-resolution is obtained, and a negative photosensitive resin composition that suppresses the generation of voids at the interface of the Cu layer in contact with the resin layer after a high temperature storage test, and a method for producing the same.
  • a method for forming a cured relief pattern using the negative photosensitive resin composition It is possible to provide a method for forming a cured relief pattern using the negative photosensitive resin composition.
  • a negative photosensitive resin composition having high chemical resistance, high resolution, and high void suppression effect, a method for producing the same, and a cured relief pattern using the negative photosensitive resin composition A method of formation can be provided.
  • the negative photosensitive resin composition according to the first embodiment is (A) polyimide precursor; (B) A plurality of amino groups protected by an acid or a base or a group to be deprotected by heat, having a molecular weight of 250 to 600, and the plurality of protected amino groups having an aliphatic chain or alicyclic structure A base-protected compound which is an amino group of the formula and has a solubility parameter value of 20.0 or more and 24.0 or less; and (C) a photopolymerization initiator.
  • the negative photosensitive resin composition according to the second present embodiment is (A) polyimide precursor; (D) One or more amino groups protected by an acid or a base or a group which is deprotected by heat, and the following general formula (1):
  • Z is a hydrogen atom or a methyl group.
  • the bond at both ends represents a single bond to another part in the molecule.
  • the negative photosensitive resin composition according to the third embodiment is: (A) polyimide precursor; (E) One or more amino groups protected by an acid or a base or a thermally deprotected group, and a urethane compound containing at least one hydroxyl group in the molecule; and (C) a photopolymerization initiator .
  • the polyimide precursor in the first to third embodiments is a resin component contained in a negative photosensitive resin composition, and is converted to a polyimide by heat cyclization treatment. Be done.
  • the polyimide precursor is preferably a polyamide having a structure represented by the following general formula (2). Wherein X 1 is a tetravalent organic group, Y 1 is a divalent organic group, n 1 is an integer of 2 to 150, and R 1 and R 2 are each independently hydrogen It is an atom or a monovalent organic group. ⁇
  • At least one of R 1 and R 2 has the following general formula (3): Wherein L 1 , L 2 and L 3 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 1 is an integer of 2 to 10. It is a monovalent organic group represented by ⁇ .
  • n 1 in the general formula (2) is not limited as long as it is an integer of 2 to 150, it is preferably an integer of 3 to 100, and more preferably 5 to 70, from the viewpoint of the photosensitive properties and mechanical properties of the negative photosensitive resin composition.
  • the integer of is more preferable.
  • the tetravalent organic group represented by X 1 is preferably an organic group having a carbon number of 6 to 40, more preferably, in terms of achieving both heat resistance and photosensitivity.
  • An —COOR 1 group and an —COOR 2 group and an —CONH— group are an aromatic group or an alicyclic aliphatic group in which each other is in the ortho position.
  • tetravalent organic group represented by X 1 include an aromatic ring-containing organic group having 6 to 40 carbon atoms, for example, the following general formula (20): Wherein R 6 is a monovalent group selected from the group consisting of a hydrogen atom, a fluorine atom, a C 1 to C 10 hydrocarbon group, and a C 1 to C 10 fluorine-containing hydrocarbon group, and l is 0 Is an integer selected from -2, m is an integer selected from 0-3, and n is an integer selected from 0-4. ⁇ Although the group which has a structure represented by these is mentioned, It is not limited to these. The structure of X 1 may be one kind or a combination of two or more kinds. The X 1 group having the structure represented by the above formula (20) is particularly preferable in that both the heat resistance and the photosensitive characteristics are compatible.
  • the divalent organic group represented by Y 1 is preferably an aromatic group having a carbon number of 6 to 40, in terms of achieving both heat resistance and photosensitivity, and, for example, Following formula (21): Wherein R 6 is a monovalent group selected from the group consisting of a hydrogen atom, a fluorine atom, a C 1 to C 10 hydrocarbon group, and a C 1 to C 10 fluorine-containing hydrocarbon group, and n is It is an integer selected from 0-4. ⁇ Although the structure represented by these is mentioned, it is not limited to these.
  • the structure of Y 1 may be one kind or a combination of two or more kinds.
  • the Y 1 group having the structure represented by the above formula (21) is particularly preferable in that both the heat resistance and the photosensitive characteristics are compatible.
  • L 1 in the above general formula (3) is preferably a hydrogen atom or a methyl group
  • L 2 and L 3 are preferably hydrogen atoms from the viewpoint of photosensitive properties
  • m 1 is 2 or more integer of 10 or less from the viewpoint of photosensitive properties, preferably 2 to 4 integer.
  • the (A) polyimide precursor has the following general formula (4):
  • R 1 , R 2 and n 1 are as defined in the general formula (2).
  • It is preferable that it is a polyimide precursor which has a structural unit represented by these.
  • at least one of R 1 and R 2 is more preferably a monovalent organic group represented by the above general formula (3).
  • the (A) polyimide precursor has the following general formula (5):
  • R 1 , R 2 and n 1 are as defined in the general formula (2).
  • It is preferable that it is a polyimide precursor which has a structural unit represented by these.
  • at least one of R 1 and R 2 is more preferably a monovalent organic group represented by the above general formula (3).
  • the effect of resolution is particularly high by including the polyimide precursor represented by the general formula (5) in addition to the polyimide precursor represented by the general formula (4) (A) become.
  • the general formula (5) R 1, R 2 in, and n 1 is the general formula (4) R 1, R 2 in, and the n 1 are independently selected.
  • the (A) polyimide precursor has the following general formula (6):
  • R 1 , R 2 and n 1 are as defined in the general formula (2).
  • It is preferable that it is a polyimide precursor which has a structural unit represented by these.
  • at least one of R 1 and R 2 is more preferably a monovalent organic group represented by the above general formula (3).
  • the effect of resolution is particularly high when the polyimide precursor (A) includes the polyimide precursor represented by the general formula (6) in addition to the polyimide precursor represented by the general formula (4) Become.
  • the general formula (6) R 1, R 2 in, and n 1 is the general formula (4) R 1, R 2 in, and the n 1 are independently selected.
  • the polyimide precursor is prepared by first using the tetracarboxylic acid dianhydride containing the aforementioned tetravalent organic group X 1 and an alcohol having a photopolymerizable unsaturated double bond. And optionally after reaction with an alcohol having no unsaturated double bond to prepare a partially esterified tetracarboxylic acid (hereinafter also referred to as an acid / ester), and It is obtained by carrying out the amide polycondensation of diamines containing a divalent organic group Y 1 .
  • the tetracarboxylic acid dianhydride containing a tetravalent organic group X 1 suitably used to prepare the (A) polyimide precursor in this embodiment is a tetracarboxylic acid represented by the above general formula (20).
  • Acid dianhydrides for example, pyromellitic anhydride, diphenylether-3,3 ', 4,4'-tetracarboxylic dianhydride, benzophenone-3,3', 4,4'-tetracarboxylic dianhydride , Biphenyl-3,3 ', 4,4'-tetracarboxylic acid dianhydride, diphenyl sulfone-3,3', 4,4'-tetracarboxylic acid dianhydride, diphenylmethane-3,3 ', 4, 4'-tetracarboxylic acid dianhydride, 2,2-bis (3,4-phthalic anhydride) propane, 2,2-bis (3,4-phthalic anhydride) -1,1,1,3,3 , 3-hexafluoropropane etc., preferably Water pyromellitic acid, diphenyl ether-3,3 ', 4,4'-tetracarboxylic acid dianhydride, benzophenone-3
  • alcohols having a photopolymerizable unsaturated double bond which are suitably used to prepare the (A) polyimide precursor in this embodiment, include, for example, 2-acryloyloxyethyl alcohol, 1-acryloyloxy. 3-Propyl alcohol, 2-acrylamidoethyl alcohol, methylol vinyl ketone, 2-hydroxyethyl vinyl ketone, 2-hydroxy-3-methoxypropyl acrylate, 2-hydroxy-3-butoxypropyl acrylate, 2-hydroxy-3-phenoxy Propyl acrylate, 2-hydroxy-3-butoxypropyl acrylate, 2-hydroxy-3-t-butoxypropyl acrylate, 2-hydroxy-3-cyclohexyloxypropyl acrylate, 2-methacryloyloxyethyl acrylate Cole, 1-methacryloyloxy-3-propyl alcohol, 2-methacrylamidoethyl alcohol, methylol vinyl ketone, 2-hydroxyethyl vinyl ketone, 2-hydroxy-3--me
  • Examples of the above-mentioned alcohols having a photopolymerizable unsaturated double bond include methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, 1-pentanol, 2-pentanol, 3-pentanol Neopentyl alcohol, 1-heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 3-octanol, 1-nonanol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, tetraethylene glycol monomethyl ether It is also possible to partially mix and use alcohols having no unsaturated double bond such as ether, tetraethylene glycol monoethyl ether and benzyl alcohol.
  • the non-photosensitive polyimide precursor prepared only with the said alcohol which does not have the said unsaturated double bond is preferably 200 parts by mass or less based on 100 parts by mass of the photosensitive polyimide precursor.
  • the acid / ester body is acid-chloridized with thionyl chloride or the like, and then reacted with a diamine compound in the presence of a base such as pyridine to obtain a target polyimide precursor. be able to.
  • the water absorption by-product of the dehydration condensation agent coexisting in the reaction solution is separated by filtration if necessary, and then a poor solvent such as water, an aliphatic lower alcohol, or a mixture thereof is
  • a poor solvent such as water, an aliphatic lower alcohol, or a mixture thereof is
  • the polymer component is charged into the obtained polymer component, and the polymer component is precipitated, and further, the polymer is purified by repeating the re-dissolution, re-precipitation operation and the like, and vacuum drying is performed to obtain the desired polyimide precursor.
  • the solution of the polymer may be passed through a column packed with an anion and / or cation exchange resin swollen with a suitable organic solvent to remove ionic impurities.
  • the molecular weight of the (A) polyimide precursor is preferably 8,000 to 150,000, and 9,000 to 50,000, as measured by gel permeation chromatography as a polystyrene equivalent weight average molecular weight. Is more preferred. When the weight average molecular weight is 8,000 or more, the mechanical properties are good, and when it is 150,000 or less, the dispersibility in the developer is good, and the resolution performance of the relief pattern is good. Tetrahydrofuran and N-methyl-2-pyrrolidone are recommended as developing solvents for gel permeation chromatography.
  • the weight average molecular weight is determined from a calibration curve prepared using standard monodispersed polystyrene. As standard monodispersed polystyrene, it is recommended to select from Showa Denko organic solvent-based standard sample STANDARD SM-105.
  • the (B) base-protected compound in the first embodiment has a plurality of amino groups protected by an acid or a base or a group which is deprotected by heat, and has a molecular weight of 250 to 600.
  • the protected amino group is an aliphatic linear or alicyclic amino group, and the solubility parameter has a value of 20.0 to 22.0.
  • the molecular weight of the (B) base-protected compound is 250 to 600. If the molecular weight is 250 or more, the base protection compound remains in the film even after thermosetting, and the Cu void suppressing effect can be exhibited.
  • the molecular weight is preferably 300 or more, and more preferably 340 or more.
  • the molecular weight is preferably 600 or less, more preferably 550 or less, more preferably 450 or less, and more preferably 400 or less.
  • the plurality of protected amino groups of the base protection compound is an aliphatic chain or alicyclic amino group.
  • Aliphatic chain-like and alicyclic amino groups have high nucleophilicity as compared to aromatic amino groups, so that the introduction of protecting groups is easy.
  • the value of the solubility parameter of the base protected compound is 20.0 to 24.0.
  • “solubility parameter” is the solubility parameter determined by the Hoy calculation method. If the solubility parameter is 20.0 or more, the solubility in the solvent is sufficiently high, preferably 20.5 or more, more preferably 21.0 or more. When the solubility parameter is 24.0 or less, the affinity to the solvent becomes appropriate, and the chemical solution hardly penetrates into the cured relief pattern during the chemical resistance test, and a cured relief pattern excellent in chemical resistance can be obtained. From the viewpoint of chemical resistance, the value of the solubility parameter is preferably 23.5 or less, more preferably 23.0 or less, still more preferably 22.5 or less, still more preferably 22.0 or less.
  • the acid or base or the thermally deprotected group include tert-butoxycarbonyl group and Fmoc group, but the present invention is not limited thereto.
  • the Fmoc group refers to a 9-fluorenylmethyloxycarbonyl group.
  • the one or more amino groups are amino groups protected with a tert-butoxycarbonyl group.
  • the compound is preferably a compound protected with a tert-butoxycarbonyl group.
  • the compound protected with the tert-butoxycarbonyl group is considered to exhibit good resolution because the solubility in a developer is good and the residue is suppressed.
  • the reason why good chemical resistance can be obtained is that the flowability of the polyimide resin in the heat curing process is improved by including a compound having a certain range of solubility parameter and molecular weight. It is considered to be. As a result, it is considered that the improvement of the fluidity promotes the stacking of the imide rings and suppresses the penetration of the chemical solution. Also, although the reason why good resolution can be obtained is unknown, it is considered that the base-protected compound is easily dissolved in the developer by having a certain range of solubility parameters, and the residue is suppressed.
  • the number of protected amino groups contained in the molecule of the base protected compound is not limited as long as it is 2 or more.
  • the compound is preferably a compound in which the amino group of an amine selected from the group consisting of diamine, triamine and tetraamine is protected. From the viewpoint of coordination to copper, it is more preferable that the compound is a compound in which the amino group of diamine is protected.
  • the base-protected compound preferably has at least one protected amino group at each end of the molecule. More preferably, the number of protected amino groups is two and the base protected compound preferably has one protected amino group at each end of the molecule.
  • the said base protection compound does not contain acidic groups, such as a carboxyl group, a sulfo group, and a phosphoric acid group. By not including these acidic groups, damage to the copper wiring is reduced. Moreover, it is preferable that the said base protection compound does not contain an alicyclic structure from a soluble viewpoint, and it is preferable that an aromatic group is not included from a chemical-resistant viewpoint. Similarly, from the viewpoint of chemical resistance, it is preferable not to contain a hydroxyl group.
  • base-protected compounds include, but are not limited to, 1,3-di-4-piperidylpropane, 1,4-butanediol (3-aminopropyl) ether, diethylene glycol bis (3-aminopropyl) ether, for example.
  • the amount of the base protection compound is preferably 0.1 to 30 parts by mass, and more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor.
  • the content of the base protection compound is 0.1 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the polyimide precursor, thereby improving the Cu void suppression effect, the resolution improvement, and the chemical resistance improvement. A particularly excellent negative photosensitive resin composition can be obtained.
  • (C) Photopolymerization Initiator The (C) photopolymerization initiator used in the first to third embodiments will be described.
  • a photoradical polymerization initiator is preferable, and benzophenone, methyl o-benzoylbenzoate, 4-benzoyl-4′-methyl diphenyl ketone, benzophenone derivatives such as dibenzyl ketone and fluorenone, 2, Acetophenone derivatives such as 2'-diethoxyacetophenone, 2-hydroxy-2-methylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, etc., thioxanthone derivatives such as thioxanthone, 2-methyl thioxanthone, 2-isopropyl thioxanthone, diethyl thioxanthone, benzyl, Benzyl derivatives such as benzyl dimethyl ketal and benzyl- ⁇ -methoxye
  • the compounding amount of the photopolymerization initiator (C) is preferably 0.1 parts by mass to 20 parts by mass, and more preferably 1 part by mass to 8 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor. It is.
  • the said compounding quantity is 0.1 mass part or more from a photosensitivity or a viewpoint of patterning property, and is 20 mass parts or less from a viewpoint of the physical property of the photosensitive resin layer after hardening of a negative photosensitive resin composition.
  • the negative photosensitive resin composition of the present embodiment may further contain components other than the components (A) to (C).
  • the components other than the components (A) to (C) include, but are not limited to, solvents, nitrogen-containing heterocyclic compounds, hindered phenol compounds, organic titanium compounds, adhesion assistants, sensitizers, photopolymerizable unsaturated monomers, Thermal polymerization inhibitors and the like can be mentioned.
  • the (D) ether compound is an acid or a base or an amino group protected by a group which is deprotected by heat, and a compound represented by the following general formula (1):
  • Z is a hydrogen atom or a methyl group.
  • the bond at both ends represents a single bond to another part in the molecule.
  • It is an ether compound which contains in a molecule the structural unit represented by ⁇ .
  • the ether compound may have at least one structural unit represented by the above general formula (1) at any position in the molecule, and the arrangement of the structural unit in the molecule is not limited.
  • the ether compound may have a plurality of the structural units in succession in the molecule, and another structure may be interposed between the structural units.
  • the structural units may be regularly arranged in the molecule of the ether compound, or may be randomly arranged.
  • ether compound for example, 1,4-butanol bis (3-aminopropyl) ether, 1,2-bis (2-aminoethoxy) ethane, 2,2′-oxybis (ethylamine), 1,14-diamino- 3,6,9,12-tetraoxatetradecane, 1-aza-15-crown 5-ether, diethylene glycol bis (3-aminopropyl) ether, or 1,11-diamino-3,6,9-trioxaundecane
  • the amino group may be a compound protected by an acid or base or a group which is deprotected by heat.
  • JEFFAMINE registered trademark
  • the amino group of 3000, T-5000, HK-511, ED-600, ED-900, ED-2003, EDR-148, EDR-176, XTJ-435, or XTJ-436 is removed with acid or base or heat.
  • Protecting groups include, but are not limited to, protected compounds.
  • the acid or base or the thermally deprotected group include tert-butoxycarbonyl group and Fmoc group, but the present invention is not limited thereto.
  • the Fmoc group refers to a 9-fluorenylmethyloxycarbonyl group.
  • the one or more amino groups are amino groups protected with a tert-butoxycarbonyl group.
  • the compound is preferably a compound protected with a tert-butoxycarbonyl group.
  • the compound protected with the tert-butoxycarbonyl group is considered to exhibit good resolution because the solubility in a developer is good and the residue is suppressed.
  • the reason for showing the Cu void suppression effect is not clear, but it is possible to contain the nitrogen atom derived from the protected amino group and the ether group derived from the structure of the above general formula (1) in the same molecule The interaction with Cu ions becomes strong, which suppresses the diffusion of Cu and, as a result, the Cu void is considered to be suppressed.
  • the number of protected amino groups contained in the molecule of the ether compound is not limited, but from the viewpoint of solubility in a solvent, amino of an amine selected from the group consisting of monoamines, diamines, triamines, and tetraamines. It is preferably a compound in which a group is protected, and more preferably a compound in which an amino group of a monoamine or diamine is protected. On the other hand, from the viewpoint of coordination to copper, it is particularly preferable that the compound is a compound in which the amino group of diamine is protected.
  • the ether compound has at least one protected amino group at each end of the molecule containing the structural unit represented by the above general formula (1) Is preferred. More preferably, the number of protected amino groups is two, and the ether compound has one protected amino group at each end of the molecule containing the structural unit represented by the above general formula (1). Is preferred.
  • numerator of the said ether compound is two or more.
  • the resolution is further improved.
  • the structure of the general formula (1) contained in the molecule The number of units is preferably 100 or less, more preferably 50 or less, and particularly preferably 30 or less.
  • Z in the general formula (1) may be identical or different, but is preferably identical. Further, Z in the general formula (1) is preferably a hydrogen atom from the viewpoint of the Cu void suppressing effect. It is considered that steric hindrance is reduced and coordination to Cu is improved by the fact that the vicinity of the ether group is a hydrogen atom.
  • the ratio (molar ratio) of the total number of protected amino groups contained in the molecule of the ether compound to the total number of structural units of the general formula (1) is 2: 1 to 2:16.
  • the ratio is preferably 2: 1 to 2: 8, and more preferably 2: 2 to 2: 6. By being in this range, the effect of suppressing Cu voids is enhanced.
  • the said ether compound does not contain acidic groups, such as a carboxyl group, a sulfo group, and a phosphoric acid group. By not including these acidic groups, damage to the copper wiring is reduced.
  • the ether compound preferably does not contain an alicyclic structure from the viewpoint of solubility, and preferably does not contain an aromatic group from the viewpoint of chemical resistance. Similarly, from the viewpoint of chemical resistance, it is preferable not to contain a hydroxyl group.
  • ether compound As a specific example of the said ether compound, although it is not limited, for example, The ether compound represented by the following chemical formula is preferable.
  • the protective group of the amino group may be decomposed in the heat curing process, but it may or may not be decomposed.
  • the amount of the ether compound is preferably 0.1 to 30 parts by mass, and more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor.
  • (A) By blending in the range of 0.1 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the polyimide precursor, especially the effects of Cu void suppression effect, resolution improvement and chemical resistance improvement An excellent negative photosensitive resin composition can be obtained.
  • the (E) urethane compound has one or more amino groups protected by an acid or a base or a group which is deprotected by heat, and a hydroxyl group in the molecule. Including one.
  • the acid or base or the thermally deprotected group include tert-butoxycarbonyl group and Fmoc group, but the present invention is not limited thereto.
  • the Fmoc group refers to a 9-fluorenylmethyloxycarbonyl group.
  • the one or more amino groups are amino groups protected with a tert-butoxycarbonyl group.
  • the compound is preferably a compound protected with a tert-butoxycarbonyl group.
  • the compound protected with the tert-butoxycarbonyl group is considered to exhibit good resolution because the solubility in a developer is good and the residue is suppressed.
  • the number of protected amino groups contained in the molecule of the urethane compound is not limited, but from the viewpoint of solubility in a solvent, preferably an amine selected from the group consisting of monoamines, diamines, triamines, and tetraamines.
  • the compound is preferably a compound in which the amino group is protected, more preferably a compound in which the amino group of monoamine or diamine is protected, still more preferably a compound in which the amino group of monoamine is protected.
  • the urethane compound is preferably a tert-butoxycarbonyl group, a benzyloxycarbonyl group, or 9 bonded to an aliphatic amino group, more particularly to an aliphatic chain or alicyclic amino group.
  • Aliphatic amino groups containing at least one fluorenylmethyloxycarbonyl (Fmoc) group in the molecule and at least one hydroxyl group in the molecule are linear primary or secondary amino groups, or It refers to an amino group in which an aromatic group or a heterocyclic group is not directly bonded to the nitrogen atom of the cyclic secondary amino group.
  • the urethane compound used in the present embodiment has the following general formula (XI): Wherein R 10 is either a tert-butoxycarbonyl group or a benzyloxycarbonyl group or an Fmoc group, and R 11 , R 12 and R 13 each independently represent a hydrogen atom, a hydroxyl group or a carbon number Either one of an organic group of 1 to 20 or an organic group of 1 to 20 carbon atoms having a hydroxyl group, and at least one of R 11 , R 12 and R 13 is a carbon having a hydroxyl group or a hydroxyl group It is any of the organic groups of 1 to 20.
  • R 10 is either a tert-butoxycarbonyl group or a benzyloxycarbonyl group or an Fmoc group
  • R 11 , R 12 and R 13 each independently represent a hydrogen atom, a hydroxyl group or a carbon number Either one of an organic group of 1 to 20 or an organic group of 1 to 20 carbon atom
  • R 10 is either a tert-butoxycarbonyl group or a benzyloxycarbonyl group or an Fmoc group
  • R 11 , R 12 , R 13, R 14 , R 15 and R 16 are each independently The hydrogen atom, the hydroxyl group, the organic group having 1 to 20 carbon atoms, or the organic group having 1 to 20 carbon atoms having a hydroxyl group, at least one of R 11 , R 12 and R 13 is It is any of a C 1-20 organic group having a hydroxyl group or a hydroxyl group.
  • the organic group having 1 to 20 carbon atoms includes a saturated or unsaturated alkyl group, a saturated or unsaturated cycloalkyl group, an aromatic group and the like. These organic groups may contain, in the organic group, a bond or a substituent containing a nitrogen atom other than a hydrocarbon group, an oxygen atom, a sulfur atom or the like, and these have a cyclic structure whether linear or branched. May be included.
  • R 11 , R 12 , R 13, R 14 , R 15 and R 16 each independently represent a hydrogen atom, a hydroxyl group, an organic group having 1 to 20 carbon atoms, Or any of C 1-20 organic groups having a hydroxyl group, provided that at least one of R 11 , R 12 and R 13 is a hydroxyl group or an organic group having 1 to 20 carbon atoms having a hydroxyl group It is either.
  • any two of R 11 , R 12 , R 13, R 14 , R 15 and R 16 may be combined to form a cyclic structure, and even if it has a hydroxyl group in this cyclic structure Good.
  • the bond or substituent other than the hydrocarbon group in the organic group of R 11 , R 12 , R 13, R 14 , R 15 and R 16 is not particularly limited as long as the effects of the present invention are not impaired.
  • the above-mentioned urethane compound When the above-mentioned urethane compound is used, good resolution and Cu void suppression effect can be obtained.
  • the resolution is improved because the photosensitive resin composition contains the compound having the above structure, so that the solubility of the resin composition in the developer becomes good, and the residue is suppressed. it is conceivable that.
  • the above-mentioned structure improves the interaction with Cu, prevents the diffusion of Cu ions, and suppresses Cu voids.
  • Examples of the above urethane compound include the following general formula (XIII): [Wherein, R 10 is either a tert-butoxycarbonyl group, a benzyloxycarbonyl group or an Fmoc group. )
  • the compounds represented by the above can be mentioned, but not limited thereto.
  • the (E) urethane compound is preferably a urethane compound which does not have any of the acidic groups contained in the group consisting of a carboxyl group, a sulfo group and a phosphoric acid group.
  • the urethane compound does not have an acidic group, the effect of suppressing Cu voids in particular is enhanced.
  • the (E) urethane compound is preferably a urethane compound in which at least one nitrogen atom to which a tert-butoxycarbonyl group, a benzyloxycarbonyl group or an Fmoc group is bonded is at the ⁇ - or ⁇ -position of the hydroxyl group in the molecule.
  • the hydroxyl group in the molecule is at the ⁇ position or the ⁇ position with respect to the nitrogen atom, a particularly good Cu void suppression effect can be obtained.
  • the reason is not clear, it is thought that the hydroxyl group at a suitable position with respect to the nitrogen atom interacts more strongly with the Cu ion, thereby suppressing the diffusion of Cu and consequently suppressing the Cu void.
  • the (E) urethane compound is more preferably a urethane compound containing at least one tert-butoxycarbonyl group bonded to an aliphatic chain or alicyclic amino group in the molecule.
  • a urethane compound containing at least one tert-butoxycarbonyl group bonded to an aliphatic chain or alicyclic amino group in the molecule is not limited.
  • the urethane compound is N ⁇ - (tert-butoxycarbonyl) -L-triptophanol, 1- (tert-butoxycarbonyl) -4-hydroxypiperidine, or the following chemical formula (1): It is more preferable that it is a urethane compound represented by these. In the case of the above compounds, the effects of both the resolution and the Cu void suppression effect are particularly excellent.
  • the tert-butoxycarbonyl group, benzyloxycarbonyl group or Fmoc group bonded to the aliphatic amino group may be decomposed in the heat curing process, but it may or may not be decomposed. May be
  • the compounding amount of the (E) urethane compound is preferably 0.01 to 20 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the (A) resin.
  • the amount is preferably 0.01 parts by mass or more from the viewpoint of Cu void suppression, and preferably 20 parts by mass or less from the viewpoint of resolution.
  • the negative photosensitive resin compositions according to the first to third embodiments of the present invention comprise, in addition to the components (A) to (E) described above, a solvent, a nitrogen-containing heterocyclic compound, a hindered phenol compound, an organic titanium compound, It may also contain other components such as adhesion promoters, sensitizers, photopolymerizable unsaturated monomers, and thermal polymerization inhibitors.
  • solvents examples include amides, sulfoxides, ureas, ketones, esters, lactones, ethers, halogenated hydrocarbons, hydrocarbons, alcohols and the like, and examples thereof include N-methyl-2 -Pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethylsulfoxide, tetramethylurea, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, methyl acetate, ethyl acetate, butyl acetate, diethyl oxalate Ethyl lactate, methyl lactate, butyl lactate, ⁇ -butyrolactone, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, benzyl alcohol, phenyl glycol, tetrahydrofurfuryl alcohol
  • N-methyl-2-pyrrolidone, dimethyl sulfoxide, tetramethyl urea, butyl acetate, ethyl lactate, ⁇ -butyrolactone, propylene from the viewpoint of resin solubility, resin composition stability, and adhesion to a substrate.
  • Glycol monomethyl ether acetate, propylene glycol monomethyl ether, diethylene glycol dimethyl ether, benzyl alcohol, phenyl glycol and tetrahydrofurfuryl alcohol are preferred.
  • those which completely dissolve the produced polymer are preferable, for example, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethylsulfoxide, tetramethyl Urea, gamma butyrolactone and the like can be mentioned.
  • the amount of the solvent used is preferably 100 to 1000 parts by mass, more preferably 120 to 700 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor. More preferably, it is in the range of 125 to 500 parts by mass.
  • Nitrogen-Containing Heterocyclic Compound In the case of forming a cured film on a substrate made of copper or a copper alloy using the photosensitive resin composition of the present embodiment, a negative photosensitive resin is used to suppress discoloration on copper.
  • the composition may optionally contain a nitrogen-containing heterocyclic compound. Examples of nitrogen-containing heterocyclic compounds include azole compounds and purine derivatives.
  • azole compound 1H-triazole, 5-methyl-1H-triazole, 5-ethyl-1H-triazole, 4,5-dimethyl-1H-triazole, 5-phenyl-1H-triazole, 4-t-butyl-5 -Phenyl-1H-triazole, 5-hydroxyphenyl-1H-triazole, phenyltriazole, p-ethoxyphenyltriazole, 5-phenyl-1- (2-dimethylaminoethyl) triazole, 5-benzyl-1H-triazole, hydroxyphenyl Triazole, 1,5-dimethyltriazole, 4,5-diethyl-1H-triazole, 1H-benzotriazole, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-, Bis ( ⁇ , ⁇ -dimethyl bene Ndyl) phenyl] -benzotriazole, 2- (3,5-di-t-butyl-5
  • tolyltriazole Particularly preferred are tolyltriazole, 5-methyl-1H-benzotriazole, and 4-methyl-1H-benzotriazole. These azole compounds may be used alone or in combination of two or more.
  • purine derivative examples include purine, adenine, guanine, hypoxanthine, xanthine, theobromine, caffeine, uric acid, isoguanine, 2,6-diaminopurine, 9-methyladenine, 2-hydroxyadenine, 2-methyladenine, 1-methyladenine, N-methyladenine, N, N-dimethyladenine, 2-fluoroadenine, 9- (2-hydroxyethyl) adenine, guanine oxime, N- (2-hydroxyethyl) adenine, 8-aminoadenine, 6-amino-8-phenyl-9H-purine, 1-ethyladenine, 6-ethylaminopurine, 1-benzyladenine, N-methyl guanine, 7- (2-hydroxyethyl) guanine, N- (3-chlorophenyl) Guanine, N- (3-ethylphenyl) guanine, 2-a A
  • the compounding amount is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor, and From the viewpoint, 0.5 to 5 parts by mass is more preferable.
  • the compounding quantity with respect to 100 mass parts of (A) polyimide precursors of an azole compound is 0.1 mass part or more, when the photosensitive resin composition of this embodiment is formed on copper or a copper alloy, copper or Discoloration of the copper alloy surface is suppressed, and when it is 20 parts by mass or less, the photosensitivity is excellent.
  • the negative photosensitive resin composition may optionally contain a hindered phenolic compound.
  • a hindered phenolic compound 2,6-di-t-butyl-4-methylphenol, 2,5-di-t-butyl-hydroquinone, octadecyl-3- (3,5-di-t-butyl-4) -Hydroxyphenyl) propionate, isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 4,4'-methylenebis (2,6-di-t-butylphenol), 4, 4'-thio-bis (3-methyl-6-t-butylphenol), 4,4'-butylidene-bis (3-methyl-6-t-butylphenol), triethylene glycol-bis [3- (3-t -Butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-di-t-butyl-4-methylphenol, 2,6-di-
  • 1,3,5-tris (4-t-butyl-3-hydroxy-2,6-dimethylbenzyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) )-Trione etc. are particularly preferred.
  • the compounding amount of the hindered phenol compound is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor, and is 0.5 to 10 parts by mass from the viewpoint of light sensitivity characteristics. Is more preferred.
  • the compounding quantity with respect to 100 mass parts of (A) polyimide precursors of a hindered phenol compound is 0.1 mass part or more, for example, when the photosensitive resin composition of this invention is formed on copper or a copper alloy, Discoloration and corrosion of copper or copper alloy are prevented, and when it is 20 parts by mass or less, the photosensitivity is excellent.
  • Organic titanium compound may contain an organic titanium compound. By containing the organic titanium compound, a photosensitive resin layer having excellent chemical resistance can be formed even when cured at a low temperature.
  • Usable organic titanium compounds include those in which an organic chemical substance is bonded to a titanium atom via a covalent bond or an ionic bond. Specific examples of the organic titanium compound are shown in the following I) to VII): I) Titanium chelate compound: Among them, a titanium chelate having two or more alkoxy groups is more preferable because the storage stability of the negative photosensitive resin composition and a good pattern can be obtained.
  • titanium bis (triethanolamine) diisopropoxide titanium di (n-butoxide) bis (2,4-pentanedionate), titanium diisopropoxide bis (2,4-pentanedionate) And titanium diisopropoxide bis (tetramethylheptanedionate), titanium diisopropoxide bis (ethylacetoacetate), and the like.
  • Tetraalkoxytitanium compounds for example, titanium tetra (n-butoxide), titanium tetraethoxide, titanium tetra (2-ethylhexoxide), titanium tetraisobutoxide, titanium tetraisopropoxide, titanium tetramethoxide , Titanium tetramethoxypropoxide, titanium tetramethylphenoxide, titanium tetra (n-nonyloxy), titanium tetra (n-propoxide), titanium tetrastearyloxide, titanium tetrakis [bis ⁇ 2, 2- (allyloxymethyl) Butoxide]] etc.
  • Titanocene compounds for example, pentamethylcyclopentadienyltitanium trimethoxide, bis ( ⁇ 5-2,4-cyclopentadien-1-yl) bis (2,6-difluorophenyl) titanium, bis ( ⁇ 5-2, 4-cyclopentadien-1-yl) bis (2,6-difluoro-3- (1H-pyrrol-1-yl) phenyl) titanium and the like.
  • Monoalkoxytitanium compounds for example, titanium tris (dioctyl phosphate) isopropoxide, titanium tris (dodecyl benzene sulfonate) isopropoxide and the like.
  • Titanium oxide compounds for example, titanium oxide bis (pentanedionate), titanium oxide bis (tetramethylheptanedionate), phthalocyanine titanium oxide and the like.
  • the organic titanium compound exhibits at least one kind of compound selected from the group consisting of the above-mentioned I) titanium chelate compound, II) tetraalkoxytitanium compound, and III) titanocene compound, thereby exhibiting better chemical resistance. It is preferable from the viewpoint of that.
  • titanium diisopropoxide bis (ethylacetoacetate), titanium tetra (n-butoxide), and bis ( ⁇ 5-2,4-cyclopentadien-1-yl) bis (2,6-difluoro-3- (1H) -Pyrrol-1-yl) phenyl) titanium is preferred.
  • the blending amount in the case of blending the organic titanium compound is preferably 0.05 to 10 parts by mass, and more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor.
  • the amount is 0.05 parts by mass or more, good heat resistance and chemical resistance develop, and when the amount is 10 parts by mass or less, the storage stability is excellent.
  • the negative photosensitive resin composition may optionally contain an adhesion assistant.
  • adhesion assistants ⁇ -aminopropyldimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, 3- Methacryloxypropyldimethoxymethylsilane, 3-methacryloxypropyltrimethoxysilane, dimethoxymethyl-3-piperidinopropylsilane, diethoxy-3-glycidoxypropylmethylsilane, N- (3-diethoxymethylsilylpropyl) succinimide N- [3- (triethoxysilyl) propyl] phthalamic acid, benzo
  • the amount of the adhesion assistant is preferably in the range of 0.5 to 25 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor.
  • 3-mercaptopropyltrimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd .: trade name KBM803, manufactured by Chisso Corporation: trade name Silaace S810
  • 3-mercaptopropyltriethoxysilane manufactured by Azmax Co., Ltd.
  • Trade name SIM 6475.0 3-Mercaptopropylmethyldimethoxysilane
  • SAhin-Etsu Chemical Co., Ltd .: trade name LS 1375, Azmax Co., Ltd .: trade name SIM 6474.0 mercaptomethyltrimethoxysilane (produced by Azmax Co., Ltd .: commodity Name: SIM 647 3.5 C), mercaptomethyl methyl dimethoxysilane (made by Azmax Co., Ltd .: trade name: SIM 647 3.0)
  • 3-mercaptopropyldiethoxymethoxysilane made by Azmax Co., Ltd .: trade name: SIM 647 3.0
  • N- (3-trimethoxysilylpropyl) urea (made by Azmax Co., Ltd .: trade name SIU9058.0), N- (3-diethoxymethoxysilylpropyl) urea, N- (3-ethoxydimethoxysilylpropyl) Urea, N- (3-tripropoxysilylpropyl) urea, N- (3-diethoxypropoxysilylpropyl) urea, N- (3-ethoxydipropoxysilylpropyl) urea, N- (3-dimethoxypropoxysilylpropyl) Urea, N- (3- methoxy di Propoxysilylpropyl) urea, N- (3-trimethoxysilylethyl) urea, N- (3-ethoxydimethoxysilylethyl) urea, N- (3-tripropoxysilyleth
  • silane coupling agent as a silane coupling agent, from the viewpoint of storage stability, phenylsilanetriol, trimethoxyphenylsilane, trimethoxy (p-tolyl) silane, diphenylsilanediol, dimethoxydiphenylsilane, diethoxy Diphenylsilane, dimethoxydi-p-tolylsilane, triphenylsilanol, and the following formula:
  • the silane coupling agent which has a structure represented by these is preferable.
  • the blending amount in the case of using a silane coupling agent is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor.
  • the negative photosensitive resin composition of the present embodiment may optionally contain a sensitizer in order to improve the photosensitivity.
  • the sensitizer include Michler's ketone, 4,4′-bis (diethylamino) benzophenone, 2,5-bis (4′-diethylaminobenzal) cyclopentane, 2,6-bis (4′-diethylaminobenzal) ) Cyclohexanone, 2,6-bis (4'-diethylaminobenzal) -4-methylcyclohexanone, 4,4'-bis (dimethylamino) chalcone, 4,4'-bis (diethylamino) chalcone, p-dimethylaminocinnana Myrylene indanone, p-dimethylaminobenzylidene indanone, 2- (p-dimethylaminophenylbiphenylene) -benzothiazole, 2- (p-dimethylaminophenylvinylene
  • the compounding amount is preferably 0.1 to 25 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor.
  • the negative photosensitive resin composition may optionally contain a monomer having a photopolymerizable unsaturated bond in order to improve the resolution of the relief pattern.
  • a monomer having a photopolymerizable unsaturated bond in order to improve the resolution of the relief pattern.
  • a (meth) acrylic compound which undergoes a radical polymerization reaction by a photopolymerization initiator is preferable, and although not particularly limited thereto, ethylene glycol or polyethylene such as diethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, etc.
  • Mono- or di-acrylates and methacrylates of glycols Mono- or di-acrylates and methacrylates of propylene glycol or polypropylene glycol, mono-, di- or triacrylates and methacrylates of glycerol, cyclohexane diacrylates and dimethacrylates, diacrylates of 1,4-butanediol Dimethacrylate, diacrylate and dimethacrylate of 1,6-hexanediol, diacrylate of neopentyl glycol And dimethacrylates, mono- or diacrylates and methacrylates of bisphenol A, benzene trimethacrylate, isobornyl acrylate and methacrylate, acrylamide and its derivatives, methacrylamide and its derivatives, trimethylolpropane triacrylate and methacrylate, glycerol di- or Mention may be made of compounds such as triacrylates and methacrylates, di-, tri- or tetra-acrylates
  • the blending amount of the photopolymerizable unsaturated bond is ( A) The amount is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the polyimide precursor.
  • a thermal polymerization inhibitor may optionally be included.
  • thermal polymerization inhibitor As a thermal polymerization inhibitor, hydroquinone, N-nitrosodiphenylamine, p-tert-butylcatechol, phenothiazine, N-phenylnaphthylamine, ethylenediaminetetraacetic acid, 1,2-cyclohexanediaminetetraacetic acid, glycol ether diamine tetraacetic acid, 2, 6 -Di-tert-butyl-p-methylphenol, 5-nitroso-8-hydroxyquinoline, 1-nitroso-2-naphthol, 2-nitroso-1-naphthol, 2-nitroso-5- (N-ethyl-N-) Sulfopropylamino) phenol, N-nitroso-N-phenylhydroxylamine ammonium salt, N-nitroso-N (1-naphthyl) hydroxylamine ammonium salt and the like are used.
  • (2) exposing the resin layer A cured relief pattern comprising the steps of: (3) developing the resin layer after exposure to form a relief pattern; and (4) heating the relief pattern to form a cured relief pattern.
  • the negative photosensitive resin composition of this embodiment is apply
  • a coating method a method conventionally used for coating a photosensitive resin composition, for example, a method of coating by a spin coater, a bar coater, a blade coater, a curtain coater, a screen printer, etc., spray coating by a spray coater A method etc. can be used.
  • the coating film containing the photosensitive resin composition can be dried.
  • a drying method methods such as air drying, heat drying with an oven or a hot plate, vacuum drying and the like are used. Specifically, when air drying or heat drying is performed, drying can be performed at 20 ° C. to 140 ° C. for 1 minute to 1 hour.
  • the photosensitive resin layer can be formed on the substrate.
  • post exposure bake (PEB) and / or post development bake may be performed according to any combination of temperature and time, as necessary, for the purpose of improving photosensitivity and the like.
  • the range of baking conditions is that the temperature is 40 ° C. to 120 ° C., and the time is preferably 10 seconds to 240 seconds, but unless the various properties of the photosensitive resin composition of this embodiment are inhibited, It is not limited to this range.
  • Relief pattern formation process At this process, an unexposed part is developed and removed among photosensitive resin layers after exposure.
  • a developing method for developing the photosensitive resin layer after exposure any of known methods for developing a photoresist, for example, a rotary spray method, a paddle method, an immersion method accompanied by ultrasonic treatment and the like can be used. You can use it by selecting the method.
  • post-development baking may be performed at any temperature and time combination, as necessary, for the purpose of adjusting the shape of the relief pattern and the like.
  • a good solvent for the negative photosensitive resin composition for example, a good solvent for the negative photosensitive resin composition, or a combination of the good solvent and the poor solvent is preferable.
  • the good solvent for example, N-methyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N, N-dimethylacetamide, cyclopentanone, cyclohexanone, ⁇ -butyrolactone, ⁇ -acetyl- ⁇ -butyrolactone and the like are preferable. .
  • the poor solvent for example, toluene, xylene, methanol, ethanol, isopropyl alcohol, ethyl lactate, propylene glycol methyl ether acetate, water and the like are preferable.
  • a good solvent and a poor solvent are mixed and used, it is preferable to adjust the ratio of the poor solvent to the good solvent by the solubility of the polymer in the negative photosensitive resin composition.
  • two or more types of each solvent for example, several types may be used in combination.
  • the relief pattern obtained by the above development is heated to dilute the photosensitive component, and (A) a curing relief consisting of polyimide by imidizing the polyimide precursor. Convert to a pattern.
  • a curing relief consisting of polyimide by imidizing the polyimide precursor.
  • various methods can be selected, such as using a hot plate, using an oven, using a temperature rising oven capable of setting a temperature program, and the like. The heating can be performed, for example, at 170 ° C. to 400 ° C. for 30 minutes to 5 hours.
  • the atmosphere gas at the time of heat curing air may be used, or an inert gas such as nitrogen or argon may be used.
  • the present embodiment also provides a semiconductor device having a cured relief pattern obtained by the above-described method for producing a cured relief pattern. Therefore, a semiconductor device can be provided which has a substrate which is a semiconductor element and a cured relief pattern of polyimide formed on the substrate by the above-described method of producing a cured relief pattern.
  • the present invention can also be applied to a method of manufacturing a semiconductor device using a semiconductor element as a base material and including the method of manufacturing a cured relief pattern described above as part of the process.
  • the semiconductor device of the present embodiment is a semiconductor having a surface protection film, an interlayer insulation film, an insulation film for rewiring, a protection film for a flip chip device, or a bump structure, which is formed by the above-mentioned method of manufacturing a hardening relief pattern. It can be formed as a protective film or the like of the device and combined with a known method of manufacturing a semiconductor device.
  • the present embodiment provides a display device comprising a display element and a cured film provided above the display element, wherein the cured film is the above-mentioned cured relief pattern.
  • the cured relief pattern may be laminated in direct contact with the display element, or may be laminated with another layer interposed therebetween.
  • the cured film there can be mentioned surface protective film of TFT liquid crystal display element and color filter element, insulating film, flattening film, projection for MVA type liquid crystal display device, and partition wall for organic EL element cathode. .
  • the negative photosensitive resin composition of the present embodiment is used in applications such as interlayer insulation of multilayer circuits, cover coats of flexible copper clad plates, solder resist films, liquid crystal alignment films, etc. in addition to application to semiconductor devices as described above. It is also useful.
  • Weight Average Molecular Weight The weight average molecular weight (Mw) of each resin was measured using a gel permeation chromatography method (in terms of standard polystyrene) under the following conditions.
  • the coating film was irradiated with 500 mJ / cm 2 of energy by Prisma GHI (manufactured by Ultratech Co., Ltd.) using a mask with a test pattern.
  • this coating film is spray developed with a coater developer (D-Spin 60A type, manufactured by SOKUDO) using cyclopentanone as a developer and 2.38% TMAH as a positive type.
  • the relief pattern on Cu was obtained by rinsing with propylene glycol methyl ether acetate in the case of the negative type and with pure water in the case of the positive type.
  • the resulting reaction solution was added to 3 L of ethyl alcohol to form a precipitate consisting of a crude polymer.
  • the resulting crude polymer was separated by filtration and dissolved in 1.5 L of tetrahydrofuran to obtain a crude polymer solution.
  • the obtained crude polymer solution was dropped into 28 L of water to precipitate a polymer, and the obtained precipitate was separated by filtration and then vacuum dried to obtain a powdery polymer (polymer A-1).
  • the molecular weight of the polymer (A-1) was measured by gel permeation chromatography (in terms of standard polystyrene), and the weight average molecular weight (Mw) was 20,000.
  • Production Example 2 (A) Synthesis of Polymer A-2 as Polyimide Precursor In place of 155.1 g of 4,4′-oxydiphthalic acid dianhydride (ODPA) in Production Example 1, 3,3 ′, 4,4 A reaction was carried out in the same manner as in the above-mentioned Production Example 1 except that 147.1 g of '-biphenyltetracarboxylic acid dianhydride (BPDA) was used, to obtain a polymer (A-2). The molecular weight of the polymer (A-2) was measured by gel permeation chromatography (in terms of standard polystyrene), and the weight average molecular weight (Mw) was 22,000.
  • BPDA '-biphenyltetracarboxylic acid dianhydride
  • Production Example 3 (A) Synthesis of Polymer A-3 as Polyimide Precursor 50.2 g of p-phenylenediamine was used in place of 93.0 g of 4,4′-oxydianiline (ODA) in Production Example 1 The reaction was carried out in the same manner as described in Production Example 1 except for the above, to obtain a polymer (A-3).
  • the molecular weight of the polymer (A-3) was measured by gel permeation chromatography (in terms of standard polystyrene), and the weight average molecular weight (Mw) was 19,000.
  • the separable flask was cooled by a water bath of 15 to 20.degree.
  • the time required for the dropwise addition was 40 minutes, and the temperature of the reaction solution was 30 ° C. at maximum.
  • 30.8 g (0.2 mol) of 1,2-cyclohexyldicarboxylic acid anhydride is added to the reaction solution, and stirred at room temperature for 15 hours to allow 99% of all amine end groups of the polymer chain to be carboxy Sealed with a cyclohexylamide group.
  • the reaction rate at this time can be easily calculated by monitoring the amount of remaining 1,2-cyclohexyldicarboxylic acid anhydride by high performance liquid chromatography (HPLC).
  • the crude polybenzoxazole precursor obtained above is redissolved in ⁇ -butyrolactone (GBL) and then treated with a cation exchange resin and an anion exchange resin, and the solution obtained thereby is ion-exchanged water
  • the precipitated polymer was separated by filtration, washed with water and vacuum dried to obtain a purified polybenzoxazole precursor (polymer A-4).
  • C-1 1-phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) -oxime
  • C-2 Irgacure OXE01 (manufactured by BASF, trade name)
  • E-1 1- (tert-butoxycarbonyl) -4-piperidinemethanol (made by Tokyo Chemical Industry Co., Ltd.)
  • E-2 3- (carbobenzoxyamino) -1-propanol (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • E-3 N-[(9H-fluoren-9-ylmethoxy) carbonyl] -D-serine (made by Tokyo Chemical Industry Co., Ltd.)
  • E-4 1- (tert-butoxycarbonyl) -4-hydroxypiperidine (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • E-5 40 g of 4-hydroxy-4-phenylpiperidine (manufactured by Tokyo Kasei Kogyo Co., Ltd.) and 300 g of ethanol were added to a 3 L eggplant-shaped flask and mixed and stirred to obtain a uniform solution.
  • E-6 N ⁇ - (tert-butoxycarbonyl) -L-triptophanol (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • E-7 N- (tert-butoxycarbonyl) -L-serine (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • E-8 1- (tert-butoxycarbonyl) -4-piperidine carboxylic acid (made by Tokyo Chemical Industry Co., Ltd.)
  • E-9 N- (tert-butoxycarbonyl) -4-hydroxyaniline (manufactured by Sigma Aldrich)
  • E-10 2- (2-aminoethoxy) ethanol (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • Example 1 A negative photosensitive resin composition was prepared by using the polymer A-1 by the following method, and the prepared composition was evaluated.
  • A 100 g of polymer A-1 as a polyimide precursor, 5 B of compound B-1 as a (B) base-protected compound, 1-phenyl-1,2-propanedione-2- (C) as a photopolymerization initiator 3 g of O-ethoxycarbonyl) -oxime (hereinafter referred to as PDO, corresponding to a photopolymerization initiator C-1): 3 g was dissolved in 150 g of ⁇ -butyl lactone (hereinafter referred to as GBL). The viscosity of the resulting solution was adjusted to about 30 poise by further adding a small amount of GBL to obtain a negative photosensitive resin composition.
  • the composition was evaluated according to the method described above. The results are shown in Table 1.
  • Examples 2 to 15, Comparative Examples 1 and 2 A negative photosensitive resin composition was prepared in the same manner as in Example 1 except that it was prepared with the components and compounding ratios as shown in Tables 1 and 2, and was evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.
  • the Cu surface was evaluated as "Poor” in void evaluation, resolution evaluation, and chemical resistance evaluation.
  • the negative photosensitive resin compositions of Examples 2 to 15 were all "OK” or more in all of the Cu surface void evaluation, the resolution evaluation, and the chemical resistance evaluation.
  • Example 6 using polymers A-1 and A-2 as the polyimide precursor (A) and Example 7 using polymers A-1 and A-3, particularly excellent Cu surface void evaluation and The resolution evaluation was obtained.
  • the base-protected compound (B) when adding 5 parts by mass of B-2, B-3 or B-4 based on 100 parts by mass of the polymer, a particularly excellent void suppression effect on the Cu surface is obtained. It was done.
  • Comparative Example 1 using B-6 and Comparative Example 2 using B-7 the evaluation of resolution was “impossible”.
  • Example 16 A negative photosensitive resin composition was prepared by using the polymer A-1 by the following method, and the prepared composition was evaluated.
  • A Polymer A-1 as a polyimide precursor: 100 g
  • D Compound D-1 as an ether compound: 5 g
  • C 1-phenyl-1,2-propanedione-2- (O) as a photopolymerization initiator 3 g of -ethoxycarbonyl) -oxime (hereinafter referred to as PDO, corresponding to photosensitizer C-1): was dissolved in 150 g of ⁇ -butyl lactone (hereinafter referred to as GBL).
  • GBL ⁇ -butyl lactone
  • the viscosity of the resulting solution was adjusted to about 30 poise by further adding a small amount of GBL to obtain a negative photosensitive resin composition.
  • the composition was evaluated according to the method described above. The results are shown in Table 3.
  • Examples 17 to 31 and Comparative Examples 5 to 7 A negative photosensitive resin composition was prepared in the same manner as in Example 16 except that the components and the compounding ratio as shown in Table 1 were prepared, and evaluation was performed in the same manner as in Example 16. The results are shown in Tables 3 and 4.
  • a positive photosensitive resin composition was prepared by using the polymer (A-4) by the following method, and the prepared photosensitive resin composition was evaluated.
  • 100 g of polymer A-4 which is a polyoxazole precursor as a polymer
  • 5 g of D-4 as a compound, the following chemical formula (22) as a photosensitizer
  • 100 g of GBL 20 g of a photosensitive diazoquinone compound (corresponding to C-2, manufactured by Toyo Gosei Co., Ltd.) was obtained.
  • the viscosity of the resulting solution was adjusted to about 20 poise by further adding a small amount of GBL to obtain a positive photosensitive resin composition.
  • the composition was evaluated according to the method described above. The results are shown in Table 4.
  • Comparative Example 4 The same positive photosensitive resin composition as in Comparative Example 3 was prepared except that the ether compound was changed to D-4 and prepared using D-5, and evaluation was performed in the same manner as in Comparative Example 3. The results are shown in Table 4.
  • the negative photosensitive resin composition of Example 16 As is apparent from Tables 3 and 4, in the negative photosensitive resin composition of Example 16, the Cu surface void evaluation is “OK”, the resolution evaluation is “Good”, and the chemical resistance evaluation is “OK”. It became “. Similarly, the negative photosensitive resin compositions of Examples 17 to 31 were all "OK” or more in all of the Cu surface void evaluation, the resolution evaluation, and the chemical resistance evaluation. In particular, in Example 24 in which the polymers A-1 and A-2 were used as the (A) polyimide precursor, and in Example 25 in which the polymers A-1 and A-3 were used, particularly excellent resolution was obtained. It was done.
  • Example 32 A negative photosensitive resin composition was prepared by using the polymer A-1 by the following method, and the prepared composition was evaluated.
  • PDO 1-phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) -oxime
  • PDO 1-phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) -oxime
  • PDO 1-phenyl-1,
  • Examples 33 to 47, Comparative Examples 8 to 11 A negative photosensitive resin composition was prepared in the same manner as in Example 32 except that the components and the compounding ratio were as shown in Tables 5 and 6, and the evaluation was performed in the same manner as in Example 32. The results are shown in Tables 5 and 6.
  • Example 33 in which the polymers A-1 and A-2 were used as the resin (A) and Example 34 in which the polymers A-1 and A-3 were used, particularly excellent resolution was obtained.
  • E-4, E-5, and E-6 are used as the (E) urethane compound, and when 5 parts by mass is added based on 100 parts by mass of the polymer, a particularly excellent void suppression effect on the Cu surface is obtained.
  • the negative photosensitive resin composition according to the present embodiment By using the negative photosensitive resin composition according to the present embodiment, a cured relief pattern having high resolution can be obtained, and generation of voids on the Cu surface can be suppressed.
  • the negative photosensitive resin composition of the present embodiment can be suitably used, for example, in the field of photosensitive materials useful for producing electric and electronic materials such as semiconductor devices and multilayer wiring boards.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

The present invention provides: a negative photosensitive resin composition that achieves a high resolution, and suppresses the occurrence of voids at an interface of a Cu layer contacting a resin layer after a high-temperature storage test; a method for producing said composition; and a method for forming a cured relief pattern. This negative photosensitive resin composition comprises: (A) a polyimide precursor; (B) a base protected compound; and (C) a photopolymerisation initiator. The base protected compound: comprises multiple amino groups protected by a group which is deprotected by an acid, a base or heat; has a molecular weight of 250–600; the protected multiple amino groups are aliphatic-chain or alicyclic amino groups; and has a solubility parameter value of 20.0–24.0.

Description

ネガ型感光性樹脂組成物及びその製造方法、並びに硬化レリーフパターンの製造方法Negative photosensitive resin composition, method for producing the same, and method for producing a cured relief pattern
 本発明は、ネガ型感光性樹脂組成物及びその製造方法、並びに硬化レリーフパターンの製造方法に関するものである。 The present invention relates to a negative photosensitive resin composition, a method for producing the same, and a method for producing a cured relief pattern.
 従来、電子部品の絶縁材料、及び半導体装置のパッシベーション膜、表面保護膜、層間絶縁膜等には、優れた耐熱性、電気特性及び機械特性を併せ持つポリイミド樹脂、ポリベンゾオキサゾール樹脂、フェノール樹脂等が用いられている。これらの樹脂の中でも、感光性樹脂組成物の形態で提供されるものは、該組成物の塗布、露光、現像、及びキュアによる熱イミド化処理によって、耐熱性のレリーフパターン皮膜を容易に形成することができる。このような感光性樹脂組成物は、従来の非感光型材料に比べて、大幅な工程短縮を可能にするという特徴を有している。 Conventionally, polyimide resins, polybenzoxazole resins, phenol resins, etc. having excellent heat resistance, electrical properties and mechanical properties are used for insulating materials of electronic parts, passivation films, surface protective films, interlayer insulating films etc. of semiconductor devices. It is used. Among these resins, those provided in the form of a photosensitive resin composition easily form a heat-resistant relief pattern film by thermal imidization treatment by application, exposure, development, and curing of the composition. be able to. Such a photosensitive resin composition has a feature of enabling significant process reduction as compared to conventional non-photosensitive materials.
 ところで、半導体装置(以下、「素子」とも言う。)は、目的に合わせて、様々な方法でプリント基板に実装される。従来の素子は、素子の外部端子(パッド)からリードフレームまで細いワイヤで接続するワイヤボンディング法により作製されることが一般的であった。しかしながら、素子の高速化が進み、動作周波数がGHzまで到達した今日、実装における各端子の配線長さの違いが、素子の動作に影響を及ぼすまでに至った。そのため、ハイエンド用途の素子の実装では、実装配線の長さを正確に制御する必要が生じ、ワイヤボンディングではその要求を満たすことが困難となった。 By the way, a semiconductor device (hereinafter, also referred to as “element”) is mounted on a printed circuit board by various methods according to the purpose. Conventional devices are generally manufactured by a wire bonding method in which thin wires are connected from the external terminals (pads) of the devices to the lead frame. However, as the speed of elements has been increased and the operating frequency has reached GHz, the difference in wiring length of each terminal in mounting has come to affect the operation of the elements. Therefore, in the case of the mounting of elements for high-end applications, it becomes necessary to control the length of the mounting wiring accurately, and it has become difficult to meet the requirement in the wire bonding.
 したがって、半導体チップの表面に再配線層を形成し、その上にバンプ(電極)を形成した後、該チップを裏返して、プリント基板に直接実装する、フリップチップ実装が提案されている(例えば特許文献1参照)。このフリップチップ実装では、配線距離を正確に制御できるため、高速な信号を取り扱うハイエンド用途の素子に、又は実装サイズの小ささから携帯電話等に、それぞれ採用され、需要が急拡大している。フリップチップ実装にポリイミド、ポリベンゾオキサゾール、フェノール樹脂等の材料を使用する場合、該樹脂層のパターンが形成された後に、金属配線層形成工程を経る。金属配線層は、通常、樹脂層表面をプラズマエッチングして表面を粗化した後、メッキのシード層となる金属層を、1μm以下の厚みでスパッタにより形成した後、その金属層を電極として、電解メッキにより形成される。このとき、一般に、シード層となる金属としてはチタン(Ti)が、電解メッキにより形成される再配線層の金属としては銅(Cu)が用いられる。 Therefore, there has been proposed flip chip mounting in which a rewiring layer is formed on the surface of a semiconductor chip, bumps (electrodes) are formed thereon, the chip is turned over, and the chip is directly mounted on a printed board (for example, patent) Reference 1). In this flip-chip mounting, since the wiring distance can be accurately controlled, the demand is rapidly expanding, being adopted for high-end devices that handle high-speed signals, or for small size due to small mounting size. When a material such as polyimide, polybenzoxazole, or phenol resin is used for flip chip mounting, a metal wiring layer formation step is performed after a pattern of the resin layer is formed. The metal wiring layer is generally plasma etched on the surface of the resin layer to roughen the surface, then a metal layer to be a seed layer for plating is formed by sputtering with a thickness of 1 μm or less, and the metal layer is used as an electrode. It is formed by electrolytic plating. At this time, titanium (Ti) is generally used as a metal to be a seed layer, and copper (Cu) is used as a metal of a redistribution layer formed by electrolytic plating.
 このような金属再配線層について、信頼性試験後に再配線された金属層と樹脂層との密着性が高いことが求められる。信頼性試験としては、例えば、空気中、125℃以上の高温で100時間以上保存する、高温保存試験;配線を組んで電圧を印加しながら、空気中で、125℃程度の温度で100時間以上に亘る保存下での動作を確認する、高温動作試験;空気中で、-65℃~-40℃程度の低温状態と、125℃~150℃程度の高温状態とをサイクルで行き来させる、温度サイクル試験;85℃以上の温度で湿度85%以上の水蒸気雰囲気下で保存する、高温高湿保存試験;高温高湿保存試験と同じ試験を、配線を組んで電圧を印加しながら行なう、高温高湿バイアス試験;並びに空気中又は窒素下で260℃のはんだリフロー炉を複数回通過させる、はんだリフロー試験等を挙げることができる。 Such a metal redistribution layer is required to have high adhesion between the metal layer re-wired after the reliability test and the resin layer. As a reliability test, for example, high temperature storage test stored in air at a high temperature of 125 ° C. or more for 100 hours or more; a wiring is conducted while applying a voltage, in air, at a temperature of about 125 ° C. for 100 hours or more High temperature operation test to confirm the operation under storage over temperature; temperature cycle in which the low temperature condition of about -65 ° C to -40 ° C and the high temperature condition of about 125 ° C to 150 ° C are cycled in air Test: store at 85 ° C or higher in a water vapor atmosphere with a humidity of 85% or higher, high temperature and high humidity storage test; perform the same test as high temperature and high humidity storage test while applying voltage while forming wiring, high temperature and high humidity Bias test; and solder reflow test which passes through a solder reflow furnace at 260 ° C. in air or under nitrogen a plurality of times can be mentioned.
特開2001-338947号公報JP, 2001-338947, A
 しかしながら、従来、上記信頼性試験の中で、高温保存試験の場合、試験後、再配線されたCu層の、樹脂層に接する界面でボイドが発生する、という問題があった。Cu層と樹脂層との界面でボイドが発生すると、両者の密着性が低下してしまう。 However, conventionally, in the case of the high temperature storage test in the above-mentioned reliability test, there has been a problem that a void is generated at the interface of the Cu layer rewired after the test in contact with the resin layer. If a void is generated at the interface between the Cu layer and the resin layer, the adhesion between the two will be reduced.
 また、ボイドの問題に加えて、金属再配線層(硬化レリーフパターン)の微細化への要求も大きくなっている。このため、特に半導体の金属再配線層の形成に用いられる感光性樹脂組成物には、ボイドの発生を抑制するとともに、高い解像性を示すことが求められる。また、一実施形態において、金属再配線層には、高い耐薬品性が求められる。 In addition to the problem of voids, the demand for finer metal redistribution layers (hardened relief patterns) is also increasing. For this reason, it is required that the photosensitive resin composition used particularly for the formation of the semiconductor metal rewiring layer has high resolution while suppressing the occurrence of voids. In one embodiment, the metal redistribution layer is required to have high chemical resistance.
 本発明は、このような従来の実情に鑑みて考案されたものであり、高い解像度が得られ、かつ、高温保存(high temperature storage)試験後、Cu層の、樹脂層に接する界面でボイドの発生を抑制することができるネガ型感光性樹脂組成物(以下、本願明細書において単に「感光性樹脂組成物」ともいう。)、及びその製造方法を提供することを目的の一つとする。本発明のネガ型感光性樹脂組成物を用いた硬化レリーフパターンの形成方法を提供することもまた目的の一つである。また、一実施形態において、高い耐薬品性、高い解像度、及び高いボイド抑制効果を有するネガ型感光性樹脂組成物及びその製造方法、並びに該ネガ型感光性樹脂組成物を用いた硬化レリーフパターンの形成方法を提供することを目的の一つとする。 The present invention was devised in view of such conventional circumstances, and high resolution is obtained, and after a high temperature storage test, voids in the interface of the Cu layer in contact with the resin layer are obtained. An object of the present invention is to provide a negative photosensitive resin composition (hereinafter, also simply referred to as "photosensitive resin composition" in the present specification) capable of suppressing the generation and a method for producing the same. It is also an object to provide a method for forming a cured relief pattern using the negative photosensitive resin composition of the present invention. In one embodiment, a negative photosensitive resin composition having high chemical resistance, high resolution, and high void suppression effect, a method for producing the same, and a cured relief pattern using the negative photosensitive resin composition It is an object to provide a formation method.
 本発明者らは、ポリイミド前駆体及び光重合開始剤と、酸又は塩基又は熱で脱保護される基で保護されたアミノ基を有する特定の化合物とを組み合わせることにより、上記課題を解決することができることを見出し、本発明を完成するに至った。本発明の実施形態の例を以下に列記する。
[1]
(A)ポリイミド前駆体;
(B)酸又は塩基又は熱で脱保護される基で保護された複数のアミノ基を有し、分子量が250~600であり、上記保護された複数のアミノ基が脂肪族鎖状もしくは脂環式アミノ基であり、かつ、溶解度パラメーターの値が20.0以上24.0以下である、塩基保護化合物;及び
(C)光重合開始剤
を含む、ネガ型感光性樹脂組成物。
[2]
 上記保護された複数のアミノ基は、tert-ブトキシカルボニル基で保護されたアミノ基である、項目1に記載のネガ型感光性樹脂組成物。
[3]
 上記(A)ポリイミド前駆体が、下記一般式(2):
Figure JPOXMLDOC01-appb-C000030
{式中、Xは4価の有機基であり、Yは2価の有機基であり、nは2~150の整数であり、そしてR及びRは、それぞれ独立に、水素原子、又は1価の有機基であり、R及びRの少なくとも一方は、末端に重合性基を有する1価の有機基である。}
で表される構造単位を有するポリイミド前駆体を含む、項目1又は2のいずれか一項に記載のネガ型感光性樹脂組成物。
[4]
 上記一般式(2)において、R及びRの少なくとも一方は、下記一般式(3):
Figure JPOXMLDOC01-appb-C000031
{式中、L、L及びLは、それぞれ独立に、水素原子又は炭素数1~3の有機基であり、そしてmは、2~10の整数である。}で表される1価の有機基である、項目3に記載のネガ型感光性樹脂組成物。
[5]
 上記(A)ポリイミド前駆体が、下記一般式(4):
Figure JPOXMLDOC01-appb-C000032
{式中、R、R、及びnは上記一般式(2)に定義したものである。}
で表される構造単位を有するポリイミド前駆体を含む、項目3又は4に記載のネガ型感光性樹脂組成物。
[6]
 上記(A)ポリイミド前駆体が、下記一般式(5):
Figure JPOXMLDOC01-appb-C000033
{式中、R、R、及びnは上記一般式(2)に定義したものである。}
で表される構造単位を有するポリイミド前駆体を含む、項目3又は4に記載のネガ型感光性樹脂組成物。
[7]
 上記(A)ポリイミド前駆体が、下記一般式(6):
Figure JPOXMLDOC01-appb-C000034
{式中、R、R、及びnは上記一般式(2)に定義したものである。}
で表される構造単位を有するポリイミド前駆体を含む、項目3又は4に記載のネガ型感光性樹脂組成物。
[8]
 上記(A)ポリイミド前駆体が、下記一般式(4):
Figure JPOXMLDOC01-appb-C000035
{式中、R、R、及びnは上記一般式(2)に定義したものである。}
で表される構造単位を有するポリイミド前駆体と、
下記一般式(5):
Figure JPOXMLDOC01-appb-C000036
{式中、R、R、及びnは上記一般式(2)に定義したものであり、ただし、一般式(5)中のR、R、及びnは、一般式(4)中のR、R、及びnとは独立して選択される。}
で表される構造単位を有するポリイミド前駆体の両方を含む、項目3又は4に記載のネガ型感光性樹脂組成物。
[9]
 上記(A)ポリイミド前駆体が、下記一般式(4):
Figure JPOXMLDOC01-appb-C000037
{式中、R、R、及びnは上記一般式(2)に定義したものである。}
で表される構造単位を有するポリイミド前駆体、と
下記一般式(6):
Figure JPOXMLDOC01-appb-C000038
{式中、R、R、及びnは上記一般式(2)に定義したものであり、ただし、一般式(6)中のR、R、及びnは、一般式(4)中のR、R、及びnとは独立して選択される。}
で表される構造単位を有するポリイミド前駆体の両方を含む、項目3又は4に記載のネガ型感光性樹脂組成物。
[10]
 100質量部の上記(A)ポリイミド前駆体と、
 上記(A)ポリイミド前駆体100質量部を基準として0.1~30質量部の上記(B)塩基保護化合物と、
 上記(A)ポリイミド前駆体100質量部を基準として0.1~20質量部の上記(C)光重合開始剤と
を含む、項目1~9のいずれか一項に記載のネガ型感光性樹脂組成物。
[11]
(A)ポリイミド前駆体;
(D)酸又は塩基又は熱で脱保護される基で保護された一つ又は複数のアミノ基と、下記一般式(1):
Figure JPOXMLDOC01-appb-C000039
{式中Zは、水素原子又はメチル基である。また、両端の結合は分子内の他の部分への単結合を表す。}
で表される一つ又は複数の構造単位を分子内に含む、エーテル化合物;及び
(C)光重合開始剤
を含む、ネガ型感光性樹脂組成物。
[12]
 上記(D)エーテル化合物は、分子中に上記一般式(1)で表される構造単位を二つ以上含む、項目11に記載のネガ型感光性樹脂組成物。
[13]
 上記保護された一つ又は複数のアミノ基は、tert-ブトキシカルボニル基で保護されたアミノ基である、項目11又は12に記載のネガ型感光性樹脂組成物。
[14]
 上記(A)ポリイミド前駆体が、下記一般式(2):
Figure JPOXMLDOC01-appb-C000040
{式中、Xは4価の有機基であり、Yは2価の有機基であり、nは2~150の整数であり、そしてR及びRは、それぞれ独立に、水素原子、又は1価の有機基であり、R及びRの少なくとも一方は、末端に重合性基を有する1価の有機基である。}
で表される構造単位を有するポリイミド前駆体を含む、項目11~13のいずれか一項に記載のネガ型感光性樹脂組成物。
[15]
 上記一般式(2)において、R及びRの少なくとも一方は、下記一般式(3):
Figure JPOXMLDOC01-appb-C000041
{式中、L、L及びLは、それぞれ独立に、水素原子又は炭素数1~3の有機基であり、そしてmは、2~10の整数である。}で表される1価の有機基である、項目14に記載のネガ型感光性樹脂組成物。
[16]
 上記(A)ポリイミド前駆体が、下記一般式(4):
Figure JPOXMLDOC01-appb-C000042
{式中、R、R、及びnは上記一般式(2)に定義したものである。}
で表される構造単位を有するポリイミド前駆体を含む、項目14又は15に記載のネガ型感光性樹脂組成物。
[17]
 上記(A)ポリイミド前駆体が、下記一般式(5):
Figure JPOXMLDOC01-appb-C000043
{式中、R、R、及びnは上記一般式(2)に定義したものである。}
で表される構造単位を有するポリイミド前駆体を含む、項目14又は15に記載のネガ型感光性樹脂組成物。
[18]
 上記(A)ポリイミド前駆体が、下記一般式(6):
Figure JPOXMLDOC01-appb-C000044
{式中、R、R、及びnは上記一般式(2)に定義したものである。}
で表される構造単位を有するポリイミド前駆体を含む、項目14又は15に記載のネガ型感光性樹脂組成物。
[19]
 上記(A)ポリイミド前駆体が、下記一般式(4):
Figure JPOXMLDOC01-appb-C000045
{式中、R、R、及びnは上記一般式(2)に定義したものである。}
で表される構造単位を有するポリイミド前駆体と、
下記一般式(5):
Figure JPOXMLDOC01-appb-C000046
{式中、R、R、及びnは上記一般式(2)に定義したものであり、ただし、一般式(5)中のR、R、及びnは、一般式(4)中のR、R、及びnとは独立して選択される。}
で表される構造単位を有するポリイミド前駆体の両方を含む、項目14又は15に記載のネガ型感光性樹脂組成物。
[20]
 上記(A)ポリイミド前駆体が、下記一般式(4):
Figure JPOXMLDOC01-appb-C000047
{式中、R、R、及びnは上記一般式(2)に定義したものである。}
で表される構造単位を有するポリイミド前駆体、と
下記一般式(6):
Figure JPOXMLDOC01-appb-C000048
{式中、R、R、及びnは上記一般式(2)に定義したものであり、ただし、一般式(6)中のR、R、及びnは、一般式(4)中のR、R、及びnとは独立して選択される。}
で表される構造単位を有するポリイミド前駆体の両方を含む、項目14又は15に記載のネガ型感光性樹脂組成物。
[21]
 100質量部の上記(A)ポリイミド前駆体と、
 上記(A)ポリイミド前駆体100質量部を基準として0.1~30質量部の上記(D)エーテル化合物と、
 上記(A)ポリイミド前駆体100質量部を基準として0.1~20質量部の上記(C)光重合開始剤と
を含む、項目11~20のいずれか一項に記載のネガ型感光性樹脂組成物。
[22]
(A)ポリイミド前駆体;
(E)酸又は塩基又は熱で脱保護される基で保護された一つ又は複数のアミノ基と、ヒドロキシル基を分子内に少なくとも一つ含むウレタン化合物;及び
(C)光重合開始剤
を含む、ネガ型感光性樹脂組成物。
[23]
 上記(E)ウレタン化合物は、脂肪族鎖状若しくは脂環式アミノ基に結合したtert-ブトキシカルボニル基、ベンジルオキシカルボニル基又は9-フルオレニルメチルオキシカルボニル(Fmoc)基を分子内に少なくとも一つ有する、項目22に記載のネガ型感光性樹脂組成物。
[24]
 上記(E)ウレタン化合物の上記保護された一つ又は複数のアミノ基の窒素原子の少なくとも一つが、分子内のヒドロキシル基のγ位若しくはε位にある、項目22又は23に記載のネガ型感光性樹脂組成物。
[25]
 上記保護された一つ又は複数のアミノ基は、tert-ブトキシカルボニル基で保護されたアミノ基である、項目22~24のいずれか一項に記載のネガ型感光性樹脂組成物。
[26]
 上記(A)ポリイミド前駆体が、下記一般式(2):
Figure JPOXMLDOC01-appb-C000049
{式中、Xは4価の有機基であり、Yは2価の有機基であり、nは2~150の整数であり、そしてR及びRは、それぞれ独立に、水素原子、又は1価の有機基であり、R及びRの少なくとも一方は、末端に重合性基を有する1価の有機基である。}
で表される構造単位を有するポリイミド前駆体を含む、項目22~25のいずれか一項に記載のネガ型感光性樹脂組成物。
[27]
 上記一般式(2)において、R及びRの少なくとも一方は、下記一般式(3):
Figure JPOXMLDOC01-appb-C000050
{式中、L、L及びLは、それぞれ独立に、水素原子又は炭素数1~3の有機基であり、そしてmは、2~10の整数である。}で表される1価の有機基である、項目26に記載のネガ型感光性樹脂組成物。
[28]
 上記(A)ポリイミド前駆体が、下記一般式(4):
Figure JPOXMLDOC01-appb-C000051
{式中、R、R、及びnは上記一般式(2)に定義したものである。}
で表される構造単位を有するポリイミド前駆体を含む、項目26又は27に記載のネガ型感光性樹脂組成物。
[29]
 上記(A)ポリイミド前駆体が、下記一般式(5):
Figure JPOXMLDOC01-appb-C000052
{式中、R、R、及びnは上記一般式(2)に定義したものである。}
で表される構造単位を有するポリイミド前駆体を含む、項目26又は27に記載のネガ型感光性樹脂組成物。
[30]
 上記(A)ポリイミド前駆体が、下記一般式(6):
Figure JPOXMLDOC01-appb-C000053
{式中、R、R、及びnは上記一般式(2)に定義したものである。}
で表される構造単位を有するポリイミド前駆体を含む、項目26又は27に記載のネガ型感光性樹脂組成物。
[31]
 上記(A)ポリイミド前駆体が、下記一般式(4):
Figure JPOXMLDOC01-appb-C000054
{式中、R、R、及びnは上記一般式(2)に定義したものである。}
で表される構造単位を有するポリイミド前駆体と、
下記一般式(5):
Figure JPOXMLDOC01-appb-C000055
{式中、R、R、及びnは上記一般式(2)に定義したものであり、ただし、一般式(5)中のR、R、及びnは、一般式(4)中のR、R、及びnとは独立して選択される。}
で表される構造単位を有するポリイミド前駆体の両方を含む、項目26又は27に記載のネガ型感光性樹脂組成物。
[32]
 上記(A)ポリイミド前駆体が、下記一般式(4):
Figure JPOXMLDOC01-appb-C000056
{式中、R、R、及びnは上記一般式(2)に定義したものである。}
で表される構造単位を有するポリイミド前駆体、と
下記一般式(6):
Figure JPOXMLDOC01-appb-C000057
{式中、R、R、及びnは上記一般式(2)に定義したものであり、ただし、一般式(6)中のR、R、及びnは、一般式(4)中のR、R、及びnとは独立して選択される。}
で表される構造単位を有するポリイミド前駆体の両方を含む、項目26又は27に記載のネガ型感光性樹脂組成物。
[33]
 上記(E)ウレタン化合物が、Nα-(tert-ブトキシカルボニル)-L-トリプトファノール、1-(tert-ブトキシカルボニル)-4-ヒドロキシピペリジン、又は下記化学式(1):
Figure JPOXMLDOC01-appb-C000058
で表されるウレタン化合物である、項目22~32のいずれか一項に記載の感光性樹脂組成物。
[34]
 100質量部の上記(A)ポリイミド前駆体と、
 上記(A)ポリイミド前駆体100質量部を基準として0.1~30質量部の上記(E)ウレタン化合物と、
 上記(A)ポリイミド前駆体100質量部を基準として0.1~20質量部の上記(C)光重合開始剤と
を含む、項目22~33のいずれか一項に記載のネガ型感光性樹脂組成物。
[35]
 項目1~34のいずれか一項に記載のネガ型感光性樹脂組成物を硬化するポリイミドの製造方法。
[36]
 (1)項目1~34のいずれか一項に記載のネガ型感光性樹脂組成物を基板上に塗布して、感光性樹脂層を上記基板上に形成する工程と、
 (2)上記感光性樹脂層を露光する工程と、
 (3)露光後の上記感光性樹脂層を現像して、レリーフパターンを形成する工程と、
 (4)上記レリーフパターンを加熱処理して、硬化レリーフパターンを形成する工程と
を含む、硬化レリーフパターンの製造方法。
The present inventors solve the above problems by combining a polyimide precursor and a photopolymerization initiator with a specific compound having an acid or base or an amino group protected by a thermally deprotected group. It has been found that the present invention can be accomplished. Examples of embodiments of the present invention are listed below.
[1]
(A) polyimide precursor;
(B) A plurality of amino groups protected by an acid or a base or a group to be deprotected by heat, having a molecular weight of 250 to 600, and the plurality of protected amino groups having an aliphatic chain or alicyclic structure A negative photosensitive resin composition comprising a base-protected compound which is an amino group of the formula and has a solubility parameter value of 20.0 to 24.0; and (C) a photopolymerization initiator.
[2]
The negative photosensitive resin composition according to item 1, wherein the plurality of protected amino groups are amino groups protected by a tert-butoxycarbonyl group.
[3]
The (A) polyimide precursor is represented by the following general formula (2):
Figure JPOXMLDOC01-appb-C000030
Wherein X 1 is a tetravalent organic group, Y 1 is a divalent organic group, n 1 is an integer of 2 to 150, and R 1 and R 2 are each independently hydrogen It is an atom or a monovalent organic group, and at least one of R 1 and R 2 is a monovalent organic group having a polymerizable group at its end. }
The negative photosensitive resin composition as described in any one of claim | item 1 or 2 containing the polyimide precursor which has a structural unit represented by these.
[4]
In the general formula (2), at least one of R 1 and R 2 has the following general formula (3):
Figure JPOXMLDOC01-appb-C000031
Wherein L 1 , L 2 and L 3 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 1 is an integer of 2 to 10. The negative photosensitive resin composition according to Item 3, which is a monovalent organic group represented by
[5]
The (A) polyimide precursor is represented by the following general formula (4):
Figure JPOXMLDOC01-appb-C000032
In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). }
5. The negative photosensitive resin composition according to item 3 or 4, comprising a polyimide precursor having a structural unit represented by
[6]
The (A) polyimide precursor is represented by the following general formula (5):
Figure JPOXMLDOC01-appb-C000033
In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). }
5. The negative photosensitive resin composition according to item 3 or 4, comprising a polyimide precursor having a structural unit represented by
[7]
The (A) polyimide precursor is represented by the following general formula (6):
Figure JPOXMLDOC01-appb-C000034
In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). }
5. The negative photosensitive resin composition according to item 3 or 4, comprising a polyimide precursor having a structural unit represented by
[8]
The (A) polyimide precursor is represented by the following general formula (4):
Figure JPOXMLDOC01-appb-C000035
In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). }
A polyimide precursor having a structural unit represented by
The following general formula (5):
Figure JPOXMLDOC01-appb-C000036
{Wherein R 1 , R 2 and n 1 are as defined in the above general formula (2), provided that R 1 , R 2 and n 1 in the general formula (5) are 4) R 1 , R 2 and n 1 in 4) are independently selected. }
5. The negative photosensitive resin composition according to item 3 or 4, which comprises both of the polyimide precursors having a structural unit represented by
[9]
The (A) polyimide precursor is represented by the following general formula (4):
Figure JPOXMLDOC01-appb-C000037
In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). }
A polyimide precursor having a structural unit represented by the following general formula (6):
Figure JPOXMLDOC01-appb-C000038
{Wherein R 1 , R 2 and n 1 are as defined in the above general formula (2), provided that R 1 , R 2 and n 1 in the general formula (6) are 4) R 1 , R 2 and n 1 in 4) are independently selected. }
5. The negative photosensitive resin composition according to item 3 or 4, which comprises both of the polyimide precursors having a structural unit represented by
[10]
100 parts by mass of the above (A) polyimide precursor
0.1 to 30 parts by mass of the above base protection compound (B) with respect to 100 parts by mass of the above (A) polyimide precursor,
The negative photosensitive resin according to any one of items 1 to 9, comprising 0.1 to 20 parts by mass of the (C) photopolymerization initiator based on 100 parts by mass of the (A) polyimide precursor Composition.
[11]
(A) polyimide precursor;
(D) One or more amino groups protected by an acid or a base or a group which is deprotected by heat, and the following general formula (1):
Figure JPOXMLDOC01-appb-C000039
In the formula, Z is a hydrogen atom or a methyl group. Also, the bond at both ends represents a single bond to another part in the molecule. }
A negative photosensitive resin composition comprising an ether compound containing in the molecule one or more structural units represented by and a photopolymerization initiator (C).
[12]
12. The negative photosensitive resin composition according to item 11, wherein the (D) ether compound contains two or more structural units represented by the general formula (1) in a molecule.
[13]
13. The negative photosensitive resin composition according to item 11 or 12, wherein the one or more protected amino groups is an amino group protected by a tert-butoxycarbonyl group.
[14]
The (A) polyimide precursor is represented by the following general formula (2):
Figure JPOXMLDOC01-appb-C000040
Wherein X 1 is a tetravalent organic group, Y 1 is a divalent organic group, n 1 is an integer of 2 to 150, and R 1 and R 2 are each independently hydrogen It is an atom or a monovalent organic group, and at least one of R 1 and R 2 is a monovalent organic group having a polymerizable group at its end. }
The negative photosensitive resin composition according to any one of items 11 to 13, comprising a polyimide precursor having a structural unit represented by
[15]
In the general formula (2), at least one of R 1 and R 2 has the following general formula (3):
Figure JPOXMLDOC01-appb-C000041
Wherein L 1 , L 2 and L 3 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 1 is an integer of 2 to 10. The negative photosensitive resin composition according to item 14, which is a monovalent organic group represented by
[16]
The (A) polyimide precursor is represented by the following general formula (4):
Figure JPOXMLDOC01-appb-C000042
In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). }
The negative photosensitive resin composition as described in 14 or 15 containing the polyimide precursor which has a structural unit represented by these.
[17]
The (A) polyimide precursor is represented by the following general formula (5):
Figure JPOXMLDOC01-appb-C000043
In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). }
The negative photosensitive resin composition as described in 14 or 15 containing the polyimide precursor which has a structural unit represented by these.
[18]
The (A) polyimide precursor is represented by the following general formula (6):
Figure JPOXMLDOC01-appb-C000044
In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). }
The negative photosensitive resin composition as described in 14 or 15 containing the polyimide precursor which has a structural unit represented by these.
[19]
The (A) polyimide precursor is represented by the following general formula (4):
Figure JPOXMLDOC01-appb-C000045
In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). }
A polyimide precursor having a structural unit represented by
The following general formula (5):
Figure JPOXMLDOC01-appb-C000046
{Wherein R 1 , R 2 and n 1 are as defined in the above general formula (2), provided that R 1 , R 2 and n 1 in the general formula (5) are 4) R 1 , R 2 and n 1 in 4) are independently selected. }
The negative photosensitive resin composition as described in 14 or 15 which contains both of the polyimide precursor which has a structural unit represented by these.
[20]
The (A) polyimide precursor is represented by the following general formula (4):
Figure JPOXMLDOC01-appb-C000047
In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). }
A polyimide precursor having a structural unit represented by the following general formula (6):
Figure JPOXMLDOC01-appb-C000048
{Wherein R 1 , R 2 and n 1 are as defined in the above general formula (2), provided that R 1 , R 2 and n 1 in the general formula (6) are 4) R 1 , R 2 and n 1 in 4) are independently selected. }
The negative photosensitive resin composition as described in 14 or 15 which contains both of the polyimide precursor which has a structural unit represented by these.
[21]
100 parts by mass of the above (A) polyimide precursor
0.1 to 30 parts by mass of the above (D) ether compound, based on 100 parts by mass of the above (A) polyimide precursor,
The negative photosensitive resin according to any one of items 11 to 20, comprising 0.1 to 20 parts by mass of the (C) photopolymerization initiator based on 100 parts by mass of the (A) polyimide precursor Composition.
[22]
(A) polyimide precursor;
(E) One or more amino groups protected by an acid or a base or a thermally deprotected group, and a urethane compound containing at least one hydroxyl group in the molecule; and (C) a photopolymerization initiator , Negative photosensitive resin composition.
[23]
The (E) urethane compound has at least one tert-butoxycarbonyl group, benzyloxycarbonyl group or 9-fluorenylmethyloxycarbonyl (Fmoc) group bonded to an aliphatic chain or alicyclic amino group in the molecule. Item 22. The negative photosensitive resin composition according to Item 22.
[24]
24. The negative photosensitive resin according to item 22 or 23, wherein at least one of the nitrogen atoms of the protected one or more amino groups of the (E) urethane compound is at the γ or ε position of the hydroxyl group in the molecule. Resin composition.
[25]
The negative photosensitive resin composition according to any one of items 22 to 24, wherein the one or more protected amino groups is an amino group protected by a tert-butoxycarbonyl group.
[26]
The (A) polyimide precursor is represented by the following general formula (2):
Figure JPOXMLDOC01-appb-C000049
Wherein X 1 is a tetravalent organic group, Y 1 is a divalent organic group, n 1 is an integer of 2 to 150, and R 1 and R 2 are each independently hydrogen It is an atom or a monovalent organic group, and at least one of R 1 and R 2 is a monovalent organic group having a polymerizable group at its end. }
The negative photosensitive resin composition according to any one of items 22 to 25, comprising a polyimide precursor having a structural unit represented by
[27]
In the general formula (2), at least one of R 1 and R 2 has the following general formula (3):
Figure JPOXMLDOC01-appb-C000050
Wherein L 1 , L 2 and L 3 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 1 is an integer of 2 to 10. The negative photosensitive resin composition according to item 26, which is a monovalent organic group represented by
[28]
The (A) polyimide precursor is represented by the following general formula (4):
Figure JPOXMLDOC01-appb-C000051
In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). }
The negative photosensitive resin composition as described in 26 or 27 containing the polyimide precursor which has a structural unit represented by these.
[29]
The (A) polyimide precursor is represented by the following general formula (5):
Figure JPOXMLDOC01-appb-C000052
In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). }
The negative photosensitive resin composition as described in 26 or 27 containing the polyimide precursor which has a structural unit represented by these.
[30]
The (A) polyimide precursor is represented by the following general formula (6):
Figure JPOXMLDOC01-appb-C000053
In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). }
The negative photosensitive resin composition as described in 26 or 27 containing the polyimide precursor which has a structural unit represented by these.
[31]
The (A) polyimide precursor is represented by the following general formula (4):
Figure JPOXMLDOC01-appb-C000054
In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). }
A polyimide precursor having a structural unit represented by
The following general formula (5):
Figure JPOXMLDOC01-appb-C000055
{Wherein R 1 , R 2 and n 1 are as defined in the above general formula (2), provided that R 1 , R 2 and n 1 in the general formula (5) are 4) R 1 , R 2 and n 1 in 4) are independently selected. }
The negative photosensitive resin composition as described in 26 or 27 containing both of the polyimide precursor which has a structural unit represented by these.
[32]
The (A) polyimide precursor is represented by the following general formula (4):
Figure JPOXMLDOC01-appb-C000056
In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). }
A polyimide precursor having a structural unit represented by the following general formula (6):
Figure JPOXMLDOC01-appb-C000057
{Wherein R 1 , R 2 and n 1 are as defined in the above general formula (2), provided that R 1 , R 2 and n 1 in the general formula (6) are 4) R 1 , R 2 and n 1 in 4) are independently selected. }
The negative photosensitive resin composition as described in 26 or 27 containing both of the polyimide precursor which has a structural unit represented by these.
[33]
The (E) urethane compound is Nα- (tert-butoxycarbonyl) -L-triptophanol, 1- (tert-butoxycarbonyl) -4-hydroxypiperidine, or the following chemical formula (1):
Figure JPOXMLDOC01-appb-C000058
The photosensitive resin composition according to any one of items 22 to 32, which is a urethane compound represented by
[34]
100 parts by mass of the above (A) polyimide precursor
0.1 to 30 parts by mass of the (E) urethane compound, based on 100 parts by mass of the (A) polyimide precursor,
The negative photosensitive resin according to any one of items 22 to 33, comprising 0.1 to 20 parts by mass of the (C) photopolymerization initiator based on 100 parts by mass of the (A) polyimide precursor Composition.
[35]
34. A method for producing a polyimide, which cures the negative photosensitive resin composition according to any one of items 1 to 34.
[36]
(1) applying the negative photosensitive resin composition according to any one of items 1 to 34 on a substrate to form a photosensitive resin layer on the substrate;
(2) exposing the photosensitive resin layer;
(3) developing the photosensitive resin layer after exposure to form a relief pattern;
(4) A method for producing a cured relief pattern, comprising the steps of: heat-treating the relief pattern to form a cured relief pattern.
 本発明によれば、高い解像度が得られ、高温保存(high temperature storage)試験後、Cu層の、樹脂層に接する界面でボイドの発生を抑制するネガ型感光性樹脂組成物及びその製造方法を提供することができる。該ネガ型感光性樹脂組成物を用いた硬化レリーフパターンの形成方法を提供することができる。また、一実施形態において、高い耐薬品性、高い解像度、及び高いボイド抑制効果を有するネガ型感光性樹脂組成物及びその製造方法、並びに該ネガ型感光性樹脂組成物を用いた硬化レリーフパターンの形成方法を提供することができる。 According to the present invention, a high-resolution is obtained, and a negative photosensitive resin composition that suppresses the generation of voids at the interface of the Cu layer in contact with the resin layer after a high temperature storage test, and a method for producing the same. Can be provided. It is possible to provide a method for forming a cured relief pattern using the negative photosensitive resin composition. In one embodiment, a negative photosensitive resin composition having high chemical resistance, high resolution, and high void suppression effect, a method for producing the same, and a cured relief pattern using the negative photosensitive resin composition A method of formation can be provided.
 以下、本発明を実施するための形態(以下、「実施形態」と略記する。)について詳細に説明する。尚、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 なお、本明細書を通じ、一般式において同一符号で表されている構造は、分子中に複数存在する場合に、互いに同一であるか、又は異なっていてもよい。
Hereinafter, modes for carrying out the present invention (hereinafter, abbreviated as “embodiments”) will be described in detail. The present invention is not limited to the following embodiments, and various modifications can be made within the scope of the present invention.
Throughout the specification, the structures represented by the same symbol in the general formula may be identical to or different from each other when a plurality of structures are present in the molecule.
<ネガ型感光性樹脂組成物>
 第一の本実施形態に係るネガ型感光性樹脂組成物は、
(A)ポリイミド前駆体;
(B)酸又は塩基又は熱で脱保護される基で保護された複数のアミノ基を有し、分子量が250~600であり、上記保護された複数のアミノ基が脂肪族鎖状もしくは脂環式アミノ基であり、かつ、溶解度パラメーターの値が20.0以上24.0以下である、塩基保護化合物;及び
(C)光重合開始剤を含む。
 第二の本実施形態に係るネガ型感光性樹脂組成物は、
(A)ポリイミド前駆体;
(D)酸又は塩基又は熱で脱保護される基で保護された一つ又は複数のアミノ基と、下記一般式(1):
Figure JPOXMLDOC01-appb-C000059
{式中Zは、水素原子又はメチル基である。また、両端の結合は分子内の他の部分への単結合を表す。}
で表される一つ又は複数の構造単位とを分子内に含む、エーテル化合物;及び
(C)光重合開始剤を含む。
 第三の本実施形態に係るネガ型感光性樹脂組成物は、
(A)ポリイミド前駆体;
(E)酸又は塩基又は熱で脱保護される基で保護された一つ又は複数のアミノ基と、ヒドロキシル基を分子内に少なくとも一つ含むウレタン化合物;及び
(C)光重合開始剤を含む。
<Negative photosensitive resin composition>
The negative photosensitive resin composition according to the first embodiment is
(A) polyimide precursor;
(B) A plurality of amino groups protected by an acid or a base or a group to be deprotected by heat, having a molecular weight of 250 to 600, and the plurality of protected amino groups having an aliphatic chain or alicyclic structure A base-protected compound which is an amino group of the formula and has a solubility parameter value of 20.0 or more and 24.0 or less; and (C) a photopolymerization initiator.
The negative photosensitive resin composition according to the second present embodiment is
(A) polyimide precursor;
(D) One or more amino groups protected by an acid or a base or a group which is deprotected by heat, and the following general formula (1):
Figure JPOXMLDOC01-appb-C000059
In the formula, Z is a hydrogen atom or a methyl group. Also, the bond at both ends represents a single bond to another part in the molecule. }
And an ether compound containing in the molecule thereof one or more structural units represented by: and (C) a photopolymerization initiator.
The negative photosensitive resin composition according to the third embodiment is:
(A) polyimide precursor;
(E) One or more amino groups protected by an acid or a base or a thermally deprotected group, and a urethane compound containing at least one hydroxyl group in the molecule; and (C) a photopolymerization initiator .
(A)ポリイミド前駆体
 第一から第三の本実施形態における(A)ポリイミド前駆体は、ネガ型感光性樹脂組成物に含まれる樹脂成分であり、加熱環化処理を施すことによってポリイミドに変換される。
 ポリイミド前駆体は下記一般式(2)で表される構造を有するポリアミドであることが好ましい。
Figure JPOXMLDOC01-appb-C000060
 {式中、Xは4価の有機基であり、Yは2価の有機基であり、nは2~150の整数であり、そしてR及びRは、それぞれ独立に、水素原子、又は1価の有機基である。}
(A) Polyimide Precursor (A) The polyimide precursor in the first to third embodiments is a resin component contained in a negative photosensitive resin composition, and is converted to a polyimide by heat cyclization treatment. Be done.
The polyimide precursor is preferably a polyamide having a structure represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000060
Wherein X 1 is a tetravalent organic group, Y 1 is a divalent organic group, n 1 is an integer of 2 to 150, and R 1 and R 2 are each independently hydrogen It is an atom or a monovalent organic group. }
 R及びRの少なくともいずれかは、下記一般式(3):
Figure JPOXMLDOC01-appb-C000061
 {式中、L、L及びLは、それぞれ独立に、水素原子又は炭素数1~3の有機基であり、そしてmは、2~10の整数である。}で表される1価の有機基である。
At least one of R 1 and R 2 has the following general formula (3):
Figure JPOXMLDOC01-appb-C000061
Wherein L 1 , L 2 and L 3 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 1 is an integer of 2 to 10. It is a monovalent organic group represented by}.
 一般式(2)におけるnは、2~150の整数であれば限定されないが、ネガ型感光性樹脂組成物の感光特性及び機械特性の観点から、3~100の整数が好ましく、5~70の整数がより好ましい。
 一般式(2)中、Xで表される4価の有機基は、耐熱性と感光特性とを両立するという点で、好ましくは炭素数6~40の有機基であり、より好ましくは、-COOR基及び-COOR基と-CONH-基とが互いにオルト位置にある芳香族基、又は脂環式脂肪族基である。Xで表される4価の有機基として、具体的には、芳香族環を含有する炭素原子数6~40の有機基、例えば、下記一般式(20):
Figure JPOXMLDOC01-appb-C000062
{式中、R6は水素原子、フッ素原子、C~C10の炭化水素基、及びC~C10の含フッ素炭化水素基から成る群から選ばれる1価の基であり、lは0~2から選ばれる整数であり、mは0~3から選ばれる整数であり、そしてnは0~4から選ばれる整数である。}
で表される構造を有する基が挙げられるが、これらに限定されるものではない。また、Xの構造は1種でも2種以上の組み合わせでもよい。上記式(20)で表される構造を有するX基は、耐熱性と感光特性とを両立するという点で特に好ましい。
Although n 1 in the general formula (2) is not limited as long as it is an integer of 2 to 150, it is preferably an integer of 3 to 100, and more preferably 5 to 70, from the viewpoint of the photosensitive properties and mechanical properties of the negative photosensitive resin composition. The integer of is more preferable.
In the general formula (2), the tetravalent organic group represented by X 1 is preferably an organic group having a carbon number of 6 to 40, more preferably, in terms of achieving both heat resistance and photosensitivity. An —COOR 1 group and an —COOR 2 group and an —CONH— group are an aromatic group or an alicyclic aliphatic group in which each other is in the ortho position. Specific examples of the tetravalent organic group represented by X 1 include an aromatic ring-containing organic group having 6 to 40 carbon atoms, for example, the following general formula (20):
Figure JPOXMLDOC01-appb-C000062
Wherein R 6 is a monovalent group selected from the group consisting of a hydrogen atom, a fluorine atom, a C 1 to C 10 hydrocarbon group, and a C 1 to C 10 fluorine-containing hydrocarbon group, and l is 0 Is an integer selected from -2, m is an integer selected from 0-3, and n is an integer selected from 0-4. }
Although the group which has a structure represented by these is mentioned, It is not limited to these. The structure of X 1 may be one kind or a combination of two or more kinds. The X 1 group having the structure represented by the above formula (20) is particularly preferable in that both the heat resistance and the photosensitive characteristics are compatible.
 上記一般式(2)中、Yで表される2価の有機基は、耐熱性と感光特性とを両立するという点で、好ましくは炭素数6~40の芳香族基であり、例えば、下記式(21):
Figure JPOXMLDOC01-appb-C000063
{式中、R6は水素原子、フッ素原子、C~C10の炭化水素基、及びC~C10の含フッ素炭化水素基から成る群から選ばれる1価の基であり、そしてnは0~4から選ばれる整数である。}
で表される構造が挙げられるが、これらに限定されるものではない。また、Yの構造は1種でも2種以上の組み合わせでもよい。上記式(21)で表される構造を有するY基は、耐熱性及び感光特性を両立するという点で特に好ましい。
In the general formula (2), the divalent organic group represented by Y 1 is preferably an aromatic group having a carbon number of 6 to 40, in terms of achieving both heat resistance and photosensitivity, and, for example, Following formula (21):
Figure JPOXMLDOC01-appb-C000063
Wherein R 6 is a monovalent group selected from the group consisting of a hydrogen atom, a fluorine atom, a C 1 to C 10 hydrocarbon group, and a C 1 to C 10 fluorine-containing hydrocarbon group, and n is It is an integer selected from 0-4. }
Although the structure represented by these is mentioned, it is not limited to these. The structure of Y 1 may be one kind or a combination of two or more kinds. The Y 1 group having the structure represented by the above formula (21) is particularly preferable in that both the heat resistance and the photosensitive characteristics are compatible.
 上記一般式(3)中のLは、水素原子又はメチル基であることが好ましく、L及びLは、感光特性の観点から水素原子であることが好ましい。また、mは、感光特性の観点から2以上10以下の整数、好ましくは2以上4以下の整数である。 L 1 in the above general formula (3) is preferably a hydrogen atom or a methyl group, and L 2 and L 3 are preferably hydrogen atoms from the viewpoint of photosensitive properties. Also, m 1 is 2 or more integer of 10 or less from the viewpoint of photosensitive properties, preferably 2 to 4 integer.
 一実施形態において、(A)ポリイミド前駆体は、下記一般式(4):
Figure JPOXMLDOC01-appb-C000064
{式中、R、R、及びnは一般式(2)に定義したものである。}
で表される構造単位を有するポリイミド前駆体であることが好ましい。
 一般式(4)において、R及びRの少なくともいずれかは、上記一般式(3)で表される1価の有機基であることがより好ましい。(A)ポリイミド前駆体が、一般式(4)で表されるポリイミド前駆体を含むことで、特に解像性の効果が高くなる。
In one embodiment, the (A) polyimide precursor has the following general formula (4):
Figure JPOXMLDOC01-appb-C000064
In the formula, R 1 , R 2 and n 1 are as defined in the general formula (2). }
It is preferable that it is a polyimide precursor which has a structural unit represented by these.
In the general formula (4), at least one of R 1 and R 2 is more preferably a monovalent organic group represented by the above general formula (3). When the (A) polyimide precursor contains the polyimide precursor represented by the general formula (4), the resolution effect is particularly enhanced.
 一実施形態において、(A)ポリイミド前駆体は、下記一般式(5):
Figure JPOXMLDOC01-appb-C000065
{式中、R、R、及びnは一般式(2)に定義したものである。}
で表される構造単位を有するポリイミド前駆体であることが好ましい。
 一般式(5)において、R及びRの少なくともいずれかは、上記一般式(3)で表される1価の有機基であることがより好ましい。(A)ポリイミド前駆体が、一般式(4)で表されるポリイミド前駆体に加えて、一般式(5)で表されるポリイミド前駆体を含むことにより、特に解像性の効果がさらに高くなる。その場合、一般式(5)中のR、R、及びnは、一般式(4)中のR、R、及びnとは独立して選択される。
In one embodiment, the (A) polyimide precursor has the following general formula (5):
Figure JPOXMLDOC01-appb-C000065
In the formula, R 1 , R 2 and n 1 are as defined in the general formula (2). }
It is preferable that it is a polyimide precursor which has a structural unit represented by these.
In the general formula (5), at least one of R 1 and R 2 is more preferably a monovalent organic group represented by the above general formula (3). The effect of resolution is particularly high by including the polyimide precursor represented by the general formula (5) in addition to the polyimide precursor represented by the general formula (4) (A) Become. In that case, the general formula (5) R 1, R 2 in, and n 1 is the general formula (4) R 1, R 2 in, and the n 1 are independently selected.
 一実施形態において、(A)ポリイミド前駆体は、下記一般式(6):
Figure JPOXMLDOC01-appb-C000066
{式中、R、R、及びnは一般式(2)に定義したものである。}
で表される構造単位を有するポリイミド前駆体であることが好ましい。
 一般式(6)において、R及びRの少なくともいずれかは、上記一般式(3)で表される1価の有機基であることがより好ましい。(A)ポリイミド前駆体が、一般式(4)で表されるポリイミド前駆体に加えて、一般式(6)で表されるポリイミド前駆体を含むことにより、特に解像性の効果がさらに高くなる。その場合、一般式(6)中のR、R、及びnは、一般式(4)中のR、R、及びnとは独立して選択される。
In one embodiment, the (A) polyimide precursor has the following general formula (6):
Figure JPOXMLDOC01-appb-C000066
In the formula, R 1 , R 2 and n 1 are as defined in the general formula (2). }
It is preferable that it is a polyimide precursor which has a structural unit represented by these.
In the general formula (6), at least one of R 1 and R 2 is more preferably a monovalent organic group represented by the above general formula (3). The effect of resolution is particularly high when the polyimide precursor (A) includes the polyimide precursor represented by the general formula (6) in addition to the polyimide precursor represented by the general formula (4) Become. In that case, the general formula (6) R 1, R 2 in, and n 1 is the general formula (4) R 1, R 2 in, and the n 1 are independently selected.
(A)ポリイミド前駆体の調製方法
 (A)ポリイミド前駆体は、まず前述の4価の有機基Xを含むテトラカルボン酸二無水物と、光重合性の不飽和二重結合を有するアルコール類及び任意に不飽和二重結合を有さないアルコール類とを反応させて、部分的にエステル化したテトラカルボン酸(以下、アシッド/エステル体ともいう)を調製した後、これと、前述の2価の有機基Yを含むジアミン類とをアミド重縮合させることにより得られる。
(A) Preparation Method of Polyimide Precursor (A) The polyimide precursor is prepared by first using the tetracarboxylic acid dianhydride containing the aforementioned tetravalent organic group X 1 and an alcohol having a photopolymerizable unsaturated double bond. And optionally after reaction with an alcohol having no unsaturated double bond to prepare a partially esterified tetracarboxylic acid (hereinafter also referred to as an acid / ester), and It is obtained by carrying out the amide polycondensation of diamines containing a divalent organic group Y 1 .
(アシッド/エステル体の調製)
 本実施形態で、(A)ポリイミド前駆体を調製するために好適に用いられる、4価の有機基Xを含むテトラカルボン酸二無水物としては、上記一般式(20)に示されるテトラカルボン酸二無水物をはじめ、例えば、無水ピロメリット酸、ジフェニルエーテル-3,3’,4,4’-テトラカルボン酸二無水物、ベンゾフェノン-3,3’,4,4’-テトラカルボン酸二無水物、ビフェニル-3,3’,4,4’-テトラカルボン酸二無水物、ジフェニルスルホン-3,3’,4,4’-テトラカルボン酸二無水物、ジフェニルメタン-3,3’,4,4’-テトラカルボン酸二無水物、2,2-ビス(3,4-無水フタル酸)プロパン、2,2-ビス(3,4-無水フタル酸)-1,1,1,3,3,3-ヘキサフルオロプロパン等を、好ましくは無水ピロメリット酸、ジフェニルエーテル-3,3’,4,4’-テトラカルボン酸二無水物、ベンゾフェノン-3,3’,4,4’-テトラカルボン酸二無水物、ビフェニル-3,3’,4,4’-テトラカルボン酸二無水物を挙げることができるが、これらに限定されるものではない。また、これらは単独で用いることができるのは勿論のこと2種以上を混合して用いてもよい。
(Preparation of acid / ester)
The tetracarboxylic acid dianhydride containing a tetravalent organic group X 1 suitably used to prepare the (A) polyimide precursor in this embodiment is a tetracarboxylic acid represented by the above general formula (20). Acid dianhydrides, for example, pyromellitic anhydride, diphenylether-3,3 ', 4,4'-tetracarboxylic dianhydride, benzophenone-3,3', 4,4'-tetracarboxylic dianhydride , Biphenyl-3,3 ', 4,4'-tetracarboxylic acid dianhydride, diphenyl sulfone-3,3', 4,4'-tetracarboxylic acid dianhydride, diphenylmethane-3,3 ', 4, 4'-tetracarboxylic acid dianhydride, 2,2-bis (3,4-phthalic anhydride) propane, 2,2-bis (3,4-phthalic anhydride) -1,1,1,3,3 , 3-hexafluoropropane etc., preferably Water pyromellitic acid, diphenyl ether-3,3 ', 4,4'-tetracarboxylic acid dianhydride, benzophenone-3,3', 4,4'-tetracarboxylic acid dianhydride, biphenyl-3,3 ', Mention may be made, without limitation, of 4,4′-tetracarboxylic acid dianhydride. In addition, it is possible to use two or more of them in combination as a matter of course that they can be used alone.
 本実施形態で、(A)ポリイミド前駆体を調製するために好適に用いられる、光重合性の不飽和二重結合を有するアルコール類としては、例えば、2-アクリロイルオキシエチルアルコール、1-アクリロイルオキシ-3-プロピルアルコール、2-アクリルアミドエチルアルコール、メチロールビニルケトン、2-ヒドロキシエチルビニルケトン、2-ヒドロキシ-3-メトキシプロピルアクリレート、2-ヒドロキシ-3-ブトキシプロピルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、2-ヒドロキシ-3-ブトキシプロピルアクリレート、2-ヒドロキシ-3-t-ブトキシプロピルアクリレート、2-ヒドロキシ-3-シクロヘキシルオキシプロピルアクリレート、2-メタクリロイルオキシエチルアルコール、1-メタクリロイルオキシ-3-プロピルアルコール、2-メタクリルアミドエチルアルコール、メチロールビニルケトン、2-ヒドロキシエチルビニルケトン、2-ヒドロキシ-3-メトキシプロピルメタクリレート、2-ヒドロキシ-3-ブトキシプロピルメタクリレート、2-ヒドロキシ-3-フェノキシプロピルメタクリレート、2-ヒドロキシ-3-ブトキシプロピルメタクリレート、2-ヒドロキシ-3-t-ブトキシプロピルメタクリレート、2-ヒドロキシ-3-シクロヘキシルオキシプロピルメタクリレート等を挙げることができる。 Examples of alcohols having a photopolymerizable unsaturated double bond, which are suitably used to prepare the (A) polyimide precursor in this embodiment, include, for example, 2-acryloyloxyethyl alcohol, 1-acryloyloxy. 3-Propyl alcohol, 2-acrylamidoethyl alcohol, methylol vinyl ketone, 2-hydroxyethyl vinyl ketone, 2-hydroxy-3-methoxypropyl acrylate, 2-hydroxy-3-butoxypropyl acrylate, 2-hydroxy-3-phenoxy Propyl acrylate, 2-hydroxy-3-butoxypropyl acrylate, 2-hydroxy-3-t-butoxypropyl acrylate, 2-hydroxy-3-cyclohexyloxypropyl acrylate, 2-methacryloyloxyethyl acrylate Cole, 1-methacryloyloxy-3-propyl alcohol, 2-methacrylamidoethyl alcohol, methylol vinyl ketone, 2-hydroxyethyl vinyl ketone, 2-hydroxy-3-methoxypropyl methacrylate, 2-hydroxy-3-butoxypropyl methacrylate, Examples thereof include 2-hydroxy-3-phenoxypropyl methacrylate, 2-hydroxy-3-butoxypropyl methacrylate, 2-hydroxy-3-t-butoxypropyl methacrylate, and 2-hydroxy-3-cyclohexyloxypropyl methacrylate.
 上記光重合性の不飽和二重結合を有するアルコール類に、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、tert-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、ネオペンチルアルコール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、3-オクタノール、1-ノナノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、テトラエチレングリコールモノメチルエーテル、テトラエチレングリコールモノエチルエーテル、ベンジルアルコールなどの不飽和二重結合を有さないアルコール類を一部混合して用いることもできる。 Examples of the above-mentioned alcohols having a photopolymerizable unsaturated double bond include methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, 1-pentanol, 2-pentanol, 3-pentanol Neopentyl alcohol, 1-heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 3-octanol, 1-nonanol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, tetraethylene glycol monomethyl ether It is also possible to partially mix and use alcohols having no unsaturated double bond such as ether, tetraethylene glycol monoethyl ether and benzyl alcohol.
 また、ポリイミド前駆体として、上記不飽和二重結合を有さないアルコール類のみで調製された非感光性ポリイミド前駆体を、感光性ポリイミド前駆体と混合して用いてもよい。解像性の観点から、非感光性ポリイミド前駆体は、感光性ポリイミド前駆体100質量部を基準として、200質量部以下であることが好ましい。 Moreover, you may mix and use the non-photosensitive polyimide precursor prepared only with the said alcohol which does not have the said unsaturated double bond as a polyimide precursor with a photosensitive polyimide precursor. From the viewpoint of resolution, the amount of the non-photosensitive polyimide precursor is preferably 200 parts by mass or less based on 100 parts by mass of the photosensitive polyimide precursor.
 上記の好適なテトラカルボン酸二無水物と上記のアルコール類とを、ピリジン等の塩基性触媒の存在下、後述するような溶剤中、温度20~50℃で4~10時間撹拌溶解、混合することにより、酸無水物のエステル化反応が進行し、所望のアシッド/エステル体を得ることができる。 The above suitable tetracarboxylic acid dianhydride and the above alcohol are dissolved by stirring and mixing in the presence of a basic catalyst such as pyridine in a solvent as described later at a temperature of 20 to 50 ° C. for 4 to 10 hours As a result, the esterification reaction of the acid anhydride proceeds to obtain the desired acid / ester.
(ポリイミド前駆体の調製)
 上記アシッド/エステル体(典型的には後述する溶剤中の溶液)に、氷冷下、適当な脱水縮合剤、例えば、ジシクロヘキシルカルボジイミド、1-エトキシカルボニル-2-エトキシ-1,2-ジヒドロキノリン、1,1-カルボニルジオキシ-ジ-1,2,3-ベンゾトリアゾール、N,N’-ジスクシンイミジルカーボネート等を投入混合してアシッド/エステル体をポリ酸無水物とした後、これに、本実施形態で好適に用いられる2価の有機基Yを含むジアミン類を別途溶媒に溶解又は分散させたものを滴下投入し、アミド重縮合させることにより、目的のポリイミド前駆体を得ることができる。代替的には、上記アシッド/エステル体を、塩化チオニル等を用いてアシッド部分を酸クロライド化した後に、ピリジン等の塩基存在下に、ジアミン化合物と反応させることにより、目的のポリイミド前駆体を得ることができる。
(Preparation of Polyimide Precursor)
In the above acid / ester form (typically, a solution in a solvent described below), under ice-cooling, a suitable dehydrating condensing agent such as dicyclohexylcarbodiimide, 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, 1,1 -Carbonyldioxy-di-1,2,3-benzotriazole, N, N'-disuccinimidyl carbonate etc. are added and mixed to make the acid / ester body a polyanhydride, Further, a solution obtained by separately dissolving or dispersing a diamine containing a divalent organic group Y 1 suitably used in the present embodiment in a solvent is added dropwise to obtain an intended polyimide precursor by amide polycondensation. Can. Alternatively, the acid / ester body is acid-chloridized with thionyl chloride or the like, and then reacted with a diamine compound in the presence of a base such as pyridine to obtain a target polyimide precursor. be able to.
 本実施形態で好適に用いられる2価の有機基Yを含むジアミン類としては、上記一般式(21)に示される構造を有するジアミンをはじめ、例えば、p-フェニレンジアミン、m-フェニレンジアミン、4,4-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、4,4-ビス(4-アミノフェノキシ)ビフェニル、4,4-ビス(3-アミノフェノキシ)ビフェニル、ビス〔4-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(3-アミノフェノキシ)フェニル〕エーテル、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、9,10-ビス(4-アミノフェニル)アントラセン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕ヘキサフルオロプロパン、1,4-ビス(3-アミノプロピルジメチルシリル)ベンゼン、オルト-トリジンスルホン、9,9-ビス(4-アミノフェニル)フルオレン、及びこれらのベンゼン環上の水素原子の一部が、メチル基、エチル基、ヒドロキシメチル基、ヒドロキシエチル基、ハロゲン等で置換されたもの、例えば3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、2,2’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジメチトキシ-4,4’-ジアミノビフェニル、3,3’-ジクロロ-4,4’-ジアミノビフェニル、及びその混合物等が挙げられるが、これに限定されるものではない。 Examples of diamines containing a divalent organic group Y 1 suitably used in the present embodiment include diamines having a structure represented by the above general formula (21), for example, p-phenylenediamine, m-phenylenediamine, 4,4-Diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4'-Diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 3,3'-diaminobiphenyl 4,4'-Diaminobenzophenone, 3,4'-diaminobenzophene , 3,3'-diaminobenzophenone, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 1,4-bis (4-aminophenoxy) benzene, 1,3 -Bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone 4,4-bis (4-aminophenoxy) biphenyl, 4,4-bis (3-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy) ) Phenyl] ether, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-aminophenyne) ) Benzene, 9,10-bis (4-aminophenyl) anthracene, 2,2-bis (4-aminophenyl) propane, 2,2-bis (4-aminophenyl) hexafluoropropane, 2,2-bis [ 4- (4-Aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 1,4-bis (3-aminopropyldimethylsilyl) benzene, ortho-tolidine Sulfone, 9,9-bis (4-aminophenyl) fluorene, and some of the hydrogen atoms on these benzene rings substituted with methyl, ethyl, hydroxymethyl, hydroxyethyl, halogen and the like For example 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-Dimethyl-4,4'-diaminodiphenylmethane, 2,2'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-dimethytoxy-4,4'-diaminobiphenyl, 3,3'-dichloro Examples include, but are not limited to, -4,4'-diaminobiphenyl and mixtures thereof.
 アミド重縮合反応終了後、当該反応液中に共存している脱水縮合剤の吸水副生物を必要に応じて濾別した後、水、脂肪族低級アルコール、又はその混合液等の貧溶媒を、得られた重合体成分に投入し、重合体成分を析出させ、さらに、再溶解、再沈析出操作等を繰り返すことにより、重合体を精製し、真空乾燥を行い、目的のポリイミド前駆体を単離する。精製度を向上させるために、陰イオン及び/又は陽イオン交換樹脂を適当な有機溶剤で膨潤させて充填したカラムに、この重合体の溶液を通し、イオン性不純物を除去してもよい。 After completion of the amide polycondensation reaction, the water absorption by-product of the dehydration condensation agent coexisting in the reaction solution is separated by filtration if necessary, and then a poor solvent such as water, an aliphatic lower alcohol, or a mixture thereof is The polymer component is charged into the obtained polymer component, and the polymer component is precipitated, and further, the polymer is purified by repeating the re-dissolution, re-precipitation operation and the like, and vacuum drying is performed to obtain the desired polyimide precursor. Let go. In order to improve the degree of purification, the solution of the polymer may be passed through a column packed with an anion and / or cation exchange resin swollen with a suitable organic solvent to remove ionic impurities.
 上記(A)ポリイミド前駆体の分子量は、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算重量平均分子量で測定した場合に、8,000~150,000であることが好ましく、9,000~50,000であることがより好ましい。重量平均分子量が8,000以上である場合、機械物性が良好であり、150,000以下である場合現像液への分散性が良好で、レリーフパターンの解像性能が良好である。ゲルパーミエーションクロマトグラフィーの展開溶媒としては、テトラヒドロフラン、及びN-メチル-2-ピロリドンが推奨される。また重量平均分子量は標準単分散ポリスチレンを用いて作成した検量線から求める。標準単分散ポリスチレンとしては、昭和電工社製 有機溶媒系標準試料 STANDARD SM-105から選ぶことが推奨される。 The molecular weight of the (A) polyimide precursor is preferably 8,000 to 150,000, and 9,000 to 50,000, as measured by gel permeation chromatography as a polystyrene equivalent weight average molecular weight. Is more preferred. When the weight average molecular weight is 8,000 or more, the mechanical properties are good, and when it is 150,000 or less, the dispersibility in the developer is good, and the resolution performance of the relief pattern is good. Tetrahydrofuran and N-methyl-2-pyrrolidone are recommended as developing solvents for gel permeation chromatography. The weight average molecular weight is determined from a calibration curve prepared using standard monodispersed polystyrene. As standard monodispersed polystyrene, it is recommended to select from Showa Denko organic solvent-based standard sample STANDARD SM-105.
(B)塩基保護化合物
 第一の本実施形態における(B)塩基保護化合物は、酸又は塩基又は熱で脱保護される基で保護された複数のアミノ基を有し、分子量が250~600であり、保護されたアミノ基が脂肪族鎖状もしくは脂環式アミノ基であり、かつ、溶解度パラメーターの値が20.0~22.0である。
(B) Base-Protected Compound The (B) base-protected compound in the first embodiment has a plurality of amino groups protected by an acid or a base or a group which is deprotected by heat, and has a molecular weight of 250 to 600. The protected amino group is an aliphatic linear or alicyclic amino group, and the solubility parameter has a value of 20.0 to 22.0.
 (B)塩基保護化合物の分子量は、250~600である。分子量が250以上であれば、熱硬化後も塩基保護化合物が膜中に残存し、Cuボイド抑制効果を発揮できる。分子量は300以上が好ましく、340以上であることがより好ましい。一方で、高い解像性を得る観点から、分子量は600以下が好ましく、550以下がより好ましく、450以下がより好ましく、400以下がより好ましい。 The molecular weight of the (B) base-protected compound is 250 to 600. If the molecular weight is 250 or more, the base protection compound remains in the film even after thermosetting, and the Cu void suppressing effect can be exhibited. The molecular weight is preferably 300 or more, and more preferably 340 or more. On the other hand, from the viewpoint of obtaining high resolution, the molecular weight is preferably 600 or less, more preferably 550 or less, more preferably 450 or less, and more preferably 400 or less.
 (B)塩基保護化合物の保護された複数のアミノ基は、脂肪族鎖状もしくは脂環式アミノ基である。脂肪族鎖状及び脂環式アミノ基は、芳香族アミノ基と比較して求核性が高いため、保護基の導入が容易である。 (B) The plurality of protected amino groups of the base protection compound is an aliphatic chain or alicyclic amino group. Aliphatic chain-like and alicyclic amino groups have high nucleophilicity as compared to aromatic amino groups, so that the introduction of protecting groups is easy.
 (B)塩基保護化合物の溶解度パラメーターの値は、20.0~24.0であること。本願明細書において、「溶解度パラメーター」とは、Hoyの計算方法によって求められた溶解度パラメーターである。溶解度パラメーターが20.0以上であれば、溶剤への溶解性が十分に高くなり、好ましくは20.5以上、より好ましくは21.0以上である。溶解度パラメーターが24.0以下であることで溶剤への親和が適度になり、耐薬品性試験時に薬液が硬化レリーフパターンにしみこみにくく、耐薬品性に優れる硬化レリーフパターンを得ることができる。耐薬品性の観点から、溶解度パラメーターの値は、好ましくは23.5以下、より好ましくは23.0以下、更に好ましくは22.5以下、より更に好ましくは22.0以下である。 (B) The value of the solubility parameter of the base protected compound is 20.0 to 24.0. As used herein, "solubility parameter" is the solubility parameter determined by the Hoy calculation method. If the solubility parameter is 20.0 or more, the solubility in the solvent is sufficiently high, preferably 20.5 or more, more preferably 21.0 or more. When the solubility parameter is 24.0 or less, the affinity to the solvent becomes appropriate, and the chemical solution hardly penetrates into the cured relief pattern during the chemical resistance test, and a cured relief pattern excellent in chemical resistance can be obtained. From the viewpoint of chemical resistance, the value of the solubility parameter is preferably 23.5 or less, more preferably 23.0 or less, still more preferably 22.5 or less, still more preferably 22.0 or less.
 酸又は塩基又は熱で脱保護される基の好適な例としては、tert-ブトキシカルボニル基、Fmoc基が挙げられるが、本発明はこれらに限定されない。ここで、Fmoc基とは、9-フルオレニルメチルオキシカルボニル基を指す。一つ又は複数のアミノ基は、tert-ブトキシカルボニル基で保護されたアミノ基であることがより好ましい。 Preferable examples of the acid or base or the thermally deprotected group include tert-butoxycarbonyl group and Fmoc group, but the present invention is not limited thereto. Here, the Fmoc group refers to a 9-fluorenylmethyloxycarbonyl group. More preferably, the one or more amino groups are amino groups protected with a tert-butoxycarbonyl group.
 加熱硬化中にアミノ基が脱保護された場合、アミノ基の塩基性によってイミド環化が促進されるため、熱で脱保護される基が好ましい。また、化合物の合成容易性の観点と、解像性の観点から、tert-ブトキシカルボニル基で保護された化合物であることが好ましい。tert-ブトキシカルボニル基で保護された化合物が、良好な解像性を示すのは、現像液への溶解性が良好になり残渣が抑制されるためであると考えられる。 When the amino group is deprotected during heat curing, a thermally deprotected group is preferred because the basicity of the amino group promotes imidization. In addition, from the viewpoint of the easiness of synthesis of the compound and the viewpoint of resolution, the compound is preferably a compound protected with a tert-butoxycarbonyl group. The compound protected with the tert-butoxycarbonyl group is considered to exhibit good resolution because the solubility in a developer is good and the residue is suppressed.
 上記塩基保護化合物を用いると、良好な耐薬品性と解像性、およびCuボイド抑制効果が得られる。理論に拘束されないが、良好な耐薬品性を得ることができる理由については、一定の範囲の溶解度パラメーター及び分子量を有する化合物を含むことで、熱硬化過程でのポリイミド樹脂の流動性が向上するためであると考えられる。その結果、流動性が向上したことで、イミド環同士のスタッキングが促進され、薬液の侵入が抑えられるためであると考えられる。また、良好な解像性を得ることができる理由は不明だが、塩基保護化合物が一定の範囲の溶解度パラメーターを有することで、現像液に溶解しやすくなり、残渣が抑制されるためであると考えられる。加えて、Cuボイド抑制効果を示す理由は定かではないが、保護されたアミノ基に由来する窒素原子を分子内に複数有することで、Cuイオンと強く相互作用するようになり、Cuの拡散を抑制し、結果としてCuボイドを抑制すると考えられる。 When the above base protection compound is used, good chemical resistance and resolution, and a Cu void suppression effect can be obtained. Without being bound by theory, the reason why good chemical resistance can be obtained is that the flowability of the polyimide resin in the heat curing process is improved by including a compound having a certain range of solubility parameter and molecular weight. It is considered to be. As a result, it is considered that the improvement of the fluidity promotes the stacking of the imide rings and suppresses the penetration of the chemical solution. Also, although the reason why good resolution can be obtained is unknown, it is considered that the base-protected compound is easily dissolved in the developer by having a certain range of solubility parameters, and the residue is suppressed. Be In addition, although the reason for showing the Cu void suppressing effect is not clear, having a plurality of nitrogen atoms derived from the protected amino group in the molecule makes it possible to interact strongly with the Cu ion, thereby diffusing the Cu. It is thought that it suppresses and, as a result, suppresses Cu void.
 上記塩基保護化合物の分子内に含まれる、保護されたアミノ基の数は2以上であれば制限はない。溶媒への溶解性の観点から、ジアミン、トリアミン、及びテトラアミンからなる群から選択されるアミンのアミノ基が保護された化合物であることが好ましい。銅への配位性の観点からは、ジアミンのアミノ基が保護された化合物であることがより好ましい。塩基保護化合物は、その分子の両端に、保護されたアミノ基を少なくとも一つずつ有することが好ましい。より好ましくは、保護されたアミノ基の数は二つであり、塩基保護化合物は、その分子の両端に、保護されたアミノ基を一つずつ有することが好ましい。 The number of protected amino groups contained in the molecule of the base protected compound is not limited as long as it is 2 or more. From the viewpoint of solubility in a solvent, the compound is preferably a compound in which the amino group of an amine selected from the group consisting of diamine, triamine and tetraamine is protected. From the viewpoint of coordination to copper, it is more preferable that the compound is a compound in which the amino group of diamine is protected. The base-protected compound preferably has at least one protected amino group at each end of the molecule. More preferably, the number of protected amino groups is two and the base protected compound preferably has one protected amino group at each end of the molecule.
 上記塩基保護化合物は、カルボキシル基、スルホ基、リン酸基などの酸性基を含まないことが好ましい。これらの酸性基を含まないことによって、銅配線へのダメージが低減される。また、上記塩基保護化合物は、溶解性の観点から、脂環式構造を含まないことが好ましく、耐薬品性の観点から、芳香族基を含まないことが好ましい。同様に、耐薬品性の観点から、ヒドロキシル基を含まないことが好ましい。 It is preferable that the said base protection compound does not contain acidic groups, such as a carboxyl group, a sulfo group, and a phosphoric acid group. By not including these acidic groups, damage to the copper wiring is reduced. Moreover, it is preferable that the said base protection compound does not contain an alicyclic structure from a soluble viewpoint, and it is preferable that an aromatic group is not included from a chemical-resistant viewpoint. Similarly, from the viewpoint of chemical resistance, it is preferable not to contain a hydroxyl group.
 上記塩基保護化合物の具体例としては、例えば、限定されないが、1,3-ジ-4-ピペリジルプロパン、1,4-ブタンジオール(3-アミノプロピル)エーテル、ジエチレングリコールビス(3-アミノプロピル)エーテル、1,2-ビス(2-アミノエトキシ)エタン、2,2-オキシビス(エチルアミン)、1,3-ジアミノプロパン、m-キシリレンジアミン、p-キシリレンジアミン、1,4-ジシクロヘキサンジアミン、1,4-ビス(アミノメチル)シクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン等のアミノ基をtert-ブトキシカルボニル基で保護した化合物が挙げられる。 Specific examples of the above base-protected compounds include, but are not limited to, 1,3-di-4-piperidylpropane, 1,4-butanediol (3-aminopropyl) ether, diethylene glycol bis (3-aminopropyl) ether, for example. 1,2-bis (2-aminoethoxy) ethane, 2,2-oxybis (ethylamine), 1,3-diaminopropane, m-xylylenediamine, p-xylylenediamine, 1,4-dicyclohexanediamine, Compounds in which an amino group is protected with a tert-butoxycarbonyl group, such as 1,4-bis (aminomethyl) cyclohexane and 1,3-bis (aminomethyl) cyclohexane, can be mentioned.
 上記塩基保護化合物は、(A)ポリイミド前駆体100質量部に対し、好ましくは0.1~30質量部であり、より好ましくは1質量部以上15質量部以下である。(A)ポリイミド前駆体100質量部に対して、塩基保護化合物が0.1質量部以上30質量部以下であることで、Cuボイド抑制効果、解像性向上および耐薬品性の向上の効果に特に優れるネガ型感光性樹脂組成物を得ることができる。 The amount of the base protection compound is preferably 0.1 to 30 parts by mass, and more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor. (A) The content of the base protection compound is 0.1 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the polyimide precursor, thereby improving the Cu void suppression effect, the resolution improvement, and the chemical resistance improvement. A particularly excellent negative photosensitive resin composition can be obtained.
(C)光重合開始剤
 第一から第三の本実施形態に用いられる(C)光重合開始剤について説明する。光重合開始剤としては、光ラジカル重合開始剤であることが好ましく、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-ベンゾイル-4’-メチルジフェニルケトン、ジベンジルケトン、フルオレノン等のベンゾフェノン誘導体、2,2’-ジエトキシアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン等のアセトフェノン誘導体、チオキサントン、2-メチルチオキサントン、2-イソプロピルチオキサントン、ジエチルチオキサントン等のチオキサントン誘導体、ベンジル、ベンジルジメチルケタール、ベンジル-β-メトキシエチルアセタール等のベンジル誘導体、ベンゾイン、ベンゾインメチルエーテル等のベンゾイン誘導体、1-フェニル-1,2-ブタンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-ベンゾイル)オキシム、1,3-ジフェニルプロパントリオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-3-エトキシプロパントリオン-2-(o-ベンゾイル)オキシム等のオキシム類、N-フェニルグリシン等のN-アリールグリシン類、ベンゾイルパークロライド等の過酸化物類、芳香族ビイミダゾール類、チタノセン類、α-(n-オクタンスルフォニルオキシイミノ)-4-メトキシベンジルシアニド等の光酸発生剤類等が好ましく挙げられるが、これらに限定されるものではない。上記の光重合開始剤の中では、特に光感度の点で、オキシム類がより好ましい。
(C) Photopolymerization Initiator The (C) photopolymerization initiator used in the first to third embodiments will be described. As the photopolymerization initiator, a photoradical polymerization initiator is preferable, and benzophenone, methyl o-benzoylbenzoate, 4-benzoyl-4′-methyl diphenyl ketone, benzophenone derivatives such as dibenzyl ketone and fluorenone, 2, Acetophenone derivatives such as 2'-diethoxyacetophenone, 2-hydroxy-2-methylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, etc., thioxanthone derivatives such as thioxanthone, 2-methyl thioxanthone, 2-isopropyl thioxanthone, diethyl thioxanthone, benzyl, Benzyl derivatives such as benzyl dimethyl ketal and benzyl-β-methoxyethyl acetal, benzoin derivatives such as benzoin and benzoin methyl ether, 1-phenyl-1,2-butanedione 2- (o-Methoxycarbonyl) oxime, 1-phenyl-1,2-propanedione-2- (o-methoxycarbonyl) oxime, 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) Oxime, 1-phenyl-1,2-propanedione-2- (o-benzoyl) oxime, 1,3-diphenylpropanetrione-2- (o-ethoxycarbonyl) oxime, 1-phenyl-3-ethoxypropanetrione- Oximes such as 2- (o-benzoyl) oxime, N-arylglycines such as N-phenylglycine, peroxides such as benzoylperchloride, aromatic biimidazoles, titanocenes, α- (n-octane Photoacid generators such as sulfonyloxyimino) -4-methoxybenzyl cyanide are preferably mentioned. That, without being limited thereto. Among the above-mentioned photopolymerization initiators, oximes are more preferable particularly in light of photosensitivity.
 (C)光重合開始剤の配合量は、(A)ポリイミド前駆体100質量部に対して、好ましくは0.1質量部以上20質量部であり、より好ましくは1質量部以上8質量部以下である。上記配合量は、光感度又はパターニング性の観点で0.1質量部以上であり、ネガ型感光性樹脂組成物の硬化後の感光性樹脂層の物性の観点から20質量部以下である。 The compounding amount of the photopolymerization initiator (C) is preferably 0.1 parts by mass to 20 parts by mass, and more preferably 1 part by mass to 8 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor. It is. The said compounding quantity is 0.1 mass part or more from a photosensitivity or a viewpoint of patterning property, and is 20 mass parts or less from a viewpoint of the physical property of the photosensitive resin layer after hardening of a negative photosensitive resin composition.
 本実施形態のネガ型感光性樹脂組成物は、上記(A)~(C)成分以外の成分をさらに含有していても良い。(A)~(C)成分以外の成分としては、限定されないが、溶剤、含窒素複素環化合物、ヒンダードフェノール化合物、有機チタン化合物、接着助剤、増感剤、光重合性不飽和モノマー、熱重合禁止剤等が挙げられる。 The negative photosensitive resin composition of the present embodiment may further contain components other than the components (A) to (C). The components other than the components (A) to (C) include, but are not limited to, solvents, nitrogen-containing heterocyclic compounds, hindered phenol compounds, organic titanium compounds, adhesion assistants, sensitizers, photopolymerizable unsaturated monomers, Thermal polymerization inhibitors and the like can be mentioned.
(D)エーテル化合物
 第二の本実施形態における(D)エーテル化合物は、酸又は塩基又は熱で脱保護される基で保護されたアミノ基と、下記一般式(1):
Figure JPOXMLDOC01-appb-C000067
{式中Zは、水素原子又はメチル基である。また、両端の結合は分子内の他の部分への単結合を表す。}で表される構造単位を分子内に含む、エーテル化合物である。
 エーテル化合物は、分子内のいずれかの位置に、上記一般式(1)で表される構造単位を少なくとも一つ有していればよく、分子内での該構造単位の配置は限定されない。例えば、エーテル化合物は、分子内に、複数の該構造単位を連続して有していてもよく、該構造単位同士の間に他の構造が介在していてもよい。該構造単位は、エーテル化合物の分子内に規則的に配置されていてもよく、ランダムに配置されていてもよい。
(D) Ether Compound In the second embodiment, the (D) ether compound is an acid or a base or an amino group protected by a group which is deprotected by heat, and a compound represented by the following general formula (1):
Figure JPOXMLDOC01-appb-C000067
In the formula, Z is a hydrogen atom or a methyl group. Also, the bond at both ends represents a single bond to another part in the molecule. It is an ether compound which contains in a molecule the structural unit represented by}.
The ether compound may have at least one structural unit represented by the above general formula (1) at any position in the molecule, and the arrangement of the structural unit in the molecule is not limited. For example, the ether compound may have a plurality of the structural units in succession in the molecule, and another structure may be interposed between the structural units. The structural units may be regularly arranged in the molecule of the ether compound, or may be randomly arranged.
 エーテル化合物としては、例えば、1,4-ブタノールビス(3-アミノプロピル)エーテル、1,2-ビス(2-アミノエトキシ)エタン、2,2’-オキシビス(エチルアミン)、1,14-ジアミノ-3,6,9,12-テトラオキサテトラデカン、1-アザ-15-クラウン 5-エーテル、ジエチレングリコールビス(3-アミノプロピル)エーテル、又は1,11-ジアミノ-3,6,9-トリオキサウンデカンのアミノ基を、酸又は塩基又は熱で脱保護される基で保護した化合物であってもよい。市販のエーテル化合物としては、JEFFAMINE(登録商標) D-230、D-400、D-2000、D-4000、M-600,M-1000、M-2005、M-2070、T-403、T-3000、T-5000、HK-511、ED-600、ED-900、ED-2003、EDR-148、EDR-176、XTJ-435、又はXTJ-436のアミノ基を、酸又は塩基又は熱で脱保護される基で保護した化合物が挙げられるが、これに限定されるものではない。 As an ether compound, for example, 1,4-butanol bis (3-aminopropyl) ether, 1,2-bis (2-aminoethoxy) ethane, 2,2′-oxybis (ethylamine), 1,14-diamino- 3,6,9,12-tetraoxatetradecane, 1-aza-15-crown 5-ether, diethylene glycol bis (3-aminopropyl) ether, or 1,11-diamino-3,6,9-trioxaundecane The amino group may be a compound protected by an acid or base or a group which is deprotected by heat. As commercially available ether compounds, JEFFAMINE (registered trademark) D-230, D-400, D-2000, D-4000, M-600, M-1000, M-2005, M-2070, T-403, T- The amino group of 3000, T-5000, HK-511, ED-600, ED-900, ED-2003, EDR-148, EDR-176, XTJ-435, or XTJ-436 is removed with acid or base or heat. Protecting groups include, but are not limited to, protected compounds.
 酸又は塩基又は熱で脱保護される基の好適な例としては、tert-ブトキシカルボニル基、Fmoc基が挙げられるが、本発明はこれらに限定されない。ここで、Fmoc基とは、9-フルオレニルメチルオキシカルボニル基を指す。一つ又は複数のアミノ基は、tert-ブトキシカルボニル基で保護されたアミノ基であることがより好ましい。 Preferable examples of the acid or base or the thermally deprotected group include tert-butoxycarbonyl group and Fmoc group, but the present invention is not limited thereto. Here, the Fmoc group refers to a 9-fluorenylmethyloxycarbonyl group. More preferably, the one or more amino groups are amino groups protected with a tert-butoxycarbonyl group.
 加熱硬化中にアミノ基が脱保護された場合、アミノ基の塩基性によってイミド環化が促進されるため、熱で脱保護される基が好ましい。また、化合物の合成容易性の観点と、解像性の観点から、tert-ブトキシカルボニル基で保護された化合物であることが好ましい。tert-ブトキシカルボニル基で保護された化合物が、良好な解像性を示すのは、現像液への溶解性が良好になり残渣が抑制されるためであると考えられる。 When the amino group is deprotected during heat curing, a thermally deprotected group is preferred because the basicity of the amino group promotes imidization. In addition, from the viewpoint of the easiness of synthesis of the compound and the viewpoint of resolution, the compound is preferably a compound protected with a tert-butoxycarbonyl group. The compound protected with the tert-butoxycarbonyl group is considered to exhibit good resolution because the solubility in a developer is good and the residue is suppressed.
 上記エーテル化合物を用いると、良好な耐薬品性と解像性、およびCuボイド抑制効果が得られる。理論に拘束されないが、良好な耐薬品性を得ることができる理由については、柔軟なエーテル結合をもつ化合物を含むことで、熱硬化過程でのポリイミド樹脂の流動性が向上するためであると考えられる。その結果、流動性が向上したことで、イミド環同士のスタッキングが促進され、薬液の侵入が抑えられるためであると考えられる。また、良好な解像性を得ることができる理由は不明だが、上記一般式(1)の構造部分が現像液に溶解しやすく、残渣が抑制されるためであると考えられる。加えて、Cuボイド抑制効果を示す理由は定かではないが、保護されたアミノ基に由来する窒素原子と、上記一般式(1)の構造に由来するエーテル基を同一分子内に含むことで、Cuイオンと強く相互作用するようになり、Cuの拡散を抑制し、結果としてCuボイドを抑制すると考えられる。 When the above ether compound is used, good chemical resistance and resolution, and a Cu void suppression effect can be obtained. Without being bound by theory, it is believed that the reason why good chemical resistance can be obtained is that the fluidity of the polyimide resin in the heat curing process is improved by including a compound having a flexible ether bond. Be As a result, it is considered that the improvement of the fluidity promotes the stacking of the imide rings and suppresses the penetration of the chemical solution. Although the reason why good resolution can be obtained is unknown, it is considered that the structural portion of the general formula (1) is easily dissolved in the developer and the residue is suppressed. In addition, the reason for showing the Cu void suppression effect is not clear, but it is possible to contain the nitrogen atom derived from the protected amino group and the ether group derived from the structure of the above general formula (1) in the same molecule The interaction with Cu ions becomes strong, which suppresses the diffusion of Cu and, as a result, the Cu void is considered to be suppressed.
 上記エーテル化合物の分子内に含まれる、保護されたアミノ基の数に制限はないが、溶媒への溶解性の観点から、モノアミン、ジアミン、トリアミン、及びテトラアミンからなる群から選択されるアミンのアミノ基が保護された化合物であることが好ましく、モノアミン、又はジアミンのアミノ基が保護された化合物であることが更に好ましい。一方、銅への配位性の観点からは、ジアミンのアミノ基が保護された化合物であることが特に好ましい。保護されたアミノ基の数が二つ以上である場合、エーテル化合物は、上記一般式(1)で表される構造単位を含む分子の両端に、保護されたアミノ基を少なくとも一つずつ有することが好ましい。より好ましくは、保護されたアミノ基の数は二つであり、エーテル化合物は、上記一般式(1)で表される構造単位を含む分子の両端に、保護されたアミノ基を一つずつ有することが好ましい。 The number of protected amino groups contained in the molecule of the ether compound is not limited, but from the viewpoint of solubility in a solvent, amino of an amine selected from the group consisting of monoamines, diamines, triamines, and tetraamines. It is preferably a compound in which a group is protected, and more preferably a compound in which an amino group of a monoamine or diamine is protected. On the other hand, from the viewpoint of coordination to copper, it is particularly preferable that the compound is a compound in which the amino group of diamine is protected. When the number of protected amino groups is two or more, the ether compound has at least one protected amino group at each end of the molecule containing the structural unit represented by the above general formula (1) Is preferred. More preferably, the number of protected amino groups is two, and the ether compound has one protected amino group at each end of the molecule containing the structural unit represented by the above general formula (1). Is preferred.
 また、上記エーテル化合物の分子内に含まれる、上記一般式(1)の構造単位は、2つ以上であることが好ましい。上記一般式(1)の構造単位を2つ以上含むことで、解像性が更に良好となる。一方、上記一般式(1)の構造単位が多すぎると、パターンの現像工程での膨潤が生じ、解像性を悪化させてしまうことから、分子内に含まれる上記一般式(1)の構造単位の数は、100個以下であることが好ましく、50個以下であることが更に好ましく、30個以下であることが特に好ましい。 Moreover, it is preferable that the structural unit of the said General formula (1) contained in the molecule | numerator of the said ether compound is two or more. By including two or more structural units of the general formula (1), the resolution is further improved. On the other hand, if the number of structural units of the general formula (1) is too large, swelling occurs in the pattern development step and the resolution deteriorates, so the structure of the general formula (1) contained in the molecule The number of units is preferably 100 or less, more preferably 50 or less, and particularly preferably 30 or less.
 上記一般式(1)の構造単位を2つ以上含む場合、上記一般式(1)中のZは、同一であっても、それぞれ異なっていてもよいが、同一であることが好ましい。また、上記一般式(1)中Zは、Cuボイド抑制効果の観点から、水素原子であることが好ましい。エーテル基近傍が水素原子であることによって、立体的な障害が小さくなり、Cuへの配位性が向上すると考えられる。 When two or more structural units of the general formula (1) are contained, Z in the general formula (1) may be identical or different, but is preferably identical. Further, Z in the general formula (1) is preferably a hydrogen atom from the viewpoint of the Cu void suppressing effect. It is considered that steric hindrance is reduced and coordination to Cu is improved by the fact that the vicinity of the ether group is a hydrogen atom.
 上記エーテル化合物の分子内に含まれる保護されたアミノ基の合計数と、上記一般式(1)の構造単位の合計数の比(モル比)は、2:1~2:16であることが好ましく、さらに2:1~2:8であることが好ましく、2:2~2:6であることが特に好ましい。この範囲にあることで、Cuボイドの抑制効果が高くなる。 The ratio (molar ratio) of the total number of protected amino groups contained in the molecule of the ether compound to the total number of structural units of the general formula (1) is 2: 1 to 2:16. The ratio is preferably 2: 1 to 2: 8, and more preferably 2: 2 to 2: 6. By being in this range, the effect of suppressing Cu voids is enhanced.
 上記エーテル化合物は、カルボキシル基、スルホ基、リン酸基などの酸性基を含まないことが好ましい。これらの酸性基を含まないことによって、銅配線へのダメージが低減される。また、上記エーテル化合物は、溶解性の観点から、脂環式構造を含まないことが好ましく、耐薬品性の観点から、芳香族基を含まないことが好ましい。同様に、耐薬品性の観点から、ヒドロキシル基を含まないことが好ましい。 It is preferable that the said ether compound does not contain acidic groups, such as a carboxyl group, a sulfo group, and a phosphoric acid group. By not including these acidic groups, damage to the copper wiring is reduced. The ether compound preferably does not contain an alicyclic structure from the viewpoint of solubility, and preferably does not contain an aromatic group from the viewpoint of chemical resistance. Similarly, from the viewpoint of chemical resistance, it is preferable not to contain a hydroxyl group.
 上記エーテル化合物の具体例としては、例えば、限定されないが、下記の化学式で表されるエーテル化合物が好ましい。
Figure JPOXMLDOC01-appb-C000068
As a specific example of the said ether compound, although it is not limited, for example, The ether compound represented by the following chemical formula is preferable.
Figure JPOXMLDOC01-appb-C000068
 上記エーテル化合物の種類によっては、アミノ基の保護基が熱硬化過程で分解する場合があると考えられるが、分解してもしなくてもよい。 Depending on the type of the ether compound, it is considered that the protective group of the amino group may be decomposed in the heat curing process, but it may or may not be decomposed.
 上記エーテル化合物は、(A)ポリイミド前駆体100質量部に対し、好ましくは0.1~30質量部であり、より好ましくは1質量部以上15質量部以下である。(A)ポリイミド前駆体100質量部に対して、0.1質量部以上30質量部以下の範囲で配合することで、Cuボイド抑制効果、解像性向上および耐薬品性の向上の効果に特に優れるネガ型感光性樹脂組成物を得ることができる。 The amount of the ether compound is preferably 0.1 to 30 parts by mass, and more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor. (A) By blending in the range of 0.1 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the polyimide precursor, especially the effects of Cu void suppression effect, resolution improvement and chemical resistance improvement An excellent negative photosensitive resin composition can be obtained.
(E)ウレタン化合物
 第三の本実施形態における(E)ウレタン化合物は、酸又は塩基又は熱で脱保護される基で保護された一つ又は複数のアミノ基と、ヒドロキシル基を分子内に少なくとも一つ含む。
(E) Urethane Compound In the third embodiment, the (E) urethane compound has one or more amino groups protected by an acid or a base or a group which is deprotected by heat, and a hydroxyl group in the molecule. Including one.
 酸又は塩基又は熱で脱保護される基の好適な例としては、tert-ブトキシカルボニル基、Fmoc基が挙げられるが、本発明はこれらに限定されない。ここで、Fmoc基とは、9-フルオレニルメチルオキシカルボニル基を指す。一つ又は複数のアミノ基は、tert-ブトキシカルボニル基で保護されたアミノ基であることがより好ましい。 Preferable examples of the acid or base or the thermally deprotected group include tert-butoxycarbonyl group and Fmoc group, but the present invention is not limited thereto. Here, the Fmoc group refers to a 9-fluorenylmethyloxycarbonyl group. More preferably, the one or more amino groups are amino groups protected with a tert-butoxycarbonyl group.
 加熱硬化中にアミノ基が脱保護された場合、アミノ基の塩基性によってイミド環化が促進されるため、熱で脱保護される基が好ましい。また、化合物の合成容易性の観点と、解像性の観点から、tert-ブトキシカルボニル基で保護された化合物であることが好ましい。tert-ブトキシカルボニル基で保護された化合物が、良好な解像性を示すのは、現像液への溶解性が良好になり残渣が抑制されるためであると考えられる。 When the amino group is deprotected during heat curing, a thermally deprotected group is preferred because the basicity of the amino group promotes imidization. In addition, from the viewpoint of the easiness of synthesis of the compound and the viewpoint of resolution, the compound is preferably a compound protected with a tert-butoxycarbonyl group. The compound protected with the tert-butoxycarbonyl group is considered to exhibit good resolution because the solubility in a developer is good and the residue is suppressed.
 上記ウレタン化合物の分子内に含まれる、保護されたアミノ基の数に制限はないが、溶媒への溶解性の観点から、好ましくはモノアミン、ジアミン、トリアミン、及びテトラアミンからなる群から選択されるアミンのアミノ基が保護された化合物であることが好ましく、より好ましくはモノアミン又はジアミンのアミノ基が保護された化合物であり、より更に好ましくは、モノアミンのアミノ基が保護された化合物である。 The number of protected amino groups contained in the molecule of the urethane compound is not limited, but from the viewpoint of solubility in a solvent, preferably an amine selected from the group consisting of monoamines, diamines, triamines, and tetraamines. The compound is preferably a compound in which the amino group is protected, more preferably a compound in which the amino group of monoamine or diamine is protected, still more preferably a compound in which the amino group of monoamine is protected.
 (E)ウレタン化合物は、好ましくは、脂肪族系アミノ基に結合した、より詳細には脂肪族鎖状若しくは脂環式アミノ基に結合した、tert-ブトキシカルボニル基、ベンジルオキシカルボニル基、又は9-フルオレニルメチルオキシカルボニル(Fmoc)基を分子内に少なくとも一つ、及びヒドロキシル基を分子内に少なくとも一つ含む脂肪族系アミノ基とは、直鎖1級または2級アミノ基、または脂環式2級アミノ基の窒素原子に、芳香族基や複素環基が直接結合しないアミノ基を指す。すなわち、本実施形態で用いるウレタン化合物は、下記一般式(XI):
Figure JPOXMLDOC01-appb-C000069
{式中、R10は、tert-ブトキシカルボニル基またはベンジルオキシカルボニル基またはFmoc基のいずれかであり、R11、R12、及びR13は、それぞれ独立に、水素原子、ヒドロキシル基、炭素数1~20の有機基、又はヒドロキシル基を有する炭素数1~20の有機基のいずれかであるが、R11、R12、及びR13の少なくとも一つは、ヒドロキシル基若しくはヒドロキシル基を有する炭素数1~20の有機基のいずれかである。}
又は下記一般式(XII):
Figure JPOXMLDOC01-appb-C000070
{式中、R10はtert-ブトキシカルボニル基またはベンジルオキシカルボニル基またはFmoc基のいずれかであり、R11、R12、R13、14、R15、及びR16は、それぞれ独立に、水素原子、ヒドロキシル基、炭素数1~20の有機基、又はヒドロキシル基を有する炭素数1~20の有機基のいずれかであるが、R11、R12、及びR13の少なくとも一つは、ヒドロキシル基若しくはヒドロキシル基を有する炭素数1~20の有機基のいずれかである。}
で表すことができる。上記炭素数1~20の有機基は、飽和又は不飽和アルキル基、飽和又は不飽和シクロアルキル基、芳香族基等が挙げられる。これらの有機基は、当該有機基中に、炭化水素基以外の窒素原子、酸素原子、硫黄原子等を含む結合又は置換基を含んでよく、これらは、直鎖上でも分岐状でも環状構造を含んでもよい。
(E) The urethane compound is preferably a tert-butoxycarbonyl group, a benzyloxycarbonyl group, or 9 bonded to an aliphatic amino group, more particularly to an aliphatic chain or alicyclic amino group. Aliphatic amino groups containing at least one fluorenylmethyloxycarbonyl (Fmoc) group in the molecule and at least one hydroxyl group in the molecule are linear primary or secondary amino groups, or It refers to an amino group in which an aromatic group or a heterocyclic group is not directly bonded to the nitrogen atom of the cyclic secondary amino group. That is, the urethane compound used in the present embodiment has the following general formula (XI):
Figure JPOXMLDOC01-appb-C000069
Wherein R 10 is either a tert-butoxycarbonyl group or a benzyloxycarbonyl group or an Fmoc group, and R 11 , R 12 and R 13 each independently represent a hydrogen atom, a hydroxyl group or a carbon number Either one of an organic group of 1 to 20 or an organic group of 1 to 20 carbon atoms having a hydroxyl group, and at least one of R 11 , R 12 and R 13 is a carbon having a hydroxyl group or a hydroxyl group It is any of the organic groups of 1 to 20. }
Or the following general formula (XII):
Figure JPOXMLDOC01-appb-C000070
Wherein R 10 is either a tert-butoxycarbonyl group or a benzyloxycarbonyl group or an Fmoc group, and R 11 , R 12 , R 13, R 14 , R 15 and R 16 are each independently The hydrogen atom, the hydroxyl group, the organic group having 1 to 20 carbon atoms, or the organic group having 1 to 20 carbon atoms having a hydroxyl group, at least one of R 11 , R 12 and R 13 is It is any of a C 1-20 organic group having a hydroxyl group or a hydroxyl group. }
Can be represented by The organic group having 1 to 20 carbon atoms includes a saturated or unsaturated alkyl group, a saturated or unsaturated cycloalkyl group, an aromatic group and the like. These organic groups may contain, in the organic group, a bond or a substituent containing a nitrogen atom other than a hydrocarbon group, an oxygen atom, a sulfur atom or the like, and these have a cyclic structure whether linear or branched. May be included.
 上記式(XI)又は(XII)中、R11、R12、R13、14、R15、及びR16は、それぞれ独立に、水素原子、ヒドロキシル基、炭素数1~20の有機基、又はヒドロキシル基を有する炭素数1~20の有機基のいずれかであるが、R11、R12、及びR13の少なくとも一つはヒドロキシル基若しくはヒドロキシル基を有する炭素数1~20の有機基のいずれかである。また、R11、R12、R13、14、R15、及びR16のいずれか2つが結合して環状構造を形成してもよく、この環状構造の中にヒドロキシル基を有してもよい。 In the above formulas (XI) or (XII), R 11 , R 12 , R 13, R 14 , R 15 and R 16 each independently represent a hydrogen atom, a hydroxyl group, an organic group having 1 to 20 carbon atoms, Or any of C 1-20 organic groups having a hydroxyl group, provided that at least one of R 11 , R 12 and R 13 is a hydroxyl group or an organic group having 1 to 20 carbon atoms having a hydroxyl group It is either. In addition, any two of R 11 , R 12 , R 13, R 14 , R 15 and R 16 may be combined to form a cyclic structure, and even if it has a hydroxyl group in this cyclic structure Good.
 R11、R12、R13、14、R15、及びR16の有機基中の炭化水素基以外の結合又は置換基としては、本発明の効果が損なわれない限り、特に限定されず、エーテル結合、カルボニル結合、アミド結合、ウレタン結合、ウレア結合、チオウレア結合、アゾ結合、エステル結合、ウレタン結合、ヒドロキシル基、アミノ基、アルデヒド基、スルホ基、ニトロ基、アゾ基、イミノ基、ニトロソ基、ジアゾ基、エトキシ基、メトキシ基、シアノ基、複素環基等が挙げられるが、安定性の観点から、複素環基、又はヒドロキシル基であることが好ましい。 The bond or substituent other than the hydrocarbon group in the organic group of R 11 , R 12 , R 13, R 14 , R 15 and R 16 is not particularly limited as long as the effects of the present invention are not impaired. Ether bond, carbonyl bond, amide bond, urethane bond, urea bond, thiourea bond, azo bond, ester bond, urethane bond, hydroxyl group, amino group, aldehyde group, sulfo group, nitro group, azo group, imino group, nitroso group And diazo groups, ethoxy groups, methoxy groups, cyano groups, heterocyclic groups and the like, and from the viewpoint of stability, heterocyclic groups or hydroxyl groups are preferable.
 上記ウレタン化合物を用いると、良好な解像性とCuボイド抑制効果が得られる。解像性が向上する理由については、感光性樹脂組成物が、上記構造を有する化合物を含むことで、樹脂組成物の現像液への溶解性が良好になり、残渣が抑制されるからであると考えられる。加えて、上記構造を有すると、Cuへの相互作用が良好となり、Cuイオンの拡散を防ぎ、Cuボイドを抑制できると推測される。 When the above-mentioned urethane compound is used, good resolution and Cu void suppression effect can be obtained. The resolution is improved because the photosensitive resin composition contains the compound having the above structure, so that the solubility of the resin composition in the developer becomes good, and the residue is suppressed. it is conceivable that. In addition, it is speculated that the above-mentioned structure improves the interaction with Cu, prevents the diffusion of Cu ions, and suppresses Cu voids.
 上記ウレタン化合物としては、例えば、下記一般式(XIII):
Figure JPOXMLDOC01-appb-C000071
{式中、R10は、tert-ブトキシカルボニル基、ベンジルオキシカルボニル基又はFmoc基のいずれかである。)
で表される化合物が挙げられるが、これに限定されるものではない。
Examples of the above urethane compound include the following general formula (XIII):
Figure JPOXMLDOC01-appb-C000071
[Wherein, R 10 is either a tert-butoxycarbonyl group, a benzyloxycarbonyl group or an Fmoc group. )
The compounds represented by the above can be mentioned, but not limited thereto.
 (E)ウレタン化合物は、カルボキシル基、スルホ基及びリン酸基より成る群に含まれる酸性基のいずれも有しないウレタン化合物であることが好ましい。ウレタン化合物が酸性基を有しないことで、特にCuボイドの抑制効果が高くなる。 The (E) urethane compound is preferably a urethane compound which does not have any of the acidic groups contained in the group consisting of a carboxyl group, a sulfo group and a phosphoric acid group. When the urethane compound does not have an acidic group, the effect of suppressing Cu voids in particular is enhanced.
 (E)ウレタン化合物は、tert-ブトキシカルボニル基、ベンジルオキシカルボニル基又はFmoc基の結合した窒素原子の少なくとも一つが分子内のヒドロキシル基のγ位若しくはε位にあるウレタン化合物であることが好ましい。窒素原子に対して分子内のヒドロキシル基がγ位若しくはε位にあることで、特に良好なCuボイド抑制効果を得ることができる。理由は定かではないが、窒素原子に対してヒドロキシル基が適切な位置にあることで、Cuイオンとより強く相互作用するようになり、Cuの拡散を抑制し、結果としてCuボイドを抑制すると考えられる。 The (E) urethane compound is preferably a urethane compound in which at least one nitrogen atom to which a tert-butoxycarbonyl group, a benzyloxycarbonyl group or an Fmoc group is bonded is at the γ- or ε-position of the hydroxyl group in the molecule. By the fact that the hydroxyl group in the molecule is at the γ position or the ε position with respect to the nitrogen atom, a particularly good Cu void suppression effect can be obtained. Although the reason is not clear, it is thought that the hydroxyl group at a suitable position with respect to the nitrogen atom interacts more strongly with the Cu ion, thereby suppressing the diffusion of Cu and consequently suppressing the Cu void. Be
 (E)ウレタン化合物は、脂肪族鎖状または脂環式アミノ基に結合したtert-ブトキシカルボニル基を分子内に少なくとも一つ含むウレタン化合物であることがより好ましい。理由は不明だが、tert-ブトキシカルボニル基を分子内に含むことで、未露光部の現像液への溶解性がさらに良好になり、より解像性に優れるようになると思われる。例えば、上記式(XIII)のR10がtert-ブトキシカルボニル基である化合物を挙げることができる。 The (E) urethane compound is more preferably a urethane compound containing at least one tert-butoxycarbonyl group bonded to an aliphatic chain or alicyclic amino group in the molecule. Although the reason is unknown, it is considered that the inclusion of the tert-butoxycarbonyl group in the molecule makes the solubility of the unexposed area in the developer even better and the resolution becomes better. For example, compounds in which R 10 in the above formula (XIII) is a tert-butoxycarbonyl group can be mentioned.
 (E)ウレタン化合物が、Nα-(tert-ブトキシカルボニル)-L-トリプトファノール、1-(tert-ブトキシカルボニル)-4-ヒドロキシピペリジン、又は下記化学式(1):
Figure JPOXMLDOC01-appb-C000072
で表されるウレタン化合物であることがより好ましい。上記化合物の場合、解像性とCuボイド抑制効果の両方の効果に特に優れる。
(E) The urethane compound is Nα- (tert-butoxycarbonyl) -L-triptophanol, 1- (tert-butoxycarbonyl) -4-hydroxypiperidine, or the following chemical formula (1):
Figure JPOXMLDOC01-appb-C000072
It is more preferable that it is a urethane compound represented by these. In the case of the above compounds, the effects of both the resolution and the Cu void suppression effect are particularly excellent.
 ウレタン化合物の種類によっては、脂肪族系アミノ基に結合した、tert-ブトキシカルボニル基、ベンジルオキシカルボニル基又はFmoc基が、熱硬化過程で分解する場合があると考えられるが、分解してもしなくてもよい。 Depending on the type of urethane compound, it is thought that the tert-butoxycarbonyl group, benzyloxycarbonyl group or Fmoc group bonded to the aliphatic amino group may be decomposed in the heat curing process, but it may or may not be decomposed. May be
 (E)ウレタン化合物の配合量は、(A)樹脂100質量部に対し、好ましくは0.01質量部~20質量部であり、より好ましくは1質量部以上10質量部以下である。Cuボイド抑制の観点から0.01質量部以上であることが好ましく、解像性の観点から20質量部以下であることが好ましい。(A)樹脂100質量部に対して0.01質量部以上20質量部以下の範囲で配合することで、Cuボイド抑制効果と解像性向上の両方の効果に特に優れる感光性樹脂組成物を得ることができる。 The compounding amount of the (E) urethane compound is preferably 0.01 to 20 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the (A) resin. The amount is preferably 0.01 parts by mass or more from the viewpoint of Cu void suppression, and preferably 20 parts by mass or less from the viewpoint of resolution. (A) A photosensitive resin composition particularly excellent in both the Cu void suppressing effect and the resolution improvement effect by blending in a range of 0.01 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the resin You can get it.
 第一から第三の本実施形態のネガ型感光樹脂組成物は、上記に説明した(A)~(E)成分のほか、溶剤、含窒素複素環化合物、ヒンダードフェノール化合物、有機チタン化合物、接着助剤、増感剤、光重合性不飽和モノマー、及び熱重合禁止剤等の他の成分を含有してもよい。 The negative photosensitive resin compositions according to the first to third embodiments of the present invention comprise, in addition to the components (A) to (E) described above, a solvent, a nitrogen-containing heterocyclic compound, a hindered phenol compound, an organic titanium compound, It may also contain other components such as adhesion promoters, sensitizers, photopolymerizable unsaturated monomers, and thermal polymerization inhibitors.
溶剤
 溶剤としては、アミド類、スルホキシド類、ウレア類、ケトン類、エステル類、ラクトン類、エーテル類、ハロゲン化炭化水素類、炭化水素類、アルコール類等が挙げられ、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸ブチル、シュウ酸ジエチル、乳酸エチル、乳酸メチル、乳酸ブチル、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、ベンジルアルコール、フェニルグリコール、テトラヒドロフルフリルアルコール、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、モルフォリン、ジクロロメタン、1,2-ジクロロエタン、1,4-ジクロロブタン、クロロベンゼン、o-ジクロロベンゼン、アニソール、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、メシチレン等を使用することができる。中でも、樹脂の溶解性、樹脂組成物の安定性、及び基板への接着性の観点から、N-メチル-2-ピロリドン、ジメチルスルホキシド、テトラメチル尿素、酢酸ブチル、乳酸エチル、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ベンジルアルコール、フェニルグリコール、及びテトラヒドロフルフリルアルコールが好ましい。
Solvents Examples of the solvent include amides, sulfoxides, ureas, ketones, esters, lactones, ethers, halogenated hydrocarbons, hydrocarbons, alcohols and the like, and examples thereof include N-methyl-2 -Pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethylsulfoxide, tetramethylurea, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, methyl acetate, ethyl acetate, butyl acetate, diethyl oxalate Ethyl lactate, methyl lactate, butyl lactate, γ-butyrolactone, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, benzyl alcohol, phenyl glycol, tetrahydrofurfuryl alcohol, ethylene Use glycol dimethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran, morpholine, dichloromethane, 1,2-dichloroethane, 1,4-dichlorobutane, chlorobenzene, o-dichlorobenzene, anisole, hexane, heptane, benzene, toluene, xylene, mesitylene, etc. be able to. Among them, N-methyl-2-pyrrolidone, dimethyl sulfoxide, tetramethyl urea, butyl acetate, ethyl lactate, γ-butyrolactone, propylene from the viewpoint of resin solubility, resin composition stability, and adhesion to a substrate. Glycol monomethyl ether acetate, propylene glycol monomethyl ether, diethylene glycol dimethyl ether, benzyl alcohol, phenyl glycol and tetrahydrofurfuryl alcohol are preferred.
 このような溶剤の中で、とりわけ、生成ポリマーを完全に溶解するものが好ましく、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、ガンマブチロラクトン等が挙げられる。 Among such solvents, those which completely dissolve the produced polymer are preferable, for example, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethylsulfoxide, tetramethyl Urea, gamma butyrolactone and the like can be mentioned.
 本実施形態の感光性樹脂組成物において、溶剤の使用量は、(A)ポリイミド前駆体100質量部に対して、好ましくは100~1000質量部であり、より好ましくは120~700質量部であり、さらに好ましくは125~500質量部の範囲である。 In the photosensitive resin composition of the present embodiment, the amount of the solvent used is preferably 100 to 1000 parts by mass, more preferably 120 to 700 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor. More preferably, it is in the range of 125 to 500 parts by mass.
含窒素複素環化合物
 本実施形態の感光性樹脂組成物を用いて銅又は銅合金から成る基板上に硬化膜を形成する場合には、銅上の変色を抑制するために、ネガ型感光性樹脂組成物は、含窒素複素環化合物を任意に含んでもよい。含窒素複素環化合物としては、アゾール化合物、及びプリン誘導体等が挙げられる。
Nitrogen-Containing Heterocyclic Compound In the case of forming a cured film on a substrate made of copper or a copper alloy using the photosensitive resin composition of the present embodiment, a negative photosensitive resin is used to suppress discoloration on copper. The composition may optionally contain a nitrogen-containing heterocyclic compound. Examples of nitrogen-containing heterocyclic compounds include azole compounds and purine derivatives.
 アゾール化合物としては、1H-トリアゾール、5-メチル-1H-トリアゾール、5-エチル-1H-トリアゾール、4,5-ジメチル-1H-トリアゾール、5-フェニル-1H-トリアゾール、4-t-ブチル-5-フェニル-1H-トリアゾール、5-ヒドロキシフェニル-1H-トリアゾール、フェニルトリアゾール、p-エトキシフェニルトリアゾール、5-フェニル-1-(2-ジメチルアミノエチル)トリアゾール、5-ベンジル-1H-トリアゾール、ヒドロキシフェニルトリアゾール、1,5-ジメチルトリアゾール、4,5-ジエチル-1H-トリアゾール、1H-ベンゾトリアゾール、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-ベンゾトリアゾール、2-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、ヒドロキシフェニルベンゾトリアゾール、トリルトリアゾール、5-メチル-1H-ベンゾトリアゾール、4-メチル-1H-ベンゾトリアゾール、4-カルボキシ-1H-ベンゾトリアゾール、5-カルボキシ-1H-ベンゾトリアゾール、1H-テトラゾール、5-メチル-1H-テトラゾール、5-フェニル-1H-テトラゾール、5-アミノ-1H-テトラゾール、1-メチル-1H-テトラゾール等が挙げられる。 As the azole compound, 1H-triazole, 5-methyl-1H-triazole, 5-ethyl-1H-triazole, 4,5-dimethyl-1H-triazole, 5-phenyl-1H-triazole, 4-t-butyl-5 -Phenyl-1H-triazole, 5-hydroxyphenyl-1H-triazole, phenyltriazole, p-ethoxyphenyltriazole, 5-phenyl-1- (2-dimethylaminoethyl) triazole, 5-benzyl-1H-triazole, hydroxyphenyl Triazole, 1,5-dimethyltriazole, 4,5-diethyl-1H-triazole, 1H-benzotriazole, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-, Bis (α, α-dimethyl bene Ndyl) phenyl] -benzotriazole, 2- (3,5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2- (3-t-butyl-5-methyl-2-hydroxyphenyl) -benzotriazole 2- (3,5-di-t-amyl-2-hydroxyphenyl) benzotriazole, 2- (2′-hydroxy-5′-t-octylphenyl) benzotriazole, hydroxyphenylbenzotriazole, tolyltriazole, 5 -Methyl-1H-benzotriazole, 4-methyl-1H-benzotriazole, 4-carboxy-1H-benzotriazole, 5-carboxy-1H-benzotriazole, 1H-tetrazole, 5-methyl-1H-tetrazole, 5-phenyl -1H-tetrazole, 5-amino-1H-tet Tetrazole, 1-methyl -1H- tetrazole, and the like.
 特に好ましくは、トリルトリアゾール、5-メチル-1H-ベンゾトリアゾール、及び4-メチル-1H-ベンゾトリアゾールが挙げられる。また、これらのアゾール化合物は、1種で用いても2種以上の混合物で用いても構わない。 Particularly preferred are tolyltriazole, 5-methyl-1H-benzotriazole, and 4-methyl-1H-benzotriazole. These azole compounds may be used alone or in combination of two or more.
 プリン誘導体の具体例としては、プリン、アデニン、グアニン、ヒポキサンチン、キサンチン、テオブロミン、カフェイン、尿酸、イソグアニン、2,6-ジアミノプリン、9-メチルアデニン、2-ヒドロキシアデニン、2-メチルアデニン、1-メチルアデニン、N-メチルアデニン、N,N-ジメチルアデニン、2-フルオロアデニン、9-(2-ヒドロキシエチル)アデニン、グアニンオキシム、N-(2-ヒドロキシエチル)アデニン、8-アミノアデニン、6-アミノ‐8-フェニル‐9H-プリン、1-エチルアデニン、6-エチルアミノプリン、1-ベンジルアデニン、N-メチルグアニン、7-(2-ヒドロキシエチル)グアニン、N-(3-クロロフェニル)グアニン、N-(3-エチルフェニル)グアニン、2-アザアデニン、5-アザアデニン、8-アザアデニン、8-アザグアニン、8-アザプリン、8-アザキサンチン、8-アザヒポキサンチン等及びその誘導体が挙げられる。 Specific examples of the purine derivative include purine, adenine, guanine, hypoxanthine, xanthine, theobromine, caffeine, uric acid, isoguanine, 2,6-diaminopurine, 9-methyladenine, 2-hydroxyadenine, 2-methyladenine, 1-methyladenine, N-methyladenine, N, N-dimethyladenine, 2-fluoroadenine, 9- (2-hydroxyethyl) adenine, guanine oxime, N- (2-hydroxyethyl) adenine, 8-aminoadenine, 6-amino-8-phenyl-9H-purine, 1-ethyladenine, 6-ethylaminopurine, 1-benzyladenine, N-methyl guanine, 7- (2-hydroxyethyl) guanine, N- (3-chlorophenyl) Guanine, N- (3-ethylphenyl) guanine, 2-a Adenine, 5-azaadenine, 8-azaadenine, 8-azaguanine, 8-azapurine, 8-azaxanthine, it includes 8-aza hypoxanthine or their derivatives.
 感光性樹脂組成物が上記アゾール化合物もしくはプリン誘導体を含有する場合の配合量は、(A)ポリイミド前駆体100質量部に対し、0.1~20質量部であることが好ましく、光感度特性の観点から0.5~5質量部がより好ましい。アゾール化合物の(A)ポリイミド前駆体100質量部に対する配合量が0.1質量部以上である場合、本実施形態の感光性樹脂組成物を銅又は銅合金の上に形成した場合に、銅又は銅合金表面の変色が抑制され、一方、20質量部以下である場合には光感度に優れる。 When the photosensitive resin composition contains the azole compound or the purine derivative, the compounding amount is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor, and From the viewpoint, 0.5 to 5 parts by mass is more preferable. When the compounding quantity with respect to 100 mass parts of (A) polyimide precursors of an azole compound is 0.1 mass part or more, when the photosensitive resin composition of this embodiment is formed on copper or a copper alloy, copper or Discoloration of the copper alloy surface is suppressed, and when it is 20 parts by mass or less, the photosensitivity is excellent.
ヒンダードフェノール化合物
 また、銅表面上の変色を抑制するために、ネガ型感光性樹脂組成物は、ヒンダードフェノール化合物を任意に含んでもよい。ヒンダードフェノール化合物としては、2,6-ジ-t-ブチル-4-メチルフェノール、2,5-ジ-t-ブチル-ハイドロキノン、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネ-ト、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、4、4’-メチレンビス(2、6-ジ-t-ブチルフェノール)、4,4’-チオ-ビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェノール)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、1,3,5-トリス(3-ヒドロキシ-2,6-ジメチル-4-イソプロピルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-s-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス[4-(1-エチルプロピル)-3-ヒドロキシ-2,6-ジメチルベンジル]-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、 1,3,5-トリス[4-トリエチルメチル-3-ヒドロキシ-2,6-ジメチルベンジル]-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(3-ヒドロキシ-2,6-ジメチル-4-フェニルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,5,6-トリメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-5-エチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-6-エチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-6-エチル-3-ヒドロキシ-2,5-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-5,6-ジエチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、 1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,5-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-5‐エチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン等が挙げられるが、これに限定されるものではない。これらの中でも、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン等が特に好ましい。
Hindered Phenolic Compound In order to suppress the discoloration on the copper surface, the negative photosensitive resin composition may optionally contain a hindered phenolic compound. As the hindered phenol compound, 2,6-di-t-butyl-4-methylphenol, 2,5-di-t-butyl-hydroquinone, octadecyl-3- (3,5-di-t-butyl-4) -Hydroxyphenyl) propionate, isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 4,4'-methylenebis (2,6-di-t-butylphenol), 4, 4'-thio-bis (3-methyl-6-t-butylphenol), 4,4'-butylidene-bis (3-methyl-6-t-butylphenol), triethylene glycol-bis [3- (3-t -Butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) Propionate], 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], N, N'-hexamethylene bis (3,5-di-t- Butyl-4-hydroxy-hydrocinnamamide), 2,2'-methylene-bis (4-methyl-6-t-butylphenol), 2,2'-methylene-bis (4-ethyl-6-t-butylphenol) ), Pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], tris- (3,5-di-t-butyl-4-hydroxybenzyl) -isocyanurate) Late, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, 1,3,5-tris (3-hydroxy-2, -Dimethyl-4-isopropylbenzyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione, 1,3,5-tris (4-t-butyl-3-hydroxyl) -2,6-Dimethylbenzyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione, 1,3,5-tris (4-s-butyl-3-hydroxy) -2,6-Dimethylbenzyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione, 1,3,5-tris [4- (1-ethylpropyl)- 3-hydroxy-2,6-dimethylbenzyl] -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione, 1,3,5-tris [4-triethylmethyl-3 -Hydroxy-2,6-dimethylbenzyl] -1,3,5-to Azine-2,4,6- (1H, 3H, 5H) -trione, 1,3,5-tris (3-hydroxy-2,6-dimethyl-4-phenylbenzyl) -1,3,5-triazine- 2,4,6- (1H, 3H, 5H) -trione, 1,3,5-tris (4-t-butyl-3-hydroxy-2,5,6-trimethylbenzyl) -1,3,5- Triazine-2,4,6- (1H, 3H, 5H) -trione, 1,3,5-tris (4-t-butyl-5-ethyl-3-hydroxy-2,6-dimethylbenzyl) -1, 3,5-Triazine-2,4,6- (1H, 3H, 5H) -trione, 1,3,5-tris (4-t-butyl-6-ethyl-3-hydroxy-2-methylbenzyl)- 1,3,5-Triazine-2,4,6- (1H, 3H, 5H) -trione, 1,3,5-tris (4-t-butyl-6-ethyl-3-hydroxy-2,5-dimethylbenzyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H ) -Trione, 1,3,5-tris (4-t-butyl-5,6-diethyl-3-hydroxy-2-methylbenzyl) -1,3,5-triazine-2,4,6- (1H) , 3H, 5H) -trione, 1,3,5-tris (4-t-butyl-3-hydroxy-2-methylbenzyl) -1,3,5-triazine-2,4,6- (1H, 3H , 5H) -trione, 1,3,5-tris (4-t-butyl-3-hydroxy-2,5-dimethylbenzyl) -1,3,5-triazine-2,4,6- (1H, 3H) , 5H) -trione, 1,3,5-tris (4-t-butyl-5-ethyl-3-hydride) Roxy-2-methylbenzyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione etc. may be mentioned, but it is not limited thereto. Among these, 1,3,5-tris (4-t-butyl-3-hydroxy-2,6-dimethylbenzyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) )-Trione etc. are particularly preferred.
 ヒンダードフェノール化合物の配合量は、(A)ポリイミド前駆体100質量部に対し、0.1~20質量部であることが好ましく、光感度特性の観点から0.5~10質量部であることがより好ましい。ヒンダードフェノール化合物の(A)ポリイミド前駆体100質量部に対する配合量が0.1質量部以上である場合、例えば銅又は銅合金の上に本発明の感光性樹脂組成物を形成した場合に、銅又は銅合金の変色・腐食が防止され、一方、20質量部以下である場合には光感度に優れる。 The compounding amount of the hindered phenol compound is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor, and is 0.5 to 10 parts by mass from the viewpoint of light sensitivity characteristics. Is more preferred. When the compounding quantity with respect to 100 mass parts of (A) polyimide precursors of a hindered phenol compound is 0.1 mass part or more, for example, when the photosensitive resin composition of this invention is formed on copper or a copper alloy, Discoloration and corrosion of copper or copper alloy are prevented, and when it is 20 parts by mass or less, the photosensitivity is excellent.
有機チタン化合物
 本実施形態のネガ型感光性樹脂組成物は、有機チタン化合物を含有してもよい。有機チタン化合物を含有することにより、低温で硬化した場合であっても耐薬品性に優れる感光性樹脂層を形成できる。
Organic titanium compound The negative photosensitive resin composition of the present embodiment may contain an organic titanium compound. By containing the organic titanium compound, a photosensitive resin layer having excellent chemical resistance can be formed even when cured at a low temperature.
 使用可能な有機チタン化合物としては、チタン原子に有機化学物質が共有結合又はイオン結合を介して結合しているものが挙げられる。
 有機チタン化合物の具体的例を以下のI)~VII)に示す:
 I)チタンキレート化合物:中でも、ネガ型感光性樹脂組成物の保存安定性及び良好なパターンが得られることから、アルコキシ基を2個以上有するチタンキレートがより好ましい。具体的な例は、チタニウムビス(トリエタノールアミン)ジイソプロポキサイド、チタニウムジ(n-ブトキサイド)ビス(2,4-ペンタンジオネート、チタニウムジイソプロポキサイドビス(2,4-ペンタンジオネート)、チタニウムジイソプロポキサイドビス(テトラメチルヘプタンジオネート)、チタニウムジイソプロポキサイドビス(エチルアセトアセテート)等である。
 II)テトラアルコキシチタン化合物:例えば、チタニウムテトラ(n-ブトキサイド)、チタニウムテトラエトキサイド、チタニウムテトラ(2-エチルヘキソキサイド)、チタニウムテトライソブトキサイド、チタニウムテトライソプロポキサイド、チタニウムテトラメトキサイド、チタニウムテトラメトキシプロポキサイド、チタニウムテトラメチルフェノキサイド、チタニウムテトラ(n-ノニロキサイド)、チタニウムテトラ(n-プロポキサイド)、チタニウムテトラステアリロキサイド、チタニウムテトラキス[ビス{2,2-(アリロキシメチル)ブトキサイド}]等である。
 III)チタノセン化合物:例えば、ペンタメチルシクロペンタジエニルチタニウムトリメトキサイド、ビス(η5-2,4-シクロペンタジエン-1-イル)ビス(2,6-ジフルオロフェニル)チタニウム、ビス(η5-2,4-シクロペンタジエン-1-イル)ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム等である。
 IV)モノアルコキシチタン化合物:例えば、チタニウムトリス(ジオクチルホスフェート)イソプロポキサイド、チタニウムトリス(ドデシルベンゼンスルホネート)イソプロポキサイド等である。
 V)チタニウムオキサイド化合物:例えば、チタニウムオキサイドビス(ペンタンジオネート)、チタニウムオキサイドビス(テトラメチルヘプタンジオネート)、フタロシアニンチタニウムオキサイド等である。
 VI)チタニウムテトラアセチルアセトネート化合物:例えば、チタニウムテトラアセチルアセトネート等である。
 VII)チタネートカップリング剤:例えば、イソプロピルトリドデシルベンゼンスルホニルチタネート等である。
Usable organic titanium compounds include those in which an organic chemical substance is bonded to a titanium atom via a covalent bond or an ionic bond.
Specific examples of the organic titanium compound are shown in the following I) to VII):
I) Titanium chelate compound: Among them, a titanium chelate having two or more alkoxy groups is more preferable because the storage stability of the negative photosensitive resin composition and a good pattern can be obtained. Specific examples are titanium bis (triethanolamine) diisopropoxide, titanium di (n-butoxide) bis (2,4-pentanedionate), titanium diisopropoxide bis (2,4-pentanedionate) And titanium diisopropoxide bis (tetramethylheptanedionate), titanium diisopropoxide bis (ethylacetoacetate), and the like.
II) Tetraalkoxytitanium compounds: for example, titanium tetra (n-butoxide), titanium tetraethoxide, titanium tetra (2-ethylhexoxide), titanium tetraisobutoxide, titanium tetraisopropoxide, titanium tetramethoxide , Titanium tetramethoxypropoxide, titanium tetramethylphenoxide, titanium tetra (n-nonyloxy), titanium tetra (n-propoxide), titanium tetrastearyloxide, titanium tetrakis [bis {2, 2- (allyloxymethyl) Butoxide]] etc.
III) Titanocene compounds: for example, pentamethylcyclopentadienyltitanium trimethoxide, bis (η5-2,4-cyclopentadien-1-yl) bis (2,6-difluorophenyl) titanium, bis (η5-2, 4-cyclopentadien-1-yl) bis (2,6-difluoro-3- (1H-pyrrol-1-yl) phenyl) titanium and the like.
IV) Monoalkoxytitanium compounds: for example, titanium tris (dioctyl phosphate) isopropoxide, titanium tris (dodecyl benzene sulfonate) isopropoxide and the like.
V) Titanium oxide compounds: for example, titanium oxide bis (pentanedionate), titanium oxide bis (tetramethylheptanedionate), phthalocyanine titanium oxide and the like.
VI) Titanium tetraacetylacetonate compound: for example, titanium tetraacetylacetonate and the like.
VII) Titanate coupling agent: for example, isopropyl tridodecyl benzene sulfonyl titanate and the like.
 中でも、有機チタン化合物は、上記I)チタンキレート化合物、II)テトラアルコキシチタン化合物、及びIII)チタノセン化合物から成る群から選ばれる少なくとも1種の化合物であることが、より良好な耐薬品性を奏するという観点から好ましい。特に、チタニウムジイソプロポキサイドビス(エチルアセトアセテート)、チタニウムテトラ(n-ブトキサイド)、及びビス(η5-2,4-シクロペンタジエン-1-イル)ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウムが好ましい。 Among them, the organic titanium compound exhibits at least one kind of compound selected from the group consisting of the above-mentioned I) titanium chelate compound, II) tetraalkoxytitanium compound, and III) titanocene compound, thereby exhibiting better chemical resistance. It is preferable from the viewpoint of that. In particular, titanium diisopropoxide bis (ethylacetoacetate), titanium tetra (n-butoxide), and bis (η5-2,4-cyclopentadien-1-yl) bis (2,6-difluoro-3- (1H) -Pyrrol-1-yl) phenyl) titanium is preferred.
 有機チタン化合物を配合する場合の配合量は、(A)ポリイミド前駆体100質量部に対し、0.05~10質量部であることが好ましく、より好ましくは0.1~2質量部である。該配合量が0.05質量部以上である場合良好な耐熱性及び耐薬品性が発現し、一方10質量部以下である場合保存安定性に優れる。 The blending amount in the case of blending the organic titanium compound is preferably 0.05 to 10 parts by mass, and more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor. When the amount is 0.05 parts by mass or more, good heat resistance and chemical resistance develop, and when the amount is 10 parts by mass or less, the storage stability is excellent.
接着助剤
 本実施形態のネガ型感光性樹脂組成物を用いて形成される膜と基材との接着性向上のために、ネガ型感光性樹脂組成物は、接着助剤を任意に含んでもよい。接着助剤としては、γ-アミノプロピルジメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、3-メタクリロキシプロピルジメトキシメチルシラン、3-メタクリロキシプロピルトリメトキシシラン、ジメトキシメチル-3-ピペリジノプロピルシラン、ジエトキシ-3-グリシドキシプロピルメチルシラン、N-(3-ジエトキシメチルシリルプロピル)スクシンイミド、N-[3-(トリエトキシシリル)プロピル]フタルアミド酸、ベンゾフェノン-3,3’-ビス(N-[3-トリエトキシシリル]プロピルアミド)-4,4’-ジカルボン酸、ベンゼン-1,4-ビス(N-[3-トリエトキシシリル]プロピルアミド)-2,5-ジカルボン酸、3-(トリエトキシシリル)プロピルスクシニックアンハイドライド、N-フェニルアミノプロピルトリメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-(トリアルコキシシリル)プロピルスクシン酸無水物等のシランカップリング剤、及びアルミニウムトリス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)、エチルアセトアセテートアルミニウムジイソプロピレート等のアルミニウム系接着助剤等が挙げられる。
Adhesion assistant In order to improve the adhesion between the film formed using the negative photosensitive resin composition of the present embodiment and the substrate, the negative photosensitive resin composition may optionally contain an adhesion assistant. Good. As adhesion assistants, γ-aminopropyldimethoxysilane, N- (β-aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, 3- Methacryloxypropyldimethoxymethylsilane, 3-methacryloxypropyltrimethoxysilane, dimethoxymethyl-3-piperidinopropylsilane, diethoxy-3-glycidoxypropylmethylsilane, N- (3-diethoxymethylsilylpropyl) succinimide N- [3- (triethoxysilyl) propyl] phthalamic acid, benzophenone-3,3'-bis (N- [3-triethoxysilyl] propylamide) -4,4'-dicarboxylic acid, benzene-1, 4-bis (N- [3-triet Silylyl] propylamide) -2,5-dicarboxylic acid, 3- (triethoxysilyl) propyl succinic anhydride, N-phenylaminopropyltrimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane And silane coupling agents such as 3- (trialkoxysilyl) propyl succinic acid, and aluminum-based adhesions such as aluminum tris (ethyl acetoacetate), aluminum tris (acetylacetonate), ethyl acetoacetate aluminum diisopropylate, etc. An auxiliary agent etc. are mentioned.
 これらの接着助剤のうちでは、接着力の点からシランカップリング剤を用いることがより好ましい。感光性樹脂組成物が接着助剤を含有する場合、接着助剤の配合量は、(A)ポリイミド前駆体100質量部に対し、0.5~25質量部の範囲が好ましい。 Among these adhesion assistants, it is more preferable to use a silane coupling agent from the viewpoint of adhesion. When the photosensitive resin composition contains an adhesion assistant, the amount of the adhesion assistant is preferably in the range of 0.5 to 25 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor.
 シランカップリング剤としては、3-メルカプトプロピルトリメトキシシラン(信越化学工業株式会社製:商品名 KBM803、チッソ株式会社製:商品名 サイラエースS810)、3-メルカプトプロピルトリエトキシシラン(アズマックス株式会社製:商品名 SIM6475.0)、3-メルカプトプロピルメチルジメトキシシラン(信越化学工業株式会社製:商品名 LS1375、アズマックス株式会社製:商品名 SIM6474.0)、メルカプトメチルトリメトキシシラン(アズマックス株式会社製:商品名 SIM6473.5C)、メルカプトメチルメチルジメトキシシラン(アズマックス株式会社製:商品名 SIM6473.0)、3-メルカプトプロピルジエトキシメトキシシラン、3-メルカプトプロピルエトキシジメトキシシラン、3-メルカプトプロピルトリプロポキシシラン、3-メルカプトプロピルジエトキシプロポキシシラン、3-メルカプトプロピルエトキシジプロポキシシラン、3-メルカプトプロピルジメトキシプロポキシシラン、3-メルカプトプロピルメトキシジプロポキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルジエトキシメトキシシラン、2-メルカプトエチルエトキシジメトキシシラン、2-メルカプトエチルトリプロポキシシラン、2-メルカプトエチルトリプロポキシシラン、2-メルカプトエチルエトキシジプロポキシシラン、2-メルカプトエチルジメトキシプロポキシシラン、2-メルカプトエチルメトキシジプロポキシシラン、4-メルカプトブチルトリメトキシシラン、4-メルカプトブチルトリエトキシシラン、4-メルカプトブチルトリプロポキシシラン、N-(3-トリエトキシシリルプロピル)ウレア(信越化学工業株式会社製:商品名 LS3610、アズマックス株式会社製:商品名 SIU9055.0)、N-(3-トリメトキシシリルプロピル)ウレア(アズマックス株式会社製:商品名 SIU9058.0)、N-(3-ジエトキシメトキシシリルプロピル)ウレア、N-(3-エトキシジメトキシシリルプロピル)ウレア、N-(3-トリプロポキシシリルプロピル)ウレア、N-(3-ジエトキシプロポキシシリルプロピル)ウレア、N-(3-エトキシジプロポキシシリルプロピル)ウレア、N-(3-ジメトキシプロポキシシリルプロピル)ウレア、N-(3-メトキシジプロポキシシリルプロピル)ウレア、N-(3-トリメトキシシリルエチル)ウレア、N-(3-エトキシジメトキシシリルエチル)ウレア、N-(3-トリプロポキシシリルエチル)ウレア、N-(3-トリプロポキシシリルエチル)ウレア、N-(3-エトキシジプロポキシシリルエチル)ウレア、N-(3-ジメトキシプロポキシシリルエチル)ウレア、N-(3-メトキシジプロポキシシリルエチル)ウレア、N-(3-トリメトキシシリルブチル)ウレア、N-(3-トリエトキシシリルブチル)ウレア、N-(3-トリプロポキシシリルブチル)ウレア、3-(m-アミノフェノキシ)プロピルトリメトキシシラン(アズマックス株式会社製:商品名 SLA0598.0)、m-アミノフェニルトリメトキシシラン(アズマックス株式会社製:商品名 SLA0599.0)、p-アミノフェニルトリメトキシシラン(アズマックス株式会社製:商品名 SLA0599.1)アミノフェニルトリメトキシシラン(アズマックス株式会社製:商品名 SLA0599.2)、2-(トリメトキシシリルエチル)ピリジン(アズマックス株式会社製:商品名 SIT8396.0)、2-(トリエトキシシリルエチル)ピリジン、2-(ジメトキシシリルメチルエチル)ピリジン、2-(ジエトキシシリルメチルエチル)ピリジン、(3-トリエトキシシリルプロピル)-t-ブチルカルバメート、(3-グリシドキシプロピル)トリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトラ-i-プロポキシシラン、テトラ-n-ブトキシシラン、テトラ-i-ブトキシシラン、テトラ-t-ブトキシシラン、テトラキス(メトキシエトキシシラン)、テトラキス(メトキシ-n-プロポキシシラン)、テトラキス(エトキシエトキシシラン)、テトラキス(メトキシエトキシエトキシシラン)、ビス(トリメトキシシリル)エタン、ビス(トリメトキシシリル)ヘキサン、ビス(トリエトキシシリル)メタン、ビス(トリエトキシシリル)エタン、ビス(トリエトキシシリル)エチレン、ビス(トリエトキシシリル)オクタン、ビス(トリエトキシシリル)オクタジエン、ビス[3-(トリエトキシシリル)プロピル]ジスルフィド、ビス[3-(トリエトキシシリル)プロピル]テトラスルフィド、ジ-t-ブトキシジアセトキシシラン、ジ-i-ブトキシアルミノキシトリエトキシシラン、フェニルシラントリオール、メチルフェニルシランジオール、エチルフェニルシランジオール、n-プロピルフェニルシランジオール、イソプロピルフェニルシランジオール、n-ブチルシフェニルシランジオール、イソブチルフェニルシランジオール、tert-ブチルフェニルシランジオール、ジフェニルシランジオール、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン、ジメトキシジ-p-トリルシラン、エチルメチルフェニルシラノール、n-プロピルメチルフェニルシラノール、イソプロピルメチルフェニルシラノール、n-ブチルメチルフェニルシラノール、イソブチルメチルフェニルシラノール、tert-ブチルメチルフェニルシラノール、エチルn-プロピルフェニルシラノール、エチルイソプロピルフェニルシラノール、n-ブチルエチルフェニルシラノール、イソブチルエチルフェニルシラノール、tert-ブチルエチルフェニルシラノール、メチルジフェニルシラノール、エチルジフェニルシラノール、n-プロピルジフェニルシラノール、イソプロピルジフェニルシラノール、n-ブチルジフェニルシラノール、イソブチルジフェニルシラノール、tert-ブチルジフェニルシラノール、トリフェニルシラノール等が挙げられるが、これらに限定されない。これらは単独でも複数組み合わせて用いてもよい。 As a silane coupling agent, 3-mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: trade name KBM803, manufactured by Chisso Corporation: trade name Silaace S810), 3-mercaptopropyltriethoxysilane (manufactured by Azmax Co., Ltd.): Trade name SIM 6475.0), 3-Mercaptopropylmethyldimethoxysilane (Shin-Etsu Chemical Co., Ltd .: trade name LS 1375, Azmax Co., Ltd .: trade name SIM 6474.0), mercaptomethyltrimethoxysilane (produced by Azmax Co., Ltd .: commodity Name: SIM 647 3.5 C), mercaptomethyl methyl dimethoxysilane (made by Azmax Co., Ltd .: trade name: SIM 647 3.0), 3-mercaptopropyldiethoxymethoxysilane, 3-mercaptopropyl Ethoxydimethoxysilane, 3-mercaptopropyltripropoxysilane, 3-mercaptopropyldiethoxypropoxysilane, 3-mercaptopropylethoxydipropoxysilane, 3-mercaptopropyldimethoxypropoxysilane, 3-mercaptopropylmethoxydipropoxysilane, 2-mercapto Ethyltrimethoxysilane, 2-Mercaptoethyldiethoxymethoxysilane, 2-Mercaptoethylethoxydimethoxysilane, 2-Mercaptoethyltripropoxysilane, 2-Mercaptoethyltripropoxysilane, 2-Mercaptoethylethoxydipropoxysilane, 2-Mercapto Ethyldimethoxypropoxysilane, 2-mercaptoethylmethoxydipropoxysilane, 4-mercaptobutyltrimethoxysilane , 4-mercaptobutyltriethoxysilane, 4-mercaptobutyltripropoxysilane, N- (3-triethoxysilylpropyl) urea (Shin-Etsu Chemical Co., Ltd. product name: LS 3610, Azmax Corporation product name: SIU 9055. 0), N- (3-trimethoxysilylpropyl) urea (made by Azmax Co., Ltd .: trade name SIU9058.0), N- (3-diethoxymethoxysilylpropyl) urea, N- (3-ethoxydimethoxysilylpropyl) Urea, N- (3-tripropoxysilylpropyl) urea, N- (3-diethoxypropoxysilylpropyl) urea, N- (3-ethoxydipropoxysilylpropyl) urea, N- (3-dimethoxypropoxysilylpropyl) Urea, N- (3- methoxy di Propoxysilylpropyl) urea, N- (3-trimethoxysilylethyl) urea, N- (3-ethoxydimethoxysilylethyl) urea, N- (3-tripropoxysilylethyl) urea, N- (3-tripropoxysilyl) Ethyl) urea, N- (3-ethoxydipropoxysilylethyl) urea, N- (3-dimethoxypropoxysilylethyl) urea, N- (3-methoxydipropoxysilylethyl) urea, N- (3-trimethoxysilyl Butyl) urea, N- (3-triethoxysilylbutyl) urea, N- (3-tripropoxysilylbutyl) urea, 3- (m-aminophenoxy) propyltrimethoxysilane (manufactured by Azmaxx Co., Ltd .: trade name SLA 0598. 0), m-aminophenyltrimethoxysilane (asma S Co., Ltd .: trade name SLA 0599.0), p-aminophenyltrimethoxysilane (produced by Azmax Co., Ltd .: trade name SLA 0599. 1) aminophenyltrimethoxysilane (produced by Azmax Co., Ltd .: trade name SLA 0599.2), 2 -(Trimethoxysilylethyl) pyridine (manufactured by Azmaxx Co., Ltd .: trade name SIT 8396.0), 2- (triethoxysilylethyl) pyridine, 2- (dimethoxysilylmethylethyl) pyridine, 2- (diethoxysilylmethylethyl) Pyridine, (3-triethoxysilylpropyl) -t-butylcarbamate, (3-glycidoxypropyl) triethoxysilane, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, Tra-n-butoxysilane, tetra-i-butoxysilane, tetra-t-butoxysilane, tetrakis (methoxyethoxysilane), tetrakis (methoxy-n-propoxysilane), tetrakis (ethoxyethoxysilane), tetrakis (methoxyethoxyethoxy) Silanes), bis (trimethoxysilyl) ethane, bis (trimethoxysilyl) hexane, bis (triethoxysilyl) methane, bis (triethoxysilyl) ethane, bis (triethoxysilyl) ethylene, bis (triethoxysilyl) octane Bis (triethoxysilyl) octadiene, bis [3- (triethoxysilyl) propyl] disulfide, bis [3- (triethoxysilyl) propyl] tetrasulfide, di-t-butoxydiacetoxysilane, di-i-butoxide Cyaluminoxytriethoxysilane, phenylsilanetriol, methylphenylsilanediol, ethylphenylsilanediol, n-propylphenylsilanediol, isopropylphenylsilanediol, n-butylphenylsilanediol, isobutylphenylsilanediol, tert-butylphenylsilane Diol, diphenylsilanediol, dimethoxydiphenylsilane, diethoxydiphenylsilane, dimethoxydi-p-tolylsilane, ethylmethylphenylsilanol, n-propylmethylphenylsilanol, isopropylmethylphenylsilanol, n-butylmethylphenylsilanol, isobutylmethylphenylsilanol, tert-Butylmethylphenylsilanol, ethyl n-propylphenyl N, ethyl isopropyl phenyl silanol, n-butyl ethyl phenyl silanol, isobutyl ethyl phenyl silanol, tert- butyl ethyl phenyl silanol, methyl diphenyl silanol, ethyl diphenyl silanol, n- propyl diphenyl silanol, isopropyl diphenyl silanol, n- butyl diphenyl silanol, Examples include, but are not limited to, isobutyldiphenylsilanol, tert-butyldiphenylsilanol, triphenylsilanol and the like. These may be used alone or in combination of two or more.
 シランカップリング剤としては、上述のシランカップリング剤の中でも、保存安定性の観点から、フェニルシラントリオール、トリメトキシフェニルシラン、トリメトキシ(p-トリル)シラン、ジフェニルシランジオール、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン、ジメトキシジ-p-トリルシラン、トリフェニルシラノール、及び下記式:
Figure JPOXMLDOC01-appb-C000073
で表される構造を有するシランカップリング剤が好ましい。
Among the above-mentioned silane coupling agents, as a silane coupling agent, from the viewpoint of storage stability, phenylsilanetriol, trimethoxyphenylsilane, trimethoxy (p-tolyl) silane, diphenylsilanediol, dimethoxydiphenylsilane, diethoxy Diphenylsilane, dimethoxydi-p-tolylsilane, triphenylsilanol, and the following formula:
Figure JPOXMLDOC01-appb-C000073
The silane coupling agent which has a structure represented by these is preferable.
 シランカップリング剤を使用する場合の配合量としては、(A)ポリイミド前駆体100質量部に対して、0.01~20質量部が好ましい。 The blending amount in the case of using a silane coupling agent is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor.
増感剤
 本実施形態のネガ型感光性樹脂組成物は、光感度を向上させるために、増感剤を任意に含んでもよい。該増感剤としては、例えば、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、2,5-ビス(4’-ジエチルアミノベンザル)シクロペンタン、2,6-ビス(4’-ジエチルアミノベンザル)シクロヘキサノン、2,6-ビス(4’-ジエチルアミノベンザル)-4-メチルシクロヘキサノン、4,4’-ビス(ジメチルアミノ)カルコン、4,4’-ビス(ジエチルアミノ)カルコン、p-ジメチルアミノシンナミリデンインダノン、p-ジメチルアミノベンジリデンインダノン、2-(p-ジメチルアミノフェニルビフェニレン)-ベンゾチアゾール、2-(p-ジメチルアミノフェニルビニレン)ベンゾチアゾール、2-(p-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4’-ジメチルアミノベンザル)アセトン、1,3-ビス(4’-ジエチルアミノベンザル)アセトン、3,3’-カルボニル-ビス(7-ジエチルアミノクマリン)、3-アセチル-7-ジメチルアミノクマリン、3-エトキシカルボニル-7-ジメチルアミノクマリン、3-ベンジロキシカルボニル-7-ジメチルアミノクマリン、3-メトキシカルボニル-7-ジエチルアミノクマリン、3-エトキシカルボニル-7-ジエチルアミノクマリン、N-フェニル-N’-エチルエタノールアミン、N-フェニルジエタノールアミン、N-p-トリルジエタノールアミン、N-フェニルエタノールアミン、4-モルホリノベンゾフェノン、ジメチルアミノ安息香酸イソアミル、ジエチルアミノ安息香酸イソアミル、2-メルカプトベンズイミダゾール、1-フェニル-5-メルカプトテトラゾール、2-メルカプトベンゾチアゾール、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-(p-ジメチルアミノスチリル)ナフト(1,2-d)チアゾール、2-(p-ジメチルアミノベンゾイル)スチレン等が挙げられる。これらは単独で又は例えば2~5種類の組合せで用いることができる。
Sensitizer The negative photosensitive resin composition of the present embodiment may optionally contain a sensitizer in order to improve the photosensitivity. Examples of the sensitizer include Michler's ketone, 4,4′-bis (diethylamino) benzophenone, 2,5-bis (4′-diethylaminobenzal) cyclopentane, 2,6-bis (4′-diethylaminobenzal) ) Cyclohexanone, 2,6-bis (4'-diethylaminobenzal) -4-methylcyclohexanone, 4,4'-bis (dimethylamino) chalcone, 4,4'-bis (diethylamino) chalcone, p-dimethylaminocinnana Myrylene indanone, p-dimethylaminobenzylidene indanone, 2- (p-dimethylaminophenylbiphenylene) -benzothiazole, 2- (p-dimethylaminophenylvinylene) benzothiazole, 2- (p-dimethylaminophenylvinylene) Isonaphthothiazole, 1,3-bis (4'-dimethyl) Aminobenzal) acetone, 1,3-bis (4'-diethylaminobenzal) acetone, 3,3'-carbonyl-bis (7-diethylaminocoumarin), 3-acetyl-7-dimethylaminocoumarin, 3-ethoxycarbonyl-7 -Dimethylaminocoumarin, 3-benzyloxycarbonyl-7-dimethylaminocoumarin, 3-methoxycarbonyl-7-diethylaminocoumarin, 3-ethoxycarbonyl-7-diethylaminocoumarin, N-phenyl-N'-ethylethanolamine, N- Phenyldiethanolamine, Np-tolyldiethanolamine, N-phenylethanolamine, 4-morpholinobenzophenone, isoamyl dimethylaminobenzoate, isoamyl diethylaminobenzoate, 2-mercaptobenzimidazole, 1-fu Nyl-5-mercaptotetrazole, 2-mercaptobenzothiazole, 2- (p-dimethylaminostyryl) benzoxazole, 2- (p-dimethylaminostyryl) benzthiazole, 2- (p-dimethylaminostyryl) naphtho (1,1 2-d) Thiazole, 2- (p-dimethylaminobenzoyl) styrene and the like. These can be used alone or in combinations of, for example, 2 to 5 types.
 光感度を向上させるための増感剤を感光性樹脂組成物が含有する場合の配合量は、(A)ポリイミド前駆体100質量部に対し、0.1~25質量部であることが好ましい。 When the photosensitive resin composition contains a sensitizer for improving the photosensitivity, the compounding amount is preferably 0.1 to 25 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor.
光重合性不飽和モノマー
 ネガ型感光性樹脂組成物は、レリーフパターンの解像性を向上させるために、光重合性の不飽和結合を有するモノマーを任意に含んでもよい。このようなモノマーとしては、光重合開始剤によりラジカル重合反応する(メタ)アクリル化合物が好ましく、特に以下に限定するものではないが、ジエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレートなどの、エチレングリコール又はポリエチレングリコールのモノ又はジアクリレート及びメタクリレート、プロピレングリコール又はポリプロピレングリコールのモノ又はジアクリレート及びメタクリレート、グリセロールのモノ、ジ又はトリアクリレート及びメタクリレート、シクロヘキサンジアクリレート及びジメタクリレート、1,4-ブタンジオールのジアクリレート及びジメタクリレート、1,6-ヘキサンジオールのジアクリレート及びジメタクリレート、ネオペンチルグリコールのジアクリレート及びジメタクリレート、ビスフェノールAのモノ又はジアクリレート及びメタクリレート、ベンゼントリメタクリレート、イソボルニルアクリレート及びメタクリレート、アクリルアミド及びその誘導体、メタクリルアミド及びその誘導体、トリメチロールプロパントリアクリレート及びメタクリレート、グリセロールのジ又はトリアクリレート及びメタクリレート、ペンタエリスリトールのジ、トリ、又はテトラアクリレート及びメタクリレート、並びにこれら化合物のエチレンオキサイド又はプロピレンオキサイド付加物等の化合物を挙げることができる。
Photopolymerizable Unsaturated Monomer The negative photosensitive resin composition may optionally contain a monomer having a photopolymerizable unsaturated bond in order to improve the resolution of the relief pattern. As such a monomer, a (meth) acrylic compound which undergoes a radical polymerization reaction by a photopolymerization initiator is preferable, and although not particularly limited thereto, ethylene glycol or polyethylene such as diethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, etc. Mono- or di-acrylates and methacrylates of glycols, Mono- or di-acrylates and methacrylates of propylene glycol or polypropylene glycol, mono-, di- or triacrylates and methacrylates of glycerol, cyclohexane diacrylates and dimethacrylates, diacrylates of 1,4-butanediol Dimethacrylate, diacrylate and dimethacrylate of 1,6-hexanediol, diacrylate of neopentyl glycol And dimethacrylates, mono- or diacrylates and methacrylates of bisphenol A, benzene trimethacrylate, isobornyl acrylate and methacrylate, acrylamide and its derivatives, methacrylamide and its derivatives, trimethylolpropane triacrylate and methacrylate, glycerol di- or Mention may be made of compounds such as triacrylates and methacrylates, di-, tri- or tetra-acrylates and methacrylates of pentaerythritol, and ethylene oxide or propylene oxide adducts of these compounds.
 レリーフパターンの解像性を向上させるための上記の光重合性の不飽和結合を有するモノマーを感光性樹脂組成物が含有する場合、光重合性の不飽和結合を有するモノマーの配合量は、(A)ポリイミド前駆体100質量部に対し、1~50質量部であることが好ましい。 When the photosensitive resin composition contains a monomer having the above-described photopolymerizable unsaturated bond for improving the resolution of the relief pattern, the blending amount of the photopolymerizable unsaturated bond is ( A) The amount is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the polyimide precursor.
熱重合禁止剤
 本実施形態のネガ型感光性樹脂組成物は、特に溶剤を含む溶液の状態での保存時のネガ型感光性樹脂組成物の粘度及び光感度の安定性を向上させるために、熱重合禁止剤を任意に含んでもよい。熱重合禁止剤としては、ヒドロキノン、N-ニトロソジフェニルアミン、p-tert-ブチルカテコール、フェノチアジン、N-フェニルナフチルアミン、エチレンジアミン四酢酸、1,2-シクロヘキサンジアミン四酢酸、グリコールエーテルジアミン四酢酸、2,6-ジ-tert-ブチル-p-メチルフェノール、5-ニトロソ-8-ヒドロキシキノリン、1-ニトロソ-2-ナフトール、2-ニトロソ-1-ナフトール、2-ニトロソ-5-(N-エチル-N-スルホプロピルアミノ)フェノール、N-ニトロソ-N-フェニルヒドロキシルアミンアンモニウム塩、N-ニトロソ-N(1-ナフチル)ヒドロキシルアミンアンモニウム塩等が用いられる。
Thermal Polymerization Inhibitor In order to improve the viscosity and the photosensitivity stability of the negative photosensitive resin composition at the time of storage in the state of a solution containing a solvent, in particular, the negative photosensitive resin composition of the present embodiment, A thermal polymerization inhibitor may optionally be included. As a thermal polymerization inhibitor, hydroquinone, N-nitrosodiphenylamine, p-tert-butylcatechol, phenothiazine, N-phenylnaphthylamine, ethylenediaminetetraacetic acid, 1,2-cyclohexanediaminetetraacetic acid, glycol ether diamine tetraacetic acid, 2, 6 -Di-tert-butyl-p-methylphenol, 5-nitroso-8-hydroxyquinoline, 1-nitroso-2-naphthol, 2-nitroso-1-naphthol, 2-nitroso-5- (N-ethyl-N-) Sulfopropylamino) phenol, N-nitroso-N-phenylhydroxylamine ammonium salt, N-nitroso-N (1-naphthyl) hydroxylamine ammonium salt and the like are used.
<硬化レリーフパターンの製造方法及び半導体装置>
 本実施形態は、(1)上述した本実施形態のネガ型感光性樹脂組成物を基板上に塗布して、樹脂層を上記基板上に形成する工程と、(2)上記樹脂層を露光する工程と、(3)露光後の上記樹脂層を現像してレリーフパターンを形成する工程と、(4)上記レリーフパターンを加熱処理して、硬化レリーフパターンを形成する工程とを含む、硬化レリーフパターンの製造方法を提供する。
<Method of Manufacturing Hardened Relief Pattern and Semiconductor Device>
In this embodiment, (1) a step of applying the negative photosensitive resin composition of the above-described embodiment onto a substrate to form a resin layer on the substrate, and (2) exposing the resin layer A cured relief pattern comprising the steps of: (3) developing the resin layer after exposure to form a relief pattern; and (4) heating the relief pattern to form a cured relief pattern. Provide a manufacturing method of
(1)樹脂層形成工程
 本工程では、本実施形態のネガ型感光性樹脂組成物を基材上に塗布し、必要に応じてその後乾燥させて樹脂層を形成する。塗布方法としては、従来から感光性樹脂組成物の塗布に用いられていた方法、例えば、スピンコーター、バーコーター、ブレードコーター、カーテンコーター、スクリーン印刷機等で塗布する方法、スプレーコーターで噴霧塗布する方法等を用いることができる。
(1) Resin layer formation process At this process, the negative photosensitive resin composition of this embodiment is apply | coated on a base material, and it is made to dry after that as needed, and a resin layer is formed. As a coating method, a method conventionally used for coating a photosensitive resin composition, for example, a method of coating by a spin coater, a bar coater, a blade coater, a curtain coater, a screen printer, etc., spray coating by a spray coater A method etc. can be used.
 必要に応じて、感光性樹脂組成物を含む塗膜を乾燥させることができる。乾燥方法としては、風乾、オーブン又はホットプレートによる加熱乾燥、真空乾燥等の方法が用いられる。具体的には、風乾又は加熱乾燥を行う場合、20℃~140℃で1分~1時間の条件で乾燥を行うことができる。以上の通り、基板上に感光性樹脂層を形成できる。 If necessary, the coating film containing the photosensitive resin composition can be dried. As a drying method, methods such as air drying, heat drying with an oven or a hot plate, vacuum drying and the like are used. Specifically, when air drying or heat drying is performed, drying can be performed at 20 ° C. to 140 ° C. for 1 minute to 1 hour. As described above, the photosensitive resin layer can be formed on the substrate.
(2)露光工程
 本工程では、上記で形成した樹脂層を、コンタクトアライナー、ミラープロジェクション、ステッパー等の露光装置を用いて、パターンを有するフォトマスク又はレチクルを介して又は直接に、紫外線光源等により露光する。
(2) Exposure Step In this step, the resin layer formed above is exposed to an ultraviolet light source or the like directly through a photomask or reticle having a pattern using an exposure apparatus such as a contact aligner, mirror projection, stepper or the like. Expose.
 この後、光感度の向上等の目的で、必要に応じて、任意の温度及び時間の組合せによる露光後ベーク(PEB)及び/又は現像前ベークを施してもよい。ベーク条件の範囲は、温度は40℃~120℃であり、そして時間は10秒~240秒であることが好ましいが、本実施形態の感光性樹脂組成物の諸特性を阻害するものでない限り、この範囲に限らない。 Thereafter, post exposure bake (PEB) and / or post development bake may be performed according to any combination of temperature and time, as necessary, for the purpose of improving photosensitivity and the like. The range of baking conditions is that the temperature is 40 ° C. to 120 ° C., and the time is preferably 10 seconds to 240 seconds, but unless the various properties of the photosensitive resin composition of this embodiment are inhibited, It is not limited to this range.
(3)レリーフパターン形成工程
 本工程では、露光後の感光性樹脂層のうち未露光部を現像除去する。露光(照射)後の感光性樹脂層を現像する現像方法としては、従来知られているフォトレジストの現像方法、例えば、回転スプレー法、パドル法、超音波処理を伴う浸漬法等の中から任意の方法を選択して使用することができる。また、現像の後、レリーフパターンの形状を調整する等の目的で、必要に応じて、任意の温度及び時間の組合せによる現像後ベークを施してもよい。
(3) Relief pattern formation process At this process, an unexposed part is developed and removed among photosensitive resin layers after exposure. As a developing method for developing the photosensitive resin layer after exposure (irradiation), any of known methods for developing a photoresist, for example, a rotary spray method, a paddle method, an immersion method accompanied by ultrasonic treatment and the like can be used. You can use it by selecting the method. In addition, after development, post-development baking may be performed at any temperature and time combination, as necessary, for the purpose of adjusting the shape of the relief pattern and the like.
 現像に使用される現像液としては、例えば、ネガ型感光性樹脂組成物に対する良溶媒、又は該良溶媒と貧溶媒との組合せが好ましい。良溶媒としては、例えば、N-メチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、N,N-ジメチルアセトアミド、シクロペンタノン、シクロヘキサノン、γ-ブチロラクトン、α-アセチル-γ-ブチロラクトン等が好ましい。貧溶媒としては、例えば、トルエン、キシレン、メタノール、エタノール、イソプロピルアルコール、乳酸エチル、プロピレングリコールメチルエーテルアセテート及び水等が好ましい。良溶媒と貧溶媒とを混合して用いる場合には、ネガ型感光性樹脂組成物中のポリマーの溶解性によって良溶媒に対する貧溶媒の割合を調整することが好ましい。また、各溶媒を2種以上、例えば数種類組合せて用いることもできる。 As a developing solution to be used for development, for example, a good solvent for the negative photosensitive resin composition, or a combination of the good solvent and the poor solvent is preferable. As the good solvent, for example, N-methyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N, N-dimethylacetamide, cyclopentanone, cyclohexanone, γ-butyrolactone, α-acetyl-γ-butyrolactone and the like are preferable. . As the poor solvent, for example, toluene, xylene, methanol, ethanol, isopropyl alcohol, ethyl lactate, propylene glycol methyl ether acetate, water and the like are preferable. When a good solvent and a poor solvent are mixed and used, it is preferable to adjust the ratio of the poor solvent to the good solvent by the solubility of the polymer in the negative photosensitive resin composition. In addition, two or more types of each solvent, for example, several types may be used in combination.
(4)硬化レリーフパターン形成工程
 本工程では、上記現像により得られたレリーフパターンを加熱して感光成分を希散させるとともに、(A)ポリイミド前駆体をイミド化させることによって、ポリイミドから成る硬化レリーフパターンに変換する。加熱硬化の方法としては、例えば、ホットプレートによるもの、オーブンを用いるもの、温度プログラムを設定できる昇温式オーブンを用いるもの等種々の方法を選ぶことができる。加熱は、例えば、170℃~400℃で30分~5時間の条件で行うことができる。加熱硬化時の雰囲気気体としては空気を用いてもよく、窒素、アルゴン等の不活性ガスを用いることもできる。
(4) Curing Relief Pattern Forming Step In this step, the relief pattern obtained by the above development is heated to dilute the photosensitive component, and (A) a curing relief consisting of polyimide by imidizing the polyimide precursor. Convert to a pattern. As the heat curing method, various methods can be selected, such as using a hot plate, using an oven, using a temperature rising oven capable of setting a temperature program, and the like. The heating can be performed, for example, at 170 ° C. to 400 ° C. for 30 minutes to 5 hours. As the atmosphere gas at the time of heat curing, air may be used, or an inert gas such as nitrogen or argon may be used.
<半導体装置>
 本実施形態では、上述した硬化レリーフパターンの製造方法により得られる硬化レリーフパターンを有する、半導体装置も提供される。したがって、半導体素子である基材と、上述した硬化レリーフパターン製造方法により該基材上に形成されたポリイミドの硬化レリーフパターンとを有する半導体装置が提供されることができる。また、本発明は、基材として半導体素子を用い、上述した硬化レリーフパターンの製造方法を工程の一部として含む半導体装置の製造方法にも適用できる。本実施形態の半導体装置は、上記硬化レリーフパターン製造方法で形成される硬化レリーフパターンを、表面保護膜、層間絶縁膜、再配線用絶縁膜、フリップチップ装置用保護膜、又はバンプ構造を有する半導体装置の保護膜等として形成し、既知の半導体装置の製造方法と組合せることで製造することができる。
<Semiconductor device>
The present embodiment also provides a semiconductor device having a cured relief pattern obtained by the above-described method for producing a cured relief pattern. Therefore, a semiconductor device can be provided which has a substrate which is a semiconductor element and a cured relief pattern of polyimide formed on the substrate by the above-described method of producing a cured relief pattern. The present invention can also be applied to a method of manufacturing a semiconductor device using a semiconductor element as a base material and including the method of manufacturing a cured relief pattern described above as part of the process. The semiconductor device of the present embodiment is a semiconductor having a surface protection film, an interlayer insulation film, an insulation film for rewiring, a protection film for a flip chip device, or a bump structure, which is formed by the above-mentioned method of manufacturing a hardening relief pattern. It can be formed as a protective film or the like of the device and combined with a known method of manufacturing a semiconductor device.
<表示体装置>
 本実施形態では、表示体素子と該表示体素子の上部に設けられた硬化膜とを備える表示体装置であって、該硬化膜は上述の硬化レリーフパターンである表示体装置が提供される。ここで、当該硬化レリーフパターンは、当該表示体素子に直接接して積層されていてもよく、別の層を間に挟んで積層されていてもよい。例えば、該硬化膜として、TFT液晶表示素子及びカラーフィルター素子の表面保護膜、絶縁膜、及び平坦化膜、MVA型液晶表示装置用の突起、並びに有機EL素子陰極用の隔壁を挙げることができる。
<Display device>
The present embodiment provides a display device comprising a display element and a cured film provided above the display element, wherein the cured film is the above-mentioned cured relief pattern. Here, the cured relief pattern may be laminated in direct contact with the display element, or may be laminated with another layer interposed therebetween. For example, as the cured film, there can be mentioned surface protective film of TFT liquid crystal display element and color filter element, insulating film, flattening film, projection for MVA type liquid crystal display device, and partition wall for organic EL element cathode. .
 本実施形態のネガ型感光性樹脂組成物は、上記のような半導体装置への適用の他、多層回路の層間絶縁、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、及び液晶配向膜等の用途にも有用である。 The negative photosensitive resin composition of the present embodiment is used in applications such as interlayer insulation of multilayer circuits, cover coats of flexible copper clad plates, solder resist films, liquid crystal alignment films, etc. in addition to application to semiconductor devices as described above. It is also useful.
 以下、実施例により本実施形態を具体的に説明するが、本実施形態はこれに限定されるものではない。実施例、比較例、及び製造例においては、ポリマー又はネガ型感光性樹脂組成物の物性を以下の方法に従って測定及び評価した。 Hereinafter, the present embodiment will be specifically described by way of examples, but the present embodiment is not limited thereto. In Examples, Comparative Examples, and Production Examples, physical properties of the polymer or negative photosensitive resin composition were measured and evaluated according to the following methods.
<測定及び評価方法>
(1)重量平均分子量
 各樹脂の重量平均分子量(Mw)をゲルパーミエーションクロマトグラフィー法(標準ポリスチレン換算)を用いて以下の条件下で測定した。
 ポンプ:JASCO PU-980
 検出器:JASCO RI-930
 カラムオーブン:JASCO CO-965 40℃
 カラム:昭和電工(株)製Shodex KD-806M 直列に2本、又は
     昭和電工(株)製Shodex 805M/806M直列
 標準単分散ポリスチレン:昭和電工(株)製Shodex STANDARD SM-105
 移動相:0.1mol/L LiBr/N-メチル-2-ピロリドン(NMP)
 流速:1mL/min.
<Measurement and evaluation method>
(1) Weight Average Molecular Weight The weight average molecular weight (Mw) of each resin was measured using a gel permeation chromatography method (in terms of standard polystyrene) under the following conditions.
Pump: JASCO PU-980
Detector: JASCO RI-930
Column oven: JASCO CO-965 40 ° C
Column: Shodex KD-806M manufactured by Showa Denko 2 in series, or Shodex 805M / 806M series manufactured by Showa Denko Standard monodispersed polystyrene: Shodex STANDARD SM-105 manufactured by Showa Denko
Mobile phase: 0.1 mol / L LiBr / N-methyl-2-pyrrolidone (NMP)
Flow rate: 1 mL / min.
(2)Cu上の硬化レリーフパターンの作製
 6インチシリコンウェハー(フジミ電子工業株式会社製、厚み625±25μm)上に、スパッタ装置(L-440S-FHL型、キヤノンアネルバ社製)を用いて200nm厚のTi、400nm厚のCuをこの順にスパッタした。続いて、このウェハー上に、後述の方法により調製した感光性樹脂組成物をコーターデベロッパー(D-Spin60A型、SOKUDO社製)を用いて回転塗布し、110℃で180秒間ホットプレートにてプリベークを行い、約7μm厚の塗膜を形成した。この塗膜に、テストパターン付マスクを用いて、プリズマGHI(ウルトラテック社製)により500mJ/cm2のエネルギーを照射した。次いで、この塗膜を、現像液としてネガ型の場合はシクロペンタノンを、ポジ型の場合は2.38%TMAHを用いてコーターデベロッパー(D-Spin60A型、SOKUDO社製)でスプレー現像し、ネガ型の場合はプロピレングリコールメチルエーテルアセテートで、ポジ型の場合は純水でリンスすることにより、Cu上のレリーフパターンを得た。
 Cu上に該レリーフパターンを形成したウェハーを、昇温プログラム式キュア炉(VF-2000型、光洋リンドバーグ社製)を用いて、窒素雰囲気下、表1に記載の温度において2時間加熱処理することにより、Cu上に約4~5μm厚の樹脂から成る硬化レリーフパターンを得た。
(2) Preparation of a cured relief pattern on Cu 200 nm using a sputtering apparatus (L-440S-FHL type, manufactured by Canon Anelva) on a 6-inch silicon wafer (manufactured by Fujimi Electronics Co., Ltd., thickness 625 ± 25 μm) Thick Ti and 400 nm thick Cu were sputtered in this order. Subsequently, a photosensitive resin composition prepared by the method described later is spin-coated on this wafer using a coater developer (D-Spin 60A type, manufactured by SOKUDO), and prebaked on a hot plate at 110 ° C. for 180 seconds. Then, a coating film about 7 μm thick was formed. The coating film was irradiated with 500 mJ / cm 2 of energy by Prisma GHI (manufactured by Ultratech Co., Ltd.) using a mask with a test pattern. Next, this coating film is spray developed with a coater developer (D-Spin 60A type, manufactured by SOKUDO) using cyclopentanone as a developer and 2.38% TMAH as a positive type. The relief pattern on Cu was obtained by rinsing with propylene glycol methyl ether acetate in the case of the negative type and with pure water in the case of the positive type.
Heat treating the wafer having the relief pattern formed on Cu at a temperature described in Table 1 for 2 hours in a nitrogen atmosphere using a programmed temperature curing furnace (VF-2000, manufactured by Koyo Lindberg) Thus, a cured relief pattern consisting of a resin about 4 to 5 μm thick was obtained on Cu.
(3)Cu上の硬化レリーフパターンの解像性評価
 上記の方法で得た硬化レリーフパターンを光学顕微鏡下で観察し、最少開口パターンのサイズを求めた。このとき、得られたパターンの開口部の面積が、対応するパターンマスク開口面積の1/2以上であれば解像されたものとみなし、解像された開口部のうち最小面積を有するものに対応するマスク開口辺の長さを解像度とした。解像度が10μm未満のものを「優」、10μm以上14μm未満のものを「良」、14μm以上18μm未満のものを「可」、18μm以上のものを「不可」とした。
(3) Evaluation of Resolution of Hardened Relief Pattern on Cu The hardened relief pattern obtained by the above method was observed under an optical microscope to determine the size of the minimum opening pattern. At this time, if the area of the opening of the obtained pattern is 1/2 or more of the corresponding pattern mask opening area, it is regarded as resolved, and the one having the smallest area among the resolved openings The length of the corresponding mask opening side was taken as the resolution. Those with a resolution of less than 10 μm were rated as “excellent”, those with 10 μm or more and less than 14 μm as “good”, those with 14 μm or more and less than 18 μm as “OK”, and those with 18 μm or more as “impossible”.
(4)Cu上の硬化レリーフパターンの高温保存(high temperature storage)試験と、その後のボイド面積評価
 Cu上に該硬化レリーフパターンを形成したウェハーを、昇温プログラム式キュア炉(VF-2000型、光洋リンドバーグ社製)を用いて、空気中、150℃で168時間加熱した。続いて、プラズマ表面処理装置(EXAM型、神港精機社製)を用いて、Cu上の樹脂層を全てプラズマエッチングにより除去した。プラズマエッチング条件は下記の通りである。
 出力:133W
 ガス種・流量:O2:40mL/分 + CF4:1mL/分
 ガス圧:50Pa
 モード:ハードモード
 エッチング時間:1800秒
 樹脂層を全て除去したCu表面を、FE-SEM(S-4800型、日立ハイテクノロジーズ社製)によって観察し、画像解析ソフト(A像くん、旭化成社製)を用いて、Cu層の表面に占めるボイドの面積を算出した。比較例5に記載の感光性樹脂組成物を評価した際のボイドの総面積を100%とした際に、ボイドの総面積比率が50%未満のものを「優」、50%以上75%未満のものを「良」、75%以上100%未満のものを「可」100%以上のものを「不可」と判定した。
(4) High temperature storage test of cured relief pattern on Cu and subsequent evaluation of void area The wafer on which the cured relief pattern is formed on Cu is heated in a programmed curing oven (VF-2000 type, It heated at 150 degreeC in air for 168 hours using Koyo Lindberg Co., Ltd. product). Subsequently, using a plasma surface treatment apparatus (EXAM type, manufactured by Shinko Seiki Co., Ltd.), the entire resin layer on Cu was removed by plasma etching. The plasma etching conditions are as follows.
Output: 133W
Gas type and flow rate: O2: 40 mL / min + CF 4: 1 mL / min Gas pressure: 50 Pa
Mode: Hard mode Etching time: 1800 seconds The Cu surface from which the resin layer has been completely removed is observed by FE-SEM (S-4800 type, manufactured by Hitachi High-Technologies Corporation), and image analysis software (A Image Kun, manufactured by Asahi Kasei Corporation) The area of the void occupied on the surface of the Cu layer was calculated using When the total area of voids when the photosensitive resin composition described in Comparative Example 5 is evaluated is 100%, those having a total area ratio of voids of less than 50% are "excellent", not less than 50% and less than 75%. Those with "good" were judged as "good", those with 75% or more and less than 100% were judged as "OK" and those with 100% or more were judged as "impossible".
(5)硬化レリーフパターン(ポリイミド塗膜)の耐薬品性評価
 Cu上に形成した該硬化レリーフパターンを、レジスト剥離液{ATMI社製、製品名ST-44、主成分は2-(2-アミノエトキシ)エタノール、1-シクロヘキシル-2-ピロリドン}を50℃に加熱したものに5分間浸漬し、流水で1分間洗浄し、風乾した。その後、膜表面を光学顕微鏡で目視観察し、クラック等の薬液によるダメージの有無や、薬液処理後の膜厚の変化率をもって耐薬品性を評価した。評価基準として、クラック等が発生せず、膜厚変化率が薬品浸漬前の膜厚を基準として10%以内のものを「優」、10~15%のものを「良」、15~20%のものを「可」とし、クラックが発生したもの、または膜厚変化率が20%を超えるものを「不可」とした。
(5) Chemical resistance evaluation of cured relief pattern (polyimide coating film) The cured relief pattern formed on Cu was treated with a resist remover {a product made by ATMI, product name ST-44, main component is 2- (2-amino) It was immersed for 5 minutes in what heated (50 ° C.) ethanol, 1-cyclohexyl-2-pyrrolidone}, washed with running water for 1 minute, and air-dried. Thereafter, the film surface was visually observed with an optical microscope, and the chemical resistance was evaluated based on the presence or absence of damage due to the chemical solution such as a crack and the change rate of the film thickness after the chemical solution treatment. Evaluation criteria: No cracks or the like, and the film thickness change rate is “excellent” within 10% based on the film thickness before chemical immersion, “good” from 10 to 15%, “good”, 15 to 20% Those with "C" were evaluated as "OK", and those with cracks or those whose film thickness change rate exceeded 20% were classified as "Fail".
<(A)ポリイミド前駆体の製造例>
製造例1:(A)ポリイミド前駆体としてのポリマーA-1の合成
 4,4’-オキシジフタル酸二無水物(ODPA)155.1gを2L容量のセパラブルフラスコに入れ、2-ヒドロキシエチルメタクリレート(HEMA)131.2gとγ-ブチロラクトン400mLを入れて室温下で攪拌し、攪拌しながらピリジン81.5gを加えて反応混合物を得た。反応による発熱の終了後に反応混合物を室温まで放冷し、16時間放置した。
 次に、氷冷下において、ジシクロヘキシルカルボジイミド(DCC)206.3gをγ-ブチロラクトン180mLに溶解した溶液を攪拌しながら40分掛けて反応混合物に加え、続いて4,4’-オキシジアニリン(ODA)93.0gをγ-ブチロラクトン350mLに懸濁したものを攪拌しながら60分掛けて加えた。更に室温で2時間攪拌した後、エチルアルコール30mLを加えて1時間攪拌し、次に、γ-ブチロラクトン400mLを加えた。反応混合物に生じた沈殿物をろ過により取り除き、反応液を得た。
 得られた反応液を3Lのエチルアルコールに加えて粗ポリマーから成る沈殿物を生成した。生成した粗ポリマーを濾別し、テトラヒドロフラン1.5Lに溶解して粗ポリマー溶液を得た。得られた粗ポリマー溶液を28Lの水に滴下してポリマーを沈殿させ、得られた沈殿物を濾別した後、真空乾燥して粉末状のポリマー(ポリマーA-1)を得た。ポリマー(A-1)の分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は20,000であった。
<(A) Production Example of Polyimide Precursor>
Production Example 1: (A) Synthesis of Polymer A-1 as Polyimide Precursor 155.1 g of 4,4'-oxydiphthalic acid dianhydride (ODPA) is placed in a 2 L separable flask, and 2-hydroxyethyl methacrylate ( 131.2 g of HEMA) and 400 mL of γ-butyrolactone were added and stirred at room temperature, and 81.5 g of pyridine was added while stirring to obtain a reaction mixture. After the end of the reaction exotherm, the reaction mixture was allowed to cool to room temperature and left for 16 hours.
Next, under ice-cooling, a solution of 206.3 g of dicyclohexylcarbodiimide (DCC) in 180 mL of γ-butyrolactone is added to the reaction mixture with stirring over 40 minutes, and subsequently, 4,4′-oxydianiline (ODA) A suspension of 93.0 g in 350 mL of γ-butyrolactone was added over 60 minutes with stirring. After stirring for 2 hours at room temperature, 30 mL of ethyl alcohol was added and stirred for 1 hour, and then 400 mL of γ-butyrolactone was added. The precipitate formed in the reaction mixture was removed by filtration to obtain a reaction solution.
The resulting reaction solution was added to 3 L of ethyl alcohol to form a precipitate consisting of a crude polymer. The resulting crude polymer was separated by filtration and dissolved in 1.5 L of tetrahydrofuran to obtain a crude polymer solution. The obtained crude polymer solution was dropped into 28 L of water to precipitate a polymer, and the obtained precipitate was separated by filtration and then vacuum dried to obtain a powdery polymer (polymer A-1). The molecular weight of the polymer (A-1) was measured by gel permeation chromatography (in terms of standard polystyrene), and the weight average molecular weight (Mw) was 20,000.
製造例2:(A)ポリイミド前駆体としてのポリマーA-2の合成
 製造例1の4,4’-オキシジフタル酸二無水物(ODPA)155.1gに代えて、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを用いた以外は、前述の製造例1に記載の方法と同様にして反応を行い、ポリマー(A-2)を得た。ポリマー(A-2)の分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は22,000であった。
Production Example 2 (A) Synthesis of Polymer A-2 as Polyimide Precursor In place of 155.1 g of 4,4′-oxydiphthalic acid dianhydride (ODPA) in Production Example 1, 3,3 ′, 4,4 A reaction was carried out in the same manner as in the above-mentioned Production Example 1 except that 147.1 g of '-biphenyltetracarboxylic acid dianhydride (BPDA) was used, to obtain a polymer (A-2). The molecular weight of the polymer (A-2) was measured by gel permeation chromatography (in terms of standard polystyrene), and the weight average molecular weight (Mw) was 22,000.
製造例3:(A)ポリイミド前駆体としてのポリマーA-3の合成
 製造例1の4,4’-オキシジアニリン(ODA)93.0gに代えて、p-フェニレンジアミン50.2gを用いた以外は、前述の製造例1に記載の方法と同様にして反応を行い、ポリマー(A-3)を得た。ポリマー(A-3)の分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は19,000であった。
Production Example 3 (A) Synthesis of Polymer A-3 as Polyimide Precursor 50.2 g of p-phenylenediamine was used in place of 93.0 g of 4,4′-oxydianiline (ODA) in Production Example 1 The reaction was carried out in the same manner as described in Production Example 1 except for the above, to obtain a polymer (A-3). The molecular weight of the polymer (A-3) was measured by gel permeation chromatography (in terms of standard polystyrene), and the weight average molecular weight (Mw) was 19,000.
製造例4:(A)ポリイミド前駆体としてのポリマーA-4の合成(ポリベンゾオキサゾール前駆体)
 容量3lのセパラブルフラスコ中で、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-ヘキサフルオロプロパン183.1g、N,N-ジメチルアセトアミド(DMAc)640.9g、ピリジン63.3gを室温(25℃)で混合攪拌し、均一溶液とした。これに、4,4’-ジフェニルエーテルジカルボニルクロリド118.0gをジエチレングリコールジメチルエーテル(DMDG)354gに溶解したものを滴下ロートより滴下した。この際、セパラブルフラスコは15~20℃の水浴で冷却した。滴下に要した時間は40分、反応液温は最大で30℃であった。
 滴下終了から3時間後反応液に1,2-シクロヘキシルジカルボン酸無水物30.8g(0.2mol)を添加し、室温で15時間撹拌放置し、ポリマー鎖の全アミン末端基の99%をカルボキシシクロヘキシルアミド基で封止した。この際の反応率は投入した1,2-シクロヘキシルジカルボン酸無水物の残量を高速液体クロマトグラフィー(HPLC)で追跡することにより容易に算出することができる。その後上記反応液を2Lの水に高速攪拌下で滴下し重合体を分散析出させ、これを回収し、適宜水洗、脱水の後に真空乾燥を施し、ゲルパーミエーションクロマトグラフィー(GPC)法で測定した重量平均分子量9,000(ポリスチレン換算)の粗ポリベンゾオキサゾール前駆体を得た。
 上記で得られた粗ポリベンゾオキサゾール前駆体をγ-ブチロラクトン(GBL)に再溶解した後、これを陽イオン交換樹脂及び陰イオン交換樹脂にて処理し、それにより得られた溶液をイオン交換水中に投入後、析出したポリマーを濾別、水洗、真空乾燥することにより精製されたポリベンゾオキサゾール前駆体(ポリマーA-4)を得た。
Production Example 4: (A) Synthesis of Polymer A-4 as Polyimide Precursor (Polybenzoxazole Precursor)
In a 3 l separable flask, 183.1 g of 2,2-bis (3-amino-4-hydroxyphenyl) -hexafluoropropane, 640.9 g of N, N-dimethylacetamide (DMAc), 63.3 g of pyridine It mixed and stirred at room temperature (25 degreeC), and was set as the uniform solution. To this, 118.0 g of 4,4'-diphenylether dicarbonyl chloride dissolved in 354 g of diethylene glycol dimethyl ether (DMDG) was dropped from a dropping funnel. At this time, the separable flask was cooled by a water bath of 15 to 20.degree. The time required for the dropwise addition was 40 minutes, and the temperature of the reaction solution was 30 ° C. at maximum.
After 3 hours from the end of dropwise addition, 30.8 g (0.2 mol) of 1,2-cyclohexyldicarboxylic acid anhydride is added to the reaction solution, and stirred at room temperature for 15 hours to allow 99% of all amine end groups of the polymer chain to be carboxy Sealed with a cyclohexylamide group. The reaction rate at this time can be easily calculated by monitoring the amount of remaining 1,2-cyclohexyldicarboxylic acid anhydride by high performance liquid chromatography (HPLC). Thereafter, the above reaction solution was added dropwise to 2 L of water under high speed stirring to disperse and precipitate the polymer, which was recovered, appropriately washed with water, dehydrated and then vacuum dried, and measured by gel permeation chromatography (GPC) method A crude polybenzoxazole precursor having a weight average molecular weight of 9,000 (in terms of polystyrene) was obtained.
The crude polybenzoxazole precursor obtained above is redissolved in γ-butyrolactone (GBL) and then treated with a cation exchange resin and an anion exchange resin, and the solution obtained thereby is ion-exchanged water The precipitated polymer was separated by filtration, washed with water and vacuum dried to obtain a purified polybenzoxazole precursor (polymer A-4).
<(B)塩基保護化合物の製造例>
製造例5:(B)塩基保護化合物としての化合物B-1の合成
 容量1Lのナス型フラスコ中へ、1,3-ジ-4-ピペリジルプロパン(東京化成工業株式会社製)100gと、エタノール100gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)228gをエタノール200gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物B-1を得た。(分子量:411、溶解度パラメーター:20.2)
<(B) Production Example of Base-Protected Compound>
Production Example 5 (B) Synthesis of Compound B-1 as a Base-Protected Compound Into a 1-L eggplant-shaped flask, 100 g of 1,3-di-4-piperidylpropane (manufactured by Tokyo Chemical Industry Co., Ltd.) and 100 g of ethanol And stirred with a stirrer to make a homogeneous solution, and cooled to 5 ° C. or less with ice water. A solution of 228 g of di-tert-butyl dicarbonate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) in 200 g of ethanol was dropped to the solution by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction solution was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound B-1. (Molecular weight: 411, solubility parameter: 20.2)
製造例6:(B)塩基保護化合物としての化合物B-2の合成
 容量1Lのナス型フラスコ中へ、1,4-ブタンジオール(3-アミノプロピル)エーテル(東京化成工業株式会社製)100gとエタノール100gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)234gをエタノール130gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物B-2を得た。(分子量:405、溶解度パラメーター:21.2)
Preparation Example 6 (B) Synthesis of Compound B-2 as a Base-Protected Compound Into a 1-L eggplant-shaped flask, 100 g of 1,4-butanediol (3-aminopropyl) ether (manufactured by Tokyo Chemical Industry Co., Ltd.) and 100 g of ethanol was added, mixed and stirred by a stirrer to obtain a uniform solution, and cooled to 5 ° C. or less with ice water. A solution of 234 g of di-tert-butyl dicarbonate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) in 130 g of ethanol was dropped to the solution by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction solution was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound B-2. (Molecular weight: 405, solubility parameter: 21.2)
製造例7:(B)塩基保護化合物としての化合物B-3の合成
 容量1Lのナス型フラスコ中へ、ジエチレングリコールビス(3-アミノプロピル)エーテル(東京化成工業株式会社製)100gとエタノール100gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)215gをエタノール120gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物B-3を得た。(分子量:421、溶解度パラメーター:21.5)
Production Example 7 (B) Synthesis of Compound B-3 as a Base-Protected Compound In a 1-L eggplant-shaped flask, 100 g of diethylene glycol bis (3-aminopropyl) ether (manufactured by Tokyo Chemical Industry Co., Ltd.) and 100 g of ethanol were added. The mixture was stirred with a stirrer to form a homogeneous solution, and cooled to 5 ° C. or less with ice water. To this, a solution of 215 g of di-tert-butyl dicarbonate (manufactured by Tokyo Chemical Industry Co., Ltd.) in 120 g of ethanol was dropped by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction solution was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound B-3. (Molecular weight: 421, solubility parameter: 21.5)
製造例8:(B)塩基保護化合物としての化合物B-4の合成
 容量1Lのナス型フラスコ中へ、1,2-ビス(2-アミノエトキシ)エタン(東京化成工業株式会社製)100gと、エタノール100gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)319gをエタノール150gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物B-4を得た。(分子量:348、溶解度パラメーター:21.9)
Production Example 8 (B) Synthesis of Compound B-4 as Base-Protected Compound Into a 1-L eggplant-shaped flask, 100 g of 1,2-bis (2-aminoethoxy) ethane (manufactured by Tokyo Chemical Industry Co., Ltd.), 100 g of ethanol was added, mixed and stirred by a stirrer to obtain a uniform solution, and cooled to 5 ° C. or less with ice water. A solution of 319 g of di-tert-butyl dicarbonate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) dissolved in 150 g of ethanol was dropped into the solution by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction solution was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound B-4. (Molecular weight: 348, solubility parameter: 21.9)
製造例9:(B)塩基保護化合物としての化合物B-5の合成
 容量250mLのナス型フラスコ中へ、2,2’-オキシビス(エチルアミン)(東京化成工業株式会社製)10gと、エタノール10gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)46gをエタノール40gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物B-5を得た。(分子量:304、溶解度パラメーター:21.9)
Production Example 9 (B) Synthesis of Compound B-5 as a Base-Protected Compound Into a 250-mL eggplant-shaped flask, 10 g of 2,2′-oxybis (ethylamine) (manufactured by Tokyo Chemical Industry Co., Ltd.) and 10 g of ethanol In addition, they were mixed and stirred by a stirrer to make a homogeneous solution, and cooled to 5 ° C. or less with ice water. To this, 46 g of di-tert-butyl dicarbonate (manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 40 g of ethanol was dropped by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction solution was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound B-5. (Molecular weight: 304, solubility parameter: 21.9)
製造例10:(B)塩基保護化合物としての化合物B-6の合成
 容量250mLのナス型フラスコ中へ、ジ-n-オクチルアミン(東京化成工業株式会社製)10gと、エタノール10gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)20gをエタノール20gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物B-6を得た。(分子量:342、溶解度パラメーター:18.9)
Production Example 10: (B) Synthesis of Compound B-6 as a Base-Protected Compound In a 250-mL eggplant-shaped flask, 10 g of di-n-octylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 10 g of ethanol are added to obtain a stirrer. The mixture was mixed and stirred to form a homogeneous solution, and cooled to 5 ° C. or less with ice water. To this, 20 g of ethanol in which 20 g of di-tert-butyl dicarbonate (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved was dropped by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction solution was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound B-6. (Molecular weight: 342, solubility parameter: 18.9)
製造例11:(B)塩基保護化合物としての化合物B-7の合成
 容量250mLのナス型フラスコ中へ、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(東京化成工業株式会社製)10gと、エタノール10gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)12gをエタノール12gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物B-7を得た。(分子量:611、溶解度パラメーター:22.0)
Production Example 11 (B) Synthesis of Compound B-7 as a Base-Protected Compound Into a 250 mL eggplant-shaped flask, 2,2-bis [4- (4-aminophenoxy) phenyl] propane (Tokyo Chemical Industry Co., Ltd.) 10 g of ethanol and 10 g of ethanol were added, mixed and stirred by a stirrer to obtain a uniform solution, and cooled to 5 ° C. or less with ice water. To this, 12 g of di-tert-butyl dicarbonate (manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 12 g of ethanol was dropped by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction mixture was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound B-7. (Molecular weight: 611, solubility parameter: 22.0)
<(C)光重合開始剤>
 使用した(C)光重合開始剤を以下に示す。
C-1:1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)-オキシム
C-2:イルガキュアOXE01(BASF社製、商品名)
<(C) Photopolymerization initiator>
The (C) photopolymerization initiator used is shown below.
C-1: 1-phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) -oxime C-2: Irgacure OXE01 (manufactured by BASF, trade name)
<(D)エーテル化合物の製造例>
製造例12:(D)エーテル化合物としての化合物D-1の合成
 容量1Lのナス型フラスコ中へ、JEFFAMINE(登録商標) M-600(Huntsman社製)100gとエタノール100gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)44gをエタノール44gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物D-1を得た。
<(D) Production Example of Ether Compound>
Production Example 12 (D) Synthesis of Compound D-1 as an Ether Compound In a 1-L eggplant-shaped flask, 100 g of JEFFAMINE® M-600 (manufactured by Huntsman) and 100 g of ethanol are added and mixed and stirred with a stirrer The reaction solution was cooled to below 5 ° C. with ice water. A solution of 44 g of di-tert-butyl dicarbonate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) in 44 g of ethanol was dropped to the solution by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction mixture was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound D-1.
製造例13:(D)エーテル化合物としての化合物D-2の合成
 容量1Lのナス型フラスコ中へ、JEFFAMINE(登録商標) M-1000(Huntsman社製)100gとエタノール100gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)26gをエタノール26gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物D-2を得た。
Production Example 13 (D) Synthesis of Compound D-2 as Ether Compound In a 1-L eggplant-type flask, 100 g of JEFFAMINE® M-1000 (manufactured by Huntsman) and 100 g of ethanol are added and mixed and stirred by a stirrer. The reaction solution was cooled to below 5 ° C. with ice water. To this, 26 g of ethanol in which 26 g of di-tert-butyl dicarbonate (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved was dropped by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction mixture was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound D-2.
製造例14:(D)エーテル化合物としての化合物D-3の合成
 容量1Lのナス型フラスコ中へ、JEFFAMINE(登録商標) D-400(販売元:三井化学ファイン株式会社)100gとエタノール100gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)110gをエタノール110gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物D-3を得た。
Production Example 14 (D) Synthesis of Compound D-3 as an Ether Compound In a 1-L eggplant-type flask, 100 g of JEFFAMINE® D-400 (sold by Mitsui Chemicals Fine Inc.) and 100 g of ethanol were added. The mixture was stirred with a stirrer to form a homogeneous solution, and cooled to 5 ° C. or less with ice water. To this, 110 g of ethanol in which 110 g of di-tert-butyl dicarbonate (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved was dropped by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction solution was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound D-3.
製造例15:(D)エーテル化合物としての化合物D-4の合成
 容量1Lのナス型フラスコ中へ、ジエチレングリコールビス(3-アミノプロピル)エーテル(東京化成工業株式会社製)100gとエタノール100gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)215gをエタノール120gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物D-4を得た。
Production Example 15 (D) Synthesis of Compound D-4 as an Ether Compound In a 1-L eggplant type flask, 100 g of diethylene glycol bis (3-aminopropyl) ether (manufactured by Tokyo Chemical Industry Co., Ltd.) and 100 g of ethanol The mixture was mixed and stirred by a stirrer to obtain a uniform solution, and cooled to 5 ° C. or less with ice water. To this, a solution of 215 g of di-tert-butyl dicarbonate (manufactured by Tokyo Chemical Industry Co., Ltd.) in 120 g of ethanol was dropped by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction solution was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound D-4.
製造例16:(D)エーテル化合物としての化合物D-5の合成
 容量1Lのナス型フラスコ中へ、1,4-ブタンジオール(3-アミノプロピル)エーテル(東京化成工業株式会社製)100gとエタノール100gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)234gをエタノール130gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物D-5を得た。
Production Example 16 (D) Synthesis of Compound D-5 as an Ether Compound Into a 1-L eggplant-shaped flask, 100 g of 1,4-butanediol (3-aminopropyl) ether (manufactured by Tokyo Chemical Industry Co., Ltd.) and ethanol 100 g was added, mixed and stirred by a stirrer to obtain a uniform solution, and cooled to 5 ° C. or less with ice water. A solution of 234 g of di-tert-butyl dicarbonate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) in 130 g of ethanol was dropped to the solution by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction solution was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound D-5.
製造例17:(D)エーテル化合物としての化合物D-6の合成
 容量1Lのナス型フラスコ中へ、1,2-ビス(2-アミノエトキシ)エタン(東京化成工業株式会社製)100gとエタノール100gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)319gをエタノール150gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物D-6を得た。
Production Example 17 (D) Synthesis of Compound D-6 as Ether Compound Into a 1-L eggplant-shaped flask, 100 g of 1,2-bis (2-aminoethoxy) ethane (manufactured by Tokyo Chemical Industry Co., Ltd.) and 100 g of ethanol And stirred with a stirrer to make a homogeneous solution, and cooled to 5 ° C. or less with ice water. A solution of 319 g of di-tert-butyl dicarbonate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) dissolved in 150 g of ethanol was dropped into the solution by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction mixture was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound D-6.
製造例18:(D)エーテル化合物としての化合物D-7の合成
 容量250mLのナス型フラスコ中へ、2,2’-オキシビス(エチルアミン)(東京化成工業株式会社製)10gとエタノール10gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)46gをエタノール40gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物D-7を得た。
Production Example 18 (D) Synthesis of Compound D-7 as an Ether Compound In a 250 mL eggplant-type flask, 10 g of 2,2′-oxybis (ethylamine) (manufactured by Tokyo Chemical Industry Co., Ltd.) and 10 g of ethanol are added. The mixture was mixed and stirred by a stirrer to obtain a uniform solution, and cooled to 5 ° C. or less with ice water. To this, 46 g of di-tert-butyl dicarbonate (manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 40 g of ethanol was dropped by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction mixture was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound D-7.
<(E)ウレタン化合物>
 使用した(E)ウレタン化合物を以下に示す。
E-1:1-(tert-ブトキシカルボニル)-4-ピペリジンメタノール(東京化成工業株式会社製)
E-2:3-(カルボベンゾキシアミノ)-1-プロパノール(東京化成工業株式会社製)
E-3:N-[(9H-フルオレン-9-イルメトキシ)カルボニル]-D-セリン(東京化成工業株式会社製)
E-4:1-(tert-ブトキシカルボニル)-4-ヒドロキシピペリジン(東京化成工業株式会社製)
E-5:容量3Lのナス型フラスコ中へ、4-ヒドロキシ-4-フェニルピペリジン(東京化成工業株式会社製)40gとエタノール300gを加えて混合撹拌し、均一溶液とした。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)54gをエタノール100gに溶解したものを滴下ロートにより滴下した。この際、反応液温が60℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を減圧下、50℃でエバポレーションして白色固体のウレタン化合物E-5を得た(上記化学式1の化合物)。
E-6:Nα-(tert-ブトキシカルボニル)-L-トリプトファノール(東京化成工業株式会社製)
E-7:N-(tert-ブトキシカルボニル)-L-セリン(東京化成工業株式会社製)
E-8:1-(tert-ブトキシカルボニル)-4-ピペリジンカルボン酸(東京化成工業株式会社製)
E-9:N-(tertブトキシカルボニル)-4-ヒドロキシアニリン(シグマアルドリッチ社製)
E-10:2-(2-アミノエトキシ)エタノール(東京化成工業株式会社製)
<(E) Urethane compound>
The (E) urethane compound used is shown below.
E-1: 1- (tert-butoxycarbonyl) -4-piperidinemethanol (made by Tokyo Chemical Industry Co., Ltd.)
E-2: 3- (carbobenzoxyamino) -1-propanol (manufactured by Tokyo Chemical Industry Co., Ltd.)
E-3: N-[(9H-fluoren-9-ylmethoxy) carbonyl] -D-serine (made by Tokyo Chemical Industry Co., Ltd.)
E-4: 1- (tert-butoxycarbonyl) -4-hydroxypiperidine (manufactured by Tokyo Chemical Industry Co., Ltd.)
E-5: 40 g of 4-hydroxy-4-phenylpiperidine (manufactured by Tokyo Kasei Kogyo Co., Ltd.) and 300 g of ethanol were added to a 3 L eggplant-shaped flask and mixed and stirred to obtain a uniform solution. To this, 54 g of di-tert-butyl dicarbonate (manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 100 g of ethanol was dropped by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 60 ° C. or less. Two hours after the completion of dropwise addition, the reaction solution was evaporated under reduced pressure at 50 ° C. to obtain a urethane compound E-5 as a white solid (compound of the above-mentioned formula 1).
E-6: Nα- (tert-butoxycarbonyl) -L-triptophanol (manufactured by Tokyo Chemical Industry Co., Ltd.)
E-7: N- (tert-butoxycarbonyl) -L-serine (manufactured by Tokyo Chemical Industry Co., Ltd.)
E-8: 1- (tert-butoxycarbonyl) -4-piperidine carboxylic acid (made by Tokyo Chemical Industry Co., Ltd.)
E-9: N- (tert-butoxycarbonyl) -4-hydroxyaniline (manufactured by Sigma Aldrich)
E-10: 2- (2-aminoethoxy) ethanol (manufactured by Tokyo Chemical Industry Co., Ltd.)
<実施例1>
 ポリマーA-1を用いて以下の方法でネガ型感光性樹脂組成物を調製し、調製した組成物の評価を行った。(A)ポリイミド前駆体としてポリマーA-1:100g、(B)塩基保護化合物として化合物B-1:5g、(C)光重合開始剤として1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)-オキシム(以下ではPDOと表記、光重合開始剤C-1に該当):3gを、γ-ブチルラクトン(以下ではGBLと表記):150gに溶解した。得られた溶液の粘度を、少量のGBLをさらに加えることによって、約30ポイズに調整し、ネガ型感光性樹脂組成物とした。該組成物を、前述の方法に従って評価した。結果を表1に示す。
Example 1
A negative photosensitive resin composition was prepared by using the polymer A-1 by the following method, and the prepared composition was evaluated. (A) 100 g of polymer A-1 as a polyimide precursor, 5 B of compound B-1 as a (B) base-protected compound, 1-phenyl-1,2-propanedione-2- (C) as a photopolymerization initiator 3 g of O-ethoxycarbonyl) -oxime (hereinafter referred to as PDO, corresponding to a photopolymerization initiator C-1): 3 g was dissolved in 150 g of γ-butyl lactone (hereinafter referred to as GBL). The viscosity of the resulting solution was adjusted to about 30 poise by further adding a small amount of GBL to obtain a negative photosensitive resin composition. The composition was evaluated according to the method described above. The results are shown in Table 1.
<実施例2~15、比較例1及び2>
 表1及び2に示すとおりの成分及び配合比で調製したこと以外は、実施例1と同様にしてネガ型感光性樹脂組成物を調製し、実施例1と同様に評価を行った。その結果を表1及び2に示す。
Examples 2 to 15, Comparative Examples 1 and 2
A negative photosensitive resin composition was prepared in the same manner as in Example 1 except that it was prepared with the components and compounding ratios as shown in Tables 1 and 2, and was evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000075
 表1及び2から明らかなように、実施例1のネガ型感光性樹脂組成物では、Cu表面ボイド評価、解像性評価、及び耐薬品性評価で「可」であった。実施例2~15のネガ型感光性樹脂組成物は、いずれも、Cu表面ボイド評価、解像性評価、及び耐薬品性評価のすべてで「可」以上となった。特に、(A)ポリイミド前駆体として、ポリマーA-1とA-2を用いた実施例6、およびポリマーA-1とA-3を用いた実施例7では、特に優れたCu表面ボイド評価及び解像性評価が得られた。また、(B)塩基保護化合物としては、B-2、B-3又はB-4を、ポリマー100質量部を基準として5質量部加えたときに、特に優れたCu表面のボイド抑制効果が得られた。他方、B-6を用いた比較例1と、B-7を用いた比較例2では、解像性評価で「不可」であった。 As is clear from Tables 1 and 2, in the negative photosensitive resin composition of Example 1, the Cu surface was evaluated as "Poor" in void evaluation, resolution evaluation, and chemical resistance evaluation. The negative photosensitive resin compositions of Examples 2 to 15 were all "OK" or more in all of the Cu surface void evaluation, the resolution evaluation, and the chemical resistance evaluation. In particular, in Example 6 using polymers A-1 and A-2 as the polyimide precursor (A) and Example 7 using polymers A-1 and A-3, particularly excellent Cu surface void evaluation and The resolution evaluation was obtained. In addition, as the base-protected compound (B), when adding 5 parts by mass of B-2, B-3 or B-4 based on 100 parts by mass of the polymer, a particularly excellent void suppression effect on the Cu surface is obtained. It was done. On the other hand, in Comparative Example 1 using B-6 and Comparative Example 2 using B-7, the evaluation of resolution was “impossible”.
<実施例16>
 ポリマーA-1を用いて以下の方法でネガ型感光性樹脂組成物を調製し、調製した組成物の評価を行った。(A)ポリイミド前駆体としてポリマーA-1:100g、(D)エーテル化合物として化合物D-1:5g、(C)光重合開始剤として1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)-オキシム(以下ではPDOと表記、感光剤C-1に該当):3gを、γ-ブチルラクトン(以下ではGBLと表記):150gに溶解した。得られた溶液の粘度を、少量のGBLをさらに加えることによって、約30ポイズに調整し、ネガ型感光性樹脂組成物とした。該組成物を、前述の方法に従って評価した。結果を表3に示す。
Example 16
A negative photosensitive resin composition was prepared by using the polymer A-1 by the following method, and the prepared composition was evaluated. (A) Polymer A-1 as a polyimide precursor: 100 g, (D) Compound D-1 as an ether compound: 5 g, (C) 1-phenyl-1,2-propanedione-2- (O) as a photopolymerization initiator 3 g of -ethoxycarbonyl) -oxime (hereinafter referred to as PDO, corresponding to photosensitizer C-1): was dissolved in 150 g of γ-butyl lactone (hereinafter referred to as GBL). The viscosity of the resulting solution was adjusted to about 30 poise by further adding a small amount of GBL to obtain a negative photosensitive resin composition. The composition was evaluated according to the method described above. The results are shown in Table 3.
<実施例17~31、比較例5~7>
 表1に示すとおりの成分及び配合比で調製したこと以外は、実施例16と同様にしてネガ型感光性樹脂組成物を調製し、実施例16と同様に評価を行った。その結果を表3及び4に示す。
Examples 17 to 31 and Comparative Examples 5 to 7
A negative photosensitive resin composition was prepared in the same manner as in Example 16 except that the components and the compounding ratio as shown in Table 1 were prepared, and evaluation was performed in the same manner as in Example 16. The results are shown in Tables 3 and 4.
<比較例3>
 ポリマー(A-4)を用いて以下の方法でポジ型感光性樹脂組成物を調製し、調製した感光性樹脂組成物の評価を行った。ポリマーとしてポリオキサゾール前駆体であるポリマーA-4:100g、化合物としてD-4:5g、感光剤として下記化学式(22):
Figure JPOXMLDOC01-appb-C000076
で表される、フェノール性水酸基の77%をナフトキノンジアジド-4-スルホン酸エステル化した感光性ジアゾキノン化合物(東洋合成社製、C-2に該当):20gをGBL100gに溶解した。得られた溶液の粘度を、少量のGBLを更に加えることによって約20ポイズに調整し、ポジ型感光性樹脂組成物とした。該組成物を、前述の方法に従って評価した。結果を表4に示す。
Comparative Example 3
A positive photosensitive resin composition was prepared by using the polymer (A-4) by the following method, and the prepared photosensitive resin composition was evaluated. 100 g of polymer A-4, which is a polyoxazole precursor as a polymer, 5 g of D-4 as a compound, the following chemical formula (22) as a photosensitizer
Figure JPOXMLDOC01-appb-C000076
In 100 g of GBL, 20 g of a photosensitive diazoquinone compound (corresponding to C-2, manufactured by Toyo Gosei Co., Ltd.) was obtained. The viscosity of the resulting solution was adjusted to about 20 poise by further adding a small amount of GBL to obtain a positive photosensitive resin composition. The composition was evaluated according to the method described above. The results are shown in Table 4.
<比較例4>
 エーテル化合物をD-4に替えてD-5を用いて調製したこと以外は、比較例3と同様のポジ型感光性樹脂組成物を調製し、比較例3と同様に評価を行った。その結果を表4に示す。
Comparative Example 4
The same positive photosensitive resin composition as in Comparative Example 3 was prepared except that the ether compound was changed to D-4 and prepared using D-5, and evaluation was performed in the same manner as in Comparative Example 3. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000078
 表3及び4から明らかなように、実施例16のネガ型感光性樹脂組成物では、Cu表面ボイド評価では「可」であり、解像性評価は「良」、耐薬品性評価は「可」となった。同様に、実施例17~31のネガ型感光性樹脂組成物は、いずれも、Cu表面ボイド評価、解像性評価、耐薬品性評価のすべてで「可」以上となった。特に、(A)ポリイミド前駆体として、ポリマーA-1とA-2を用いた実施例24、およびポリマーA-1とA-3を用いた実施例25では、特に優れた解像性が得られた。また、(D)エーテル化合物としては、D-4、D-5又はD-6を、ポリマー100質量部を基準として5質量部加えたときに、特に優れたCu表面のボイド抑制効果が得られた。他方、エーテル化合物としてD-9を用いた比較例5と、D-10を用いた比較例6では、Cu表面ボイド面積評価で「不可」となった。また、ポリマーとしてポリベンゾオキサゾール前駆体であるポリマーA-4を用いた比較例3と比較例4では、Cu表面ボイド面積評価と耐薬品性評価で「不可」となった。そして、(D)エーテル化合物を含まない比較例7では、すべての評価で「不可」となった。 As is apparent from Tables 3 and 4, in the negative photosensitive resin composition of Example 16, the Cu surface void evaluation is “OK”, the resolution evaluation is “Good”, and the chemical resistance evaluation is “OK”. It became ". Similarly, the negative photosensitive resin compositions of Examples 17 to 31 were all "OK" or more in all of the Cu surface void evaluation, the resolution evaluation, and the chemical resistance evaluation. In particular, in Example 24 in which the polymers A-1 and A-2 were used as the (A) polyimide precursor, and in Example 25 in which the polymers A-1 and A-3 were used, particularly excellent resolution was obtained. It was done. In addition, when 5 parts by mass of D-4, D-5 or D-6 is added based on 100 parts by mass of the polymer as the (D) ether compound, a particularly excellent void suppression effect on the Cu surface is obtained. The On the other hand, in Comparative Example 5 using D-9 as the ether compound and Comparative Example 6 using D-10, the Cu surface void area was evaluated as “not good”. Further, in Comparative Examples 3 and 4 in which the polymer A-4 which is a polybenzoxazole precursor was used as the polymer, the Cu surface void area evaluation and the chemical resistance evaluation became “impossible”. And in the comparative example 7 which does not contain the (D) ether compound, it became "improper" by all evaluations.
<実施例32>
 ポリマーA-1を用いて以下の方法でネガ型感光性樹脂組成物を調製し、調製した組成物の評価を行った。(A)樹脂としてポリマーA-1:100g、(E)ウレタン化合物として1-(tert-ブトキシカルボニル)-4-ヒドロキシピペリジン(東京化成工業株式会社製、(E-4に該当):5g、(C)感光剤として1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)-オキシム(以下ではPDOと表記、(C-1に該当):4gを、γ―ブチルラクトン(以下ではGBLと表記):150gに溶解した。得られた溶液の粘度を、少量のGBLをさらに加えることによって、約30ポイズに調整し、ネガ型感光性樹脂組成物とした。該組成物を、前述の方法に従って評価した。結果を表5に示す。
Example 32
A negative photosensitive resin composition was prepared by using the polymer A-1 by the following method, and the prepared composition was evaluated. (A) Polymer A-1 as resin: 100 g, (E) Urethane compound 1- (tert-butoxycarbonyl) -4-hydroxypiperidine (manufactured by Tokyo Chemical Industry Co., Ltd., (corresponding to E-4): 5 g, C) 1-phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) -oxime (hereinafter referred to as PDO, corresponding to C-1): 4 g of a γ-butyl lactone (hereinafter referred to as a photosensitizer) In this case, the solution was dissolved in 150 g of GBL.The viscosity of the resulting solution was adjusted to about 30 poise by further adding a small amount of GBL to obtain a negative photosensitive resin composition. The evaluation was made according to the method described above, and the results are shown in Table 5.
<実施例33~47、比較例8~11>
 表5及び6に示すとおりの成分及び配合比で調製したこと以外は、実施例32と同様にしてネガ型感光性樹脂組成物を調製し、実施例32と同様に評価を行った。その結果を表5及び6に示す。
Examples 33 to 47, Comparative Examples 8 to 11
A negative photosensitive resin composition was prepared in the same manner as in Example 32 except that the components and the compounding ratio were as shown in Tables 5 and 6, and the evaluation was performed in the same manner as in Example 32. The results are shown in Tables 5 and 6.
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000080
 表5及び6から明らかなように、実施例32の感光性樹脂組成物では、解像性評価は「良」であり、Cu表面のボイド面積評価では「最良」となった。同様に、実施例33~47の感光性樹脂組成物はいずれも、解像性評価、Cu表面のボイド面積評価の双方で「可」以上となった。特に(A)樹脂として、ポリマーA-1とA-2を用いた実施例33およびポリマーA-1とA-3を用いた実施例34では、特に優れた解像性が得られた。また、(E)ウレタン化合物としては、E-4、E-5、E-6を用いて、ポリマー100質量部を基準として5質量部加えたときに、特に優れたCu表面のボイド抑制効果が見られた。他方、(E)ウレタン化合物としてE-8を用いた比較例8と、E-9を用いた比較例8では、解像性は「可」であったが、Cu表面のボイド面積評価で「不可」となった。また、(E)ウレタン化合物としてE-10を用いた比較例10では、Cu表面のボイド面積評価で「可」であったものの、解像性評価で「不可」となった。そして、(E)ウレタン化合物を用いない比較例11では、解像性評価とCu表面のボイド面積評価の両方で「不可」となった。 As is clear from Tables 5 and 6, in the case of the photosensitive resin composition of Example 32, the evaluation of resolution was “good”, and the evaluation of void area on the Cu surface was “best”. Similarly, all of the photosensitive resin compositions of Examples 33 to 47 were “OK” or more in both of the resolution evaluation and the void area evaluation on the Cu surface. In particular, in Example 33 in which the polymers A-1 and A-2 were used as the resin (A) and Example 34 in which the polymers A-1 and A-3 were used, particularly excellent resolution was obtained. In addition, E-4, E-5, and E-6 are used as the (E) urethane compound, and when 5 parts by mass is added based on 100 parts by mass of the polymer, a particularly excellent void suppression effect on the Cu surface is obtained. It was seen. On the other hand, in Comparative Example 8 using E-8 as the urethane compound (E) and Comparative Example 8 using E-9, the resolution was "OK", but the void area of the Cu surface was evaluated as " It became impossible. Further, in Comparative Example 10 in which E-10 was used as the (E) urethane compound, although the evaluation of the void area on the Cu surface was “OK”, it became “Impossible” in the evaluation of resolution. And in the comparative example 11 which does not use the (E) urethane compound, it became "improper" by both resolution evaluation and void area evaluation of Cu surface.
 本実施形態によるネガ型感光性樹脂組成物を用いることで、高い解像性をもつ硬化レリーフパターンを得ることができ、かつ、Cu表面のボイド発生を抑制することができる。本実施形態のネガ型感光性樹脂組成物は、例えば半導体装置、多層配線基板等の電気・電子材料の製造に有用な感光性材料の分野で好適に利用できる。 By using the negative photosensitive resin composition according to the present embodiment, a cured relief pattern having high resolution can be obtained, and generation of voids on the Cu surface can be suppressed. The negative photosensitive resin composition of the present embodiment can be suitably used, for example, in the field of photosensitive materials useful for producing electric and electronic materials such as semiconductor devices and multilayer wiring boards.

Claims (36)

  1. (A)ポリイミド前駆体;
    (B)酸又は塩基又は熱で脱保護される基で保護された複数のアミノ基を有し、分子量が250~600であり、前記保護された複数のアミノ基が脂肪族鎖状もしくは脂環式アミノ基であり、かつ、溶解度パラメーターの値が20.0以上24.0以下である、塩基保護化合物;及び
    (C)光重合開始剤
    を含む、ネガ型感光性樹脂組成物。
    (A) polyimide precursor;
    (B) It has a plurality of amino groups protected by an acid or a base or a group which is deprotected by heat, and has a molecular weight of 250 to 600, and the plurality of protected amino groups have an aliphatic chain or alicyclic A negative photosensitive resin composition comprising a base-protected compound which is an amino group of the formula and has a solubility parameter value of 20.0 to 24.0; and (C) a photopolymerization initiator.
  2.  前記保護された複数のアミノ基は、tert-ブトキシカルボニル基で保護されたアミノ基である、請求項1に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to claim 1, wherein the plurality of protected amino groups are amino groups protected with a tert-butoxycarbonyl group.
  3.  前記(A)ポリイミド前駆体が、下記一般式(2):
    Figure JPOXMLDOC01-appb-C000001
    {式中、Xは4価の有機基であり、Yは2価の有機基であり、nは2~150の整数であり、そしてR及びRは、それぞれ独立に、水素原子、又は1価の有機基であり、R及びRの少なくとも一方は、末端に重合性基を有する1価の有機基である。}
    で表される構造単位を有するポリイミド前駆体を含む、請求項1又は2のいずれか一項に記載のネガ型感光性樹脂組成物。
    The (A) polyimide precursor has the following general formula (2):
    Figure JPOXMLDOC01-appb-C000001
    Wherein X 1 is a tetravalent organic group, Y 1 is a divalent organic group, n 1 is an integer of 2 to 150, and R 1 and R 2 are each independently hydrogen It is an atom or a monovalent organic group, and at least one of R 1 and R 2 is a monovalent organic group having a polymerizable group at its end. }
    The negative photosensitive resin composition as described in any one of Claim 1 or 2 containing the polyimide precursor which has a structural unit represented by these.
  4.  前記一般式(2)において、R及びRの少なくとも一方は、下記一般式(3):
    Figure JPOXMLDOC01-appb-C000002
    {式中、L、L及びLは、それぞれ独立に、水素原子又は炭素数1~3の有機基であり、そしてmは、2~10の整数である。}で表される1価の有機基である、請求項3に記載のネガ型感光性樹脂組成物。
    In the general formula (2), at least one of R 1 and R 2 has the following general formula (3):
    Figure JPOXMLDOC01-appb-C000002
    Wherein L 1 , L 2 and L 3 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 1 is an integer of 2 to 10. The negative photosensitive resin composition according to claim 3, which is a monovalent organic group represented by
  5.  前記(A)ポリイミド前駆体が、下記一般式(4):
    Figure JPOXMLDOC01-appb-C000003
    {式中、R、R、及びnは前記一般式(2)に定義したものである。}
    で表される構造単位を有するポリイミド前駆体を含む、請求項3又は4に記載のネガ型感光性樹脂組成物。
    The (A) polyimide precursor has the following general formula (4):
    Figure JPOXMLDOC01-appb-C000003
    {Wherein, R 1 , R 2 and n 1 are as defined in the general formula (2). }
    The negative photosensitive resin composition of Claim 3 or 4 containing the polyimide precursor which has a structural unit represented by these.
  6.  前記(A)ポリイミド前駆体が、下記一般式(5):
    Figure JPOXMLDOC01-appb-C000004
    {式中、R、R、及びnは前記一般式(2)に定義したものである。}
    で表される構造単位を有するポリイミド前駆体を含む、請求項3又は4に記載のネガ型感光性樹脂組成物。
    The (A) polyimide precursor has the following general formula (5):
    Figure JPOXMLDOC01-appb-C000004
    {Wherein, R 1 , R 2 and n 1 are as defined in the general formula (2). }
    The negative photosensitive resin composition of Claim 3 or 4 containing the polyimide precursor which has a structural unit represented by these.
  7.  前記(A)ポリイミド前駆体が、下記一般式(6):
    Figure JPOXMLDOC01-appb-C000005
    {式中、R、R、及びnは前記一般式(2)に定義したものである。}
    で表される構造単位を有するポリイミド前駆体を含む、請求項3又は4に記載のネガ型感光性樹脂組成物。
    The (A) polyimide precursor has the following general formula (6):
    Figure JPOXMLDOC01-appb-C000005
    {Wherein, R 1 , R 2 and n 1 are as defined in the general formula (2). }
    The negative photosensitive resin composition of Claim 3 or 4 containing the polyimide precursor which has a structural unit represented by these.
  8.  前記(A)ポリイミド前駆体が、下記一般式(4):
    Figure JPOXMLDOC01-appb-C000006
    {式中、R、R、及びnは前記一般式(2)に定義したものである。}
    で表される構造単位を有するポリイミド前駆体と、
    下記一般式(5):
    Figure JPOXMLDOC01-appb-C000007
    {式中、R、R、及びnは前記一般式(2)に定義したものであり、ただし、一般式(5)中のR、R、及びnは、一般式(4)中のR、R、及びnとは独立して選択される。}
    で表される構造単位を有するポリイミド前駆体の両方を含む、請求項3又は4に記載のネガ型感光性樹脂組成物。
    The (A) polyimide precursor has the following general formula (4):
    Figure JPOXMLDOC01-appb-C000006
    {Wherein, R 1 , R 2 and n 1 are as defined in the general formula (2). }
    A polyimide precursor having a structural unit represented by
    The following general formula (5):
    Figure JPOXMLDOC01-appb-C000007
    {Wherein R 1 , R 2 and n 1 are as defined in the general formula (2), provided that R 1 , R 2 and n 1 in the general formula (5) have the general formula ( 4) R 1 , R 2 and n 1 in 4) are independently selected. }
    The negative photosensitive resin composition of Claim 3 or 4 which contains both of a polyimide precursor which has a structural unit represented by these.
  9.  前記(A)ポリイミド前駆体が、下記一般式(4):
    Figure JPOXMLDOC01-appb-C000008
    {式中、R、R、及びnは前記一般式(2)に定義したものである。}
    で表される構造単位を有するポリイミド前駆体、と
    下記一般式(6):
    Figure JPOXMLDOC01-appb-C000009
    {式中、R、R、及びnは前記一般式(2)に定義したものであり、ただし、一般式(6)中のR、R、及びnは、一般式(4)中のR、R、及びnとは独立して選択される。}
    で表される構造単位を有するポリイミド前駆体の両方を含む、請求項3又は4に記載のネガ型感光性樹脂組成物。
    The (A) polyimide precursor has the following general formula (4):
    Figure JPOXMLDOC01-appb-C000008
    {Wherein, R 1 , R 2 and n 1 are as defined in the general formula (2). }
    A polyimide precursor having a structural unit represented by the following general formula (6):
    Figure JPOXMLDOC01-appb-C000009
    {Wherein R 1 , R 2 and n 1 are as defined in the general formula (2), provided that R 1 , R 2 and n 1 in the general formula (6) have the general formula ( 4) R 1 , R 2 and n 1 in 4) are independently selected. }
    The negative photosensitive resin composition of Claim 3 or 4 which contains both of a polyimide precursor which has a structural unit represented by these.
  10.  100質量部の前記(A)ポリイミド前駆体と、
     前記(A)ポリイミド前駆体100質量部を基準として0.1~30質量部の前記(B)塩基保護化合物と、
     前記(A)ポリイミド前駆体100質量部を基準として0.1~20質量部の前記(C)光重合開始剤と
    を含む、請求項1~9のいずれか一項に記載のネガ型感光性樹脂組成物。
    100 parts by mass of the (A) polyimide precursor
    0.1 to 30 parts by mass of the (B) base protecting compound, based on 100 parts by mass of the (A) polyimide precursor,
    The negative photosensitive resin according to any one of claims 1 to 9, comprising 0.1 to 20 parts by mass of the (C) photopolymerization initiator based on 100 parts by mass of the (A) polyimide precursor. Resin composition.
  11. (A)ポリイミド前駆体;
    (D)酸又は塩基又は熱で脱保護される基で保護された一つ又は複数のアミノ基と、下記一般式(1):
    Figure JPOXMLDOC01-appb-C000010
    {式中Zは、水素原子又はメチル基である。また、両端の結合は分子内の他の部分への単結合を表す。}
    で表される一つ又は複数の構造単位を分子内に含む、エーテル化合物;及び
    (C)光重合開始剤
    を含む、ネガ型感光性樹脂組成物。
    (A) polyimide precursor;
    (D) One or more amino groups protected by an acid or a base or a group which is deprotected by heat, and the following general formula (1):
    Figure JPOXMLDOC01-appb-C000010
    In the formula, Z is a hydrogen atom or a methyl group. Also, the bond at both ends represents a single bond to another part in the molecule. }
    A negative photosensitive resin composition comprising an ether compound containing in the molecule one or more structural units represented by and a photopolymerization initiator (C).
  12.  前記(D)エーテル化合物は、分子中に前記一般式(1)で表される構造単位を二つ以上含む、請求項11に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to claim 11, wherein the (D) ether compound contains two or more structural units represented by the general formula (1) in a molecule.
  13.  前記保護された一つ又は複数のアミノ基は、tert-ブトキシカルボニル基で保護されたアミノ基である、請求項11又は12に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to claim 11 or 12, wherein the one or more protected amino groups is an amino group protected by a tert-butoxycarbonyl group.
  14.  前記(A)ポリイミド前駆体が、下記一般式(2):
    Figure JPOXMLDOC01-appb-C000011
    {式中、Xは4価の有機基であり、Yは2価の有機基であり、nは2~150の整数であり、そしてR及びRは、それぞれ独立に、水素原子、又は1価の有機基であり、R及びRの少なくとも一方は、末端に重合性基を有する1価の有機基である。}
    で表される構造単位を有するポリイミド前駆体を含む、請求項11~13のいずれか一項に記載のネガ型感光性樹脂組成物。
    The (A) polyimide precursor has the following general formula (2):
    Figure JPOXMLDOC01-appb-C000011
    Wherein X 1 is a tetravalent organic group, Y 1 is a divalent organic group, n 1 is an integer of 2 to 150, and R 1 and R 2 are each independently hydrogen It is an atom or a monovalent organic group, and at least one of R 1 and R 2 is a monovalent organic group having a polymerizable group at its end. }
    The negative photosensitive resin composition according to any one of claims 11 to 13, comprising a polyimide precursor having a structural unit represented by
  15.  前記一般式(2)において、R及びRの少なくとも一方は、下記一般式(3):
    Figure JPOXMLDOC01-appb-C000012
    {式中、L、L及びLは、それぞれ独立に、水素原子又は炭素数1~3の有機基であり、そしてmは、2~10の整数である。}で表される1価の有機基である、請求項14に記載のネガ型感光性樹脂組成物。
    In the general formula (2), at least one of R 1 and R 2 has the following general formula (3):
    Figure JPOXMLDOC01-appb-C000012
    Wherein L 1 , L 2 and L 3 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 1 is an integer of 2 to 10. The negative photosensitive resin composition according to claim 14, which is a monovalent organic group represented by
  16.  前記(A)ポリイミド前駆体が、下記一般式(4):
    Figure JPOXMLDOC01-appb-C000013
    {式中、R、R、及びnは前記一般式(2)に定義したものである。}
    で表される構造単位を有するポリイミド前駆体を含む、請求項14又は15に記載のネガ型感光性樹脂組成物。
    The (A) polyimide precursor has the following general formula (4):
    Figure JPOXMLDOC01-appb-C000013
    {Wherein, R 1 , R 2 and n 1 are as defined in the general formula (2). }
    The negative photosensitive resin composition of Claim 14 or 15 containing the polyimide precursor which has a structural unit represented by these.
  17.  前記(A)ポリイミド前駆体が、下記一般式(5):
    Figure JPOXMLDOC01-appb-C000014
    {式中、R、R、及びnは前記一般式(2)に定義したものである。}
    で表される構造単位を有するポリイミド前駆体を含む、請求項14又は15に記載のネガ型感光性樹脂組成物。
    The (A) polyimide precursor has the following general formula (5):
    Figure JPOXMLDOC01-appb-C000014
    {Wherein, R 1 , R 2 and n 1 are as defined in the general formula (2). }
    The negative photosensitive resin composition of Claim 14 or 15 containing the polyimide precursor which has a structural unit represented by these.
  18.  前記(A)ポリイミド前駆体が、下記一般式(6):
    Figure JPOXMLDOC01-appb-C000015
    {式中、R、R、及びnは前記一般式(2)に定義したものである。}
    で表される構造単位を有するポリイミド前駆体を含む、請求項14又は15に記載のネガ型感光性樹脂組成物。
    The (A) polyimide precursor has the following general formula (6):
    Figure JPOXMLDOC01-appb-C000015
    {Wherein, R 1 , R 2 and n 1 are as defined in the general formula (2). }
    The negative photosensitive resin composition of Claim 14 or 15 containing the polyimide precursor which has a structural unit represented by these.
  19.  前記(A)ポリイミド前駆体が、下記一般式(4):
    Figure JPOXMLDOC01-appb-C000016
    {式中、R、R、及びnは前記一般式(2)に定義したものである。}
    で表される構造単位を有するポリイミド前駆体と、
    下記一般式(5):
    Figure JPOXMLDOC01-appb-C000017
    {式中、R、R、及びnは前記一般式(2)に定義したものであり、ただし、一般式(5)中のR、R、及びnは、一般式(4)中のR、R、及びnとは独立して選択される。}
    で表される構造単位を有するポリイミド前駆体の両方を含む、請求項14又は15に記載のネガ型感光性樹脂組成物。
    The (A) polyimide precursor has the following general formula (4):
    Figure JPOXMLDOC01-appb-C000016
    {Wherein, R 1 , R 2 and n 1 are as defined in the general formula (2). }
    A polyimide precursor having a structural unit represented by
    The following general formula (5):
    Figure JPOXMLDOC01-appb-C000017
    {Wherein R 1 , R 2 and n 1 are as defined in the general formula (2), provided that R 1 , R 2 and n 1 in the general formula (5) have the general formula ( 4) R 1 , R 2 and n 1 in 4) are independently selected. }
    The negative photosensitive resin composition of Claim 14 or 15 containing both of a polyimide precursor which has a structural unit represented by these.
  20.  前記(A)ポリイミド前駆体が、下記一般式(4):
    Figure JPOXMLDOC01-appb-C000018
    {式中、R、R、及びnは前記一般式(2)に定義したものである。}
    で表される構造単位を有するポリイミド前駆体、と
    下記一般式(6):
    Figure JPOXMLDOC01-appb-C000019
    {式中、R、R、及びnは前記一般式(2)に定義したものであり、ただし、一般式(6)中のR、R、及びnは、一般式(4)中のR、R、及びnとは独立して選択される。}
    で表される構造単位を有するポリイミド前駆体の両方を含む、請求項14又は15に記載のネガ型感光性樹脂組成物。
    The (A) polyimide precursor has the following general formula (4):
    Figure JPOXMLDOC01-appb-C000018
    {Wherein, R 1 , R 2 and n 1 are as defined in the general formula (2). }
    A polyimide precursor having a structural unit represented by the following general formula (6):
    Figure JPOXMLDOC01-appb-C000019
    {Wherein R 1 , R 2 and n 1 are as defined in the general formula (2), provided that R 1 , R 2 and n 1 in the general formula (6) have the general formula ( 4) R 1 , R 2 and n 1 in 4) are independently selected. }
    The negative photosensitive resin composition of Claim 14 or 15 containing both of a polyimide precursor which has a structural unit represented by these.
  21.  100質量部の前記(A)ポリイミド前駆体と、
     前記(A)ポリイミド前駆体100質量部を基準として0.1~30質量部の前記(D)エーテル化合物と、
     前記(A)ポリイミド前駆体100質量部を基準として0.1~20質量部の前記(C)光重合開始剤と
    を含む、請求項11~20のいずれか一項に記載のネガ型感光性樹脂組成物。
    100 parts by mass of the (A) polyimide precursor
    0.1 to 30 parts by mass of the (D) ether compound based on 100 parts by mass of the (A) polyimide precursor,
    21. The negative photosensitive resin according to any one of claims 11 to 20, which comprises 0.1 to 20 parts by mass of the (C) photopolymerization initiator based on 100 parts by mass of the (A) polyimide precursor. Resin composition.
  22. (A)ポリイミド前駆体;
    (E)酸又は塩基又は熱で脱保護される基で保護された一つ又は複数のアミノ基と、ヒドロキシル基を分子内に少なくとも一つ含むウレタン化合物;及び
    (C)光重合開始剤
    を含む、ネガ型感光性樹脂組成物。
    (A) polyimide precursor;
    (E) One or more amino groups protected by an acid or a base or a thermally deprotected group, and a urethane compound containing at least one hydroxyl group in the molecule; and (C) a photopolymerization initiator , Negative photosensitive resin composition.
  23.  前記(E)ウレタン化合物は、脂肪族鎖状若しくは脂環式アミノ基に結合したtert-ブトキシカルボニル基、ベンジルオキシカルボニル基又は9-フルオレニルメチルオキシカルボニル(Fmoc)基を分子内に少なくとも一つ有する、請求項22に記載のネガ型感光性樹脂組成物。 The (E) urethane compound has at least one tert-butoxycarbonyl group, benzyloxycarbonyl group or 9-fluorenylmethyloxycarbonyl (Fmoc) group bonded to an aliphatic chain or alicyclic amino group in the molecule. 23. The negative photosensitive resin composition according to claim 22, wherein said photosensitive resin composition comprises
  24.  前記(E)ウレタン化合物の前記保護された一つ又は複数のアミノ基の窒素原子の少なくとも一つが、分子内のヒドロキシル基のγ位若しくはε位にある、請求項22又は23に記載のネガ型感光性樹脂組成物。 The negative type according to claim 22 or 23, wherein at least one of the nitrogen atoms of the protected one or more amino groups of the (E) urethane compound is at the γ-position or ε-position of the hydroxyl group in the molecule. Photosensitive resin composition.
  25.  前記保護された一つ又は複数のアミノ基は、tert-ブトキシカルボニル基で保護されたアミノ基である、請求項22~24のいずれか一項に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to any one of claims 22 to 24, wherein the one or more protected amino groups is an amino group protected by a tert-butoxycarbonyl group.
  26.  前記(A)ポリイミド前駆体が、下記一般式(2):
    Figure JPOXMLDOC01-appb-C000020
    {式中、Xは4価の有機基であり、Yは2価の有機基であり、nは2~150の整数であり、そしてR及びRは、それぞれ独立に、水素原子、又は1価の有機基であり、R及びRの少なくとも一方は、末端に重合性基を有する1価の有機基である。}
    で表される構造単位を有するポリイミド前駆体を含む、請求項22~25のいずれか一項に記載のネガ型感光性樹脂組成物。
    The (A) polyimide precursor has the following general formula (2):
    Figure JPOXMLDOC01-appb-C000020
    Wherein X 1 is a tetravalent organic group, Y 1 is a divalent organic group, n 1 is an integer of 2 to 150, and R 1 and R 2 are each independently hydrogen It is an atom or a monovalent organic group, and at least one of R 1 and R 2 is a monovalent organic group having a polymerizable group at its end. }
    The negative photosensitive resin composition according to any one of claims 22 to 25, comprising a polyimide precursor having a structural unit represented by
  27.  前記一般式(2)において、R及びRの少なくとも一方は、下記一般式(3):
    Figure JPOXMLDOC01-appb-C000021
    {式中、L、L及びLは、それぞれ独立に、水素原子又は炭素数1~3の有機基であり、そしてmは、2~10の整数である。}で表される1価の有機基である、請求項26に記載のネガ型感光性樹脂組成物。
    In the general formula (2), at least one of R 1 and R 2 has the following general formula (3):
    Figure JPOXMLDOC01-appb-C000021
    Wherein L 1 , L 2 and L 3 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 1 is an integer of 2 to 10. The negative photosensitive resin composition according to claim 26, which is a monovalent organic group represented by
  28.  前記(A)ポリイミド前駆体が、下記一般式(4):
    Figure JPOXMLDOC01-appb-C000022
    {式中、R、R、及びnは前記一般式(2)に定義したものである。}
    で表される構造単位を有するポリイミド前駆体を含む、請求項26又は27に記載のネガ型感光性樹脂組成物。
    The (A) polyimide precursor has the following general formula (4):
    Figure JPOXMLDOC01-appb-C000022
    {Wherein, R 1 , R 2 and n 1 are as defined in the general formula (2). }
    The negative photosensitive resin composition of Claim 26 or 27 containing the polyimide precursor which has a structural unit represented by these.
  29.  前記(A)ポリイミド前駆体が、下記一般式(5):
    Figure JPOXMLDOC01-appb-C000023
    {式中、R、R、及びnは前記一般式(2)に定義したものである。}
    で表される構造単位を有するポリイミド前駆体を含む、請求項26又は27に記載のネガ型感光性樹脂組成物。
    The (A) polyimide precursor has the following general formula (5):
    Figure JPOXMLDOC01-appb-C000023
    {Wherein, R 1 , R 2 and n 1 are as defined in the general formula (2). }
    The negative photosensitive resin composition of Claim 26 or 27 containing the polyimide precursor which has a structural unit represented by these.
  30.  前記(A)ポリイミド前駆体が、下記一般式(6):
    Figure JPOXMLDOC01-appb-C000024
    {式中、R、R、及びnは前記一般式(2)に定義したものである。}
    で表される構造単位を有するポリイミド前駆体を含む、請求項26又は27に記載のネガ型感光性樹脂組成物。
    The (A) polyimide precursor has the following general formula (6):
    Figure JPOXMLDOC01-appb-C000024
    {Wherein, R 1 , R 2 and n 1 are as defined in the general formula (2). }
    The negative photosensitive resin composition of Claim 26 or 27 containing the polyimide precursor which has a structural unit represented by these.
  31.  前記(A)ポリイミド前駆体が、下記一般式(4):
    Figure JPOXMLDOC01-appb-C000025
    {式中、R、R、及びnは前記一般式(2)に定義したものである。}
    で表される構造単位を有するポリイミド前駆体と、
    下記一般式(5):
    Figure JPOXMLDOC01-appb-C000026
    {式中、R、R、及びnは前記一般式(2)に定義したものであり、ただし、一般式(5)中のR、R、及びnは、一般式(4)中のR、R、及びnとは独立して選択される。}
    で表される構造単位を有するポリイミド前駆体の両方を含む、請求項26又は27に記載のネガ型感光性樹脂組成物。
    The (A) polyimide precursor has the following general formula (4):
    Figure JPOXMLDOC01-appb-C000025
    {Wherein, R 1 , R 2 and n 1 are as defined in the general formula (2). }
    A polyimide precursor having a structural unit represented by
    The following general formula (5):
    Figure JPOXMLDOC01-appb-C000026
    {Wherein R 1 , R 2 and n 1 are as defined in the general formula (2), provided that R 1 , R 2 and n 1 in the general formula (5) have the general formula ( 4) R 1 , R 2 and n 1 in 4) are independently selected. }
    The negative photosensitive resin composition of Claim 26 or 27 containing both of a polyimide precursor which has a structural unit represented by these.
  32.  前記(A)ポリイミド前駆体が、下記一般式(4):
    Figure JPOXMLDOC01-appb-C000027
    {式中、R、R、及びnは前記一般式(2)に定義したものである。}
    で表される構造単位を有するポリイミド前駆体、と
    下記一般式(6):
    Figure JPOXMLDOC01-appb-C000028
    {式中、R、R、及びnは前記一般式(2)に定義したものであり、ただし、一般式(6)中のR、R、及びnは、一般式(4)中のR、R、及びnとは独立して選択される。}
    で表される構造単位を有するポリイミド前駆体の両方を含む、請求項26又は27に記載のネガ型感光性樹脂組成物。
    The (A) polyimide precursor has the following general formula (4):
    Figure JPOXMLDOC01-appb-C000027
    {Wherein, R 1 , R 2 and n 1 are as defined in the general formula (2). }
    A polyimide precursor having a structural unit represented by the following general formula (6):
    Figure JPOXMLDOC01-appb-C000028
    {Wherein R 1 , R 2 and n 1 are as defined in the general formula (2), provided that R 1 , R 2 and n 1 in the general formula (6) have the general formula ( 4) R 1 , R 2 and n 1 in 4) are independently selected. }
    The negative photosensitive resin composition of Claim 26 or 27 containing both of a polyimide precursor which has a structural unit represented by these.
  33.  前記(E)ウレタン化合物が、Nα-(tert-ブトキシカルボニル)-L-トリプトファノール、1-(tert-ブトキシカルボニル)-4-ヒドロキシピペリジン、又は下記化学式(1):
    Figure JPOXMLDOC01-appb-C000029
    で表されるウレタン化合物である、請求項22~32のいずれか一項に記載の感光性樹脂組成物。
    The (E) urethane compound is Nα- (tert-butoxycarbonyl) -L-triptophanol, 1- (tert-butoxycarbonyl) -4-hydroxypiperidine, or the following chemical formula (1):
    Figure JPOXMLDOC01-appb-C000029
    The photosensitive resin composition according to any one of claims 22 to 32, which is a urethane compound represented by
  34.  100質量部の前記(A)ポリイミド前駆体と、
     前記(A)ポリイミド前駆体100質量部を基準として0.1~30質量部の前記(E)ウレタン化合物と、
     前記(A)ポリイミド前駆体100質量部を基準として0.1~20質量部の前記(C)光重合開始剤と
    を含む、請求項22~33のいずれか一項に記載のネガ型感光性樹脂組成物。
    100 parts by mass of the (A) polyimide precursor
    0.1 to 30 parts by mass of the (E) urethane compound, based on 100 parts by mass of the (A) polyimide precursor,
    34. The negative photosensitive resin according to any one of claims 22 to 33, comprising 0.1 to 20 parts by mass of the (C) photopolymerization initiator based on 100 parts by mass of the (A) polyimide precursor. Resin composition.
  35.  請求項1~34のいずれか一項に記載のネガ型感光性樹脂組成物を硬化するポリイミドの製造方法。 A method for producing a polyimide, which cures the negative photosensitive resin composition according to any one of claims 1 to 34.
  36.  (1)請求項1~34のいずれか一項に記載のネガ型感光性樹脂組成物を基板上に塗布して、感光性樹脂層を前記基板上に形成する工程と、
     (2)前記感光性樹脂層を露光する工程と、
     (3)露光後の前記感光性樹脂層を現像して、レリーフパターンを形成する工程と、
     (4)前記レリーフパターンを加熱処理して、硬化レリーフパターンを形成する工程と
    を含む、硬化レリーフパターンの製造方法。
    (1) applying the negative photosensitive resin composition according to any one of claims 1 to 34 on a substrate to form a photosensitive resin layer on the substrate;
    (2) exposing the photosensitive resin layer;
    (3) developing the photosensitive resin layer after exposure to form a relief pattern;
    (4) A method for producing a cured relief pattern, comprising the steps of: heat treating the relief pattern to form a cured relief pattern.
PCT/JP2018/043050 2017-11-28 2018-11-21 Negative photosensitive resin composition, method for producing said composition, and method for producing cured relief pattern WO2019107250A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019557187A JP6968196B2 (en) 2017-11-28 2018-11-21 Negative photosensitive resin composition and its manufacturing method, and a method for manufacturing a cured relief pattern.
KR1020207009110A KR102402138B1 (en) 2017-11-28 2018-11-21 Negative photosensitive resin composition, manufacturing method thereof, and manufacturing method of cured relief pattern

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-227583 2017-11-28
JP2017227583 2017-11-28
JP2018019406 2018-02-06
JP2018-019406 2018-02-06

Publications (1)

Publication Number Publication Date
WO2019107250A1 true WO2019107250A1 (en) 2019-06-06

Family

ID=66664852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043050 WO2019107250A1 (en) 2017-11-28 2018-11-21 Negative photosensitive resin composition, method for producing said composition, and method for producing cured relief pattern

Country Status (4)

Country Link
JP (3) JP6968196B2 (en)
KR (1) KR102402138B1 (en)
TW (1) TWI700554B (en)
WO (1) WO2019107250A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111522200A (en) * 2020-04-07 2020-08-11 中国科学院化学研究所 Negative PSPI resin for 12-inch silicon wafer and preparation method and application thereof
WO2024101295A1 (en) * 2022-11-08 2024-05-16 富士フイルム株式会社 Production method for cured product, production method for laminate, production method for semiconductor device, and semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI817316B (en) * 2021-01-12 2023-10-01 日商旭化成股份有限公司 Polyimide precursor resin composition and manufacturing method thereof
CN114561009B (en) * 2022-02-28 2024-01-30 波米科技有限公司 Preparation method and application of negative photosensitive polyamide acid ester resin and composition thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017682A (en) * 1995-03-14 2000-01-25 Internatonal Business Machines Corporation Solid state extension method
WO2009136557A1 (en) * 2008-05-09 2009-11-12 旭化成イーマテリアルズ株式会社 Polyimide precursor, photosensitive polyimide precursor composition, photosensitive dry film, and flexible printed circuit board using those materials
WO2010113813A1 (en) * 2009-03-31 2010-10-07 大日本印刷株式会社 Base-generating agent, photosensitive resin composition, patterning material comprising the photosensitive resin composition, patterning method and article using the photosensitive resin composition
JP2015151405A (en) * 2014-02-10 2015-08-24 日立化成デュポンマイクロシステムズ株式会社 Resin composition containing polyimide precursor, manufacturing method of cured membrane and electronic component
CN107189067A (en) * 2017-01-11 2017-09-22 长兴材料工业股份有限公司 Polyimide precursor and application thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4462679B2 (en) 1999-03-30 2010-05-12 旭化成イーマテリアルズ株式会社 Silicon coupling agent and its use
JP4623453B2 (en) 1999-10-14 2011-02-02 旭化成イーマテリアルズ株式会社 Amidophenol compounds
JP3790649B2 (en) 1999-12-10 2006-06-28 信越化学工業株式会社 Resist material
JP2001338947A (en) 2000-05-26 2001-12-07 Nec Corp Flip chip type semiconductor device and its manufacturing method
JP2007056196A (en) 2005-08-26 2007-03-08 Tokyo Institute Of Technology Polyimide precursor composition, method for producing polyimide film and semiconductor device
CN101432659B (en) * 2006-04-28 2013-06-12 旭化成电子材料株式会社 Photosensitive resin composition and photosensitive film
JP2011089119A (en) 2009-09-28 2011-05-06 Dainippon Printing Co Ltd Base generating agent, photosensitive resin composition, pattern-forming material comprising the photosensitive resin composition, method for forming pattern and article using the photosensitive resin composition
JP5758300B2 (en) 2009-11-16 2015-08-05 旭化成イーマテリアルズ株式会社 Photosensitive resin composition containing polyimide precursor, photosensitive film, coverlay, flexible printed wiring board, and laminate thereof
JP5485802B2 (en) 2010-06-07 2014-05-07 旭化成イーマテリアルズ株式会社 Polyimide precursor, photosensitive resin composition, and tetracarboxylic dianhydride
JP2012093744A (en) 2010-09-30 2012-05-17 Dainippon Printing Co Ltd Photosensitive resin composition, material for forming pattern comprising the photosensitive resin composition, method for manufacturing relief pattern using the photosensitive resin composition, and article using the composition
CN103797418B (en) 2011-06-24 2017-06-13 东京应化工业株式会社 A kind of negative light-sensitive resin combination, pattern formation method, cured film, dielectric film, colour filter and display device
JP5910109B2 (en) 2012-01-26 2016-04-27 住友ベークライト株式会社 Positive photosensitive resin composition, cured film, protective film, insulating film, semiconductor device, and display device
KR102075960B1 (en) 2012-03-14 2020-02-11 제이에스알 가부시끼가이샤 Photoresist composition, method for forming resist pattern, acid diffusion control agent and compound
JP6205280B2 (en) 2014-01-29 2017-09-27 富士フイルム株式会社 Pattern forming method and electronic device manufacturing method
JP6630154B2 (en) 2015-03-30 2020-01-15 東京応化工業株式会社 Photosensitive resin composition, pattern forming method, cured film, insulating film, color filter, and display device
JP6349335B2 (en) 2015-04-28 2018-06-27 富士フイルム株式会社 Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device, organic electroluminescence display device, and touch panel
KR101915541B1 (en) * 2015-04-28 2018-11-06 후지필름 가부시키가이샤 Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device, organic electroluminescence display device, and touch panel
WO2017002859A1 (en) 2015-06-30 2017-01-05 富士フイルム株式会社 Negative photosensitive resin composition, cured film, cured film production method and semiconductor device
KR102090449B1 (en) 2016-03-31 2020-03-18 아사히 가세이 가부시키가이샤 Photosensitive resin composition, method for manufacturing cured relief pattern, and semiconductor apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017682A (en) * 1995-03-14 2000-01-25 Internatonal Business Machines Corporation Solid state extension method
WO2009136557A1 (en) * 2008-05-09 2009-11-12 旭化成イーマテリアルズ株式会社 Polyimide precursor, photosensitive polyimide precursor composition, photosensitive dry film, and flexible printed circuit board using those materials
WO2010113813A1 (en) * 2009-03-31 2010-10-07 大日本印刷株式会社 Base-generating agent, photosensitive resin composition, patterning material comprising the photosensitive resin composition, patterning method and article using the photosensitive resin composition
JP2015151405A (en) * 2014-02-10 2015-08-24 日立化成デュポンマイクロシステムズ株式会社 Resin composition containing polyimide precursor, manufacturing method of cured membrane and electronic component
CN107189067A (en) * 2017-01-11 2017-09-22 长兴材料工业股份有限公司 Polyimide precursor and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111522200A (en) * 2020-04-07 2020-08-11 中国科学院化学研究所 Negative PSPI resin for 12-inch silicon wafer and preparation method and application thereof
CN111522200B (en) * 2020-04-07 2021-07-27 中国科学院化学研究所 Negative PSPI resin for 12-inch silicon wafer and preparation method and application thereof
WO2024101295A1 (en) * 2022-11-08 2024-05-16 富士フイルム株式会社 Production method for cured product, production method for laminate, production method for semiconductor device, and semiconductor device

Also Published As

Publication number Publication date
JP7393491B2 (en) 2023-12-06
KR102402138B1 (en) 2022-05-25
KR20200044927A (en) 2020-04-29
JP6968196B2 (en) 2021-11-17
JP2021131543A (en) 2021-09-09
TW201925918A (en) 2019-07-01
TWI700554B (en) 2020-08-01
JP7146014B2 (en) 2022-10-03
JPWO2019107250A1 (en) 2020-07-27
JP2022173316A (en) 2022-11-18

Similar Documents

Publication Publication Date Title
JP7210588B2 (en) Negative photosensitive resin composition, and method for producing polyimide and cured relief pattern using the same
JP6190805B2 (en) Negative photosensitive resin composition, method for producing cured relief pattern, and semiconductor device
JP7393491B2 (en) Negative photosensitive resin composition and method for producing the same, and method for producing a cured relief pattern
TWI798592B (en) Negative photosensitive resin composition and method for producing cured embossed pattern
JP2021120703A (en) Photosensitive resin composition, cured relief pattern and method for producing the same
TWI753387B (en) Negative photosensitive resin composition, method for producing polyimide, and method for producing hardened relief pattern
JP2023002603A (en) Negative type photosensitive resin composition, method of producing cured relief pattern, and semiconductor device
JP7540891B2 (en) Negative-type photosensitive resin composition, and method for producing polyimide and cured relief pattern using the same
JP7445443B2 (en) Negative photosensitive resin composition and method for producing the same, and method for producing a cured relief pattern
JP7488659B2 (en) Negative-type photosensitive resin composition, and method for producing polyimide and cured relief pattern using the same
WO2024095927A1 (en) Photosensitive resin composition, method for producing cured relief pattern using same, and method for producing polyimide film using same
JP2023158657A (en) Negative type photosensitive resin composition and method for producing the same, and method for manufacturing cured relief pattern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557187

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207009110

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882666

Country of ref document: EP

Kind code of ref document: A1