WO2019107250A1 - Negative photosensitive resin composition, method for producing said composition, and method for producing cured relief pattern - Google Patents
Negative photosensitive resin composition, method for producing said composition, and method for producing cured relief pattern Download PDFInfo
- Publication number
- WO2019107250A1 WO2019107250A1 PCT/JP2018/043050 JP2018043050W WO2019107250A1 WO 2019107250 A1 WO2019107250 A1 WO 2019107250A1 JP 2018043050 W JP2018043050 W JP 2018043050W WO 2019107250 A1 WO2019107250 A1 WO 2019107250A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- general formula
- polyimide precursor
- photosensitive resin
- resin composition
- negative photosensitive
- Prior art date
Links
- 0 CCC(C)(CC)C(c(cc(cc1)-c2ccc(C(O*)=O)c(C(NC(C=C3)=CCC3OC(CC3)=CC=C3NC(C)(CC)CC)=O)c2)c1C(O*)=O)=O Chemical compound CCC(C)(CC)C(c(cc(cc1)-c2ccc(C(O*)=O)c(C(NC(C=C3)=CCC3OC(CC3)=CC=C3NC(C)(CC)CC)=O)c2)c1C(O*)=O)=O 0.000 description 7
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/038—Macromolecular compounds which are rendered insoluble or differentially wettable
- G03F7/0382—Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1046—Polyimides containing oxygen in the form of ether bonds in the main chain
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1075—Partially aromatic polyimides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/12—Unsaturated polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/14—Polyamide-imides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
- G03F7/028—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Definitions
- the present invention relates to a negative photosensitive resin composition, a method for producing the same, and a method for producing a cured relief pattern.
- polyimide resins, polybenzoxazole resins, phenol resins, etc. having excellent heat resistance, electrical properties and mechanical properties are used for insulating materials of electronic parts, passivation films, surface protective films, interlayer insulating films etc. of semiconductor devices. It is used.
- resins those provided in the form of a photosensitive resin composition easily form a heat-resistant relief pattern film by thermal imidization treatment by application, exposure, development, and curing of the composition. be able to.
- Such a photosensitive resin composition has a feature of enabling significant process reduction as compared to conventional non-photosensitive materials.
- a semiconductor device (hereinafter, also referred to as “element”) is mounted on a printed circuit board by various methods according to the purpose.
- Conventional devices are generally manufactured by a wire bonding method in which thin wires are connected from the external terminals (pads) of the devices to the lead frame.
- the difference in wiring length of each terminal in mounting has come to affect the operation of the elements. Therefore, in the case of the mounting of elements for high-end applications, it becomes necessary to control the length of the mounting wiring accurately, and it has become difficult to meet the requirement in the wire bonding.
- the metal wiring layer is generally plasma etched on the surface of the resin layer to roughen the surface, then a metal layer to be a seed layer for plating is formed by sputtering with a thickness of 1 ⁇ m or less, and the metal layer is used as an electrode. It is formed by electrolytic plating.
- titanium (Ti) is generally used as a metal to be a seed layer
- copper (Cu) is used as a metal of a redistribution layer formed by electrolytic plating.
- Such a metal redistribution layer is required to have high adhesion between the metal layer re-wired after the reliability test and the resin layer.
- a reliability test for example, high temperature storage test stored in air at a high temperature of 125 ° C. or more for 100 hours or more; a wiring is conducted while applying a voltage, in air, at a temperature of about 125 ° C.
- High temperature operation test to confirm the operation under storage over temperature
- temperature cycle in which the low temperature condition of about -65 ° C to -40 ° C and the high temperature condition of about 125 ° C to 150 ° C are cycled in air Test: store at 85 ° C or higher in a water vapor atmosphere with a humidity of 85% or higher, high temperature and high humidity storage test; perform the same test as high temperature and high humidity storage test while applying voltage while forming wiring, high temperature and high humidity Bias test; and solder reflow test which passes through a solder reflow furnace at 260 ° C. in air or under nitrogen a plurality of times can be mentioned.
- the demand for finer metal redistribution layers is also increasing. For this reason, it is required that the photosensitive resin composition used particularly for the formation of the semiconductor metal rewiring layer has high resolution while suppressing the occurrence of voids.
- the metal redistribution layer is required to have high chemical resistance.
- An object of the present invention is to provide a negative photosensitive resin composition (hereinafter, also simply referred to as "photosensitive resin composition" in the present specification) capable of suppressing the generation and a method for producing the same. It is also an object to provide a method for forming a cured relief pattern using the negative photosensitive resin composition of the present invention.
- a negative photosensitive resin composition having high chemical resistance, high resolution, and high void suppression effect, a method for producing the same, and a cured relief pattern using the negative photosensitive resin composition It is an object to provide a formation method.
- the present inventors solve the above problems by combining a polyimide precursor and a photopolymerization initiator with a specific compound having an acid or base or an amino group protected by a thermally deprotected group. It has been found that the present invention can be accomplished. Examples of embodiments of the present invention are listed below.
- A polyimide precursor
- B A plurality of amino groups protected by an acid or a base or a group to be deprotected by heat, having a molecular weight of 250 to 600, and the plurality of protected amino groups having an aliphatic chain or alicyclic structure
- a negative photosensitive resin composition comprising a base-protected compound which is an amino group of the formula and has a solubility parameter value of 20.0 to 24.0; and
- C a photopolymerization initiator.
- the (A) polyimide precursor is represented by the following general formula (2): Wherein X 1 is a tetravalent organic group, Y 1 is a divalent organic group, n 1 is an integer of 2 to 150, and R 1 and R 2 are each independently hydrogen It is an atom or a monovalent organic group, and at least one of R 1 and R 2 is a monovalent organic group having a polymerizable group at its end.
- X 1 is a tetravalent organic group
- Y 1 is a divalent organic group
- n 1 is an integer of 2 to 150
- R 1 and R 2 are each independently hydrogen It is an atom or a monovalent organic group, and at least one of R 1 and R 2 is a monovalent organic group having a polymerizable group at its end.
- R 1 and R 2 has the following general formula (3): Wherein L 1 , L 2 and L 3 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 1 is an integer of 2 to 10.
- the (A) polyimide precursor is represented by the following general formula (4): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). ⁇ 5.
- the negative photosensitive resin composition according to item 3 or 4 comprising a polyimide precursor having a structural unit represented by [6]
- the (A) polyimide precursor is represented by the following general formula (5): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). ⁇ 5.
- the (A) polyimide precursor is represented by the following general formula (6): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). ⁇ 5.
- the negative photosensitive resin composition according to item 3 or 4 comprising a polyimide precursor having a structural unit represented by [8]
- the (A) polyimide precursor is represented by the following general formula (4): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2).
- the negative photosensitive resin composition according to item 3 or 4 which comprises both of the polyimide precursors having a structural unit represented by [9]
- the (A) polyimide precursor is represented by the following general formula (4): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2).
- the negative photosensitive resin composition according to item 3 or 4 which comprises both of the polyimide precursors having a structural unit represented by [10] 100 parts by mass of the above (A) polyimide precursor 0.1 to 30 parts by mass of the above base protection compound (B) with respect to 100 parts by mass of the above (A) polyimide precursor,
- A polyimide precursor;
- D One or more amino groups protected by an acid or a base or a group which is deprotected by heat, and the following general formula (1):
- Z is a hydrogen atom or a methyl group.
- the bond at both ends represents a single bond to another part in the molecule.
- a negative photosensitive resin composition comprising an ether compound containing in the molecule one or more structural units represented by and a photopolymerization initiator (C).
- C photopolymerization initiator
- the (A) polyimide precursor is represented by the following general formula (2): Wherein X 1 is a tetravalent organic group, Y 1 is a divalent organic group, n 1 is an integer of 2 to 150, and R 1 and R 2 are each independently hydrogen It is an atom or a monovalent organic group, and at least one of R 1 and R 2 is a monovalent organic group having a polymerizable group at its end.
- at least one of R 1 and R 2 has the following general formula (3): Wherein L 1 , L 2 and L 3 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 1 is an integer of 2 to 10.
- the (A) polyimide precursor is represented by the following general formula (4): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2).
- the (A) polyimide precursor is represented by the following general formula (5): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2).
- the (A) polyimide precursor is represented by the following general formula (6): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2).
- the (A) polyimide precursor is represented by the following general formula (4): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). ⁇ A polyimide precursor having a structural unit represented by The following general formula (5): ⁇ Wherein R 1 , R 2 and n 1 are as defined in the above general formula (2), provided that R 1 , R 2 and n 1 in the general formula (5) are 4) R 1 , R 2 and n 1 in 4) are independently selected. ⁇ The negative photosensitive resin composition as described in 14 or 15 which contains both of the polyimide precursor which has a structural unit represented by these.
- the (A) polyimide precursor is represented by the following general formula (4): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2).
- the negative photosensitive resin composition as described in 14 or 15 which contains both of the polyimide precursor which has a structural unit represented by these.
- the (E) urethane compound has at least one tert-butoxycarbonyl group, benzyloxycarbonyl group or 9-fluorenylmethyloxycarbonyl (Fmoc) group bonded to an aliphatic chain or alicyclic amino group in the molecule.
- Item 22 The negative photosensitive resin composition according to Item 22.
- 24 The negative photosensitive resin according to item 22 or 23, wherein at least one of the nitrogen atoms of the protected one or more amino groups of the (E) urethane compound is at the ⁇ or ⁇ position of the hydroxyl group in the molecule. Resin composition.
- the negative photosensitive resin composition according to any one of items 22 to 24, wherein the one or more protected amino groups is an amino group protected by a tert-butoxycarbonyl group.
- the (A) polyimide precursor is represented by the following general formula (2): Wherein X 1 is a tetravalent organic group, Y 1 is a divalent organic group, n 1 is an integer of 2 to 150, and R 1 and R 2 are each independently hydrogen It is an atom or a monovalent organic group, and at least one of R 1 and R 2 is a monovalent organic group having a polymerizable group at its end.
- at least one of R 1 and R 2 has the following general formula (3): Wherein L 1 , L 2 and L 3 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 1 is an integer of 2 to 10.
- the (A) polyimide precursor is represented by the following general formula (4): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2).
- the (A) polyimide precursor is represented by the following general formula (5): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2).
- the (A) polyimide precursor is represented by the following general formula (6): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2).
- the (A) polyimide precursor is represented by the following general formula (4): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2). ⁇ A polyimide precursor having a structural unit represented by The following general formula (5): ⁇ Wherein R 1 , R 2 and n 1 are as defined in the above general formula (2), provided that R 1 , R 2 and n 1 in the general formula (5) are 4) R 1 , R 2 and n 1 in 4) are independently selected. ⁇ The negative photosensitive resin composition as described in 26 or 27 containing both of the polyimide precursor which has a structural unit represented by these.
- the (A) polyimide precursor is represented by the following general formula (4): In the formula, R 1 , R 2 and n 1 are as defined in the above general formula (2).
- the (E) urethane compound is N ⁇ - (tert-butoxycarbonyl) -L-triptophanol, 1- (tert-butoxycarbonyl) -4-hydroxypiperidine, or the following chemical formula (1):
- the photosensitive resin composition according to any one of items 22 to 32 which is a urethane compound represented by [34] 100 parts by mass of the above (A) polyimide precursor 0.1 to 30 parts by mass of the (E) urethane compound, based on 100 parts by mass of the (A) polyimide precursor,
- the negative photosensitive resin according to any one of items 22 to 33 comprising 0.1 to 20 parts by mass of the (C) photopolymerization initiator based on 100 parts by mass of the (A) polyimide precursor Composition.
- [35] 34 A method for producing a polyimide, which cures the negative photosensitive resin composition according to any one of items 1 to 34.
- a high-resolution is obtained, and a negative photosensitive resin composition that suppresses the generation of voids at the interface of the Cu layer in contact with the resin layer after a high temperature storage test, and a method for producing the same.
- a method for forming a cured relief pattern using the negative photosensitive resin composition It is possible to provide a method for forming a cured relief pattern using the negative photosensitive resin composition.
- a negative photosensitive resin composition having high chemical resistance, high resolution, and high void suppression effect, a method for producing the same, and a cured relief pattern using the negative photosensitive resin composition A method of formation can be provided.
- the negative photosensitive resin composition according to the first embodiment is (A) polyimide precursor; (B) A plurality of amino groups protected by an acid or a base or a group to be deprotected by heat, having a molecular weight of 250 to 600, and the plurality of protected amino groups having an aliphatic chain or alicyclic structure A base-protected compound which is an amino group of the formula and has a solubility parameter value of 20.0 or more and 24.0 or less; and (C) a photopolymerization initiator.
- the negative photosensitive resin composition according to the second present embodiment is (A) polyimide precursor; (D) One or more amino groups protected by an acid or a base or a group which is deprotected by heat, and the following general formula (1):
- Z is a hydrogen atom or a methyl group.
- the bond at both ends represents a single bond to another part in the molecule.
- the negative photosensitive resin composition according to the third embodiment is: (A) polyimide precursor; (E) One or more amino groups protected by an acid or a base or a thermally deprotected group, and a urethane compound containing at least one hydroxyl group in the molecule; and (C) a photopolymerization initiator .
- the polyimide precursor in the first to third embodiments is a resin component contained in a negative photosensitive resin composition, and is converted to a polyimide by heat cyclization treatment. Be done.
- the polyimide precursor is preferably a polyamide having a structure represented by the following general formula (2). Wherein X 1 is a tetravalent organic group, Y 1 is a divalent organic group, n 1 is an integer of 2 to 150, and R 1 and R 2 are each independently hydrogen It is an atom or a monovalent organic group. ⁇
- At least one of R 1 and R 2 has the following general formula (3): Wherein L 1 , L 2 and L 3 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 1 is an integer of 2 to 10. It is a monovalent organic group represented by ⁇ .
- n 1 in the general formula (2) is not limited as long as it is an integer of 2 to 150, it is preferably an integer of 3 to 100, and more preferably 5 to 70, from the viewpoint of the photosensitive properties and mechanical properties of the negative photosensitive resin composition.
- the integer of is more preferable.
- the tetravalent organic group represented by X 1 is preferably an organic group having a carbon number of 6 to 40, more preferably, in terms of achieving both heat resistance and photosensitivity.
- An —COOR 1 group and an —COOR 2 group and an —CONH— group are an aromatic group or an alicyclic aliphatic group in which each other is in the ortho position.
- tetravalent organic group represented by X 1 include an aromatic ring-containing organic group having 6 to 40 carbon atoms, for example, the following general formula (20): Wherein R 6 is a monovalent group selected from the group consisting of a hydrogen atom, a fluorine atom, a C 1 to C 10 hydrocarbon group, and a C 1 to C 10 fluorine-containing hydrocarbon group, and l is 0 Is an integer selected from -2, m is an integer selected from 0-3, and n is an integer selected from 0-4. ⁇ Although the group which has a structure represented by these is mentioned, It is not limited to these. The structure of X 1 may be one kind or a combination of two or more kinds. The X 1 group having the structure represented by the above formula (20) is particularly preferable in that both the heat resistance and the photosensitive characteristics are compatible.
- the divalent organic group represented by Y 1 is preferably an aromatic group having a carbon number of 6 to 40, in terms of achieving both heat resistance and photosensitivity, and, for example, Following formula (21): Wherein R 6 is a monovalent group selected from the group consisting of a hydrogen atom, a fluorine atom, a C 1 to C 10 hydrocarbon group, and a C 1 to C 10 fluorine-containing hydrocarbon group, and n is It is an integer selected from 0-4. ⁇ Although the structure represented by these is mentioned, it is not limited to these.
- the structure of Y 1 may be one kind or a combination of two or more kinds.
- the Y 1 group having the structure represented by the above formula (21) is particularly preferable in that both the heat resistance and the photosensitive characteristics are compatible.
- L 1 in the above general formula (3) is preferably a hydrogen atom or a methyl group
- L 2 and L 3 are preferably hydrogen atoms from the viewpoint of photosensitive properties
- m 1 is 2 or more integer of 10 or less from the viewpoint of photosensitive properties, preferably 2 to 4 integer.
- the (A) polyimide precursor has the following general formula (4):
- R 1 , R 2 and n 1 are as defined in the general formula (2).
- ⁇ It is preferable that it is a polyimide precursor which has a structural unit represented by these.
- at least one of R 1 and R 2 is more preferably a monovalent organic group represented by the above general formula (3).
- the (A) polyimide precursor has the following general formula (5):
- R 1 , R 2 and n 1 are as defined in the general formula (2).
- ⁇ It is preferable that it is a polyimide precursor which has a structural unit represented by these.
- at least one of R 1 and R 2 is more preferably a monovalent organic group represented by the above general formula (3).
- the effect of resolution is particularly high by including the polyimide precursor represented by the general formula (5) in addition to the polyimide precursor represented by the general formula (4) (A) become.
- the general formula (5) R 1, R 2 in, and n 1 is the general formula (4) R 1, R 2 in, and the n 1 are independently selected.
- the (A) polyimide precursor has the following general formula (6):
- R 1 , R 2 and n 1 are as defined in the general formula (2).
- ⁇ It is preferable that it is a polyimide precursor which has a structural unit represented by these.
- at least one of R 1 and R 2 is more preferably a monovalent organic group represented by the above general formula (3).
- the effect of resolution is particularly high when the polyimide precursor (A) includes the polyimide precursor represented by the general formula (6) in addition to the polyimide precursor represented by the general formula (4) Become.
- the general formula (6) R 1, R 2 in, and n 1 is the general formula (4) R 1, R 2 in, and the n 1 are independently selected.
- the polyimide precursor is prepared by first using the tetracarboxylic acid dianhydride containing the aforementioned tetravalent organic group X 1 and an alcohol having a photopolymerizable unsaturated double bond. And optionally after reaction with an alcohol having no unsaturated double bond to prepare a partially esterified tetracarboxylic acid (hereinafter also referred to as an acid / ester), and It is obtained by carrying out the amide polycondensation of diamines containing a divalent organic group Y 1 .
- the tetracarboxylic acid dianhydride containing a tetravalent organic group X 1 suitably used to prepare the (A) polyimide precursor in this embodiment is a tetracarboxylic acid represented by the above general formula (20).
- Acid dianhydrides for example, pyromellitic anhydride, diphenylether-3,3 ', 4,4'-tetracarboxylic dianhydride, benzophenone-3,3', 4,4'-tetracarboxylic dianhydride , Biphenyl-3,3 ', 4,4'-tetracarboxylic acid dianhydride, diphenyl sulfone-3,3', 4,4'-tetracarboxylic acid dianhydride, diphenylmethane-3,3 ', 4, 4'-tetracarboxylic acid dianhydride, 2,2-bis (3,4-phthalic anhydride) propane, 2,2-bis (3,4-phthalic anhydride) -1,1,1,3,3 , 3-hexafluoropropane etc., preferably Water pyromellitic acid, diphenyl ether-3,3 ', 4,4'-tetracarboxylic acid dianhydride, benzophenone-3
- alcohols having a photopolymerizable unsaturated double bond which are suitably used to prepare the (A) polyimide precursor in this embodiment, include, for example, 2-acryloyloxyethyl alcohol, 1-acryloyloxy. 3-Propyl alcohol, 2-acrylamidoethyl alcohol, methylol vinyl ketone, 2-hydroxyethyl vinyl ketone, 2-hydroxy-3-methoxypropyl acrylate, 2-hydroxy-3-butoxypropyl acrylate, 2-hydroxy-3-phenoxy Propyl acrylate, 2-hydroxy-3-butoxypropyl acrylate, 2-hydroxy-3-t-butoxypropyl acrylate, 2-hydroxy-3-cyclohexyloxypropyl acrylate, 2-methacryloyloxyethyl acrylate Cole, 1-methacryloyloxy-3-propyl alcohol, 2-methacrylamidoethyl alcohol, methylol vinyl ketone, 2-hydroxyethyl vinyl ketone, 2-hydroxy-3--me
- Examples of the above-mentioned alcohols having a photopolymerizable unsaturated double bond include methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, 1-pentanol, 2-pentanol, 3-pentanol Neopentyl alcohol, 1-heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 3-octanol, 1-nonanol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, tetraethylene glycol monomethyl ether It is also possible to partially mix and use alcohols having no unsaturated double bond such as ether, tetraethylene glycol monoethyl ether and benzyl alcohol.
- the non-photosensitive polyimide precursor prepared only with the said alcohol which does not have the said unsaturated double bond is preferably 200 parts by mass or less based on 100 parts by mass of the photosensitive polyimide precursor.
- the acid / ester body is acid-chloridized with thionyl chloride or the like, and then reacted with a diamine compound in the presence of a base such as pyridine to obtain a target polyimide precursor. be able to.
- the water absorption by-product of the dehydration condensation agent coexisting in the reaction solution is separated by filtration if necessary, and then a poor solvent such as water, an aliphatic lower alcohol, or a mixture thereof is
- a poor solvent such as water, an aliphatic lower alcohol, or a mixture thereof is
- the polymer component is charged into the obtained polymer component, and the polymer component is precipitated, and further, the polymer is purified by repeating the re-dissolution, re-precipitation operation and the like, and vacuum drying is performed to obtain the desired polyimide precursor.
- the solution of the polymer may be passed through a column packed with an anion and / or cation exchange resin swollen with a suitable organic solvent to remove ionic impurities.
- the molecular weight of the (A) polyimide precursor is preferably 8,000 to 150,000, and 9,000 to 50,000, as measured by gel permeation chromatography as a polystyrene equivalent weight average molecular weight. Is more preferred. When the weight average molecular weight is 8,000 or more, the mechanical properties are good, and when it is 150,000 or less, the dispersibility in the developer is good, and the resolution performance of the relief pattern is good. Tetrahydrofuran and N-methyl-2-pyrrolidone are recommended as developing solvents for gel permeation chromatography.
- the weight average molecular weight is determined from a calibration curve prepared using standard monodispersed polystyrene. As standard monodispersed polystyrene, it is recommended to select from Showa Denko organic solvent-based standard sample STANDARD SM-105.
- the (B) base-protected compound in the first embodiment has a plurality of amino groups protected by an acid or a base or a group which is deprotected by heat, and has a molecular weight of 250 to 600.
- the protected amino group is an aliphatic linear or alicyclic amino group, and the solubility parameter has a value of 20.0 to 22.0.
- the molecular weight of the (B) base-protected compound is 250 to 600. If the molecular weight is 250 or more, the base protection compound remains in the film even after thermosetting, and the Cu void suppressing effect can be exhibited.
- the molecular weight is preferably 300 or more, and more preferably 340 or more.
- the molecular weight is preferably 600 or less, more preferably 550 or less, more preferably 450 or less, and more preferably 400 or less.
- the plurality of protected amino groups of the base protection compound is an aliphatic chain or alicyclic amino group.
- Aliphatic chain-like and alicyclic amino groups have high nucleophilicity as compared to aromatic amino groups, so that the introduction of protecting groups is easy.
- the value of the solubility parameter of the base protected compound is 20.0 to 24.0.
- “solubility parameter” is the solubility parameter determined by the Hoy calculation method. If the solubility parameter is 20.0 or more, the solubility in the solvent is sufficiently high, preferably 20.5 or more, more preferably 21.0 or more. When the solubility parameter is 24.0 or less, the affinity to the solvent becomes appropriate, and the chemical solution hardly penetrates into the cured relief pattern during the chemical resistance test, and a cured relief pattern excellent in chemical resistance can be obtained. From the viewpoint of chemical resistance, the value of the solubility parameter is preferably 23.5 or less, more preferably 23.0 or less, still more preferably 22.5 or less, still more preferably 22.0 or less.
- the acid or base or the thermally deprotected group include tert-butoxycarbonyl group and Fmoc group, but the present invention is not limited thereto.
- the Fmoc group refers to a 9-fluorenylmethyloxycarbonyl group.
- the one or more amino groups are amino groups protected with a tert-butoxycarbonyl group.
- the compound is preferably a compound protected with a tert-butoxycarbonyl group.
- the compound protected with the tert-butoxycarbonyl group is considered to exhibit good resolution because the solubility in a developer is good and the residue is suppressed.
- the reason why good chemical resistance can be obtained is that the flowability of the polyimide resin in the heat curing process is improved by including a compound having a certain range of solubility parameter and molecular weight. It is considered to be. As a result, it is considered that the improvement of the fluidity promotes the stacking of the imide rings and suppresses the penetration of the chemical solution. Also, although the reason why good resolution can be obtained is unknown, it is considered that the base-protected compound is easily dissolved in the developer by having a certain range of solubility parameters, and the residue is suppressed.
- the number of protected amino groups contained in the molecule of the base protected compound is not limited as long as it is 2 or more.
- the compound is preferably a compound in which the amino group of an amine selected from the group consisting of diamine, triamine and tetraamine is protected. From the viewpoint of coordination to copper, it is more preferable that the compound is a compound in which the amino group of diamine is protected.
- the base-protected compound preferably has at least one protected amino group at each end of the molecule. More preferably, the number of protected amino groups is two and the base protected compound preferably has one protected amino group at each end of the molecule.
- the said base protection compound does not contain acidic groups, such as a carboxyl group, a sulfo group, and a phosphoric acid group. By not including these acidic groups, damage to the copper wiring is reduced. Moreover, it is preferable that the said base protection compound does not contain an alicyclic structure from a soluble viewpoint, and it is preferable that an aromatic group is not included from a chemical-resistant viewpoint. Similarly, from the viewpoint of chemical resistance, it is preferable not to contain a hydroxyl group.
- base-protected compounds include, but are not limited to, 1,3-di-4-piperidylpropane, 1,4-butanediol (3-aminopropyl) ether, diethylene glycol bis (3-aminopropyl) ether, for example.
- the amount of the base protection compound is preferably 0.1 to 30 parts by mass, and more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor.
- the content of the base protection compound is 0.1 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the polyimide precursor, thereby improving the Cu void suppression effect, the resolution improvement, and the chemical resistance improvement. A particularly excellent negative photosensitive resin composition can be obtained.
- (C) Photopolymerization Initiator The (C) photopolymerization initiator used in the first to third embodiments will be described.
- a photoradical polymerization initiator is preferable, and benzophenone, methyl o-benzoylbenzoate, 4-benzoyl-4′-methyl diphenyl ketone, benzophenone derivatives such as dibenzyl ketone and fluorenone, 2, Acetophenone derivatives such as 2'-diethoxyacetophenone, 2-hydroxy-2-methylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, etc., thioxanthone derivatives such as thioxanthone, 2-methyl thioxanthone, 2-isopropyl thioxanthone, diethyl thioxanthone, benzyl, Benzyl derivatives such as benzyl dimethyl ketal and benzyl- ⁇ -methoxye
- the compounding amount of the photopolymerization initiator (C) is preferably 0.1 parts by mass to 20 parts by mass, and more preferably 1 part by mass to 8 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor. It is.
- the said compounding quantity is 0.1 mass part or more from a photosensitivity or a viewpoint of patterning property, and is 20 mass parts or less from a viewpoint of the physical property of the photosensitive resin layer after hardening of a negative photosensitive resin composition.
- the negative photosensitive resin composition of the present embodiment may further contain components other than the components (A) to (C).
- the components other than the components (A) to (C) include, but are not limited to, solvents, nitrogen-containing heterocyclic compounds, hindered phenol compounds, organic titanium compounds, adhesion assistants, sensitizers, photopolymerizable unsaturated monomers, Thermal polymerization inhibitors and the like can be mentioned.
- the (D) ether compound is an acid or a base or an amino group protected by a group which is deprotected by heat, and a compound represented by the following general formula (1):
- Z is a hydrogen atom or a methyl group.
- the bond at both ends represents a single bond to another part in the molecule.
- It is an ether compound which contains in a molecule the structural unit represented by ⁇ .
- the ether compound may have at least one structural unit represented by the above general formula (1) at any position in the molecule, and the arrangement of the structural unit in the molecule is not limited.
- the ether compound may have a plurality of the structural units in succession in the molecule, and another structure may be interposed between the structural units.
- the structural units may be regularly arranged in the molecule of the ether compound, or may be randomly arranged.
- ether compound for example, 1,4-butanol bis (3-aminopropyl) ether, 1,2-bis (2-aminoethoxy) ethane, 2,2′-oxybis (ethylamine), 1,14-diamino- 3,6,9,12-tetraoxatetradecane, 1-aza-15-crown 5-ether, diethylene glycol bis (3-aminopropyl) ether, or 1,11-diamino-3,6,9-trioxaundecane
- the amino group may be a compound protected by an acid or base or a group which is deprotected by heat.
- JEFFAMINE registered trademark
- the amino group of 3000, T-5000, HK-511, ED-600, ED-900, ED-2003, EDR-148, EDR-176, XTJ-435, or XTJ-436 is removed with acid or base or heat.
- Protecting groups include, but are not limited to, protected compounds.
- the acid or base or the thermally deprotected group include tert-butoxycarbonyl group and Fmoc group, but the present invention is not limited thereto.
- the Fmoc group refers to a 9-fluorenylmethyloxycarbonyl group.
- the one or more amino groups are amino groups protected with a tert-butoxycarbonyl group.
- the compound is preferably a compound protected with a tert-butoxycarbonyl group.
- the compound protected with the tert-butoxycarbonyl group is considered to exhibit good resolution because the solubility in a developer is good and the residue is suppressed.
- the reason for showing the Cu void suppression effect is not clear, but it is possible to contain the nitrogen atom derived from the protected amino group and the ether group derived from the structure of the above general formula (1) in the same molecule The interaction with Cu ions becomes strong, which suppresses the diffusion of Cu and, as a result, the Cu void is considered to be suppressed.
- the number of protected amino groups contained in the molecule of the ether compound is not limited, but from the viewpoint of solubility in a solvent, amino of an amine selected from the group consisting of monoamines, diamines, triamines, and tetraamines. It is preferably a compound in which a group is protected, and more preferably a compound in which an amino group of a monoamine or diamine is protected. On the other hand, from the viewpoint of coordination to copper, it is particularly preferable that the compound is a compound in which the amino group of diamine is protected.
- the ether compound has at least one protected amino group at each end of the molecule containing the structural unit represented by the above general formula (1) Is preferred. More preferably, the number of protected amino groups is two, and the ether compound has one protected amino group at each end of the molecule containing the structural unit represented by the above general formula (1). Is preferred.
- numerator of the said ether compound is two or more.
- the resolution is further improved.
- the structure of the general formula (1) contained in the molecule The number of units is preferably 100 or less, more preferably 50 or less, and particularly preferably 30 or less.
- Z in the general formula (1) may be identical or different, but is preferably identical. Further, Z in the general formula (1) is preferably a hydrogen atom from the viewpoint of the Cu void suppressing effect. It is considered that steric hindrance is reduced and coordination to Cu is improved by the fact that the vicinity of the ether group is a hydrogen atom.
- the ratio (molar ratio) of the total number of protected amino groups contained in the molecule of the ether compound to the total number of structural units of the general formula (1) is 2: 1 to 2:16.
- the ratio is preferably 2: 1 to 2: 8, and more preferably 2: 2 to 2: 6. By being in this range, the effect of suppressing Cu voids is enhanced.
- the said ether compound does not contain acidic groups, such as a carboxyl group, a sulfo group, and a phosphoric acid group. By not including these acidic groups, damage to the copper wiring is reduced.
- the ether compound preferably does not contain an alicyclic structure from the viewpoint of solubility, and preferably does not contain an aromatic group from the viewpoint of chemical resistance. Similarly, from the viewpoint of chemical resistance, it is preferable not to contain a hydroxyl group.
- ether compound As a specific example of the said ether compound, although it is not limited, for example, The ether compound represented by the following chemical formula is preferable.
- the protective group of the amino group may be decomposed in the heat curing process, but it may or may not be decomposed.
- the amount of the ether compound is preferably 0.1 to 30 parts by mass, and more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor.
- (A) By blending in the range of 0.1 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the polyimide precursor, especially the effects of Cu void suppression effect, resolution improvement and chemical resistance improvement An excellent negative photosensitive resin composition can be obtained.
- the (E) urethane compound has one or more amino groups protected by an acid or a base or a group which is deprotected by heat, and a hydroxyl group in the molecule. Including one.
- the acid or base or the thermally deprotected group include tert-butoxycarbonyl group and Fmoc group, but the present invention is not limited thereto.
- the Fmoc group refers to a 9-fluorenylmethyloxycarbonyl group.
- the one or more amino groups are amino groups protected with a tert-butoxycarbonyl group.
- the compound is preferably a compound protected with a tert-butoxycarbonyl group.
- the compound protected with the tert-butoxycarbonyl group is considered to exhibit good resolution because the solubility in a developer is good and the residue is suppressed.
- the number of protected amino groups contained in the molecule of the urethane compound is not limited, but from the viewpoint of solubility in a solvent, preferably an amine selected from the group consisting of monoamines, diamines, triamines, and tetraamines.
- the compound is preferably a compound in which the amino group is protected, more preferably a compound in which the amino group of monoamine or diamine is protected, still more preferably a compound in which the amino group of monoamine is protected.
- the urethane compound is preferably a tert-butoxycarbonyl group, a benzyloxycarbonyl group, or 9 bonded to an aliphatic amino group, more particularly to an aliphatic chain or alicyclic amino group.
- Aliphatic amino groups containing at least one fluorenylmethyloxycarbonyl (Fmoc) group in the molecule and at least one hydroxyl group in the molecule are linear primary or secondary amino groups, or It refers to an amino group in which an aromatic group or a heterocyclic group is not directly bonded to the nitrogen atom of the cyclic secondary amino group.
- the urethane compound used in the present embodiment has the following general formula (XI): Wherein R 10 is either a tert-butoxycarbonyl group or a benzyloxycarbonyl group or an Fmoc group, and R 11 , R 12 and R 13 each independently represent a hydrogen atom, a hydroxyl group or a carbon number Either one of an organic group of 1 to 20 or an organic group of 1 to 20 carbon atoms having a hydroxyl group, and at least one of R 11 , R 12 and R 13 is a carbon having a hydroxyl group or a hydroxyl group It is any of the organic groups of 1 to 20.
- R 10 is either a tert-butoxycarbonyl group or a benzyloxycarbonyl group or an Fmoc group
- R 11 , R 12 and R 13 each independently represent a hydrogen atom, a hydroxyl group or a carbon number Either one of an organic group of 1 to 20 or an organic group of 1 to 20 carbon atom
- R 10 is either a tert-butoxycarbonyl group or a benzyloxycarbonyl group or an Fmoc group
- R 11 , R 12 , R 13, R 14 , R 15 and R 16 are each independently The hydrogen atom, the hydroxyl group, the organic group having 1 to 20 carbon atoms, or the organic group having 1 to 20 carbon atoms having a hydroxyl group, at least one of R 11 , R 12 and R 13 is It is any of a C 1-20 organic group having a hydroxyl group or a hydroxyl group.
- the organic group having 1 to 20 carbon atoms includes a saturated or unsaturated alkyl group, a saturated or unsaturated cycloalkyl group, an aromatic group and the like. These organic groups may contain, in the organic group, a bond or a substituent containing a nitrogen atom other than a hydrocarbon group, an oxygen atom, a sulfur atom or the like, and these have a cyclic structure whether linear or branched. May be included.
- R 11 , R 12 , R 13, R 14 , R 15 and R 16 each independently represent a hydrogen atom, a hydroxyl group, an organic group having 1 to 20 carbon atoms, Or any of C 1-20 organic groups having a hydroxyl group, provided that at least one of R 11 , R 12 and R 13 is a hydroxyl group or an organic group having 1 to 20 carbon atoms having a hydroxyl group It is either.
- any two of R 11 , R 12 , R 13, R 14 , R 15 and R 16 may be combined to form a cyclic structure, and even if it has a hydroxyl group in this cyclic structure Good.
- the bond or substituent other than the hydrocarbon group in the organic group of R 11 , R 12 , R 13, R 14 , R 15 and R 16 is not particularly limited as long as the effects of the present invention are not impaired.
- the above-mentioned urethane compound When the above-mentioned urethane compound is used, good resolution and Cu void suppression effect can be obtained.
- the resolution is improved because the photosensitive resin composition contains the compound having the above structure, so that the solubility of the resin composition in the developer becomes good, and the residue is suppressed. it is conceivable that.
- the above-mentioned structure improves the interaction with Cu, prevents the diffusion of Cu ions, and suppresses Cu voids.
- Examples of the above urethane compound include the following general formula (XIII): [Wherein, R 10 is either a tert-butoxycarbonyl group, a benzyloxycarbonyl group or an Fmoc group. )
- the compounds represented by the above can be mentioned, but not limited thereto.
- the (E) urethane compound is preferably a urethane compound which does not have any of the acidic groups contained in the group consisting of a carboxyl group, a sulfo group and a phosphoric acid group.
- the urethane compound does not have an acidic group, the effect of suppressing Cu voids in particular is enhanced.
- the (E) urethane compound is preferably a urethane compound in which at least one nitrogen atom to which a tert-butoxycarbonyl group, a benzyloxycarbonyl group or an Fmoc group is bonded is at the ⁇ - or ⁇ -position of the hydroxyl group in the molecule.
- the hydroxyl group in the molecule is at the ⁇ position or the ⁇ position with respect to the nitrogen atom, a particularly good Cu void suppression effect can be obtained.
- the reason is not clear, it is thought that the hydroxyl group at a suitable position with respect to the nitrogen atom interacts more strongly with the Cu ion, thereby suppressing the diffusion of Cu and consequently suppressing the Cu void.
- the (E) urethane compound is more preferably a urethane compound containing at least one tert-butoxycarbonyl group bonded to an aliphatic chain or alicyclic amino group in the molecule.
- a urethane compound containing at least one tert-butoxycarbonyl group bonded to an aliphatic chain or alicyclic amino group in the molecule is not limited.
- the urethane compound is N ⁇ - (tert-butoxycarbonyl) -L-triptophanol, 1- (tert-butoxycarbonyl) -4-hydroxypiperidine, or the following chemical formula (1): It is more preferable that it is a urethane compound represented by these. In the case of the above compounds, the effects of both the resolution and the Cu void suppression effect are particularly excellent.
- the tert-butoxycarbonyl group, benzyloxycarbonyl group or Fmoc group bonded to the aliphatic amino group may be decomposed in the heat curing process, but it may or may not be decomposed. May be
- the compounding amount of the (E) urethane compound is preferably 0.01 to 20 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the (A) resin.
- the amount is preferably 0.01 parts by mass or more from the viewpoint of Cu void suppression, and preferably 20 parts by mass or less from the viewpoint of resolution.
- the negative photosensitive resin compositions according to the first to third embodiments of the present invention comprise, in addition to the components (A) to (E) described above, a solvent, a nitrogen-containing heterocyclic compound, a hindered phenol compound, an organic titanium compound, It may also contain other components such as adhesion promoters, sensitizers, photopolymerizable unsaturated monomers, and thermal polymerization inhibitors.
- solvents examples include amides, sulfoxides, ureas, ketones, esters, lactones, ethers, halogenated hydrocarbons, hydrocarbons, alcohols and the like, and examples thereof include N-methyl-2 -Pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethylsulfoxide, tetramethylurea, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, methyl acetate, ethyl acetate, butyl acetate, diethyl oxalate Ethyl lactate, methyl lactate, butyl lactate, ⁇ -butyrolactone, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, benzyl alcohol, phenyl glycol, tetrahydrofurfuryl alcohol
- N-methyl-2-pyrrolidone, dimethyl sulfoxide, tetramethyl urea, butyl acetate, ethyl lactate, ⁇ -butyrolactone, propylene from the viewpoint of resin solubility, resin composition stability, and adhesion to a substrate.
- Glycol monomethyl ether acetate, propylene glycol monomethyl ether, diethylene glycol dimethyl ether, benzyl alcohol, phenyl glycol and tetrahydrofurfuryl alcohol are preferred.
- those which completely dissolve the produced polymer are preferable, for example, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethylsulfoxide, tetramethyl Urea, gamma butyrolactone and the like can be mentioned.
- the amount of the solvent used is preferably 100 to 1000 parts by mass, more preferably 120 to 700 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor. More preferably, it is in the range of 125 to 500 parts by mass.
- Nitrogen-Containing Heterocyclic Compound In the case of forming a cured film on a substrate made of copper or a copper alloy using the photosensitive resin composition of the present embodiment, a negative photosensitive resin is used to suppress discoloration on copper.
- the composition may optionally contain a nitrogen-containing heterocyclic compound. Examples of nitrogen-containing heterocyclic compounds include azole compounds and purine derivatives.
- azole compound 1H-triazole, 5-methyl-1H-triazole, 5-ethyl-1H-triazole, 4,5-dimethyl-1H-triazole, 5-phenyl-1H-triazole, 4-t-butyl-5 -Phenyl-1H-triazole, 5-hydroxyphenyl-1H-triazole, phenyltriazole, p-ethoxyphenyltriazole, 5-phenyl-1- (2-dimethylaminoethyl) triazole, 5-benzyl-1H-triazole, hydroxyphenyl Triazole, 1,5-dimethyltriazole, 4,5-diethyl-1H-triazole, 1H-benzotriazole, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-, Bis ( ⁇ , ⁇ -dimethyl bene Ndyl) phenyl] -benzotriazole, 2- (3,5-di-t-butyl-5
- tolyltriazole Particularly preferred are tolyltriazole, 5-methyl-1H-benzotriazole, and 4-methyl-1H-benzotriazole. These azole compounds may be used alone or in combination of two or more.
- purine derivative examples include purine, adenine, guanine, hypoxanthine, xanthine, theobromine, caffeine, uric acid, isoguanine, 2,6-diaminopurine, 9-methyladenine, 2-hydroxyadenine, 2-methyladenine, 1-methyladenine, N-methyladenine, N, N-dimethyladenine, 2-fluoroadenine, 9- (2-hydroxyethyl) adenine, guanine oxime, N- (2-hydroxyethyl) adenine, 8-aminoadenine, 6-amino-8-phenyl-9H-purine, 1-ethyladenine, 6-ethylaminopurine, 1-benzyladenine, N-methyl guanine, 7- (2-hydroxyethyl) guanine, N- (3-chlorophenyl) Guanine, N- (3-ethylphenyl) guanine, 2-a A
- the compounding amount is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor, and From the viewpoint, 0.5 to 5 parts by mass is more preferable.
- the compounding quantity with respect to 100 mass parts of (A) polyimide precursors of an azole compound is 0.1 mass part or more, when the photosensitive resin composition of this embodiment is formed on copper or a copper alloy, copper or Discoloration of the copper alloy surface is suppressed, and when it is 20 parts by mass or less, the photosensitivity is excellent.
- the negative photosensitive resin composition may optionally contain a hindered phenolic compound.
- a hindered phenolic compound 2,6-di-t-butyl-4-methylphenol, 2,5-di-t-butyl-hydroquinone, octadecyl-3- (3,5-di-t-butyl-4) -Hydroxyphenyl) propionate, isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 4,4'-methylenebis (2,6-di-t-butylphenol), 4, 4'-thio-bis (3-methyl-6-t-butylphenol), 4,4'-butylidene-bis (3-methyl-6-t-butylphenol), triethylene glycol-bis [3- (3-t -Butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-di-t-butyl-4-methylphenol, 2,6-di-
- 1,3,5-tris (4-t-butyl-3-hydroxy-2,6-dimethylbenzyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) )-Trione etc. are particularly preferred.
- the compounding amount of the hindered phenol compound is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor, and is 0.5 to 10 parts by mass from the viewpoint of light sensitivity characteristics. Is more preferred.
- the compounding quantity with respect to 100 mass parts of (A) polyimide precursors of a hindered phenol compound is 0.1 mass part or more, for example, when the photosensitive resin composition of this invention is formed on copper or a copper alloy, Discoloration and corrosion of copper or copper alloy are prevented, and when it is 20 parts by mass or less, the photosensitivity is excellent.
- Organic titanium compound may contain an organic titanium compound. By containing the organic titanium compound, a photosensitive resin layer having excellent chemical resistance can be formed even when cured at a low temperature.
- Usable organic titanium compounds include those in which an organic chemical substance is bonded to a titanium atom via a covalent bond or an ionic bond. Specific examples of the organic titanium compound are shown in the following I) to VII): I) Titanium chelate compound: Among them, a titanium chelate having two or more alkoxy groups is more preferable because the storage stability of the negative photosensitive resin composition and a good pattern can be obtained.
- titanium bis (triethanolamine) diisopropoxide titanium di (n-butoxide) bis (2,4-pentanedionate), titanium diisopropoxide bis (2,4-pentanedionate) And titanium diisopropoxide bis (tetramethylheptanedionate), titanium diisopropoxide bis (ethylacetoacetate), and the like.
- Tetraalkoxytitanium compounds for example, titanium tetra (n-butoxide), titanium tetraethoxide, titanium tetra (2-ethylhexoxide), titanium tetraisobutoxide, titanium tetraisopropoxide, titanium tetramethoxide , Titanium tetramethoxypropoxide, titanium tetramethylphenoxide, titanium tetra (n-nonyloxy), titanium tetra (n-propoxide), titanium tetrastearyloxide, titanium tetrakis [bis ⁇ 2, 2- (allyloxymethyl) Butoxide]] etc.
- Titanocene compounds for example, pentamethylcyclopentadienyltitanium trimethoxide, bis ( ⁇ 5-2,4-cyclopentadien-1-yl) bis (2,6-difluorophenyl) titanium, bis ( ⁇ 5-2, 4-cyclopentadien-1-yl) bis (2,6-difluoro-3- (1H-pyrrol-1-yl) phenyl) titanium and the like.
- Monoalkoxytitanium compounds for example, titanium tris (dioctyl phosphate) isopropoxide, titanium tris (dodecyl benzene sulfonate) isopropoxide and the like.
- Titanium oxide compounds for example, titanium oxide bis (pentanedionate), titanium oxide bis (tetramethylheptanedionate), phthalocyanine titanium oxide and the like.
- the organic titanium compound exhibits at least one kind of compound selected from the group consisting of the above-mentioned I) titanium chelate compound, II) tetraalkoxytitanium compound, and III) titanocene compound, thereby exhibiting better chemical resistance. It is preferable from the viewpoint of that.
- titanium diisopropoxide bis (ethylacetoacetate), titanium tetra (n-butoxide), and bis ( ⁇ 5-2,4-cyclopentadien-1-yl) bis (2,6-difluoro-3- (1H) -Pyrrol-1-yl) phenyl) titanium is preferred.
- the blending amount in the case of blending the organic titanium compound is preferably 0.05 to 10 parts by mass, and more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor.
- the amount is 0.05 parts by mass or more, good heat resistance and chemical resistance develop, and when the amount is 10 parts by mass or less, the storage stability is excellent.
- the negative photosensitive resin composition may optionally contain an adhesion assistant.
- adhesion assistants ⁇ -aminopropyldimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, 3- Methacryloxypropyldimethoxymethylsilane, 3-methacryloxypropyltrimethoxysilane, dimethoxymethyl-3-piperidinopropylsilane, diethoxy-3-glycidoxypropylmethylsilane, N- (3-diethoxymethylsilylpropyl) succinimide N- [3- (triethoxysilyl) propyl] phthalamic acid, benzo
- the amount of the adhesion assistant is preferably in the range of 0.5 to 25 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor.
- 3-mercaptopropyltrimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd .: trade name KBM803, manufactured by Chisso Corporation: trade name Silaace S810
- 3-mercaptopropyltriethoxysilane manufactured by Azmax Co., Ltd.
- Trade name SIM 6475.0 3-Mercaptopropylmethyldimethoxysilane
- SAhin-Etsu Chemical Co., Ltd .: trade name LS 1375, Azmax Co., Ltd .: trade name SIM 6474.0 mercaptomethyltrimethoxysilane (produced by Azmax Co., Ltd .: commodity Name: SIM 647 3.5 C), mercaptomethyl methyl dimethoxysilane (made by Azmax Co., Ltd .: trade name: SIM 647 3.0)
- 3-mercaptopropyldiethoxymethoxysilane made by Azmax Co., Ltd .: trade name: SIM 647 3.0
- N- (3-trimethoxysilylpropyl) urea (made by Azmax Co., Ltd .: trade name SIU9058.0), N- (3-diethoxymethoxysilylpropyl) urea, N- (3-ethoxydimethoxysilylpropyl) Urea, N- (3-tripropoxysilylpropyl) urea, N- (3-diethoxypropoxysilylpropyl) urea, N- (3-ethoxydipropoxysilylpropyl) urea, N- (3-dimethoxypropoxysilylpropyl) Urea, N- (3- methoxy di Propoxysilylpropyl) urea, N- (3-trimethoxysilylethyl) urea, N- (3-ethoxydimethoxysilylethyl) urea, N- (3-tripropoxysilyleth
- silane coupling agent as a silane coupling agent, from the viewpoint of storage stability, phenylsilanetriol, trimethoxyphenylsilane, trimethoxy (p-tolyl) silane, diphenylsilanediol, dimethoxydiphenylsilane, diethoxy Diphenylsilane, dimethoxydi-p-tolylsilane, triphenylsilanol, and the following formula:
- the silane coupling agent which has a structure represented by these is preferable.
- the blending amount in the case of using a silane coupling agent is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor.
- the negative photosensitive resin composition of the present embodiment may optionally contain a sensitizer in order to improve the photosensitivity.
- the sensitizer include Michler's ketone, 4,4′-bis (diethylamino) benzophenone, 2,5-bis (4′-diethylaminobenzal) cyclopentane, 2,6-bis (4′-diethylaminobenzal) ) Cyclohexanone, 2,6-bis (4'-diethylaminobenzal) -4-methylcyclohexanone, 4,4'-bis (dimethylamino) chalcone, 4,4'-bis (diethylamino) chalcone, p-dimethylaminocinnana Myrylene indanone, p-dimethylaminobenzylidene indanone, 2- (p-dimethylaminophenylbiphenylene) -benzothiazole, 2- (p-dimethylaminophenylvinylene
- the compounding amount is preferably 0.1 to 25 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor.
- the negative photosensitive resin composition may optionally contain a monomer having a photopolymerizable unsaturated bond in order to improve the resolution of the relief pattern.
- a monomer having a photopolymerizable unsaturated bond in order to improve the resolution of the relief pattern.
- a (meth) acrylic compound which undergoes a radical polymerization reaction by a photopolymerization initiator is preferable, and although not particularly limited thereto, ethylene glycol or polyethylene such as diethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, etc.
- Mono- or di-acrylates and methacrylates of glycols Mono- or di-acrylates and methacrylates of propylene glycol or polypropylene glycol, mono-, di- or triacrylates and methacrylates of glycerol, cyclohexane diacrylates and dimethacrylates, diacrylates of 1,4-butanediol Dimethacrylate, diacrylate and dimethacrylate of 1,6-hexanediol, diacrylate of neopentyl glycol And dimethacrylates, mono- or diacrylates and methacrylates of bisphenol A, benzene trimethacrylate, isobornyl acrylate and methacrylate, acrylamide and its derivatives, methacrylamide and its derivatives, trimethylolpropane triacrylate and methacrylate, glycerol di- or Mention may be made of compounds such as triacrylates and methacrylates, di-, tri- or tetra-acrylates
- the blending amount of the photopolymerizable unsaturated bond is ( A) The amount is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the polyimide precursor.
- a thermal polymerization inhibitor may optionally be included.
- thermal polymerization inhibitor As a thermal polymerization inhibitor, hydroquinone, N-nitrosodiphenylamine, p-tert-butylcatechol, phenothiazine, N-phenylnaphthylamine, ethylenediaminetetraacetic acid, 1,2-cyclohexanediaminetetraacetic acid, glycol ether diamine tetraacetic acid, 2, 6 -Di-tert-butyl-p-methylphenol, 5-nitroso-8-hydroxyquinoline, 1-nitroso-2-naphthol, 2-nitroso-1-naphthol, 2-nitroso-5- (N-ethyl-N-) Sulfopropylamino) phenol, N-nitroso-N-phenylhydroxylamine ammonium salt, N-nitroso-N (1-naphthyl) hydroxylamine ammonium salt and the like are used.
- (2) exposing the resin layer A cured relief pattern comprising the steps of: (3) developing the resin layer after exposure to form a relief pattern; and (4) heating the relief pattern to form a cured relief pattern.
- the negative photosensitive resin composition of this embodiment is apply
- a coating method a method conventionally used for coating a photosensitive resin composition, for example, a method of coating by a spin coater, a bar coater, a blade coater, a curtain coater, a screen printer, etc., spray coating by a spray coater A method etc. can be used.
- the coating film containing the photosensitive resin composition can be dried.
- a drying method methods such as air drying, heat drying with an oven or a hot plate, vacuum drying and the like are used. Specifically, when air drying or heat drying is performed, drying can be performed at 20 ° C. to 140 ° C. for 1 minute to 1 hour.
- the photosensitive resin layer can be formed on the substrate.
- post exposure bake (PEB) and / or post development bake may be performed according to any combination of temperature and time, as necessary, for the purpose of improving photosensitivity and the like.
- the range of baking conditions is that the temperature is 40 ° C. to 120 ° C., and the time is preferably 10 seconds to 240 seconds, but unless the various properties of the photosensitive resin composition of this embodiment are inhibited, It is not limited to this range.
- Relief pattern formation process At this process, an unexposed part is developed and removed among photosensitive resin layers after exposure.
- a developing method for developing the photosensitive resin layer after exposure any of known methods for developing a photoresist, for example, a rotary spray method, a paddle method, an immersion method accompanied by ultrasonic treatment and the like can be used. You can use it by selecting the method.
- post-development baking may be performed at any temperature and time combination, as necessary, for the purpose of adjusting the shape of the relief pattern and the like.
- a good solvent for the negative photosensitive resin composition for example, a good solvent for the negative photosensitive resin composition, or a combination of the good solvent and the poor solvent is preferable.
- the good solvent for example, N-methyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N, N-dimethylacetamide, cyclopentanone, cyclohexanone, ⁇ -butyrolactone, ⁇ -acetyl- ⁇ -butyrolactone and the like are preferable. .
- the poor solvent for example, toluene, xylene, methanol, ethanol, isopropyl alcohol, ethyl lactate, propylene glycol methyl ether acetate, water and the like are preferable.
- a good solvent and a poor solvent are mixed and used, it is preferable to adjust the ratio of the poor solvent to the good solvent by the solubility of the polymer in the negative photosensitive resin composition.
- two or more types of each solvent for example, several types may be used in combination.
- the relief pattern obtained by the above development is heated to dilute the photosensitive component, and (A) a curing relief consisting of polyimide by imidizing the polyimide precursor. Convert to a pattern.
- a curing relief consisting of polyimide by imidizing the polyimide precursor.
- various methods can be selected, such as using a hot plate, using an oven, using a temperature rising oven capable of setting a temperature program, and the like. The heating can be performed, for example, at 170 ° C. to 400 ° C. for 30 minutes to 5 hours.
- the atmosphere gas at the time of heat curing air may be used, or an inert gas such as nitrogen or argon may be used.
- the present embodiment also provides a semiconductor device having a cured relief pattern obtained by the above-described method for producing a cured relief pattern. Therefore, a semiconductor device can be provided which has a substrate which is a semiconductor element and a cured relief pattern of polyimide formed on the substrate by the above-described method of producing a cured relief pattern.
- the present invention can also be applied to a method of manufacturing a semiconductor device using a semiconductor element as a base material and including the method of manufacturing a cured relief pattern described above as part of the process.
- the semiconductor device of the present embodiment is a semiconductor having a surface protection film, an interlayer insulation film, an insulation film for rewiring, a protection film for a flip chip device, or a bump structure, which is formed by the above-mentioned method of manufacturing a hardening relief pattern. It can be formed as a protective film or the like of the device and combined with a known method of manufacturing a semiconductor device.
- the present embodiment provides a display device comprising a display element and a cured film provided above the display element, wherein the cured film is the above-mentioned cured relief pattern.
- the cured relief pattern may be laminated in direct contact with the display element, or may be laminated with another layer interposed therebetween.
- the cured film there can be mentioned surface protective film of TFT liquid crystal display element and color filter element, insulating film, flattening film, projection for MVA type liquid crystal display device, and partition wall for organic EL element cathode. .
- the negative photosensitive resin composition of the present embodiment is used in applications such as interlayer insulation of multilayer circuits, cover coats of flexible copper clad plates, solder resist films, liquid crystal alignment films, etc. in addition to application to semiconductor devices as described above. It is also useful.
- Weight Average Molecular Weight The weight average molecular weight (Mw) of each resin was measured using a gel permeation chromatography method (in terms of standard polystyrene) under the following conditions.
- the coating film was irradiated with 500 mJ / cm 2 of energy by Prisma GHI (manufactured by Ultratech Co., Ltd.) using a mask with a test pattern.
- this coating film is spray developed with a coater developer (D-Spin 60A type, manufactured by SOKUDO) using cyclopentanone as a developer and 2.38% TMAH as a positive type.
- the relief pattern on Cu was obtained by rinsing with propylene glycol methyl ether acetate in the case of the negative type and with pure water in the case of the positive type.
- the resulting reaction solution was added to 3 L of ethyl alcohol to form a precipitate consisting of a crude polymer.
- the resulting crude polymer was separated by filtration and dissolved in 1.5 L of tetrahydrofuran to obtain a crude polymer solution.
- the obtained crude polymer solution was dropped into 28 L of water to precipitate a polymer, and the obtained precipitate was separated by filtration and then vacuum dried to obtain a powdery polymer (polymer A-1).
- the molecular weight of the polymer (A-1) was measured by gel permeation chromatography (in terms of standard polystyrene), and the weight average molecular weight (Mw) was 20,000.
- Production Example 2 (A) Synthesis of Polymer A-2 as Polyimide Precursor In place of 155.1 g of 4,4′-oxydiphthalic acid dianhydride (ODPA) in Production Example 1, 3,3 ′, 4,4 A reaction was carried out in the same manner as in the above-mentioned Production Example 1 except that 147.1 g of '-biphenyltetracarboxylic acid dianhydride (BPDA) was used, to obtain a polymer (A-2). The molecular weight of the polymer (A-2) was measured by gel permeation chromatography (in terms of standard polystyrene), and the weight average molecular weight (Mw) was 22,000.
- BPDA '-biphenyltetracarboxylic acid dianhydride
- Production Example 3 (A) Synthesis of Polymer A-3 as Polyimide Precursor 50.2 g of p-phenylenediamine was used in place of 93.0 g of 4,4′-oxydianiline (ODA) in Production Example 1 The reaction was carried out in the same manner as described in Production Example 1 except for the above, to obtain a polymer (A-3).
- the molecular weight of the polymer (A-3) was measured by gel permeation chromatography (in terms of standard polystyrene), and the weight average molecular weight (Mw) was 19,000.
- the separable flask was cooled by a water bath of 15 to 20.degree.
- the time required for the dropwise addition was 40 minutes, and the temperature of the reaction solution was 30 ° C. at maximum.
- 30.8 g (0.2 mol) of 1,2-cyclohexyldicarboxylic acid anhydride is added to the reaction solution, and stirred at room temperature for 15 hours to allow 99% of all amine end groups of the polymer chain to be carboxy Sealed with a cyclohexylamide group.
- the reaction rate at this time can be easily calculated by monitoring the amount of remaining 1,2-cyclohexyldicarboxylic acid anhydride by high performance liquid chromatography (HPLC).
- the crude polybenzoxazole precursor obtained above is redissolved in ⁇ -butyrolactone (GBL) and then treated with a cation exchange resin and an anion exchange resin, and the solution obtained thereby is ion-exchanged water
- the precipitated polymer was separated by filtration, washed with water and vacuum dried to obtain a purified polybenzoxazole precursor (polymer A-4).
- C-1 1-phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) -oxime
- C-2 Irgacure OXE01 (manufactured by BASF, trade name)
- E-1 1- (tert-butoxycarbonyl) -4-piperidinemethanol (made by Tokyo Chemical Industry Co., Ltd.)
- E-2 3- (carbobenzoxyamino) -1-propanol (manufactured by Tokyo Chemical Industry Co., Ltd.)
- E-3 N-[(9H-fluoren-9-ylmethoxy) carbonyl] -D-serine (made by Tokyo Chemical Industry Co., Ltd.)
- E-4 1- (tert-butoxycarbonyl) -4-hydroxypiperidine (manufactured by Tokyo Chemical Industry Co., Ltd.)
- E-5 40 g of 4-hydroxy-4-phenylpiperidine (manufactured by Tokyo Kasei Kogyo Co., Ltd.) and 300 g of ethanol were added to a 3 L eggplant-shaped flask and mixed and stirred to obtain a uniform solution.
- E-6 N ⁇ - (tert-butoxycarbonyl) -L-triptophanol (manufactured by Tokyo Chemical Industry Co., Ltd.)
- E-7 N- (tert-butoxycarbonyl) -L-serine (manufactured by Tokyo Chemical Industry Co., Ltd.)
- E-8 1- (tert-butoxycarbonyl) -4-piperidine carboxylic acid (made by Tokyo Chemical Industry Co., Ltd.)
- E-9 N- (tert-butoxycarbonyl) -4-hydroxyaniline (manufactured by Sigma Aldrich)
- E-10 2- (2-aminoethoxy) ethanol (manufactured by Tokyo Chemical Industry Co., Ltd.)
- Example 1 A negative photosensitive resin composition was prepared by using the polymer A-1 by the following method, and the prepared composition was evaluated.
- A 100 g of polymer A-1 as a polyimide precursor, 5 B of compound B-1 as a (B) base-protected compound, 1-phenyl-1,2-propanedione-2- (C) as a photopolymerization initiator 3 g of O-ethoxycarbonyl) -oxime (hereinafter referred to as PDO, corresponding to a photopolymerization initiator C-1): 3 g was dissolved in 150 g of ⁇ -butyl lactone (hereinafter referred to as GBL). The viscosity of the resulting solution was adjusted to about 30 poise by further adding a small amount of GBL to obtain a negative photosensitive resin composition.
- the composition was evaluated according to the method described above. The results are shown in Table 1.
- Examples 2 to 15, Comparative Examples 1 and 2 A negative photosensitive resin composition was prepared in the same manner as in Example 1 except that it was prepared with the components and compounding ratios as shown in Tables 1 and 2, and was evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.
- the Cu surface was evaluated as "Poor” in void evaluation, resolution evaluation, and chemical resistance evaluation.
- the negative photosensitive resin compositions of Examples 2 to 15 were all "OK” or more in all of the Cu surface void evaluation, the resolution evaluation, and the chemical resistance evaluation.
- Example 6 using polymers A-1 and A-2 as the polyimide precursor (A) and Example 7 using polymers A-1 and A-3, particularly excellent Cu surface void evaluation and The resolution evaluation was obtained.
- the base-protected compound (B) when adding 5 parts by mass of B-2, B-3 or B-4 based on 100 parts by mass of the polymer, a particularly excellent void suppression effect on the Cu surface is obtained. It was done.
- Comparative Example 1 using B-6 and Comparative Example 2 using B-7 the evaluation of resolution was “impossible”.
- Example 16 A negative photosensitive resin composition was prepared by using the polymer A-1 by the following method, and the prepared composition was evaluated.
- A Polymer A-1 as a polyimide precursor: 100 g
- D Compound D-1 as an ether compound: 5 g
- C 1-phenyl-1,2-propanedione-2- (O) as a photopolymerization initiator 3 g of -ethoxycarbonyl) -oxime (hereinafter referred to as PDO, corresponding to photosensitizer C-1): was dissolved in 150 g of ⁇ -butyl lactone (hereinafter referred to as GBL).
- GBL ⁇ -butyl lactone
- the viscosity of the resulting solution was adjusted to about 30 poise by further adding a small amount of GBL to obtain a negative photosensitive resin composition.
- the composition was evaluated according to the method described above. The results are shown in Table 3.
- Examples 17 to 31 and Comparative Examples 5 to 7 A negative photosensitive resin composition was prepared in the same manner as in Example 16 except that the components and the compounding ratio as shown in Table 1 were prepared, and evaluation was performed in the same manner as in Example 16. The results are shown in Tables 3 and 4.
- a positive photosensitive resin composition was prepared by using the polymer (A-4) by the following method, and the prepared photosensitive resin composition was evaluated.
- 100 g of polymer A-4 which is a polyoxazole precursor as a polymer
- 5 g of D-4 as a compound, the following chemical formula (22) as a photosensitizer
- 100 g of GBL 20 g of a photosensitive diazoquinone compound (corresponding to C-2, manufactured by Toyo Gosei Co., Ltd.) was obtained.
- the viscosity of the resulting solution was adjusted to about 20 poise by further adding a small amount of GBL to obtain a positive photosensitive resin composition.
- the composition was evaluated according to the method described above. The results are shown in Table 4.
- Comparative Example 4 The same positive photosensitive resin composition as in Comparative Example 3 was prepared except that the ether compound was changed to D-4 and prepared using D-5, and evaluation was performed in the same manner as in Comparative Example 3. The results are shown in Table 4.
- the negative photosensitive resin composition of Example 16 As is apparent from Tables 3 and 4, in the negative photosensitive resin composition of Example 16, the Cu surface void evaluation is “OK”, the resolution evaluation is “Good”, and the chemical resistance evaluation is “OK”. It became “. Similarly, the negative photosensitive resin compositions of Examples 17 to 31 were all "OK” or more in all of the Cu surface void evaluation, the resolution evaluation, and the chemical resistance evaluation. In particular, in Example 24 in which the polymers A-1 and A-2 were used as the (A) polyimide precursor, and in Example 25 in which the polymers A-1 and A-3 were used, particularly excellent resolution was obtained. It was done.
- Example 32 A negative photosensitive resin composition was prepared by using the polymer A-1 by the following method, and the prepared composition was evaluated.
- PDO 1-phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) -oxime
- PDO 1-phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) -oxime
- PDO 1-phenyl-1,
- Examples 33 to 47, Comparative Examples 8 to 11 A negative photosensitive resin composition was prepared in the same manner as in Example 32 except that the components and the compounding ratio were as shown in Tables 5 and 6, and the evaluation was performed in the same manner as in Example 32. The results are shown in Tables 5 and 6.
- Example 33 in which the polymers A-1 and A-2 were used as the resin (A) and Example 34 in which the polymers A-1 and A-3 were used, particularly excellent resolution was obtained.
- E-4, E-5, and E-6 are used as the (E) urethane compound, and when 5 parts by mass is added based on 100 parts by mass of the polymer, a particularly excellent void suppression effect on the Cu surface is obtained.
- the negative photosensitive resin composition according to the present embodiment By using the negative photosensitive resin composition according to the present embodiment, a cured relief pattern having high resolution can be obtained, and generation of voids on the Cu surface can be suppressed.
- the negative photosensitive resin composition of the present embodiment can be suitably used, for example, in the field of photosensitive materials useful for producing electric and electronic materials such as semiconductor devices and multilayer wiring boards.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Materials For Photolithography (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
Description
[1]
(A)ポリイミド前駆体;
(B)酸又は塩基又は熱で脱保護される基で保護された複数のアミノ基を有し、分子量が250~600であり、上記保護された複数のアミノ基が脂肪族鎖状もしくは脂環式アミノ基であり、かつ、溶解度パラメーターの値が20.0以上24.0以下である、塩基保護化合物;及び
(C)光重合開始剤
を含む、ネガ型感光性樹脂組成物。
[2]
上記保護された複数のアミノ基は、tert-ブトキシカルボニル基で保護されたアミノ基である、項目1に記載のネガ型感光性樹脂組成物。
[3]
上記(A)ポリイミド前駆体が、下記一般式(2):
で表される構造単位を有するポリイミド前駆体を含む、項目1又は2のいずれか一項に記載のネガ型感光性樹脂組成物。
[4]
上記一般式(2)において、R1及びR2の少なくとも一方は、下記一般式(3):
[5]
上記(A)ポリイミド前駆体が、下記一般式(4):
で表される構造単位を有するポリイミド前駆体を含む、項目3又は4に記載のネガ型感光性樹脂組成物。
[6]
上記(A)ポリイミド前駆体が、下記一般式(5):
で表される構造単位を有するポリイミド前駆体を含む、項目3又は4に記載のネガ型感光性樹脂組成物。
[7]
上記(A)ポリイミド前駆体が、下記一般式(6):
で表される構造単位を有するポリイミド前駆体を含む、項目3又は4に記載のネガ型感光性樹脂組成物。
[8]
上記(A)ポリイミド前駆体が、下記一般式(4):
で表される構造単位を有するポリイミド前駆体と、
下記一般式(5):
で表される構造単位を有するポリイミド前駆体の両方を含む、項目3又は4に記載のネガ型感光性樹脂組成物。
[9]
上記(A)ポリイミド前駆体が、下記一般式(4):
で表される構造単位を有するポリイミド前駆体、と
下記一般式(6):
で表される構造単位を有するポリイミド前駆体の両方を含む、項目3又は4に記載のネガ型感光性樹脂組成物。
[10]
100質量部の上記(A)ポリイミド前駆体と、
上記(A)ポリイミド前駆体100質量部を基準として0.1~30質量部の上記(B)塩基保護化合物と、
上記(A)ポリイミド前駆体100質量部を基準として0.1~20質量部の上記(C)光重合開始剤と
を含む、項目1~9のいずれか一項に記載のネガ型感光性樹脂組成物。
[11]
(A)ポリイミド前駆体;
(D)酸又は塩基又は熱で脱保護される基で保護された一つ又は複数のアミノ基と、下記一般式(1):
で表される一つ又は複数の構造単位を分子内に含む、エーテル化合物;及び
(C)光重合開始剤
を含む、ネガ型感光性樹脂組成物。
[12]
上記(D)エーテル化合物は、分子中に上記一般式(1)で表される構造単位を二つ以上含む、項目11に記載のネガ型感光性樹脂組成物。
[13]
上記保護された一つ又は複数のアミノ基は、tert-ブトキシカルボニル基で保護されたアミノ基である、項目11又は12に記載のネガ型感光性樹脂組成物。
[14]
上記(A)ポリイミド前駆体が、下記一般式(2):
で表される構造単位を有するポリイミド前駆体を含む、項目11~13のいずれか一項に記載のネガ型感光性樹脂組成物。
[15]
上記一般式(2)において、R1及びR2の少なくとも一方は、下記一般式(3):
[16]
上記(A)ポリイミド前駆体が、下記一般式(4):
で表される構造単位を有するポリイミド前駆体を含む、項目14又は15に記載のネガ型感光性樹脂組成物。
[17]
上記(A)ポリイミド前駆体が、下記一般式(5):
で表される構造単位を有するポリイミド前駆体を含む、項目14又は15に記載のネガ型感光性樹脂組成物。
[18]
上記(A)ポリイミド前駆体が、下記一般式(6):
で表される構造単位を有するポリイミド前駆体を含む、項目14又は15に記載のネガ型感光性樹脂組成物。
[19]
上記(A)ポリイミド前駆体が、下記一般式(4):
で表される構造単位を有するポリイミド前駆体と、
下記一般式(5):
で表される構造単位を有するポリイミド前駆体の両方を含む、項目14又は15に記載のネガ型感光性樹脂組成物。
[20]
上記(A)ポリイミド前駆体が、下記一般式(4):
で表される構造単位を有するポリイミド前駆体、と
下記一般式(6):
で表される構造単位を有するポリイミド前駆体の両方を含む、項目14又は15に記載のネガ型感光性樹脂組成物。
[21]
100質量部の上記(A)ポリイミド前駆体と、
上記(A)ポリイミド前駆体100質量部を基準として0.1~30質量部の上記(D)エーテル化合物と、
上記(A)ポリイミド前駆体100質量部を基準として0.1~20質量部の上記(C)光重合開始剤と
を含む、項目11~20のいずれか一項に記載のネガ型感光性樹脂組成物。
[22]
(A)ポリイミド前駆体;
(E)酸又は塩基又は熱で脱保護される基で保護された一つ又は複数のアミノ基と、ヒドロキシル基を分子内に少なくとも一つ含むウレタン化合物;及び
(C)光重合開始剤
を含む、ネガ型感光性樹脂組成物。
[23]
上記(E)ウレタン化合物は、脂肪族鎖状若しくは脂環式アミノ基に結合したtert-ブトキシカルボニル基、ベンジルオキシカルボニル基又は9-フルオレニルメチルオキシカルボニル(Fmoc)基を分子内に少なくとも一つ有する、項目22に記載のネガ型感光性樹脂組成物。
[24]
上記(E)ウレタン化合物の上記保護された一つ又は複数のアミノ基の窒素原子の少なくとも一つが、分子内のヒドロキシル基のγ位若しくはε位にある、項目22又は23に記載のネガ型感光性樹脂組成物。
[25]
上記保護された一つ又は複数のアミノ基は、tert-ブトキシカルボニル基で保護されたアミノ基である、項目22~24のいずれか一項に記載のネガ型感光性樹脂組成物。
[26]
上記(A)ポリイミド前駆体が、下記一般式(2):
で表される構造単位を有するポリイミド前駆体を含む、項目22~25のいずれか一項に記載のネガ型感光性樹脂組成物。
[27]
上記一般式(2)において、R1及びR2の少なくとも一方は、下記一般式(3):
[28]
上記(A)ポリイミド前駆体が、下記一般式(4):
で表される構造単位を有するポリイミド前駆体を含む、項目26又は27に記載のネガ型感光性樹脂組成物。
[29]
上記(A)ポリイミド前駆体が、下記一般式(5):
で表される構造単位を有するポリイミド前駆体を含む、項目26又は27に記載のネガ型感光性樹脂組成物。
[30]
上記(A)ポリイミド前駆体が、下記一般式(6):
で表される構造単位を有するポリイミド前駆体を含む、項目26又は27に記載のネガ型感光性樹脂組成物。
[31]
上記(A)ポリイミド前駆体が、下記一般式(4):
で表される構造単位を有するポリイミド前駆体と、
下記一般式(5):
で表される構造単位を有するポリイミド前駆体の両方を含む、項目26又は27に記載のネガ型感光性樹脂組成物。
[32]
上記(A)ポリイミド前駆体が、下記一般式(4):
で表される構造単位を有するポリイミド前駆体、と
下記一般式(6):
で表される構造単位を有するポリイミド前駆体の両方を含む、項目26又は27に記載のネガ型感光性樹脂組成物。
[33]
上記(E)ウレタン化合物が、Nα-(tert-ブトキシカルボニル)-L-トリプトファノール、1-(tert-ブトキシカルボニル)-4-ヒドロキシピペリジン、又は下記化学式(1):
[34]
100質量部の上記(A)ポリイミド前駆体と、
上記(A)ポリイミド前駆体100質量部を基準として0.1~30質量部の上記(E)ウレタン化合物と、
上記(A)ポリイミド前駆体100質量部を基準として0.1~20質量部の上記(C)光重合開始剤と
を含む、項目22~33のいずれか一項に記載のネガ型感光性樹脂組成物。
[35]
項目1~34のいずれか一項に記載のネガ型感光性樹脂組成物を硬化するポリイミドの製造方法。
[36]
(1)項目1~34のいずれか一項に記載のネガ型感光性樹脂組成物を基板上に塗布して、感光性樹脂層を上記基板上に形成する工程と、
(2)上記感光性樹脂層を露光する工程と、
(3)露光後の上記感光性樹脂層を現像して、レリーフパターンを形成する工程と、
(4)上記レリーフパターンを加熱処理して、硬化レリーフパターンを形成する工程と
を含む、硬化レリーフパターンの製造方法。 The present inventors solve the above problems by combining a polyimide precursor and a photopolymerization initiator with a specific compound having an acid or base or an amino group protected by a thermally deprotected group. It has been found that the present invention can be accomplished. Examples of embodiments of the present invention are listed below.
[1]
(A) polyimide precursor;
(B) A plurality of amino groups protected by an acid or a base or a group to be deprotected by heat, having a molecular weight of 250 to 600, and the plurality of protected amino groups having an aliphatic chain or alicyclic structure A negative photosensitive resin composition comprising a base-protected compound which is an amino group of the formula and has a solubility parameter value of 20.0 to 24.0; and (C) a photopolymerization initiator.
[2]
The negative photosensitive resin composition according to item 1, wherein the plurality of protected amino groups are amino groups protected by a tert-butoxycarbonyl group.
[3]
The (A) polyimide precursor is represented by the following general formula (2):
The negative photosensitive resin composition as described in any one of claim | item 1 or 2 containing the polyimide precursor which has a structural unit represented by these.
[4]
In the general formula (2), at least one of R 1 and R 2 has the following general formula (3):
[5]
The (A) polyimide precursor is represented by the following general formula (4):
5. The negative photosensitive resin composition according to item 3 or 4, comprising a polyimide precursor having a structural unit represented by
[6]
The (A) polyimide precursor is represented by the following general formula (5):
5. The negative photosensitive resin composition according to item 3 or 4, comprising a polyimide precursor having a structural unit represented by
[7]
The (A) polyimide precursor is represented by the following general formula (6):
5. The negative photosensitive resin composition according to item 3 or 4, comprising a polyimide precursor having a structural unit represented by
[8]
The (A) polyimide precursor is represented by the following general formula (4):
A polyimide precursor having a structural unit represented by
The following general formula (5):
5. The negative photosensitive resin composition according to item 3 or 4, which comprises both of the polyimide precursors having a structural unit represented by
[9]
The (A) polyimide precursor is represented by the following general formula (4):
A polyimide precursor having a structural unit represented by the following general formula (6):
5. The negative photosensitive resin composition according to item 3 or 4, which comprises both of the polyimide precursors having a structural unit represented by
[10]
100 parts by mass of the above (A) polyimide precursor
0.1 to 30 parts by mass of the above base protection compound (B) with respect to 100 parts by mass of the above (A) polyimide precursor,
The negative photosensitive resin according to any one of items 1 to 9, comprising 0.1 to 20 parts by mass of the (C) photopolymerization initiator based on 100 parts by mass of the (A) polyimide precursor Composition.
[11]
(A) polyimide precursor;
(D) One or more amino groups protected by an acid or a base or a group which is deprotected by heat, and the following general formula (1):
A negative photosensitive resin composition comprising an ether compound containing in the molecule one or more structural units represented by and a photopolymerization initiator (C).
[12]
12. The negative photosensitive resin composition according to item 11, wherein the (D) ether compound contains two or more structural units represented by the general formula (1) in a molecule.
[13]
13. The negative photosensitive resin composition according to item 11 or 12, wherein the one or more protected amino groups is an amino group protected by a tert-butoxycarbonyl group.
[14]
The (A) polyimide precursor is represented by the following general formula (2):
The negative photosensitive resin composition according to any one of items 11 to 13, comprising a polyimide precursor having a structural unit represented by
[15]
In the general formula (2), at least one of R 1 and R 2 has the following general formula (3):
[16]
The (A) polyimide precursor is represented by the following general formula (4):
The negative photosensitive resin composition as described in 14 or 15 containing the polyimide precursor which has a structural unit represented by these.
[17]
The (A) polyimide precursor is represented by the following general formula (5):
The negative photosensitive resin composition as described in 14 or 15 containing the polyimide precursor which has a structural unit represented by these.
[18]
The (A) polyimide precursor is represented by the following general formula (6):
The negative photosensitive resin composition as described in 14 or 15 containing the polyimide precursor which has a structural unit represented by these.
[19]
The (A) polyimide precursor is represented by the following general formula (4):
A polyimide precursor having a structural unit represented by
The following general formula (5):
The negative photosensitive resin composition as described in 14 or 15 which contains both of the polyimide precursor which has a structural unit represented by these.
[20]
The (A) polyimide precursor is represented by the following general formula (4):
A polyimide precursor having a structural unit represented by the following general formula (6):
The negative photosensitive resin composition as described in 14 or 15 which contains both of the polyimide precursor which has a structural unit represented by these.
[21]
100 parts by mass of the above (A) polyimide precursor
0.1 to 30 parts by mass of the above (D) ether compound, based on 100 parts by mass of the above (A) polyimide precursor,
The negative photosensitive resin according to any one of items 11 to 20, comprising 0.1 to 20 parts by mass of the (C) photopolymerization initiator based on 100 parts by mass of the (A) polyimide precursor Composition.
[22]
(A) polyimide precursor;
(E) One or more amino groups protected by an acid or a base or a thermally deprotected group, and a urethane compound containing at least one hydroxyl group in the molecule; and (C) a photopolymerization initiator , Negative photosensitive resin composition.
[23]
The (E) urethane compound has at least one tert-butoxycarbonyl group, benzyloxycarbonyl group or 9-fluorenylmethyloxycarbonyl (Fmoc) group bonded to an aliphatic chain or alicyclic amino group in the molecule. Item 22. The negative photosensitive resin composition according to Item 22.
[24]
24. The negative photosensitive resin according to item 22 or 23, wherein at least one of the nitrogen atoms of the protected one or more amino groups of the (E) urethane compound is at the γ or ε position of the hydroxyl group in the molecule. Resin composition.
[25]
The negative photosensitive resin composition according to any one of items 22 to 24, wherein the one or more protected amino groups is an amino group protected by a tert-butoxycarbonyl group.
[26]
The (A) polyimide precursor is represented by the following general formula (2):
The negative photosensitive resin composition according to any one of items 22 to 25, comprising a polyimide precursor having a structural unit represented by
[27]
In the general formula (2), at least one of R 1 and R 2 has the following general formula (3):
[28]
The (A) polyimide precursor is represented by the following general formula (4):
The negative photosensitive resin composition as described in 26 or 27 containing the polyimide precursor which has a structural unit represented by these.
[29]
The (A) polyimide precursor is represented by the following general formula (5):
The negative photosensitive resin composition as described in 26 or 27 containing the polyimide precursor which has a structural unit represented by these.
[30]
The (A) polyimide precursor is represented by the following general formula (6):
The negative photosensitive resin composition as described in 26 or 27 containing the polyimide precursor which has a structural unit represented by these.
[31]
The (A) polyimide precursor is represented by the following general formula (4):
A polyimide precursor having a structural unit represented by
The following general formula (5):
The negative photosensitive resin composition as described in 26 or 27 containing both of the polyimide precursor which has a structural unit represented by these.
[32]
The (A) polyimide precursor is represented by the following general formula (4):
A polyimide precursor having a structural unit represented by the following general formula (6):
The negative photosensitive resin composition as described in 26 or 27 containing both of the polyimide precursor which has a structural unit represented by these.
[33]
The (E) urethane compound is Nα- (tert-butoxycarbonyl) -L-triptophanol, 1- (tert-butoxycarbonyl) -4-hydroxypiperidine, or the following chemical formula (1):
[34]
100 parts by mass of the above (A) polyimide precursor
0.1 to 30 parts by mass of the (E) urethane compound, based on 100 parts by mass of the (A) polyimide precursor,
The negative photosensitive resin according to any one of items 22 to 33, comprising 0.1 to 20 parts by mass of the (C) photopolymerization initiator based on 100 parts by mass of the (A) polyimide precursor Composition.
[35]
34. A method for producing a polyimide, which cures the negative photosensitive resin composition according to any one of items 1 to 34.
[36]
(1) applying the negative photosensitive resin composition according to any one of items 1 to 34 on a substrate to form a photosensitive resin layer on the substrate;
(2) exposing the photosensitive resin layer;
(3) developing the photosensitive resin layer after exposure to form a relief pattern;
(4) A method for producing a cured relief pattern, comprising the steps of: heat-treating the relief pattern to form a cured relief pattern.
なお、本明細書を通じ、一般式において同一符号で表されている構造は、分子中に複数存在する場合に、互いに同一であるか、又は異なっていてもよい。 Hereinafter, modes for carrying out the present invention (hereinafter, abbreviated as “embodiments”) will be described in detail. The present invention is not limited to the following embodiments, and various modifications can be made within the scope of the present invention.
Throughout the specification, the structures represented by the same symbol in the general formula may be identical to or different from each other when a plurality of structures are present in the molecule.
第一の本実施形態に係るネガ型感光性樹脂組成物は、
(A)ポリイミド前駆体;
(B)酸又は塩基又は熱で脱保護される基で保護された複数のアミノ基を有し、分子量が250~600であり、上記保護された複数のアミノ基が脂肪族鎖状もしくは脂環式アミノ基であり、かつ、溶解度パラメーターの値が20.0以上24.0以下である、塩基保護化合物;及び
(C)光重合開始剤を含む。
第二の本実施形態に係るネガ型感光性樹脂組成物は、
(A)ポリイミド前駆体;
(D)酸又は塩基又は熱で脱保護される基で保護された一つ又は複数のアミノ基と、下記一般式(1):
で表される一つ又は複数の構造単位とを分子内に含む、エーテル化合物;及び
(C)光重合開始剤を含む。
第三の本実施形態に係るネガ型感光性樹脂組成物は、
(A)ポリイミド前駆体;
(E)酸又は塩基又は熱で脱保護される基で保護された一つ又は複数のアミノ基と、ヒドロキシル基を分子内に少なくとも一つ含むウレタン化合物;及び
(C)光重合開始剤を含む。 <Negative photosensitive resin composition>
The negative photosensitive resin composition according to the first embodiment is
(A) polyimide precursor;
(B) A plurality of amino groups protected by an acid or a base or a group to be deprotected by heat, having a molecular weight of 250 to 600, and the plurality of protected amino groups having an aliphatic chain or alicyclic structure A base-protected compound which is an amino group of the formula and has a solubility parameter value of 20.0 or more and 24.0 or less; and (C) a photopolymerization initiator.
The negative photosensitive resin composition according to the second present embodiment is
(A) polyimide precursor;
(D) One or more amino groups protected by an acid or a base or a group which is deprotected by heat, and the following general formula (1):
And an ether compound containing in the molecule thereof one or more structural units represented by: and (C) a photopolymerization initiator.
The negative photosensitive resin composition according to the third embodiment is:
(A) polyimide precursor;
(E) One or more amino groups protected by an acid or a base or a thermally deprotected group, and a urethane compound containing at least one hydroxyl group in the molecule; and (C) a photopolymerization initiator .
第一から第三の本実施形態における(A)ポリイミド前駆体は、ネガ型感光性樹脂組成物に含まれる樹脂成分であり、加熱環化処理を施すことによってポリイミドに変換される。
ポリイミド前駆体は下記一般式(2)で表される構造を有するポリアミドであることが好ましい。
The polyimide precursor is preferably a polyamide having a structure represented by the following general formula (2).
一般式(2)中、X1で表される4価の有機基は、耐熱性と感光特性とを両立するという点で、好ましくは炭素数6~40の有機基であり、より好ましくは、-COOR1基及び-COOR2基と-CONH-基とが互いにオルト位置にある芳香族基、又は脂環式脂肪族基である。X1で表される4価の有機基として、具体的には、芳香族環を含有する炭素原子数6~40の有機基、例えば、下記一般式(20):
で表される構造を有する基が挙げられるが、これらに限定されるものではない。また、X1の構造は1種でも2種以上の組み合わせでもよい。上記式(20)で表される構造を有するX1基は、耐熱性と感光特性とを両立するという点で特に好ましい。 Although n 1 in the general formula (2) is not limited as long as it is an integer of 2 to 150, it is preferably an integer of 3 to 100, and more preferably 5 to 70, from the viewpoint of the photosensitive properties and mechanical properties of the negative photosensitive resin composition. The integer of is more preferable.
In the general formula (2), the tetravalent organic group represented by X 1 is preferably an organic group having a carbon number of 6 to 40, more preferably, in terms of achieving both heat resistance and photosensitivity. An —COOR 1 group and an —COOR 2 group and an —CONH— group are an aromatic group or an alicyclic aliphatic group in which each other is in the ortho position. Specific examples of the tetravalent organic group represented by X 1 include an aromatic ring-containing organic group having 6 to 40 carbon atoms, for example, the following general formula (20):
Although the group which has a structure represented by these is mentioned, It is not limited to these. The structure of X 1 may be one kind or a combination of two or more kinds. The X 1 group having the structure represented by the above formula (20) is particularly preferable in that both the heat resistance and the photosensitive characteristics are compatible.
で表される構造が挙げられるが、これらに限定されるものではない。また、Y1の構造は1種でも2種以上の組み合わせでもよい。上記式(21)で表される構造を有するY1基は、耐熱性及び感光特性を両立するという点で特に好ましい。 In the general formula (2), the divalent organic group represented by Y 1 is preferably an aromatic group having a carbon number of 6 to 40, in terms of achieving both heat resistance and photosensitivity, and, for example, Following formula (21):
Although the structure represented by these is mentioned, it is not limited to these. The structure of Y 1 may be one kind or a combination of two or more kinds. The Y 1 group having the structure represented by the above formula (21) is particularly preferable in that both the heat resistance and the photosensitive characteristics are compatible.
で表される構造単位を有するポリイミド前駆体であることが好ましい。
一般式(4)において、R1及びR2の少なくともいずれかは、上記一般式(3)で表される1価の有機基であることがより好ましい。(A)ポリイミド前駆体が、一般式(4)で表されるポリイミド前駆体を含むことで、特に解像性の効果が高くなる。 In one embodiment, the (A) polyimide precursor has the following general formula (4):
It is preferable that it is a polyimide precursor which has a structural unit represented by these.
In the general formula (4), at least one of R 1 and R 2 is more preferably a monovalent organic group represented by the above general formula (3). When the (A) polyimide precursor contains the polyimide precursor represented by the general formula (4), the resolution effect is particularly enhanced.
で表される構造単位を有するポリイミド前駆体であることが好ましい。
一般式(5)において、R1及びR2の少なくともいずれかは、上記一般式(3)で表される1価の有機基であることがより好ましい。(A)ポリイミド前駆体が、一般式(4)で表されるポリイミド前駆体に加えて、一般式(5)で表されるポリイミド前駆体を含むことにより、特に解像性の効果がさらに高くなる。その場合、一般式(5)中のR1、R2、及びn1は、一般式(4)中のR1、R2、及びn1とは独立して選択される。 In one embodiment, the (A) polyimide precursor has the following general formula (5):
It is preferable that it is a polyimide precursor which has a structural unit represented by these.
In the general formula (5), at least one of R 1 and R 2 is more preferably a monovalent organic group represented by the above general formula (3). The effect of resolution is particularly high by including the polyimide precursor represented by the general formula (5) in addition to the polyimide precursor represented by the general formula (4) (A) Become. In that case, the general formula (5) R 1, R 2 in, and n 1 is the general formula (4) R 1, R 2 in, and the n 1 are independently selected.
で表される構造単位を有するポリイミド前駆体であることが好ましい。
一般式(6)において、R1及びR2の少なくともいずれかは、上記一般式(3)で表される1価の有機基であることがより好ましい。(A)ポリイミド前駆体が、一般式(4)で表されるポリイミド前駆体に加えて、一般式(6)で表されるポリイミド前駆体を含むことにより、特に解像性の効果がさらに高くなる。その場合、一般式(6)中のR1、R2、及びn1は、一般式(4)中のR1、R2、及びn1とは独立して選択される。 In one embodiment, the (A) polyimide precursor has the following general formula (6):
It is preferable that it is a polyimide precursor which has a structural unit represented by these.
In the general formula (6), at least one of R 1 and R 2 is more preferably a monovalent organic group represented by the above general formula (3). The effect of resolution is particularly high when the polyimide precursor (A) includes the polyimide precursor represented by the general formula (6) in addition to the polyimide precursor represented by the general formula (4) Become. In that case, the general formula (6) R 1, R 2 in, and n 1 is the general formula (4) R 1, R 2 in, and the n 1 are independently selected.
(A)ポリイミド前駆体は、まず前述の4価の有機基X1を含むテトラカルボン酸二無水物と、光重合性の不飽和二重結合を有するアルコール類及び任意に不飽和二重結合を有さないアルコール類とを反応させて、部分的にエステル化したテトラカルボン酸(以下、アシッド/エステル体ともいう)を調製した後、これと、前述の2価の有機基Y1を含むジアミン類とをアミド重縮合させることにより得られる。 (A) Preparation Method of Polyimide Precursor (A) The polyimide precursor is prepared by first using the tetracarboxylic acid dianhydride containing the aforementioned tetravalent organic group X 1 and an alcohol having a photopolymerizable unsaturated double bond. And optionally after reaction with an alcohol having no unsaturated double bond to prepare a partially esterified tetracarboxylic acid (hereinafter also referred to as an acid / ester), and It is obtained by carrying out the amide polycondensation of diamines containing a divalent organic group Y 1 .
本実施形態で、(A)ポリイミド前駆体を調製するために好適に用いられる、4価の有機基X1を含むテトラカルボン酸二無水物としては、上記一般式(20)に示されるテトラカルボン酸二無水物をはじめ、例えば、無水ピロメリット酸、ジフェニルエーテル-3,3’,4,4’-テトラカルボン酸二無水物、ベンゾフェノン-3,3’,4,4’-テトラカルボン酸二無水物、ビフェニル-3,3’,4,4’-テトラカルボン酸二無水物、ジフェニルスルホン-3,3’,4,4’-テトラカルボン酸二無水物、ジフェニルメタン-3,3’,4,4’-テトラカルボン酸二無水物、2,2-ビス(3,4-無水フタル酸)プロパン、2,2-ビス(3,4-無水フタル酸)-1,1,1,3,3,3-ヘキサフルオロプロパン等を、好ましくは無水ピロメリット酸、ジフェニルエーテル-3,3’,4,4’-テトラカルボン酸二無水物、ベンゾフェノン-3,3’,4,4’-テトラカルボン酸二無水物、ビフェニル-3,3’,4,4’-テトラカルボン酸二無水物を挙げることができるが、これらに限定されるものではない。また、これらは単独で用いることができるのは勿論のこと2種以上を混合して用いてもよい。 (Preparation of acid / ester)
The tetracarboxylic acid dianhydride containing a tetravalent organic group X 1 suitably used to prepare the (A) polyimide precursor in this embodiment is a tetracarboxylic acid represented by the above general formula (20). Acid dianhydrides, for example, pyromellitic anhydride, diphenylether-3,3 ', 4,4'-tetracarboxylic dianhydride, benzophenone-3,3', 4,4'-tetracarboxylic dianhydride , Biphenyl-3,3 ', 4,4'-tetracarboxylic acid dianhydride, diphenyl sulfone-3,3', 4,4'-tetracarboxylic acid dianhydride, diphenylmethane-3,3 ', 4, 4'-tetracarboxylic acid dianhydride, 2,2-bis (3,4-phthalic anhydride) propane, 2,2-bis (3,4-phthalic anhydride) -1,1,1,3,3 , 3-hexafluoropropane etc., preferably Water pyromellitic acid, diphenyl ether-3,3 ', 4,4'-tetracarboxylic acid dianhydride, benzophenone-3,3', 4,4'-tetracarboxylic acid dianhydride, biphenyl-3,3 ', Mention may be made, without limitation, of 4,4′-tetracarboxylic acid dianhydride. In addition, it is possible to use two or more of them in combination as a matter of course that they can be used alone.
上記アシッド/エステル体(典型的には後述する溶剤中の溶液)に、氷冷下、適当な脱水縮合剤、例えば、ジシクロヘキシルカルボジイミド、1-エトキシカルボニル-2-エトキシ-1,2-ジヒドロキノリン、1,1-カルボニルジオキシ-ジ-1,2,3-ベンゾトリアゾール、N,N’-ジスクシンイミジルカーボネート等を投入混合してアシッド/エステル体をポリ酸無水物とした後、これに、本実施形態で好適に用いられる2価の有機基Y1を含むジアミン類を別途溶媒に溶解又は分散させたものを滴下投入し、アミド重縮合させることにより、目的のポリイミド前駆体を得ることができる。代替的には、上記アシッド/エステル体を、塩化チオニル等を用いてアシッド部分を酸クロライド化した後に、ピリジン等の塩基存在下に、ジアミン化合物と反応させることにより、目的のポリイミド前駆体を得ることができる。 (Preparation of Polyimide Precursor)
In the above acid / ester form (typically, a solution in a solvent described below), under ice-cooling, a suitable dehydrating condensing agent such as dicyclohexylcarbodiimide, 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, 1,1 -Carbonyldioxy-di-1,2,3-benzotriazole, N, N'-disuccinimidyl carbonate etc. are added and mixed to make the acid / ester body a polyanhydride, Further, a solution obtained by separately dissolving or dispersing a diamine containing a divalent organic group Y 1 suitably used in the present embodiment in a solvent is added dropwise to obtain an intended polyimide precursor by amide polycondensation. Can. Alternatively, the acid / ester body is acid-chloridized with thionyl chloride or the like, and then reacted with a diamine compound in the presence of a base such as pyridine to obtain a target polyimide precursor. be able to.
第一の本実施形態における(B)塩基保護化合物は、酸又は塩基又は熱で脱保護される基で保護された複数のアミノ基を有し、分子量が250~600であり、保護されたアミノ基が脂肪族鎖状もしくは脂環式アミノ基であり、かつ、溶解度パラメーターの値が20.0~22.0である。 (B) Base-Protected Compound The (B) base-protected compound in the first embodiment has a plurality of amino groups protected by an acid or a base or a group which is deprotected by heat, and has a molecular weight of 250 to 600. The protected amino group is an aliphatic linear or alicyclic amino group, and the solubility parameter has a value of 20.0 to 22.0.
第一から第三の本実施形態に用いられる(C)光重合開始剤について説明する。光重合開始剤としては、光ラジカル重合開始剤であることが好ましく、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-ベンゾイル-4’-メチルジフェニルケトン、ジベンジルケトン、フルオレノン等のベンゾフェノン誘導体、2,2’-ジエトキシアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン等のアセトフェノン誘導体、チオキサントン、2-メチルチオキサントン、2-イソプロピルチオキサントン、ジエチルチオキサントン等のチオキサントン誘導体、ベンジル、ベンジルジメチルケタール、ベンジル-β-メトキシエチルアセタール等のベンジル誘導体、ベンゾイン、ベンゾインメチルエーテル等のベンゾイン誘導体、1-フェニル-1,2-ブタンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-ベンゾイル)オキシム、1,3-ジフェニルプロパントリオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-3-エトキシプロパントリオン-2-(o-ベンゾイル)オキシム等のオキシム類、N-フェニルグリシン等のN-アリールグリシン類、ベンゾイルパークロライド等の過酸化物類、芳香族ビイミダゾール類、チタノセン類、α-(n-オクタンスルフォニルオキシイミノ)-4-メトキシベンジルシアニド等の光酸発生剤類等が好ましく挙げられるが、これらに限定されるものではない。上記の光重合開始剤の中では、特に光感度の点で、オキシム類がより好ましい。 (C) Photopolymerization Initiator The (C) photopolymerization initiator used in the first to third embodiments will be described. As the photopolymerization initiator, a photoradical polymerization initiator is preferable, and benzophenone, methyl o-benzoylbenzoate, 4-benzoyl-4′-methyl diphenyl ketone, benzophenone derivatives such as dibenzyl ketone and fluorenone, 2, Acetophenone derivatives such as 2'-diethoxyacetophenone, 2-hydroxy-2-methylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, etc., thioxanthone derivatives such as thioxanthone, 2-methyl thioxanthone, 2-isopropyl thioxanthone, diethyl thioxanthone, benzyl, Benzyl derivatives such as benzyl dimethyl ketal and benzyl-β-methoxyethyl acetal, benzoin derivatives such as benzoin and benzoin methyl ether, 1-phenyl-1,2-butanedione 2- (o-Methoxycarbonyl) oxime, 1-phenyl-1,2-propanedione-2- (o-methoxycarbonyl) oxime, 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) Oxime, 1-phenyl-1,2-propanedione-2- (o-benzoyl) oxime, 1,3-diphenylpropanetrione-2- (o-ethoxycarbonyl) oxime, 1-phenyl-3-ethoxypropanetrione- Oximes such as 2- (o-benzoyl) oxime, N-arylglycines such as N-phenylglycine, peroxides such as benzoylperchloride, aromatic biimidazoles, titanocenes, α- (n-octane Photoacid generators such as sulfonyloxyimino) -4-methoxybenzyl cyanide are preferably mentioned. That, without being limited thereto. Among the above-mentioned photopolymerization initiators, oximes are more preferable particularly in light of photosensitivity.
第二の本実施形態における(D)エーテル化合物は、酸又は塩基又は熱で脱保護される基で保護されたアミノ基と、下記一般式(1):
エーテル化合物は、分子内のいずれかの位置に、上記一般式(1)で表される構造単位を少なくとも一つ有していればよく、分子内での該構造単位の配置は限定されない。例えば、エーテル化合物は、分子内に、複数の該構造単位を連続して有していてもよく、該構造単位同士の間に他の構造が介在していてもよい。該構造単位は、エーテル化合物の分子内に規則的に配置されていてもよく、ランダムに配置されていてもよい。 (D) Ether Compound In the second embodiment, the (D) ether compound is an acid or a base or an amino group protected by a group which is deprotected by heat, and a compound represented by the following general formula (1):
The ether compound may have at least one structural unit represented by the above general formula (1) at any position in the molecule, and the arrangement of the structural unit in the molecule is not limited. For example, the ether compound may have a plurality of the structural units in succession in the molecule, and another structure may be interposed between the structural units. The structural units may be regularly arranged in the molecule of the ether compound, or may be randomly arranged.
第三の本実施形態における(E)ウレタン化合物は、酸又は塩基又は熱で脱保護される基で保護された一つ又は複数のアミノ基と、ヒドロキシル基を分子内に少なくとも一つ含む。 (E) Urethane Compound In the third embodiment, the (E) urethane compound has one or more amino groups protected by an acid or a base or a group which is deprotected by heat, and a hydroxyl group in the molecule. Including one.
又は下記一般式(XII):
で表すことができる。上記炭素数1~20の有機基は、飽和又は不飽和アルキル基、飽和又は不飽和シクロアルキル基、芳香族基等が挙げられる。これらの有機基は、当該有機基中に、炭化水素基以外の窒素原子、酸素原子、硫黄原子等を含む結合又は置換基を含んでよく、これらは、直鎖上でも分岐状でも環状構造を含んでもよい。 (E) The urethane compound is preferably a tert-butoxycarbonyl group, a benzyloxycarbonyl group, or 9 bonded to an aliphatic amino group, more particularly to an aliphatic chain or alicyclic amino group. Aliphatic amino groups containing at least one fluorenylmethyloxycarbonyl (Fmoc) group in the molecule and at least one hydroxyl group in the molecule are linear primary or secondary amino groups, or It refers to an amino group in which an aromatic group or a heterocyclic group is not directly bonded to the nitrogen atom of the cyclic secondary amino group. That is, the urethane compound used in the present embodiment has the following general formula (XI):
Or the following general formula (XII):
Can be represented by The organic group having 1 to 20 carbon atoms includes a saturated or unsaturated alkyl group, a saturated or unsaturated cycloalkyl group, an aromatic group and the like. These organic groups may contain, in the organic group, a bond or a substituent containing a nitrogen atom other than a hydrocarbon group, an oxygen atom, a sulfur atom or the like, and these have a cyclic structure whether linear or branched. May be included.
で表される化合物が挙げられるが、これに限定されるものではない。 Examples of the above urethane compound include the following general formula (XIII):
The compounds represented by the above can be mentioned, but not limited thereto.
溶剤としては、アミド類、スルホキシド類、ウレア類、ケトン類、エステル類、ラクトン類、エーテル類、ハロゲン化炭化水素類、炭化水素類、アルコール類等が挙げられ、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸ブチル、シュウ酸ジエチル、乳酸エチル、乳酸メチル、乳酸ブチル、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、ベンジルアルコール、フェニルグリコール、テトラヒドロフルフリルアルコール、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、モルフォリン、ジクロロメタン、1,2-ジクロロエタン、1,4-ジクロロブタン、クロロベンゼン、o-ジクロロベンゼン、アニソール、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、メシチレン等を使用することができる。中でも、樹脂の溶解性、樹脂組成物の安定性、及び基板への接着性の観点から、N-メチル-2-ピロリドン、ジメチルスルホキシド、テトラメチル尿素、酢酸ブチル、乳酸エチル、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ベンジルアルコール、フェニルグリコール、及びテトラヒドロフルフリルアルコールが好ましい。 Solvents Examples of the solvent include amides, sulfoxides, ureas, ketones, esters, lactones, ethers, halogenated hydrocarbons, hydrocarbons, alcohols and the like, and examples thereof include N-methyl-2 -Pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethylsulfoxide, tetramethylurea, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, methyl acetate, ethyl acetate, butyl acetate, diethyl oxalate Ethyl lactate, methyl lactate, butyl lactate, γ-butyrolactone, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, benzyl alcohol, phenyl glycol, tetrahydrofurfuryl alcohol, ethylene Use glycol dimethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran, morpholine, dichloromethane, 1,2-dichloroethane, 1,4-dichlorobutane, chlorobenzene, o-dichlorobenzene, anisole, hexane, heptane, benzene, toluene, xylene, mesitylene, etc. be able to. Among them, N-methyl-2-pyrrolidone, dimethyl sulfoxide, tetramethyl urea, butyl acetate, ethyl lactate, γ-butyrolactone, propylene from the viewpoint of resin solubility, resin composition stability, and adhesion to a substrate. Glycol monomethyl ether acetate, propylene glycol monomethyl ether, diethylene glycol dimethyl ether, benzyl alcohol, phenyl glycol and tetrahydrofurfuryl alcohol are preferred.
本実施形態の感光性樹脂組成物を用いて銅又は銅合金から成る基板上に硬化膜を形成する場合には、銅上の変色を抑制するために、ネガ型感光性樹脂組成物は、含窒素複素環化合物を任意に含んでもよい。含窒素複素環化合物としては、アゾール化合物、及びプリン誘導体等が挙げられる。 Nitrogen-Containing Heterocyclic Compound In the case of forming a cured film on a substrate made of copper or a copper alloy using the photosensitive resin composition of the present embodiment, a negative photosensitive resin is used to suppress discoloration on copper. The composition may optionally contain a nitrogen-containing heterocyclic compound. Examples of nitrogen-containing heterocyclic compounds include azole compounds and purine derivatives.
また、銅表面上の変色を抑制するために、ネガ型感光性樹脂組成物は、ヒンダードフェノール化合物を任意に含んでもよい。ヒンダードフェノール化合物としては、2,6-ジ-t-ブチル-4-メチルフェノール、2,5-ジ-t-ブチル-ハイドロキノン、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネ-ト、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、4、4’-メチレンビス(2、6-ジ-t-ブチルフェノール)、4,4’-チオ-ビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェノール)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、1,3,5-トリス(3-ヒドロキシ-2,6-ジメチル-4-イソプロピルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-s-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス[4-(1-エチルプロピル)-3-ヒドロキシ-2,6-ジメチルベンジル]-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、 1,3,5-トリス[4-トリエチルメチル-3-ヒドロキシ-2,6-ジメチルベンジル]-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(3-ヒドロキシ-2,6-ジメチル-4-フェニルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,5,6-トリメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-5-エチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-6-エチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-6-エチル-3-ヒドロキシ-2,5-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-5,6-ジエチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、 1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,5-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-5‐エチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン等が挙げられるが、これに限定されるものではない。これらの中でも、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン等が特に好ましい。 Hindered Phenolic Compound In order to suppress the discoloration on the copper surface, the negative photosensitive resin composition may optionally contain a hindered phenolic compound. As the hindered phenol compound, 2,6-di-t-butyl-4-methylphenol, 2,5-di-t-butyl-hydroquinone, octadecyl-3- (3,5-di-t-butyl-4) -Hydroxyphenyl) propionate, isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 4,4'-methylenebis (2,6-di-t-butylphenol), 4, 4'-thio-bis (3-methyl-6-t-butylphenol), 4,4'-butylidene-bis (3-methyl-6-t-butylphenol), triethylene glycol-bis [3- (3-t -Butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) Propionate], 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], N, N'-hexamethylene bis (3,5-di-t- Butyl-4-hydroxy-hydrocinnamamide), 2,2'-methylene-bis (4-methyl-6-t-butylphenol), 2,2'-methylene-bis (4-ethyl-6-t-butylphenol) ), Pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], tris- (3,5-di-t-butyl-4-hydroxybenzyl) -isocyanurate) Late, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, 1,3,5-tris (3-hydroxy-2, -Dimethyl-4-isopropylbenzyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione, 1,3,5-tris (4-t-butyl-3-hydroxyl) -2,6-Dimethylbenzyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione, 1,3,5-tris (4-s-butyl-3-hydroxy) -2,6-Dimethylbenzyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione, 1,3,5-tris [4- (1-ethylpropyl)- 3-hydroxy-2,6-dimethylbenzyl] -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione, 1,3,5-tris [4-triethylmethyl-3 -Hydroxy-2,6-dimethylbenzyl] -1,3,5-to Azine-2,4,6- (1H, 3H, 5H) -trione, 1,3,5-tris (3-hydroxy-2,6-dimethyl-4-phenylbenzyl) -1,3,5-triazine- 2,4,6- (1H, 3H, 5H) -trione, 1,3,5-tris (4-t-butyl-3-hydroxy-2,5,6-trimethylbenzyl) -1,3,5- Triazine-2,4,6- (1H, 3H, 5H) -trione, 1,3,5-tris (4-t-butyl-5-ethyl-3-hydroxy-2,6-dimethylbenzyl) -1, 3,5-Triazine-2,4,6- (1H, 3H, 5H) -trione, 1,3,5-tris (4-t-butyl-6-ethyl-3-hydroxy-2-methylbenzyl)- 1,3,5-Triazine-2,4,6- (1H, 3H, 5H) -trione, 1,3,5-tris (4-t-butyl-6-ethyl-3-hydroxy-2,5-dimethylbenzyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H ) -Trione, 1,3,5-tris (4-t-butyl-5,6-diethyl-3-hydroxy-2-methylbenzyl) -1,3,5-triazine-2,4,6- (1H) , 3H, 5H) -trione, 1,3,5-tris (4-t-butyl-3-hydroxy-2-methylbenzyl) -1,3,5-triazine-2,4,6- (1H, 3H , 5H) -trione, 1,3,5-tris (4-t-butyl-3-hydroxy-2,5-dimethylbenzyl) -1,3,5-triazine-2,4,6- (1H, 3H) , 5H) -trione, 1,3,5-tris (4-t-butyl-5-ethyl-3-hydride) Roxy-2-methylbenzyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione etc. may be mentioned, but it is not limited thereto. Among these, 1,3,5-tris (4-t-butyl-3-hydroxy-2,6-dimethylbenzyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) )-Trione etc. are particularly preferred.
本実施形態のネガ型感光性樹脂組成物は、有機チタン化合物を含有してもよい。有機チタン化合物を含有することにより、低温で硬化した場合であっても耐薬品性に優れる感光性樹脂層を形成できる。 Organic titanium compound The negative photosensitive resin composition of the present embodiment may contain an organic titanium compound. By containing the organic titanium compound, a photosensitive resin layer having excellent chemical resistance can be formed even when cured at a low temperature.
有機チタン化合物の具体的例を以下のI)~VII)に示す:
I)チタンキレート化合物:中でも、ネガ型感光性樹脂組成物の保存安定性及び良好なパターンが得られることから、アルコキシ基を2個以上有するチタンキレートがより好ましい。具体的な例は、チタニウムビス(トリエタノールアミン)ジイソプロポキサイド、チタニウムジ(n-ブトキサイド)ビス(2,4-ペンタンジオネート、チタニウムジイソプロポキサイドビス(2,4-ペンタンジオネート)、チタニウムジイソプロポキサイドビス(テトラメチルヘプタンジオネート)、チタニウムジイソプロポキサイドビス(エチルアセトアセテート)等である。
II)テトラアルコキシチタン化合物:例えば、チタニウムテトラ(n-ブトキサイド)、チタニウムテトラエトキサイド、チタニウムテトラ(2-エチルヘキソキサイド)、チタニウムテトライソブトキサイド、チタニウムテトライソプロポキサイド、チタニウムテトラメトキサイド、チタニウムテトラメトキシプロポキサイド、チタニウムテトラメチルフェノキサイド、チタニウムテトラ(n-ノニロキサイド)、チタニウムテトラ(n-プロポキサイド)、チタニウムテトラステアリロキサイド、チタニウムテトラキス[ビス{2,2-(アリロキシメチル)ブトキサイド}]等である。
III)チタノセン化合物:例えば、ペンタメチルシクロペンタジエニルチタニウムトリメトキサイド、ビス(η5-2,4-シクロペンタジエン-1-イル)ビス(2,6-ジフルオロフェニル)チタニウム、ビス(η5-2,4-シクロペンタジエン-1-イル)ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム等である。
IV)モノアルコキシチタン化合物:例えば、チタニウムトリス(ジオクチルホスフェート)イソプロポキサイド、チタニウムトリス(ドデシルベンゼンスルホネート)イソプロポキサイド等である。
V)チタニウムオキサイド化合物:例えば、チタニウムオキサイドビス(ペンタンジオネート)、チタニウムオキサイドビス(テトラメチルヘプタンジオネート)、フタロシアニンチタニウムオキサイド等である。
VI)チタニウムテトラアセチルアセトネート化合物:例えば、チタニウムテトラアセチルアセトネート等である。
VII)チタネートカップリング剤:例えば、イソプロピルトリドデシルベンゼンスルホニルチタネート等である。 Usable organic titanium compounds include those in which an organic chemical substance is bonded to a titanium atom via a covalent bond or an ionic bond.
Specific examples of the organic titanium compound are shown in the following I) to VII):
I) Titanium chelate compound: Among them, a titanium chelate having two or more alkoxy groups is more preferable because the storage stability of the negative photosensitive resin composition and a good pattern can be obtained. Specific examples are titanium bis (triethanolamine) diisopropoxide, titanium di (n-butoxide) bis (2,4-pentanedionate), titanium diisopropoxide bis (2,4-pentanedionate) And titanium diisopropoxide bis (tetramethylheptanedionate), titanium diisopropoxide bis (ethylacetoacetate), and the like.
II) Tetraalkoxytitanium compounds: for example, titanium tetra (n-butoxide), titanium tetraethoxide, titanium tetra (2-ethylhexoxide), titanium tetraisobutoxide, titanium tetraisopropoxide, titanium tetramethoxide , Titanium tetramethoxypropoxide, titanium tetramethylphenoxide, titanium tetra (n-nonyloxy), titanium tetra (n-propoxide), titanium tetrastearyloxide, titanium tetrakis [bis {2, 2- (allyloxymethyl) Butoxide]] etc.
III) Titanocene compounds: for example, pentamethylcyclopentadienyltitanium trimethoxide, bis (η5-2,4-cyclopentadien-1-yl) bis (2,6-difluorophenyl) titanium, bis (η5-2, 4-cyclopentadien-1-yl) bis (2,6-difluoro-3- (1H-pyrrol-1-yl) phenyl) titanium and the like.
IV) Monoalkoxytitanium compounds: for example, titanium tris (dioctyl phosphate) isopropoxide, titanium tris (dodecyl benzene sulfonate) isopropoxide and the like.
V) Titanium oxide compounds: for example, titanium oxide bis (pentanedionate), titanium oxide bis (tetramethylheptanedionate), phthalocyanine titanium oxide and the like.
VI) Titanium tetraacetylacetonate compound: for example, titanium tetraacetylacetonate and the like.
VII) Titanate coupling agent: for example, isopropyl tridodecyl benzene sulfonyl titanate and the like.
本実施形態のネガ型感光性樹脂組成物を用いて形成される膜と基材との接着性向上のために、ネガ型感光性樹脂組成物は、接着助剤を任意に含んでもよい。接着助剤としては、γ-アミノプロピルジメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、3-メタクリロキシプロピルジメトキシメチルシラン、3-メタクリロキシプロピルトリメトキシシラン、ジメトキシメチル-3-ピペリジノプロピルシラン、ジエトキシ-3-グリシドキシプロピルメチルシラン、N-(3-ジエトキシメチルシリルプロピル)スクシンイミド、N-[3-(トリエトキシシリル)プロピル]フタルアミド酸、ベンゾフェノン-3,3’-ビス(N-[3-トリエトキシシリル]プロピルアミド)-4,4’-ジカルボン酸、ベンゼン-1,4-ビス(N-[3-トリエトキシシリル]プロピルアミド)-2,5-ジカルボン酸、3-(トリエトキシシリル)プロピルスクシニックアンハイドライド、N-フェニルアミノプロピルトリメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-(トリアルコキシシリル)プロピルスクシン酸無水物等のシランカップリング剤、及びアルミニウムトリス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)、エチルアセトアセテートアルミニウムジイソプロピレート等のアルミニウム系接着助剤等が挙げられる。 Adhesion assistant In order to improve the adhesion between the film formed using the negative photosensitive resin composition of the present embodiment and the substrate, the negative photosensitive resin composition may optionally contain an adhesion assistant. Good. As adhesion assistants, γ-aminopropyldimethoxysilane, N- (β-aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, 3- Methacryloxypropyldimethoxymethylsilane, 3-methacryloxypropyltrimethoxysilane, dimethoxymethyl-3-piperidinopropylsilane, diethoxy-3-glycidoxypropylmethylsilane, N- (3-diethoxymethylsilylpropyl) succinimide N- [3- (triethoxysilyl) propyl] phthalamic acid, benzophenone-3,3'-bis (N- [3-triethoxysilyl] propylamide) -4,4'-dicarboxylic acid, benzene-1, 4-bis (N- [3-triet Silylyl] propylamide) -2,5-dicarboxylic acid, 3- (triethoxysilyl) propyl succinic anhydride, N-phenylaminopropyltrimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane And silane coupling agents such as 3- (trialkoxysilyl) propyl succinic acid, and aluminum-based adhesions such as aluminum tris (ethyl acetoacetate), aluminum tris (acetylacetonate), ethyl acetoacetate aluminum diisopropylate, etc. An auxiliary agent etc. are mentioned.
本実施形態のネガ型感光性樹脂組成物は、光感度を向上させるために、増感剤を任意に含んでもよい。該増感剤としては、例えば、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、2,5-ビス(4’-ジエチルアミノベンザル)シクロペンタン、2,6-ビス(4’-ジエチルアミノベンザル)シクロヘキサノン、2,6-ビス(4’-ジエチルアミノベンザル)-4-メチルシクロヘキサノン、4,4’-ビス(ジメチルアミノ)カルコン、4,4’-ビス(ジエチルアミノ)カルコン、p-ジメチルアミノシンナミリデンインダノン、p-ジメチルアミノベンジリデンインダノン、2-(p-ジメチルアミノフェニルビフェニレン)-ベンゾチアゾール、2-(p-ジメチルアミノフェニルビニレン)ベンゾチアゾール、2-(p-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4’-ジメチルアミノベンザル)アセトン、1,3-ビス(4’-ジエチルアミノベンザル)アセトン、3,3’-カルボニル-ビス(7-ジエチルアミノクマリン)、3-アセチル-7-ジメチルアミノクマリン、3-エトキシカルボニル-7-ジメチルアミノクマリン、3-ベンジロキシカルボニル-7-ジメチルアミノクマリン、3-メトキシカルボニル-7-ジエチルアミノクマリン、3-エトキシカルボニル-7-ジエチルアミノクマリン、N-フェニル-N’-エチルエタノールアミン、N-フェニルジエタノールアミン、N-p-トリルジエタノールアミン、N-フェニルエタノールアミン、4-モルホリノベンゾフェノン、ジメチルアミノ安息香酸イソアミル、ジエチルアミノ安息香酸イソアミル、2-メルカプトベンズイミダゾール、1-フェニル-5-メルカプトテトラゾール、2-メルカプトベンゾチアゾール、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-(p-ジメチルアミノスチリル)ナフト(1,2-d)チアゾール、2-(p-ジメチルアミノベンゾイル)スチレン等が挙げられる。これらは単独で又は例えば2~5種類の組合せで用いることができる。 Sensitizer The negative photosensitive resin composition of the present embodiment may optionally contain a sensitizer in order to improve the photosensitivity. Examples of the sensitizer include Michler's ketone, 4,4′-bis (diethylamino) benzophenone, 2,5-bis (4′-diethylaminobenzal) cyclopentane, 2,6-bis (4′-diethylaminobenzal) ) Cyclohexanone, 2,6-bis (4'-diethylaminobenzal) -4-methylcyclohexanone, 4,4'-bis (dimethylamino) chalcone, 4,4'-bis (diethylamino) chalcone, p-dimethylaminocinnana Myrylene indanone, p-dimethylaminobenzylidene indanone, 2- (p-dimethylaminophenylbiphenylene) -benzothiazole, 2- (p-dimethylaminophenylvinylene) benzothiazole, 2- (p-dimethylaminophenylvinylene) Isonaphthothiazole, 1,3-bis (4'-dimethyl) Aminobenzal) acetone, 1,3-bis (4'-diethylaminobenzal) acetone, 3,3'-carbonyl-bis (7-diethylaminocoumarin), 3-acetyl-7-dimethylaminocoumarin, 3-ethoxycarbonyl-7 -Dimethylaminocoumarin, 3-benzyloxycarbonyl-7-dimethylaminocoumarin, 3-methoxycarbonyl-7-diethylaminocoumarin, 3-ethoxycarbonyl-7-diethylaminocoumarin, N-phenyl-N'-ethylethanolamine, N- Phenyldiethanolamine, Np-tolyldiethanolamine, N-phenylethanolamine, 4-morpholinobenzophenone, isoamyl dimethylaminobenzoate, isoamyl diethylaminobenzoate, 2-mercaptobenzimidazole, 1-fu Nyl-5-mercaptotetrazole, 2-mercaptobenzothiazole, 2- (p-dimethylaminostyryl) benzoxazole, 2- (p-dimethylaminostyryl) benzthiazole, 2- (p-dimethylaminostyryl) naphtho (1,1 2-d) Thiazole, 2- (p-dimethylaminobenzoyl) styrene and the like. These can be used alone or in combinations of, for example, 2 to 5 types.
ネガ型感光性樹脂組成物は、レリーフパターンの解像性を向上させるために、光重合性の不飽和結合を有するモノマーを任意に含んでもよい。このようなモノマーとしては、光重合開始剤によりラジカル重合反応する(メタ)アクリル化合物が好ましく、特に以下に限定するものではないが、ジエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレートなどの、エチレングリコール又はポリエチレングリコールのモノ又はジアクリレート及びメタクリレート、プロピレングリコール又はポリプロピレングリコールのモノ又はジアクリレート及びメタクリレート、グリセロールのモノ、ジ又はトリアクリレート及びメタクリレート、シクロヘキサンジアクリレート及びジメタクリレート、1,4-ブタンジオールのジアクリレート及びジメタクリレート、1,6-ヘキサンジオールのジアクリレート及びジメタクリレート、ネオペンチルグリコールのジアクリレート及びジメタクリレート、ビスフェノールAのモノ又はジアクリレート及びメタクリレート、ベンゼントリメタクリレート、イソボルニルアクリレート及びメタクリレート、アクリルアミド及びその誘導体、メタクリルアミド及びその誘導体、トリメチロールプロパントリアクリレート及びメタクリレート、グリセロールのジ又はトリアクリレート及びメタクリレート、ペンタエリスリトールのジ、トリ、又はテトラアクリレート及びメタクリレート、並びにこれら化合物のエチレンオキサイド又はプロピレンオキサイド付加物等の化合物を挙げることができる。 Photopolymerizable Unsaturated Monomer The negative photosensitive resin composition may optionally contain a monomer having a photopolymerizable unsaturated bond in order to improve the resolution of the relief pattern. As such a monomer, a (meth) acrylic compound which undergoes a radical polymerization reaction by a photopolymerization initiator is preferable, and although not particularly limited thereto, ethylene glycol or polyethylene such as diethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, etc. Mono- or di-acrylates and methacrylates of glycols, Mono- or di-acrylates and methacrylates of propylene glycol or polypropylene glycol, mono-, di- or triacrylates and methacrylates of glycerol, cyclohexane diacrylates and dimethacrylates, diacrylates of 1,4-butanediol Dimethacrylate, diacrylate and dimethacrylate of 1,6-hexanediol, diacrylate of neopentyl glycol And dimethacrylates, mono- or diacrylates and methacrylates of bisphenol A, benzene trimethacrylate, isobornyl acrylate and methacrylate, acrylamide and its derivatives, methacrylamide and its derivatives, trimethylolpropane triacrylate and methacrylate, glycerol di- or Mention may be made of compounds such as triacrylates and methacrylates, di-, tri- or tetra-acrylates and methacrylates of pentaerythritol, and ethylene oxide or propylene oxide adducts of these compounds.
本実施形態のネガ型感光性樹脂組成物は、特に溶剤を含む溶液の状態での保存時のネガ型感光性樹脂組成物の粘度及び光感度の安定性を向上させるために、熱重合禁止剤を任意に含んでもよい。熱重合禁止剤としては、ヒドロキノン、N-ニトロソジフェニルアミン、p-tert-ブチルカテコール、フェノチアジン、N-フェニルナフチルアミン、エチレンジアミン四酢酸、1,2-シクロヘキサンジアミン四酢酸、グリコールエーテルジアミン四酢酸、2,6-ジ-tert-ブチル-p-メチルフェノール、5-ニトロソ-8-ヒドロキシキノリン、1-ニトロソ-2-ナフトール、2-ニトロソ-1-ナフトール、2-ニトロソ-5-(N-エチル-N-スルホプロピルアミノ)フェノール、N-ニトロソ-N-フェニルヒドロキシルアミンアンモニウム塩、N-ニトロソ-N(1-ナフチル)ヒドロキシルアミンアンモニウム塩等が用いられる。 Thermal Polymerization Inhibitor In order to improve the viscosity and the photosensitivity stability of the negative photosensitive resin composition at the time of storage in the state of a solution containing a solvent, in particular, the negative photosensitive resin composition of the present embodiment, A thermal polymerization inhibitor may optionally be included. As a thermal polymerization inhibitor, hydroquinone, N-nitrosodiphenylamine, p-tert-butylcatechol, phenothiazine, N-phenylnaphthylamine, ethylenediaminetetraacetic acid, 1,2-cyclohexanediaminetetraacetic acid, glycol ether diamine tetraacetic acid, 2, 6 -Di-tert-butyl-p-methylphenol, 5-nitroso-8-hydroxyquinoline, 1-nitroso-2-naphthol, 2-nitroso-1-naphthol, 2-nitroso-5- (N-ethyl-N-) Sulfopropylamino) phenol, N-nitroso-N-phenylhydroxylamine ammonium salt, N-nitroso-N (1-naphthyl) hydroxylamine ammonium salt and the like are used.
本実施形態は、(1)上述した本実施形態のネガ型感光性樹脂組成物を基板上に塗布して、樹脂層を上記基板上に形成する工程と、(2)上記樹脂層を露光する工程と、(3)露光後の上記樹脂層を現像してレリーフパターンを形成する工程と、(4)上記レリーフパターンを加熱処理して、硬化レリーフパターンを形成する工程とを含む、硬化レリーフパターンの製造方法を提供する。 <Method of Manufacturing Hardened Relief Pattern and Semiconductor Device>
In this embodiment, (1) a step of applying the negative photosensitive resin composition of the above-described embodiment onto a substrate to form a resin layer on the substrate, and (2) exposing the resin layer A cured relief pattern comprising the steps of: (3) developing the resin layer after exposure to form a relief pattern; and (4) heating the relief pattern to form a cured relief pattern. Provide a manufacturing method of
本工程では、本実施形態のネガ型感光性樹脂組成物を基材上に塗布し、必要に応じてその後乾燥させて樹脂層を形成する。塗布方法としては、従来から感光性樹脂組成物の塗布に用いられていた方法、例えば、スピンコーター、バーコーター、ブレードコーター、カーテンコーター、スクリーン印刷機等で塗布する方法、スプレーコーターで噴霧塗布する方法等を用いることができる。 (1) Resin layer formation process At this process, the negative photosensitive resin composition of this embodiment is apply | coated on a base material, and it is made to dry after that as needed, and a resin layer is formed. As a coating method, a method conventionally used for coating a photosensitive resin composition, for example, a method of coating by a spin coater, a bar coater, a blade coater, a curtain coater, a screen printer, etc., spray coating by a spray coater A method etc. can be used.
本工程では、上記で形成した樹脂層を、コンタクトアライナー、ミラープロジェクション、ステッパー等の露光装置を用いて、パターンを有するフォトマスク又はレチクルを介して又は直接に、紫外線光源等により露光する。 (2) Exposure Step In this step, the resin layer formed above is exposed to an ultraviolet light source or the like directly through a photomask or reticle having a pattern using an exposure apparatus such as a contact aligner, mirror projection, stepper or the like. Expose.
本工程では、露光後の感光性樹脂層のうち未露光部を現像除去する。露光(照射)後の感光性樹脂層を現像する現像方法としては、従来知られているフォトレジストの現像方法、例えば、回転スプレー法、パドル法、超音波処理を伴う浸漬法等の中から任意の方法を選択して使用することができる。また、現像の後、レリーフパターンの形状を調整する等の目的で、必要に応じて、任意の温度及び時間の組合せによる現像後ベークを施してもよい。 (3) Relief pattern formation process At this process, an unexposed part is developed and removed among photosensitive resin layers after exposure. As a developing method for developing the photosensitive resin layer after exposure (irradiation), any of known methods for developing a photoresist, for example, a rotary spray method, a paddle method, an immersion method accompanied by ultrasonic treatment and the like can be used. You can use it by selecting the method. In addition, after development, post-development baking may be performed at any temperature and time combination, as necessary, for the purpose of adjusting the shape of the relief pattern and the like.
本工程では、上記現像により得られたレリーフパターンを加熱して感光成分を希散させるとともに、(A)ポリイミド前駆体をイミド化させることによって、ポリイミドから成る硬化レリーフパターンに変換する。加熱硬化の方法としては、例えば、ホットプレートによるもの、オーブンを用いるもの、温度プログラムを設定できる昇温式オーブンを用いるもの等種々の方法を選ぶことができる。加熱は、例えば、170℃~400℃で30分~5時間の条件で行うことができる。加熱硬化時の雰囲気気体としては空気を用いてもよく、窒素、アルゴン等の不活性ガスを用いることもできる。 (4) Curing Relief Pattern Forming Step In this step, the relief pattern obtained by the above development is heated to dilute the photosensitive component, and (A) a curing relief consisting of polyimide by imidizing the polyimide precursor. Convert to a pattern. As the heat curing method, various methods can be selected, such as using a hot plate, using an oven, using a temperature rising oven capable of setting a temperature program, and the like. The heating can be performed, for example, at 170 ° C. to 400 ° C. for 30 minutes to 5 hours. As the atmosphere gas at the time of heat curing, air may be used, or an inert gas such as nitrogen or argon may be used.
本実施形態では、上述した硬化レリーフパターンの製造方法により得られる硬化レリーフパターンを有する、半導体装置も提供される。したがって、半導体素子である基材と、上述した硬化レリーフパターン製造方法により該基材上に形成されたポリイミドの硬化レリーフパターンとを有する半導体装置が提供されることができる。また、本発明は、基材として半導体素子を用い、上述した硬化レリーフパターンの製造方法を工程の一部として含む半導体装置の製造方法にも適用できる。本実施形態の半導体装置は、上記硬化レリーフパターン製造方法で形成される硬化レリーフパターンを、表面保護膜、層間絶縁膜、再配線用絶縁膜、フリップチップ装置用保護膜、又はバンプ構造を有する半導体装置の保護膜等として形成し、既知の半導体装置の製造方法と組合せることで製造することができる。 <Semiconductor device>
The present embodiment also provides a semiconductor device having a cured relief pattern obtained by the above-described method for producing a cured relief pattern. Therefore, a semiconductor device can be provided which has a substrate which is a semiconductor element and a cured relief pattern of polyimide formed on the substrate by the above-described method of producing a cured relief pattern. The present invention can also be applied to a method of manufacturing a semiconductor device using a semiconductor element as a base material and including the method of manufacturing a cured relief pattern described above as part of the process. The semiconductor device of the present embodiment is a semiconductor having a surface protection film, an interlayer insulation film, an insulation film for rewiring, a protection film for a flip chip device, or a bump structure, which is formed by the above-mentioned method of manufacturing a hardening relief pattern. It can be formed as a protective film or the like of the device and combined with a known method of manufacturing a semiconductor device.
本実施形態では、表示体素子と該表示体素子の上部に設けられた硬化膜とを備える表示体装置であって、該硬化膜は上述の硬化レリーフパターンである表示体装置が提供される。ここで、当該硬化レリーフパターンは、当該表示体素子に直接接して積層されていてもよく、別の層を間に挟んで積層されていてもよい。例えば、該硬化膜として、TFT液晶表示素子及びカラーフィルター素子の表面保護膜、絶縁膜、及び平坦化膜、MVA型液晶表示装置用の突起、並びに有機EL素子陰極用の隔壁を挙げることができる。 <Display device>
The present embodiment provides a display device comprising a display element and a cured film provided above the display element, wherein the cured film is the above-mentioned cured relief pattern. Here, the cured relief pattern may be laminated in direct contact with the display element, or may be laminated with another layer interposed therebetween. For example, as the cured film, there can be mentioned surface protective film of TFT liquid crystal display element and color filter element, insulating film, flattening film, projection for MVA type liquid crystal display device, and partition wall for organic EL element cathode. .
(1)重量平均分子量
各樹脂の重量平均分子量(Mw)をゲルパーミエーションクロマトグラフィー法(標準ポリスチレン換算)を用いて以下の条件下で測定した。
ポンプ:JASCO PU-980
検出器:JASCO RI-930
カラムオーブン:JASCO CO-965 40℃
カラム:昭和電工(株)製Shodex KD-806M 直列に2本、又は
昭和電工(株)製Shodex 805M/806M直列
標準単分散ポリスチレン:昭和電工(株)製Shodex STANDARD SM-105
移動相:0.1mol/L LiBr/N-メチル-2-ピロリドン(NMP)
流速:1mL/min. <Measurement and evaluation method>
(1) Weight Average Molecular Weight The weight average molecular weight (Mw) of each resin was measured using a gel permeation chromatography method (in terms of standard polystyrene) under the following conditions.
Pump: JASCO PU-980
Detector: JASCO RI-930
Column oven: JASCO CO-965 40 ° C
Column: Shodex KD-806M manufactured by Showa Denko 2 in series, or Shodex 805M / 806M series manufactured by Showa Denko Standard monodispersed polystyrene: Shodex STANDARD SM-105 manufactured by Showa Denko
Mobile phase: 0.1 mol / L LiBr / N-methyl-2-pyrrolidone (NMP)
Flow rate: 1 mL / min.
6インチシリコンウェハー(フジミ電子工業株式会社製、厚み625±25μm)上に、スパッタ装置(L-440S-FHL型、キヤノンアネルバ社製)を用いて200nm厚のTi、400nm厚のCuをこの順にスパッタした。続いて、このウェハー上に、後述の方法により調製した感光性樹脂組成物をコーターデベロッパー(D-Spin60A型、SOKUDO社製)を用いて回転塗布し、110℃で180秒間ホットプレートにてプリベークを行い、約7μm厚の塗膜を形成した。この塗膜に、テストパターン付マスクを用いて、プリズマGHI(ウルトラテック社製)により500mJ/cm2のエネルギーを照射した。次いで、この塗膜を、現像液としてネガ型の場合はシクロペンタノンを、ポジ型の場合は2.38%TMAHを用いてコーターデベロッパー(D-Spin60A型、SOKUDO社製)でスプレー現像し、ネガ型の場合はプロピレングリコールメチルエーテルアセテートで、ポジ型の場合は純水でリンスすることにより、Cu上のレリーフパターンを得た。
Cu上に該レリーフパターンを形成したウェハーを、昇温プログラム式キュア炉(VF-2000型、光洋リンドバーグ社製)を用いて、窒素雰囲気下、表1に記載の温度において2時間加熱処理することにより、Cu上に約4~5μm厚の樹脂から成る硬化レリーフパターンを得た。 (2) Preparation of a cured relief pattern on Cu 200 nm using a sputtering apparatus (L-440S-FHL type, manufactured by Canon Anelva) on a 6-inch silicon wafer (manufactured by Fujimi Electronics Co., Ltd., thickness 625 ± 25 μm) Thick Ti and 400 nm thick Cu were sputtered in this order. Subsequently, a photosensitive resin composition prepared by the method described later is spin-coated on this wafer using a coater developer (D-Spin 60A type, manufactured by SOKUDO), and prebaked on a hot plate at 110 ° C. for 180 seconds. Then, a coating film about 7 μm thick was formed. The coating film was irradiated with 500 mJ / cm 2 of energy by Prisma GHI (manufactured by Ultratech Co., Ltd.) using a mask with a test pattern. Next, this coating film is spray developed with a coater developer (D-Spin 60A type, manufactured by SOKUDO) using cyclopentanone as a developer and 2.38% TMAH as a positive type. The relief pattern on Cu was obtained by rinsing with propylene glycol methyl ether acetate in the case of the negative type and with pure water in the case of the positive type.
Heat treating the wafer having the relief pattern formed on Cu at a temperature described in Table 1 for 2 hours in a nitrogen atmosphere using a programmed temperature curing furnace (VF-2000, manufactured by Koyo Lindberg) Thus, a cured relief pattern consisting of a resin about 4 to 5 μm thick was obtained on Cu.
上記の方法で得た硬化レリーフパターンを光学顕微鏡下で観察し、最少開口パターンのサイズを求めた。このとき、得られたパターンの開口部の面積が、対応するパターンマスク開口面積の1/2以上であれば解像されたものとみなし、解像された開口部のうち最小面積を有するものに対応するマスク開口辺の長さを解像度とした。解像度が10μm未満のものを「優」、10μm以上14μm未満のものを「良」、14μm以上18μm未満のものを「可」、18μm以上のものを「不可」とした。 (3) Evaluation of Resolution of Hardened Relief Pattern on Cu The hardened relief pattern obtained by the above method was observed under an optical microscope to determine the size of the minimum opening pattern. At this time, if the area of the opening of the obtained pattern is 1/2 or more of the corresponding pattern mask opening area, it is regarded as resolved, and the one having the smallest area among the resolved openings The length of the corresponding mask opening side was taken as the resolution. Those with a resolution of less than 10 μm were rated as “excellent”, those with 10 μm or more and less than 14 μm as “good”, those with 14 μm or more and less than 18 μm as “OK”, and those with 18 μm or more as “impossible”.
Cu上に該硬化レリーフパターンを形成したウェハーを、昇温プログラム式キュア炉(VF-2000型、光洋リンドバーグ社製)を用いて、空気中、150℃で168時間加熱した。続いて、プラズマ表面処理装置(EXAM型、神港精機社製)を用いて、Cu上の樹脂層を全てプラズマエッチングにより除去した。プラズマエッチング条件は下記の通りである。
出力:133W
ガス種・流量:O2:40mL/分 + CF4:1mL/分
ガス圧:50Pa
モード:ハードモード
エッチング時間:1800秒
樹脂層を全て除去したCu表面を、FE-SEM(S-4800型、日立ハイテクノロジーズ社製)によって観察し、画像解析ソフト(A像くん、旭化成社製)を用いて、Cu層の表面に占めるボイドの面積を算出した。比較例5に記載の感光性樹脂組成物を評価した際のボイドの総面積を100%とした際に、ボイドの総面積比率が50%未満のものを「優」、50%以上75%未満のものを「良」、75%以上100%未満のものを「可」100%以上のものを「不可」と判定した。 (4) High temperature storage test of cured relief pattern on Cu and subsequent evaluation of void area The wafer on which the cured relief pattern is formed on Cu is heated in a programmed curing oven (VF-2000 type, It heated at 150 degreeC in air for 168 hours using Koyo Lindberg Co., Ltd. product). Subsequently, using a plasma surface treatment apparatus (EXAM type, manufactured by Shinko Seiki Co., Ltd.), the entire resin layer on Cu was removed by plasma etching. The plasma etching conditions are as follows.
Output: 133W
Gas type and flow rate: O2: 40 mL / min + CF 4: 1 mL / min Gas pressure: 50 Pa
Mode: Hard mode Etching time: 1800 seconds The Cu surface from which the resin layer has been completely removed is observed by FE-SEM (S-4800 type, manufactured by Hitachi High-Technologies Corporation), and image analysis software (A Image Kun, manufactured by Asahi Kasei Corporation) The area of the void occupied on the surface of the Cu layer was calculated using When the total area of voids when the photosensitive resin composition described in Comparative Example 5 is evaluated is 100%, those having a total area ratio of voids of less than 50% are "excellent", not less than 50% and less than 75%. Those with "good" were judged as "good", those with 75% or more and less than 100% were judged as "OK" and those with 100% or more were judged as "impossible".
Cu上に形成した該硬化レリーフパターンを、レジスト剥離液{ATMI社製、製品名ST-44、主成分は2-(2-アミノエトキシ)エタノール、1-シクロヘキシル-2-ピロリドン}を50℃に加熱したものに5分間浸漬し、流水で1分間洗浄し、風乾した。その後、膜表面を光学顕微鏡で目視観察し、クラック等の薬液によるダメージの有無や、薬液処理後の膜厚の変化率をもって耐薬品性を評価した。評価基準として、クラック等が発生せず、膜厚変化率が薬品浸漬前の膜厚を基準として10%以内のものを「優」、10~15%のものを「良」、15~20%のものを「可」とし、クラックが発生したもの、または膜厚変化率が20%を超えるものを「不可」とした。 (5) Chemical resistance evaluation of cured relief pattern (polyimide coating film) The cured relief pattern formed on Cu was treated with a resist remover {a product made by ATMI, product name ST-44, main component is 2- (2-amino) It was immersed for 5 minutes in what heated (50 ° C.) ethanol, 1-cyclohexyl-2-pyrrolidone}, washed with running water for 1 minute, and air-dried. Thereafter, the film surface was visually observed with an optical microscope, and the chemical resistance was evaluated based on the presence or absence of damage due to the chemical solution such as a crack and the change rate of the film thickness after the chemical solution treatment. Evaluation criteria: No cracks or the like, and the film thickness change rate is “excellent” within 10% based on the film thickness before chemical immersion, “good” from 10 to 15%, “good”, 15 to 20% Those with "C" were evaluated as "OK", and those with cracks or those whose film thickness change rate exceeded 20% were classified as "Fail".
製造例1:(A)ポリイミド前駆体としてのポリマーA-1の合成
4,4’-オキシジフタル酸二無水物(ODPA)155.1gを2L容量のセパラブルフラスコに入れ、2-ヒドロキシエチルメタクリレート(HEMA)131.2gとγ-ブチロラクトン400mLを入れて室温下で攪拌し、攪拌しながらピリジン81.5gを加えて反応混合物を得た。反応による発熱の終了後に反応混合物を室温まで放冷し、16時間放置した。
次に、氷冷下において、ジシクロヘキシルカルボジイミド(DCC)206.3gをγ-ブチロラクトン180mLに溶解した溶液を攪拌しながら40分掛けて反応混合物に加え、続いて4,4’-オキシジアニリン(ODA)93.0gをγ-ブチロラクトン350mLに懸濁したものを攪拌しながら60分掛けて加えた。更に室温で2時間攪拌した後、エチルアルコール30mLを加えて1時間攪拌し、次に、γ-ブチロラクトン400mLを加えた。反応混合物に生じた沈殿物をろ過により取り除き、反応液を得た。
得られた反応液を3Lのエチルアルコールに加えて粗ポリマーから成る沈殿物を生成した。生成した粗ポリマーを濾別し、テトラヒドロフラン1.5Lに溶解して粗ポリマー溶液を得た。得られた粗ポリマー溶液を28Lの水に滴下してポリマーを沈殿させ、得られた沈殿物を濾別した後、真空乾燥して粉末状のポリマー(ポリマーA-1)を得た。ポリマー(A-1)の分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は20,000であった。 <(A) Production Example of Polyimide Precursor>
Production Example 1: (A) Synthesis of Polymer A-1 as Polyimide Precursor 155.1 g of 4,4'-oxydiphthalic acid dianhydride (ODPA) is placed in a 2 L separable flask, and 2-hydroxyethyl methacrylate ( 131.2 g of HEMA) and 400 mL of γ-butyrolactone were added and stirred at room temperature, and 81.5 g of pyridine was added while stirring to obtain a reaction mixture. After the end of the reaction exotherm, the reaction mixture was allowed to cool to room temperature and left for 16 hours.
Next, under ice-cooling, a solution of 206.3 g of dicyclohexylcarbodiimide (DCC) in 180 mL of γ-butyrolactone is added to the reaction mixture with stirring over 40 minutes, and subsequently, 4,4′-oxydianiline (ODA) A suspension of 93.0 g in 350 mL of γ-butyrolactone was added over 60 minutes with stirring. After stirring for 2 hours at room temperature, 30 mL of ethyl alcohol was added and stirred for 1 hour, and then 400 mL of γ-butyrolactone was added. The precipitate formed in the reaction mixture was removed by filtration to obtain a reaction solution.
The resulting reaction solution was added to 3 L of ethyl alcohol to form a precipitate consisting of a crude polymer. The resulting crude polymer was separated by filtration and dissolved in 1.5 L of tetrahydrofuran to obtain a crude polymer solution. The obtained crude polymer solution was dropped into 28 L of water to precipitate a polymer, and the obtained precipitate was separated by filtration and then vacuum dried to obtain a powdery polymer (polymer A-1). The molecular weight of the polymer (A-1) was measured by gel permeation chromatography (in terms of standard polystyrene), and the weight average molecular weight (Mw) was 20,000.
製造例1の4,4’-オキシジフタル酸二無水物(ODPA)155.1gに代えて、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを用いた以外は、前述の製造例1に記載の方法と同様にして反応を行い、ポリマー(A-2)を得た。ポリマー(A-2)の分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は22,000であった。 Production Example 2 (A) Synthesis of Polymer A-2 as Polyimide Precursor In place of 155.1 g of 4,4′-oxydiphthalic acid dianhydride (ODPA) in Production Example 1, 3,3 ′, 4,4 A reaction was carried out in the same manner as in the above-mentioned Production Example 1 except that 147.1 g of '-biphenyltetracarboxylic acid dianhydride (BPDA) was used, to obtain a polymer (A-2). The molecular weight of the polymer (A-2) was measured by gel permeation chromatography (in terms of standard polystyrene), and the weight average molecular weight (Mw) was 22,000.
製造例1の4,4’-オキシジアニリン(ODA)93.0gに代えて、p-フェニレンジアミン50.2gを用いた以外は、前述の製造例1に記載の方法と同様にして反応を行い、ポリマー(A-3)を得た。ポリマー(A-3)の分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は19,000であった。 Production Example 3 (A) Synthesis of Polymer A-3 as Polyimide Precursor 50.2 g of p-phenylenediamine was used in place of 93.0 g of 4,4′-oxydianiline (ODA) in Production Example 1 The reaction was carried out in the same manner as described in Production Example 1 except for the above, to obtain a polymer (A-3). The molecular weight of the polymer (A-3) was measured by gel permeation chromatography (in terms of standard polystyrene), and the weight average molecular weight (Mw) was 19,000.
容量3lのセパラブルフラスコ中で、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-ヘキサフルオロプロパン183.1g、N,N-ジメチルアセトアミド(DMAc)640.9g、ピリジン63.3gを室温(25℃)で混合攪拌し、均一溶液とした。これに、4,4’-ジフェニルエーテルジカルボニルクロリド118.0gをジエチレングリコールジメチルエーテル(DMDG)354gに溶解したものを滴下ロートより滴下した。この際、セパラブルフラスコは15~20℃の水浴で冷却した。滴下に要した時間は40分、反応液温は最大で30℃であった。
滴下終了から3時間後反応液に1,2-シクロヘキシルジカルボン酸無水物30.8g(0.2mol)を添加し、室温で15時間撹拌放置し、ポリマー鎖の全アミン末端基の99%をカルボキシシクロヘキシルアミド基で封止した。この際の反応率は投入した1,2-シクロヘキシルジカルボン酸無水物の残量を高速液体クロマトグラフィー(HPLC)で追跡することにより容易に算出することができる。その後上記反応液を2Lの水に高速攪拌下で滴下し重合体を分散析出させ、これを回収し、適宜水洗、脱水の後に真空乾燥を施し、ゲルパーミエーションクロマトグラフィー(GPC)法で測定した重量平均分子量9,000(ポリスチレン換算)の粗ポリベンゾオキサゾール前駆体を得た。
上記で得られた粗ポリベンゾオキサゾール前駆体をγ-ブチロラクトン(GBL)に再溶解した後、これを陽イオン交換樹脂及び陰イオン交換樹脂にて処理し、それにより得られた溶液をイオン交換水中に投入後、析出したポリマーを濾別、水洗、真空乾燥することにより精製されたポリベンゾオキサゾール前駆体(ポリマーA-4)を得た。 Production Example 4: (A) Synthesis of Polymer A-4 as Polyimide Precursor (Polybenzoxazole Precursor)
In a 3 l separable flask, 183.1 g of 2,2-bis (3-amino-4-hydroxyphenyl) -hexafluoropropane, 640.9 g of N, N-dimethylacetamide (DMAc), 63.3 g of pyridine It mixed and stirred at room temperature (25 degreeC), and was set as the uniform solution. To this, 118.0 g of 4,4'-diphenylether dicarbonyl chloride dissolved in 354 g of diethylene glycol dimethyl ether (DMDG) was dropped from a dropping funnel. At this time, the separable flask was cooled by a water bath of 15 to 20.degree. The time required for the dropwise addition was 40 minutes, and the temperature of the reaction solution was 30 ° C. at maximum.
After 3 hours from the end of dropwise addition, 30.8 g (0.2 mol) of 1,2-cyclohexyldicarboxylic acid anhydride is added to the reaction solution, and stirred at room temperature for 15 hours to allow 99% of all amine end groups of the polymer chain to be carboxy Sealed with a cyclohexylamide group. The reaction rate at this time can be easily calculated by monitoring the amount of remaining 1,2-cyclohexyldicarboxylic acid anhydride by high performance liquid chromatography (HPLC). Thereafter, the above reaction solution was added dropwise to 2 L of water under high speed stirring to disperse and precipitate the polymer, which was recovered, appropriately washed with water, dehydrated and then vacuum dried, and measured by gel permeation chromatography (GPC) method A crude polybenzoxazole precursor having a weight average molecular weight of 9,000 (in terms of polystyrene) was obtained.
The crude polybenzoxazole precursor obtained above is redissolved in γ-butyrolactone (GBL) and then treated with a cation exchange resin and an anion exchange resin, and the solution obtained thereby is ion-exchanged water The precipitated polymer was separated by filtration, washed with water and vacuum dried to obtain a purified polybenzoxazole precursor (polymer A-4).
製造例5:(B)塩基保護化合物としての化合物B-1の合成
容量1Lのナス型フラスコ中へ、1,3-ジ-4-ピペリジルプロパン(東京化成工業株式会社製)100gと、エタノール100gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)228gをエタノール200gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物B-1を得た。(分子量:411、溶解度パラメーター:20.2) <(B) Production Example of Base-Protected Compound>
Production Example 5 (B) Synthesis of Compound B-1 as a Base-Protected Compound Into a 1-L eggplant-shaped flask, 100 g of 1,3-di-4-piperidylpropane (manufactured by Tokyo Chemical Industry Co., Ltd.) and 100 g of ethanol And stirred with a stirrer to make a homogeneous solution, and cooled to 5 ° C. or less with ice water. A solution of 228 g of di-tert-butyl dicarbonate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) in 200 g of ethanol was dropped to the solution by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction solution was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound B-1. (Molecular weight: 411, solubility parameter: 20.2)
容量1Lのナス型フラスコ中へ、1,4-ブタンジオール(3-アミノプロピル)エーテル(東京化成工業株式会社製)100gとエタノール100gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)234gをエタノール130gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物B-2を得た。(分子量:405、溶解度パラメーター:21.2) Preparation Example 6 (B) Synthesis of Compound B-2 as a Base-Protected Compound Into a 1-L eggplant-shaped flask, 100 g of 1,4-butanediol (3-aminopropyl) ether (manufactured by Tokyo Chemical Industry Co., Ltd.) and 100 g of ethanol was added, mixed and stirred by a stirrer to obtain a uniform solution, and cooled to 5 ° C. or less with ice water. A solution of 234 g of di-tert-butyl dicarbonate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) in 130 g of ethanol was dropped to the solution by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction solution was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound B-2. (Molecular weight: 405, solubility parameter: 21.2)
容量1Lのナス型フラスコ中へ、ジエチレングリコールビス(3-アミノプロピル)エーテル(東京化成工業株式会社製)100gとエタノール100gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)215gをエタノール120gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物B-3を得た。(分子量:421、溶解度パラメーター:21.5) Production Example 7 (B) Synthesis of Compound B-3 as a Base-Protected Compound In a 1-L eggplant-shaped flask, 100 g of diethylene glycol bis (3-aminopropyl) ether (manufactured by Tokyo Chemical Industry Co., Ltd.) and 100 g of ethanol were added. The mixture was stirred with a stirrer to form a homogeneous solution, and cooled to 5 ° C. or less with ice water. To this, a solution of 215 g of di-tert-butyl dicarbonate (manufactured by Tokyo Chemical Industry Co., Ltd.) in 120 g of ethanol was dropped by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction solution was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound B-3. (Molecular weight: 421, solubility parameter: 21.5)
容量1Lのナス型フラスコ中へ、1,2-ビス(2-アミノエトキシ)エタン(東京化成工業株式会社製)100gと、エタノール100gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)319gをエタノール150gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物B-4を得た。(分子量:348、溶解度パラメーター:21.9) Production Example 8 (B) Synthesis of Compound B-4 as Base-Protected Compound Into a 1-L eggplant-shaped flask, 100 g of 1,2-bis (2-aminoethoxy) ethane (manufactured by Tokyo Chemical Industry Co., Ltd.), 100 g of ethanol was added, mixed and stirred by a stirrer to obtain a uniform solution, and cooled to 5 ° C. or less with ice water. A solution of 319 g of di-tert-butyl dicarbonate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) dissolved in 150 g of ethanol was dropped into the solution by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction solution was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound B-4. (Molecular weight: 348, solubility parameter: 21.9)
容量250mLのナス型フラスコ中へ、2,2’-オキシビス(エチルアミン)(東京化成工業株式会社製)10gと、エタノール10gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)46gをエタノール40gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物B-5を得た。(分子量:304、溶解度パラメーター:21.9) Production Example 9 (B) Synthesis of Compound B-5 as a Base-Protected Compound Into a 250-mL eggplant-shaped flask, 10 g of 2,2′-oxybis (ethylamine) (manufactured by Tokyo Chemical Industry Co., Ltd.) and 10 g of ethanol In addition, they were mixed and stirred by a stirrer to make a homogeneous solution, and cooled to 5 ° C. or less with ice water. To this, 46 g of di-tert-butyl dicarbonate (manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 40 g of ethanol was dropped by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction solution was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound B-5. (Molecular weight: 304, solubility parameter: 21.9)
容量250mLのナス型フラスコ中へ、ジ-n-オクチルアミン(東京化成工業株式会社製)10gと、エタノール10gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)20gをエタノール20gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物B-6を得た。(分子量:342、溶解度パラメーター:18.9) Production Example 10: (B) Synthesis of Compound B-6 as a Base-Protected Compound In a 250-mL eggplant-shaped flask, 10 g of di-n-octylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 10 g of ethanol are added to obtain a stirrer. The mixture was mixed and stirred to form a homogeneous solution, and cooled to 5 ° C. or less with ice water. To this, 20 g of ethanol in which 20 g of di-tert-butyl dicarbonate (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved was dropped by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction solution was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound B-6. (Molecular weight: 342, solubility parameter: 18.9)
容量250mLのナス型フラスコ中へ、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(東京化成工業株式会社製)10gと、エタノール10gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)12gをエタノール12gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物B-7を得た。(分子量:611、溶解度パラメーター:22.0) Production Example 11 (B) Synthesis of Compound B-7 as a Base-Protected Compound Into a 250 mL eggplant-shaped flask, 2,2-bis [4- (4-aminophenoxy) phenyl] propane (Tokyo Chemical Industry Co., Ltd.) 10 g of ethanol and 10 g of ethanol were added, mixed and stirred by a stirrer to obtain a uniform solution, and cooled to 5 ° C. or less with ice water. To this, 12 g of di-tert-butyl dicarbonate (manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 12 g of ethanol was dropped by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction mixture was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound B-7. (Molecular weight: 611, solubility parameter: 22.0)
使用した(C)光重合開始剤を以下に示す。
C-1:1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)-オキシム
C-2:イルガキュアOXE01(BASF社製、商品名) <(C) Photopolymerization initiator>
The (C) photopolymerization initiator used is shown below.
C-1: 1-phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) -oxime C-2: Irgacure OXE01 (manufactured by BASF, trade name)
製造例12:(D)エーテル化合物としての化合物D-1の合成
容量1Lのナス型フラスコ中へ、JEFFAMINE(登録商標) M-600(Huntsman社製)100gとエタノール100gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)44gをエタノール44gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物D-1を得た。 <(D) Production Example of Ether Compound>
Production Example 12 (D) Synthesis of Compound D-1 as an Ether Compound In a 1-L eggplant-shaped flask, 100 g of JEFFAMINE® M-600 (manufactured by Huntsman) and 100 g of ethanol are added and mixed and stirred with a stirrer The reaction solution was cooled to below 5 ° C. with ice water. A solution of 44 g of di-tert-butyl dicarbonate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) in 44 g of ethanol was dropped to the solution by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction mixture was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound D-1.
容量1Lのナス型フラスコ中へ、JEFFAMINE(登録商標) M-1000(Huntsman社製)100gとエタノール100gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)26gをエタノール26gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物D-2を得た。 Production Example 13 (D) Synthesis of Compound D-2 as Ether Compound In a 1-L eggplant-type flask, 100 g of JEFFAMINE® M-1000 (manufactured by Huntsman) and 100 g of ethanol are added and mixed and stirred by a stirrer. The reaction solution was cooled to below 5 ° C. with ice water. To this, 26 g of ethanol in which 26 g of di-tert-butyl dicarbonate (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved was dropped by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction mixture was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound D-2.
容量1Lのナス型フラスコ中へ、JEFFAMINE(登録商標) D-400(販売元:三井化学ファイン株式会社)100gとエタノール100gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)110gをエタノール110gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物D-3を得た。 Production Example 14 (D) Synthesis of Compound D-3 as an Ether Compound In a 1-L eggplant-type flask, 100 g of JEFFAMINE® D-400 (sold by Mitsui Chemicals Fine Inc.) and 100 g of ethanol were added. The mixture was stirred with a stirrer to form a homogeneous solution, and cooled to 5 ° C. or less with ice water. To this, 110 g of ethanol in which 110 g of di-tert-butyl dicarbonate (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved was dropped by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction solution was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound D-3.
容量1Lのナス型フラスコ中へ、ジエチレングリコールビス(3-アミノプロピル)エーテル(東京化成工業株式会社製)100gとエタノール100gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)215gをエタノール120gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物D-4を得た。 Production Example 15 (D) Synthesis of Compound D-4 as an Ether Compound In a 1-L eggplant type flask, 100 g of diethylene glycol bis (3-aminopropyl) ether (manufactured by Tokyo Chemical Industry Co., Ltd.) and 100 g of ethanol The mixture was mixed and stirred by a stirrer to obtain a uniform solution, and cooled to 5 ° C. or less with ice water. To this, a solution of 215 g of di-tert-butyl dicarbonate (manufactured by Tokyo Chemical Industry Co., Ltd.) in 120 g of ethanol was dropped by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction solution was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound D-4.
容量1Lのナス型フラスコ中へ、1,4-ブタンジオール(3-アミノプロピル)エーテル(東京化成工業株式会社製)100gとエタノール100gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)234gをエタノール130gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物D-5を得た。 Production Example 16 (D) Synthesis of Compound D-5 as an Ether Compound Into a 1-L eggplant-shaped flask, 100 g of 1,4-butanediol (3-aminopropyl) ether (manufactured by Tokyo Chemical Industry Co., Ltd.) and ethanol 100 g was added, mixed and stirred by a stirrer to obtain a uniform solution, and cooled to 5 ° C. or less with ice water. A solution of 234 g of di-tert-butyl dicarbonate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) in 130 g of ethanol was dropped to the solution by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction solution was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound D-5.
容量1Lのナス型フラスコ中へ、1,2-ビス(2-アミノエトキシ)エタン(東京化成工業株式会社製)100gとエタノール100gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)319gをエタノール150gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物D-6を得た。 Production Example 17 (D) Synthesis of Compound D-6 as Ether Compound Into a 1-L eggplant-shaped flask, 100 g of 1,2-bis (2-aminoethoxy) ethane (manufactured by Tokyo Chemical Industry Co., Ltd.) and 100 g of ethanol And stirred with a stirrer to make a homogeneous solution, and cooled to 5 ° C. or less with ice water. A solution of 319 g of di-tert-butyl dicarbonate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) dissolved in 150 g of ethanol was dropped into the solution by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction mixture was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound D-6.
容量250mLのナス型フラスコ中へ、2,2’-オキシビス(エチルアミン)(東京化成工業株式会社製)10gとエタノール10gを加えてスターラーで混合撹拌して均一溶液とし、氷水で5℃以下に冷却した。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)46gをエタノール40gに溶解したものを滴下ロートにより滴下した。この際、反応液温が50℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を50℃で3時間減圧濃縮することにより、目的の化合物D-7を得た。 Production Example 18 (D) Synthesis of Compound D-7 as an Ether Compound In a 250 mL eggplant-type flask, 10 g of 2,2′-oxybis (ethylamine) (manufactured by Tokyo Chemical Industry Co., Ltd.) and 10 g of ethanol are added. The mixture was mixed and stirred by a stirrer to obtain a uniform solution, and cooled to 5 ° C. or less with ice water. To this, 46 g of di-tert-butyl dicarbonate (manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 40 g of ethanol was dropped by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 50 ° C. or less. Two hours after the completion of dropwise addition, the reaction mixture was concentrated under reduced pressure at 50 ° C. for 3 hours to obtain the target compound D-7.
使用した(E)ウレタン化合物を以下に示す。
E-1:1-(tert-ブトキシカルボニル)-4-ピペリジンメタノール(東京化成工業株式会社製)
E-2:3-(カルボベンゾキシアミノ)-1-プロパノール(東京化成工業株式会社製)
E-3:N-[(9H-フルオレン-9-イルメトキシ)カルボニル]-D-セリン(東京化成工業株式会社製)
E-4:1-(tert-ブトキシカルボニル)-4-ヒドロキシピペリジン(東京化成工業株式会社製)
E-5:容量3Lのナス型フラスコ中へ、4-ヒドロキシ-4-フェニルピペリジン(東京化成工業株式会社製)40gとエタノール300gを加えて混合撹拌し、均一溶液とした。これに、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)54gをエタノール100gに溶解したものを滴下ロートにより滴下した。この際、反応液温が60℃以下を保つように滴下速度を調整しながら滴下を行った。滴下終了から2時間後、反応液を減圧下、50℃でエバポレーションして白色固体のウレタン化合物E-5を得た(上記化学式1の化合物)。
E-6:Nα-(tert-ブトキシカルボニル)-L-トリプトファノール(東京化成工業株式会社製)
E-7:N-(tert-ブトキシカルボニル)-L-セリン(東京化成工業株式会社製)
E-8:1-(tert-ブトキシカルボニル)-4-ピペリジンカルボン酸(東京化成工業株式会社製)
E-9:N-(tertブトキシカルボニル)-4-ヒドロキシアニリン(シグマアルドリッチ社製)
E-10:2-(2-アミノエトキシ)エタノール(東京化成工業株式会社製) <(E) Urethane compound>
The (E) urethane compound used is shown below.
E-1: 1- (tert-butoxycarbonyl) -4-piperidinemethanol (made by Tokyo Chemical Industry Co., Ltd.)
E-2: 3- (carbobenzoxyamino) -1-propanol (manufactured by Tokyo Chemical Industry Co., Ltd.)
E-3: N-[(9H-fluoren-9-ylmethoxy) carbonyl] -D-serine (made by Tokyo Chemical Industry Co., Ltd.)
E-4: 1- (tert-butoxycarbonyl) -4-hydroxypiperidine (manufactured by Tokyo Chemical Industry Co., Ltd.)
E-5: 40 g of 4-hydroxy-4-phenylpiperidine (manufactured by Tokyo Kasei Kogyo Co., Ltd.) and 300 g of ethanol were added to a 3 L eggplant-shaped flask and mixed and stirred to obtain a uniform solution. To this, 54 g of di-tert-butyl dicarbonate (manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 100 g of ethanol was dropped by a dropping funnel. At this time, dropping was performed while adjusting the dropping speed so that the temperature of the reaction liquid was kept at 60 ° C. or less. Two hours after the completion of dropwise addition, the reaction solution was evaporated under reduced pressure at 50 ° C. to obtain a urethane compound E-5 as a white solid (compound of the above-mentioned formula 1).
E-6: Nα- (tert-butoxycarbonyl) -L-triptophanol (manufactured by Tokyo Chemical Industry Co., Ltd.)
E-7: N- (tert-butoxycarbonyl) -L-serine (manufactured by Tokyo Chemical Industry Co., Ltd.)
E-8: 1- (tert-butoxycarbonyl) -4-piperidine carboxylic acid (made by Tokyo Chemical Industry Co., Ltd.)
E-9: N- (tert-butoxycarbonyl) -4-hydroxyaniline (manufactured by Sigma Aldrich)
E-10: 2- (2-aminoethoxy) ethanol (manufactured by Tokyo Chemical Industry Co., Ltd.)
ポリマーA-1を用いて以下の方法でネガ型感光性樹脂組成物を調製し、調製した組成物の評価を行った。(A)ポリイミド前駆体としてポリマーA-1:100g、(B)塩基保護化合物として化合物B-1:5g、(C)光重合開始剤として1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)-オキシム(以下ではPDOと表記、光重合開始剤C-1に該当):3gを、γ-ブチルラクトン(以下ではGBLと表記):150gに溶解した。得られた溶液の粘度を、少量のGBLをさらに加えることによって、約30ポイズに調整し、ネガ型感光性樹脂組成物とした。該組成物を、前述の方法に従って評価した。結果を表1に示す。 Example 1
A negative photosensitive resin composition was prepared by using the polymer A-1 by the following method, and the prepared composition was evaluated. (A) 100 g of polymer A-1 as a polyimide precursor, 5 B of compound B-1 as a (B) base-protected compound, 1-phenyl-1,2-propanedione-2- (C) as a photopolymerization initiator 3 g of O-ethoxycarbonyl) -oxime (hereinafter referred to as PDO, corresponding to a photopolymerization initiator C-1): 3 g was dissolved in 150 g of γ-butyl lactone (hereinafter referred to as GBL). The viscosity of the resulting solution was adjusted to about 30 poise by further adding a small amount of GBL to obtain a negative photosensitive resin composition. The composition was evaluated according to the method described above. The results are shown in Table 1.
表1及び2に示すとおりの成分及び配合比で調製したこと以外は、実施例1と同様にしてネガ型感光性樹脂組成物を調製し、実施例1と同様に評価を行った。その結果を表1及び2に示す。 Examples 2 to 15, Comparative Examples 1 and 2
A negative photosensitive resin composition was prepared in the same manner as in Example 1 except that it was prepared with the components and compounding ratios as shown in Tables 1 and 2, and was evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.
ポリマーA-1を用いて以下の方法でネガ型感光性樹脂組成物を調製し、調製した組成物の評価を行った。(A)ポリイミド前駆体としてポリマーA-1:100g、(D)エーテル化合物として化合物D-1:5g、(C)光重合開始剤として1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)-オキシム(以下ではPDOと表記、感光剤C-1に該当):3gを、γ-ブチルラクトン(以下ではGBLと表記):150gに溶解した。得られた溶液の粘度を、少量のGBLをさらに加えることによって、約30ポイズに調整し、ネガ型感光性樹脂組成物とした。該組成物を、前述の方法に従って評価した。結果を表3に示す。 Example 16
A negative photosensitive resin composition was prepared by using the polymer A-1 by the following method, and the prepared composition was evaluated. (A) Polymer A-1 as a polyimide precursor: 100 g, (D) Compound D-1 as an ether compound: 5 g, (C) 1-phenyl-1,2-propanedione-2- (O) as a photopolymerization initiator 3 g of -ethoxycarbonyl) -oxime (hereinafter referred to as PDO, corresponding to photosensitizer C-1): was dissolved in 150 g of γ-butyl lactone (hereinafter referred to as GBL). The viscosity of the resulting solution was adjusted to about 30 poise by further adding a small amount of GBL to obtain a negative photosensitive resin composition. The composition was evaluated according to the method described above. The results are shown in Table 3.
表1に示すとおりの成分及び配合比で調製したこと以外は、実施例16と同様にしてネガ型感光性樹脂組成物を調製し、実施例16と同様に評価を行った。その結果を表3及び4に示す。 Examples 17 to 31 and Comparative Examples 5 to 7
A negative photosensitive resin composition was prepared in the same manner as in Example 16 except that the components and the compounding ratio as shown in Table 1 were prepared, and evaluation was performed in the same manner as in Example 16. The results are shown in Tables 3 and 4.
ポリマー(A-4)を用いて以下の方法でポジ型感光性樹脂組成物を調製し、調製した感光性樹脂組成物の評価を行った。ポリマーとしてポリオキサゾール前駆体であるポリマーA-4:100g、化合物としてD-4:5g、感光剤として下記化学式(22):
A positive photosensitive resin composition was prepared by using the polymer (A-4) by the following method, and the prepared photosensitive resin composition was evaluated. 100 g of polymer A-4, which is a polyoxazole precursor as a polymer, 5 g of D-4 as a compound, the following chemical formula (22) as a photosensitizer
エーテル化合物をD-4に替えてD-5を用いて調製したこと以外は、比較例3と同様のポジ型感光性樹脂組成物を調製し、比較例3と同様に評価を行った。その結果を表4に示す。 Comparative Example 4
The same positive photosensitive resin composition as in Comparative Example 3 was prepared except that the ether compound was changed to D-4 and prepared using D-5, and evaluation was performed in the same manner as in Comparative Example 3. The results are shown in Table 4.
ポリマーA-1を用いて以下の方法でネガ型感光性樹脂組成物を調製し、調製した組成物の評価を行った。(A)樹脂としてポリマーA-1:100g、(E)ウレタン化合物として1-(tert-ブトキシカルボニル)-4-ヒドロキシピペリジン(東京化成工業株式会社製、(E-4に該当):5g、(C)感光剤として1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)-オキシム(以下ではPDOと表記、(C-1に該当):4gを、γ―ブチルラクトン(以下ではGBLと表記):150gに溶解した。得られた溶液の粘度を、少量のGBLをさらに加えることによって、約30ポイズに調整し、ネガ型感光性樹脂組成物とした。該組成物を、前述の方法に従って評価した。結果を表5に示す。 Example 32
A negative photosensitive resin composition was prepared by using the polymer A-1 by the following method, and the prepared composition was evaluated. (A) Polymer A-1 as resin: 100 g, (E) Urethane compound 1- (tert-butoxycarbonyl) -4-hydroxypiperidine (manufactured by Tokyo Chemical Industry Co., Ltd., (corresponding to E-4): 5 g, C) 1-phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) -oxime (hereinafter referred to as PDO, corresponding to C-1): 4 g of a γ-butyl lactone (hereinafter referred to as a photosensitizer) In this case, the solution was dissolved in 150 g of GBL.The viscosity of the resulting solution was adjusted to about 30 poise by further adding a small amount of GBL to obtain a negative photosensitive resin composition. The evaluation was made according to the method described above, and the results are shown in Table 5.
表5及び6に示すとおりの成分及び配合比で調製したこと以外は、実施例32と同様にしてネガ型感光性樹脂組成物を調製し、実施例32と同様に評価を行った。その結果を表5及び6に示す。 Examples 33 to 47, Comparative Examples 8 to 11
A negative photosensitive resin composition was prepared in the same manner as in Example 32 except that the components and the compounding ratio were as shown in Tables 5 and 6, and the evaluation was performed in the same manner as in Example 32. The results are shown in Tables 5 and 6.
Claims (36)
- (A)ポリイミド前駆体;
(B)酸又は塩基又は熱で脱保護される基で保護された複数のアミノ基を有し、分子量が250~600であり、前記保護された複数のアミノ基が脂肪族鎖状もしくは脂環式アミノ基であり、かつ、溶解度パラメーターの値が20.0以上24.0以下である、塩基保護化合物;及び
(C)光重合開始剤
を含む、ネガ型感光性樹脂組成物。 (A) polyimide precursor;
(B) It has a plurality of amino groups protected by an acid or a base or a group which is deprotected by heat, and has a molecular weight of 250 to 600, and the plurality of protected amino groups have an aliphatic chain or alicyclic A negative photosensitive resin composition comprising a base-protected compound which is an amino group of the formula and has a solubility parameter value of 20.0 to 24.0; and (C) a photopolymerization initiator. - 前記保護された複数のアミノ基は、tert-ブトキシカルボニル基で保護されたアミノ基である、請求項1に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to claim 1, wherein the plurality of protected amino groups are amino groups protected with a tert-butoxycarbonyl group.
- 前記(A)ポリイミド前駆体が、下記一般式(2):
で表される構造単位を有するポリイミド前駆体を含む、請求項1又は2のいずれか一項に記載のネガ型感光性樹脂組成物。 The (A) polyimide precursor has the following general formula (2):
The negative photosensitive resin composition as described in any one of Claim 1 or 2 containing the polyimide precursor which has a structural unit represented by these. - 前記一般式(2)において、R1及びR2の少なくとも一方は、下記一般式(3):
- 前記(A)ポリイミド前駆体が、下記一般式(4):
で表される構造単位を有するポリイミド前駆体を含む、請求項3又は4に記載のネガ型感光性樹脂組成物。 The (A) polyimide precursor has the following general formula (4):
The negative photosensitive resin composition of Claim 3 or 4 containing the polyimide precursor which has a structural unit represented by these. - 前記(A)ポリイミド前駆体が、下記一般式(5):
で表される構造単位を有するポリイミド前駆体を含む、請求項3又は4に記載のネガ型感光性樹脂組成物。 The (A) polyimide precursor has the following general formula (5):
The negative photosensitive resin composition of Claim 3 or 4 containing the polyimide precursor which has a structural unit represented by these. - 前記(A)ポリイミド前駆体が、下記一般式(6):
で表される構造単位を有するポリイミド前駆体を含む、請求項3又は4に記載のネガ型感光性樹脂組成物。 The (A) polyimide precursor has the following general formula (6):
The negative photosensitive resin composition of Claim 3 or 4 containing the polyimide precursor which has a structural unit represented by these. - 前記(A)ポリイミド前駆体が、下記一般式(4):
で表される構造単位を有するポリイミド前駆体と、
下記一般式(5):
で表される構造単位を有するポリイミド前駆体の両方を含む、請求項3又は4に記載のネガ型感光性樹脂組成物。 The (A) polyimide precursor has the following general formula (4):
A polyimide precursor having a structural unit represented by
The following general formula (5):
The negative photosensitive resin composition of Claim 3 or 4 which contains both of a polyimide precursor which has a structural unit represented by these. - 前記(A)ポリイミド前駆体が、下記一般式(4):
で表される構造単位を有するポリイミド前駆体、と
下記一般式(6):
で表される構造単位を有するポリイミド前駆体の両方を含む、請求項3又は4に記載のネガ型感光性樹脂組成物。 The (A) polyimide precursor has the following general formula (4):
A polyimide precursor having a structural unit represented by the following general formula (6):
The negative photosensitive resin composition of Claim 3 or 4 which contains both of a polyimide precursor which has a structural unit represented by these. - 100質量部の前記(A)ポリイミド前駆体と、
前記(A)ポリイミド前駆体100質量部を基準として0.1~30質量部の前記(B)塩基保護化合物と、
前記(A)ポリイミド前駆体100質量部を基準として0.1~20質量部の前記(C)光重合開始剤と
を含む、請求項1~9のいずれか一項に記載のネガ型感光性樹脂組成物。 100 parts by mass of the (A) polyimide precursor
0.1 to 30 parts by mass of the (B) base protecting compound, based on 100 parts by mass of the (A) polyimide precursor,
The negative photosensitive resin according to any one of claims 1 to 9, comprising 0.1 to 20 parts by mass of the (C) photopolymerization initiator based on 100 parts by mass of the (A) polyimide precursor. Resin composition. - (A)ポリイミド前駆体;
(D)酸又は塩基又は熱で脱保護される基で保護された一つ又は複数のアミノ基と、下記一般式(1):
で表される一つ又は複数の構造単位を分子内に含む、エーテル化合物;及び
(C)光重合開始剤
を含む、ネガ型感光性樹脂組成物。 (A) polyimide precursor;
(D) One or more amino groups protected by an acid or a base or a group which is deprotected by heat, and the following general formula (1):
A negative photosensitive resin composition comprising an ether compound containing in the molecule one or more structural units represented by and a photopolymerization initiator (C). - 前記(D)エーテル化合物は、分子中に前記一般式(1)で表される構造単位を二つ以上含む、請求項11に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to claim 11, wherein the (D) ether compound contains two or more structural units represented by the general formula (1) in a molecule.
- 前記保護された一つ又は複数のアミノ基は、tert-ブトキシカルボニル基で保護されたアミノ基である、請求項11又は12に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to claim 11 or 12, wherein the one or more protected amino groups is an amino group protected by a tert-butoxycarbonyl group.
- 前記(A)ポリイミド前駆体が、下記一般式(2):
で表される構造単位を有するポリイミド前駆体を含む、請求項11~13のいずれか一項に記載のネガ型感光性樹脂組成物。 The (A) polyimide precursor has the following general formula (2):
The negative photosensitive resin composition according to any one of claims 11 to 13, comprising a polyimide precursor having a structural unit represented by - 前記一般式(2)において、R1及びR2の少なくとも一方は、下記一般式(3):
- 前記(A)ポリイミド前駆体が、下記一般式(4):
で表される構造単位を有するポリイミド前駆体を含む、請求項14又は15に記載のネガ型感光性樹脂組成物。 The (A) polyimide precursor has the following general formula (4):
The negative photosensitive resin composition of Claim 14 or 15 containing the polyimide precursor which has a structural unit represented by these. - 前記(A)ポリイミド前駆体が、下記一般式(5):
で表される構造単位を有するポリイミド前駆体を含む、請求項14又は15に記載のネガ型感光性樹脂組成物。 The (A) polyimide precursor has the following general formula (5):
The negative photosensitive resin composition of Claim 14 or 15 containing the polyimide precursor which has a structural unit represented by these. - 前記(A)ポリイミド前駆体が、下記一般式(6):
で表される構造単位を有するポリイミド前駆体を含む、請求項14又は15に記載のネガ型感光性樹脂組成物。 The (A) polyimide precursor has the following general formula (6):
The negative photosensitive resin composition of Claim 14 or 15 containing the polyimide precursor which has a structural unit represented by these. - 前記(A)ポリイミド前駆体が、下記一般式(4):
で表される構造単位を有するポリイミド前駆体と、
下記一般式(5):
で表される構造単位を有するポリイミド前駆体の両方を含む、請求項14又は15に記載のネガ型感光性樹脂組成物。 The (A) polyimide precursor has the following general formula (4):
A polyimide precursor having a structural unit represented by
The following general formula (5):
The negative photosensitive resin composition of Claim 14 or 15 containing both of a polyimide precursor which has a structural unit represented by these. - 前記(A)ポリイミド前駆体が、下記一般式(4):
で表される構造単位を有するポリイミド前駆体、と
下記一般式(6):
で表される構造単位を有するポリイミド前駆体の両方を含む、請求項14又は15に記載のネガ型感光性樹脂組成物。 The (A) polyimide precursor has the following general formula (4):
A polyimide precursor having a structural unit represented by the following general formula (6):
The negative photosensitive resin composition of Claim 14 or 15 containing both of a polyimide precursor which has a structural unit represented by these. - 100質量部の前記(A)ポリイミド前駆体と、
前記(A)ポリイミド前駆体100質量部を基準として0.1~30質量部の前記(D)エーテル化合物と、
前記(A)ポリイミド前駆体100質量部を基準として0.1~20質量部の前記(C)光重合開始剤と
を含む、請求項11~20のいずれか一項に記載のネガ型感光性樹脂組成物。 100 parts by mass of the (A) polyimide precursor
0.1 to 30 parts by mass of the (D) ether compound based on 100 parts by mass of the (A) polyimide precursor,
21. The negative photosensitive resin according to any one of claims 11 to 20, which comprises 0.1 to 20 parts by mass of the (C) photopolymerization initiator based on 100 parts by mass of the (A) polyimide precursor. Resin composition. - (A)ポリイミド前駆体;
(E)酸又は塩基又は熱で脱保護される基で保護された一つ又は複数のアミノ基と、ヒドロキシル基を分子内に少なくとも一つ含むウレタン化合物;及び
(C)光重合開始剤
を含む、ネガ型感光性樹脂組成物。 (A) polyimide precursor;
(E) One or more amino groups protected by an acid or a base or a thermally deprotected group, and a urethane compound containing at least one hydroxyl group in the molecule; and (C) a photopolymerization initiator , Negative photosensitive resin composition. - 前記(E)ウレタン化合物は、脂肪族鎖状若しくは脂環式アミノ基に結合したtert-ブトキシカルボニル基、ベンジルオキシカルボニル基又は9-フルオレニルメチルオキシカルボニル(Fmoc)基を分子内に少なくとも一つ有する、請求項22に記載のネガ型感光性樹脂組成物。 The (E) urethane compound has at least one tert-butoxycarbonyl group, benzyloxycarbonyl group or 9-fluorenylmethyloxycarbonyl (Fmoc) group bonded to an aliphatic chain or alicyclic amino group in the molecule. 23. The negative photosensitive resin composition according to claim 22, wherein said photosensitive resin composition comprises
- 前記(E)ウレタン化合物の前記保護された一つ又は複数のアミノ基の窒素原子の少なくとも一つが、分子内のヒドロキシル基のγ位若しくはε位にある、請求項22又は23に記載のネガ型感光性樹脂組成物。 The negative type according to claim 22 or 23, wherein at least one of the nitrogen atoms of the protected one or more amino groups of the (E) urethane compound is at the γ-position or ε-position of the hydroxyl group in the molecule. Photosensitive resin composition.
- 前記保護された一つ又は複数のアミノ基は、tert-ブトキシカルボニル基で保護されたアミノ基である、請求項22~24のいずれか一項に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to any one of claims 22 to 24, wherein the one or more protected amino groups is an amino group protected by a tert-butoxycarbonyl group.
- 前記(A)ポリイミド前駆体が、下記一般式(2):
で表される構造単位を有するポリイミド前駆体を含む、請求項22~25のいずれか一項に記載のネガ型感光性樹脂組成物。 The (A) polyimide precursor has the following general formula (2):
The negative photosensitive resin composition according to any one of claims 22 to 25, comprising a polyimide precursor having a structural unit represented by - 前記一般式(2)において、R1及びR2の少なくとも一方は、下記一般式(3):
- 前記(A)ポリイミド前駆体が、下記一般式(4):
で表される構造単位を有するポリイミド前駆体を含む、請求項26又は27に記載のネガ型感光性樹脂組成物。 The (A) polyimide precursor has the following general formula (4):
The negative photosensitive resin composition of Claim 26 or 27 containing the polyimide precursor which has a structural unit represented by these. - 前記(A)ポリイミド前駆体が、下記一般式(5):
で表される構造単位を有するポリイミド前駆体を含む、請求項26又は27に記載のネガ型感光性樹脂組成物。 The (A) polyimide precursor has the following general formula (5):
The negative photosensitive resin composition of Claim 26 or 27 containing the polyimide precursor which has a structural unit represented by these. - 前記(A)ポリイミド前駆体が、下記一般式(6):
で表される構造単位を有するポリイミド前駆体を含む、請求項26又は27に記載のネガ型感光性樹脂組成物。 The (A) polyimide precursor has the following general formula (6):
The negative photosensitive resin composition of Claim 26 or 27 containing the polyimide precursor which has a structural unit represented by these. - 前記(A)ポリイミド前駆体が、下記一般式(4):
で表される構造単位を有するポリイミド前駆体と、
下記一般式(5):
で表される構造単位を有するポリイミド前駆体の両方を含む、請求項26又は27に記載のネガ型感光性樹脂組成物。 The (A) polyimide precursor has the following general formula (4):
A polyimide precursor having a structural unit represented by
The following general formula (5):
The negative photosensitive resin composition of Claim 26 or 27 containing both of a polyimide precursor which has a structural unit represented by these. - 前記(A)ポリイミド前駆体が、下記一般式(4):
で表される構造単位を有するポリイミド前駆体、と
下記一般式(6):
で表される構造単位を有するポリイミド前駆体の両方を含む、請求項26又は27に記載のネガ型感光性樹脂組成物。 The (A) polyimide precursor has the following general formula (4):
A polyimide precursor having a structural unit represented by the following general formula (6):
The negative photosensitive resin composition of Claim 26 or 27 containing both of a polyimide precursor which has a structural unit represented by these. - 前記(E)ウレタン化合物が、Nα-(tert-ブトキシカルボニル)-L-トリプトファノール、1-(tert-ブトキシカルボニル)-4-ヒドロキシピペリジン、又は下記化学式(1):
- 100質量部の前記(A)ポリイミド前駆体と、
前記(A)ポリイミド前駆体100質量部を基準として0.1~30質量部の前記(E)ウレタン化合物と、
前記(A)ポリイミド前駆体100質量部を基準として0.1~20質量部の前記(C)光重合開始剤と
を含む、請求項22~33のいずれか一項に記載のネガ型感光性樹脂組成物。 100 parts by mass of the (A) polyimide precursor
0.1 to 30 parts by mass of the (E) urethane compound, based on 100 parts by mass of the (A) polyimide precursor,
34. The negative photosensitive resin according to any one of claims 22 to 33, comprising 0.1 to 20 parts by mass of the (C) photopolymerization initiator based on 100 parts by mass of the (A) polyimide precursor. Resin composition. - 請求項1~34のいずれか一項に記載のネガ型感光性樹脂組成物を硬化するポリイミドの製造方法。 A method for producing a polyimide, which cures the negative photosensitive resin composition according to any one of claims 1 to 34.
- (1)請求項1~34のいずれか一項に記載のネガ型感光性樹脂組成物を基板上に塗布して、感光性樹脂層を前記基板上に形成する工程と、
(2)前記感光性樹脂層を露光する工程と、
(3)露光後の前記感光性樹脂層を現像して、レリーフパターンを形成する工程と、
(4)前記レリーフパターンを加熱処理して、硬化レリーフパターンを形成する工程と
を含む、硬化レリーフパターンの製造方法。 (1) applying the negative photosensitive resin composition according to any one of claims 1 to 34 on a substrate to form a photosensitive resin layer on the substrate;
(2) exposing the photosensitive resin layer;
(3) developing the photosensitive resin layer after exposure to form a relief pattern;
(4) A method for producing a cured relief pattern, comprising the steps of: heat treating the relief pattern to form a cured relief pattern.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019557187A JP6968196B2 (en) | 2017-11-28 | 2018-11-21 | Negative photosensitive resin composition and its manufacturing method, and a method for manufacturing a cured relief pattern. |
KR1020207009110A KR102402138B1 (en) | 2017-11-28 | 2018-11-21 | Negative photosensitive resin composition, manufacturing method thereof, and manufacturing method of cured relief pattern |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-227583 | 2017-11-28 | ||
JP2017227583 | 2017-11-28 | ||
JP2018019406 | 2018-02-06 | ||
JP2018-019406 | 2018-02-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019107250A1 true WO2019107250A1 (en) | 2019-06-06 |
Family
ID=66664852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/043050 WO2019107250A1 (en) | 2017-11-28 | 2018-11-21 | Negative photosensitive resin composition, method for producing said composition, and method for producing cured relief pattern |
Country Status (4)
Country | Link |
---|---|
JP (3) | JP6968196B2 (en) |
KR (1) | KR102402138B1 (en) |
TW (1) | TWI700554B (en) |
WO (1) | WO2019107250A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111522200A (en) * | 2020-04-07 | 2020-08-11 | 中国科学院化学研究所 | Negative PSPI resin for 12-inch silicon wafer and preparation method and application thereof |
WO2024101295A1 (en) * | 2022-11-08 | 2024-05-16 | 富士フイルム株式会社 | Production method for cured product, production method for laminate, production method for semiconductor device, and semiconductor device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI817316B (en) * | 2021-01-12 | 2023-10-01 | 日商旭化成股份有限公司 | Polyimide precursor resin composition and manufacturing method thereof |
CN114561009B (en) * | 2022-02-28 | 2024-01-30 | 波米科技有限公司 | Preparation method and application of negative photosensitive polyamide acid ester resin and composition thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6017682A (en) * | 1995-03-14 | 2000-01-25 | Internatonal Business Machines Corporation | Solid state extension method |
WO2009136557A1 (en) * | 2008-05-09 | 2009-11-12 | 旭化成イーマテリアルズ株式会社 | Polyimide precursor, photosensitive polyimide precursor composition, photosensitive dry film, and flexible printed circuit board using those materials |
WO2010113813A1 (en) * | 2009-03-31 | 2010-10-07 | 大日本印刷株式会社 | Base-generating agent, photosensitive resin composition, patterning material comprising the photosensitive resin composition, patterning method and article using the photosensitive resin composition |
JP2015151405A (en) * | 2014-02-10 | 2015-08-24 | 日立化成デュポンマイクロシステムズ株式会社 | Resin composition containing polyimide precursor, manufacturing method of cured membrane and electronic component |
CN107189067A (en) * | 2017-01-11 | 2017-09-22 | 长兴材料工业股份有限公司 | Polyimide precursor and application thereof |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4462679B2 (en) | 1999-03-30 | 2010-05-12 | 旭化成イーマテリアルズ株式会社 | Silicon coupling agent and its use |
JP4623453B2 (en) | 1999-10-14 | 2011-02-02 | 旭化成イーマテリアルズ株式会社 | Amidophenol compounds |
JP3790649B2 (en) | 1999-12-10 | 2006-06-28 | 信越化学工業株式会社 | Resist material |
JP2001338947A (en) | 2000-05-26 | 2001-12-07 | Nec Corp | Flip chip type semiconductor device and its manufacturing method |
JP2007056196A (en) | 2005-08-26 | 2007-03-08 | Tokyo Institute Of Technology | Polyimide precursor composition, method for producing polyimide film and semiconductor device |
CN101432659B (en) * | 2006-04-28 | 2013-06-12 | 旭化成电子材料株式会社 | Photosensitive resin composition and photosensitive film |
JP2011089119A (en) | 2009-09-28 | 2011-05-06 | Dainippon Printing Co Ltd | Base generating agent, photosensitive resin composition, pattern-forming material comprising the photosensitive resin composition, method for forming pattern and article using the photosensitive resin composition |
JP5758300B2 (en) | 2009-11-16 | 2015-08-05 | 旭化成イーマテリアルズ株式会社 | Photosensitive resin composition containing polyimide precursor, photosensitive film, coverlay, flexible printed wiring board, and laminate thereof |
JP5485802B2 (en) | 2010-06-07 | 2014-05-07 | 旭化成イーマテリアルズ株式会社 | Polyimide precursor, photosensitive resin composition, and tetracarboxylic dianhydride |
JP2012093744A (en) | 2010-09-30 | 2012-05-17 | Dainippon Printing Co Ltd | Photosensitive resin composition, material for forming pattern comprising the photosensitive resin composition, method for manufacturing relief pattern using the photosensitive resin composition, and article using the composition |
CN103797418B (en) | 2011-06-24 | 2017-06-13 | 东京应化工业株式会社 | A kind of negative light-sensitive resin combination, pattern formation method, cured film, dielectric film, colour filter and display device |
JP5910109B2 (en) | 2012-01-26 | 2016-04-27 | 住友ベークライト株式会社 | Positive photosensitive resin composition, cured film, protective film, insulating film, semiconductor device, and display device |
KR102075960B1 (en) | 2012-03-14 | 2020-02-11 | 제이에스알 가부시끼가이샤 | Photoresist composition, method for forming resist pattern, acid diffusion control agent and compound |
JP6205280B2 (en) | 2014-01-29 | 2017-09-27 | 富士フイルム株式会社 | Pattern forming method and electronic device manufacturing method |
JP6630154B2 (en) | 2015-03-30 | 2020-01-15 | 東京応化工業株式会社 | Photosensitive resin composition, pattern forming method, cured film, insulating film, color filter, and display device |
JP6349335B2 (en) | 2015-04-28 | 2018-06-27 | 富士フイルム株式会社 | Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device, organic electroluminescence display device, and touch panel |
KR101915541B1 (en) * | 2015-04-28 | 2018-11-06 | 후지필름 가부시키가이샤 | Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device, organic electroluminescence display device, and touch panel |
WO2017002859A1 (en) | 2015-06-30 | 2017-01-05 | 富士フイルム株式会社 | Negative photosensitive resin composition, cured film, cured film production method and semiconductor device |
KR102090449B1 (en) | 2016-03-31 | 2020-03-18 | 아사히 가세이 가부시키가이샤 | Photosensitive resin composition, method for manufacturing cured relief pattern, and semiconductor apparatus |
-
2018
- 2018-11-21 WO PCT/JP2018/043050 patent/WO2019107250A1/en active Application Filing
- 2018-11-21 JP JP2019557187A patent/JP6968196B2/en active Active
- 2018-11-21 KR KR1020207009110A patent/KR102402138B1/en active IP Right Grant
- 2018-11-27 TW TW107142157A patent/TWI700554B/en active
-
2021
- 2021-04-22 JP JP2021072762A patent/JP7146014B2/en active Active
-
2022
- 2022-09-20 JP JP2022149442A patent/JP7393491B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6017682A (en) * | 1995-03-14 | 2000-01-25 | Internatonal Business Machines Corporation | Solid state extension method |
WO2009136557A1 (en) * | 2008-05-09 | 2009-11-12 | 旭化成イーマテリアルズ株式会社 | Polyimide precursor, photosensitive polyimide precursor composition, photosensitive dry film, and flexible printed circuit board using those materials |
WO2010113813A1 (en) * | 2009-03-31 | 2010-10-07 | 大日本印刷株式会社 | Base-generating agent, photosensitive resin composition, patterning material comprising the photosensitive resin composition, patterning method and article using the photosensitive resin composition |
JP2015151405A (en) * | 2014-02-10 | 2015-08-24 | 日立化成デュポンマイクロシステムズ株式会社 | Resin composition containing polyimide precursor, manufacturing method of cured membrane and electronic component |
CN107189067A (en) * | 2017-01-11 | 2017-09-22 | 长兴材料工业股份有限公司 | Polyimide precursor and application thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111522200A (en) * | 2020-04-07 | 2020-08-11 | 中国科学院化学研究所 | Negative PSPI resin for 12-inch silicon wafer and preparation method and application thereof |
CN111522200B (en) * | 2020-04-07 | 2021-07-27 | 中国科学院化学研究所 | Negative PSPI resin for 12-inch silicon wafer and preparation method and application thereof |
WO2024101295A1 (en) * | 2022-11-08 | 2024-05-16 | 富士フイルム株式会社 | Production method for cured product, production method for laminate, production method for semiconductor device, and semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP7393491B2 (en) | 2023-12-06 |
KR102402138B1 (en) | 2022-05-25 |
KR20200044927A (en) | 2020-04-29 |
JP6968196B2 (en) | 2021-11-17 |
JP2021131543A (en) | 2021-09-09 |
TW201925918A (en) | 2019-07-01 |
TWI700554B (en) | 2020-08-01 |
JP7146014B2 (en) | 2022-10-03 |
JPWO2019107250A1 (en) | 2020-07-27 |
JP2022173316A (en) | 2022-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7210588B2 (en) | Negative photosensitive resin composition, and method for producing polyimide and cured relief pattern using the same | |
JP6190805B2 (en) | Negative photosensitive resin composition, method for producing cured relief pattern, and semiconductor device | |
JP7393491B2 (en) | Negative photosensitive resin composition and method for producing the same, and method for producing a cured relief pattern | |
TWI798592B (en) | Negative photosensitive resin composition and method for producing cured embossed pattern | |
JP2021120703A (en) | Photosensitive resin composition, cured relief pattern and method for producing the same | |
TWI753387B (en) | Negative photosensitive resin composition, method for producing polyimide, and method for producing hardened relief pattern | |
JP2023002603A (en) | Negative type photosensitive resin composition, method of producing cured relief pattern, and semiconductor device | |
JP7540891B2 (en) | Negative-type photosensitive resin composition, and method for producing polyimide and cured relief pattern using the same | |
JP7445443B2 (en) | Negative photosensitive resin composition and method for producing the same, and method for producing a cured relief pattern | |
JP7488659B2 (en) | Negative-type photosensitive resin composition, and method for producing polyimide and cured relief pattern using the same | |
WO2024095927A1 (en) | Photosensitive resin composition, method for producing cured relief pattern using same, and method for producing polyimide film using same | |
JP2023158657A (en) | Negative type photosensitive resin composition and method for producing the same, and method for manufacturing cured relief pattern |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18882666 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019557187 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207009110 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18882666 Country of ref document: EP Kind code of ref document: A1 |