WO2024101295A1 - Production method for cured product, production method for laminate, production method for semiconductor device, and semiconductor device - Google Patents

Production method for cured product, production method for laminate, production method for semiconductor device, and semiconductor device Download PDF

Info

Publication number
WO2024101295A1
WO2024101295A1 PCT/JP2023/039835 JP2023039835W WO2024101295A1 WO 2024101295 A1 WO2024101295 A1 WO 2024101295A1 JP 2023039835 W JP2023039835 W JP 2023039835W WO 2024101295 A1 WO2024101295 A1 WO 2024101295A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
cured product
producing
resin composition
Prior art date
Application number
PCT/JP2023/039835
Other languages
French (fr)
Japanese (ja)
Inventor
裕樹 奈良
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024101295A1 publication Critical patent/WO2024101295A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Definitions

  • the present invention relates to a method for producing a cured product, a method for producing a laminate, a method for producing a semiconductor device, and a semiconductor device.
  • resin materials produced from resin compositions containing resins are being used in various fields.
  • polyimide is used in various applications due to its excellent heat resistance and insulating properties.
  • the applications include, but are not limited to, materials for insulating films and sealing materials, or protective films for semiconductor devices for mounting.
  • Polyimide is also used as a base film or coverlay for flexible substrates.
  • polyimide is used in the form of a resin composition containing a polyimide precursor.
  • a resin composition is applied to a substrate, for example by coating, to form a resin layer, and then, if necessary, exposed to light, developed, and then heated, whereby a cured product can be formed on the substrate.
  • the polyimide precursor is cyclized by heating to become a polyimide in the cured product. Since the resin composition can be applied by a known coating method, etc., it can be said to have excellent adaptability in manufacturing, for example, high degree of freedom in designing the shape, size, application position, etc. of the resin composition when applied. In addition to the high performance of polyimide, from the viewpoint of such excellent adaptability in manufacturing, the above-mentioned resin composition is expected to be increasingly applied in industrial applications.
  • Patent Document 1 describes a photosensitive resin composition that contains a polyimide resin precursor having a repeating unit structure represented by the following general formula (1), a photosensitizer, a dispersible compound that is dispersible in the polyimide resin precursor, and a solvent.
  • the present invention aims to provide a method for producing a cured product that provides a cured product with excellent heat resistance reliability and chemical resistance, a method for producing a laminate that includes the method for producing the cured product, a method for producing a semiconductor device that includes the method for producing the cured product, and a semiconductor device that includes a cured product obtained by the method for producing the cured product.
  • the method includes a step of contacting the resin layer with a treatment liquid containing the compound A prior to the depressurization step.
  • a treatment liquid containing the compound A prior to the depressurization step.
  • the method for producing a cured product according to ⁇ 1> further comprising, prior to the decompression step, a step of exposing a photosensitive resin layer formed from the resin composition further containing a photopolymerization initiator, and a step of developing the exposed photosensitive resin layer to obtain the resin layer.
  • ⁇ 3> The method for producing a cured product according to ⁇ 2>, wherein the photopolymerization initiator includes a compound having a structure represented by the following formula (PPI-1):
  • PPI-1 the photopolymerization initiator includes a compound having a structure represented by the following formula (PPI-1):
  • R 1 is an organic group having 1 to 9 carbon atoms
  • R 2 is a methyl group or a phenyl group
  • R 3 is each independently an organic group having 1 to 9 carbon atoms
  • n is an integer of 0 to 5.
  • ⁇ 5> The method for producing a cured product according to any one of ⁇ 1> to ⁇ 4>, wherein the heating temperature in the heating step is 140° C. or higher.
  • ⁇ 6> The method for producing a cured product according to any one of ⁇ 1> to ⁇ 5>, wherein the compound A includes at least one compound selected from the group consisting of a compound having a tert-butyl group and a urethane bond, and a compound having a urea bond, two or more hydroxy groups, and a group containing an ethylenically unsaturated bond.
  • the resin layer further contains an azole compound.
  • ⁇ 8> The method for producing a cured product according to any one of ⁇ 1> to ⁇ 7>, wherein the resin layer contains an organometallic complex containing at least one metal atom selected from titanium, zirconium, and hafnium.
  • ⁇ 9> The method for producing a cured product according to any one of ⁇ 1> to ⁇ 8>, wherein the obtained cured product has a linear thermal expansion coefficient of 55 ppm/K or less in the range of 25° C. to 125° C.
  • ⁇ 10> The method for producing a cured product according to any one of ⁇ 1> to ⁇ 9>, wherein the obtained cured product has a tensile modulus at 25°C of 3.0 GPa or more.
  • ⁇ 11> The method for producing a cured product according to any one of ⁇ 1> to ⁇ 10>, wherein the obtained cured product has a tensile elongation at 25°C of 40% or more.
  • ⁇ 12> A method for producing a laminate, comprising the method for producing a cured product according to any one of ⁇ 1> to ⁇ 11>.
  • ⁇ 13> A method for producing a semiconductor device, comprising the method for producing a cured product according to any one of ⁇ 1> to ⁇ 11>.
  • ⁇ 14> A semiconductor device comprising a cured product obtained by the method for producing a cured product according to any one of ⁇ 1> to ⁇ 11>.
  • the present invention provides a method for producing a cured product that provides a cured product with excellent heat resistance reliability and chemical resistance, a method for producing a laminate that includes the method for producing the cured product, a method for producing a semiconductor device that includes the method for producing the cured product, and a semiconductor device that includes a cured product obtained by the method for producing the cured product.
  • FIG. 2 is a schematic diagram of a test vehicle used in biased HAST tests in the examples.
  • a numerical range expressed using the symbol "to” means a range that includes the numerical values before and after "to” as the lower limit and upper limit, respectively.
  • the term “step” includes not only an independent step, but also a step that cannot be clearly distinguished from another step, so long as the intended effect of the step can be achieved.
  • groups (atomic groups) when there is no indication of whether they are substituted or unsubstituted, the term encompasses both unsubstituted groups (atomic groups) and substituted groups (atomic groups).
  • an "alkyl group” encompasses not only alkyl groups that have no substituents (unsubstituted alkyl groups) but also alkyl groups that have substituents (substituted alkyl groups).
  • exposure includes not only exposure using light but also exposure using particle beams such as electron beams and ion beams. Examples of light used for exposure include the bright line spectrum of a mercury lamp, far ultraviolet light represented by an excimer laser, extreme ultraviolet light (EUV light), X-rays, electron beams, and other actinic rays or radiation.
  • (meth)acrylate means both or either of “acrylate” and “methacrylate”
  • (meth)acrylic means both or either of “acrylic” and “methacrylic”
  • (meth)acryloyl means both or either of “acryloyl” and “methacryloyl”.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • Ph represents a phenyl group.
  • the total solid content refers to the total mass of all components of the composition excluding the solvent
  • the solid content concentration refers to the mass percentage of the other components excluding the solvent with respect to the total mass of the composition.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are values measured using gel permeation chromatography (GPC) unless otherwise specified, and are defined as polystyrene equivalent values.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) can be determined, for example, by using HLC-8220GPC (manufactured by Tosoh Corporation) and using guard columns HZ-L, TSKgel Super HZM-M, TSKgel Super HZ4000, TSKgel Super HZ3000, and TSKgel Super HZ2000 (all manufactured by Tosoh Corporation) connected in series as columns.
  • these molecular weights are measured using THF (tetrahydrofuran) as the eluent.
  • THF tetrahydrofuran
  • NMP N-methyl-2-pyrrolidone
  • detection in GPC measurement is performed using a UV (ultraviolet) ray (wavelength 254 nm detector).
  • a third layer or element may be interposed between the reference layer and the other layer, and the reference layer does not need to be in contact with the other layer.
  • the direction in which the layers are stacked on the substrate is referred to as "upper", or, in the case of a resin composition layer, the direction from the substrate to the resin composition layer is referred to as “upper”, and the opposite direction is referred to as "lower”. Note that such a vertical direction is set for the convenience of this specification, and in an actual embodiment, the "upper” direction in this specification may be different from the vertical upward direction.
  • the composition may contain, as each component contained in the composition, two or more compounds corresponding to that component.
  • the content of each component in the composition means the total content of all compounds corresponding to that component.
  • the temperature is 23° C.
  • the pressure is 101,325 Pa (1 atm)
  • the relative humidity is 50% RH.
  • combinations of preferred aspects are more preferred aspects.
  • the method for producing a cured product of the present invention includes a decompression step of exposing a resin layer to a pressure lower than 101,325 Pa, and a heating step of heating the resin layer under the above pressure, wherein the resin layer is a layer formed from a resin composition containing a polyimide precursor and a solvent, and satisfies at least one of the following conditions 1 and 2:
  • Condition 1 The resin composition further contains a compound A having at least one bond selected from a urethane bond and a urea bond, and at least one functional group selected from a tert-butyl group, a hydroxyl group, and a group containing an ethylenically unsaturated bond.
  • Condition 2 The method includes a step of contacting the resin layer with a treatment liquid containing the compound A prior to the depressurization step.
  • the method for producing a cured product of the present invention can be used, for example, to form insulating films for semiconductor devices, interlayer insulating films for redistribution layers, stress buffer films, etc., and is preferably used to form interlayer insulating films for redistribution layers.
  • a thermal base generator is generally used to heat-cure the polyimide precursor.
  • the thermal base generator is decomposed upon heating to generate a base, which is believed to act as a catalyst to promote the cyclization reaction (imidization) of the polyimide precursor.
  • the present inventors have found that the above-mentioned compound A can be used as a thermal base generator that is unlikely to volatilize even under reduced pressure (and further under reduced pressure and heating).
  • Compound A has good affinity for a film containing a polyimide precursor and therefore is unlikely to volatilize under reduced pressure, and can simultaneously achieve the effects of suppressing the generation of outgassing and improving the imidization rate.
  • the compound A has a structure in which a basic group (particularly, an amino group) is protected by a protecting group (t-BOC, Fmoc, etc., particularly t-BOC), the presence of the protecting group makes the compound less likely to volatilize until a high temperature is reached, and at a high temperature, the compound is deprotected to generate a base, which is considered to contribute to an increase in the imidization rate.
  • a protecting group t-BOC, Fmoc, etc., particularly t-BOC
  • the compound A has a hydroxyl group, it forms a bond with the polyimide precursor through an ester bond or the like, and is therefore less likely to volatilize in a decompression step, and is decomposed upon heating to generate a base, which is thought to contribute to an increase in the imidization rate.
  • the above urea or urethane compound has a radical polymerizable group, it is polymerized by exposure to light or heat and is therefore less likely to volatilize in a reduced pressure step, but is decomposed upon heating to generate a base, which is thought to contribute to an increase in the imidization rate. As a result, it is believed that the effect of improving the heat resistance reliability and chemical resistance of the cured product can be obtained.
  • Patent Document 1 does not describe a method for producing a cured product that includes a decompression step and satisfies the above-mentioned conditions 1 and 2.
  • the method for producing a cured product of the present invention includes a decompression step of exposing a resin layer to a pressure lower than 101,325 Pa.
  • the resin layer will be described in detail later.
  • the pressure in the decompression step may be lower than 101,325 Pa, but the decompression step is preferably a step of exposing the resin layer to a pressure of 0.07 MPa or less, and more preferably a step of exposing the resin layer to a pressure of 0.053 MPa or less.
  • the lower limit of the pressure is not particularly limited, and may be 0 MPa or more. In other words, it may be a vacuum.
  • the pressure in the decompression may be reduced stepwise or may be reduced to the desired pressure in one go. The pressure reduction may be carried out once or multiple times.
  • the time for which the resin layer is exposed to the above pressure is preferably from 10 to 420 minutes, more preferably from 20 to 360 minutes, and even more preferably from 30 to 300 minutes.
  • the heating step may be started after leaving the mixture under reduced pressure at a temperature close to room temperature.
  • the standing time is preferably from 10 to 420 minutes, more preferably from 20 to 360 minutes, and even more preferably from 30 to 300 minutes.
  • room temperature means 25°C
  • a temperature near room temperature means a temperature of about 25°C ⁇ 10°C.
  • the temperature in the decompression step is not particularly limited, but is preferably 20° C. or higher.
  • the pressure reduction rate is preferably from 50 to 1000 Pa/s, more preferably from 75 to 800 Pa/s, and even more preferably from 100 to 500 Pa/s. It is also preferable to increase the pressure back to the pressure in the space, such as inside the room, after the decompression step is completed.
  • the rate of increase in the pressure is preferably 50 to 1000 Pa/s, more preferably 75 to 800 Pa/s, and even more preferably 100 to 500 Pa/s.
  • the pressure reduction rate is preferably from 50 to 1000 Pa/s, more preferably from 75 to 800 Pa/s, and even more preferably from 100 to 500 Pa/s.
  • the pressure reducing means is not particularly limited, and examples thereof include a known vacuum pump.
  • the pressure reduction may be performed in an inert gas atmosphere such as a nitrogen atmosphere or an Ar atmosphere, or in the air.
  • the method for producing a cured product of the present invention includes a heating step of heating the resin layer under the pressure reduced in the above-mentioned depressurizing step. That is, at least a part of the heating step is carried out under a pressure lower than 101,325 Pa.
  • the preferred range of the pressure is as described above.
  • the heating process including increasing the temperature, maintaining the temperature at the maximum heating temperature, and decreasing the temperature, may all be carried out under the above pressure, or only a part of the process may be carried out under the above pressure. In the above embodiment, it is preferable that at least the heating at the maximum heating temperature in the heating step is carried out under the above pressure.
  • the temperature increase in the heating step and the maintenance at the maximum heating temperature are carried out under the above pressure.
  • the heating step is performed under the above pressure during the temperature increase, the maintenance at the maximum heating temperature, and the temperature decrease.
  • the polyimide precursor cyclizes to form the polyimide.
  • the compound A is preferably decomposed to generate an amine.
  • the heating step is preferably a step in which the cyclization of the polyimide precursor is promoted by the action of the amine.
  • the heating temperature (maximum heating temperature) in the heating step is preferably 140° C. or higher, more preferably 150° C. or higher, even more preferably 160° C. or higher, and particularly preferably 170° C. or higher. It may also be 200° C. or higher.
  • the upper limit of the heating temperature is preferably 300° C. or less, more preferably 250° C. or less, and even more preferably 230° C. or less.
  • the heating step is preferably performed at a temperature rise rate of 1 to 12° C./min from the temperature at the start of heating to the maximum heating temperature.
  • the temperature rise rate is more preferably 2 to 10° C./min, and even more preferably 3 to 10° C./min.
  • the temperature is increased from the starting temperature to the maximum heating temperature at a rate of preferably 1 to 8° C./sec, more preferably 2 to 7° C./sec, and even more preferably 3 to 6° C./sec.
  • the temperature at the start of heating is preferably 20°C to 150°C, more preferably 20°C to 130°C, and even more preferably 25°C to 120°C.
  • the temperature at the start of heating refers to the temperature at which the process of heating to the maximum heating temperature begins. For example, when a resin composition is applied to a substrate and then dried, it is the temperature of the film (layer) after this drying, and it is preferable to raise the temperature from a temperature 30 to 200°C lower than the boiling point of the solvent contained in the resin composition.
  • the heating time (heating time at the maximum heating temperature) is preferably 5 to 360 minutes, more preferably 10 to 300 minutes, and even more preferably 15 to 240 minutes.
  • the heating temperature is preferably 30° C. or higher, more preferably 80° C. or higher, even more preferably 100° C. or higher, and particularly preferably 120° C. or higher.
  • the upper limit of the heating temperature is preferably 350° C. or less, more preferably 250° C. or less, and even more preferably 240° C. or less.
  • Heating may be performed stepwise. For example, a process may be performed in which the temperature is increased from 25°C to 120°C at 3°C/min, held at 120°C for 60 minutes, increased from 120°C to 180°C at 2°C/min, and held at 180°C for 120 minutes. It is also preferable to perform the process while irradiating ultraviolet rays as described in U.S. Pat. No. 9,159,547. Such a pretreatment process can improve the properties of the film. The pretreatment process is preferably performed for a short time of about 10 seconds to 2 hours, more preferably 15 seconds to 30 minutes.
  • the pretreatment process may be performed in two or more steps, for example, a first pretreatment process may be performed in the range of 100 to 150°C, and then a second pretreatment process may be performed in the range of 150 to 200°C. Furthermore, after heating, the material may be cooled, and in this case, the cooling rate is preferably 1 to 5° C./min.
  • the heating step is preferably performed in an atmosphere with a low oxygen concentration by flowing an inert gas such as nitrogen, helium, or argon, or by performing the heating step under reduced pressure, etc.
  • the oxygen concentration is preferably 50 ppm (volume ratio) or less, and more preferably 20 ppm (volume ratio) or less.
  • the heating means in the heating step is not particularly limited, but examples thereof include a hot plate, an infrared oven, an electric heating oven, a hot air oven, an infrared oven, etc. In particular, for example, an oven with a decompression function can be used.
  • the heating method in the oven is not particularly limited, and may be an electric heating type, a hot air type, an infrared type, etc.
  • Condition 1 The resin composition further contains a compound A having at least one bond selected from a urethane bond and a urea bond, and at least one functional group selected from a tert-butyl group, a hydroxyl group, and a group containing an ethylenically unsaturated group bond.
  • Condition 2 The method includes a step of contacting the resin layer with a treatment liquid containing the compound A prior to the depressurization step.
  • the method for producing a cured product of the present invention satisfies condition 1.
  • the method for producing a cured product of the present invention satisfies condition 2.
  • the treatment liquid containing the compound A is any one of a developer, a rinse liquid, and a contact treatment liquid in the development step described below.
  • the resin layer can be contacted with the contact treatment liquid described below without carrying out the exposure step and development step described below.
  • the resin layer is a layer formed from a resin composition containing a polyimide precursor and a solvent.
  • the resin layer further contains compound A.
  • the components contained in the resin composition and the resin layer will be described in detail below.
  • the resin layer is preferably formed by applying a resin composition to a substrate and drying it as necessary.
  • the method for producing a cured product of the present invention preferably includes a film-forming step, and more preferably includes a film-forming step and a drying step.
  • the method for producing a cured product of the present invention preferably includes a film formation step of applying the resin composition onto a substrate to form a film.
  • the type of substrate can be appropriately determined according to the application, and is not particularly limited.
  • substrates include semiconductor-prepared substrates such as silicon, silicon nitride, polysilicon, silicon oxide, and amorphous silicon, quartz, glass, optical films, ceramic materials, vapor deposition films, magnetic films, reflective films, metal substrates such as Ni, Cu, Cr, and Fe (for example, substrates formed from metals and substrates in which a metal layer is formed by plating, vapor deposition, etc.), paper, SOG (Spin On Glass), TFT (thin film transistor) array substrates, mold substrates, and electrode plates of plasma display panels (PDPs).
  • semiconductor-prepared substrates such as silicon, silicon nitride, polysilicon, silicon oxide, and amorphous silicon, quartz, glass, optical films, ceramic materials, vapor deposition films, magnetic films, reflective films, metal substrates such as Ni, Cu, Cr, and Fe (for example, substrates formed from metals and substrates in which a metal layer is formed by plating, vapor
  • the substrate is preferably a semiconductor-prepared substrate, more preferably a silicon substrate, a Cu substrate, or a mold substrate. These substrates may have a layer such as an adhesion layer made of hexamethyldisilazane (HMDS) or an oxide layer provided on the surface.
  • HMDS hexamethyldisilazane
  • the shape of the substrate is not particularly limited, and may be circular or rectangular.
  • the size of the substrate is preferably, for example, a diameter of 100 to 450 mm, more preferably 200 to 450 mm, if it is circular, and preferably, a short side length of 100 to 1000 mm, more preferably 200 to 700 mm, if it is rectangular.
  • a plate-shaped substrate preferably a panel-shaped substrate (substrate) is used as the substrate.
  • a resin composition When a film is formed by applying a resin composition to the surface of a resin layer (e.g., a layer made of a cured material) or to the surface of a metal layer, the resin layer or metal layer serves as the substrate.
  • a resin layer e.g., a layer made of a cured material
  • the resin layer or metal layer serves as the substrate.
  • the resin composition is preferably applied to a substrate by coating.
  • the means to be applied include dip coating, air knife coating, curtain coating, wire bar coating, gravure coating, extrusion coating, spray coating, spin coating, slit coating, and inkjet methods. From the viewpoint of uniformity of the thickness of the film, spin coating, slit coating, spray coating, or inkjet methods are preferred, and from the viewpoint of uniformity of the thickness of the film and productivity, spin coating and slit coating are more preferred.
  • a film of a desired thickness can be obtained by adjusting the solid content concentration and coating conditions of the resin composition according to the means to be applied.
  • the coating method can be appropriately selected depending on the shape of the substrate, and if the substrate is a circular substrate such as a wafer, spin coating, spray coating, inkjet, etc. are preferred, and if the substrate is a rectangular substrate, slit coating, spray coating, inkjet, etc. are preferred.
  • the spin coating method for example, it can be applied for about 10 seconds to 3 minutes at a rotation speed of 500 to 3,500 rpm.
  • a coating film formed by applying the coating material to a temporary support in advance using the above-mentioned application method may be transferred onto the substrate.
  • the transfer method the production methods described in paragraphs 0023 and 0036 to 0051 of JP-A No.
  • 2006-023696 and paragraphs 0096 to 0108 of JP-A No. 2006-047592 can be suitably used.
  • a process for removing excess film from the edge of the substrate may be performed, such as edge bead rinse (EBR) and back rinse.
  • EBR edge bead rinse
  • a pre-wetting step may be employed in which various solvents are applied to the substrate before the resin composition is applied to the substrate to improve the wettability of the substrate, and then the resin composition is applied.
  • the above-mentioned film may be subjected to a step of drying the formed film (layer) (drying step) in order to remove the solvent.
  • the method for producing a cured product of the present invention may include a drying step of drying the film formed in the film forming step.
  • the drying step is preferably carried out after the film-forming step and before the decompression step.
  • the drying temperature of the film in the drying step is preferably 50 to 150° C., more preferably 70 to 130° C., and even more preferably 90 to 110° C. Drying may be performed under reduced pressure.
  • the drying time is, for example, 30 seconds to 20 minutes, preferably 1 to 10 minutes, and more preferably 2 to 7 minutes.
  • the drying step and the decompression step may be carried out as a step of heating and drying under the above-mentioned temperature conditions at a pressure lower than 101,325 Pa. It is also preferable not to apply a reduced pressure in the drying step.
  • the photosensitive resin layer is preferably, for example, the film formed by the above-mentioned film formation process using a resin composition further containing a photopolymerization initiator, and more preferably the film formed by the above-mentioned film formation process and the above-mentioned drying process using a resin composition further containing a photopolymerization initiator.
  • the photosensitive resin layer is preferably subjected to an exposure step in which the photosensitive resin layer is selectively exposed to light.
  • the method for producing a cured product may include an exposure step of selectively exposing the film (photosensitive resin layer) formed in the film formation step. Selective exposure means that a part of the photosensitive resin layer is exposed to light, and by selective exposure, an exposed area (exposed portion) and an unexposed area (unexposed portion) are formed in the photosensitive resin layer.
  • the amount of exposure light is not particularly limited as long as it can cure the resin composition, but is preferably 50 to 10,000 mJ/cm 2 , and more preferably 200 to 8,000 mJ/cm 2 , calculated as exposure energy at a wavelength of 365 nm.
  • the exposure wavelength can be appropriately set in the range of 190 to 1,000 nm, with 240 to 550 nm being preferred.
  • the exposure wavelength may be, in particular, (1) semiconductor laser (wavelength 830 nm, 532 nm, 488 nm, 405 nm, 375 nm, 355 nm, etc.), (2) metal halide lamp, (3) high pressure mercury lamp, g-line (wavelength 436 nm), h-line (wavelength 405 nm), i-line (wavelength 365 nm), broad (three wavelengths of g, h, i-line), (4) excimer laser, KrF excimer laser (wavelength 248 nm), ArF excimer laser (wavelength 193 nm), F2 excimer laser (wavelength 157 nm), (5) extreme ultraviolet light; EUV (wavelength 13.6 nm), (6) electron beam, (7) second harmonic 532 nm, third harmonic 355 nm, etc.
  • semiconductor laser wavelength 830 nm, 532 nm, 488 nm, 405 nm, 375 nm, 3
  • the exposure method is not particularly limited as long as it is a method that exposes at least a part of the photosensitive resin layer, and examples of the exposure method include exposure using a photomask and exposure by a laser direct imaging method.
  • the photosensitive resin layer may be subjected to a step of heating after exposure (post-exposure heating step). That is, the method for producing a cured product of the present invention may include a post-exposure baking step of heating the photosensitive resin layer exposed in the exposure step.
  • the post-exposure baking step can be carried out after the exposure step and before the development step.
  • the heating temperature in the post-exposure baking step is preferably from 50°C to 140°C, and more preferably from 60°C to 120°C.
  • the heating time in the post-exposure baking step is preferably from 30 seconds to 300 minutes, and more preferably from 1 minute to 10 minutes.
  • the heating rate in the post-exposure heating step is preferably from 1 to 12° C./min, more preferably from 2 to 10° C./min, and even more preferably from 3 to 10° C./min, from the temperature at the start of heating to the maximum heating temperature.
  • the rate of temperature rise may be appropriately changed during heating.
  • the heating means in the post-exposure baking step is not particularly limited, and known hot plates, ovens, infrared heaters, etc. can be used. It is also preferable that the heating be performed in an atmosphere of low oxygen concentration by flowing an inert gas such as nitrogen, helium, or argon.
  • the photosensitive resin layer after exposure may be subjected to a development step in which the layer is developed with a developer to form a pattern.
  • the method for producing a cured product of the present invention may include a development step in which the photosensitive resin layer exposed in the exposure step is developed with a developer to form a pattern. By carrying out development, one of the exposed and unexposed areas of the photosensitive resin layer is removed to form a pattern.
  • development in which the non-exposed portion of the photosensitive resin layer is removed by the developing process is called negative development
  • development in which the exposed portion of the photosensitive resin layer is removed by the developing process is called positive development.
  • the developer used in the development step may be an aqueous alkaline solution or a developer containing an organic solvent.
  • examples of basic compounds that the alkaline aqueous solution may contain include inorganic alkalis, primary amines, secondary amines, tertiary amines, and quaternary ammonium salts.
  • TMAH tetramethylammonium hydroxide
  • potassium hydroxide sodium carbonate, sodium hydroxide, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-butylamine, triethylamine, methyldiethylamine, dimethylethanolamine, triethanolamine, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetrapentylammonium hydroxide, tetrahexylammonium hydroxide, tetraoctylammonium hydroxide, ethyltrimethylammonium hydroxide, butyltrimethylammonium hydroxide, methyltriamylammonium hydroxide, dibutyldipentylammonium hydroxide, dimethylbis(2-hydroxyethyl)ammoni
  • the compounds described in paragraph 0387 of WO 2021/112189 can be used as the organic solvent.
  • the organic solvent examples include methanol, ethanol, propanol, isopropanol, butanol, pentanol, octanol, diethylene glycol, propylene glycol, methyl isobutyl carbinol, and triethylene glycol
  • examples of amides that are suitable include N-methylpyrrolidone, N-ethylpyrrolidone, and dimethylformamide.
  • the organic solvent may be used alone or in combination of two or more.
  • a developer containing at least one selected from the group consisting of cyclopentanone, ⁇ -butyrolactone, dimethylsulfoxide, N-methyl-2-pyrrolidone, and cyclohexanone is particularly preferred, a developer containing at least one selected from the group consisting of cyclopentanone, ⁇ -butyrolactone, and dimethylsulfoxide is more preferred, and a developer containing cyclopentanone is particularly preferred.
  • the content of the organic solvent relative to the total mass of the developer is preferably 50% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
  • the content may be 100% by mass.
  • the developer may contain compound A. According to such an embodiment, the method for producing a cured product of the present invention can satisfy the above-mentioned condition 2. The details of compound A will be described later.
  • the content of compound A in the developer is not particularly limited, but is preferably from 1 to 20% by mass, more preferably from 2 to 15% by mass, and even more preferably from 3 to 8% by mass, based on the total mass of the developer.
  • the developer may contain one type of compound A alone or two or more types in combination. When two or more types are used in combination, the total amount thereof is preferably within the above range.
  • the developer may further contain at least one of a basic compound and a base generator.
  • the performance of the pattern such as the breaking elongation, may be improved.
  • an organic base is preferred.
  • a basic compound having an amino group is preferable, and a primary amine, a secondary amine, a tertiary amine, an ammonium salt, a tertiary amide, or the like is preferable.
  • a primary amine, a secondary amine, a tertiary amine, or an ammonium salt is preferable, a secondary amine, a tertiary amine, or an ammonium salt is more preferable, a secondary amine or a tertiary amine is even more preferable, and a tertiary amine is particularly preferable.
  • the boiling point of the basic compound is preferably 30°C to 350°C, more preferably 80°C to 270°C, and even more preferably 100°C to 230°C at normal pressure (101,325 Pa).
  • the boiling point of the basic compound is preferably higher than the temperature obtained by subtracting 20° C.
  • the basic compound used preferably has a boiling point of 80° C. or higher, and more preferably has a boiling point of 100° C. or higher.
  • the developer may contain only one kind of basic compound, or may contain two or more kinds of basic compounds.
  • basic compounds include ethanolamine, diethanolamine, triethanolamine, ethylamine, diethylamine, triethylamine, hexylamine, dodecylamine, cyclohexylamine, cyclohexylmethylamine, cyclohexyldimethylamine, aniline, N-methylaniline, N,N-dimethylaniline, diphenylamine, pyridine, butylamine, isobutylamine, dibutylamine, tributylamine, dicyclohexylamine, DBU (diazabicycloundecene), DABCO (1,4-diazabicyclo[2.2.2]octane), N,N-diisopropylethylamine, tetramethylammonium hydroxide, tetrabutylammonium hydroxide, ethylenediamine, butanediamine, 1,5-diamino Examples include pentane, N-methylhexy
  • the preferred embodiment of the base generator is the same as the preferred embodiment of the base generator contained in the composition described above.
  • the base generator is a thermal base generator.
  • the content of the basic compound or the base generator is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the developer.
  • the lower limit of the content is not particularly limited, but is preferably, for example, 0.1% by mass or more.
  • the content of the basic compound or base generator is preferably 70 to 100% by mass based on the total solid content of the developer.
  • the developer may contain at least one of a basic compound and a base generator, or may contain two or more of them. When at least one of a basic compound and a base generator is two or more, the total amount of them is preferably within the above range.
  • the developer may further comprise other components.
  • other components include known surfactants and known defoamers.
  • the method of supplying the developer is not particularly limited as long as the desired pattern can be formed, and includes a method of immersing a substrate on which a photosensitive resin layer is formed in the developer, a paddle development method in which the developer is supplied to the photosensitive resin layer formed on the substrate using a nozzle, and a method of continuously supplying the developer.
  • the type of nozzle is not particularly limited, and examples thereof include a straight nozzle, a shower nozzle, and a spray nozzle.
  • a method of supplying the developer through a straight nozzle or a method of continuously supplying the developer through a spray nozzle is preferred, and from the viewpoint of the permeability of the developer into the image areas, a method of supplying the developer through a spray nozzle is more preferred.
  • a process may be adopted in which the developer is continuously supplied through a straight nozzle, the substrate is spun to remove the developer from the substrate, and after spin drying, the developer is continuously supplied again through a straight nozzle, and the substrate is spun to remove the developer from the substrate. This process may be repeated multiple times.
  • Methods of supplying the developer in the development step include a step in which the developer is continuously supplied to the substrate, a step in which the developer is kept substantially stationary on the substrate, a step in which the developer is vibrated by ultrasonic waves or the like on the substrate, and a combination of these steps.
  • the development time is preferably 10 seconds to 10 minutes, and more preferably 20 seconds to 5 minutes.
  • the temperature of the developer during development is not particularly specified, but is preferably 10 to 45°C, and more preferably 18°C to 30°C.
  • the pattern may be washed (rinsed) with a rinse solution. Also, a method may be adopted in which a rinse solution is supplied before the developer in contact with the pattern has completely dried.
  • the rinse liquid may be, for example, water.
  • the rinse liquid may be, for example, a solvent different from the solvent contained in the developer (for example, water, an organic solvent different from the organic solvent contained in the developer).
  • the organic solvent include the same organic solvents as those exemplified when the developer contains an organic solvent.
  • the organic solvent contained in the rinse liquid is preferably different from the organic solvent contained in the developer, and more preferably has a lower solubility for the pattern than the organic solvent contained in the developer.
  • the organic solvent may be used alone or in combination of two or more.
  • the organic solvent is preferably cyclopentanone, ⁇ -butyrolactone, dimethylsulfoxide, N-methylpyrrolidone, cyclohexanone, PGMEA, or PGME, more preferably cyclopentanone, ⁇ -butyrolactone, dimethylsulfoxide, PGMEA, or PGME, and even more preferably cyclohexanone or PGMEA.
  • the organic solvent preferably accounts for 50% by mass or more, more preferably 70% by mass or more, and even more preferably 90% by mass or more, based on the total mass of the rinse solution. Furthermore, the organic solvent may account for 100% by mass, based on the total mass of the rinse solution.
  • the rinse liquid may contain compound A.
  • the method for producing a cured product of the present invention can satisfy the above-mentioned condition 2.
  • the content of compound A in the rinse solution is not particularly limited, but is preferably 1 to 20 mass %, more preferably 2 to 15 mass %, and even more preferably 3 to 8 mass %, based on the total mass of the rinse solution.
  • the rinse may contain one type of compound A alone or two or more types in combination. When two or more types are used in combination, it is preferable that the total amount of these is within the above range.
  • the rinse liquid may contain at least one of a basic compound and a base generator.
  • a basic compound and a base generator when the developer contains an organic solvent, an embodiment in which the rinsing liquid contains an organic solvent and at least one of a basic compound and a base generator is also one of the preferred embodiments of the present invention.
  • the basic compound and base generator contained in the rinse solution include the compounds exemplified as the basic compound and base generator that may be contained in the above-mentioned developer containing an organic solvent, and preferred embodiments thereof are also the same.
  • the basic compound and base generator contained in the rinse solution may be selected in consideration of the solubility in the solvent in the rinse solution.
  • the content of the basic compound or the base generator is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the rinse solution.
  • the lower limit of the content is not particularly limited, but is preferably, for example, 0.1% by mass or more.
  • the content of the basic compound or base generator is also preferably 70 to 100 mass % based on the total solid content of the rinse liquid.
  • the rinse solution may contain only one kind of at least one of the basic compound and the base generator, or may contain two or more kinds.
  • the total amount thereof is preferably within the above range.
  • the rinse solution may further contain other ingredients.
  • other components include known surfactants and known defoamers.
  • the method of supplying the rinse liquid is not particularly limited as long as it can form a desired pattern, and examples of the method include a method of immersing the substrate in the rinse liquid, a method of supplying the rinse liquid to the substrate by puddling, a method of supplying the rinse liquid to the substrate by showering, and a method of continuously supplying the rinse liquid onto the substrate by means of a straight nozzle or the like.
  • the rinse liquid may be supplied using a shower nozzle, a straight nozzle, a spray nozzle, etc., and the method of continuously supplying the rinse liquid using a spray nozzle is preferred, while from the viewpoint of the permeability of the rinse liquid into the image areas, the method of supplying the rinse liquid using a spray nozzle is more preferred.
  • the type of nozzle and examples include a straight nozzle, a shower nozzle, a spray nozzle, etc.
  • the rinsing step is preferably a step of supplying a rinsing liquid to the exposed photosensitive resin layer through a straight nozzle or continuously supplying the rinsing liquid to the exposed photosensitive resin layer, and more preferably a step of supplying the rinsing liquid through a spray nozzle.
  • the method of supplying the rinsing liquid in the rinsing step may include a step of continuously supplying the rinsing liquid to the substrate, a step of keeping the rinsing liquid in a substantially stationary state on the substrate, a step of vibrating the rinsing liquid on the substrate by ultrasonic waves or the like, and a combination of these steps.
  • the rinsing time is preferably 10 seconds to 10 minutes, and more preferably 20 seconds to 5 minutes.
  • the temperature of the rinsing liquid during rinsing is not particularly specified, but is preferably 10 to 45°C, and more preferably 18°C to 30°C.
  • the developing step may include a step of contacting the pattern with a treatment liquid for contact after the treatment with the developer or after the cleaning of the pattern with a rinse liquid. Also, a method of supplying the treatment liquid for contact before the developer or rinse liquid in contact with the pattern is completely dried may be employed.
  • the contact treatment liquid may be a contact treatment liquid containing at least one of water and an organic solvent, and compound A. According to such an embodiment, the method for producing a cured product of the present invention can satisfy the above-mentioned condition 2.
  • the content of compound A in the contact treatment liquid is not particularly limited, but is preferably 1 to 20 mass %, more preferably 2 to 15 mass %, and even more preferably 3 to 8 mass %, based on the total mass of the contact treatment liquid.
  • the contact treatment liquid may contain one type of compound A alone or two or more types in combination. When two or more types are used in combination, the total amount thereof is preferably within the above range.
  • the contact treatment liquid may be a contact treatment liquid containing at least one of water and an organic solvent, and at least one of a basic compound and a base generator.
  • Preferred aspects of the organic solvent, and at least one of the basic compound and the base generator are the same as the preferred aspects of the organic solvent, and at least one of the basic compound and the base generator used in the above-mentioned rinse solution.
  • the contact treatment liquid can be supplied to the pattern in the same manner as the above-mentioned method for supplying the rinsing liquid, and the preferred embodiments are also the same.
  • the content of the basic compound or base generator in the contact treatment liquid is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the contact treatment liquid.
  • the lower limit of the content is not particularly limited, but is preferably, for example, 0.1% by mass or more.
  • the content of the basic compound or the base generator is also preferably 70 to 100 mass % based on the total solid content of the contact treatment liquid.
  • the contact treatment liquid may contain only one kind of at least one of a basic compound and a base generator, or may contain two or more kinds.
  • the total of them is preferably in the above range.
  • the method for producing a cured product of the present invention preferably includes a metal layer forming step of forming a metal layer on the cured resin layer obtained by the heating step.
  • the metal layer can be made of any existing metal type without any particular limitations, and examples include copper, aluminum, nickel, vanadium, titanium, chromium, cobalt, gold, tungsten, tin, silver, and alloys containing these metals, with copper and aluminum being more preferred, and copper being even more preferred.
  • the method for forming the metal layer is not particularly limited, and existing methods can be applied.
  • the methods described in JP 2007-157879 A, JP 2001-521288 A, JP 2004-214501 A, JP 2004-101850 A, U.S. Patent No. 7,888,181 B2, and U.S. Patent No. 9,177,926 B2 can be used.
  • photolithography, PVD (physical vapor deposition), CVD (chemical vapor deposition), lift-off, electrolytic plating, electroless plating, etching, printing, and combinations of these methods are possible.
  • a preferred embodiment of plating is electrolytic plating using copper sulfate or copper cyanide plating solution.
  • the thickness of the metal layer at its thickest point is preferably 0.01 to 50 ⁇ m, and more preferably 1 to 10 ⁇ m.
  • Examples of the field of application of the method for producing the cured product of the present invention or the cured product include insulating films for electronic devices, interlayer insulating films for rewiring layers, stress buffer films, etc.
  • Other examples include etching patterns of sealing films, substrate materials (base films and coverlays for flexible printed circuit boards, interlayer insulating films), or insulating films for mounting applications such as those described above.
  • the method for producing a cured product of the present invention, or the cured product obtained by the method for producing a cured product of the present invention can also be used for producing printing plates such as offset printing plates or screen printing plates, for etching molded parts, and for producing protective lacquers and dielectric layers in electronics, especially microelectronics.
  • the laminate refers to a structure having a plurality of layers each made of a cured product obtained by the method for producing a cured product of the present invention.
  • the laminate is a laminate including two or more layers made of a cured product, and may be a laminate including three or more layers.
  • At least one is a layer made of a cured product obtained by the method for producing a cured product of the present invention, and from the viewpoint of suppressing shrinkage of the cured product or deformation of the cured product associated with the shrinkage, it is also preferable that all of the layers made of the cured product contained in the laminate are layers made of a cured product obtained by the method for producing a cured product of the present invention.
  • the method for producing the laminate of the present invention preferably includes the method for producing the cured product of the present invention, and more preferably includes repeating the method for producing the cured product of the present invention multiple times.
  • the laminate obtained by the method for producing a laminate of the present invention preferably includes two or more layers made of a cured product, and includes a metal layer between any two of the layers made of the cured product.
  • the metal layer is preferably formed by the metal layer forming step. That is, the method for producing a laminate of the present invention preferably further includes a metal layer forming step of forming a metal layer on a layer made of a cured product between the steps for producing a cured product which are performed multiple times.
  • a preferred embodiment of the metal layer forming step is as described above.
  • a laminate including at least a layer structure in which three layers, a layer made of a first cured product, a metal layer, and a layer made of a second cured product, are laminated in this order can be mentioned as a preferred example.
  • the layer made of the first cured product and the layer made of the second cured product are preferably layers made of a cured product obtained by the method for producing a cured product of the present invention.
  • the resin composition used to form the layer made of the first cured product and the resin composition used to form the layer made of the second cured product may be compositions having the same composition or different compositions.
  • the metal layer in the laminate obtained by the method for producing a laminate of the present invention is preferably used as metal wiring such as a rewiring layer.
  • the method for producing the laminate of the present invention preferably includes a lamination step.
  • the lamination process is a series of processes including (a) a film formation process (layer formation process), (b) an exposure process, (c) a development process, (d) a pressure reduction process and a heating process, which are carried out again on the surface of the pattern (resin layer) or the metal layer in this order.
  • the (a) film formation process and the (d) pressure reduction process and heating process may be repeated.
  • the (e) metal layer formation process may be included. It goes without saying that the lamination process may further include the above-mentioned drying process and the like as appropriate.
  • a surface activation treatment step may be performed after the exposure step, the heating step, or the metal layer formation step.
  • An example of the surface activation treatment is a plasma treatment. Details of the surface activation treatment will be described later.
  • the lamination step is preferably carried out 2 to 20 times, and more preferably 2 to 9 times.
  • a structure of 2 to 20 resin layers such as resin layer/metal layer/resin layer/metal layer/resin layer/metal layer, is preferred, and a structure of 2 to 9 resin layers is more preferred.
  • the layers may be the same or different in composition, shape, film thickness, etc.
  • a particularly preferred embodiment is one in which, after providing a metal layer, a cured product (resin layer) of the resin composition is further formed so as to cover the metal layer. Specifically, the following steps are repeated in this order: (a) film formation step, (b) exposure step, (c) development step, (d) pressure reduction step and heating step, and (e) metal layer formation step; or the following steps are repeated in this order: (a) film formation step, (d) pressure reduction step and heating step, and (e) metal layer formation step.
  • the resin composition layers (resin layers) and the metal layer can be laminated alternately.
  • the method for producing a laminate of the present invention preferably includes a surface activation treatment step of subjecting at least a portion of the metal layer and the resin composition layer to a surface activation treatment.
  • the surface activation treatment step is usually carried out after the metal layer formation step, but the resin composition layer may be subjected to a surface activation treatment step after the above-mentioned development step (preferably after the heating step) and then the metal layer formation step may be carried out.
  • the surface activation treatment may be performed on at least a part of the metal layer, or on at least a part of the resin composition layer after exposure, or on at least a part of both the metal layer and the resin composition layer after exposure.
  • the surface activation treatment is preferably performed on at least a part of the metal layer, and it is preferable to perform the surface activation treatment on a part or all of the area of the metal layer on which the resin composition layer is formed on the surface. In this way, by performing the surface activation treatment on the surface of the metal layer, the adhesion with the resin composition layer (film) provided on the surface can be improved. It is preferable to perform the surface activation treatment on a part or the whole of the resin composition layer (resin layer) after exposure. In this way, by performing the surface activation treatment on the surface of the resin composition layer, it is possible to improve the adhesion with the metal layer or the resin layer provided on the surface that has been surface-activated.
  • the resin composition layer when performing negative development, etc., when the resin composition layer is cured, it is less likely to be damaged by the surface treatment, and the adhesion is likely to be improved.
  • the surface activation treatment can be carried out, for example, by the method described in paragraph 0415 of WO 2021/112189, the contents of which are incorporated herein by reference.
  • the present invention also discloses a semiconductor device including a cured product obtained by the method for producing a cured product of the present invention, or a laminate obtained by the method for producing a laminate of the present invention.
  • the present invention also discloses a method for producing a semiconductor device, which includes the method for producing the cured product or the method for producing the laminate of the present invention.
  • semiconductor devices in which the resin composition is used to form an interlayer insulating film for a rewiring layer the descriptions in paragraphs 0213 to 0218 and FIG. 1 of JP-A-2016-027357 can be referred to, and the contents of these are incorporated herein by reference.
  • the components contained in the resin composition used to form the resin layer in the method for producing a cured product of the present invention will be described in detail below.
  • the components contained in the resin layer are the same as those contained in the resin composition, but when the method for producing a cured product of the present invention includes the above-mentioned exposure step, the polymerizable compound, the compound A having a radical polymerizable group, etc. may be polymerized in the resin layer. Also, the photopolymerization initiator, etc. may be decomposed by exposure to light. Furthermore, when the method for producing a cured product of the present invention includes the above-mentioned drying step, the solvent may volatilize.
  • the content of the solvent in the resin layer immediately before being subjected to the decompression step is preferably 0.001 to 10% by mass, and more preferably 0.01 to 5% by mass, based on the total mass of the resin layer.
  • the content of the components other than the solvent in the resin layer is obtained by replacing the meaning of "relative to the total solid content of the resin composition" below with “relative to the total solid content of the resin layer.”
  • the structure of each component may change due to polymerization, decomposition due to exposure, etc.
  • each component has a large molecular weight, that the final molecular weight of which increases through polymerization or the like, and that each component has a high affinity and is easily compatible with the membrane so that each component is likely to remain in the final cured product.
  • the solvent or the decomposition product of the photoradical polymerization initiator is evaporated by the decompression step, it is preferable to select a solvent having a small molecular weight and a low boiling point.
  • the resin composition includes a polyimide precursor.
  • the polyimide precursor preferably has a polymerizable group, and more preferably contains a radically polymerizable group.
  • the resin composition preferably contains a radical polymerization initiator, more preferably contains a radical polymerization initiator and a radical crosslinking agent. If necessary, the resin composition may further contain a sensitizer. For example, a negative photosensitive film is formed from such a resin composition.
  • the polyimide precursor may also have a polarity conversion group such as an acid-decomposable group.
  • the resin composition preferably contains a photoacid generator. From such a resin composition, for example, a chemically amplified positive or negative photosensitive film is formed.
  • the polyimide precursor used in the present invention is not particularly limited in type, but preferably contains a repeating unit represented by the following formula (2).
  • A1 and A2 each independently represent an oxygen atom or -NRz-
  • R111 represents a divalent organic group
  • R115 represents a tetravalent organic group
  • R113 and R114 each independently represent a hydrogen atom or a monovalent organic group
  • Rz represents a hydrogen atom or a monovalent organic group.
  • a 1 and A 2 each independently represent an oxygen atom or —NR z —, and preferably an oxygen atom.
  • Rz represents a hydrogen atom or a monovalent organic group, and is preferably a hydrogen atom.
  • R 111 in formula (2) represents a divalent organic group. Examples of the divalent organic group include a linear or branched aliphatic group, a cyclic aliphatic group, and a group containing an aromatic group.
  • a linear or branched aliphatic group having 2 to 20 carbon atoms, a cyclic aliphatic group having 3 to 20 carbon atoms, an aromatic group having 3 to 20 carbon atoms, or a group consisting of a combination thereof is preferred, and a group containing an aromatic group having 6 to 20 carbon atoms is more preferred.
  • the linear or branched aliphatic group may have a hydrocarbon group in the chain substituted with a group containing a heteroatom, and the cyclic aliphatic group and aromatic group may have a hydrocarbon group in the ring substituted with a group containing a heteroatom.
  • R 111 in formula (2) examples include groups represented by -Ar- and -Ar-L-Ar-, and a group represented by -Ar-L-Ar- is preferred.
  • each Ar is independently an aromatic group
  • L is a single bond, an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, -O-, -CO-, -S-, -SO 2 - or -NHCO-, or a group consisting of a combination of two or more of the above.
  • the preferred ranges of these are as described above.
  • R 111 is preferably derived from a diamine.
  • the diamine used in the production of the polyimide precursor include linear or branched aliphatic, cyclic aliphatic or aromatic diamines. Only one type of diamine may be used, or two or more types may be used.
  • R 111 is preferably a diamine containing a linear or branched aliphatic group having 2 to 20 carbon atoms, a cyclic aliphatic group having 3 to 20 carbon atoms, an aromatic group having 3 to 20 carbon atoms, or a group consisting of a combination thereof, and more preferably a diamine containing an aromatic group having 6 to 20 carbon atoms.
  • the linear or branched aliphatic group may have a hydrocarbon group in the chain substituted with a group containing a hetero atom
  • the cyclic aliphatic group and aromatic group may have a hydrocarbon group in the ring substituted with a group containing a hetero atom.
  • groups containing an aromatic group include the following.
  • * represents a bonding site with other structures.
  • diamines include 1,2-diaminoethane, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane, and 1,6-diaminohexane; 1,2- or 1,3-diaminocyclopentane, 1,2-, 1,3- or 1,4-diaminocyclohexane, 1,2-, 1,3- or 1,4-bis(aminomethyl)cyclohexane, bis-(4-aminocyclohexyl)methane, bis-(3-aminocyclohexyl)methane, 4,4'-diamino-3,3'-dimethylcyclohexylmethane, and isophoronediamine; m- or p-phenylenediamine, diaminotoluene, 4,4'- or 3,3'-diaminobiphenyl, 4,4'-diaminodiphen
  • diamines (DA-1) to (DA-18) described in paragraphs 0030 to 0031 of WO 2017/038598.
  • diamines having two or more alkylene glycol units in the main chain are also preferably used.
  • diamines having two or more alkylene glycol units in the main chain as described in paragraphs 0032 to 0034 of WO 2017/038598.
  • R 111 is preferably represented by -Ar-L-Ar-.
  • each Ar is independently an aromatic group
  • L is an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, -O-, -CO-, -S-, -SO 2 - or -NHCO-, or a group consisting of a combination of two or more of the above.
  • Ar is preferably a phenylene group
  • L is preferably an aliphatic hydrocarbon group having 1 or 2 carbon atoms which may be substituted with a fluorine atom, -O-, -CO-, -S- or -SO 2 -.
  • the aliphatic hydrocarbon group here is preferably an alkylene group.
  • R 111 is preferably a divalent organic group represented by the following formula (51) or formula (61). In particular, from the viewpoints of i-line transmittance and ease of availability, R 111 is more preferably a divalent organic group represented by formula (61). Equation (51) In formula (51), R 50 to R 57 each independently represent a hydrogen atom, a fluorine atom, or a monovalent organic group, at least one of R 50 to R 57 represents a fluorine atom, a methyl group, or a trifluoromethyl group, and * each independently represents a bonding site with the nitrogen atom in formula (2).
  • Examples of the monovalent organic group for R 50 to R 57 include an unsubstituted alkyl group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms) and a fluorinated alkyl group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms).
  • R 58 and R 59 each independently represent a fluorine atom, a methyl group, or a trifluoromethyl group, and * each independently represents a bonding site to the nitrogen atom in formula (2).
  • Examples of diamines that give the structure of formula (51) or formula (61) include 2,2'-dimethylbenzidine, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 2,2'-bis(fluoro)-4,4'-diaminobiphenyl, 4,4'-diaminooctafluorobiphenyl, etc. These may be used alone or in combination of two or more.
  • R 115 represents a tetravalent organic group.
  • a tetravalent organic group containing an aromatic ring is preferable, and a group represented by the following formula (5) or formula (6) is more preferable.
  • each * independently represents a bonding site to another structure.
  • R 112 is a single bond or a divalent linking group and is preferably a single bond, or a group selected from an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, -O-, -CO-, -S-, -SO 2 -, -NHCO-, and a combination thereof, more preferably a single bond, or an alkylene group having 1 to 3 carbon atoms which may be substituted with a fluorine atom, -O-, -CO-, -S-, and -SO 2 -, and still more preferably a divalent group selected from the group consisting of -CH 2 -, -C(CF 3 ) 2 -, -C(CH 3 ) 2 -, -O-, -CO-, -S-, and -SO 2 -.
  • R 115 include tetracarboxylic acid residues remaining after removal of anhydride groups from tetracarboxylic dianhydride.
  • the polyimide precursor may contain only one type of tetracarboxylic dianhydride residue or two or more types of tetracarboxylic dianhydride residues as the structure corresponding to R 115 .
  • the tetracarboxylic dianhydride is preferably represented by the following formula (O).
  • R 115 represents a tetravalent organic group.
  • R 115 has the same meaning as R 115 in formula (2), and the preferred range is also the same.
  • tetracarboxylic dianhydrides include pyromellitic dianhydride (PMDA), 3,3',4,4'-biphenyl tetracarboxylic dianhydride, 3,3',4,4'-diphenyl sulfide tetracarboxylic dianhydride, 3,3',4,4'-diphenyl sulfone tetracarboxylic dianhydride, 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 3,3',4,4'-diphenyl methane tetracarboxylic dianhydride, 2 ,2',3,3'-diphenylmethane tetracarboxylic dianhydride, 2,3,3',4'-biphenyl tetracarboxylic dianhydride, 2,3,3',4'-benzophenone tetracarboxylic dianhydride, 4,4'-oxy
  • tetracarboxylic dianhydrides (DAA-1) to (DAA-5) described in paragraph 0038 of WO 2017/038598 are also preferred examples.
  • R 111 and R 115 may have an OH group. More specifically, R 111 may be a residue of a bisaminophenol derivative.
  • R 113 and R 114 in formula (2) each independently represent a hydrogen atom or a monovalent organic group.
  • the monovalent organic group preferably contains a linear or branched alkyl group, a cyclic alkyl group, an aromatic group, or a polyalkyleneoxy group.
  • the polymerizable group is a group capable of crosslinking by the action of heat, radicals, etc., and is preferably a radical polymerizable group.
  • the polymerizable group examples include a group having an ethylenically unsaturated bond, an alkoxymethyl group, a hydroxymethyl group, an acyloxymethyl group, an epoxy group, an oxetanyl group, a benzoxazolyl group, a blocked isocyanate group, and an amino group.
  • a group having an ethylenically unsaturated bond is preferable.
  • Examples of the group having an ethylenically unsaturated bond include a vinyl group, an allyl group, an isoallyl group, a 2-methylallyl group, a group having an aromatic ring directly bonded to a vinyl group (for example, a vinylphenyl group), a (meth)acrylamide group, a (meth)acryloyloxy group, and a group represented by the following formula (III), and the group represented by the following formula (III) is preferred.
  • R 200 represents a hydrogen atom, a methyl group, an ethyl group or a methylol group, and is preferably a hydrogen atom or a methyl group.
  • * represents a bonding site with another structure.
  • R 201 represents an alkylene group having 2 to 12 carbon atoms, —CH 2 CH(OH)CH 2 —, a cycloalkylene group or a polyalkyleneoxy group.
  • R 201 examples include alkylene groups such as ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, octamethylene group, and dodecamethylene group, 1,2-butanediyl group, 1,3-butanediyl group, -CH 2 CH(OH)CH 2 -, and polyalkyleneoxy groups, of which alkylene groups such as ethylene group and propylene group, -CH 2 CH(OH)CH 2 -, cyclohexyl group, and polyalkyleneoxy groups are more preferred, and alkylene groups such as ethylene group and propylene group, or polyalkyleneoxy groups are even more preferred.
  • alkylene groups such as ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, octamethylene group, and dodecamethylene group, 1,2-butanediyl group, 1,3-but
  • the polyalkyleneoxy group refers to a group in which two or more alkyleneoxy groups are directly bonded.
  • the alkylene groups in the multiple alkyleneoxy groups contained in the polyalkyleneoxy group may be the same or different.
  • the arrangement of the alkyleneoxy groups in the polyalkyleneoxy group may be a random arrangement, an arrangement having blocks, or an arrangement having a pattern such as alternating.
  • the number of carbon atoms in the alkylene group (including the number of carbon atoms of the substituent, when the alkylene group has a substituent) is preferably 2 or more, more preferably 2 to 10, more preferably 2 to 6, even more preferably 2 to 5, still more preferably 2 to 4, still more preferably 2 or 3, and particularly preferably 2.
  • the alkylene group may have a substituent, and preferred examples of the substituent include an alkyl group, an aryl group, and a halogen atom.
  • the number of alkyleneoxy groups contained in the polyalkyleneoxy group (the number of repeating polyalkyleneoxy groups) is preferably 2-20, more preferably 2-10, and even more preferably 2-6.
  • polyethyleneoxy group from the viewpoint of solvent solubility and solvent resistance, polyethyleneoxy group, polypropyleneoxy group, polytrimethyleneoxy group, polytetramethyleneoxy group, or a group in which multiple ethyleneoxy groups and multiple propyleneoxy groups are bonded is preferred, polyethyleneoxy group or polypropyleneoxy group is more preferred, and polyethyleneoxy group is even more preferred.
  • the ethyleneoxy groups and the propyleneoxy groups may be arranged randomly, may be arranged in blocks, or may be arranged in a pattern such as alternating. The preferred embodiment of the number of repetitions of the ethyleneoxy group etc. in these groups is as described above.
  • the polyimide precursor when R 113 is a hydrogen atom or when R 114 is a hydrogen atom, the polyimide precursor may form a counter salt with a tertiary amine compound having an ethylenically unsaturated bond.
  • a tertiary amine compound having an ethylenically unsaturated bond is N,N-dimethylaminopropyl methacrylate.
  • R 113 and R 114 may be a polarity conversion group such as an acid-decomposable group.
  • the acid-decomposable group is not particularly limited as long as it is decomposed by the action of an acid to generate an alkali-soluble group such as a phenolic hydroxy group or a carboxy group, but an acetal group, a ketal group, a silyl group, a silyl ether group, a tertiary alkyl ester group, etc. are preferred, and from the viewpoint of exposure sensitivity, an acetal group or a ketal group is more preferred.
  • the acid-decomposable group examples include a tert-butoxycarbonyl group, an isopropoxycarbonyl group, a tetrahydropyranyl group, a tetrahydrofuranyl group, an ethoxyethyl group, a methoxyethyl group, an ethoxymethyl group, a trimethylsilyl group, a tert-butoxycarbonylmethyl group, a trimethylsilyl ether group, etc. From the viewpoint of exposure sensitivity, an ethoxyethyl group or a tetrahydrofuranyl group is preferred.
  • the polyimide precursor has fluorine atoms in its structure.
  • the fluorine atom content in the polyimide precursor is preferably 10% by mass or more, and 20% by mass or less.
  • the polyimide precursor may be copolymerized with an aliphatic group having a siloxane structure.
  • Specific examples include those using bis(3-aminopropyl)tetramethyldisiloxane, bis(p-aminophenyl)octamethylpentasiloxane, etc. as the diamine.
  • the repeating unit represented by formula (2) is preferably a repeating unit represented by formula (2-A). That is, at least one of the polyimide precursors used in the present invention is preferably a precursor having a repeating unit represented by formula (2-A). By including the repeating unit represented by formula (2-A) in the polyimide precursor, it becomes possible to further increase the width of the exposure latitude.
  • a 1 and A 2 represent an oxygen atom
  • R 111 and R 112 each independently represent a divalent organic group
  • R 113 and R 114 each independently represent a hydrogen atom or a monovalent organic group
  • at least one of R 113 and R 114 is a group containing a polymerizable group, and it is preferable that both are groups containing a polymerizable group.
  • a 1 , A 2 , R 111 , R 113 and R 114 each independently have the same meaning as A 1 , A 2 , R 111 , R 113 and R 114 in formula (2), and the preferred range is also the same.
  • R 112 has the same meaning as R 112 in formula (5), and the preferred range is also the same.
  • the polyimide precursor may contain one type of repeating unit represented by formula (2), or may contain two or more types. It may also contain a structural isomer of the repeating unit represented by formula (2).
  • the polyimide precursor may contain other types of repeating units in addition to the repeating unit of formula (2).
  • One embodiment of the polyimide precursor of the present invention is one in which the content of the repeating unit represented by formula (2) is 50 mol% or more of all repeating units.
  • the total content is more preferably 70 mol% or more, even more preferably 90 mol% or more, and particularly preferably more than 90 mol%.
  • all repeating units in the polyimide precursor except for the terminals may be repeating units represented by formula (2).
  • the weight average molecular weight (Mw) of the polyimide precursor is preferably 5,000 to 100,000, more preferably 10,000 to 50,000, and even more preferably 15,000 to 40,000.
  • the number average molecular weight (Mn) of the polyimide precursor is preferably 2,000 to 40,000, more preferably 3,000 to 30,000, and even more preferably 4,000 to 20,000.
  • the polyimide precursor has a molecular weight dispersity of preferably 1.5 or more, more preferably 1.8 or more, and even more preferably 2.0 or more.
  • the upper limit of the molecular weight dispersity of the polyimide precursor is not particularly limited, but is, for example, preferably 7.0 or less, more preferably 6.5 or less, and even more preferably 6.0 or less.
  • the dispersity of molecular weight is a value calculated by weight average molecular weight/number average molecular weight.
  • the weight average molecular weight, number average molecular weight, and dispersity of at least one of the polyimide precursors are within the above ranges. It is also preferable that the weight average molecular weight, number average molecular weight, and dispersity calculated by treating the plurality of polyimide precursors as one resin are each within the above ranges.
  • the polyimide precursor can be obtained by, for example, a method of reacting a tetracarboxylic dianhydride with a diamine at low temperature, a method of reacting a tetracarboxylic dianhydride with a diamine at low temperature to obtain a polyamic acid, and then esterifying the polyamic acid using a condensing agent or an alkylating agent, a method of obtaining a diester from a tetracarboxylic dianhydride with an alcohol, and then reacting the diamine in the presence of a condensing agent, a method of obtaining a diester from a tetracarboxylic dianhydride with an alcohol, and then acid-halogenating the remaining dicarboxylic acid using a halogenating agent, and then reacting the diamine, etc.
  • the method of obtaining a diester from a tetracarboxylic dianhydride with an alcohol, and then acid-halogenating the remaining dicarboxylic acid using a halogenating agent, and then reacting the diamine is more preferable.
  • the condensing agent include dicyclohexylcarbodiimide, diisopropylcarbodiimide, 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, 1,1-carbonyldioxy-di-1,2,3-benzotriazole, N,N'-disuccinimidyl carbonate, and trifluoroacetic anhydride.
  • alkylating agent examples include N,N-dimethylformamide dimethyl acetal, N,N-dimethylformamide diethyl acetal, N,N-dialkylformamide dialkyl acetal, trimethyl orthoformate, and triethyl orthoformate.
  • halogenating agent examples include thionyl chloride, oxalyl chloride, phosphorus oxychloride, and the like.
  • the organic solvent may be one type or two or more types.
  • the organic solvent can be appropriately selected depending on the raw material, and examples thereof include pyridine, diethylene glycol dimethyl ether (diglyme), N-methylpyrrolidone, N-ethylpyrrolidone, ethyl propionate, dimethylacetamide, dimethylformamide, tetrahydrofuran, and ⁇ -butyrolactone.
  • a basic compound may be one type or two or more types.
  • the basic compound can be appropriately selected depending on the raw material, and examples thereof include triethylamine, diisopropylethylamine, pyridine, 1,8-diazabicyclo[5.4.0]undec-7-ene, and N,N-dimethyl-4-aminopyridine.
  • -End-capping agent- In producing a polyimide precursor, in order to further improve storage stability, it is preferable to cap the carboxylic acid anhydride, acid anhydride derivative, or amino group remaining at the resin terminal of the polyimide precursor, etc.
  • examples of the terminal capping agent include monoalcohols, phenols, thiols, thiophenols, monoamines, etc., and it is more preferable to use monoalcohols, phenols, or monoamines in terms of reactivity and film stability.
  • Preferred monoalcohol compounds include primary alcohols such as methanol, ethanol, propanol, butanol, hexanol, octanol, dodecinol, benzyl alcohol, 2-phenylethanol, 2-methoxyethanol, 2-chloromethanol, and furfuryl alcohol, secondary alcohols such as isopropanol, 2-butanol, cyclohexyl alcohol, cyclopentanol, and 1-methoxy-2-propanol, and tertiary alcohols such as tert-butyl alcohol and adamantane alcohol.
  • primary alcohols such as methanol, ethanol, propanol, butanol, hexanol, octanol, dodecinol, benzyl alcohol, 2-phenylethanol, 2-methoxyethanol, 2-chloromethanol, and furfuryl alcohol
  • secondary alcohols such as isopropanol, 2-butanol, cyclo
  • Preferred phenolic compounds include phenols such as phenol, methoxyphenol, methylphenol, naphthalene-1-ol, naphthalene-2-ol, and hydroxystyrene.
  • Preferred monoamine compounds include aniline, 2-ethynylaniline, 3-ethynylaniline, 4-ethynylaniline, 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-aminonaphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 1-carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene, 1-carboxy-5-aminonaphthalene, Examples of such an acid include 2-carboxy-7-aminonaphthalene, 2-car
  • blocking agents for the amino group include carboxylic acid anhydrides, carboxylic acid chlorides, carboxylic acid bromides, sulfonic acid chlorides, sulfonic acid anhydrides, sulfonic acid carboxylic acid anhydrides, and the like, and more preferred are carboxylic acid anhydrides and carboxylic acid chlorides.
  • Preferred compounds of carboxylic acid anhydrides include acetic anhydride, propionic anhydride, oxalic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, benzoic anhydride, 5-norbornene-2,3-dicarboxylic acid anhydride, and the like.
  • carboxylic acid chloride examples include acetyl chloride, acrylic acid chloride, propionyl chloride, methacrylic acid chloride, pivaloyl chloride, cyclohexanecarbonyl chloride, 2-ethylhexanoyl chloride, cinnamoyl chloride, 1-adamantanecarbonyl chloride, heptafluorobutyryl chloride, stearic acid chloride, and benzoyl chloride.
  • the production of the polyimide precursor may include a step of precipitating a solid. Specifically, after filtering off the water-absorbing by-product of the dehydration condensation agent coexisting in the reaction solution as necessary, the obtained polymer component is poured into a poor solvent such as water, aliphatic lower alcohol, or a mixture thereof, and the polymer component is precipitated as a solid, and then dried to obtain a polyimide precursor. In order to improve the degree of purification, the polyimide precursor may be repeatedly subjected to operations such as redissolving, reprecipitating, and drying. Furthermore, a step of removing ionic impurities using an ion exchange resin may be included.
  • the content of the polyimide precursor in the resin composition is preferably 20% by mass or more, more preferably 30% by mass or more, even more preferably 40% by mass or more, and even more preferably 50% by mass or more, based on the total solid content of the resin composition.
  • the content of the resin in the resin composition is preferably 99.5% by mass or less, more preferably 99% by mass or less, even more preferably 98% by mass or less, even more preferably 97% by mass or less, and even more preferably 95% by mass or less, based on the total solid content of the resin composition.
  • the resin composition may contain only one type of polyimide precursor, or may contain two or more types. When two or more types are contained, the total amount is preferably in the above range.
  • the resin composition contains at least two types of resins.
  • the resin composition may contain a total of two or more kinds of polyimide precursors and other resins described later, or may contain two or more kinds of polyimide precursors, but it is preferable that the resin composition contains two or more kinds of polyimide precursors.
  • the resin composition contains two or more kinds of polyimide precursors, for example, it is preferable to contain two or more kinds of polyimide precursors having different dianhydride-derived structures (R 115 in the above formula (2)).
  • the resin composition may contain the above-mentioned polyimide precursor and another resin different from the polyimide precursor (hereinafter, simply referred to as "another resin").
  • the other resins include polyimide, polybenzoxazole precursor, polybenzoxazole, polyamideimide precursor, polyamideimide, phenol resin, polyamide, epoxy resin, polysiloxane, resin containing a siloxane structure, (meth)acrylic resin, (meth)acrylamide resin, urethane resin, butyral resin, styryl resin, polyether resin, and polyester resin.
  • polyimide examples include the compounds described in paragraphs 0017 to 0138 of WO 2022/145355. The above descriptions are incorporated herein by reference.
  • a resin composition having excellent coatability can be obtained, and a pattern (cured product) having excellent solvent resistance can be obtained.
  • the coatability of the resin composition and the solvent resistance of the pattern (cured product) can be improved.
  • the content of the other resins is preferably 0.01 mass% or more, more preferably 0.05 mass% or more, even more preferably 1 mass% or more, still more preferably 2 mass% or more, even more preferably 5 mass% or more, and even more preferably 10 mass% or more, based on the total solid content of the resin composition.
  • the content of other resins in the resin composition is preferably 80 mass% or less, more preferably 75 mass% or less, even more preferably 70 mass% or less, still more preferably 60 mass% or less, and even more preferably 50 mass% or less, based on the total solid content of the resin composition.
  • the content of the other resin may be low.
  • the content of the other resin is preferably 20% by mass or less, more preferably 15% by mass or less, even more preferably 10% by mass or less, even more preferably 5% by mass or less, and even more preferably 1% by mass or less, based on the total solid content of the resin composition.
  • the lower limit of the content is not particularly limited, and may be 0% by mass or more.
  • the resin composition may contain only one type of other resin, or may contain two or more types. When two or more types are contained, the total amount is preferably within the above range.
  • the resin composition preferably contains a compound A having at least one bond selected from a urethane bond and a urea bond, and at least one functional group selected from a tert-butyl group, a hydroxyl group, and a group containing an ethylenically unsaturated bond.
  • the method for producing a cured product of the present invention satisfies the above-mentioned condition 1.
  • Compound A is preferably a compound in which a urethane bond or urea bond is cleaved in the heating step described above to produce an amine.
  • a urethane bond is a bond represented by *--O--C(.dbd.O)-- NR.sub.N --*, where R.sub.N represents a hydrogen atom or a monovalent organic group, and * represents a bonding site with a carbon atom.
  • the urea bond is as described above.
  • Compound A may have only one urea bond or one urethane bond, may have one or more urea bonds and one or more urethane bonds, may have no urethane bond but two or more urea bonds, or may have no urea bond but two or more urethane bonds.
  • the total number of urea bonds and urethane bonds in compound A is 1 or more, preferably 1 to 10, more preferably 1 to 4, and even more preferably 1 or 2.
  • the number of urea bonds in compound A is 1 or more, preferably 1 to 10, more preferably 1 to 4, and even more preferably 1 or 2.
  • the number of urethane bonds in compound A is 1 or more, preferably 1 to 10, more preferably 1 to 4, and even more preferably 1 or 2.
  • Compound A preferably contains at least one compound selected from the group consisting of compounds having a tert-butyl group and a urethane bond, and compounds having a urea bond, two or more hydroxy groups, and a group containing an ethylenically unsaturated bond.
  • compound A is preferably an amine in which the amino group is protected with a tert-butoxycarbonyl group. That is, when compound A is a compound having a tert-butyl group, compound A is preferably a compound having a urethane bond.
  • Amine compounds protected by a t-butoxycarbonyl group include, for example, ethanolamine, 3-amino-1-propanol, 1-amino-2-propanol, 2-amino-1-propanol, 4-amino-1-butanol, 2-amino-1-butanol, 1-amino-2-butanol, 3-amino-2,2-dimethyl-1-propanol, 4-amino-2-methyl-1-butanol, valinol, 3-amino-1,2-propanediol, 2-amino-1,3-propanediol, Diol, tyramine, norephedrine, 2-amino-1-phenyl-1,3-propanediol, 2-aminocyclohexanol, 4-aminocyclohexanol, 4-aminocyclohexaneethanol, 4-(2-aminoethyl)cyclohexanol, N-
  • Compound A preferably has a group containing an ethylenically unsaturated bond.
  • the group containing an ethylenically unsaturated bond is more preferably a radical polymerizable group.
  • the group containing an ethylenically unsaturated bond in compound A is not particularly limited, and examples thereof include a vinyl group, an allyl group, a (meth)acryloyl group (particularly, a (meth)acryloxy group or a (meth)acrylamide group), a vinylphenyl group, and a maleimide group.
  • a (meth)acryloxy group a (meth)acrylamide group, a vinylphenyl group, or a maleimide group is preferred, and a (meth)acryloxy group is more preferred.
  • compound A has two or more groups containing an ethylenically unsaturated bond
  • the structures of the groups containing an ethylenically unsaturated bond may be the same or different.
  • the number of groups containing an ethylenically unsaturated bond in compound A may be one or more, and is preferably 1 to 10, more preferably 1 to 6, and particularly preferably 1 to 4.
  • the equivalent weight of the group containing an ethylenically unsaturated bond in compound A is preferably 150 to 400 g/mol. From the viewpoint of the chemical resistance of the cured product, the lower limit of the equivalent weight is more preferably 200 g/mol or more, even more preferably 210 g/mol or more, even more preferably 220 g/mol or more, even more preferably 230 g/mol or more, even more preferably 240 g/mol or more, and particularly preferably 250 g/mol or more.
  • the upper limit of the equivalent weight is more preferably 350 g/mol or less, further preferably 330 g/mol or less, and particularly preferably 300 g/mol or less.
  • the equivalent weight is preferably from 210 to 400 g/mol, and more preferably from 220 to 400 g/mol.
  • the compound A having a group containing an ethylenically unsaturated bond has at least one of a hydroxy group, an alkoxy group, an alkyleneoxy group, an amino group, an amido group and a cyano group.
  • the hydroxy group may be an alcoholic hydroxy group or a phenolic hydroxy group, but is preferably an alcoholic hydroxy group.
  • the alkoxy group is preferably an alkoxy group having 1 to 20 carbon atoms, more preferably an alkoxy group having 1 to 10 carbon atoms, and even more preferably an alkoxy group having 1 to 4 carbon atoms.
  • the alkyleneoxy group is preferably an alkyleneoxy group having 2 to 20 carbon atoms, more preferably an alkyleneoxy group having 2 to 10 carbon atoms, even more preferably an alkyleneoxy group having 2 to 4 carbon atoms, still more preferably an ethylene group or propylene group, and particularly preferably an ethylene group.
  • the alkyleneoxy group may be contained as a polyalkyleneoxy group in compound A.
  • the number of repetitions of the alkyleneoxy group is preferably 2 to 10, and more preferably 2 to 6.
  • R N is as described above.
  • R represents a hydrogen atom or a monovalent substituent, preferably a hydrogen atom or a hydrocarbon group, and more preferably a hydrogen atom, an alkyl group, or an aromatic hydrocarbon group.
  • Compound A may have, in the molecule, two or more structures selected from the group consisting of a hydroxy group, an alkyleneoxy group (when a polyalkyleneoxy group is formed, the group is a polyalkyleneoxy group), an amide group, and a cyano group. An embodiment having only one such structure in the molecule is also preferred.
  • the hydroxy group, alkyleneoxy group, amide group and cyano group may be present at any position of compound A.
  • linking group L2-1 a linking group containing a urea bond or a urethane bond
  • compound A contains only one radically polymerizable group
  • the radically polymerizable group contained in compound A and at least one selected from the group consisting of a hydroxy group, an alkyleneoxy group, an amide group, and a cyano group are linked via a linking group containing a urea bond or a urethane bond (hereinafter also referred to as "linking group L2-2").
  • compound A contains an alkyleneoxy group (however, when it constitutes a polyalkyleneoxy group, it is a polyalkyleneoxy group) and has the linking group L2-1 or the linking group L2-2
  • the structure bonded to the side of the alkyleneoxy group (however, when it constitutes a polyalkyleneoxy group, it is a polyalkyleneoxy group) opposite to the linking group L2-1 or the linking group L2-2 is not particularly limited, but is preferably a hydrocarbon group, a radically polymerizable group, or a group represented by a combination thereof.
  • hydrocarbon group a hydrocarbon group having 20 or less carbon atoms is preferable, a hydrocarbon group having 18 or less carbon atoms is more preferable, and a hydrocarbon group having 16 or less carbon atoms is even more preferable.
  • hydrocarbon group a saturated aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a group represented by a bond thereof can be mentioned.
  • a preferred embodiment of the radically polymerizable group is the same as the preferred embodiment of the radically polymerizable group in compound A described above.
  • the structure bonded to the side of the amide group opposite to the linking group L2-1 or the linking group L2-2 is not particularly limited, but is preferably a hydrocarbon group, a radically polymerizable group, or a group represented by a combination thereof.
  • the hydrocarbon group is preferably a hydrocarbon group having 20 or less carbon atoms, more preferably a hydrocarbon group having 18 or less carbon atoms, and even more preferably a hydrocarbon group having 16 or less carbon atoms.
  • examples of the hydrocarbon group include saturated aliphatic hydrocarbon groups, aromatic hydrocarbon groups, and groups represented by a bond between these groups.
  • a preferred embodiment of the radically polymerizable group is the same as the preferred embodiment of the radically polymerizable group in compound A described above.
  • the carbon atom side of the amide group may be bonded to the linking group L2-1 or the linking group L2-2, or the nitrogen atom side of the amide group may be bonded to the linking group L2-1 or the linking group L2-2.
  • compound A has a hydroxy group.
  • the compound A having a group containing an ethylenically unsaturated bond contains a (meth)acryloyl group and at least one functional group selected from the group consisting of a hydroxy group, an alkoxy group, and an amino group, and it is more preferable that the compound A has a (meth)acryloyl group and a hydroxy group.
  • compound A having a group containing an ethylenically unsaturated bond is preferably a compound having a urea bond, two or more hydroxy groups, and a group containing an ethylenically unsaturated bond.
  • the compound A having a group containing an ethylenically unsaturated bond also preferably contains an aromatic group.
  • the aromatic group is preferably directly bonded to a urea bond or a urethane bond contained in compound A.
  • compound A contains two or more urea bonds or urethane bonds, it is preferable that one of the urea bonds or urethane bonds is directly bonded to the aromatic group.
  • the aromatic group may be an aromatic hydrocarbon group or an aromatic heterocyclic group, or may have a structure in which these form a condensed ring, but is preferably an aromatic hydrocarbon group.
  • the aromatic hydrocarbon group is preferably an aromatic hydrocarbon group having 6 to 30 carbon atoms, more preferably an aromatic hydrocarbon group having 6 to 20 carbon atoms, and even more preferably a group in which two or more hydrogen atoms have been removed from a benzene ring structure.
  • the aromatic heterocyclic group is preferably a 5-membered or 6-membered aromatic heterocyclic group.
  • aromatic heterocyclic ring in such an aromatic heterocyclic group examples include pyrrole, imidazole, triazole, tetrazole, pyrazole, furan, thiophene, oxazole, isoxazole, thiazole, pyridine, pyrazine, pyrimidine, pyridazine, triazine, etc. These rings may be further condensed with other rings, such as indole and benzimidazole.
  • the heteroatom contained in the aromatic heterocyclic group is preferably a nitrogen atom, an oxygen atom or a sulfur atom.
  • the aromatic group is preferably contained in, for example, a linking group that links two or more radically polymerizable groups and contains a urea bond or a urethane bond, or a linking group that links at least one selected from the group consisting of the above-mentioned hydroxy group, alkyleneoxy group, amide group, and cyano group to at least one radically polymerizable group contained in compound A.
  • the compound A having a group containing an ethylenically unsaturated bond preferably has a structure represented by the following formula (U-1), for example.
  • R U1 is a hydrogen atom or a monovalent organic group
  • A is -O- or -NR N -
  • R N is a hydrogen atom or a monovalent organic group
  • Z U1 is an m-valent organic group
  • Z U2 is an (n+1)-valent organic group
  • X is a group containing an ethylenically unsaturated bond
  • n is an integer of 1 or more
  • m is an integer of 1 or more.
  • R U1 is preferably a hydrogen atom, an alkyl group or an aromatic hydrocarbon group, and more preferably a hydrogen atom.
  • A is —O— or —NR N —, and is preferably —NR N —.
  • R 3 N is preferably a hydrogen atom, an alkyl group or an aromatic hydrocarbon group, and more preferably a hydrogen atom.
  • the hydrocarbon group is preferably a hydrocarbon group having 20 or less carbon atoms, more preferably a hydrocarbon group having 18 or less carbon atoms, and even more preferably a hydrocarbon group having 16 or less carbon atoms.
  • Examples of the hydrocarbon group include a saturated aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a group represented by a combination thereof.
  • R N represents a hydrogen atom or a monovalent organic group, and is preferably a hydrogen atom or a hydrocarbon group, more preferably a hydrogen atom or an alkyl group, and even more preferably a hydrogen atom or a methyl group.
  • the above-mentioned hydrocarbon group may have a hydroxy group, an alkoxy group, an alkyleneoxy group, an amino group, an amido group, a cyano group, or the like as a substitute for a hydrogen atom.
  • compound A having a group containing an ethylenically unsaturated bond is a compound having a urea bond, two or more hydroxy groups, and a group containing an ethylenically unsaturated bond, it is preferable that Z U1 contains two or more hydroxy groups.
  • the hydrocarbon group includes the same ones as those exemplified for ZU1 , and preferred embodiments are also the same.
  • X is not particularly limited, and examples thereof include a vinyl group, an allyl group, a (meth)acryloyl group, a (meth)acryloxy group, a (meth)acrylamide group, a vinylphenyl group, and a maleimide group.
  • a (meth)acryloxy group, a (meth)acrylamide group, a vinylphenyl group, or a maleimide group is preferable, and a (meth)acryloxy group is more preferable.
  • n is preferably an integer of 1 to 10, more preferably an integer of 1 to 4, further preferably 1 or 2, and particularly preferably 1.
  • m is preferably an integer of 1 to 10, more preferably an integer of 1 to 4, and even more preferably 1 or 2.
  • the number of atoms (linking chain length) between the urea bond or urethane bond and the group containing an ethylenically unsaturated bond is not particularly limited, but is preferably 30 or less, more preferably 2 to 20, and even more preferably 2 to 10.
  • compound A contains a total of two or more urea bonds or urethane bonds, when it contains two or more groups containing an ethylenically unsaturated bond, or when it contains two or more urea bonds or urethane bonds and two or more groups containing an ethylenically unsaturated bond, it is sufficient that the minimum number of atoms between the urea bond or urethane bond and the radical polymerizable group (linking chain length) is within the above range.
  • the "number of atoms (linking chain length) between a urea bond or a urethane bond and a polymerizable group” refers to the chain of atoms on the path connecting two atoms or groups of atoms to be linked that links these objects with the shortest length (minimum number of atoms).
  • the number of atoms (linking chain length) between the urea bond and the radical polymerizable group (methacryloyloxy group) is 2.
  • the method for producing compound A having a polymerizable group is not particularly limited, but for example, it can be obtained by reacting a compound having a group containing an ethylenically unsaturated bond and an isocyanate group with a compound having at least one of a hydroxy group or an amino group.
  • compound A having a polymerizable group examples include but not limited thereto.
  • compound A When compound A has a hydroxy group and does not have a group containing an ethylenically unsaturated bond, compound A is preferably a compound represented by the following formula (U-2).
  • A is -O- or -NR N -, R N is a hydrogen atom or a monovalent organic group, Z U3 is an m-valent organic group, R U2 each independently represent a monovalent organic group, R U3 each independently represent a monovalent organic group, at least one of Z U3 , R U2 , and R U3 is a group having a hydroxyl group, and m is an integer of 1 or more.
  • A is preferably —NR N —.
  • R N is preferably a hydrogen atom, an alkyl group or a phenyl group, and more preferably a hydrogen atom.
  • the hydrocarbon group is preferably a hydrocarbon group having 20 or less carbon atoms, more preferably a hydrocarbon group having 18 or less carbon atoms, and even more preferably a hydrocarbon group having 16 or less carbon atoms.
  • Examples of the hydrocarbon group include a saturated aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a group represented by a combination thereof.
  • R N represents a hydrogen atom or a monovalent organic group, and is preferably a hydrogen atom or a hydrocarbon group, more preferably a hydrogen atom or an alkyl group, and even more preferably a hydrogen atom or a methyl group.
  • the above hydrocarbon group may have a substituent.
  • the hydrocarbon group has a hydroxy group, an alkyleneoxy group, an amide group, or a cyano group as a substituent. The preferred embodiments of these groups are as described above.
  • each R 1 U2 is preferably a hydrocarbon group, more preferably an alkyl group, more preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms.
  • the above hydrocarbon group may have a substituent.
  • the hydrocarbon group has a hydroxy group, an alkyleneoxy group, an amide group, or a cyano group as a substituent. The preferred embodiments of these groups are as described above.
  • R 1 U3 are the same as those of R 1 U2 .
  • m is preferably an integer from 1 to 10, more preferably an integer from 1 to 4, and even more preferably 1 or 2.
  • compound A is a compound having a structure without an axis of symmetry.
  • Compound A having no axis of symmetry means that the compound is asymmetric and does not have an axis that would produce an identical molecule to the original molecule by rotating the entire compound.
  • compound A having no axis of symmetry means that the structural formula of compound A cannot be written in a form having an axis of symmetry. It is believed that the absence of an axis of symmetry in compound A suppresses aggregation of compounds A within the composition film.
  • the resin composition preferably contains, as compound A, any one of U-1 to U-11 in the examples described below.
  • the molecular weight of compound A is preferably 100 to 2,000, more preferably 150 to 1500, and even more preferably 200 to 900.
  • the content of compound A relative to the total solid content of the resin composition is preferably 0.1 to 20 mass%.
  • the lower limit is more preferably 0.2 mass% or more, even more preferably 0.4 mass% or more, and particularly preferably 0.6 mass% or more.
  • the upper limit is more preferably 15 mass% or less, even more preferably 12 mass% or less, and particularly preferably 10 mass% or less.
  • the content of compound A in the resin composition is preferably 0.05 to 15 parts by mass, more preferably 0.10 to 8 parts by mass, based on 100 parts by mass of the polyimide precursor.
  • Compound A may be used alone or in combination of two or more. When two or more types are used in combination, the total amount is preferably within the above range.
  • the resin composition preferably contains a polymerizable compound.
  • the polymerizable compound may include a radical crosslinking agent or other crosslinking agents.
  • the compound corresponding to the above-mentioned compound A is not included in the polymerizable compound referred to here.
  • the resin composition preferably contains a radical crosslinking agent.
  • the radical crosslinking agent is a compound having a radical polymerizable group.
  • the radical polymerizable group is preferably a group containing an ethylenically unsaturated bond.
  • Examples of the group containing an ethylenically unsaturated bond include a vinyl group, an allyl group, a vinylphenyl group, a (meth)acryloyl group, a maleimide group, and a (meth)acrylamide group.
  • a (meth)acryloyl group, a (meth)acrylamide group, and a vinylphenyl group are preferred, and from the viewpoint of reactivity, a (meth)acryloyl group is more preferred.
  • the radical crosslinking agent is preferably a compound having one or more ethylenically unsaturated bonds, more preferably a compound having two or more ethylenically unsaturated bonds.
  • the radical crosslinking agent may have three or more ethylenically unsaturated bonds.
  • a compound having 2 to 15 ethylenically unsaturated bonds is preferable, a compound having 2 to 10 ethylenically unsaturated bonds is more preferable, and a compound having 2 to 6 ethylenically unsaturated bonds is even more preferable.
  • the resin composition contains a compound having two ethylenically unsaturated bonds and a compound having three or more ethylenically unsaturated bonds.
  • the polymerizable compound itself and the polymer of the polymerizable compound are less likely to volatilize in the decompression step, which is preferable.
  • the molecular weight of the radical crosslinking agent is preferably 2,000 or less, more preferably 1,500 or less, and even more preferably 900 or less.
  • the lower limit of the molecular weight of the radical crosslinking agent is preferably 100 or more.
  • radical crosslinking agents include unsaturated carboxylic acids (e.g., acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.) and their esters and amides, preferably esters of unsaturated carboxylic acids and polyhydric alcohol compounds, and amides of unsaturated carboxylic acids and polyvalent amine compounds.
  • unsaturated carboxylic acids e.g., acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.
  • esters and amides preferably esters of unsaturated carboxylic acids and polyhydric alcohol compounds
  • amides of unsaturated carboxylic acids and polyvalent amine compounds amides of unsaturated carboxylic acids and polyvalent amine compounds.
  • addition reaction products of unsaturated carboxylic acid esters or amides having nucleophilic substituents such as hydroxyl groups, amino groups, and sul
  • addition reaction products of unsaturated carboxylic acid esters or amides having electrophilic substituents such as isocyanate groups and epoxy groups with monofunctional or polyfunctional alcohols, amines, and thiols, and substitution reaction products of unsaturated carboxylic acid esters or amides having eliminable substituents such as halogeno groups and tosyloxy groups with monofunctional or polyfunctional alcohols, amines, and thiols are also suitable.
  • the radical crosslinking agent is preferably a compound having a boiling point of 100°C or higher under normal pressure.
  • Examples of compounds having a boiling point of 100°C or higher under normal pressure include the compounds described in paragraph 0203 of WO 2021/112189, the contents of which are incorporated herein by reference.
  • radical crosslinking agents other than those mentioned above include the radical polymerizable compounds described in paragraphs 0204 to 0208 of WO 2021/112189, the contents of which are incorporated herein by reference.
  • Preferred radical crosslinking agents are dipentaerythritol triacrylate (commercially available products include KAYARAD D-330 (manufactured by Nippon Kayaku Co., Ltd.)), dipentaerythritol tetraacrylate (commercially available products include KAYARAD D-320 (manufactured by Nippon Kayaku Co., Ltd.) and A-TMMT (manufactured by Shin-Nakamura Chemical Co., Ltd.)), dipentaerythritol penta(meth)acrylate (commercially available products include KAYARAD D-310 (manufactured by Nippon Kayaku Co., Ltd.)), dipentaerythritol hexa(meth)acrylate (commercially available products include KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.) and A-DPH (manufactured by Shin-Nakamura Chemical Co., Ltd.)), and structures in which
  • radical crosslinking agents include, for example, SR-494, a tetrafunctional acrylate with four ethyleneoxy chains, SR-209, 231, and 239, which are difunctional methacrylates with four ethyleneoxy chains (all manufactured by Sartomer Corporation), DPCA-60, a hexafunctional acrylate with six pentyleneoxy chains, TPA-330, a trifunctional acrylate with three isobutyleneoxy chains (all manufactured by Nippon Kayaku Co., Ltd.), and urethane oligomers.
  • SR-494 a tetrafunctional acrylate with four ethyleneoxy chains
  • SR-209, 231, and 239 which are difunctional methacrylates with four ethyleneoxy chains (all manufactured by Sartomer Corporation)
  • DPCA-60 a hexafunctional acrylate with six pentyleneoxy chains
  • TPA-330 a trifunctional acrylate with three isobutyleneoxy chains (all manufactured by Nippon Kayaku Co., Ltd.)
  • Examples include UAS-10 and UAB-140 (all manufactured by Nippon Paper Industries Co., Ltd.), NK Ester M-40G, NK Ester 4G, NK Ester M-9300, NK Ester A-9300, and UA-7200 (all manufactured by Shin-Nakamura Chemical Co., Ltd.), DPHA-40H (manufactured by Nippon Kayaku Co., Ltd.), UA-306H, UA-306T, UA-306I, AH-600, T-600, and AI-600 (all manufactured by Kyoeisha Chemical Co., Ltd.), and Blenmar PME400 (manufactured by NOF Corp.).
  • radical crosslinking agents urethane acrylates such as those described in JP-B-48-041708, JP-A-51-037193, JP-B-02-032293, and JP-B-02-016765, and urethane compounds having an ethylene oxide skeleton described in JP-B-58-049860, JP-B-56-017654, JP-B-62-039417, and JP-B-62-039418 are also suitable.
  • radical crosslinking agents compounds having an amino structure or sulfide structure in the molecule, as described in JP-A-63-277653, JP-A-63-260909, and JP-A-01-105238, can also be used.
  • the radical crosslinking agent may be a radical crosslinking agent having an acid group such as a carboxy group or a phosphate group.
  • the radical crosslinking agent having an acid group is preferably an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, and more preferably a radical crosslinking agent in which an acid group is provided by reacting an unreacted hydroxy group of an aliphatic polyhydroxy compound with a non-aromatic carboxylic anhydride.
  • a radical crosslinking agent in which an acid group is provided by reacting an unreacted hydroxy group of an aliphatic polyhydroxy compound with a non-aromatic carboxylic anhydride, in which the aliphatic polyhydroxy compound is pentaerythritol or dipentaerythritol.
  • examples of commercially available products include polybasic acid modified acrylic oligomers manufactured by Toagosei Co., Ltd., such as M-510 and M-520.
  • the acid value of the radical crosslinking agent having an acid group is preferably 0.1 to 300 mgKOH/g, more preferably 1 to 100 mgKOH/g. If the acid value of the radical crosslinking agent is within the above range, the agent has excellent handling properties during manufacturing and developability. In addition, the agent has good polymerizability. The acid value is measured in accordance with the description of JIS K 0070:1992.
  • a difunctional methacrylate or acrylate for the resin composition.
  • the compounds include triethylene glycol diacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, tetraethylene glycol diacrylate, PEG (polyethylene glycol) 200 diacrylate, PEG 200 dimethacrylate, PEG 600 diacrylate, PEG 600 dimethacrylate, polytetraethylene glycol diacrylate, polytetraethylene glycol dimethacrylate, dipropylene glycol diacrylate, tripropylene glycol diacrylate, neopentyl glycol diacrylate, neopentyl glycol dimethacrylate, 3-methyl-1,5-pentanediol diacrylate, 1,6-hexyl 1,5-dimethylphenyl ...
  • PEG200 diacrylate refers to polyethylene glycol diacrylate with a formula weight of about 200 for the polyethylene glycol chain.
  • the resin composition can preferably use a monofunctional radical crosslinking agent as the radical crosslinking agent.
  • the monofunctional radical crosslinking agent a compound having a boiling point of 100° C. or higher under normal pressure is also preferred in order to suppress volatilization before exposure.
  • the difunctional or higher radical crosslinking agent include allyl compounds such as diallyl phthalate and triallyl trimellitate.
  • the content of the radical crosslinking agent is preferably more than 0 mass% and not more than 60 mass% based on the total solid content of the resin composition.
  • the lower limit is more preferably 5 mass% or more.
  • the upper limit is more preferably 50 mass% or less, and even more preferably 30 mass% or less.
  • the radical crosslinking agent may be used alone or in combination of two or more. When two or more types are used in combination, it is preferable that the total amount is within the above range.
  • the resin composition also preferably contains another crosslinking agent different from the above-mentioned radical crosslinking agent.
  • the other crosslinking agent refers to a crosslinking agent other than the above-mentioned radical crosslinking agent, and is preferably a compound having, in its molecule, a plurality of groups that promote a reaction to form a covalent bond with another compound in the composition or a reaction product thereof upon exposure to light by the above-mentioned photoacid generator or photobase generator, and is preferably a compound having, in its molecule, a plurality of groups that promote a reaction to form a covalent bond with another compound in the composition or a reaction product thereof under the action of an acid or a base.
  • the acid or base is preferably an acid or base generated from a photoacid generator or a photobase generator in the exposure step.
  • Other cross-linking agents include the compounds described in paragraphs 0179 to 0207 of WO 2022/145355, the disclosures of which are incorporated herein by reference.
  • the content of the other crosslinking agent is preferably 0.1 to 30 mass% relative to the total solid content of the resin composition, more preferably 0.1 to 20 mass%, even more preferably 0.5 to 15 mass%, and particularly preferably 1.0 to 10 mass%. Only one type of other crosslinking agent may be contained, or two or more types may be contained. When two or more types of other crosslinking agents are contained, the total is preferably within the above range.
  • the resin composition preferably contains a polymerization initiator.
  • the polymerization initiator may be a thermal polymerization initiator or a photopolymerization initiator, but it is particularly preferable that the resin composition contains a photopolymerization initiator.
  • the photopolymerization initiator is preferably a photoradical polymerization initiator.
  • the photoradical polymerization initiator is not particularly limited and can be appropriately selected from known photoradical polymerization initiators. For example, a photoradical polymerization initiator having photosensitivity to light rays in the ultraviolet to visible regions is preferable. Alternatively, it may be an activator that reacts with a photoexcited sensitizer to generate active radicals.
  • the photoradical polymerization initiator preferably contains at least one compound having a molar absorption coefficient of at least about 50 L ⁇ mol ⁇ 1 ⁇ cm ⁇ 1 in a wavelength range of about 240 to 800 nm (preferably 330 to 500 nm).
  • the molar absorption coefficient of the compound can be measured using a known method. For example, it is preferable to measure it using an ultraviolet-visible spectrophotometer (Varian Cary-5 spectrophotometer) at a concentration of 0.01 g/L using ethyl acetate as a solvent.
  • halogenated hydrocarbon derivatives e.g., compounds having a triazine skeleton, compounds having an oxadiazole skeleton, compounds having a trihalomethyl group, etc.
  • acylphosphine compounds such as acylphosphine oxides, hexaarylbiimidazoles
  • oxime compounds such as oxime derivatives, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, ketoxime ethers, ⁇ -aminoketone compounds such as aminoacetophenones, ⁇ -hydroxyketone compounds such as hydroxyacetophenones, azo compounds, azide compounds, metallocene compounds, organic boron compounds, iron arene complexes, etc.
  • ketone compounds include the compounds described in paragraph 0087 of JP 2015-087611 A, the contents of which are incorporated herein by reference.
  • Kayacure-DETX-S manufactured by Nippon Kayaku Co., Ltd.
  • Nippon Kayaku Co., Ltd. is also preferably used.
  • hydroxyacetophenone compounds, aminoacetophenone compounds, and acylphosphine compounds can be suitably used as photoradical polymerization initiators. More specifically, for example, aminoacetophenone-based initiators described in JP-A-10-291969 and acylphosphine oxide-based initiators described in Japanese Patent No. 4225898 can be used, the contents of which are incorporated herein by reference.
  • ⁇ -Hydroxyketone initiators that can be used include Omnirad 184, Omnirad 1173, Omnirad 2959, Omnirad 127 (all manufactured by IGM Resins B.V.), IRGACURE 184 (IRGACURE is a registered trademark), DAROCUR 1173, IRGACURE 500, IRGACURE-2959, and IRGACURE 127 (all manufactured by BASF).
  • Omnirad 907, Omnirad 369, Omnirad 369E, Omnirad 379EG (all manufactured by IGM Resins B.V.), IRGACURE 907, IRGACURE 369, and IRGACURE 379 (all manufactured by BASF) can be used.
  • aminoacetophenone initiator acylphosphine oxide initiator, and metallocene compound
  • aminoacetophenone initiator acylphosphine oxide initiator, and metallocene compound
  • the compounds described in paragraphs 0161 to 0163 of WO 2021/112189 can also be suitably used.
  • the contents of this specification are incorporated herein.
  • an oxime compound is more preferably used as a photoradical polymerization initiator.
  • an oxime compound By using an oxime compound, it becomes possible to more effectively improve the exposure latitude.
  • Oxime compounds are particularly preferred because they have a wide exposure latitude (exposure margin) and also function as a photocuring accelerator.
  • the resin composition preferably contains a compound represented by the following formula (PPI-1) as a photopolymerization initiator.
  • a compound represented by the following formula (PPI-1) By containing the compound represented by the following formula (PPI-1), the photopolymerization system reacts sufficiently when exposed to light and is easily removed by a decompression step, so that a cured product with excellent heat resistance reliability can be obtained.
  • R 1 is an organic group having 1 to 9 carbon atoms
  • R 2 is a methyl group or a phenyl group
  • R 3 is each independently an organic group having 1 to 9 carbon atoms
  • n is an integer of 0 to 5.
  • R 1 is preferably a hydrocarbon group, more preferably an alkyl group.
  • the above-mentioned hydrocarbon group (alkyl group) is preferably a hydrocarbon group (alkyl group) having 2 to 20 carbon atoms, and more preferably a hydrocarbon group (alkyl group) having 4 to 10 carbon atoms.
  • the hydrocarbon group may be linear, branched, cyclic, or a combination thereof.
  • R1 is preferably a linear alkyl group, a branched alkyl group, a cyclic alkyl group, or a structure in which a hydrogen atom of a linear alkyl group is substituted with a cyclic alkyl group.
  • R1 include an n-hexyl group, a 1-methylbutyl group, a cyclohexylmethyl group, and a cyclohexyl group.
  • the above R is not particularly limited, and examples thereof include an alkyl group, an aryl group, a heteroaliphatic ring group, or a group represented by a combination thereof.
  • n is preferably an integer of 0 to 2, and more preferably 0 or 1.
  • An embodiment in which n is 0 is also one of the preferred embodiments of the present invention.
  • oxime compounds include the compounds described in JP-A-2001-233842, the compounds described in JP-A-2000-080068, the compounds described in JP-A-2006-342166, the compounds described in J. C. S. Perkin II (1979, pp. 1653-1660), the compounds described in J. C. S. Compounds described in Perkin II (1979, pp. 156-162), compounds described in Journal of Photopolymer Science and Technology (1995, pp.
  • Preferred oxime compounds include, for example, compounds having the following structure, 3-(benzoyloxy(imino))butan-2-one, 3-(acetoxy(imino))butan-2-one, 3-(propionyloxy(imino))butan-2-one, 2-(acetoxy(imino))pentan-3-one, 2-(acetoxy(imino))-1-phenylpropan-1-one, 2-(benzoyloxy(imino))-1-phenylpropan-1-one, 3-((4-toluenesulfonyloxy)imino)butan-2-one, and 2-(ethoxycarbonyloxy(imino))-1-phenylpropan-1-one.
  • an oxime compound as a photoradical polymerization initiator.
  • oxime compounds include IRGACURE OXE 01, IRGACURE OXE 02, IRGACURE OXE 03, IRGACURE OXE 04 (manufactured by BASF), ADEKA OPTOMER N-1919 (manufactured by ADEKA Corporation, photoradical polymerization initiator 2 described in JP-A-2012-014052), TR-PBG-304, TR-PBG-305 (manufactured by Changzhou Strong Electronic New Materials Co., Ltd.), ADEKA ARCLES NCI-730, NCI-831 and ADEKA ARCLES NCI-930 (manufactured by ADEKA Corporation), DFI-091 (manufactured by Daito Chemistry Co., Ltd.), and SpeedCure PDO (manufactured by SARTOMER ARKEMA).
  • an oxime compound having the following structure can also be used.
  • an oxime compound having a fluorene ring described in paragraphs 0169 to 0171 of WO 2021/112189 an oxime compound having a skeleton in which at least one benzene ring of a carbazole ring is a naphthalene ring, or an oxime compound having a fluorine atom can be used.
  • oxime compounds having a nitro group, oxime compounds having a benzofuran skeleton, and oxime compounds having a hydroxyl group-containing substituent bonded to a carbazole skeleton described in paragraphs 0208 to 0210 of WO 2021/020359 can also be used. The contents of these compounds are incorporated herein by reference.
  • an oxime compound having an aromatic ring group Ar OX1 in which an electron-withdrawing group is introduced into an aromatic ring (hereinafter, also referred to as oxime compound OX) can also be used.
  • the electron-withdrawing group of the aromatic ring group Ar OX1 includes an acyl group, a nitro group, a trifluoromethyl group, an alkylsulfinyl group, an arylsulfinyl group, an alkylsulfonyl group, an arylsulfonyl group, and a cyano group.
  • the benzoyl group may have a substituent.
  • the substituent is preferably a halogen atom, a cyano group, a nitro group, a hydroxy group, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a heterocyclic group, a heterocyclic oxy group, an alkenyl group, an alkylsulfanyl group, an arylsulfanyl group, an acyl group, or an amino group, more preferably an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a heterocyclic oxy group, an alkylsulfanyl group, an arylsulfanyl group, or an amino group, and further preferably an alkoxy group, an alkyl
  • the oxime compound OX is preferably at least one selected from the compounds represented by the formula (OX1) and the compounds represented by the formula (OX2), and more preferably the compound represented by the formula (OX2).
  • R X1 represents an alkyl group, an alkenyl group, an alkoxy group, an aryl group, an aryloxy group, a heterocyclic group, a heterocyclic oxy group, an alkylsulfanyl group, an arylsulfanyl group, an alkylsulfinyl group, an arylsulfinyl group, an alkylsulfonyl group, an arylsulfonyl group, an acyl group, an acyloxy group, an amino group, a phosphinoyl group, a carbamoyl group, or a sulfamoyl group; R X2 represents an alkyl group, an alkenyl group, an alkoxy group, an aryl
  • R X12 is an electron-withdrawing group
  • R X10 , R X11 , R X13 and R X14 are each a hydrogen atom.
  • oxime compounds OX include the compounds described in paragraphs 0083 to 0105 of Japanese Patent No. 4600600, the contents of which are incorporated herein by reference.
  • oxime compounds include oxime compounds having specific substituents as disclosed in JP 2007-269779 A and oxime compounds having thioaryl groups as disclosed in JP 2009-191061 A, the contents of which are incorporated herein by reference.
  • the photoradical polymerization initiator is preferably a compound selected from the group consisting of trihalomethyltriazine compounds, benzyl dimethyl ketal compounds, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triarylimidazole dimers, onium salt compounds, benzothiazole compounds, benzophenone compounds, acetophenone compounds and derivatives thereof, cyclopentadiene-benzene-iron complexes and salts thereof, halomethyloxadiazole compounds, and 3-aryl substituted coumarin compounds.
  • the photoradical polymerization initiator is a trihalomethyltriazine compound, an ⁇ -aminoketone compound, an acylphosphine compound, a phosphine oxide compound, a metallocene compound, an oxime compound, a triarylimidazole dimer, an onium salt compound, a benzophenone compound, or an acetophenone compound.
  • At least one compound selected from the group consisting of a trihalomethyltriazine compound, an ⁇ -aminoketone compound, a metallocene compound, an oxime compound, a triarylimidazole dimer, or a benzophenone compound is more preferred, and a metallocene compound or an oxime compound is even more preferred.
  • a bifunctional or trifunctional or higher functional photoradical polymerization initiator may be used as the photoradical polymerization initiator.
  • two or more radicals are generated from one molecule of the photoradical polymerization initiator, resulting in good sensitivity.
  • crystallinity decreases and solubility in solvents improves, making it less likely to precipitate over time, and improving the stability of the resin composition over time.
  • bifunctional or trifunctional or higher functional photoradical polymerization initiators include dimers of oxime compounds described in JP-T-2010-527339, JP-T-2011-524436, WO-2015/004565, WO-2016-532675, paragraphs 0407 to 0412, and WO-2017/033680, paragraphs 0039 to 0055; compound (E) and compound (G) described in WO-T-2013-522445; Examples of such initiators include Cmpd1 to 7 described in Japanese Patent Publication No.
  • the content is preferably 0.1 to 30 mass% based on the total solid content of the resin composition, more preferably 0.1 to 20 mass%, even more preferably 0.5 to 15 mass%, and even more preferably 1.0 to 10 mass%. Only one type of photopolymerization initiator may be contained, or two or more types may be contained. When two or more types of photopolymerization initiators are contained, the total amount is preferably within the above range. In addition, since the photopolymerization initiator may also function as a thermal polymerization initiator, the crosslinking caused by the photopolymerization initiator may be further promoted by heating in an oven, a hot plate, or the like.
  • the resin composition may contain a sensitizer.
  • the sensitizer absorbs specific active radiation and becomes electronically excited.
  • the sensitizer in the electronically excited state comes into contact with a thermal radical polymerization initiator, a photoradical polymerization initiator, or the like, and effects such as electron transfer, energy transfer, and heat generation occur.
  • the thermal radical polymerization initiator and the photoradical polymerization initiator undergo a chemical change and are decomposed to generate a radical, an acid, or a base.
  • Usable sensitizers include benzophenone-based, Michler's ketone-based, coumarin-based, pyrazole azo-based, anilino azo-based, triphenylmethane-based, anthraquinone-based, anthracene-based, anthrapyridone-based, benzylidene-based, oxonol-based, pyrazolotriazole azo-based, pyridone azo-based, cyanine-based, phenothiazine-based, pyrrolopyrazole azomethine-based, xanthene-based, phthalocyanine-based, benzopyran-based, indigo-based compounds, and the like.
  • sensitizer examples include Michler's ketone, 4,4'-bis(diethylamino)benzophenone, 2,5-bis(4'-diethylaminobenzal)cyclopentane, 2,6-bis(4'-diethylaminobenzal)cyclohexanone, 2,6-bis(4'-diethylaminobenzal)-4-methylcyclohexanone, 4,4'-bis(dimethylamino)chalcone, 4,4'-bis(diethylamino)chalcone, p-dimethylaminocinnamylidene indanone, and p-dimethylaminobenzylidene indanone.
  • the content of the sensitizer is preferably 0.01 to 20 mass % relative to the total solid content of the resin composition, more preferably 0.1 to 15 mass %, and even more preferably 0.5 to 10 mass %.
  • the sensitizer may be used alone or in combination of two or more types.
  • the resin composition may contain a chain transfer agent.
  • the chain transfer agent is defined, for example, in the Third Edition of the Polymer Dictionary (edited by the Society of Polymer Science, 2005), pages 683-684.
  • Examples of the chain transfer agent include compounds having -S-S-, -SO 2 -S-, -N-O-, SH, PH, SiH, and GeH in the molecule, and dithiobenzoate, trithiocarbonate, dithiocarbamate, and xanthate compounds having a thiocarbonylthio group used in RAFT (Reversible Addition Fragmentation Chain Transfer) polymerization.
  • RAFT Reversible Addition Fragmentation Chain Transfer
  • chain transfer agent may be the compound described in paragraphs 0152 to 0153 of International Publication No. 2015/199219, the contents of which are incorporated herein by reference.
  • the content of the chain transfer agent is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, and even more preferably 0.5 to 5 parts by mass, per 100 parts by mass of the total solid content of the resin composition.
  • the chain transfer agent may be one type or two or more types. When there are two or more types of chain transfer agents, the total is preferably within the above range.
  • the resin composition may contain a base generator.
  • the base generator is a compound capable of generating a base by physical or chemical action.
  • Preferred base generators include a thermal base generator and a photobase generator.
  • the compound corresponding to the above-mentioned compound A does not correspond to the base generator as defined herein.
  • the resin composition when the resin composition contains a precursor of a cyclized resin, the resin composition preferably contains a base generator.
  • the thermal base generator in the resin composition for example, the cyclization reaction of the precursor can be promoted by heating, and the mechanical properties and chemical resistance of the cured product can be improved, and the performance as an interlayer insulating film for a rewiring layer contained in a semiconductor package can be improved.
  • the base generator may be an ionic base generator or a nonionic base generator.
  • Examples of the base generated from the base generator include secondary amines and tertiary amines.
  • the base generator is not particularly limited, and a known base generator can be used.
  • Examples of known base generators include carbamoyl oxime compounds, carbamoyl hydroxylamine compounds, carbamic acid compounds, formamide compounds, acetamide compounds, carbamate compounds, benzyl carbamate compounds, nitrobenzyl carbamate compounds, sulfonamide compounds, imidazole derivative compounds, amine imide compounds, pyridine derivative compounds, ⁇ -aminoacetophenone derivative compounds, quaternary ammonium salt derivative compounds, iminium salts, pyridinium salts, ⁇ -lactone ring derivative compounds, amine imide compounds, phthalimide derivative compounds, and acyloxyimino compounds.
  • Specific examples of the non-ionic base generator include the compounds described in paragraphs 02
  • Base generators include, but are not limited to, the following compounds:
  • the molecular weight of the nonionic base generator is preferably 800 or less, more preferably 600 or less, and even more preferably 500 or less.
  • the lower limit is preferably 100 or more, more preferably 200 or more, and even more preferably 300 or more.
  • Specific preferred compounds for the ionic base generator include, for example, the compounds described in paragraphs 0148 to 0163 of WO 2018/038002.
  • ammonium salts include, but are not limited to, the following compounds:
  • iminium salts include, but are not limited to, the following compounds:
  • the content of the base generator is preferably 0.1 to 50 parts by mass relative to 100 parts by mass of the resin in the resin composition.
  • the lower limit is more preferably 0.3 parts by mass or more, and even more preferably 0.5 parts by mass or more.
  • the upper limit is more preferably 30 parts by mass or less, even more preferably 20 parts by mass or less, even more preferably 10 parts by mass or less, even more preferably 5 parts by mass or less, and particularly preferably 4 parts by mass or less.
  • the base generator may be used alone or in combination of two or more. When two or more types are used, the total amount is preferably within the above range.
  • the resin composition contains a solvent.
  • the solvent may be any known solvent.
  • the solvent is preferably an organic solvent.
  • examples of the organic solvent include compounds such as esters, ethers, ketones, cyclic hydrocarbons, sulfoxides, amides, ureas, and alcohols.
  • Esters for example, ethyl acetate, n-butyl acetate, isobutyl acetate, hexyl acetate, amyl formate, isoamyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, ⁇ -butyrolactone, ⁇ -caprolactone, ⁇ -valerolactone, ⁇ -valerolactone, alkyloxyacetates (for example, methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate (for example, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, etc.)), 3-alkyloxypropionic acid alkyl esters (for example,
  • alkyloxypropionic acid alkyl esters include alkyl esters (e.g., methyl 2-alkyloxypropionate, ethyl 2-alkyloxypropionate, propyl 2-alkyloxypropionate, etc.
  • Suitable examples of ethers include ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol butyl methyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol dimethyl ether, propylene glycol dimethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether, ethylene glycol monobutyl ether acetate, di
  • ketones include methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone, 3-methylcyclohexanone, levoglucosenone, and dihydrolevoglucosenone.
  • cyclic hydrocarbons include aromatic hydrocarbons such as toluene, xylene, and anisole, and cyclic terpenes such as limonene.
  • dimethyl sulfoxide is preferred.
  • amides include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide, N,N-dimethylisobutyramide, 3-methoxy-N,N-dimethylpropionamide, 3-butoxy-N,N-dimethylpropionamide, N-formylmorpholine, and N-acetylmorpholine.
  • ureas include N,N,N',N'-tetramethylurea and 1,3-dimethyl-2-imidazolidinone.
  • Alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 1-pentanol, 1-hexanol, benzyl alcohol, ethylene glycol monomethyl ether, 1-methoxy-2-propanol, 2-ethoxyethanol, diethylene glycol monoethyl ether, diethylene glycol monohexyl ether, triethylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether, polyethylene glycol monomethyl ether, polypropylene glycol, tetraethylene glycol, ethylene glycol monobutyl ether, ethylene glycol monobenzyl ether, ethylene glycol monophenyl ether, methylphenyl carbinol, n-amyl alcohol, methylamyl alcohol, and diacetone alcohol.
  • An embodiment in which toluene is further added to these combined solvents in an amount of about 1 to 10% by mass based on the total mass of the solvent is also one of the preferred embodiments of the present invention.
  • an embodiment containing ⁇ -valerolactone as a solvent is one of the preferred embodiments of the present invention.
  • the content of ⁇ -valerolactone relative to the total mass of the solvent is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 70% by mass or more.
  • the upper limit of the content is not particularly limited and may be 100% by mass.
  • the content may be determined in consideration of the solubility of components such as a specific resin contained in the resin composition, etc.
  • the solvent preferably contains 60 to 90% by mass of ⁇ -valerolactone and 10 to 40% by mass of dimethyl sulfoxide, more preferably 70 to 90% by mass of ⁇ -valerolactone and 10 to 30% by mass of dimethyl sulfoxide, and even more preferably 75 to 85% by mass of ⁇ -valerolactone and 15 to 25% by mass of dimethyl sulfoxide, relative to the total mass of the solvent.
  • the content of the solvent is preferably an amount that results in a total solids concentration of the resin composition of 5 to 80 mass%, more preferably an amount that results in a total solids concentration of 5 to 75 mass%, even more preferably an amount that results in a total solids concentration of 10 to 70 mass%, and even more preferably an amount that results in a total solids concentration of 20 to 70 mass%.
  • the content of the solvent may be adjusted according to the desired thickness of the coating film and the coating method. When two or more types of solvents are contained, it is preferable that the total amount is within the above range.
  • the resin composition preferably contains a metal adhesion improver from the viewpoint of improving adhesion to metal materials used in electrodes, wiring, etc.
  • the metal adhesion improver include a silane coupling agent having an alkoxysilyl group, an aluminum-based adhesion aid, a titanium-based adhesion aid, a compound having a sulfonamide structure, a compound having a thiourea structure, a phosphoric acid derivative compound, a ⁇ -ketoester compound, an amino compound, and the like.
  • silane coupling agent examples include the compounds described in paragraph 0316 of International Publication No. 2021/112189 and the compounds described in paragraphs 0067 to 0078 of JP-A-2018-173573, the contents of which are incorporated herein.
  • Me represents a methyl group
  • Et represents an ethyl group.
  • R includes a structure derived from a blocking agent in a blocked isocyanate group.
  • the blocking agent may be selected according to the desorption temperature, and examples thereof include alcohol compounds, phenol compounds, pyrazole compounds, triazole compounds, lactam compounds, and active methylene compounds.
  • examples thereof include alcohol compounds, phenol compounds, pyrazole compounds, triazole compounds, lactam compounds, and active methylene compounds.
  • caprolactam and the like are preferred.
  • Commercially available products of such compounds include X-12-1293 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • silane coupling agents include, for example, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl
  • an oligomer type compound having a plurality of alkoxysilyl groups can also be used as the silane coupling agent.
  • examples of such oligomer-type compounds include compounds containing a repeating unit represented by the following formula (S-1).
  • R 1 S1 represents a monovalent organic group
  • R 1 S2 represents a hydrogen atom, a hydroxyl group or an alkoxy group
  • n represents an integer of 0 to 2.
  • R S1 is preferably a structure containing a polymerizable group.
  • Examples of the polymerizable group include a group having an ethylenically unsaturated bond, an epoxy group, an oxetanyl group, a benzoxazolyl group, a blocked isocyanate group, and an amino group.
  • Examples of the group having an ethylenically unsaturated bond include a vinyl group, an allyl group, an isoallyl group, a 2-methylallyl group, a group having an aromatic ring directly bonded to a vinyl group (e.g., a vinylphenyl group), a (meth)acrylamide group, and a (meth)acryloyloxy group.
  • R S2 is preferably an alkoxy group, more preferably a methoxy group or an ethoxy group.
  • n represents an integer of 0 to 2, and is preferably 1.
  • n is 1 or 2 in at least one, more preferably that n is 1 or 2 in at least two, and further preferably that n is 1 in at least two.
  • oligomer type compounds commercially available products can be used, and an example of a commercially available product is KR-513 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • Aluminum-based adhesion promoter examples include aluminum tris(ethylacetoacetate), aluminum tris(acetylacetonate), and ethylacetoacetate aluminum diisopropylate.
  • metal adhesion improvers that can be used include the compounds described in paragraphs 0046 to 0049 of JP 2014-186186 A and the sulfide-based compounds described in paragraphs 0032 to 0043 of JP 2013-072935 A, the contents of which are incorporated herein by reference.
  • the content of the metal adhesion improver is preferably 0.01 to 30 parts by mass, more preferably 0.1 to 10 parts by mass, and even more preferably 0.5 to 5 parts by mass, per 100 parts by mass of the polyimide precursor.
  • the content is preferably 0.01 to 30 parts by mass, more preferably 0.1 to 10 parts by mass, and even more preferably 0.5 to 5 parts by mass, per 100 parts by mass of the polyimide precursor.
  • the resin composition preferably further contains a migration inhibitor.
  • a migration inhibitor for example, when the resin composition is applied to a metal layer (or metal wiring) to form a film, migration of metal ions derived from the metal layer (or metal wiring) into the film can be effectively suppressed.
  • the migration inhibitor examples include compounds having a heterocycle (pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, isoxazole ring, isothiazole ring, tetrazole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, piperidine ring, piperazine ring, morpholine ring, 2H-pyran ring and 6H-pyran ring, triazine ring), thioureas and compounds having a sulfanyl group, hindered phenol compounds, salicylic acid derivative compounds, and hydrazide derivative compounds.
  • a heterocycle pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring
  • triazole compounds such as 1,2,4-triazole, benzotriazole, 3-amino-1,2,4-triazole, and 3,5-diamino-1,2,4-triazole
  • tetrazole compounds such as 1H-tetrazole, 5-phenyltetrazole, and 5-amino-1H-tetrazole are preferably used.
  • the resin composition preferably contains an azole compound.
  • the resin composition preferably contains an azole compound and a metal adhesion improver.
  • the azole compound is a compound containing an azole structure, and the azole structure refers to a five-membered ring structure containing a nitrogen atom as a ring member, and is preferably a five-membered ring structure containing two or more nitrogen atoms as ring members.
  • Specific examples of the azole structure include an imidazole structure, a triazole structure, and a tetrazole structure.These structures may form a polycyclic ring by condensation with another ring structure, such as benzimidazole and benzotriazole.
  • R-1 represents a monovalent organic group
  • * represents a bonding site with the azole structure
  • R-2 represents a hydrogen atom or a monovalent organic group
  • R 3 represents a monovalent organic group
  • * represents a bonding site with the azole structure.
  • the above-mentioned hydrocarbon group is preferably an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a group represented by a combination thereof.
  • the total number of carbon atoms in R 1 is preferably 1 to 30, more preferably 2 to 25, and even more preferably 3 to 20.
  • the bonding site of R 1 to the carbonyl group in formula (R-1) is preferably a hydrocarbon group or -NR N -.
  • * represents a bonding site to the azole structure, and is preferably a bonding site to a carbon atom that is a ring member of the azole structure.
  • R 2 is preferably a hydrogen atom.
  • the above-mentioned hydrocarbon group is preferably an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a group represented by a combination thereof.
  • R 2 is a monovalent organic group, the total number of carbon atoms is preferably 1 to 30, more preferably 2 to 25, and even more preferably 3 to 20.
  • R 2 is a monovalent organic group
  • the above-mentioned hydrocarbon group is preferably an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a group represented by a combination thereof.
  • R 3 is a monovalent organic group
  • the total number of carbon atoms is preferably 1 to 30, more preferably 2 to 25, and even more preferably 3 to 20.
  • * represents a bonding site to the azole structure, and is preferably a bonding site to a carbon atom that is a ring member of the azole structure.
  • an ion trapping agent that captures anions such as halogen ions can also be used.
  • Other migration inhibitors that can be used include the rust inhibitors described in paragraph 0094 of JP 2013-015701 A, the compounds described in paragraphs 0073 to 0076 of JP 2009-283711 A, the compounds described in paragraph 0052 of JP 2011-059656 A, the compounds described in paragraphs 0114, 0116, and 0118 of JP 2012-194520 A, and the compounds described in paragraph 0166 of WO 2015/199219 A, the contents of which are incorporated herein by reference.
  • migration inhibitors include the following compounds:
  • the content of the migration inhibitor is preferably 0.01 to 5.0 mass %, more preferably 0.05 to 2.0 mass %, and even more preferably 0.1 to 1.0 mass %, based on the total solid content of the resin composition.
  • the migration inhibitor may be one type or two or more types. When two or more types of migration inhibitors are used, it is preferable that the total is within the above range.
  • the resin composition also preferably contains a compound (light absorber) whose absorbance at the exposure wavelength decreases upon exposure to light.
  • Whether or not a certain compound a contained in a resin composition corresponds to a light absorbent can be determined by the following method. First, a solution of compound a is prepared at the same concentration as that contained in the resin composition, and the molar absorption coefficient of compound a at the wavelength of the exposure light (mol -1 ⁇ L ⁇ cm -1 , also called "molar absorption coefficient 1") is measured. The measurement is carried out quickly so as to reduce the influence of changes such as a decrease in the molar absorption coefficient of compound a.
  • the solvent for the solution when the resin composition contains a solvent, that solvent is used, and when the resin composition does not contain a solvent, N-methyl-2-pyrrolidone is used.
  • the solution of compound a is irradiated with exposure light, with the cumulative exposure dose being 500 mJ per mole of compound a.
  • the molar absorption coefficient (mol ⁇ 1 ⁇ L ⁇ cm ⁇ 1 , also referred to as “molar absorption coefficient 2”) of compound a at the wavelength of the exposure light is measured using the solution of compound a after exposure. From the above molar absorption coefficient 1 and molar absorption coefficient 2, the attenuation rate (%) is calculated based on the following formula.
  • compound a is determined to be a compound whose absorbance at the exposure wavelength decreases upon exposure (i.e., a light absorber).
  • Extinction rate (%) 1 - molar extinction coefficient 2 / molar extinction coefficient 1 x 100
  • the attenuation rate is preferably 10% or more, and more preferably 20% or more. There is no particular lower limit to the attenuation rate, so long as it is 0% or more.
  • the wavelength of the exposure light may be any wavelength that exposes the photosensitive film.
  • the wavelength of the exposure light is preferably a wavelength to which the photopolymerization initiator contained in the resin composition has sensitivity.
  • the photopolymerization initiator has sensitivity to a certain wavelength, meaning that the photopolymerization initiator generates a polymerization initiating species when exposed to light of a certain wavelength.
  • the wavelength of the exposure light in terms of its light source, may include (1) semiconductor laser (wavelengths 830 nm, 532 nm, 488 nm, 405 nm, 375 nm, 355 nm, etc.), (2) metal halide lamp, (3) high-pressure mercury lamp, g-line (wavelength 436 nm), h-line (wavelength 405 nm), i-line (wavelength 365 nm), broad (three wavelengths of g, h, and i-lines), (4) excimer laser, KrF excimer laser (wavelength 248 nm), ArF excimer laser (wavelength 193 nm), F2 excimer laser (wavelength 157 nm), (5) extreme ultraviolet light; EUV (wavelength 13.6 nm), (6) electron
  • the wavelength of the exposure light may be selected from those to which the photopolymerization initiator has sensitivity, and preferably, h-line (wavelength 405 nm) or i-line (wavelength 365 nm), more preferably i-line (wavelength 365 nm).
  • the light absorbent may be a compound that generates radical polymerization initiating species upon exposure to light. However, from the viewpoints of resolution and chemical resistance, it is preferable that the light absorbent is a compound that does not generate radical polymerization initiating species upon exposure to light. Whether or not a light absorbent is a compound that generates a radical polymerization initiating species upon exposure to light can be judged by the following method. A solution containing a light absorber and a radical crosslinker at the same concentration as those contained in the resin composition is prepared. When the resin composition contains a radical crosslinker, the radical crosslinker in the solution is the same compound as the radical crosslinker contained in the resin composition and at the same concentration.
  • the resin composition does not contain a radical crosslinker
  • methyl methacrylate is used at a concentration five times that of the light absorber. Thereafter, exposure light is irradiated to an integrated amount of 500 mJ.
  • polymerization of the polymerizable compound is determined, for example, by high performance liquid chromatography, and if the ratio of the molar amount of the polymerized polymerizable compound to the total molar amount of the polymerizable compounds is 10% or less, the light absorber is determined to be a compound that does not generate radical polymerization initiating species upon exposure.
  • the molar ratio is preferably 5% or less, more preferably 3% or less.
  • the lower limit of the molar ratio is not particularly limited, and may be 0%.
  • the wavelength of the exposure light may be any wavelength that exposes the photosensitive film.
  • the wavelength of the exposure light is preferably a wavelength to which the photopolymerization initiator contained in the resin composition has sensitivity.
  • Examples of the compound that generates a radical polymerization initiating species upon exposure include the same compounds as the above-mentioned photoradical polymerization initiator.
  • the composition contains a photoradical polymerization initiator as a light absorber
  • the compound that generates the radical species with the lowest polymerization initiation ability is the light absorber, and the rest are the photopolymerization initiators.
  • Examples of the compound that does not generate a radical polymerization initiating species upon exposure include a photoacid generator, a photobase generator, and a dye whose absorption wavelength changes upon exposure.
  • the light absorbent is preferably a naphthoquinone diazide compound or a dye whose absorbance changes upon exposure to light, and more preferably a naphthoquinone diazide compound.
  • a photoacid generator or a photobase generator may be used in combination with a compound whose absorbance at the exposure wavelength decreases depending on the pH.
  • the naphthoquinone diazide compound includes a compound which generates indene carboxylic acid upon exposure and has a reduced absorbance at the exposure wavelength, and is preferably a compound having a 1,2-naphthoquinone diazide structure.
  • the use of a naphthoquinone diazide compound improves the resolution, but nitrogen is generated in the film upon exposure, which may cause voids in the cured product.
  • a decompression step is carried out, so that gases such as nitrogen generated from such compounds can be removed, and the generation of voids can be suppressed.
  • the naphthoquinone diazide compound is preferably a naphthoquinone diazide sulfonic acid ester of a hydroxy compound.
  • the hydroxy compound is preferably a compound represented by any one of the following formulas (H1) to (H6).
  • R1 and R2 each independently represent a monovalent organic group
  • R3 and R4 each independently represent a hydrogen atom or a monovalent organic group
  • n1, n2, m1, and m2 each independently represent an integer of 0 to 5
  • at least one of m1 and m2 is an integer of 1 to 5.
  • Z represents a tetravalent organic group
  • L 1 , L 2 , L 3 and L 4 each independently represent a single bond or a divalent organic group
  • R 5 , R 6 , R 7 and R 8 each independently represent a monovalent organic group
  • n3, n4, n5 and n6 each independently represent an integer from 0 to 3
  • m3, m4, m5 and m6 each independently represent an integer from 0 to 2
  • at least one of m3, m4, m5 and m6 is 1 or 2.
  • R 9 and R 10 each independently represent a hydrogen atom or a monovalent organic group
  • L 5 each independently represent a divalent organic group
  • n7 represents an integer of 3 to 8.
  • L6 represents a divalent organic group
  • L7 and L8 each independently represent a divalent organic group containing an aliphatic tertiary or quaternary carbon.
  • R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 and R 20 each independently represent a hydrogen atom, a halogen atom or a monovalent organic group
  • L 9 , L 10 and L 11 each independently represent a single bond or a divalent organic group
  • m7, m8, m9 and m10 each independently represent an integer of 0 to 2, and at least one of m7, m8, m9 and m10 is 1 or 2.
  • R 42 , R 43 , R 44 , and R 45 each independently represent a hydrogen atom or a monovalent organic group
  • R 46 and R 47 each independently represent a monovalent organic group
  • n16 and n17 each independently represent an integer of 0 to 4
  • m11 and m12 each independently represent an integer of 0 to 4
  • at least one of m11 and m12 is an integer of 1 to 4.
  • R1 and R2 are each preferably independently a monovalent organic group having 1 to 60 carbon atoms, and more preferably a monovalent organic group having 1 to 30 carbon atoms.
  • Examples of the monovalent organic group in R1 and R2 include a hydrocarbon group which may have a substituent, such as an aromatic hydrocarbon group which may have a substituent such as a hydroxy group.
  • R3 and R4 are each preferably independently a monovalent organic group having 1 to 60 carbon atoms, and more preferably a monovalent organic group having 1 to 30 carbon atoms.
  • Examples of the monovalent organic group in R3 and R4 include hydrocarbon groups which may have a substituent, such as a hydroxyl group or the like.
  • n1 and n2 each independently are preferably 0 or 1, and more preferably 0. In formula (H1), it is preferable that both m1 and m2 are 1.
  • the compound represented by formula (H1) is preferably a compound represented by any one of formulas (H1-1) to (H1-5).
  • R 21 , R 22 and R 23 each independently represent a hydrogen atom or a monovalent organic group, preferably a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, and more preferably a hydrogen atom or a group represented by the following formula (R-1):
  • R 29 represents a hydrogen atom, an alkyl group or an alkoxy group
  • n13 represents an integer of 0 to 2
  • * represents a bonding site to another structure.
  • n8, n9 and n10 each independently represent an integer of 0 to 2, and preferably 0 or 1.
  • R 24 represents a hydrogen atom or a monovalent organic group, and is preferably a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms.
  • n14, n15, and n16 each independently represent an integer of 0 to 2.
  • R 30 represents a hydrogen atom or an alkyl group.
  • R 25 , R 26 , R 27 and R 28 each independently represent a monovalent organic group, and are preferably a hydrogen atom, an alkyl group or a group represented by the above formula (R-1).
  • n11, n12 and n13 each independently represent an integer of 0 to 2, and preferably 0 or 1.
  • the compound represented by formula (H1-1) is preferably a compound represented by any one of the following formulas (H1-1-1) to (H1-1-4).
  • the compound represented by formula (H1-2) is preferably a compound represented by the following formula (H1-2-1) or (H1-2-2).
  • the compound represented by formula (H1-3) is preferably a compound represented by the following formulas (H1-3-1) to (H1-3-3).
  • Z is preferably a tetravalent group having 1 to 20 carbon atoms, and more preferably a group represented by any one of the following formulae (Z-1) to (Z-4):
  • * represents a bonding site to other structures.
  • L 1 , L 2 , L 3 and L 4 each independently represent a single bond or a methylene group.
  • R 5 , R 6 , R 7 and R 8 are preferably each independently an organic group having 1 to 30 carbon atoms.
  • n3, n4, n5 and n6 each independently represent an integer of 0 to 2, and more preferably 0 or 1.
  • m3, m4, m5 and m6 each independently preferably represent 1 or 2, and more preferably represent 1.
  • Examples of the compound represented by formula (H2) include compounds having the following structures:
  • R 9 and R 10 each independently represent a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • each L5 independently represents a group represented by the following formula (L-1).
  • R 30 represents a monovalent organic group having 1 to 20 carbon atoms
  • n14 represents an integer of 1 to 5
  • * represents a bonding site to another structure.
  • n7 is preferably an integer of 4 to 6. Examples of the compound represented by formula (H3) include the following compounds: In the following formula, each n independently represents an integer of 0 to 9.
  • L 6 is preferably —C(CF 3 ) 2 —, —S( ⁇ O) 2 — or —C( ⁇ O)—.
  • L 7 and L 8 are preferably each independently a divalent organic group having 2 to 20 carbon atoms. Examples of the compound represented by formula (H4) include the following compounds.
  • R11 , R12 , R13 , R14 , R15 , R16 , R17 , R18 , R19 and R20 are each preferably independently a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an alkoxy group, an allyl group or an acyl group.
  • L 9 , L 10 and L 11 each independently represent preferably a single bond, -O-, -S-, -S( ⁇ O) 2 -, -C( ⁇ O)-, -C( ⁇ O)O-, cyclopentylidene, cyclohexylidene, phenylene or a divalent organic group having 1 to 20 carbon atoms, and more preferably a group represented by any of the following formulae (L-2) to (L-4).
  • R 31 and R 32 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, or an aryl group
  • R 34 , R 35 , R 36 , and R 37 each independently represent a hydrogen atom or an alkyl group
  • n15 is an integer of 1 to 5
  • R 38 , R 39 , R 40 , and R 41 each independently represent a hydrogen atom or an alkyl group
  • * represents a bonding site to another structure.
  • Examples of the compound represented by formula (H5) include the following compounds.
  • R 42 , R 43 , R 44 , and R 45 each independently represent a hydrogen atom or a monovalent organic group, preferably a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms.
  • R 46 and R 47 each independently preferably represent an alkyl group, an alkoxy group or an aryl group, and more preferably an alkyl group.
  • n16 and n17 each independently represent preferably an integer of 0 to 2, and more preferably 0 or 1.
  • n16 and n17 each independently represent preferably an integer of 1 to 3, and more preferably 2 or 3. Examples of the compound represented by formula (H6) include the following compounds.
  • hydroxy compounds include polyhydroxybenzophenones such as 2,3,4-trihydroxybenzophenone, 2,4,4'-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone, 2,3,4-trihydroxy-2'-methylbenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 2,4,6,3',4'-pentahydroxybenzophenone, 2,3,4,2',4'-pentahydroxybenzophenone, 2,3,4,2',5'-pentahydroxybenzophenone, 2,4,6,3',4',5'-hexahydroxybenzophenone, and 2,3,4,3',4',5'-hexahydroxybenzophenone; polyhydroxyphenyl alkyl ketones such as 2,3,4-trihydroxyacetophenone, 2,3,4-trihydroxyphenyl pentyl ketone, and 2,3,4-trihydroxyphenyl hexyl ketone; bis(
  • Naphthoquinone diazide sulfonic acids include 6-diazo 5,6-dihydro-5-oxo-1-naphthalene sulfonic acid, 1,2-naphthoquinone-(2)-diazo-5-sulfonic acid, etc., which may be used in combination.
  • the method for producing a naphthoquinone diazide sulfonate ester of a hydroxy compound is not particularly limited.
  • the ester can be obtained by converting naphthoquinone diazide sulfonic acid into a sulfonyl chloride with chlorosulfonic acid or thionyl chloride, and then subjecting the resulting naphthoquinone diazide sulfonyl chloride to a condensation reaction with the hydroxy compound.
  • a hydroxy compound and a predetermined amount of naphthoquinone diazide sulfonyl chloride are reacted in a solvent such as dioxane, acetone, or tetrahydrofuran in the presence of a basic catalyst such as triethylamine to carry out esterification, and the resulting product is washed with water and dried to obtain the compound.
  • a solvent such as dioxane, acetone, or tetrahydrofuran
  • a basic catalyst such as triethylamine
  • the esterification rate of the naphthoquinone diazide sulfonic acid ester is not particularly limited, but is preferably 10% or more, and more preferably 20% or more.
  • the upper limit of the esterification rate is not particularly limited, and may be 100%.
  • the above-mentioned esterification rate can be confirmed by 1 H-NMR or the like as the proportion of esterified groups among the hydroxy groups contained in the hydroxy compound.
  • the amount of the light absorber relative to the total solid content of the resin composition is not particularly limited, but is preferably 0.1 to 20% by mass, more preferably 0.5 to 10% by mass, and even more preferably 1 to 5% by mass.
  • the resin composition preferably contains a polymerization inhibitor, such as a phenolic compound, a quinone compound, an amino compound, an N-oxyl free radical compound, a nitro compound, a nitroso compound, a heteroaromatic ring compound, or a metal compound.
  • a polymerization inhibitor such as a phenolic compound, a quinone compound, an amino compound, an N-oxyl free radical compound, a nitro compound, a nitroso compound, a heteroaromatic ring compound, or a metal compound.
  • polymerization inhibitor examples include the compounds described in paragraph 0310 of WO 2021/112189, p-hydroquinone, o-hydroquinone, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, phenoxazine, 1,4,4-trimethyl-2,3-diazabicyclo[3.2.2]non-2-ene-N,N-dioxide, etc. The contents of which are incorporated herein by reference. It is also preferable to use the following compounds as a polymerization inhibitor.
  • the content of the polymerization inhibitor is preferably 0.01 to 20 mass % relative to the total solid content of the resin composition, more preferably 0.02 to 15 mass %, and even more preferably 0.05 to 10 mass %.
  • the polymerization inhibitor may be one type or two or more types. When two or more types of polymerization inhibitors are used, it is preferable that the total is within the above range.
  • the resin composition may contain various additives, such as surfactants, higher fatty acid derivatives, thermal polymerization initiators, inorganic particles, ultraviolet absorbers, organometallic complexes, antioxidants, aggregation inhibitors, phenolic compounds, other polymer compounds, plasticizers, and other auxiliaries (e.g., defoamers, flame retardants, etc.), as necessary, within the scope of the effects of the present invention.
  • additives such as surfactants, higher fatty acid derivatives, thermal polymerization initiators, inorganic particles, ultraviolet absorbers, organometallic complexes, antioxidants, aggregation inhibitors, phenolic compounds, other polymer compounds, plasticizers, and other auxiliaries (e.g., defoamers, flame retardants, etc.), as necessary, within the scope of the effects of the present invention.
  • auxiliaries e.g., defoamers, flame retardants, etc.
  • the total content is preferably 3% by mass or less of the solid content of the resin composition.
  • inorganic particles include calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfide, and glass.
  • the average particle size of the inorganic particles is preferably from 0.01 to 2.0 ⁇ m, more preferably from 0.02 to 1.5 ⁇ m, even more preferably from 0.03 to 1.0 ⁇ m, and particularly preferably from 0.04 to 0.5 ⁇ m.
  • the above average particle size of the inorganic particles is the primary particle size and also the volume average particle size.
  • the volume average particle size can be measured by a dynamic light scattering method using, for example, a Nanotrac WAVE II EX-150 (manufactured by Nikkiso Co., Ltd.). When the above measurements are difficult, the measurements can also be made by centrifugal sedimentation light transmission method, X-ray transmission method, or laser diffraction/scattering method.
  • the resin composition also preferably contains an organometallic complex containing at least one metal atom selected from titanium, zirconium, and hafnium.
  • the organometallic complex preferably contains a compound represented by the following formula (T-1).
  • M is titanium, zirconium, or hafnium
  • l1 is an integer of 0 to 2
  • l2 is 0 or 1
  • l1+l2 ⁇ 2 is an integer of 0 to 2
  • m is an integer of 0 to 4
  • n is an integer of 0 to 2
  • R 11 is independently a substituted or unsubstituted cyclopentadienyl group, a substituted or unsubstituted alkoxy group, or a substituted or unsubstituted phenoxy group
  • R 12 is a substituted or unsubstituted hydrocarbon group
  • R 2 is independently a group containing a structure represented by formula (T-2) below
  • R 3 is independently a group containing a structure represented by formula (T-2) below
  • X A is independently an oxygen atom or a sulfur atom.
  • M is preferably titanium.
  • l1 and l2 are 0 is also one of the preferred embodiments of the present invention.
  • m is preferably 2 or 4, and more preferably 2.
  • n is preferably 1 or 2, and more preferably 1.
  • l1 and l2 are 0, and m is 0, 2 or 4 in formula (T-1).
  • R 11 is preferably a substituted or unsubstituted cyclopentadienyl ligand.
  • the cyclopentadienyl group, alkoxy group and phenoxy group in R 11 may be substituted, but the unsubstituted embodiment is also one of the preferred embodiments of the present invention.
  • R 12 is preferably a hydrocarbon group having 1 to 20 carbon atoms, and more preferably a hydrocarbon group having 2 to 10 carbon atoms.
  • the hydrocarbon group for R 12 may be either an aliphatic hydrocarbon group or an aromatic hydrocarbon group, with an aromatic hydrocarbon group being preferred.
  • the aliphatic hydrocarbon group may be a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group, with a saturated aliphatic hydrocarbon group being preferred.
  • the aromatic hydrocarbon group is preferably an aromatic hydrocarbon group having 6 to 20 carbon atoms, more preferably an aromatic hydrocarbon group having 6 to 10 carbon atoms, and even more preferably a phenylene group.
  • R 12 is preferably a monovalent substituent, such as a halogen atom, etc.
  • R 12 is an aromatic hydrocarbon group, it may have an alkyl group as a substituent.
  • R 12 is preferably an unsubstituted phenylene group, and the phenylene group in R 12 is preferably a 1,2-phenylene group.
  • formula (T-1) when m is 2 or more and two or more R 2s are included, the structures of the two or more R 2s may be the same or different. In formula (T-1), when n is 2 or more and two or more R 3s are included, the structures of the two or more R 3s may be the same or different.
  • the resin composition may also contain other organotitanium compounds. By containing other organotitanium compounds, a resin layer with excellent chemical resistance can be formed even when cured at low temperatures.
  • Usable organic titanium compounds include those in which an organic group is bonded to a titanium atom via a covalent bond or an ionic bond.
  • Specific examples of the organotitanium compound are shown below in I) to VII):
  • I) Titanium chelate compounds Titanium chelate compounds having two or more alkoxy groups are more preferred because they provide a resin composition with good storage stability and a good curing pattern.
  • titanium bis(triethanolamine) diisopropoxide titanium di(n-butoxide) bis(2,4-pentanedionate), titanium diisopropoxide bis(2,4-pentanedionate), titanium diisopropoxide bis(tetramethylheptanedionate), titanium diisopropoxide bis(ethylacetoacetate), etc.
  • Tetraalkoxytitanium compounds For example, titanium tetra(n-butoxide), titanium tetraethoxide, titanium tetra(2-ethylhexoxide), titanium tetraisobutoxide, titanium tetraisopropoxide, titanium tetramethoxide, titanium tetramethoxypropoxide, titanium tetramethylphenoxide, titanium tetra(n-nonyloxide), titanium tetra(n-propoxide), titanium tetrastearyloxide, titanium tetrakis[bis ⁇ 2,2-(allyloxymethyl)butoxide ⁇ ], and the like.
  • Titanocene compounds For example, pentamethylcyclopentadienyltitanium trimethoxide, bis( ⁇ 5-2,4-cyclopentadiene-1-yl)bis(2,6-difluorophenyl)titanium, bis( ⁇ 5-2,4-cyclopentadiene-1-yl)bis(2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl)titanium, and the like.
  • Monoalkoxytitanium compounds For example, titanium tris(dioctylphosphate) isopropoxide, titanium tris(dodecylbenzenesulfonate) isopropoxide, etc.
  • Titanium oxide compounds For example, titanium oxide bis(pentanedionate), titanium oxide bis(tetramethylheptanedionate), phthalocyanine titanium oxide, and the like.
  • the organic titanium compound is preferably at least one compound selected from the group consisting of I) titanium chelate compounds, II) tetraalkoxytitanium compounds, and III) titanocene compounds.
  • titanium diisopropoxide bis(ethylacetoacetate), titanium tetra(n-butoxide), and bis( ⁇ 5-2,4-cyclopentadiene-1-yl)bis(2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl)titanium are preferred.
  • the content thereof is preferably 0.05 to 10 parts by mass, and more preferably 0.1 to 2 parts by mass, relative to 100 parts by mass of the polyimide precursor.
  • the content is 0.05 part by mass or more, the heat resistance and chemical resistance of the obtained cured pattern are improved, and when it is 10 parts by mass or less, the storage stability of the composition is superior.
  • These other additives include the compounds described in paragraphs 0316 to 0358 of WO 2022/145355, the disclosures of which are incorporated herein by reference.
  • the viscosity of the resin composition can be adjusted by the solid content concentration of the resin composition. From the viewpoint of the coating film thickness, 1,000 mm 2 /s to 12,000 mm 2 /s is preferable, 2,000 mm 2 /s to 10,000 mm 2 /s is more preferable, and 2,500 mm 2 /s to 8,000 mm 2 /s is even more preferable. If it is within the above range, it is easy to obtain a coating film with high uniformity.
  • the water content of the resin composition is preferably less than 2.0% by mass, more preferably less than 1.5% by mass, and even more preferably less than 1.0% by mass. If the water content is less than 2.0%, the storage stability of the resin composition is improved. Methods for maintaining the moisture content include adjusting the humidity during storage and reducing the porosity of the container during storage.
  • the metal content of the resin composition is preferably less than 5 ppm by mass (parts per million), more preferably less than 1 ppm by mass, and even more preferably less than 0.5 ppm by mass.
  • metals include sodium, potassium, magnesium, calcium, iron, copper, chromium, nickel, etc., but metals contained as complexes of organic compounds and metals are excluded. When multiple metals are contained, it is preferable that the total of these metals is within the above range.
  • methods for reducing metal impurities unintentionally contained in the resin composition include selecting raw materials with a low metal content as the raw materials constituting the resin composition, filtering the raw materials constituting the resin composition, and lining the inside of the apparatus with polytetrafluoroethylene or the like to perform distillation under conditions that minimize contamination as much as possible.
  • the content of halogen atoms is preferably less than 500 mass ppm, more preferably less than 300 mass ppm, and even more preferably less than 200 mass ppm from the viewpoint of wiring corrosion.
  • those present in the form of halogen ions are preferably less than 5 mass ppm, more preferably less than 1 mass ppm, and even more preferably less than 0.5 mass ppm.
  • Examples of halogen atoms include chlorine atoms and bromine atoms. It is preferable that the total of chlorine atoms and bromine atoms, or chlorine ions and bromine ions, is within the above range.
  • a preferred method for adjusting the content of halogen atoms is ion exchange treatment.
  • a conventionally known container can be used as the container for the resin composition.
  • the container it is also preferable to use a multi-layer bottle whose inner wall is made of six types of six layers of resin, or a bottle with a seven-layer structure of six types of resin, in order to prevent impurities from being mixed into the raw materials or the resin composition.
  • An example of such a container is the container described in JP 2015-123351 A.
  • a cured product of the resin composition By using the resin composition in the method for producing a cured product of the present invention, a cured product of the resin composition can be obtained.
  • the cured product of the present invention is a cured product obtained by the method for producing a cured product of the present invention.
  • the form of the cured product is not particularly limited, and may be selected according to the application, such as a film, a rod, a sphere, or a pellet.
  • the cured product is preferably a film.
  • the shape of the cured product can be selected according to the application, such as forming a protective film on the wall surface, forming a via hole for electrical conduction, adjusting impedance, electrostatic capacitance, or internal stress, and imparting a heat dissipation function.
  • the film thickness of the cured product (film made of the cured product) is preferably 0.5 ⁇ m or more and 150 ⁇ m or less.
  • the shrinkage percentage when the resin composition is cured is preferably 50% or less, more preferably 45% or less, and even more preferably 40% or less.
  • the imidization reaction rate of the polyimide in the cured product is preferably 70% or more, more preferably 80% or more, and even more preferably 90% or more. If it is 70% or more, the cured product may have excellent mechanical properties.
  • the breaking elongation of the cured product is preferably 30% or more, more preferably 40% or more, and even more preferably 50% or more.
  • the glass transition temperature (Tg) of the cured product is preferably 180° C. or higher, more preferably 210° C. or higher, and even more preferably 230° C. or higher.
  • the linear thermal expansion coefficient of the cured product in the range of 25° C. to 125° C. is preferably 65 ppm/K or less, more preferably 60 ppm/K or less, and even more preferably 55 ppm/K or less. There is no particular lower limit for the linear thermal expansion coefficient, and it is preferably 0 ppm/K or less.
  • the linear thermal expansion coefficient can be measured using a known thermomechanical analyzer such as TMA8310 manufactured by Rigaku Corporation in accordance with JIS K 7197:2012.
  • the tensile modulus of the cured product at 25° C. is preferably 2.5 GPa or more, more preferably 2.8 GPa or more, and even more preferably 3.0 GPa or more.
  • the upper limit of the tensile modulus is not particularly limited, but is preferably 7.0 GPa or less.
  • the tensile modulus can be measured, for example, according to JIS K 7161-1:2014.
  • the tensile elongation of the cured product at 25° C. is preferably 30% or more, more preferably 35% or more, and even more preferably 40% or more.
  • the upper limit of the tensile elongation is not particularly limited, but is preferably 200% or less.
  • the tensile elongation can be measured, for example, according to JIS K 7161-1:2014.
  • the resin composition can be prepared by mixing the above-mentioned components.
  • the mixing method is not particularly limited, and can be a conventionally known method. Examples of the mixing method include mixing with a stirring blade, mixing with a ball mill, and mixing by rotating a tank.
  • the temperature during mixing is preferably from 10 to 30°C, more preferably from 15 to 25°C.
  • the filter pore size is, for example, preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less, even more preferably 0.5 ⁇ m or less, and even more preferably 0.1 ⁇ m or less.
  • the material of the filter is preferably polytetrafluoroethylene, polyethylene, or nylon. When the material of the filter is polyethylene, it is more preferable that it is HDPE (high density polyethylene).
  • the filter may be used after being washed in advance with an organic solvent. In the filter filtration process, multiple types of filters may be connected in series or in parallel. When multiple types of filters are used, filters with different pore sizes or materials may be used in combination.
  • an HDPE filter with a pore size of 1 ⁇ m as the first stage and an HDPE filter with a pore size of 0.2 ⁇ m as the second stage may be connected in series.
  • various materials may be filtered multiple times.
  • circulation filtration may be performed.
  • Filtration may also be performed under pressure.
  • the pressure to be applied is, for example, preferably 0.01 MPa or more and 1.0 MPa or less, more preferably 0.03 MPa or more and 0.9 MPa or less, even more preferably 0.05 MPa or more and 0.7 MPa or less, and even more preferably 0.05 MPa or more and 0.5 MPa or less.
  • impurity removal treatment using an adsorbent may be performed.
  • Filter filtration and impurity removal treatment using an adsorbent may be combined.
  • a known adsorbent may be used.
  • inorganic adsorbents such as silica gel and zeolite, and organic adsorbents such as activated carbon may be used.
  • the resin composition filled in the bottle may be subjected to a degassing step by placing it under reduced pressure.
  • the precipitate (solid polyimide precursor) after stirring was collected by filtration and dissolved in 500 g of tetrahydrofuran. 6000 g of water (poor solvent) was added to the obtained solution to precipitate the polyimide precursor, and the precipitate (water-polyimide precursor mixture) was stirred for 15 minutes.
  • the precipitate (solid polyimide precursor) after stirring was filtered again and dried at 45° C. under reduced pressure for 3 days. After dissolving 46.6 g of the dried powder in 419.6 g of tetrahydrofuran, 2.3 g of triethylamine was added and stirred at room temperature for 35 minutes. Then, 3000 g of ethanol was added, and the precipitate was collected by filtration.
  • the obtained precipitate was dissolved in 281.8 g of tetrahydrofuran. 17.1 g of water and 46.6 g of ion exchange resin UP6040 (manufactured by AmberTec) were added thereto, and the mixture was stirred for 4 hours. Then, the ion exchange resin was removed by filtration, and the obtained polymer solution was added to 5,600 g of water to obtain a precipitate. The precipitate was collected by filtration and dried at 45 ° C. under reduced pressure for 24 hours, to obtain 45.1 g of polyimide precursor (P-1). It was confirmed by 1 H-NMR that the structure of the polyimide precursor (P-1) was a structure represented by the following formula (P-1).
  • the molecular weight of the polyimide precursor (P-1) was measured by gel permeation chromatography (standard polystyrene equivalent) to find that the weight average molecular weight (Mw) was 20,000.
  • Mw weight average molecular weight
  • t-Bu represents a tert-butyl group.
  • Examples and Comparative Examples> the components shown in the following table were mixed to obtain each resin composition. Specifically, the content of each component shown in the table is the amount (parts by mass) shown in the "parts by mass” column of each column in the table.
  • the obtained resin composition was pressure filtered using a polytetrafluoroethylene filter having a pore width of 0.5 ⁇ m.
  • "-" indicates that the composition does not contain the corresponding component.
  • M-1 Tetraethylene glycol dimethacrylate
  • M-2 Tetraethylene glycol diacrylate
  • M-3 Ethylene glycol dimethacrylate
  • M-4 Diethylene glycol dimethacrylate
  • M-5 Triethylene glycol dimethacrylate
  • M-6 KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.)
  • M-7 NK Ester A-TMMT (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • I-1 Irgacure OXE-01 (manufactured by BASF)
  • I-2 Irgacure OXE-02 (manufactured by BASF)
  • I-3 Irgacure OXE-03 (manufactured by BASF)
  • I-4 Irgacure OXE-04 (manufactured by BASF)
  • I-5 Irgacure 784 (manufactured by BASF)
  • I-6 to I-7 Compounds having the following structure
  • I-8 Omnirad 1316 (manufactured by IGM)
  • C-1 KBM-503 (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • C-2 N-(3-(triethoxysilyl)propyl)maleamic acid
  • C-3 to C-4 Compounds having the following structures (wherein Et represents an ethyl group)
  • C-5 Tetraethoxysilane
  • C-6 X-12-1293 (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • C-7 KR-513 (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • A-1 WPBG-140 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • A-2 to A-3 Compounds having the following structures
  • NMP N-methyl-2-pyrrolidone
  • GVL ⁇ -valerolactone
  • GBL ⁇ -butyrolactone
  • DMSO dimethylsulfoxide
  • the substrate After exposure, the substrate was developed with the developer shown in the "Development” column in the table, and then rinsed with the rinse solution shown in the "Rinse” column in the table below to obtain a patterned film of the polyimide precursor on the substrate.
  • the substrate provided with the above-mentioned patterned film was subjected to a vacuum gas replacement oven (450PB8-2P-CP, manufactured by YES Corporation) by reducing the pressure to the degree of vacuum indicated in the "Cure method (degree of vacuum)” column in the table below before and during the curing heating, and was heated and cured at the temperature indicated in the "Cure temperature (°C)” column in the table for the time indicated in the "Cure time (h)” column in the table, to obtain a polyimide film.
  • a vacuum gas replacement oven 450PB8-2P-CP, manufactured by YES Corporation
  • Treatment solution A mixture of 90.3 parts by mass of PGMEA, 4.7 parts by mass of GBL, 5 parts by mass of N-(3-dimethylaminopropyl)methacrylamide, and 0.002 parts by mass of 4-methoxyphenol.
  • the polyimide piece obtained above was put into a thermomechanical analyzer (TMA) to evaluate the thermal expansion coefficient.
  • the thermal expansion coefficient was 53.0 ppm/K, and it was confirmed that the polyimide film had little thermal expansion and was excellent.
  • each resin composition was formed into a film and cured on a 4-inch TEG (Test Element Group) substrate having a copper wiring with a width of 10 ⁇ m, and the obtained substrate was subjected to reliability tests of 2000 hours at 150° C. (heat resistance reliability) and 500 hours at 121° C. and a relative humidity of 100% (humidity resistance reliability).
  • the film formation and curing were performed in the same manner as the method described in the above-mentioned "film formation process", except that the exposure was performed on the entire surface.
  • the cross section of the Cu wiring portion was observed with a SEM (Scanning Electron Microscope).
  • the reliability was evaluated according to the following evaluation criteria: The evaluation results of heat resistance reliability are shown in the "heat resistance reliability” column in the table, and the evaluation results of moisture resistance reliability are shown in the "moisture resistance reliability” column in the table.
  • each resin composition was formed into a film on a 4-inch Si wafer and cured, and then the obtained wafer was immersed in N-methyl-2-pyrrolidone for 3 hours, washed with isopropyl alcohol, and then air-dried. The presence or absence of cracks in the cured film (polyimide film) on the obtained wafer was visually observed.
  • the above film formation and curing were performed in the same manner as that described in the "Film formation process" above, except that the exposure was performed on the entire surface.
  • the chemical resistance was evaluated according to the following evaluation criteria. The evaluation results are shown in the "Chemical resistance" column in the table. -Evaluation criteria- A: No cracks were observed over the entire surface of the wafer. B: Cracks were observed in parts of the wafer. C: Cracks were observed over the entire surface of the wafer.
  • FIG. 1 is a schematic cross-sectional view of a test vehicle used in the biased HAST test.
  • the test vehicle 100 was constructed by laminating, in this order, a SiO2 layer 104, a patterned Ti layer 106, and a patterned 10 ⁇ m L/S (line and space) comb-shaped copper wiring 108 on a Si wafer (silicon wafer) 102, and the wiring was covered with a cured product 110 of each composition.
  • d1 and d2 are 10 ⁇ m.
  • a coating film of each resin composition was formed on a SiO2 wafer and Cu wiring included in the test vehicle. Then, a cured product 110 was formed by the same method as that described in the above-mentioned "film formation process". Biased HAST tests were performed with each test vehicle. The bias HAST test was carried out using a Hirayama oven at 130°C/85% RH (relative humidity)/96h (96 hours). A voltage of 15V was applied during the HAST test, and the test was judged based on the presence or absence of a short circuit in the wiring during the test. A short circuit was judged to have occurred when the electrical resistance value was less than 10 5 ⁇ . The evaluation results are shown in the "bHAST" column in the table. -Evaluation criteria- A: No wiring short was found at 96h. B: A wiring short was found between 31 hours and 96 hours. C: A wiring short was observed within 31 hours.
  • the cured product formed by the method for producing a cured product of the present invention has excellent heat resistance reliability and chemical resistance.
  • the method for producing a cured product according to Comparative Example 1 does not satisfy either condition 1 or condition 2.
  • the method for producing a cured product according to Comparative Example 2 does not include a decompression step. It is clear that the cured product obtained by the methods for producing a cured product according to these Comparative Examples is inferior in heat resistance reliability and chemical resistance.
  • Test vehicle 102 Si wafer 104 SiO2 layer 106 Ti layer 108 Cu wiring 110 Hardened product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

A production method for a cured product according to the present invention includes a pressure reduction step for putting a resin layer under a pressure of less than 101,325 Pa and a heating step for heating the resin layer under said pressure, wherein the resin layer is formed from a resin composition that includes a polyimide precursor and a solvent, and a specific condition is met. A production method for a laminate according to the present invention includes the production method for a cured product. A production method for a semiconductor device according to the present invention includes the production method for a cured product. A semiconductor device according to the present invention includes a cured product obtained by means of the production method for a cured product.

Description

硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイスMethod for manufacturing a cured product, method for manufacturing a laminate, method for manufacturing a semiconductor device, and semiconductor device
 本発明は、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイスに関する。 The present invention relates to a method for producing a cured product, a method for producing a laminate, a method for producing a semiconductor device, and a semiconductor device.
 現代では様々な分野において、樹脂を含む樹脂組成物から製造された樹脂材料を活用することが行われている。
 例えば、ポリイミドは、耐熱性及び絶縁性等に優れるため、様々な用途に適用されている。上記用途としては、特に限定されないが、実装用の半導体デバイスを例に挙げると、絶縁膜や封止材の材料、又は、保護膜としての利用が挙げられる。また、フレキシブル基板のベースフィルムやカバーレイなどとしても用いられている。
2. Description of the Related Art Nowadays, resin materials produced from resin compositions containing resins are being used in various fields.
For example, polyimide is used in various applications due to its excellent heat resistance and insulating properties. The applications include, but are not limited to, materials for insulating films and sealing materials, or protective films for semiconductor devices for mounting. Polyimide is also used as a base film or coverlay for flexible substrates.
 例えば上述した用途において、ポリイミドは、ポリイミド前駆体を含む樹脂組成物の形態で用いられる。
 このような樹脂組成物を、例えば塗布等により基材に適用して樹脂層を形成し、その後、必要に応じて露光、現像を行った後に加熱を行うことにより、硬化物を基材上に形成することができる。
 ポリイミド前駆体は、加熱により環化され、硬化物中においてポリイミドとなる。
 樹脂組成物は、公知の塗布方法等により適用可能であるため、例えば、適用される樹脂組成物の適用時の形状、大きさ、適用位置等の設計の自由度が高いなど、製造上の適応性に優れるといえる。ポリイミドが有する高い性能に加え、このような製造上の適応性に優れる観点から、上述の樹脂組成物の産業上の応用展開がますます期待されている。
For example, in the above-mentioned applications, polyimide is used in the form of a resin composition containing a polyimide precursor.
Such a resin composition is applied to a substrate, for example by coating, to form a resin layer, and then, if necessary, exposed to light, developed, and then heated, whereby a cured product can be formed on the substrate.
The polyimide precursor is cyclized by heating to become a polyimide in the cured product.
Since the resin composition can be applied by a known coating method, etc., it can be said to have excellent adaptability in manufacturing, for example, high degree of freedom in designing the shape, size, application position, etc. of the resin composition when applied. In addition to the high performance of polyimide, from the viewpoint of such excellent adaptability in manufacturing, the above-mentioned resin composition is expected to be increasingly applied in industrial applications.
 例えば、特許文献1には、下記一般式(1)で示される繰り返し単位構造を有するポリイミド樹脂前駆体と、感光剤と、上記ポリイミド樹脂前駆体に対して分散可能な分散性化合物と、溶剤とを含有することを特徴とする、感光性樹脂組成物が記載されている。 For example, Patent Document 1 describes a photosensitive resin composition that contains a polyimide resin precursor having a repeating unit structure represented by the following general formula (1), a photosensitizer, a dispersible compound that is dispersible in the polyimide resin precursor, and a solvent.
特開2001-323099号公報JP 2001-323099 A
 ポリイミド前駆体を含む樹脂層を加熱して硬化物を形成する場合において、得られる硬化物の耐熱信頼性、及び、耐薬品性を向上することが求められている。 When a resin layer containing a polyimide precursor is heated to form a cured product, it is necessary to improve the heat resistance reliability and chemical resistance of the resulting cured product.
 本発明は耐熱信頼性及び耐薬品性に優れた硬化物が得られる硬化物の製造方法、上記硬化物の製造方法を含む積層体の製造方法、上記硬化物の製造方法を含む半導体デバイスの製造方法並びに上記硬化物の製造方法により得られた硬化物を含む半導体デバイスを提供することを目的とする。 The present invention aims to provide a method for producing a cured product that provides a cured product with excellent heat resistance reliability and chemical resistance, a method for producing a laminate that includes the method for producing the cured product, a method for producing a semiconductor device that includes the method for producing the cured product, and a semiconductor device that includes a cured product obtained by the method for producing the cured product.
 本発明の代表的な実施態様の例を以下に示す。
<1> 樹脂層を101,325Paより低い圧力下に晒す減圧工程、及び、
 上記圧力下で上記樹脂層を加熱する加熱工程を含み、
 上記樹脂層が、ポリイミド前駆体、及び、溶剤を含む樹脂組成物から形成される層であり、
 下記条件1及び条件2の少なくとも一方を満たす
 硬化物の製造方法。
条件1:上記樹脂組成物が、ウレタン結合及びウレア結合から選択される少なくとも1種の結合と、tert-ブチル基、水酸基及びエチレン性不飽和結合を含む基から選ばれる少なくとも1つの官能基とを有する化合物Aを更に含む。
条件2:上記減圧工程よりも前に、上記化合物Aを含む処理液と、上記樹脂層とを接触させる工程を含む。
<2> 上記減圧工程よりも前に、光重合開始剤を更に含む上記樹脂組成物から形成された感光性樹脂層を露光する工程、及び、上記露光された感光性樹脂層を現像して上記樹脂層を得る工程を更に含む、<1>に記載の硬化物の製造方法。
<3> 上記光重合開始剤として、下記式(PPI-1)で表される構造を含む化合物を含む、<2>に記載の硬化物の製造方法。

 式(PPI-1)中、Rは炭素数1~9の有機基であり、Rはメチル基またはフェニル基であり、Rはそれぞれ独立に、炭素数1~9の有機基であり、nは0~5の整数である。
<4> 上記減圧工程が、樹脂層を0.07MPa以下の圧力下に晒す工程である、<1>~<3>のいずれか1つに記載の硬化物の製造方法。
<5> 上記加熱工程における加熱温度が、140℃以上である、<1>~<4>のいずれか1つに記載の硬化物の製造方法。
<6> 上記化合物Aが、tert-ブチル基及びウレタン結合を有する化合物、並びに、ウレア結合、2以上のヒドロキシ基及びエチレン性不飽和結合を含む基を有する化合物よりなる群から選ばれた少なくとも1種の化合物を含む、<1>~<5>のいずれか1つに記載の硬化物の製造方法。
<7> 上記樹脂層がアゾール化合物を更に含む、<1>~<6>のいずれか1つに記載の硬化物の製造方法。
<8> 上記樹脂層がチタン、ジルコニウム及びハフニウムから選ばれる金属原子を少なくとも1つ含む、有機金属錯体を含む、<1>~<7>のいずれか1つに記載の硬化物の製造方法。
<9> 得られる硬化物の25℃から125℃の範囲での線熱膨張係数が55ppm/K以下である、<1>~<8>のいずれか1つに記載の硬化物の製造方法。
<10> 得られる硬化物の25℃における引張モジュラスが3.0GPa以上である、<1>~<9>のいずれか1つに記載の硬化物の製造方法。
<11> 得られる硬化物の25℃における引張伸びが、40%以上である、<1>~<10>のいずれか1つに記載の硬化物の製造方法。
<12> <1>~<11>のいずれか1つに記載の硬化物の製造方法を含む、積層体の製造方法。
<13> <1>~<11>のいずれか1つに記載の硬化物の製造方法を含む、半導体デバイスの製造方法。
<14> <1>~<11>のいずれか1つに記載の硬化物の製造方法により得られた硬化物を含む、半導体デバイス。
Examples of typical embodiments of the present invention are given below.
<1> A decompression step of exposing the resin layer to a pressure lower than 101,325 Pa; and
a heating step of heating the resin layer under the pressure,
the resin layer is a layer formed from a resin composition containing a polyimide precursor and a solvent,
A method for producing a cured product, which satisfies at least one of the following conditions 1 and 2:
Condition 1: The resin composition further contains a compound A having at least one bond selected from a urethane bond and a urea bond, and at least one functional group selected from a tert-butyl group, a hydroxyl group, and a group containing an ethylenically unsaturated bond.
Condition 2: The method includes a step of contacting the resin layer with a treatment liquid containing the compound A prior to the depressurization step.
<2> The method for producing a cured product according to <1>, further comprising, prior to the decompression step, a step of exposing a photosensitive resin layer formed from the resin composition further containing a photopolymerization initiator, and a step of developing the exposed photosensitive resin layer to obtain the resin layer.
<3> The method for producing a cured product according to <2>, wherein the photopolymerization initiator includes a compound having a structure represented by the following formula (PPI-1):

In formula (PPI-1), R 1 is an organic group having 1 to 9 carbon atoms, R 2 is a methyl group or a phenyl group, R 3 is each independently an organic group having 1 to 9 carbon atoms, and n is an integer of 0 to 5.
<4> The method for producing a cured product according to any one of <1> to <3>, wherein the decompression step is a step of exposing the resin layer to a pressure of 0.07 MPa or less.
<5> The method for producing a cured product according to any one of <1> to <4>, wherein the heating temperature in the heating step is 140° C. or higher.
<6> The method for producing a cured product according to any one of <1> to <5>, wherein the compound A includes at least one compound selected from the group consisting of a compound having a tert-butyl group and a urethane bond, and a compound having a urea bond, two or more hydroxy groups, and a group containing an ethylenically unsaturated bond.
<7> The method for producing a cured product according to any one of <1> to <6>, wherein the resin layer further contains an azole compound.
<8> The method for producing a cured product according to any one of <1> to <7>, wherein the resin layer contains an organometallic complex containing at least one metal atom selected from titanium, zirconium, and hafnium.
<9> The method for producing a cured product according to any one of <1> to <8>, wherein the obtained cured product has a linear thermal expansion coefficient of 55 ppm/K or less in the range of 25° C. to 125° C.
<10> The method for producing a cured product according to any one of <1> to <9>, wherein the obtained cured product has a tensile modulus at 25°C of 3.0 GPa or more.
<11> The method for producing a cured product according to any one of <1> to <10>, wherein the obtained cured product has a tensile elongation at 25°C of 40% or more.
<12> A method for producing a laminate, comprising the method for producing a cured product according to any one of <1> to <11>.
<13> A method for producing a semiconductor device, comprising the method for producing a cured product according to any one of <1> to <11>.
<14> A semiconductor device comprising a cured product obtained by the method for producing a cured product according to any one of <1> to <11>.
 本発明によれば、耐熱信頼性及び耐薬品性に優れた硬化物が得られる硬化物の製造方法、上記硬化物の製造方法を含む積層体の製造方法、上記硬化物の製造方法を含む半導体デバイスの製造方法並びに上記硬化物の製造方法により得られた硬化物を含む半導体デバイスが提供される。 The present invention provides a method for producing a cured product that provides a cured product with excellent heat resistance reliability and chemical resistance, a method for producing a laminate that includes the method for producing the cured product, a method for producing a semiconductor device that includes the method for producing the cured product, and a semiconductor device that includes a cured product obtained by the method for producing the cured product.
実施例におけるバイアスHAST試験において使用したテストビークルの概略図である。FIG. 2 is a schematic diagram of a test vehicle used in biased HAST tests in the examples.
 以下、本発明の主要な実施形態について説明する。しかしながら、本発明は、明示した実施形態に限られるものではない。
 本明細書において「~」という記号を用いて表される数値範囲は、「~」の前後に記載される数値をそれぞれ下限値及び上限値として含む範囲を意味する。
 本明細書において「工程」との語は、独立した工程だけではなく、その工程の所期の作用が達成できる限りにおいて、他の工程と明確に区別できない工程も含む意味である。
 本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有しない基(原子団)と共に置換基を有する基(原子団)をも包含する。例えば、「アルキル基」とは、置換基を有しないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
 本明細書において「露光」とは、特に断らない限り、光を用いた露光のみならず、電子線、イオンビーム等の粒子線を用いた露光も含む。また、露光に用いられる光としては、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等の活性光線又は放射線が挙げられる。
 本明細書において、「(メタ)アクリレート」は、「アクリレート」及び「メタクリレート」の両方、又は、いずれかを意味し、「(メタ)アクリル」は、「アクリル」及び「メタクリル」の両方、又は、いずれかを意味し、「(メタ)アクリロイル」は、「アクリロイル」及び「メタクリロイル」の両方、又は、いずれかを意味する。
 本明細書において、構造式中のMeはメチル基を表し、Etはエチル基を表し、Buはブチル基を表し、Phはフェニル基を表す。
 本明細書において、全固形分とは、組成物の全成分から溶剤を除いた成分の総質量をいう。また本明細書において、固形分濃度とは、組成物の総質量に対する、溶剤を除く他の成分の質量百分率である。
 本明細書において、重量平均分子量(Mw)及び数平均分子量(Mn)は、特に述べない限り、ゲル浸透クロマトグラフィ(GPC)法を用いて測定した値であり、ポリスチレン換算値として定義される。本明細書において、重量平均分子量(Mw)及び数平均分子量(Mn)は、例えば、HLC-8220GPC(東ソー(株)製)を用い、カラムとしてガードカラムHZ-L、TSKgel Super HZM-M、TSKgel Super HZ4000、TSKgel Super HZ3000、及び、TSKgel Super HZ2000(以上、東ソー(株)製)を直列に連結して用いることによって求めることができる。それらの分子量は特に述べない限り、溶離液としてTHF(テトラヒドロフラン)を用いて測定したものとする。ただし、溶解性が低い場合など、溶離液としてTHFが適していない場合にはNMP(N-メチル-2-ピロリドン)を用いることもできる。また、GPC測定における検出は特に述べない限り、UV線(紫外線)の波長254nm検出器を使用したものとする。
 本明細書において、積層体を構成する各層の位置関係について、「上」又は「下」と記載したときには、注目している複数の層のうち基準となる層の上側又は下側に他の層があればよい。すなわち、基準となる層と上記他の層の間に、更に第3の層や要素が介在していてもよく、基準となる層と上記他の層は接している必要はない。特に断らない限り、基材に対し層が積み重なっていく方向を「上」と称し、又は、樹脂組成物層がある場合には、基材から樹脂組成物層へ向かう方向を「上」と称し、その反対方向を「下」と称する。なお、このような上下方向の設定は、本明細書中における便宜のためであり、実際の態様においては、本明細書における「上」方向は、鉛直上向きと異なることもありうる。
 本明細書において、特段の記載がない限り、組成物は、組成物に含まれる各成分として、その成分に該当する2種以上の化合物を含んでもよい。また、特段の記載がない限り、組成物における各成分の含有量とは、その成分に該当する全ての化合物の合計含有量を意味する。
 本明細書において、特に述べない限り、温度は23℃、気圧は101,325Pa(1気圧)、相対湿度は50%RHである。
 本明細書において、好ましい態様の組み合わせは、より好ましい態様である。
Hereinafter, the main embodiments of the present invention will be described, however, the present invention is not limited to the embodiments explicitly described.
In this specification, a numerical range expressed using the symbol "to" means a range that includes the numerical values before and after "to" as the lower limit and upper limit, respectively.
In this specification, the term "step" includes not only an independent step, but also a step that cannot be clearly distinguished from another step, so long as the intended effect of the step can be achieved.
In the description of groups (atomic groups) in this specification, when there is no indication of whether they are substituted or unsubstituted, the term encompasses both unsubstituted groups (atomic groups) and substituted groups (atomic groups). For example, an "alkyl group" encompasses not only alkyl groups that have no substituents (unsubstituted alkyl groups) but also alkyl groups that have substituents (substituted alkyl groups).
In this specification, unless otherwise specified, the term "exposure" includes not only exposure using light but also exposure using particle beams such as electron beams and ion beams. Examples of light used for exposure include the bright line spectrum of a mercury lamp, far ultraviolet light represented by an excimer laser, extreme ultraviolet light (EUV light), X-rays, electron beams, and other actinic rays or radiation.
In this specification, "(meth)acrylate" means both or either of "acrylate" and "methacrylate", "(meth)acrylic" means both or either of "acrylic" and "methacrylic", and "(meth)acryloyl" means both or either of "acryloyl" and "methacryloyl".
In this specification, in the structural formulae, Me represents a methyl group, Et represents an ethyl group, Bu represents a butyl group, and Ph represents a phenyl group.
In this specification, the total solid content refers to the total mass of all components of the composition excluding the solvent, and in this specification, the solid content concentration refers to the mass percentage of the other components excluding the solvent with respect to the total mass of the composition.
In this specification, the weight average molecular weight (Mw) and the number average molecular weight (Mn) are values measured using gel permeation chromatography (GPC) unless otherwise specified, and are defined as polystyrene equivalent values. In this specification, the weight average molecular weight (Mw) and the number average molecular weight (Mn) can be determined, for example, by using HLC-8220GPC (manufactured by Tosoh Corporation) and using guard columns HZ-L, TSKgel Super HZM-M, TSKgel Super HZ4000, TSKgel Super HZ3000, and TSKgel Super HZ2000 (all manufactured by Tosoh Corporation) connected in series as columns. Unless otherwise specified, these molecular weights are measured using THF (tetrahydrofuran) as the eluent. However, when THF is not suitable as the eluent, such as when the solubility is low, NMP (N-methyl-2-pyrrolidone) can also be used. In addition, unless otherwise specified, detection in GPC measurement is performed using a UV (ultraviolet) ray (wavelength 254 nm detector).
In this specification, when the positional relationship of each layer constituting the laminate is described as "upper" or "lower", it is sufficient that there is another layer above or below the reference layer among the multiple layers being noted. That is, a third layer or element may be interposed between the reference layer and the other layer, and the reference layer does not need to be in contact with the other layer. Unless otherwise specified, the direction in which the layers are stacked on the substrate is referred to as "upper", or, in the case of a resin composition layer, the direction from the substrate to the resin composition layer is referred to as "upper", and the opposite direction is referred to as "lower". Note that such a vertical direction is set for the convenience of this specification, and in an actual embodiment, the "upper" direction in this specification may be different from the vertical upward direction.
In this specification, unless otherwise specified, the composition may contain, as each component contained in the composition, two or more compounds corresponding to that component. Furthermore, unless otherwise specified, the content of each component in the composition means the total content of all compounds corresponding to that component.
In this specification, unless otherwise specified, the temperature is 23° C., the pressure is 101,325 Pa (1 atm), and the relative humidity is 50% RH.
As used herein, combinations of preferred aspects are more preferred aspects.
(硬化物の製造方法)
 本発明の硬化物の製造方法は、樹脂層を101,325Paより低い圧力下に晒す減圧工程、及び、上記圧力下で上記樹脂層を加熱する加熱工程を含み、上記樹脂層が、ポリイミド前駆体、及び、溶剤を含む樹脂組成物から形成される層であり、下記条件1及び条件2の少なくとも一方を満たす。
条件1:上記樹脂組成物が、ウレタン結合及びウレア結合から選択される少なくとも1種の結合と、tert-ブチル基、水酸基及びエチレン性不飽和結合を含む基から選ばれる少なくとも1つの官能基とを有する化合物Aを更に含む。
条件2:上記減圧工程よりも前に、上記化合物Aを含む処理液と、上記樹脂層とを接触させる工程を含む。
(Method for producing the cured product)
The method for producing a cured product of the present invention includes a decompression step of exposing a resin layer to a pressure lower than 101,325 Pa, and a heating step of heating the resin layer under the above pressure, wherein the resin layer is a layer formed from a resin composition containing a polyimide precursor and a solvent, and satisfies at least one of the following conditions 1 and 2:
Condition 1: The resin composition further contains a compound A having at least one bond selected from a urethane bond and a urea bond, and at least one functional group selected from a tert-butyl group, a hydroxyl group, and a group containing an ethylenically unsaturated bond.
Condition 2: The method includes a step of contacting the resin layer with a treatment liquid containing the compound A prior to the depressurization step.
 本発明の硬化物の製造方法は、例えば、半導体デバイスの絶縁膜、再配線層用層間絶縁膜、ストレスバッファ膜等の形成に用いることができ、再配線層用層間絶縁膜の形成に用いられることが好ましい。 The method for producing a cured product of the present invention can be used, for example, to form insulating films for semiconductor devices, interlayer insulating films for redistribution layers, stress buffer films, etc., and is preferably used to form interlayer insulating films for redistribution layers.
 本発明の硬化物の製造方法によれば、耐熱信頼性及び耐薬品性に優れた硬化物が得られる。
 上記効果が得られるメカニズムは不明であるが、下記のように推測される。
According to the method for producing a cured product of the present invention, a cured product having excellent heat resistance reliability and chemical resistance can be obtained.
The mechanism by which the above effects are obtained is unclear, but is speculated to be as follows.
 本発明の硬化物の製造方法において減圧工程を行うことにより、膜中の残存溶剤、重合開始剤分解物等の低分子量成分が揮発して、後の工程でのアウトガスが少ない硬化物を作製することができる。
 また、一般的に、ポリイミド前駆体を加熱硬化するために熱塩基発生剤が用いられている。熱塩基発生剤は加熱時に分解して塩基を発生させ、ポリイミド前駆体の環化反応(イミド化)を促進させる触媒として働くと考えられている。
 上記減圧によりアウトガスを減少させた場合、通常の熱塩基発生剤を用いると、減圧により塩基発生剤又はこれが分解して発生する塩基の一部も揮発してしまい、イミド化率が不十分となる場合が有った。
 そこで、本発明者らは、減圧下(更には、減圧加熱下)でも揮発しにくい熱塩基発生剤として、上述の化合物Aを用いることを見出した。化合物Aは、ポリイミド前駆体を含む膜に対して良好な親和性を有しているため減圧下で揮発しにくく、アウトガスの発生の抑制及びイミド化率の向上という効果を両立できる。
 特に、上記化合物Aが、塩基性基(特にアミノ基)が保護基(t-BOC、Fmocなど、特にt-BOC)により保護された構造を有する場合には、保護基が有ることで高温になるまで揮発しにくく、かつ、高温下では脱保護して塩基を発生し、イミド化率の増大に寄与すると考えられる。
 また、上記化合物Aが、水酸基を有する場合には、ポリイミド前駆体とエステル結合等による結合を形成するため、減圧工程においては揮発しにくく、加熱時には分解して塩基を発生してイミド化率の増大に寄与すると考えられる。
 更に、上記ウレア、ウレタン化合物がラジカル重合性基を有する場合、露光又は熱により重合するため減圧工程においては揮発しにくく、加熱時には分解して塩基を発生してイミド化率の増大に寄与すると考えられる。
 その結果、硬化物の耐熱信頼性向上、耐薬品性の向上という効果が得られると考えられる。
By carrying out a decompression step in the method for producing a cured product of the present invention, low molecular weight components such as residual solvent and decomposition products of the polymerization initiator in the film are volatilized, making it possible to produce a cured product with little outgassing in subsequent steps.
In addition, a thermal base generator is generally used to heat-cure the polyimide precursor. The thermal base generator is decomposed upon heating to generate a base, which is believed to act as a catalyst to promote the cyclization reaction (imidization) of the polyimide precursor.
When the amount of outgassing is reduced by reducing the pressure as described above, if a typical thermal base generator is used, the base generator or a part of the base generated by decomposition of the base generator is also vaporized by reducing the pressure, which may result in an insufficient imidization rate.
Therefore, the present inventors have found that the above-mentioned compound A can be used as a thermal base generator that is unlikely to volatilize even under reduced pressure (and further under reduced pressure and heating). Compound A has good affinity for a film containing a polyimide precursor and therefore is unlikely to volatilize under reduced pressure, and can simultaneously achieve the effects of suppressing the generation of outgassing and improving the imidization rate.
In particular, when the compound A has a structure in which a basic group (particularly, an amino group) is protected by a protecting group (t-BOC, Fmoc, etc., particularly t-BOC), the presence of the protecting group makes the compound less likely to volatilize until a high temperature is reached, and at a high temperature, the compound is deprotected to generate a base, which is considered to contribute to an increase in the imidization rate.
Furthermore, when the compound A has a hydroxyl group, it forms a bond with the polyimide precursor through an ester bond or the like, and is therefore less likely to volatilize in a decompression step, and is decomposed upon heating to generate a base, which is thought to contribute to an increase in the imidization rate.
Furthermore, when the above urea or urethane compound has a radical polymerizable group, it is polymerized by exposure to light or heat and is therefore less likely to volatilize in a reduced pressure step, but is decomposed upon heating to generate a base, which is thought to contribute to an increase in the imidization rate.
As a result, it is believed that the effect of improving the heat resistance reliability and chemical resistance of the cured product can be obtained.
 ここで、特許文献1には、減圧工程を含み、かつ、上述の条件1及び条件2を満たす硬化物の製造方法については記載されていない。 Patent Document 1 does not describe a method for producing a cured product that includes a decompression step and satisfies the above-mentioned conditions 1 and 2.
 以下、本発明の硬化物の製造方法について詳細に説明する。 The method for producing the cured product of the present invention is described in detail below.
<減圧工程>
 本発明の硬化物の製造方法は、樹脂層を101,325Paより低い圧力下に晒す減圧工程を含む。
 樹脂層の詳細については後述する。
 減圧工程における圧力としては、101,325Paよりも低い圧力であればよいが、減圧工程は樹脂層を0.07MPa以下の圧力下に晒す工程であることが好ましく、0.053MPa以下の圧力下に晒す工程であることがより好ましい。上記圧力の下限は特に限定されず、0MPa以上であればよい。すなわち真空であってもよい。
 減圧における圧力は段階的に低下させてもよいし、1度に目的とする圧力まで低下させてもよい。
 また、減圧は1回のみ行ってもよいし、複数回行ってもよい。
<Decompression step>
The method for producing a cured product of the present invention includes a decompression step of exposing a resin layer to a pressure lower than 101,325 Pa.
The resin layer will be described in detail later.
The pressure in the decompression step may be lower than 101,325 Pa, but the decompression step is preferably a step of exposing the resin layer to a pressure of 0.07 MPa or less, and more preferably a step of exposing the resin layer to a pressure of 0.053 MPa or less. The lower limit of the pressure is not particularly limited, and may be 0 MPa or more. In other words, it may be a vacuum.
The pressure in the decompression may be reduced stepwise or may be reduced to the desired pressure in one go.
The pressure reduction may be carried out once or multiple times.
 減圧工程において、樹脂層を上記圧力下に晒す時間としては、10~420分間が好ましく、20~360分間がより好ましく、30~300分間が更に好ましい。
 また、室温付近の温度で減圧状態で引き置いてから加熱工程を開始してもよい。
 引き置き時間としては、10~420分間が好ましく、20~360分間がより好ましく、30~300分間が更に好ましい。
また本明細書において、特に断りが無い限り、室温とは25℃であり、室温付近の温度とは25℃±10℃程度の温度である。
 減圧工程における温度としては、特に限定されないが、20℃以上であることが好ましい。
 減圧速度は、50~1000Pa/sであることが好ましく、75~800Pa/sであることがより好ましく、100~500Pa/sであることが更に好ましい。
 また、減圧工程の終了後に、圧力を上昇させ室内等の空間の圧力に戻すことも好ましい。
 上記圧力の上昇速度は、50~1000Pa/sであることが好ましく、75~800Pa/sであることがより好ましく、100~500Pa/sであることが更に好ましい。
 減圧速度は、50~1000Pa/sであることが好ましく、75~800Pa/sであることがより好ましく、100~500Pa/sであることが更に好ましい。
 減圧手段としては特に限定されず、公知の真空ポンプなどが挙げられる。
In the decompression step, the time for which the resin layer is exposed to the above pressure is preferably from 10 to 420 minutes, more preferably from 20 to 360 minutes, and even more preferably from 30 to 300 minutes.
Alternatively, the heating step may be started after leaving the mixture under reduced pressure at a temperature close to room temperature.
The standing time is preferably from 10 to 420 minutes, more preferably from 20 to 360 minutes, and even more preferably from 30 to 300 minutes.
In this specification, unless otherwise specified, room temperature means 25°C, and a temperature near room temperature means a temperature of about 25°C±10°C.
The temperature in the decompression step is not particularly limited, but is preferably 20° C. or higher.
The pressure reduction rate is preferably from 50 to 1000 Pa/s, more preferably from 75 to 800 Pa/s, and even more preferably from 100 to 500 Pa/s.
It is also preferable to increase the pressure back to the pressure in the space, such as inside the room, after the decompression step is completed.
The rate of increase in the pressure is preferably 50 to 1000 Pa/s, more preferably 75 to 800 Pa/s, and even more preferably 100 to 500 Pa/s.
The pressure reduction rate is preferably from 50 to 1000 Pa/s, more preferably from 75 to 800 Pa/s, and even more preferably from 100 to 500 Pa/s.
The pressure reducing means is not particularly limited, and examples thereof include a known vacuum pump.
 減圧は、窒素雰囲気下、Ar雰囲気下などの不活性ガス雰囲気下で行ってもよいし、大気雰囲気下で行ってもよい。 The pressure reduction may be performed in an inert gas atmosphere such as a nitrogen atmosphere or an Ar atmosphere, or in the air.
<加熱工程>
 本発明の硬化物の製造方法は、上記減圧工程により減圧された圧力下で樹脂層を加熱する加熱工程を含む。
 すなわち、加熱工程は少なくともその加熱の一部が101,325Paより低い圧力下において行われる。上記圧力の好ましい範囲は上述の通りである。
 また、加熱工程における昇温、最高加熱温度における維持、降温の全てが上記圧力下で行われてもよいし、一部のみが上記圧力下で行われていてもよい。
 上記態様において、少なくとも加熱工程における最高加熱温度における加熱が上記圧力下で行われることが好ましい。
 加熱工程における昇温、及び、最高加熱温度における維持が上記圧力下で行われることも、本発明の好ましい態様の一つである。
 また、加熱工程における昇温、最高加熱温度における維持、降温が上記圧力下で行われることも、本発明の好ましい態様の一つである。
 加熱工程において、ポリイミド前駆体は環化してポリイミドとなる。
 加熱工程において、化合物Aは分解してアミンを発生することが好ましい。また、加熱工程は、上記アミンの作用によりポリイミド前駆体の環化を促進する工程であることが好ましい。
 加熱工程において、ポリイミド前駆体、又は、後述する重合性化合物における未反応の重合性基の重合なども進行することが好ましい。
 加熱工程における加熱温度(最高加熱温度)としては、140℃以上が好ましく、150以上がより好ましく、160℃以上が更に好ましく、170℃以上が特に好ましい。また、200℃以上とすることもできる。
 上記加熱温度の上限は、300℃以下が好ましく、250℃以下がより好ましく、230℃以下が更に好ましい。
<Heating process>
The method for producing a cured product of the present invention includes a heating step of heating the resin layer under the pressure reduced in the above-mentioned depressurizing step.
That is, at least a part of the heating step is carried out under a pressure lower than 101,325 Pa. The preferred range of the pressure is as described above.
In addition, the heating process, including increasing the temperature, maintaining the temperature at the maximum heating temperature, and decreasing the temperature, may all be carried out under the above pressure, or only a part of the process may be carried out under the above pressure.
In the above embodiment, it is preferable that at least the heating at the maximum heating temperature in the heating step is carried out under the above pressure.
In one preferred embodiment of the present invention, the temperature increase in the heating step and the maintenance at the maximum heating temperature are carried out under the above pressure.
In one preferred embodiment of the present invention, the heating step is performed under the above pressure during the temperature increase, the maintenance at the maximum heating temperature, and the temperature decrease.
In the heating step, the polyimide precursor cyclizes to form the polyimide.
In the heating step, the compound A is preferably decomposed to generate an amine. The heating step is preferably a step in which the cyclization of the polyimide precursor is promoted by the action of the amine.
In the heating step, it is preferable that polymerization of unreacted polymerizable groups in the polyimide precursor or the polymerizable compound described below also proceeds.
The heating temperature (maximum heating temperature) in the heating step is preferably 140° C. or higher, more preferably 150° C. or higher, even more preferably 160° C. or higher, and particularly preferably 170° C. or higher. It may also be 200° C. or higher.
The upper limit of the heating temperature is preferably 300° C. or less, more preferably 250° C. or less, and even more preferably 230° C. or less.
 加熱工程における加熱は、加熱開始時の温度から最高加熱温度まで1~12℃/分の昇温速度で行うことが好ましい。上記昇温速度は2~10℃/分がより好ましく、3~10℃/分が更に好ましい。昇温速度を1℃/分以上とすることにより、生産性を確保しつつ、酸又は溶剤の過剰な揮発を防止することができ、昇温速度を12℃/分以下とすることにより、硬化物の残存応力を緩和することができる。
 加えて、急速加熱可能なオーブンの場合、加熱開始時の温度から最高加熱温度まで1~8℃/秒の昇温速度で行うことが好ましく、2~7℃/秒がより好ましく、3~6℃/秒が更に好ましい。
The heating step is preferably performed at a temperature rise rate of 1 to 12° C./min from the temperature at the start of heating to the maximum heating temperature. The temperature rise rate is more preferably 2 to 10° C./min, and even more preferably 3 to 10° C./min. By setting the temperature rise rate at 1° C./min or more, it is possible to prevent excessive volatilization of the acid or solvent while ensuring productivity, and by setting the temperature rise rate at 12° C./min or less, it is possible to alleviate the residual stress of the cured product.
In addition, in the case of an oven capable of rapid heating, the temperature is increased from the starting temperature to the maximum heating temperature at a rate of preferably 1 to 8° C./sec, more preferably 2 to 7° C./sec, and even more preferably 3 to 6° C./sec.
 加熱開始時の温度は、20℃~150℃が好ましく、20℃~130℃がより好ましく、25℃~120℃が更に好ましい。加熱開始時の温度は、最高加熱温度まで加熱する工程を開始する際の温度のことをいう。例えば、樹脂組成物を基材の上に適用した後、乾燥させる場合、この乾燥後の膜(層)の温度であり、例えば、樹脂組成物に含まれる溶剤の沸点よりも、30~200℃低い温度から昇温させることが好ましい。 The temperature at the start of heating is preferably 20°C to 150°C, more preferably 20°C to 130°C, and even more preferably 25°C to 120°C. The temperature at the start of heating refers to the temperature at which the process of heating to the maximum heating temperature begins. For example, when a resin composition is applied to a substrate and then dried, it is the temperature of the film (layer) after this drying, and it is preferable to raise the temperature from a temperature 30 to 200°C lower than the boiling point of the solvent contained in the resin composition.
 加熱時間(最高加熱温度での加熱時間)は、5~360分が好ましく、10~300分がより好ましく、15~240分が更に好ましい。 The heating time (heating time at the maximum heating temperature) is preferably 5 to 360 minutes, more preferably 10 to 300 minutes, and even more preferably 15 to 240 minutes.
 特に多層の積層体を形成する場合、層間の密着性の観点から、加熱温度は30℃以上であることが好ましく、80℃以上がより好ましく、100℃以上が更に好ましく、120℃以上が特に好ましい。
 上記加熱温度の上限は、350℃以下が好ましく、250℃以下がより好ましく、240℃以下が更に好ましい。
In particular, when forming a multi-layer laminate, from the viewpoint of adhesion between layers, the heating temperature is preferably 30° C. or higher, more preferably 80° C. or higher, even more preferably 100° C. or higher, and particularly preferably 120° C. or higher.
The upper limit of the heating temperature is preferably 350° C. or less, more preferably 250° C. or less, and even more preferably 240° C. or less.
 加熱は段階的に行ってもよい。例として、25℃から120℃まで3℃/分で昇温し、120℃にて60分保持し、120℃から180℃まで2℃/分で昇温し、180℃にて120分保持する、といった工程を行ってもよい。また、米国特許第9159547号明細書に記載のように紫外線を照射しながら処理することも好ましい。このような前処理工程により膜の特性を向上させることが可能である。前処理工程は10秒間~2時間程度の短い時間で行うとよく、15秒~30分間がより好ましい。前処理工程は2段階以上のステップとしてもよく、例えば100~150℃の範囲で1段階目の前処理工程を行い、その後に150~200℃の範囲で2段階目の前処理工程を行ってもよい。
 更に、加熱後冷却してもよく、この場合の冷却速度としては、1~5℃/分であることが好ましい。
Heating may be performed stepwise. For example, a process may be performed in which the temperature is increased from 25°C to 120°C at 3°C/min, held at 120°C for 60 minutes, increased from 120°C to 180°C at 2°C/min, and held at 180°C for 120 minutes. It is also preferable to perform the process while irradiating ultraviolet rays as described in U.S. Pat. No. 9,159,547. Such a pretreatment process can improve the properties of the film. The pretreatment process is preferably performed for a short time of about 10 seconds to 2 hours, more preferably 15 seconds to 30 minutes. The pretreatment process may be performed in two or more steps, for example, a first pretreatment process may be performed in the range of 100 to 150°C, and then a second pretreatment process may be performed in the range of 150 to 200°C.
Furthermore, after heating, the material may be cooled, and in this case, the cooling rate is preferably 1 to 5° C./min.
 加熱工程は、窒素、ヘリウム、アルゴンなどの不活性ガスを流す、減圧下で行う等により、低酸素濃度の雰囲気で行うことがポリイミド前駆体の分解を防ぐ観点で好ましい。酸素濃度は、50ppm(体積比)以下が好ましく、20ppm(体積比)以下がより好ましい。
 加熱工程における加熱手段としては、特に限定されないが、例えばホットプレート、赤外炉、電熱式オーブン、熱風式オーブン、赤外線オーブンなどが挙げられる。特に、例えば、減圧機能付きオーブン等を用いることができる。上記オーブンにおける加熱方式は、電熱式、熱風式、赤外線式等特に限定されない。
From the viewpoint of preventing decomposition of the polyimide precursor, the heating step is preferably performed in an atmosphere with a low oxygen concentration by flowing an inert gas such as nitrogen, helium, or argon, or by performing the heating step under reduced pressure, etc. The oxygen concentration is preferably 50 ppm (volume ratio) or less, and more preferably 20 ppm (volume ratio) or less.
The heating means in the heating step is not particularly limited, but examples thereof include a hot plate, an infrared oven, an electric heating oven, a hot air oven, an infrared oven, etc. In particular, for example, an oven with a decompression function can be used. The heating method in the oven is not particularly limited, and may be an electric heating type, a hot air type, an infrared type, etc.
<条件1及び条件2>
 本発明の硬化物の製造方法は、下記条件1及び条件2の少なくとも一方を満たす。
条件1:上記樹脂組成物が、ウレタン結合及びウレア結合から選択される少なくとも1種の結合と、tert-ブチル基、水酸基及びエチレン性不飽和基結合を含む基から選ばれる少なくとも1つの官能基とを有する化合物Aを更に含む。
条件2:上記減圧工程よりも前に、上記化合物Aを含む処理液 と、上記樹脂層とを接触させる工程を含む。
 ここで、化合物Aの含有量を調整しやすい、樹脂層中の化合物Aの分布を均一に近い状態にしやすい等の観点からは、本発明の硬化物の製造方法は条件1を満たすことが好ましい。
 また、化合物Aを含まない樹脂組成物を使用することができる等の観点からは、本発明の硬化物の製造方法は条件2を満たすことが好ましい。
<Condition 1 and Condition 2>
The method for producing a cured product of the present invention satisfies at least one of the following conditions 1 and 2.
Condition 1: The resin composition further contains a compound A having at least one bond selected from a urethane bond and a urea bond, and at least one functional group selected from a tert-butyl group, a hydroxyl group, and a group containing an ethylenically unsaturated group bond.
Condition 2: The method includes a step of contacting the resin layer with a treatment liquid containing the compound A prior to the depressurization step.
Here, from the viewpoints of ease of adjusting the content of compound A, ease of achieving a nearly uniform distribution of compound A in the resin layer, and the like, it is preferable that the method for producing a cured product of the present invention satisfies condition 1.
In addition, from the viewpoint of being able to use a resin composition that does not contain compound A, it is preferable that the method for producing a cured product of the present invention satisfies condition 2.
 本発明の硬化物の製造方法が条件1を満たす場合、後述の樹脂組成物として化合物Aを更に含む樹脂組成物を用いることが好ましい。 When the method for producing a cured product of the present invention satisfies condition 1, it is preferable to use a resin composition further containing compound A as the resin composition described below.
 また、本発明の硬化物の製造方法が上記条件2を満たす場合、上記化合物Aを含む処理液は、後述する現像工程における現像液、リンス液、接触用処理液のいずれかであることも好ましい。また、後述する露光工程及び現像工程を行わずに、後述の接触用処理液と樹脂層とを接触させることもできる。 In addition, when the method for producing a cured product of the present invention satisfies the above condition 2, it is also preferable that the treatment liquid containing the compound A is any one of a developer, a rinse liquid, and a contact treatment liquid in the development step described below. In addition, the resin layer can be contacted with the contact treatment liquid described below without carrying out the exposure step and development step described below.
<樹脂層>
 樹脂層は、ポリイミド前駆体、及び、溶剤を含む樹脂組成物から形成される層である。また、本発明の硬化物の製造方法が上述の条件1を満たす場合、樹脂層は、化合物Aを更に含む。
 樹脂組成物及び樹脂層に含まれる成分の詳細については後述する。
 樹脂層は、樹脂組成物を基材に適用して、必要に応じて乾燥を行うことにより形成されることが好ましい。
 具体的には、本発明の硬化物の製造方法は、膜形成工程を含むことが好ましく、膜形成工程及び乾燥工程を含むことがより好ましい。
<Resin Layer>
The resin layer is a layer formed from a resin composition containing a polyimide precursor and a solvent. When the method for producing a cured product of the present invention satisfies the above-mentioned condition 1, the resin layer further contains compound A.
The components contained in the resin composition and the resin layer will be described in detail below.
The resin layer is preferably formed by applying a resin composition to a substrate and drying it as necessary.
Specifically, the method for producing a cured product of the present invention preferably includes a film-forming step, and more preferably includes a film-forming step and a drying step.
<膜形成工程>
 本発明の硬化物の製造方法は、樹脂組成物を基材上に適用して膜を形成する膜形成工程を含むことが好ましい。
<Film formation process>
The method for producing a cured product of the present invention preferably includes a film formation step of applying the resin composition onto a substrate to form a film.
〔基材〕
 基材の種類は、用途に応じて適宜定めることができ、特に限定されない。基材としては、例えば、シリコン、窒化シリコン、ポリシリコン、酸化シリコン、アモルファスシリコンなどの半導体作製基材、石英、ガラス、光学フィルム、セラミック材料、蒸着膜、磁性膜、反射膜、Ni、Cu、Cr、Feなどの金属基材(例えば、金属から形成された基材、及び、金属層が例えばめっきや蒸着等により形成された基材のいずれであってもよい)、紙、SOG(Spin On Glass)、TFT(薄膜トランジスタ)アレイ基材、モールド基材、プラズマディスプレイパネル(PDP)の電極板などが挙げられる。基材は、特に、半導体作製基材が好ましく、シリコン基材、Cu基材およびモールド基材がより好ましい。
 これらの基材にはヘキサメチルジシラザン(HMDS)等による密着層や酸化層などの層が表面に設けられていてもよい。
 基材の形状は特に限定されず、円形状であってもよく、矩形状であってもよい。
 基材のサイズは、円形状であれば、例えば直径が100~450mmが好ましく、200~450mmがより好ましい。矩形状であれば、例えば短辺の長さが100~1000mmが好ましく、200~700mmがより好ましい。
基材としては、例えば板状、好ましくはパネル状の基材(基板)が用いられる。
〔Base material〕
The type of substrate can be appropriately determined according to the application, and is not particularly limited. Examples of substrates include semiconductor-prepared substrates such as silicon, silicon nitride, polysilicon, silicon oxide, and amorphous silicon, quartz, glass, optical films, ceramic materials, vapor deposition films, magnetic films, reflective films, metal substrates such as Ni, Cu, Cr, and Fe (for example, substrates formed from metals and substrates in which a metal layer is formed by plating, vapor deposition, etc.), paper, SOG (Spin On Glass), TFT (thin film transistor) array substrates, mold substrates, and electrode plates of plasma display panels (PDPs). The substrate is preferably a semiconductor-prepared substrate, more preferably a silicon substrate, a Cu substrate, or a mold substrate.
These substrates may have a layer such as an adhesion layer made of hexamethyldisilazane (HMDS) or an oxide layer provided on the surface.
The shape of the substrate is not particularly limited, and may be circular or rectangular.
The size of the substrate is preferably, for example, a diameter of 100 to 450 mm, more preferably 200 to 450 mm, if it is circular, and preferably, a short side length of 100 to 1000 mm, more preferably 200 to 700 mm, if it is rectangular.
As the substrate, for example, a plate-shaped substrate, preferably a panel-shaped substrate (substrate) is used.
 樹脂層(例えば、硬化物からなる層)の表面や金属層の表面に樹脂組成物を適用して膜を形成する場合は、樹脂層や金属層が基材となる。 When a film is formed by applying a resin composition to the surface of a resin layer (e.g., a layer made of a cured material) or to the surface of a metal layer, the resin layer or metal layer serves as the substrate.
 樹脂組成物を基材上に適用する手段としては、塗布が好ましい。
 適用する手段としては、具体的には、ディップコート法、エアーナイフコート法、カーテンコート法、ワイヤーバーコート法、グラビアコート法、エクストルージョンコート法、スプレーコート法、スピンコート法、スリットコート法、インクジェット法などが挙げられる。膜の厚さの均一性の観点から、スピンコート法、スリットコート法、スプレーコート法、又は、インクジェット法が好ましく、膜の厚さの均一性の観点および生産性の観点からスピンコート法およびスリットコート法がより好ましい。適用する手段に応じて樹脂組成物の固形分濃度や塗布条件を調整することで、所望の厚さの膜を得ることができる。また、基材の形状によっても塗布方法を適宜選択でき、ウエハ等の円形基材であればスピンコート法、スプレーコート法、インクジェット法等が好ましく、矩形基材であればスリットコート法、スプレーコート法、インクジェット法等が好ましい。スピンコート法の場合は、例えば、500~3,500rpmの回転数で、10秒~3分程度適用することができる。
 また、あらかじめ仮支持体上に上記付与方法によって付与して形成した塗膜を、基材上に転写する方法を適用することもできる。
 転写方法に関しては特開2006-023696号公報の段落0023、0036~0051や、特開2006-047592号公報の段落0096~0108に記載の作製方法を好適に用いることができる。
 また、基材の端部において余分な膜の除去を行なう工程を行なってもよい。このような工程の例には、エッジビードリンス(EBR)、バックリンスなどが挙げられる。
 樹脂組成物を基材に塗布する前に基材に種々の溶剤を塗布し、基材の濡れ性を向上させた後に樹脂組成物を塗布するプリウェット工程を採用しても良い。
The resin composition is preferably applied to a substrate by coating.
Specific examples of the means to be applied include dip coating, air knife coating, curtain coating, wire bar coating, gravure coating, extrusion coating, spray coating, spin coating, slit coating, and inkjet methods. From the viewpoint of uniformity of the thickness of the film, spin coating, slit coating, spray coating, or inkjet methods are preferred, and from the viewpoint of uniformity of the thickness of the film and productivity, spin coating and slit coating are more preferred. A film of a desired thickness can be obtained by adjusting the solid content concentration and coating conditions of the resin composition according to the means to be applied. In addition, the coating method can be appropriately selected depending on the shape of the substrate, and if the substrate is a circular substrate such as a wafer, spin coating, spray coating, inkjet, etc. are preferred, and if the substrate is a rectangular substrate, slit coating, spray coating, inkjet, etc. are preferred. In the case of the spin coating method, for example, it can be applied for about 10 seconds to 3 minutes at a rotation speed of 500 to 3,500 rpm.
Alternatively, a coating film formed by applying the coating material to a temporary support in advance using the above-mentioned application method may be transferred onto the substrate.
As for the transfer method, the production methods described in paragraphs 0023 and 0036 to 0051 of JP-A No. 2006-023696 and paragraphs 0096 to 0108 of JP-A No. 2006-047592 can be suitably used.
Also, a process for removing excess film from the edge of the substrate may be performed, such as edge bead rinse (EBR) and back rinse.
A pre-wetting step may be employed in which various solvents are applied to the substrate before the resin composition is applied to the substrate to improve the wettability of the substrate, and then the resin composition is applied.
<乾燥工程>
 上記膜は、膜形成工程(層形成工程)の後に、溶剤を除去するため、形成された膜(層)を乾燥する工程(乾燥工程)に供されてもよい。
 すなわち、本発明の硬化物の製造方法は、膜形成工程により形成された膜を乾燥する乾燥工程を含んでもよい。
 上記乾燥工程は膜形成工程の後、減圧工程の前に行われることが好ましい。
 乾燥工程における膜の乾燥温度は50~150℃が好ましく、70℃~130℃がより好ましく、90℃~110℃が更に好ましい。また、減圧により乾燥を行っても良い。乾燥時間としては、30秒~20分が例示され、1分~10分が好ましく、2分~7分がより好ましい。
 また、乾燥工程及び減圧工程を、101,325Paより低い圧力下で上記温度条件下で加熱乾燥する工程として行ってもよい。
 また、乾燥工程においては減圧を行わないことも好ましい。
<Drying process>
After the film-forming step (layer-forming step), the above-mentioned film may be subjected to a step of drying the formed film (layer) (drying step) in order to remove the solvent.
That is, the method for producing a cured product of the present invention may include a drying step of drying the film formed in the film forming step.
The drying step is preferably carried out after the film-forming step and before the decompression step.
The drying temperature of the film in the drying step is preferably 50 to 150° C., more preferably 70 to 130° C., and even more preferably 90 to 110° C. Drying may be performed under reduced pressure. The drying time is, for example, 30 seconds to 20 minutes, preferably 1 to 10 minutes, and more preferably 2 to 7 minutes.
The drying step and the decompression step may be carried out as a step of heating and drying under the above-mentioned temperature conditions at a pressure lower than 101,325 Pa.
It is also preferable not to apply a reduced pressure in the drying step.
 上記減圧工程よりも前に、光重合開始剤を更に含む上記樹脂組成物から形成された感光性樹脂層を露光する工程、及び、上記露光された感光性樹脂層を現像して上記樹脂層を得る工程を更に含むことも好ましい。
 上記感光性樹脂層は、例えば、光重合開始剤を更に含む樹脂組成物を用いて、上述の膜形成工程により形成される上記膜であることが好ましく、光重合開始剤を更に含む樹脂組成物を用いて、上述の膜形成工程及び上述の乾燥工程により形成される上記膜であることがより好ましい。
It is also preferable to further include, prior to the decompression step, a step of exposing a photosensitive resin layer formed from the resin composition further containing a photopolymerization initiator, and a step of developing the exposed photosensitive resin layer to obtain the resin layer.
The photosensitive resin layer is preferably, for example, the film formed by the above-mentioned film formation process using a resin composition further containing a photopolymerization initiator, and more preferably the film formed by the above-mentioned film formation process and the above-mentioned drying process using a resin composition further containing a photopolymerization initiator.
<露光工程>
 感光性樹脂層は、感光性樹脂層を選択的に露光する露光工程に供されることが好ましい。
 硬化物の製造方法は、膜形成工程により形成された膜(感光性樹脂層)を選択的に露光する露光工程を含んでもよい。
 選択的に露光するとは、感光性樹脂層の一部を露光することを意味している。また、選択的に露光することにより、感光性樹脂層には露光された領域(露光部)と露光されていない領域(非露光部)が形成される。
 露光量は、樹脂組成物を硬化できる限り特に限定されないが、例えば、波長365nmでの露光エネルギー換算で50~10,000mJ/cmが好ましく、200~8,000mJ/cmがより好ましい。
<Exposure process>
The photosensitive resin layer is preferably subjected to an exposure step in which the photosensitive resin layer is selectively exposed to light.
The method for producing a cured product may include an exposure step of selectively exposing the film (photosensitive resin layer) formed in the film formation step.
Selective exposure means that a part of the photosensitive resin layer is exposed to light, and by selective exposure, an exposed area (exposed portion) and an unexposed area (unexposed portion) are formed in the photosensitive resin layer.
The amount of exposure light is not particularly limited as long as it can cure the resin composition, but is preferably 50 to 10,000 mJ/cm 2 , and more preferably 200 to 8,000 mJ/cm 2 , calculated as exposure energy at a wavelength of 365 nm.
 露光波長は、190~1,000nmの範囲で適宜定めることができ、240~550nmが好ましい。 The exposure wavelength can be appropriately set in the range of 190 to 1,000 nm, with 240 to 550 nm being preferred.
 露光波長は、光源との関係でいうと、(1)半導体レーザー(波長 830nm、532nm、488nm、405nm、375nm、355nm etc.)、(2)メタルハライドランプ、(3)高圧水銀灯、g線(波長 436nm)、h線(波長 405nm)、i線(波長 365nm)、ブロード(g,h,i線の3波長)、(4)エキシマレーザー、KrFエキシマレーザー(波長 248nm)、ArFエキシマレーザー(波長 193nm)、Fエキシマレーザー(波長 157nm)、(5)極紫外線;EUV(波長 13.6nm)、(6)電子線、(7)YAGレーザーの第二高調波532nm、第三高調波355nm等が挙げられる。樹脂組成物については、特に高圧水銀灯による露光が好ましく、露光感度の観点で、i線による露光がより好ましい。
 露光の方式は特に限定されず、感光性樹脂層の少なくとも一部が露光される方式であればよいが、フォトマスクを使用した露光、レーザーダイレクトイメージング法による露光等が挙げられる。
In terms of the light source, the exposure wavelength may be, in particular, (1) semiconductor laser (wavelength 830 nm, 532 nm, 488 nm, 405 nm, 375 nm, 355 nm, etc.), (2) metal halide lamp, (3) high pressure mercury lamp, g-line (wavelength 436 nm), h-line (wavelength 405 nm), i-line (wavelength 365 nm), broad (three wavelengths of g, h, i-line), (4) excimer laser, KrF excimer laser (wavelength 248 nm), ArF excimer laser (wavelength 193 nm), F2 excimer laser (wavelength 157 nm), (5) extreme ultraviolet light; EUV (wavelength 13.6 nm), (6) electron beam, (7) second harmonic 532 nm, third harmonic 355 nm, etc. of YAG laser. For the resin composition, exposure by a high pressure mercury lamp is particularly preferred, and exposure by i-line is more preferred from the viewpoint of exposure sensitivity.
The exposure method is not particularly limited as long as it is a method that exposes at least a part of the photosensitive resin layer, and examples of the exposure method include exposure using a photomask and exposure by a laser direct imaging method.
<露光後加熱工程>
 上記感光性樹脂層は、露光後に加熱する工程(露光後加熱工程)に供されてもよい。
 すなわち、本発明の硬化物の製造方法は、露光工程により露光された感光性樹脂層を加熱する露光後加熱工程を含んでもよい。
 露光後加熱工程は、露光工程後、現像工程前に行うことができる。
 露光後加熱工程における加熱温度は、50℃~140℃が好ましく、60℃~120℃がより好ましい。
 露光後加熱工程における加熱時間は、30秒間~300分間が好ましく、1分間~10分間がより好ましい。
 露光後加熱工程における昇温速度は、加熱開始時の温度から最高加熱温度まで1~12℃/分が好ましく、2~10℃/分がより好ましく、3~10℃/分が更に好ましい。
 また、昇温速度は加熱途中で適宜変更してもよい。
 露光後加熱工程における加熱手段としては、特に限定されず、公知のホットプレート、オーブン、赤外線ヒーター等を用いることができる。
 また、加熱に際し、窒素、ヘリウム、アルゴンなどの不活性ガスを流す等により、低酸素濃度の雰囲気下で行うことも好ましい。
<Post-exposure baking process>
The photosensitive resin layer may be subjected to a step of heating after exposure (post-exposure heating step).
That is, the method for producing a cured product of the present invention may include a post-exposure baking step of heating the photosensitive resin layer exposed in the exposure step.
The post-exposure baking step can be carried out after the exposure step and before the development step.
The heating temperature in the post-exposure baking step is preferably from 50°C to 140°C, and more preferably from 60°C to 120°C.
The heating time in the post-exposure baking step is preferably from 30 seconds to 300 minutes, and more preferably from 1 minute to 10 minutes.
The heating rate in the post-exposure heating step is preferably from 1 to 12° C./min, more preferably from 2 to 10° C./min, and even more preferably from 3 to 10° C./min, from the temperature at the start of heating to the maximum heating temperature.
The rate of temperature rise may be appropriately changed during heating.
The heating means in the post-exposure baking step is not particularly limited, and known hot plates, ovens, infrared heaters, etc. can be used.
It is also preferable that the heating be performed in an atmosphere of low oxygen concentration by flowing an inert gas such as nitrogen, helium, or argon.
<現像工程>
 露光後の上記感光性樹脂層は、現像液を用いて現像してパターンを形成する現像工程に供されてもよい。
 すなわち、本発明の硬化物の製造方法は、露光工程により露光された感光性樹脂層を現像液を用いて現像してパターンを形成する現像工程を含んでもよい。
 現像を行うことにより、感光性樹脂層の露光部及び非露光部のうち一方が除去され、パターンが形成される。
 ここで、感光性樹脂層の非露光部が現像工程により除去される現像をネガ型現像といい、感光性樹脂層の露光部が現像工程により除去される現像をポジ型現像という。
<Developing process>
The photosensitive resin layer after exposure may be subjected to a development step in which the layer is developed with a developer to form a pattern.
That is, the method for producing a cured product of the present invention may include a development step in which the photosensitive resin layer exposed in the exposure step is developed with a developer to form a pattern.
By carrying out development, one of the exposed and unexposed areas of the photosensitive resin layer is removed to form a pattern.
Here, development in which the non-exposed portion of the photosensitive resin layer is removed by the developing process is called negative development, and development in which the exposed portion of the photosensitive resin layer is removed by the developing process is called positive development.
〔現像液〕
 現像工程において用いられる現像液としては、アルカリ水溶液、又は、有機溶剤を含む現像液が挙げられる。
[Developer]
The developer used in the development step may be an aqueous alkaline solution or a developer containing an organic solvent.
 現像液がアルカリ水溶液である場合、アルカリ水溶液が含みうる塩基性化合物としては、無機アルカリ類、第一級アミン類、第二級アミン類、第三級アミン類、第四級アンモニウム塩が挙げられ、TMAH(テトラメチルアンモニウムヒドロキシド)、水酸化カリウム、炭酸ナトリウム、水酸化ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-ブチルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエタノールアミン、トリエタノールアミン、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドドキシド、テトラブチルアンモニウムヒドロキシド、テトラペンチルアンモニウムヒドロキシド、テトラヘキシルアンモニウムヒドロキシド、テトラオクチルアンモニウムヒドロキシド、エチルトリメチルアンモニウムヒドロキシド、ブチルトリメチルアンモニウムヒドロキシド、メチルトリアミルアンモニウムヒドロキシド、ジブチルジペンチルアンモニウムヒドロキシド、ジメチルビス(2-ヒドロキシエチル)アンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、ピロール、ピペリジンが好ましく、より好ましくはTMAHである。現像液における塩基性化合物の含有量は、現像液全質量中0.01~10質量%が好ましく、0.1~5質量%がより好ましく、0.3~3質量%が更に好ましい。 When the developer is an alkaline aqueous solution, examples of basic compounds that the alkaline aqueous solution may contain include inorganic alkalis, primary amines, secondary amines, tertiary amines, and quaternary ammonium salts. Preferred are TMAH (tetramethylammonium hydroxide), potassium hydroxide, sodium carbonate, sodium hydroxide, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-butylamine, triethylamine, methyldiethylamine, dimethylethanolamine, triethanolamine, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetrapentylammonium hydroxide, tetrahexylammonium hydroxide, tetraoctylammonium hydroxide, ethyltrimethylammonium hydroxide, butyltrimethylammonium hydroxide, methyltriamylammonium hydroxide, dibutyldipentylammonium hydroxide, dimethylbis(2-hydroxyethyl)ammonium hydroxide, trimethylphenylammonium hydroxide, trimethylbenzylammonium hydroxide, triethylbenzylammonium hydroxide, pyrrole, and piperidine, and more preferably TMAH. The content of the basic compound in the developer is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass, and even more preferably 0.3 to 3% by mass, based on the total mass of the developer.
 現像液が有機溶剤を含む場合、有機溶剤としては、国際公開第2021/112189号の段落0387に記載の化合物を用いることができる。この内容は本明細書に組み込まれる。また、アルコール類として、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ペンタノール、オクタノール、ジエチレングリコール、プロピレングリコール、メチルイソブチルカルビノール、トリエチレングリコール等、アミド類として、N-メチルピロリドン、N-エチルピロリドン、ジメチルホルムアミド等も好適に挙げられる。 When the developer contains an organic solvent, the compounds described in paragraph 0387 of WO 2021/112189 can be used as the organic solvent. The contents of this specification are incorporated herein. In addition, examples of alcohols that are suitable include methanol, ethanol, propanol, isopropanol, butanol, pentanol, octanol, diethylene glycol, propylene glycol, methyl isobutyl carbinol, and triethylene glycol, and examples of amides that are suitable include N-methylpyrrolidone, N-ethylpyrrolidone, and dimethylformamide.
 現像液が有機溶剤を含む場合、有機溶剤は1種又は、2種以上を混合して使用することができる。本発明では特にシクロペンタノン、γ-ブチロラクトン、ジメチルスルホキシド、N-メチル-2-ピロリドン、及び、シクロヘキサノンよりなる群から選ばれた少なくとも1種を含む現像液が好ましく、シクロペンタノン、γ-ブチロラクトン及びジメチルスルホキシドよりなる群から選ばれた少なくとも1種を含む現像液がより好ましく、シクロペンタノンを含む現像液が特に好ましい。 When the developer contains an organic solvent, the organic solvent may be used alone or in combination of two or more. In the present invention, a developer containing at least one selected from the group consisting of cyclopentanone, γ-butyrolactone, dimethylsulfoxide, N-methyl-2-pyrrolidone, and cyclohexanone is particularly preferred, a developer containing at least one selected from the group consisting of cyclopentanone, γ-butyrolactone, and dimethylsulfoxide is more preferred, and a developer containing cyclopentanone is particularly preferred.
 現像液が有機溶剤を含む場合、現像液の全質量に対する有機溶剤の含有量は、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、90質量%以上であることが特に好ましい。また、上記含有量は、100質量%であってもよい。 When the developer contains an organic solvent, the content of the organic solvent relative to the total mass of the developer is preferably 50% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, and particularly preferably 90% by mass or more. The content may be 100% by mass.
 現像液は化合物Aを含んでもよい。このような態様によれば、本発明の硬化物の製造方法は上述の条件2を満たすことができる。
 化合物Aの詳細については後述する。
 現像液における化合物Aの含有量としては、特に限定されないが、現像液の全質量に対して、1~20質量%が好ましく、2~15質量%が更に好ましく、3~8質量%がより好ましい。
 現像液は化合物Aを1種単独で含有してもよいし、2種以上を併用してもよい。2種以上を併用する場合には、これらの合計量が上記範囲内であることが好ましい。
The developer may contain compound A. According to such an embodiment, the method for producing a cured product of the present invention can satisfy the above-mentioned condition 2.
The details of compound A will be described later.
The content of compound A in the developer is not particularly limited, but is preferably from 1 to 20% by mass, more preferably from 2 to 15% by mass, and even more preferably from 3 to 8% by mass, based on the total mass of the developer.
The developer may contain one type of compound A alone or two or more types in combination. When two or more types are used in combination, the total amount thereof is preferably within the above range.
 現像液が有機溶剤を含む場合、現像液は塩基性化合物及び塩基発生剤の少なくとも一方を更に含んでもよい。現像液中の塩基性化合物及び塩基発生剤の少なくとも一方がパターンに浸透することにより、パターンの破断伸び等の性能が向上する場合がある。 When the developer contains an organic solvent, the developer may further contain at least one of a basic compound and a base generator. When at least one of the basic compound and the base generator in the developer permeates the pattern, the performance of the pattern, such as the breaking elongation, may be improved.
 塩基性化合物としては、硬化後の膜に残存した場合の信頼性(硬化物を更に加熱した場合の基材との密着性)の観点からは、有機塩基が好ましい。
 塩基性化合物としては、アミノ基を有する塩基性化合物が好ましく、1級アミン、2級アミン、3級アミン、アンモニウム塩、3級アミドなどが好ましいが、イミド化反応を促進する為には、1級アミン、2級アミン、3級アミン又はアンモニウム塩が好ましく、2級アミン、3級アミン又はアンモニウム塩がより好ましく、2級アミン又は3級アミンが更に好ましく、3級アミンが特に好ましい。
 塩基性化合物としては、硬化物の機械特性(破断伸び)の観点からは、硬化膜(得られる硬化物)中に残存しにくいものが好ましく、環化の促進の観点からは、気化等により、加熱前に残存量が減少しにくいものであることが好ましい。
 したがって、塩基性化合物の沸点は、常圧(101,325Pa)で30℃~350℃が好ましく、80℃~270℃がより好ましく、100℃~230℃が更に好ましい。
 塩基性化合物の沸点は、現像液に含まれる有機溶剤の沸点から20℃を減算した温度よりも高いことが好ましく、現像液に含まれる有機溶剤の沸点よりも高いことがより好ましい。
 例えば、有機溶剤の沸点が100℃である場合、使用される塩基性化合物は、沸点が80℃以上が好ましく、沸点が100℃以上がより好ましい。
 現像液は塩基性化合物を1種のみ含有してもよいし、2種以上を含有してもよい。
As the basic compound, from the viewpoint of reliability when it remains in the cured film (adhesion to a substrate when the cured product is further heated), an organic base is preferred.
As the basic compound, a basic compound having an amino group is preferable, and a primary amine, a secondary amine, a tertiary amine, an ammonium salt, a tertiary amide, or the like is preferable. In order to promote the imidization reaction, a primary amine, a secondary amine, a tertiary amine, or an ammonium salt is preferable, a secondary amine, a tertiary amine, or an ammonium salt is more preferable, a secondary amine or a tertiary amine is even more preferable, and a tertiary amine is particularly preferable.
From the viewpoint of the mechanical properties (elongation at break) of the cured product, it is preferable for the basic compound to be one that is unlikely to remain in the cured film (obtained cured product), and from the viewpoint of promoting cyclization, it is preferable for the basic compound to be one that is unlikely to decrease in the amount remaining before heating due to vaporization, etc.
Therefore, the boiling point of the basic compound is preferably 30°C to 350°C, more preferably 80°C to 270°C, and even more preferably 100°C to 230°C at normal pressure (101,325 Pa).
The boiling point of the basic compound is preferably higher than the temperature obtained by subtracting 20° C. from the boiling point of the organic solvent contained in the developer, and more preferably higher than the boiling point of the organic solvent contained in the developer.
For example, when the boiling point of the organic solvent is 100° C., the basic compound used preferably has a boiling point of 80° C. or higher, and more preferably has a boiling point of 100° C. or higher.
The developer may contain only one kind of basic compound, or may contain two or more kinds of basic compounds.
 塩基性化合物の具体例としては、エタノールアミン、ジエタノールアミン、トリエタノールアミン、エチルアミン、ジエチルアミン、トリエチルアミン、ヘキシルアミン、ドデシルアミン、シクロヘキシルアミン、シクロヘキシルメチルアミン、シクロヘキシルジメチルアミン、アニリン、N-メチルアニリン、N,N-ジメチルアニリン、ジフェニルアミン、ピリジン、ブチルアミン、イソブチルアミン、ジブチルアミン、トリブチルアミン、ジシクロヘキシルアミン、DBU(ジアザビシクロウンデセン)、DABCO(1,4-ジアザビシクロ[2.2.2]オクタン)、N,N-ジイソプロピルエチルアミン、テトラメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、エチレンジアミン、ブタンジアミン、1,5-ジアミノペンタン、N-メチルヘキシルアミン、N-メチルジシクロヘキシルアミン、トリオクチルアミン、N-エチルエチレンジアミン、N,N―ジエチルエチレンジアミン、N,N,N’,N’-テトラブチルー1,6-ヘキサンジアミン、スペルミジン、ジアミノシクロヘキサン、ビス(2-メトキシエチル)アミン、ピペリジン、メチルピペリジン、ジメチルピペリジン、ピペラジン、トロパン、N-フェニルベンジルアミン、1,2-ジアニリノエタン、2-アミノエタノール、トルイジン、アミノフェノール、ヘキシルアニリン、フェニレンジアミン、フェニルエチルアミン、ジベンジルアミン、ピロール、N-メチルピロール、N,N,N,N-テトラメチルエチレンジアミン、N,N,N,N-テトラメチルー1,3-プロパンジアミン等が挙げられる。 Specific examples of basic compounds include ethanolamine, diethanolamine, triethanolamine, ethylamine, diethylamine, triethylamine, hexylamine, dodecylamine, cyclohexylamine, cyclohexylmethylamine, cyclohexyldimethylamine, aniline, N-methylaniline, N,N-dimethylaniline, diphenylamine, pyridine, butylamine, isobutylamine, dibutylamine, tributylamine, dicyclohexylamine, DBU (diazabicycloundecene), DABCO (1,4-diazabicyclo[2.2.2]octane), N,N-diisopropylethylamine, tetramethylammonium hydroxide, tetrabutylammonium hydroxide, ethylenediamine, butanediamine, 1,5-diamino Examples include pentane, N-methylhexylamine, N-methyldicyclohexylamine, trioctylamine, N-ethylethylenediamine, N,N-diethylethylenediamine, N,N,N',N'-tetrabutyl-1,6-hexanediamine, spermidine, diaminocyclohexane, bis(2-methoxyethyl)amine, piperidine, methylpiperidine, dimethylpiperidine, piperazine, tropane, N-phenylbenzylamine, 1,2-dianilinoethane, 2-aminoethanol, toluidine, aminophenol, hexylaniline, phenylenediamine, phenylethylamine, dibenzylamine, pyrrole, N-methylpyrrole, N,N,N,N-tetramethylethylenediamine, and N,N,N,N-tetramethyl-1,3-propanediamine.
 塩基発生剤の好ましい態様は、上述の組成物に含まれる塩基発生剤の好ましい態様と同様である。特に、塩基発生剤は熱塩基発生剤であることが好ましい。 The preferred embodiment of the base generator is the same as the preferred embodiment of the base generator contained in the composition described above. In particular, it is preferred that the base generator is a thermal base generator.
 現像液が塩基性化合物及び塩基発生剤の少なくとも一方を含む場合、塩基性化合物又は塩基発生剤の含有量は、現像液の全質量に対して、10質量%以下が好ましく、5質量%以下がより好ましい。上記含有量の下限は特に限定されないが、例えば0.1質量%以上が好ましい。
 塩基性化合物又は塩基発生剤が現像液が用いられる環境で固体である場合、塩基性化合物又は塩基発生剤の含有量は、現像液の全固形分に対して、70~100質量%であることも好ましい。
 現像液は塩基性化合物及び塩基発生剤の少なくとも一方を1種のみ含有してもよいし、2種以上を含有してもよい。塩基性化合物及び塩基発生剤の少なくとも一方が2種以上である場合は、その合計が上記範囲であることが好ましい。
When the developer contains at least one of a basic compound and a base generator, the content of the basic compound or the base generator is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the developer. The lower limit of the content is not particularly limited, but is preferably, for example, 0.1% by mass or more.
When the basic compound or base generator is a solid in the environment in which the developer is used, the content of the basic compound or base generator is preferably 70 to 100% by mass based on the total solid content of the developer.
The developer may contain at least one of a basic compound and a base generator, or may contain two or more of them. When at least one of a basic compound and a base generator is two or more, the total amount of them is preferably within the above range.
 現像液は、他の成分を更に含んでもよい。
 他の成分としては、例えば、公知の界面活性剤や公知の消泡剤等が挙げられる。
The developer may further comprise other components.
Examples of other components include known surfactants and known defoamers.
〔現像液の供給方法〕
 現像液の供給方法は、所望のパターンを形成できれば特に制限は無く、感光性樹脂層が形成された基材を現像液に浸漬する方法、基材上に形成された感光性樹脂層にノズルを用いて現像液を供給するパドル現像、または、現像液を連続供給する方法がある。ノズルの種類は特に制限は無く、ストレートノズル、シャワーノズル、スプレーノズル等が挙げられる。
 現像液の浸透性、非画像部の除去性、製造上の効率の観点から、現像液をストレートノズルで供給する方法、又はスプレーノズルにて連続供給する方法が好ましく、画像部への現像液の浸透性の観点からは、スプレーノズルで供給する方法がより好ましい。
 また、現像液をストレートノズルにて連続供給後、基材をスピンし現像液を基材上から除去し、スピン乾燥後に再度ストレートノズルにて連続供給後、基材をスピンし現像液を基材上から除去する工程を採用してもよく、この工程を複数回繰り返しても良い。
 現像工程における現像液の供給方法としては、現像液が連続的に基材に供給され続ける工程、基材上で現像液が略静止状態で保たれる工程、基材上で現像液を超音波等で振動させる工程及びそれらを組み合わせた工程などが挙げられる。
[Method of Supplying Developer]
The method of supplying the developer is not particularly limited as long as the desired pattern can be formed, and includes a method of immersing a substrate on which a photosensitive resin layer is formed in the developer, a paddle development method in which the developer is supplied to the photosensitive resin layer formed on the substrate using a nozzle, and a method of continuously supplying the developer. The type of nozzle is not particularly limited, and examples thereof include a straight nozzle, a shower nozzle, and a spray nozzle.
From the viewpoints of the permeability of the developer, the removability of non-image areas, and production efficiency, a method of supplying the developer through a straight nozzle or a method of continuously supplying the developer through a spray nozzle is preferred, and from the viewpoint of the permeability of the developer into the image areas, a method of supplying the developer through a spray nozzle is more preferred.
Alternatively, a process may be adopted in which the developer is continuously supplied through a straight nozzle, the substrate is spun to remove the developer from the substrate, and after spin drying, the developer is continuously supplied again through a straight nozzle, and the substrate is spun to remove the developer from the substrate. This process may be repeated multiple times.
Methods of supplying the developer in the development step include a step in which the developer is continuously supplied to the substrate, a step in which the developer is kept substantially stationary on the substrate, a step in which the developer is vibrated by ultrasonic waves or the like on the substrate, and a combination of these steps.
 現像時間としては、10秒~10分間が好ましく、20秒~5分間がより好ましい。現像時の現像液の温度は、特に定めるものではないが、10~45℃が好ましく、18℃~30℃がより好ましい。 The development time is preferably 10 seconds to 10 minutes, and more preferably 20 seconds to 5 minutes. The temperature of the developer during development is not particularly specified, but is preferably 10 to 45°C, and more preferably 18°C to 30°C.
 現像工程において、現像液を用いた処理の後、更に、リンス液によるパターンの洗浄(リンス)を行ってもよい。また、パターン上に接する現像液が乾燥しきらないうちにリンス液を供給するなどの方法を採用しても良い。 In the development process, after treatment with the developer, the pattern may be washed (rinsed) with a rinse solution. Also, a method may be adopted in which a rinse solution is supplied before the developer in contact with the pattern has completely dried.
〔リンス液〕
 現像液がアルカリ水溶液である場合、リンス液としては、例えば水を用いることができる。現像液が有機溶剤を含む現像液である場合、リンス液としては、例えば、現像液に含まれる溶剤とは異なる溶剤(例えば、水、現像液に含まれる有機溶剤とは異なる有機溶剤)を用いることができる。
[Rinse solution]
When the developer is an alkaline aqueous solution, the rinse liquid may be, for example, water. When the developer is an organic solvent-containing developer, the rinse liquid may be, for example, a solvent different from the solvent contained in the developer (for example, water, an organic solvent different from the organic solvent contained in the developer).
 リンス液が有機溶剤を含む場合の有機溶剤としては、上述の現像液が有機溶剤を含む場合において例示した有機溶剤と同様の有機溶剤が挙げられる。
 リンス液に含まれる有機溶剤は、現像液に含まれる有機溶剤とは異なる有機溶剤であることが好ましく、現像液に含まれる有機溶剤よりも、パターンの溶解度が小さい有機溶剤がより好ましい。
When the rinsing liquid contains an organic solvent, examples of the organic solvent include the same organic solvents as those exemplified when the developer contains an organic solvent.
The organic solvent contained in the rinse liquid is preferably different from the organic solvent contained in the developer, and more preferably has a lower solubility for the pattern than the organic solvent contained in the developer.
 リンス液が有機溶剤を含む場合、有機溶剤は1種又は、2種以上を混合して使用することができる。有機溶剤は、シクロペンタノン、γ-ブチロラクトン、ジメチルスルホキシド、N-メチルピロリドン、シクロヘキサノン、PGMEA、PGMEが好ましく、シクロペンタノン、γ-ブチロラクトン、ジメチルスルホキシド、PGMEA、PGMEがより好ましく、シクロヘキサノン、PGMEAがさらに好ましい。 When the rinse solution contains an organic solvent, the organic solvent may be used alone or in combination of two or more. The organic solvent is preferably cyclopentanone, γ-butyrolactone, dimethylsulfoxide, N-methylpyrrolidone, cyclohexanone, PGMEA, or PGME, more preferably cyclopentanone, γ-butyrolactone, dimethylsulfoxide, PGMEA, or PGME, and even more preferably cyclohexanone or PGMEA.
 リンス液が有機溶剤を含む場合、リンス液の全質量に対し、有機溶剤は50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましい。また、リンス液の全質量に対し、有機溶剤は100質量%であってもよい。 When the rinse solution contains an organic solvent, the organic solvent preferably accounts for 50% by mass or more, more preferably 70% by mass or more, and even more preferably 90% by mass or more, based on the total mass of the rinse solution. Furthermore, the organic solvent may account for 100% by mass, based on the total mass of the rinse solution.
 リンス液は化合物Aを含んでもよい。このような態様によれば、本発明の硬化物の製造方法は上述の条件2を満たすことができる。
 リンス液における化合物Aの含有量としては、特に限定されないが、リンス液の全質量に対して、1~20質量%が好ましく、2~15質量%が更に好ましく、3~8質量%がより好ましい。
 リンスは化合物Aを1種単独で含有してもよいし、2種以上を併用してもよい。2種以上を併用する場合には、これらの合計量が上記範囲内であることが好ましい。
The rinse liquid may contain compound A. According to such an embodiment, the method for producing a cured product of the present invention can satisfy the above-mentioned condition 2.
The content of compound A in the rinse solution is not particularly limited, but is preferably 1 to 20 mass %, more preferably 2 to 15 mass %, and even more preferably 3 to 8 mass %, based on the total mass of the rinse solution.
The rinse may contain one type of compound A alone or two or more types in combination. When two or more types are used in combination, it is preferable that the total amount of these is within the above range.
 リンス液は塩基性化合物及び塩基発生剤の少なくとも一方を含んでもよい。
 特に限定されないが、現像液が有機溶剤を含む場合、リンス液が有機溶剤と塩基性化合物及び塩基発生剤の少なくとも一方とを含む態様も、本発明の好ましい態様の一つである。
 リンス液に含まれる塩基性化合物及び塩基発生剤としては、上述の現像液が有機溶剤を含む場合に含まれてもよい塩基性化合物及び塩基発生剤として例示された化合物が挙げられ、好ましい態様も同様である。
 リンス液に含まれる塩基性化合物及び塩基発生剤は、リンス液における溶剤への溶解度等を考慮して選択すればよい。
The rinse liquid may contain at least one of a basic compound and a base generator.
Although not particularly limited, when the developer contains an organic solvent, an embodiment in which the rinsing liquid contains an organic solvent and at least one of a basic compound and a base generator is also one of the preferred embodiments of the present invention.
Examples of the basic compound and base generator contained in the rinse solution include the compounds exemplified as the basic compound and base generator that may be contained in the above-mentioned developer containing an organic solvent, and preferred embodiments thereof are also the same.
The basic compound and base generator contained in the rinse solution may be selected in consideration of the solubility in the solvent in the rinse solution.
 リンス液が塩基性化合物及び塩基発生剤の少なくとも一方を含む場合、塩基性化合物又は塩基発生剤の含有量はリンス液の全質量に対して、10質量%以下が好ましく、5質量%以下がより好ましい。上記含有量の下限は特に限定されないが、例えば0.1質量%以上が好ましい。
 塩基性化合物又は塩基発生剤がリンス液が用いられる環境で固体である場合、塩基性化合物又は塩基発生剤の含有量は、リンス液の全固形分に対して、70~100質量%であることも好ましい。
 リンス液が塩基性化合物及び塩基発生剤の少なくとも一方を含む場合、リンス液は塩基性化合物及び塩基発生剤の少なくとも一方を1種のみ含有してもよいし、2種以上を含有してもよい。塩基性化合物及び塩基発生剤の少なくとも一方が2種以上である場合は、その合計が上記範囲であることが好ましい。
When the rinse solution contains at least one of a basic compound and a base generator, the content of the basic compound or the base generator is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the rinse solution. The lower limit of the content is not particularly limited, but is preferably, for example, 0.1% by mass or more.
When the basic compound or base generator is a solid in the environment in which the rinse liquid is used, the content of the basic compound or base generator is also preferably 70 to 100 mass % based on the total solid content of the rinse liquid.
When the rinse solution contains at least one of a basic compound and a base generator, the rinse solution may contain only one kind of at least one of the basic compound and the base generator, or may contain two or more kinds. When at least one of the basic compound and the base generator contains two or more kinds, the total amount thereof is preferably within the above range.
 リンス液は、他の成分を更に含んでもよい。
 他の成分としては、例えば、公知の界面活性剤や公知の消泡剤等が挙げられる。
The rinse solution may further contain other ingredients.
Examples of other components include known surfactants and known defoamers.
〔リンス液の供給方法〕
 リンス液の供給方法は、所望のパターンを形成できれば特に制限は無く、基材をリンス液に浸漬する方法、基材に液盛りによりリンス液を供給する方法、基材にリンス液をシャワーで供給する方法、基材上にストレートノズル等の手段によりリンス液を連続供給する方法がある。
 リンス液の浸透性、非画像部の除去性、製造上の効率の観点から、リンス液をシャワーノズル、ストレートノズル、スプレーノズルなどで供給する方法があり、スプレーノズルにて連続供給する方法が好ましく、画像部へのリンス液の浸透性の観点からは、スプレーノズルで供給する方法がより好ましい。ノズルの種類は特に制限は無く、ストレートノズル、シャワーノズル、スプレーノズル等が挙げられる。
 すなわち、リンス工程は、リンス液を上記露光後の感光性樹脂層に対してストレートノズルにより供給、又は、連続供給する工程であることが好ましく、リンス液をスプレーノズルにより供給する工程であることがより好ましい。
 リンス工程におけるリンス液の供給方法としては、リンス液が連続的に基材に供給され続ける工程、基材上でリンス液が略静止状態で保たれる工程、基材上でリンス液を超音波等で振動させる工程及びそれらを組み合わせた工程などが採用可能である。
[Method of Supplying Rinse Liquid]
The method of supplying the rinse liquid is not particularly limited as long as it can form a desired pattern, and examples of the method include a method of immersing the substrate in the rinse liquid, a method of supplying the rinse liquid to the substrate by puddling, a method of supplying the rinse liquid to the substrate by showering, and a method of continuously supplying the rinse liquid onto the substrate by means of a straight nozzle or the like.
From the viewpoints of the permeability of the rinse liquid, the removability of non-image areas, and production efficiency, the rinse liquid may be supplied using a shower nozzle, a straight nozzle, a spray nozzle, etc., and the method of continuously supplying the rinse liquid using a spray nozzle is preferred, while from the viewpoint of the permeability of the rinse liquid into the image areas, the method of supplying the rinse liquid using a spray nozzle is more preferred. There are no particular limitations on the type of nozzle, and examples include a straight nozzle, a shower nozzle, a spray nozzle, etc.
That is, the rinsing step is preferably a step of supplying a rinsing liquid to the exposed photosensitive resin layer through a straight nozzle or continuously supplying the rinsing liquid to the exposed photosensitive resin layer, and more preferably a step of supplying the rinsing liquid through a spray nozzle.
The method of supplying the rinsing liquid in the rinsing step may include a step of continuously supplying the rinsing liquid to the substrate, a step of keeping the rinsing liquid in a substantially stationary state on the substrate, a step of vibrating the rinsing liquid on the substrate by ultrasonic waves or the like, and a combination of these steps.
 リンス時間としては、10秒~10分間が好ましく、20秒~5分間がより好ましい。リンス時のリンス液の温度は、特に定めるものではないが、10~45℃が好ましく、18℃~30℃がより好ましい。 The rinsing time is preferably 10 seconds to 10 minutes, and more preferably 20 seconds to 5 minutes. The temperature of the rinsing liquid during rinsing is not particularly specified, but is preferably 10 to 45°C, and more preferably 18°C to 30°C.
 現像工程において、現像液を用いた処理の後、又は、リンス液によるパターンの洗浄の後に、接触用処理液とパターンとを接触させる工程を含んでもよい。また、パターン上に接する現像液又はリンス液が乾燥しきらないうちに接触用処理液を供給するなどの方法を採用しても良い。
 上記接触用処理液としては、水及び有機溶剤の少なくとも一方と、化合物Aとを含む接触用処理液が挙げられる。このような態様によれば、本発明の硬化物の製造方法は上述の条件2を満たすことができる。
 接触用処理液における化合物Aの含有量としては、特に限定されないが、接触用処理液の全質量に対して、1~20質量%が好ましく、2~15質量%が更に好ましく、3~8質量%がより好ましい。
 接触用処理液は化合物Aを1種単独で含有してもよいし、2種以上を併用してもよい。2種以上を併用する場合には、これらの合計量が上記範囲内であることが好ましい。
The developing step may include a step of contacting the pattern with a treatment liquid for contact after the treatment with the developer or after the cleaning of the pattern with a rinse liquid. Also, a method of supplying the treatment liquid for contact before the developer or rinse liquid in contact with the pattern is completely dried may be employed.
The contact treatment liquid may be a contact treatment liquid containing at least one of water and an organic solvent, and compound A. According to such an embodiment, the method for producing a cured product of the present invention can satisfy the above-mentioned condition 2.
The content of compound A in the contact treatment liquid is not particularly limited, but is preferably 1 to 20 mass %, more preferably 2 to 15 mass %, and even more preferably 3 to 8 mass %, based on the total mass of the contact treatment liquid.
The contact treatment liquid may contain one type of compound A alone or two or more types in combination. When two or more types are used in combination, the total amount thereof is preferably within the above range.
 また、上記接触用処理液としては、水及び有機溶剤の少なくとも一方と、塩基性化合物及び塩基発生剤の少なくとも一方とを含む接触用処理液が挙げられる。
 上記有機溶剤、及び、塩基性化合物及び塩基発生剤の少なくとも一方の好ましい態様は、上述のリンス液において用いられる有機溶剤、及び、塩基性化合物及び塩基発生剤の少なくとも一方の好ましい態様と同様である。
 接触用処理液のパターンへの供給方法は、上述のリンス液の供給方法と同様の方法を用いることができ、好ましい態様も同様である。
The contact treatment liquid may be a contact treatment liquid containing at least one of water and an organic solvent, and at least one of a basic compound and a base generator.
Preferred aspects of the organic solvent, and at least one of the basic compound and the base generator are the same as the preferred aspects of the organic solvent, and at least one of the basic compound and the base generator used in the above-mentioned rinse solution.
The contact treatment liquid can be supplied to the pattern in the same manner as the above-mentioned method for supplying the rinsing liquid, and the preferred embodiments are also the same.
 接触用処理液における塩基性化合物又は塩基発生剤の含有量は、接触用処理液の全質量に対して、10質量%以下が好ましく、5質量%以下がより好ましい。上記含有量の下限は特に限定されないが、例えば0.1質量%以上であることが好ましい。
 また、塩基性化合物又は塩基発生剤が接触用処理液が用いられる環境で固体である場合、塩基性化合物又は塩基発生剤の含有量は、接触用処理液の全固形分に対して、70~100質量%であることも好ましい。
 接触用処理液が塩基性化合物及び塩基発生剤の少なくとも一方を含む場合、接触用処理液は塩基性化合物及び塩基発生剤の少なくとも一方を1種のみ含有してもよいし、2種以上を含有してもよい。塩基性化合物及び塩基発生剤の少なくとも一方が2種以上である場合は、その合計が上記範囲であることが好ましい。
The content of the basic compound or base generator in the contact treatment liquid is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the contact treatment liquid. The lower limit of the content is not particularly limited, but is preferably, for example, 0.1% by mass or more.
In addition, when the basic compound or the base generator is a solid in the environment in which the contact treatment liquid is used, the content of the basic compound or the base generator is also preferably 70 to 100 mass % based on the total solid content of the contact treatment liquid.
When the contact treatment liquid contains at least one of a basic compound and a base generator, the contact treatment liquid may contain only one kind of at least one of a basic compound and a base generator, or may contain two or more kinds. When at least one of a basic compound and a base generator contains two or more kinds, the total of them is preferably in the above range.
<金属層形成工程>
 本発明の硬化物の製造方法は、加熱工程により得られた硬化後の樹脂層上に金属層を形成する金属層形成工程を含むことが好ましい。
<Metal Layer Forming Process>
The method for producing a cured product of the present invention preferably includes a metal layer forming step of forming a metal layer on the cured resin layer obtained by the heating step.
 金属層としては、特に限定なく、既存の金属種を使用することができ、銅、アルミニウム、ニッケル、バナジウム、チタン、クロム、コバルト、金、タングステン、錫、銀及びこれらの金属を含む合金が例示され、銅及びアルミニウムがより好ましく、銅が更に好ましい。 The metal layer can be made of any existing metal type without any particular limitations, and examples include copper, aluminum, nickel, vanadium, titanium, chromium, cobalt, gold, tungsten, tin, silver, and alloys containing these metals, with copper and aluminum being more preferred, and copper being even more preferred.
 金属層の形成方法は、特に限定なく、既存の方法を適用することができる。例えば、特開2007-157879号公報、特表2001-521288号公報、特開2004-214501号公報、特開2004-101850号公報、米国特許第7888181B2、米国特許第9177926B2に記載された方法を使用することができる。例えば、フォトリソグラフィ、PVD(物理蒸着法)、CVD(化学気相成長法)、リフトオフ、電解めっき、無電解めっき、エッチング、印刷、及びこれらを組み合わせた方法などが考えられる。より具体的には、スパッタリング、フォトリソグラフィ及びエッチングを組み合わせたパターニング方法、フォトリソグラフィと電解めっきを組み合わせたパターニング方法が挙げられる。めっきの好ましい態様としては、硫酸銅やシアン化銅めっき液を用いた電解めっきが挙げられる。 The method for forming the metal layer is not particularly limited, and existing methods can be applied. For example, the methods described in JP 2007-157879 A, JP 2001-521288 A, JP 2004-214501 A, JP 2004-101850 A, U.S. Patent No. 7,888,181 B2, and U.S. Patent No. 9,177,926 B2 can be used. For example, photolithography, PVD (physical vapor deposition), CVD (chemical vapor deposition), lift-off, electrolytic plating, electroless plating, etching, printing, and combinations of these methods are possible. More specifically, there are patterning methods that combine sputtering, photolithography, and etching, and patterning methods that combine photolithography and electrolytic plating. A preferred embodiment of plating is electrolytic plating using copper sulfate or copper cyanide plating solution.
 金属層の厚さとしては、最も厚肉の部分で、0.01~50μmが好ましく、1~10μmがより好ましい。 The thickness of the metal layer at its thickest point is preferably 0.01 to 50 μm, and more preferably 1 to 10 μm.
<用途>
 本発明の硬化物の製造方法、又は、硬化物の適用可能な分野としては、電子デバイスの絶縁膜、再配線層用層間絶縁膜、ストレスバッファ膜などが挙げられる。そのほか、封止フィルム、基板材料(フレキシブルプリント基板のベースフィルムやカバーレイ、層間絶縁膜)、又は上記のような実装用途の絶縁膜をエッチングでパターン形成することなどが挙げられる。これらの用途については、例えば、サイエンス&テクノロジー(株)「ポリイミドの高機能化と応用技術」2008年4月、柿本雅明/監修、CMCテクニカルライブラリー「ポリイミド材料の基礎と開発」2011年11月発行、日本ポリイミド・芳香族系高分子研究会/編「最新ポリイミド 基礎と応用」エヌ・ティー・エス,2010年8月等を参照することができる。
<Applications>
Examples of the field of application of the method for producing the cured product of the present invention or the cured product include insulating films for electronic devices, interlayer insulating films for rewiring layers, stress buffer films, etc. Other examples include etching patterns of sealing films, substrate materials (base films and coverlays for flexible printed circuit boards, interlayer insulating films), or insulating films for mounting applications such as those described above. For these applications, reference can be made to, for example, Science & Technology Co., Ltd. "High-performance and Applied Technology of Polyimides" April 2008, supervised by Masaaki Kakimoto, CMC Technical Library "Basics and Development of Polyimide Materials" published in November 2011, and Japan Polyimide and Aromatic Polymer Research Association/editor "Latest Polyimides Basics and Applications" NTS, August 2010.
 本発明の硬化物の製造方法、又は、本発明の硬化物の製造方法により得られた硬化物は、オフセット版面又はスクリーン版面などの版面の製造、成形部品のエッチングへの使用、エレクトロニクス、特に、マイクロエレクトロニクスにおける保護ラッカー及び誘電層の製造などにも用いることもできる。 The method for producing a cured product of the present invention, or the cured product obtained by the method for producing a cured product of the present invention, can also be used for producing printing plates such as offset printing plates or screen printing plates, for etching molded parts, and for producing protective lacquers and dielectric layers in electronics, especially microelectronics.
(積層体、及び、積層体の製造方法)
 積層体とは、本発明の硬化物の製造方法により得られた硬化物からなる層を複数層有する構造体をいう。
 積層体は、硬化物からなる層を2層以上含む積層体であり、3層以上積層した積層体としてもよい。
 上記積層体に含まれる2層以上の上記硬化物からなる層のうち、少なくとも1つが本発明の硬化物の製造方法により得られた硬化物からなる層であり、硬化物の収縮、又は、上記収縮に伴う硬化物の変形等を抑制する観点からは、上記積層体に含まれる全ての硬化物からなる層が本発明の硬化物の製造方法により得られた硬化物からなる層であることも好ましい。
(Laminate and method for manufacturing laminate)
The laminate refers to a structure having a plurality of layers each made of a cured product obtained by the method for producing a cured product of the present invention.
The laminate is a laminate including two or more layers made of a cured product, and may be a laminate including three or more layers.
Of the two or more layers made of the cured product contained in the laminate, at least one is a layer made of a cured product obtained by the method for producing a cured product of the present invention, and from the viewpoint of suppressing shrinkage of the cured product or deformation of the cured product associated with the shrinkage, it is also preferable that all of the layers made of the cured product contained in the laminate are layers made of a cured product obtained by the method for producing a cured product of the present invention.
 すなわち、本発明の積層体の製造方法は、本発明の硬化物の製造方法を含むことが好ましく、本発明の硬化物の製造方法を複数回繰り返すことを含むことがより好ましい。 In other words, the method for producing the laminate of the present invention preferably includes the method for producing the cured product of the present invention, and more preferably includes repeating the method for producing the cured product of the present invention multiple times.
 本発明の積層体の製造方法により得られた積層体は、硬化物からなる層を2層以上含み、上記硬化物からなる層同士のいずれかの間に金属層を含む態様が好ましい。上記金属層は、上記金属層形成工程により形成されることが好ましい。
 すなわち、本発明の積層体の製造方法は、複数回行われる硬化物の製造方法の間に、硬化物からなる層上に金属層を形成する金属層形成工程を更に含むことが好ましい。金属層形成工程の好ましい態様は上述の通りである。
 上記積層体としては、例えば、第一の硬化物からなる層、金属層、第二の硬化物からなる層の3つの層がこの順に積層された層構造を少なくとも含む積層体が好ましいものとして挙げられる。
 上記第一の硬化物からなる層及び上記第二の硬化物からなる層は、いずれも本発明の硬化物の製造方法により得られた硬化物からなる層であることが好ましい。上記第一の硬化物からなる層の形成に用いられる樹脂組成物と、上記第二の硬化物からなる層の形成に用いられる樹脂組成物とは、組成が同一の組成物であってもよいし、組成が異なる組成物であってもよい。本発明の積層体の製造方法により得られた積層体における金属層は、再配線層などの金属配線として好ましく用いられる。
The laminate obtained by the method for producing a laminate of the present invention preferably includes two or more layers made of a cured product, and includes a metal layer between any two of the layers made of the cured product. The metal layer is preferably formed by the metal layer forming step.
That is, the method for producing a laminate of the present invention preferably further includes a metal layer forming step of forming a metal layer on a layer made of a cured product between the steps for producing a cured product which are performed multiple times. A preferred embodiment of the metal layer forming step is as described above.
As the laminate, for example, a laminate including at least a layer structure in which three layers, a layer made of a first cured product, a metal layer, and a layer made of a second cured product, are laminated in this order, can be mentioned as a preferred example.
The layer made of the first cured product and the layer made of the second cured product are preferably layers made of a cured product obtained by the method for producing a cured product of the present invention. The resin composition used to form the layer made of the first cured product and the resin composition used to form the layer made of the second cured product may be compositions having the same composition or different compositions. The metal layer in the laminate obtained by the method for producing a laminate of the present invention is preferably used as metal wiring such as a rewiring layer.
<積層工程>
 本発明の積層体の製造方法は、積層工程を含むことが好ましい。
 積層工程とは、パターン(樹脂層)又は金属層の表面に、再度、(a)膜形成工程(層形成工程)、(b)露光工程、(c)現像工程、(d)減圧工程及び加熱工程を、この順に行うことを含む一連の工程である。ただし、(a)膜形成工程並びに(d)減圧工程及び加熱工程を繰り返す態様であってもよい。また、(d)加熱工程及び現像後露光工程の少なくとも一方の後には(e)金属層形成工程を含んでもよい。積層工程には、更に、上記乾燥工程等を適宜含んでいてもよいことは言うまでもない。
<Lamination process>
The method for producing the laminate of the present invention preferably includes a lamination step.
The lamination process is a series of processes including (a) a film formation process (layer formation process), (b) an exposure process, (c) a development process, (d) a pressure reduction process and a heating process, which are carried out again on the surface of the pattern (resin layer) or the metal layer in this order. However, the (a) film formation process and the (d) pressure reduction process and heating process may be repeated. In addition, after at least one of the (d) heating process and the post-development exposure process, the (e) metal layer formation process may be included. It goes without saying that the lamination process may further include the above-mentioned drying process and the like as appropriate.
 積層工程後、更に積層工程を行う場合には、上記露光工程後、上記加熱工程の後、又は、上記金属層形成工程後に、更に、表面活性化処理工程を行ってもよい。表面活性化処理としては、プラズマ処理が例示される。表面活性化処理の詳細については後述する。 If a further lamination step is performed after the lamination step, a surface activation treatment step may be performed after the exposure step, the heating step, or the metal layer formation step. An example of the surface activation treatment is a plasma treatment. Details of the surface activation treatment will be described later.
 上記積層工程は、2~20回行うことが好ましく、2~9回行うことがより好ましい。
 例えば、樹脂層/金属層/樹脂層/金属層/樹脂層/金属層のように、樹脂層を2層以上20層以下とする構成が好ましく、2層以上9層以下とする構成が更に好ましい。
 上記各層はそれぞれ、組成、形状、膜厚等が同一であってもよいし、異なっていてもよい。
The lamination step is preferably carried out 2 to 20 times, and more preferably 2 to 9 times.
For example, a structure of 2 to 20 resin layers, such as resin layer/metal layer/resin layer/metal layer/resin layer/metal layer, is preferred, and a structure of 2 to 9 resin layers is more preferred.
The layers may be the same or different in composition, shape, film thickness, etc.
 本発明では特に、金属層を設けた後、更に、上記金属層を覆うように、上記樹脂組成物の硬化物(樹脂層)を形成する態様が好ましい。具体的には、(a)膜形成工程、(b)露光工程、(c)現像工程、(d)減圧工程及び加熱工程、(e)金属層形成工程、の順序で繰り返す態様、又は、(a)膜形成工程、(d)減圧工程及び加熱工程、(e)金属層形成工程の順序で繰り返す態様が挙げられる。樹脂組成物層(樹脂層)を積層する積層工程と、金属層形成工程を交互に行うことにより、樹脂組成物層(樹脂層)と金属層を交互に積層することができる。 In the present invention, a particularly preferred embodiment is one in which, after providing a metal layer, a cured product (resin layer) of the resin composition is further formed so as to cover the metal layer. Specifically, the following steps are repeated in this order: (a) film formation step, (b) exposure step, (c) development step, (d) pressure reduction step and heating step, and (e) metal layer formation step; or the following steps are repeated in this order: (a) film formation step, (d) pressure reduction step and heating step, and (e) metal layer formation step. By alternately performing the lamination step of laminating resin composition layers (resin layers) and the metal layer formation step, the resin composition layers (resin layers) and the metal layer can be laminated alternately.
(表面活性化処理工程)
 本発明の積層体の製造方法は、上記金属層および樹脂組成物層の少なくとも一部を表面活性化処理する、表面活性化処理工程を含むことが好ましい。
 表面活性化処理工程は、通常、金属層形成工程の後に行うが、上記現像工程の後(好ましくは、加熱工程の後)、樹脂組成物層に表面活性化処理工程を行ってから、金属層形成工程を行ってもよい。
 表面活性化処理は、金属層の少なくとも一部のみに行ってもよいし、露光後の樹脂組成物層の少なくとも一部のみに行ってもよいし、金属層および露光後の樹脂組成物層の両方について、それぞれ、少なくとも一部に行ってもよい。表面活性化処理は、金属層の少なくとも一部について行うことが好ましく、金属層のうち、表面に樹脂組成物層を形成する領域の一部または全部に表面活性化処理を行うことが好ましい。このように、金属層の表面に表面活性化処理を行うことにより、その表面に設けられる樹脂組成物層(膜)との密着性を向上させることができる。
 表面活性化処理は、露光後の樹脂組成物層(樹脂層)の一部または全部についても行うことが好ましい。このように、樹脂組成物層の表面に表面活性化処理を行うことにより、表面活性化処理した表面に設けられる金属層や樹脂層との密着性を向上させることができる。特にネガ型現像を行う場合など、樹脂組成物層が硬化されている場合には、表面処理によるダメージを受けにくく、密着性が向上しやすい。
 表面活性化処理は、例えば、国際公開第2021/112189号の段落0415に記載の方法により実施することができる。この内容は本明細書に組み込まれる。
(Surface activation treatment process)
The method for producing a laminate of the present invention preferably includes a surface activation treatment step of subjecting at least a portion of the metal layer and the resin composition layer to a surface activation treatment.
The surface activation treatment step is usually carried out after the metal layer formation step, but the resin composition layer may be subjected to a surface activation treatment step after the above-mentioned development step (preferably after the heating step) and then the metal layer formation step may be carried out.
The surface activation treatment may be performed on at least a part of the metal layer, or on at least a part of the resin composition layer after exposure, or on at least a part of both the metal layer and the resin composition layer after exposure. The surface activation treatment is preferably performed on at least a part of the metal layer, and it is preferable to perform the surface activation treatment on a part or all of the area of the metal layer on which the resin composition layer is formed on the surface. In this way, by performing the surface activation treatment on the surface of the metal layer, the adhesion with the resin composition layer (film) provided on the surface can be improved.
It is preferable to perform the surface activation treatment on a part or the whole of the resin composition layer (resin layer) after exposure. In this way, by performing the surface activation treatment on the surface of the resin composition layer, it is possible to improve the adhesion with the metal layer or the resin layer provided on the surface that has been surface-activated. In particular, when performing negative development, etc., when the resin composition layer is cured, it is less likely to be damaged by the surface treatment, and the adhesion is likely to be improved.
The surface activation treatment can be carried out, for example, by the method described in paragraph 0415 of WO 2021/112189, the contents of which are incorporated herein by reference.
(半導体デバイス及びその製造方法)
 本発明は、本発明の硬化物の製造方法により得られた硬化物、又は、積層体の製造方法により得られた積層体を含む半導体デバイスも開示する。
 また、本発明は、本発明の硬化物の製造方法、又は、積層体の製造方法を含む半導体デバイスの製造方法も開示する。
 樹脂組成物を再配線層用層間絶縁膜の形成に用いた半導体デバイスの具体例としては、特開2016-027357号公報の段落0213~0218の記載及び図1の記載を参酌でき、これらの内容は本明細書に組み込まれる。
(Semiconductor device and its manufacturing method)
The present invention also discloses a semiconductor device including a cured product obtained by the method for producing a cured product of the present invention, or a laminate obtained by the method for producing a laminate of the present invention.
The present invention also discloses a method for producing a semiconductor device, which includes the method for producing the cured product or the method for producing the laminate of the present invention.
As specific examples of semiconductor devices in which the resin composition is used to form an interlayer insulating film for a rewiring layer, the descriptions in paragraphs 0213 to 0218 and FIG. 1 of JP-A-2016-027357 can be referred to, and the contents of these are incorporated herein by reference.
 本発明の硬化物の製造方法において樹脂層の形成に用いられる樹脂組成物に含まれる成分の詳細について説明する。
 樹脂層に含まれる成分も樹脂組成物に含まれる成分と同様であるが、本発明の硬化物の製造方法が上述の露光工程を含む場合には、重合性化合物、ラジカル重合性基を有する化合物Aなどは樹脂層においては重合している場合がある。また、光重合開始剤等は露光により分解している場合が有る。
 また、本発明の硬化物の製造方法が上述の乾燥工程を含む場合には、溶剤は揮発している場合が有る。
 減圧工程に供される直前の樹脂層における溶剤の含有量は、樹脂層の全質量に対して0.001~10質量%であることが好ましく、0.01~5質量%であることがより好ましい。
 溶剤以外の成分の樹脂層における含有量は、以下の「樹脂組成物の全固形分に対する」という意味の記載を「樹脂層の全固形分に対する」と読み替えたものである。ただし、樹脂層においては、上述の通り、各成分は重合、露光による分解等により構造が変化している場合がある。
 また、減圧工程を行うため、最終的に硬化物に残りやすいよう、各成分としては分子量が大きいもの、重合等により最終的な分子量が大きくなるもの、膜と親和性が高く相溶しやすいもの等が好ましい。
 また、溶剤、又は、光ラジカル重合開始剤の分解物などは、減圧工程により揮発することが好ましいため、分子量が小さいもの、沸点が低いものなどを選択することが好ましい。
The components contained in the resin composition used to form the resin layer in the method for producing a cured product of the present invention will be described in detail below.
The components contained in the resin layer are the same as those contained in the resin composition, but when the method for producing a cured product of the present invention includes the above-mentioned exposure step, the polymerizable compound, the compound A having a radical polymerizable group, etc. may be polymerized in the resin layer. Also, the photopolymerization initiator, etc. may be decomposed by exposure to light.
Furthermore, when the method for producing a cured product of the present invention includes the above-mentioned drying step, the solvent may volatilize.
The content of the solvent in the resin layer immediately before being subjected to the decompression step is preferably 0.001 to 10% by mass, and more preferably 0.01 to 5% by mass, based on the total mass of the resin layer.
The content of the components other than the solvent in the resin layer is obtained by replacing the meaning of "relative to the total solid content of the resin composition" below with "relative to the total solid content of the resin layer." However, as described above, in the resin layer, the structure of each component may change due to polymerization, decomposition due to exposure, etc.
In addition, since a decompression process is performed, it is preferable that each component has a large molecular weight, that the final molecular weight of which increases through polymerization or the like, and that each component has a high affinity and is easily compatible with the membrane so that each component is likely to remain in the final cured product.
In addition, since it is preferable that the solvent or the decomposition product of the photoradical polymerization initiator is evaporated by the decompression step, it is preferable to select a solvent having a small molecular weight and a low boiling point.
<ポリイミド前駆体>
 樹脂組成物は、ポリイミド前駆体を含む。
 ポリイミド前駆体は重合性基を有することが好ましく、ラジカル重合性基を含むことがより好ましい。
 ポリイミド前駆体がラジカル重合性基を有する場合、樹脂組成物は、ラジカル重合開始剤を含むことが好ましく、ラジカル重合開始剤を含み、かつ、ラジカル架橋剤を含むことがより好ましい。さらに必要に応じて、増感剤を含むことができる。このような樹脂組成物からは、例えば、ネガ型感光膜が形成される。
 また、ポリイミド前駆体は、酸分解性基等の極性変換基を有していてもよい。
 ポリイミド前駆体が酸分解性基を有する場合、樹脂組成物は、光酸発生剤を含むことが好ましい。このような樹脂組成物からは、例えば、化学増幅型であるポジ型感光膜又はネガ型感光膜が形成される。
<Polyimide precursor>
The resin composition includes a polyimide precursor.
The polyimide precursor preferably has a polymerizable group, and more preferably contains a radically polymerizable group.
When the polyimide precursor has a radical polymerizable group, the resin composition preferably contains a radical polymerization initiator, more preferably contains a radical polymerization initiator and a radical crosslinking agent. If necessary, the resin composition may further contain a sensitizer. For example, a negative photosensitive film is formed from such a resin composition.
The polyimide precursor may also have a polarity conversion group such as an acid-decomposable group.
When the polyimide precursor has an acid-decomposable group, the resin composition preferably contains a photoacid generator. From such a resin composition, for example, a chemically amplified positive or negative photosensitive film is formed.
〔ポリイミド前駆体〕
 本発明で用いるポリイミド前駆体は、その種類等は特に限定されないが、下記式(2)で表される繰返し単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000003

 式(2)中、A及びAは、それぞれ独立に、酸素原子又は-NR-を表し、R111は、2価の有機基を表し、R115は、4価の有機基を表し、R113及びR114は、それぞれ独立に、水素原子又は1価の有機基を表し、Rは水素原子又は1価の有機基を表す。
[Polyimide precursor]
The polyimide precursor used in the present invention is not particularly limited in type, but preferably contains a repeating unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000003

In formula (2), A1 and A2 each independently represent an oxygen atom or -NRz- , R111 represents a divalent organic group, R115 represents a tetravalent organic group, R113 and R114 each independently represent a hydrogen atom or a monovalent organic group, and Rz represents a hydrogen atom or a monovalent organic group.
 式(2)におけるA及びAは、それぞれ独立に、酸素原子又は-NR-を表し、酸素原子が好ましい。
 Rは水素原子又は1価の有機基を表し、水素原子が好ましい。
 式(2)におけるR111は、2価の有機基を表す。2価の有機基としては、直鎖又は分岐の脂肪族基、環状の脂肪族基及び芳香族基を含む基が例示され、炭素数2~20の直鎖又は分岐の脂肪族基、炭素数3~20の環状の脂肪族基、炭素数3~20の芳香族基、又は、これらの組み合わせからなる基が好ましく、炭素数6~20の芳香族基を含む基がより好ましい。上記直鎖又は分岐の脂肪族基は鎖中の炭化水素基がヘテロ原子を含む基で置換されていてもよく、上記環状の脂肪族基および芳香族基は環員の炭化水素基がヘテロ原子を含む基で置換されていてもよい。式(2)におけるR111の例としては、-Ar-および-Ar-L-Ar-で表される基が挙げられ、-Ar-L-Ar-で表される基が好ましい。但し、Arは、それぞれ独立に、芳香族基であり、Lは、単結合、又は、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-CO-、-S-、-SO-若しくは-NHCO-、あるいは、上記の2つ以上の組み合わせからなる基である。これらの好ましい範囲は、上述のとおりである。
In formula (2), A 1 and A 2 each independently represent an oxygen atom or —NR z —, and preferably an oxygen atom.
Rz represents a hydrogen atom or a monovalent organic group, and is preferably a hydrogen atom.
R 111 in formula (2) represents a divalent organic group. Examples of the divalent organic group include a linear or branched aliphatic group, a cyclic aliphatic group, and a group containing an aromatic group. A linear or branched aliphatic group having 2 to 20 carbon atoms, a cyclic aliphatic group having 3 to 20 carbon atoms, an aromatic group having 3 to 20 carbon atoms, or a group consisting of a combination thereof is preferred, and a group containing an aromatic group having 6 to 20 carbon atoms is more preferred. The linear or branched aliphatic group may have a hydrocarbon group in the chain substituted with a group containing a heteroatom, and the cyclic aliphatic group and aromatic group may have a hydrocarbon group in the ring substituted with a group containing a heteroatom. Examples of R 111 in formula (2) include groups represented by -Ar- and -Ar-L-Ar-, and a group represented by -Ar-L-Ar- is preferred. Here, each Ar is independently an aromatic group, and L is a single bond, an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, -O-, -CO-, -S-, -SO 2 - or -NHCO-, or a group consisting of a combination of two or more of the above. The preferred ranges of these are as described above.
 R111は、ジアミンから誘導されることが好ましい。ポリイミド前駆体の製造に用いられるジアミンとしては、直鎖又は分岐の脂肪族、環状の脂肪族又は芳香族ジアミンなどが挙げられる。ジアミンは、1種のみ用いてもよいし、2種以上用いてもよい。
 具体的には、R111は、炭素数2~20の直鎖又は分岐の脂肪族基、炭素数3~20の環状の脂肪族基、炭素数3~20の芳香族基、又は、これらの組み合わせからなる基を含むジアミンであることが好ましく、炭素数6~20の芳香族基を含むジアミンであることがより好ましい。上記直鎖又は分岐の脂肪族基は鎖中の炭化水素基がヘテロ原子を含む基で置換されていてもよく上記環状の脂肪族基および芳香族基は環員の炭化水素基がヘテロ原子を含む基で置換されていてもよい。芳香族基を含む基の例としては、下記が挙げられる。
R 111 is preferably derived from a diamine. Examples of the diamine used in the production of the polyimide precursor include linear or branched aliphatic, cyclic aliphatic or aromatic diamines. Only one type of diamine may be used, or two or more types may be used.
Specifically, R 111 is preferably a diamine containing a linear or branched aliphatic group having 2 to 20 carbon atoms, a cyclic aliphatic group having 3 to 20 carbon atoms, an aromatic group having 3 to 20 carbon atoms, or a group consisting of a combination thereof, and more preferably a diamine containing an aromatic group having 6 to 20 carbon atoms. The linear or branched aliphatic group may have a hydrocarbon group in the chain substituted with a group containing a hetero atom, and the cyclic aliphatic group and aromatic group may have a hydrocarbon group in the ring substituted with a group containing a hetero atom. Examples of groups containing an aromatic group include the following.
Figure JPOXMLDOC01-appb-C000004

 式中、Aは単結合又は2価の連結基を表し、単結合、又は、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-C(=O)-、-S-、-SO-、-NHCO-、又は、これらの組み合わせから選択される基であることが好ましく、単結合、又は、フッ素原子で置換されていてもよい炭素数1~3のアルキレン基、-O-、-C(=O)-、-S-、若しくは、-SO-から選択される基であることがより好ましく、-CH-、-O-、-S-、-SO-、-C(CF-、又は、-C(CH-であることが更に好ましい。
 式中、*は他の構造との結合部位を表す。
Figure JPOXMLDOC01-appb-C000004

In the formula, A represents a single bond or a divalent linking group, and is preferably a single bond, an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, -O-, -C(=O)-, -S-, -SO 2 -, -NHCO-, or a group selected from combinations thereof, more preferably a single bond, an alkylene group having 1 to 3 carbon atoms which may be substituted with a fluorine atom, -O-, -C(=O)-, -S-, or -SO 2 -, and further preferably -CH 2 -, -O-, -S-, -SO 2 -, -C(CF 3 ) 2 -, or -C(CH 3 ) 2 -.
In the formula, * represents a bonding site with other structures.
 ジアミンとしては、具体的には、1,2-ジアミノエタン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,4-ジアミノブタン又は1,6-ジアミノヘキサン;
1,2-又は1,3-ジアミノシクロペンタン、1,2-、1,3-又は1,4-ジアミノシクロヘキサン、1,2-、1,3-又は1,4-ビス(アミノメチル)シクロヘキサン、ビス-(4-アミノシクロヘキシル)メタン、ビス-(3-アミノシクロヘキシル)メタン、4,4’-ジアミノ-3,3’-ジメチルシクロヘキシルメタン及びイソホロンジアミン;
m-又はp-フェニレンジアミン、ジアミノトルエン、4,4’-又は3,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルエーテル、3,3-ジアミノジフェニルエーテル、4,4’-又は3,3’-ジアミノジフェニルメタン、4,4’-又は3,3’-ジアミノジフェニルスルホン、4,4’-又は3,3’-ジアミノジフェニルスルフィド、4,4’-又は3,3’-ジアミノベンゾフェノン、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)プロパン、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(4-アミノ-3-ヒドロキシフェニル)スルホン、4,4’-ジアミノパラテルフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(2-アミノフェノキシ)フェニル]スルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、9,10-ビス(4-アミノフェニル)アントラセン、3,3’-ジメチル-4,4’-ジアミノジフェニルスルホン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、4,4’-ジアミノオクタフルオロビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、9,9-ビス(4-アミノフェニル)-10-ヒドロアントラセン、3,3’,4,4’-テトラアミノビフェニル、3,3’,4,4’-テトラアミノジフェニルエーテル、1,4-ジアミノアントラキノン、1,5-ジアミノアントラキノン、3,3-ジヒドロキシ-4,4’-ジアミノビフェニル、9,9’-ビス(4-アミノフェニル)フルオレン、4,4’-ジメチル-3,3’-ジアミノジフェニルスルホン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、2,4-及び2,5-ジアミノクメン、2,5-ジメチル-p-フェニレンジアミン、アセトグアナミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,4,6-トリメチル-m-フェニレンジアミン、ビス(3-アミノプロピル)テトラメチルジシロキサン、ビス(p-アミノフェニル)オクタメチルペンタシロキサン、2,7-ジアミノフルオレン、2,5-ジアミノピリジン、1,2-ビス(4-アミノフェニル)エタン、ジアミノベンズアニリド、ジアミノ安息香酸のエステル、1,5-ジアミノナフタレン、ジアミノベンゾトリフルオライド、1,3-ビス(4-アミノフェニル)ヘキサフルオロプロパン、1,4-ビス(4-アミノフェニル)オクタフルオロブタン、1,5-ビス(4-アミノフェニル)デカフルオロペンタン、1,7-ビス(4-アミノフェニル)テトラデカフルオロヘプタン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(2-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ビス(トリフルオロメチル)フェニル]ヘキサフルオロプロパン、p-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ビフェニル、4,4’-ビス(4-アミノ-3-トリフルオロメチルフェノキシ)ビフェニル、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ジフェニルスルホン、4,4’-ビス(3-アミノ-5-トリフルオロメチルフェノキシ)ジフェニルスルホン、2,2-ビス[4-(4-アミノ-3-トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン、3,3’,5,5’-テトラメチル-4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、2,2’,5,5’,6,6’-ヘキサフルオロトリジン及び4,4’-ジアミノクアテルフェニルから選ばれる少なくとも1種のジアミンが挙げられる。
Specific examples of diamines include 1,2-diaminoethane, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane, and 1,6-diaminohexane;
1,2- or 1,3-diaminocyclopentane, 1,2-, 1,3- or 1,4-diaminocyclohexane, 1,2-, 1,3- or 1,4-bis(aminomethyl)cyclohexane, bis-(4-aminocyclohexyl)methane, bis-(3-aminocyclohexyl)methane, 4,4'-diamino-3,3'-dimethylcyclohexylmethane, and isophoronediamine;
m- or p-phenylenediamine, diaminotoluene, 4,4'- or 3,3'-diaminobiphenyl, 4,4'-diaminodiphenyl ether, 3,3-diaminodiphenyl ether, 4,4'- or 3,3'-diaminodiphenylmethane, 4,4'- or 3,3'-diaminodiphenyl sulfone, 4,4'- or 3,3'-diaminodiphenyl sulfide, 4,4'- or 3,3'-diaminobenzophenone, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl phenyl, 2,2-bis(4-aminophenyl)propane, 2,2-bis(4-aminophenyl)hexafluoropropane, 2,2-bis(3-hydroxy-4-aminophenyl)propane, 2,2-bis(3-hydroxy-4-aminophenyl)hexafluoropropane, 2,2-bis(3-amino-4-hydroxyphenyl)propane, 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane, bis(3-amino-4-hydroxyphenyl)sulfone, bis(4-amino-3-hydroxyphenyl)sulfone, 4,4'-diaminoparaterphenyl , 4,4'-bis(4-aminophenoxy)biphenyl, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, bis[4-(2-aminophenoxy)phenyl]sulfone, 1,4-bis(4-aminophenoxy)benzene, 9,10-bis(4-aminophenyl)anthracene, 3,3'-dimethyl-4,4'-diaminodiphenylsulfone, 1,3-bis(4-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene, 1,3-bis(4-aminophenyl)benzene, 3,3'-di Ethyl-4,4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 4,4'-diaminooctafluorobiphenyl, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, 9,9-bis(4-aminophenyl)-10-hydroanthracene, 3,3',4,4'-tetraaminobiphenyl, 3,3',4,4'-tetraaminodiphenyl ether, 1,4-diaminoanthraquinone, 1,5-diaminoanthraquinone, 3,3-dihydro 4,4'-dimethyl-3,3'-diaminodiphenyl sulfone, 3,3',5,5'-tetramethyl-4,4'-diaminodiphenylmethane, 2,4- and 2,5-diaminocumene, 2,5-dimethyl-p-phenylenediamine, acetoguanamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,4,6-trimethyl-m-phenylenediamine, bis(3-aminopropyl)tetramethyldisiloxane, bis(p-aminophenyl)octamethylpentasiloxane , 2,7-diaminofluorene, 2,5-diaminopyridine, 1,2-bis(4-aminophenyl)ethane, diaminobenzanilide, esters of diaminobenzoic acid, 1,5-diaminonaphthalene, diaminobenzotrifluoride, 1,3-bis(4-aminophenyl)hexafluoropropane, 1,4-bis(4-aminophenyl)octafluorobutane, 1,5-bis(4-aminophenyl)decafluoropentane, 1,7-bis(4-aminophenyl)tetradecafluoroheptane, 2,2-bis[4-(3-aminophenoxy)phenyl]hexafluoropropane , 2,2-bis[4-(2-aminophenoxy)phenyl]hexafluoropropane, 2,2-bis[4-(4-aminophenoxy)-3,5-dimethylphenyl]hexafluoropropane, 2,2-bis[4-(4-aminophenoxy)-3,5-bis(trifluoromethyl)phenyl]hexafluoropropane, p-bis(4-amino-2-trifluoromethylphenoxy)benzene, 4,4'-bis(4-amino-2-trifluoromethylphenoxy)biphenyl, 4,4'-bis(4-amino-3-trifluoromethylphenoxy)biphenyl, 4,4'-bis(4 and at least one diamine selected from 3,3',5,5'-tetramethyl-4,4'-diaminobiphenyl, 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl, 2,2',5,5',6,6'-hexafluorotolidine, and 4,4'-diaminoquaterphenyl.
 また、国際公開第2017/038598号の段落0030~0031に記載のジアミン(DA-1)~(DA-18)も好ましい。 Also preferred are the diamines (DA-1) to (DA-18) described in paragraphs 0030 to 0031 of WO 2017/038598.
 また、国際公開第2017/038598号の段落0032~0034に記載の2つ以上のアルキレングリコール単位を主鎖にもつジアミンも好ましく用いられる。 Also preferably used are diamines having two or more alkylene glycol units in the main chain, as described in paragraphs 0032 to 0034 of WO 2017/038598.
 R111は、得られる有機膜の柔軟性の観点から、-Ar-L-Ar-で表されることが好ましい。但し、Arは、それぞれ独立に、芳香族基であり、Lは、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-CO-、-S-、-SO-又は-NHCO-、あるいは、上記の2つ以上の組み合わせからなる基である。Arは、フェニレン基が好ましく、Lは、フッ素原子で置換されていてもよい炭素数1又は2の脂肪族炭化水素基、-O-、-CO-、-S-又は-SO-が好ましい。ここでの脂肪族炭化水素基は、アルキレン基が好ましい。 From the viewpoint of flexibility of the resulting organic film, R 111 is preferably represented by -Ar-L-Ar-. Here, each Ar is independently an aromatic group, and L is an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, -O-, -CO-, -S-, -SO 2 - or -NHCO-, or a group consisting of a combination of two or more of the above. Ar is preferably a phenylene group, and L is preferably an aliphatic hydrocarbon group having 1 or 2 carbon atoms which may be substituted with a fluorine atom, -O-, -CO-, -S- or -SO 2 -. The aliphatic hydrocarbon group here is preferably an alkylene group.
 また、R111は、i線透過率の観点から、下記式(51)又は式(61)で表される2価の有機基であることが好ましい。特に、i線透過率、入手のし易さの観点から、式(61)で表される2価の有機基であることがより好ましい。
 式(51)

 式(51)中、R50~R57は、それぞれ独立に、水素原子、フッ素原子又は1価の有機基であり、R50~R57の少なくとも1つは、フッ素原子、メチル基又はトリフルオロメチル基であり、*はそれぞれ独立に、式(2)中の窒素原子との結合部位を表す。
 R50~R57の1価の有機基としては、炭素数1~10(好ましくは炭素数1~6)の無置換のアルキル基、炭素数1~10(好ましくは炭素数1~6)のフッ化アルキル基等が挙げられる。

 式(61)中、R58及びR59は、それぞれ独立に、フッ素原子、メチル基、又はトリフルオロメチル基であり、*はそれぞれ独立に、式(2)中の窒素原子との結合部位を表す。
 式(51)又は式(61)の構造を与えるジアミンとしては、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2’-ビス(フルオロ)-4,4’-ジアミノビフェニル、4,4’-ジアミノオクタフルオロビフェニル等が挙げられる。これらは1種又は2種以上を組み合わせて用いてもよい。
From the viewpoint of i-line transmittance, R 111 is preferably a divalent organic group represented by the following formula (51) or formula (61). In particular, from the viewpoints of i-line transmittance and ease of availability, R 111 is more preferably a divalent organic group represented by formula (61).
Equation (51)

In formula (51), R 50 to R 57 each independently represent a hydrogen atom, a fluorine atom, or a monovalent organic group, at least one of R 50 to R 57 represents a fluorine atom, a methyl group, or a trifluoromethyl group, and * each independently represents a bonding site with the nitrogen atom in formula (2).
Examples of the monovalent organic group for R 50 to R 57 include an unsubstituted alkyl group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms) and a fluorinated alkyl group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms).

In formula (61), R 58 and R 59 each independently represent a fluorine atom, a methyl group, or a trifluoromethyl group, and * each independently represents a bonding site to the nitrogen atom in formula (2).
Examples of diamines that give the structure of formula (51) or formula (61) include 2,2'-dimethylbenzidine, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 2,2'-bis(fluoro)-4,4'-diaminobiphenyl, 4,4'-diaminooctafluorobiphenyl, etc. These may be used alone or in combination of two or more.
 式(2)におけるR115は、4価の有機基を表す。4価の有機基としては、芳香環を含む4価の有機基が好ましく、下記式(5)又は式(6)で表される基がより好ましい。
式(5)又は式(6)中、*はそれぞれ独立に、他の構造との結合部位を表す。

 式(5)中、R112は単結合又は2価の連結基であり、単結合、又は、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-CO-、-S-、-SO-、及び-NHCO-、ならびに、これらの組み合わせから選択される基であることが好ましく、単結合、または、フッ素原子で置換されていてもよい炭素数1~3のアルキレン基、-O-、-CO-、-S-及び-SO-から選択される基であることがより好ましく、-CH-、-C(CF-、-C(CH-、-O-、-CO-、-S-及び-SO-からなる群より選択される2価の基であることが更に好ましい。
In formula (2), R 115 represents a tetravalent organic group. As the tetravalent organic group, a tetravalent organic group containing an aromatic ring is preferable, and a group represented by the following formula (5) or formula (6) is more preferable.
In formula (5) or (6), each * independently represents a bonding site to another structure.

In formula (5), R 112 is a single bond or a divalent linking group and is preferably a single bond, or a group selected from an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, -O-, -CO-, -S-, -SO 2 -, -NHCO-, and a combination thereof, more preferably a single bond, or an alkylene group having 1 to 3 carbon atoms which may be substituted with a fluorine atom, -O-, -CO-, -S-, and -SO 2 -, and still more preferably a divalent group selected from the group consisting of -CH 2 -, -C(CF 3 ) 2 -, -C(CH 3 ) 2 -, -O-, -CO-, -S-, and -SO 2 -.
 R115は、具体的には、テトラカルボン酸二無水物から無水物基の除去後に残存するテトラカルボン酸残基などが挙げられる。ポリイミド前駆体は、R115に該当する構造として、テトラカルボン酸二無水物残基を、1種のみ含んでもよいし、2種以上含んでもよい。
 テトラカルボン酸二無水物は、下記式(O)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000008

 式(O)中、R115は、4価の有機基を表す。R115は式(2)におけるR115と同義であり、好ましい範囲も同様である。
Specific examples of R 115 include tetracarboxylic acid residues remaining after removal of anhydride groups from tetracarboxylic dianhydride. The polyimide precursor may contain only one type of tetracarboxylic dianhydride residue or two or more types of tetracarboxylic dianhydride residues as the structure corresponding to R 115 .
The tetracarboxylic dianhydride is preferably represented by the following formula (O).
Figure JPOXMLDOC01-appb-C000008

In formula (O), R 115 represents a tetravalent organic group. R 115 has the same meaning as R 115 in formula (2), and the preferred range is also the same.
 テトラカルボン酸二無水物の具体例としては、ピロメリット酸二無水物(PMDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルフィドテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルメタンテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルメタンテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,7-ナフタレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、1,3-ジフェニルヘキサフルオロプロパン-3,3,4,4-テトラカルボン酸二無水物、1,4,5,6-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、1,2,4,5-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,8,9,10-フェナントレンテトラカルボン酸二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、ならびに、これらの炭素数1~6のアルキル及び炭素数1~6のアルコキシ誘導体が挙げられる。 Specific examples of tetracarboxylic dianhydrides include pyromellitic dianhydride (PMDA), 3,3',4,4'-biphenyl tetracarboxylic dianhydride, 3,3',4,4'-diphenyl sulfide tetracarboxylic dianhydride, 3,3',4,4'-diphenyl sulfone tetracarboxylic dianhydride, 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 3,3',4,4'-diphenyl methane tetracarboxylic dianhydride, 2 ,2',3,3'-diphenylmethane tetracarboxylic dianhydride, 2,3,3',4'-biphenyl tetracarboxylic dianhydride, 2,3,3',4'-benzophenone tetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, 1,4,5,7-naphthalene tetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2 ,3-dicarboxyphenyl)propane dianhydride, 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, 1,3-diphenylhexafluoropropane-3,3,4,4-tetracarboxylic dianhydride, 1,4,5,6-naphthalene tetracarboxylic dianhydride, 2,2',3,3'-diphenyl tetracarboxylic dianhydride, 3,4,9,10-perylene tetracarboxylic dianhydride, 1,2,4,5-naphthalene tetracarboxylic dianhydride, 1,4,5,8-naphthalene tetracarboxylic dianhydride, 1,8,9,10-phenanthrene tetracarboxylic dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, 1,1-bis(3,4-dicarboxyphenyl)ethane dianhydride, 1,2,3,4-benzene tetracarboxylic dianhydride, and their alkyl and alkoxy derivatives having 1 to 6 carbon atoms.
また、国際公開第2017/038598号の段落0038に記載のテトラカルボン酸二無水物(DAA-1)~(DAA-5)も好ましい例として挙げられる。 Furthermore, tetracarboxylic dianhydrides (DAA-1) to (DAA-5) described in paragraph 0038 of WO 2017/038598 are also preferred examples.
 式(2)において、R111とR115の少なくとも一方がOH基を有することも可能である。より具体的には、R111として、ビスアミノフェノール誘導体の残基が挙げられる。 In the formula (2), at least one of R 111 and R 115 may have an OH group. More specifically, R 111 may be a residue of a bisaminophenol derivative.
 式(2)におけるR113及びR114は、それぞれ独立に、水素原子又は1価の有機基を表す。1価の有機基としては、直鎖又は分岐のアルキル基、環状アルキル基、芳香族基、又はポリアルキレンオキシ基を含むことが好ましい。また、R113及びR114の少なくとも一方が重合性基を含むことが好ましく、両方が重合性基を含むことがより好ましい。R113及びR114の少なくとも一方が2以上の重合性基を含むことも好ましい。重合性基としては、熱、ラジカル等の作用により、架橋反応することが可能な基であって、ラジカル重合性基が好ましい。重合性基の具体例としては、エチレン性不飽和結合を有する基、アルコキシメチル基、ヒドロキシメチル基、アシルオキシメチル基、エポキシ基、オキセタニル基、ベンゾオキサゾリル基、ブロックイソシアネート基、アミノ基が挙げられる。ポリイミド前駆体が有するラジカル重合性基としては、エチレン性不飽和結合を有する基が好ましい。
 エチレン性不飽和結合を有する基としては、ビニル基、アリル基、イソアリル基、2-メチルアリル基、ビニル基と直接結合した芳香環を有する基(例えば、ビニルフェニル基など)、(メタ)アクリルアミド基、(メタ)アクリロイルオキシ基、下記式(III)で表される基などが挙げられ、下記式(III)で表される基が好ましい。
R 113 and R 114 in formula (2) each independently represent a hydrogen atom or a monovalent organic group. The monovalent organic group preferably contains a linear or branched alkyl group, a cyclic alkyl group, an aromatic group, or a polyalkyleneoxy group. In addition, it is preferable that at least one of R 113 and R 114 contains a polymerizable group, and it is more preferable that both contain a polymerizable group. It is also preferable that at least one of R 113 and R 114 contains two or more polymerizable groups. The polymerizable group is a group capable of crosslinking by the action of heat, radicals, etc., and is preferably a radical polymerizable group. Specific examples of the polymerizable group include a group having an ethylenically unsaturated bond, an alkoxymethyl group, a hydroxymethyl group, an acyloxymethyl group, an epoxy group, an oxetanyl group, a benzoxazolyl group, a blocked isocyanate group, and an amino group. As the radical polymerizable group of the polyimide precursor, a group having an ethylenically unsaturated bond is preferable.
Examples of the group having an ethylenically unsaturated bond include a vinyl group, an allyl group, an isoallyl group, a 2-methylallyl group, a group having an aromatic ring directly bonded to a vinyl group (for example, a vinylphenyl group), a (meth)acrylamide group, a (meth)acryloyloxy group, and a group represented by the following formula (III), and the group represented by the following formula (III) is preferred.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(III)において、R200は、水素原子、メチル基、エチル基又はメチロール基を表し、水素原子又はメチル基が好ましい。
 式(III)において、*は他の構造との結合部位を表す。
 式(III)において、R201は、炭素数2~12のアルキレン基、-CHCH(OH)CH-、シクロアルキレン基又はポリアルキレンオキシ基を表す。
 好適なR201の例は、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、ドデカメチレン基等のアルキレン基、1,2-ブタンジイル基、1,3-ブタンジイル基、-CHCH(OH)CH-、ポリアルキレンオキシ基が挙げられ、エチレン基、プロピレン基等のアルキレン基、-CHCH(OH)CH-、シクロヘキシル基、ポリアルキレンオキシ基がより好ましく、エチレン基、プロピレン基等のアルキレン基、又はポリアルキレンオキシ基が更に好ましい。
 本発明において、ポリアルキレンオキシ基とは、アルキレンオキシ基が2以上直接結合した基をいう。ポリアルキレンオキシ基に含まれる複数のアルキレンオキシ基におけるアルキレン基は、それぞれ同一であっても異なっていてもよい。
 ポリアルキレンオキシ基が、アルキレン基が異なる複数種のアルキレンオキシ基を含む場合、ポリアルキレンオキシ基におけるアルキレンオキシ基の配列は、ランダムな配列であってもよいし、ブロックを有する配列であってもよいし、交互等のパターンを有する配列であってもよい。
 上記アルキレン基の炭素数(アルキレン基が置換基を有する場合、置換基の炭素数を含む)は、2以上であることが好ましく、2~10であることがより好ましく、2~6であることがより好ましく、2~5であることが更に好ましく、2~4であることが一層好ましく、2又は3であることがより更に好ましく、2であることが特に好ましい。
 また、上記アルキレン基は、置換基を有していてもよい。好ましい置換基としては、アルキル基、アリール基、ハロゲン原子等が挙げられる。
 また、ポリアルキレンオキシ基に含まれるアルキレンオキシ基の数(ポリアルキレンオキシ基の繰返し数)は、2~20が好ましく、2~10がより好ましく、2~6が更に好ましい。
 ポリアルキレンオキシ基としては、溶剤溶解性及び耐溶剤性の観点からは、ポリエチレンオキシ基、ポリプロピレンオキシ基、ポリトリメチレンオキシ基、ポリテトラメチレンオキシ基、又は、複数のエチレンオキシ基と複数のプロピレンオキシ基とが結合した基が好ましく、ポリエチレンオキシ基又はポリプロピレンオキシ基がより好ましく、ポリエチレンオキシ基が更に好ましい。上記複数のエチレンオキシ基と複数のプロピレンオキシ基とが結合した基において、エチレンオキシ基とプロピレンオキシ基とはランダムに配列していてもよいし、ブロックを形成して配列していてもよいし、交互等のパターン状に配列していてもよい。これらの基におけるエチレンオキシ基等の繰返し数の好ましい態様は上述の通りである。
In formula (III), R 200 represents a hydrogen atom, a methyl group, an ethyl group or a methylol group, and is preferably a hydrogen atom or a methyl group.
In formula (III), * represents a bonding site with another structure.
In formula (III), R 201 represents an alkylene group having 2 to 12 carbon atoms, —CH 2 CH(OH)CH 2 —, a cycloalkylene group or a polyalkyleneoxy group.
Suitable examples of R 201 include alkylene groups such as ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, octamethylene group, and dodecamethylene group, 1,2-butanediyl group, 1,3-butanediyl group, -CH 2 CH(OH)CH 2 -, and polyalkyleneoxy groups, of which alkylene groups such as ethylene group and propylene group, -CH 2 CH(OH)CH 2 -, cyclohexyl group, and polyalkyleneoxy groups are more preferred, and alkylene groups such as ethylene group and propylene group, or polyalkyleneoxy groups are even more preferred.
In the present invention, the polyalkyleneoxy group refers to a group in which two or more alkyleneoxy groups are directly bonded. The alkylene groups in the multiple alkyleneoxy groups contained in the polyalkyleneoxy group may be the same or different.
When the polyalkyleneoxy group contains multiple types of alkyleneoxy groups having different alkylene groups, the arrangement of the alkyleneoxy groups in the polyalkyleneoxy group may be a random arrangement, an arrangement having blocks, or an arrangement having a pattern such as alternating.
The number of carbon atoms in the alkylene group (including the number of carbon atoms of the substituent, when the alkylene group has a substituent) is preferably 2 or more, more preferably 2 to 10, more preferably 2 to 6, even more preferably 2 to 5, still more preferably 2 to 4, still more preferably 2 or 3, and particularly preferably 2.
The alkylene group may have a substituent, and preferred examples of the substituent include an alkyl group, an aryl group, and a halogen atom.
The number of alkyleneoxy groups contained in the polyalkyleneoxy group (the number of repeating polyalkyleneoxy groups) is preferably 2-20, more preferably 2-10, and even more preferably 2-6.
As the polyalkyleneoxy group, from the viewpoint of solvent solubility and solvent resistance, polyethyleneoxy group, polypropyleneoxy group, polytrimethyleneoxy group, polytetramethyleneoxy group, or a group in which multiple ethyleneoxy groups and multiple propyleneoxy groups are bonded is preferred, polyethyleneoxy group or polypropyleneoxy group is more preferred, and polyethyleneoxy group is even more preferred.In the group in which multiple ethyleneoxy groups and multiple propyleneoxy groups are bonded, the ethyleneoxy groups and the propyleneoxy groups may be arranged randomly, may be arranged in blocks, or may be arranged in a pattern such as alternating.The preferred embodiment of the number of repetitions of the ethyleneoxy group etc. in these groups is as described above.
 式(2)において、R113が水素原子である場合、又は、R114が水素原子である場合、ポリイミド前駆体はエチレン性不飽和結合を有する3級アミン化合物と対塩を形成していてもよい。このようなエチレン性不飽和結合を有する3級アミン化合物の例としては、N,N-ジメチルアミノプロピルメタクリレートが挙げられる。 In formula (2), when R 113 is a hydrogen atom or when R 114 is a hydrogen atom, the polyimide precursor may form a counter salt with a tertiary amine compound having an ethylenically unsaturated bond. An example of such a tertiary amine compound having an ethylenically unsaturated bond is N,N-dimethylaminopropyl methacrylate.
 式(2)において、R113及びR114の少なくとも一方が、酸分解性基等の極性変換基であってもよい。酸分解性基としては、酸の作用で分解して、フェノール性ヒドロキシ基、カルボキシ基等のアルカリ可溶性基を生じるものであれば特に限定されないが、アセタール基、ケタール基、シリル基、シリルエーテル基、第三級アルキルエステル基等が好ましく、露光感度の観点からは、アセタール基又はケタール基がより好ましい。
 酸分解性基の具体例としては、tert-ブトキシカルボニル基、イソプロポキシカルボニル基、テトラヒドロピラニル基、テトラヒドロフラニル基、エトキシエチル基、メトキシエチル基、エトキシメチル基、トリメチルシリル基、tert-ブトキシカルボニルメチル基、トリメチルシリルエーテル基などが挙げられる。露光感度の観点からは、エトキシエチル基、又は、テトラヒドロフラニル基が好ましい。
In formula (2), at least one of R 113 and R 114 may be a polarity conversion group such as an acid-decomposable group. The acid-decomposable group is not particularly limited as long as it is decomposed by the action of an acid to generate an alkali-soluble group such as a phenolic hydroxy group or a carboxy group, but an acetal group, a ketal group, a silyl group, a silyl ether group, a tertiary alkyl ester group, etc. are preferred, and from the viewpoint of exposure sensitivity, an acetal group or a ketal group is more preferred.
Specific examples of the acid-decomposable group include a tert-butoxycarbonyl group, an isopropoxycarbonyl group, a tetrahydropyranyl group, a tetrahydrofuranyl group, an ethoxyethyl group, a methoxyethyl group, an ethoxymethyl group, a trimethylsilyl group, a tert-butoxycarbonylmethyl group, a trimethylsilyl ether group, etc. From the viewpoint of exposure sensitivity, an ethoxyethyl group or a tetrahydrofuranyl group is preferred.
 ポリイミド前駆体は、構造中にフッ素原子を有することも好ましい。ポリイミド前駆体中のフッ素原子含有量は、10質量%以上が好ましく、また、20質量%以下が好ましい。 It is also preferable that the polyimide precursor has fluorine atoms in its structure. The fluorine atom content in the polyimide precursor is preferably 10% by mass or more, and 20% by mass or less.
 また、基板との密着性を向上させる目的で、ポリイミド前駆体は、シロキサン構造を有する脂肪族基と共重合していてもよい。具体的には、ジアミンとして、ビス(3-アミノプロピル)テトラメチルジシロキサン、ビス(p-アミノフェニル)オクタメチルペンタシロキサンなどを用いる態様が挙げられる。 In order to improve adhesion to the substrate, the polyimide precursor may be copolymerized with an aliphatic group having a siloxane structure. Specific examples include those using bis(3-aminopropyl)tetramethyldisiloxane, bis(p-aminophenyl)octamethylpentasiloxane, etc. as the diamine.
 式(2)で表される繰返し単位は、式(2-A)で表される繰返し単位であることが好ましい。すなわち、本発明で用いるポリイミド前駆体の少なくとも1種が、式(2-A)で表される繰返し単位を有する前駆体であることが好ましい。ポリイミド前駆体が式(2-A)で表される繰返し単位を含むことにより、露光ラチチュードの幅をより広げることが可能になる。
式(2-A)
Figure JPOXMLDOC01-appb-C000010

 式(2-A)中、A及びAは、酸素原子を表し、R111及びR112は、それぞれ独立に、2価の有機基を表し、R113及びR114は、それぞれ独立に、水素原子又は1価の有機基を表し、R113及びR114の少なくとも一方は、重合性基を含む基であり、両方が重合性基を含む基であることが好ましい。
The repeating unit represented by formula (2) is preferably a repeating unit represented by formula (2-A). That is, at least one of the polyimide precursors used in the present invention is preferably a precursor having a repeating unit represented by formula (2-A). By including the repeating unit represented by formula (2-A) in the polyimide precursor, it becomes possible to further increase the width of the exposure latitude.
Formula (2-A)
Figure JPOXMLDOC01-appb-C000010

In formula (2-A), A 1 and A 2 represent an oxygen atom, R 111 and R 112 each independently represent a divalent organic group, R 113 and R 114 each independently represent a hydrogen atom or a monovalent organic group, and at least one of R 113 and R 114 is a group containing a polymerizable group, and it is preferable that both are groups containing a polymerizable group.
 A、A、R111、R113及びR114は、それぞれ独立に、式(2)におけるA、A、R111、R113及びR114と同義であり、好ましい範囲も同様である。R112は、式(5)におけるR112と同義であり、好ましい範囲も同様である。 A 1 , A 2 , R 111 , R 113 and R 114 each independently have the same meaning as A 1 , A 2 , R 111 , R 113 and R 114 in formula (2), and the preferred range is also the same. R 112 has the same meaning as R 112 in formula (5), and the preferred range is also the same.
 ポリイミド前駆体は、式(2)で表される繰返し単位を1種含んでいてもよいが、2種以上で含んでいてもよい。また、式(2)で表される繰返し単位の構造異性体を含んでいてもよい。ポリイミド前駆体は、上記式(2)の繰返し単位のほかに、他の種類の繰返し単位をも含んでいてもよい。 The polyimide precursor may contain one type of repeating unit represented by formula (2), or may contain two or more types. It may also contain a structural isomer of the repeating unit represented by formula (2). The polyimide precursor may contain other types of repeating units in addition to the repeating unit of formula (2).
 本発明におけるポリイミド前駆体の一実施形態として、式(2)で表される繰返し単位の含有量が、全繰返し単位の50モル%以上である態様が挙げられる。上記合計含有量は、70モル%以上であることがより好ましく、90モル%以上であることが更に好ましく、90モル%超であることが特に好ましい。上記合計含有量の上限は、特に限定されず、末端を除くポリイミド前駆体における全ての繰返し単位が、式(2)で表される繰返し単位であってもよい。 One embodiment of the polyimide precursor of the present invention is one in which the content of the repeating unit represented by formula (2) is 50 mol% or more of all repeating units. The total content is more preferably 70 mol% or more, even more preferably 90 mol% or more, and particularly preferably more than 90 mol%. There is no particular upper limit to the total content, and all repeating units in the polyimide precursor except for the terminals may be repeating units represented by formula (2).
 ポリイミド前駆体の重量平均分子量(Mw)は、5,000~100,000が好ましく、10,000~50,000がより好ましく、15,000~40,000が更に好ましい。ポリイミド前駆体の数平均分子量(Mn)は、2,000~40,000が好ましく、3,000~30,000がより好ましく、4,000~20,000が更に好ましい。
 上記ポリイミド前駆体の分子量の分散度は、1.5以上が好ましく、1.8以上がより好ましく、2.0以上であることが更に好ましい。ポリイミド前駆体の分子量の分散度の上限値は特に定めるものではないが、例えば、7.0以下が好ましく、6.5以下がより好ましく、6.0以下が更に好ましい。
 本明細書において、分子量の分散度とは、重量平均分子量/数平均分子量により算出される値である。
 樹脂組成物が複数種のポリイミド前駆体を含む場合、少なくとも1種のポリイミド前駆体の重量平均分子量、数平均分子量、及び、分散度が上記範囲であることが好ましい。また、上記複数種のポリイミド前駆体を1つの樹脂として算出した重量平均分子量、数平均分子量、及び、分散度が、それぞれ、上記範囲内であることも好ましい。
The weight average molecular weight (Mw) of the polyimide precursor is preferably 5,000 to 100,000, more preferably 10,000 to 50,000, and even more preferably 15,000 to 40,000. The number average molecular weight (Mn) of the polyimide precursor is preferably 2,000 to 40,000, more preferably 3,000 to 30,000, and even more preferably 4,000 to 20,000.
The polyimide precursor has a molecular weight dispersity of preferably 1.5 or more, more preferably 1.8 or more, and even more preferably 2.0 or more. The upper limit of the molecular weight dispersity of the polyimide precursor is not particularly limited, but is, for example, preferably 7.0 or less, more preferably 6.5 or less, and even more preferably 6.0 or less.
In this specification, the dispersity of molecular weight is a value calculated by weight average molecular weight/number average molecular weight.
When the resin composition contains a plurality of polyimide precursors, it is preferable that the weight average molecular weight, number average molecular weight, and dispersity of at least one of the polyimide precursors are within the above ranges. It is also preferable that the weight average molecular weight, number average molecular weight, and dispersity calculated by treating the plurality of polyimide precursors as one resin are each within the above ranges.
〔ポリイミド前駆体の製造方法〕
 ポリイミド前駆体は、例えば、低温中でテトラカルボン酸二無水物とジアミンを反応させる方法、低温中でテトラカルボン酸二無水物とジアミンを反応させてポリアミック酸を得、縮合剤又はアルキル化剤を用いてエステル化する方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得て、その後ジアミンと縮合剤の存在下で反応させる方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得、その後残りのジカルボン酸をハロゲン化剤を用いて酸ハロゲン化し、ジアミンと反応させる方法、などの方法を利用して得ることができる。上記製造方法のうち、テトラカルボン酸二無水物とアルコールとによりジエステルを得、その後残りのジカルボン酸をハロゲン化剤を用いて酸ハロゲン化し、ジアミンと反応させる方法がより好ましい。
 上記縮合剤としては、例えばジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、1-エトキシカルボニル-2-エトキシ-1,2-ジヒドロキノリン、1,1-カルボニルジオキシ-ジ-1,2,3-ベンゾトリアゾール、N,N’-ジスクシンイミジルカーボネート、無水トリフルオロ酢酸等が挙げられる。
 上記アルキル化剤としては、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジアルキルホルムアミドジアルキルアセタール、オルトギ酸トリメチル、オルトギ酸トリエチル等が挙げられる。
 上記ハロゲン化剤としては、塩化チオニル、塩化オキサリル、オキシ塩化リン等が挙げられる。
 ポリイミド前駆体の製造方法では、反応に際し、有機溶剤を用いることが好ましい。有機溶剤は1種でもよいし、2種以上でもよい。
 有機溶剤としては、原料に応じて適宜定めることができるが、ピリジン、ジエチレングリコールジメチルエーテル(ジグリム)、N-メチルピロリドン、N-エチルピロリドン、プロピオン酸エチル、ジメチルアセトアミド、ジメチルホルムアミド、テトラヒドロフラン、γ-ブチロラクトン等が例示される。
 ポリイミド前駆体の製造方法では、反応に際し、塩基性化合物を添加することが好ましい。塩基性化合物は1種でもよいし、2種以上でもよい。
 塩基性化合物は、原料に応じて適宜定めることができるが、トリエチルアミン、ジイソプロピルエチルアミン、ピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、N,N-ジメチル-4-アミノピリジン等が例示される。
[Method for producing polyimide precursor]
The polyimide precursor can be obtained by, for example, a method of reacting a tetracarboxylic dianhydride with a diamine at low temperature, a method of reacting a tetracarboxylic dianhydride with a diamine at low temperature to obtain a polyamic acid, and then esterifying the polyamic acid using a condensing agent or an alkylating agent, a method of obtaining a diester from a tetracarboxylic dianhydride with an alcohol, and then reacting the diamine in the presence of a condensing agent, a method of obtaining a diester from a tetracarboxylic dianhydride with an alcohol, and then acid-halogenating the remaining dicarboxylic acid using a halogenating agent, and then reacting the diamine, etc. Among the above-mentioned production methods, the method of obtaining a diester from a tetracarboxylic dianhydride with an alcohol, and then acid-halogenating the remaining dicarboxylic acid using a halogenating agent, and then reacting the diamine, is more preferable.
Examples of the condensing agent include dicyclohexylcarbodiimide, diisopropylcarbodiimide, 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, 1,1-carbonyldioxy-di-1,2,3-benzotriazole, N,N'-disuccinimidyl carbonate, and trifluoroacetic anhydride.
Examples of the alkylating agent include N,N-dimethylformamide dimethyl acetal, N,N-dimethylformamide diethyl acetal, N,N-dialkylformamide dialkyl acetal, trimethyl orthoformate, and triethyl orthoformate.
Examples of the halogenating agent include thionyl chloride, oxalyl chloride, phosphorus oxychloride, and the like.
In the method for producing a polyimide precursor, it is preferable to use an organic solvent in the reaction. The organic solvent may be one type or two or more types.
The organic solvent can be appropriately selected depending on the raw material, and examples thereof include pyridine, diethylene glycol dimethyl ether (diglyme), N-methylpyrrolidone, N-ethylpyrrolidone, ethyl propionate, dimethylacetamide, dimethylformamide, tetrahydrofuran, and γ-butyrolactone.
In the method for producing a polyimide precursor, it is preferable to add a basic compound during the reaction. The basic compound may be one type or two or more types.
The basic compound can be appropriately selected depending on the raw material, and examples thereof include triethylamine, diisopropylethylamine, pyridine, 1,8-diazabicyclo[5.4.0]undec-7-ene, and N,N-dimethyl-4-aminopyridine.
-末端封止剤-
 ポリイミド前駆体の製造に際し、保存安定性をより向上させるため、ポリイミド前駆体等の樹脂末端に残存するカルボン酸無水物、酸無水物誘導体、或いは、アミノ基を封止することが好ましい。樹脂末端に残存するカルボン酸無水物、及び酸無水物誘導体を封止する際、末端封止剤としては、モノアルコール、フェノール、チオール、チオフェノール、モノアミン等が挙げられ、反応性、膜の安定性から、モノアルコール、フェノール類やモノアミンを用いることがより好ましい。モノアルコールの好ましい化合物としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、オクタノール、ドデシノール、ベンジルアルコール、2-フェニルエタノール、2-メトキシエタノール、2-クロロメタノール、フルフリルアルコール等の1級アルコール、イソプロパノール、2-ブタノール、シクロヘキシルアルコール、シクロペンタノール、1-メトキシ-2-プロパノール等の2級アルコール、tert-ブチルアルコール、アダマンタンアルコール等の3級アルコールが挙げられる。フェノール類の好ましい化合物としては、フェノール、メトキシフェノール、メチルフェノール、ナフタレン-1-オール、ナフタレン-2-オール、ヒドロキシスチレン等のフェノール類などが挙げられる。また、モノアミンの好ましい化合物としては、アニリン、2-エチニルアニリン、3-エチニルアニリン、4-エチニルアニリン、5-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-7-アミノナフタレン、1-ヒドロキシ-6-アミノナフタレン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-カルボキシ-5-アミノナフタレン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、3-アミノ-4,6-ジヒドロキシピリミジン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノールなどが挙げられる。これらを2種以上用いてもよく、複数の末端封止剤を反応させることにより、複数の異なる末端基を導入してもよい。
 また、樹脂末端のアミノ基を封止する際、アミノ基と反応可能な官能基を有する化合物で封止することが可能である。アミノ基に対する好ましい封止剤は、カルボン酸無水物、カルボン酸クロリド、カルボン酸ブロミド、スルホン酸クロリド、無水スルホン酸、スルホン酸カルボン酸無水物などが好ましく、カルボン酸無水物、カルボン酸クロリドがより好ましい。カルボン酸無水物の好ましい化合物としては、無水酢酸、無水プロピオン酸、無水シュウ酸、無水コハク酸、無水マレイン酸、無水フタル酸、無水安息香酸、5-ノルボルネン-2,3-ジカルボン酸無水物などが挙げられる。また、カルボン酸クロリドの好ましい化合物としては、塩化アセチル、アクリル酸クロリド、プロピオニルクロリド、メタクリル酸クロリド、ピバロイルクロリド、シクロヘキサンカルボニルクロリド、2-エチルヘキサノイルクロリド、シンナモイルクロリド、1-アダマンタンカルボニルクロリド、ヘプタフルオロブチリルクロリド、ステアリン酸クロリド、ベンゾイルクロリド、などが挙げられる。
-End-capping agent-
In producing a polyimide precursor, in order to further improve storage stability, it is preferable to cap the carboxylic acid anhydride, acid anhydride derivative, or amino group remaining at the resin terminal of the polyimide precursor, etc. When capping the carboxylic acid anhydride and acid anhydride derivative remaining at the resin terminal, examples of the terminal capping agent include monoalcohols, phenols, thiols, thiophenols, monoamines, etc., and it is more preferable to use monoalcohols, phenols, or monoamines in terms of reactivity and film stability. Preferred monoalcohol compounds include primary alcohols such as methanol, ethanol, propanol, butanol, hexanol, octanol, dodecinol, benzyl alcohol, 2-phenylethanol, 2-methoxyethanol, 2-chloromethanol, and furfuryl alcohol, secondary alcohols such as isopropanol, 2-butanol, cyclohexyl alcohol, cyclopentanol, and 1-methoxy-2-propanol, and tertiary alcohols such as tert-butyl alcohol and adamantane alcohol. Preferred phenolic compounds include phenols such as phenol, methoxyphenol, methylphenol, naphthalene-1-ol, naphthalene-2-ol, and hydroxystyrene. Preferred monoamine compounds include aniline, 2-ethynylaniline, 3-ethynylaniline, 4-ethynylaniline, 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-aminonaphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 1-carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene, 1-carboxy-5-aminonaphthalene, Examples of such an acid include 2-carboxy-7-aminonaphthalene, 2-carboxy-6-aminonaphthalene, 2-carboxy-5-aminonaphthalene, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzenesulfonic acid, 3-aminobenzenesulfonic acid, 4-aminobenzenesulfonic acid, 3-amino-4,6-dihydroxypyrimidine, 2-aminophenol, 3-aminophenol, 4-aminophenol, 2-aminothiophenol, 3-aminothiophenol, and 4-aminothiophenol. Two or more of these may be used, and a plurality of different terminal groups may be introduced by reacting a plurality of terminal blocking agents.
In addition, when the amino group at the resin terminal is blocked, it is possible to block it with a compound having a functional group capable of reacting with the amino group. Preferred blocking agents for the amino group include carboxylic acid anhydrides, carboxylic acid chlorides, carboxylic acid bromides, sulfonic acid chlorides, sulfonic acid anhydrides, sulfonic acid carboxylic acid anhydrides, and the like, and more preferred are carboxylic acid anhydrides and carboxylic acid chlorides. Preferred compounds of carboxylic acid anhydrides include acetic anhydride, propionic anhydride, oxalic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, benzoic anhydride, 5-norbornene-2,3-dicarboxylic acid anhydride, and the like. Preferred examples of the carboxylic acid chloride include acetyl chloride, acrylic acid chloride, propionyl chloride, methacrylic acid chloride, pivaloyl chloride, cyclohexanecarbonyl chloride, 2-ethylhexanoyl chloride, cinnamoyl chloride, 1-adamantanecarbonyl chloride, heptafluorobutyryl chloride, stearic acid chloride, and benzoyl chloride.
-固体析出-
 ポリイミド前駆体の製造に際し、固体を析出する工程を含んでいてもよい。具体的には、反応液中に共存している脱水縮合剤の吸水副生物を必要に応じて濾別した後、水、脂肪族低級アルコール、又はその混合液等の貧溶媒に、得られた重合体成分を投入し、重合体成分を析出させることで、固体として析出させ、乾燥させることでポリイミド前駆体を得ることができる。精製度を向上させるために、ポリイミド前駆体を再溶解、再沈析出、乾燥等の操作を繰返してもよい。さらに、イオン交換樹脂を用いてイオン性不純物を除去する工程を含んでいてもよい。
-Solid precipitation-
The production of the polyimide precursor may include a step of precipitating a solid. Specifically, after filtering off the water-absorbing by-product of the dehydration condensation agent coexisting in the reaction solution as necessary, the obtained polymer component is poured into a poor solvent such as water, aliphatic lower alcohol, or a mixture thereof, and the polymer component is precipitated as a solid, and then dried to obtain a polyimide precursor. In order to improve the degree of purification, the polyimide precursor may be repeatedly subjected to operations such as redissolving, reprecipitating, and drying. Furthermore, a step of removing ionic impurities using an ion exchange resin may be included.
〔含有量〕
 樹脂組成物におけるポリイミド前駆体の含有量は、樹脂組成物の全固形分に対し20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることが更に好ましく、50質量%以上であることが一層好ましい。また、樹脂組成物における樹脂の含有量は、樹脂組成物の全固形分に対し、99.5質量%以下であることが好ましく、99質量%以下であることがより好ましく、98質量%以下であることが更に好ましく、97質量%以下であることが一層好ましく、95質量%以下であることがより一層好ましい。
 樹脂組成物は、ポリイミド前駆体を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
〔Content〕
The content of the polyimide precursor in the resin composition is preferably 20% by mass or more, more preferably 30% by mass or more, even more preferably 40% by mass or more, and even more preferably 50% by mass or more, based on the total solid content of the resin composition. The content of the resin in the resin composition is preferably 99.5% by mass or less, more preferably 99% by mass or less, even more preferably 98% by mass or less, even more preferably 97% by mass or less, and even more preferably 95% by mass or less, based on the total solid content of the resin composition.
The resin composition may contain only one type of polyimide precursor, or may contain two or more types. When two or more types are contained, the total amount is preferably in the above range.
 樹脂組成物は、少なくとも2種の樹脂を含むことも好ましい。
 具体的には、樹脂組成物は、ポリイミド前駆体と、後述する他の樹脂とを合計で2種以上含んでもよいし、ポリイミド前駆体を2種以上含んでいてもよいが、ポリイミド前駆体を2種以上含むことが好ましい。
 樹脂組成物がポリイミド前駆体を2種以上含む場合、例えば、ポリイミド前駆体であって、二無水物由来の構造(上述の式(2)でいうR115)が異なる2種以上のポリイミド前駆体を含むことが好ましい。
It is also preferable that the resin composition contains at least two types of resins.
Specifically, the resin composition may contain a total of two or more kinds of polyimide precursors and other resins described later, or may contain two or more kinds of polyimide precursors, but it is preferable that the resin composition contains two or more kinds of polyimide precursors.
When the resin composition contains two or more kinds of polyimide precursors, for example, it is preferable to contain two or more kinds of polyimide precursors having different dianhydride-derived structures (R 115 in the above formula (2)).
<他の樹脂>
 樹脂組成物は、上述したポリイミド前駆体と、ポリイミド前駆体とは異なる他の樹脂(以下、単に「他の樹脂」ともいう)とを含んでもよい。
 他の樹脂としては、ポリイミド、ポリベンゾオキサゾール前駆体、ポリベンゾオキサゾール、ポリアミドイミド前駆体、ポリアミドイミド、フェノール樹脂、ポリアミド、エポキシ樹脂、ポリシロキサン、シロキサン構造を含む樹脂、(メタ)アクリル樹脂、(メタ)アクリルアミド樹脂、ウレタン樹脂、ブチラール樹脂、スチリル樹脂、ポリエーテル樹脂、ポリエステル樹脂等が挙げられる。
 ポリイミド、ポリベンゾオキサゾール前駆体、ポリベンゾオキサゾール、ポリアミドイミド前駆体、ポリアミドイミドとしては、国際公開第2022/145355号の段落0017~0138に記載の化合物が挙げられる。上記記載は本明細書に組み込まれる。
 例えば、(メタ)アクリル樹脂を更に加えることにより、塗布性に優れた樹脂組成物が得られ、また、耐溶剤性に優れたパターン(硬化物)が得られる。
 例えば、後述する重合性化合物に代えて、又は、後述する重合性化合物に加えて、重量平均分子量が20,000以下の重合性基価の高い(例えば、樹脂1gにおける重合性基の含有モル量が1×10-3モル/g以上である)(メタ)アクリル樹脂を樹脂組成物に添加することにより、樹脂組成物の塗布性、パターン(硬化物)の耐溶剤性等を向上させることができる。
<Other resins>
The resin composition may contain the above-mentioned polyimide precursor and another resin different from the polyimide precursor (hereinafter, simply referred to as "another resin").
Examples of the other resins include polyimide, polybenzoxazole precursor, polybenzoxazole, polyamideimide precursor, polyamideimide, phenol resin, polyamide, epoxy resin, polysiloxane, resin containing a siloxane structure, (meth)acrylic resin, (meth)acrylamide resin, urethane resin, butyral resin, styryl resin, polyether resin, and polyester resin.
Examples of polyimide, polybenzoxazole precursor, polybenzoxazole, polyamideimide precursor, and polyamideimide include the compounds described in paragraphs 0017 to 0138 of WO 2022/145355. The above descriptions are incorporated herein by reference.
For example, by further adding a (meth)acrylic resin, a resin composition having excellent coatability can be obtained, and a pattern (cured product) having excellent solvent resistance can be obtained.
For example, instead of or in addition to the polymerizable compound described later, by adding a (meth)acrylic resin having a weight average molecular weight of 20,000 or less and a high polymerizable group value (for example, the molar content of polymerizable groups per 1 g of resin is 1×10 −3 mol/g or more) to the resin composition, the coatability of the resin composition and the solvent resistance of the pattern (cured product) can be improved.
 樹脂組成物が他の樹脂を含む場合、他の樹脂の含有量は、樹脂組成物の全固形分に対し、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、1質量%以上であることが更に好ましく、2質量%以上であることが一層好ましく、5質量%以上であることがより一層好ましく、10質量%以上であることが更に一層好ましい。
 樹脂組成物における、他の樹脂の含有量は、樹脂組成物の全固形分に対し、80質量%以下であることが好ましく、75質量%以下であることがより好ましく、70質量%以下であることが更に好ましく、60質量%以下であることが一層好ましく、50質量%以下であることがより一層好ましい。
 樹脂組成物の好ましい一態様として、他の樹脂の含有量が低含有量である態様とすることもできる。上記態様において、他の樹脂の含有量は、樹脂組成物の全固形分に対し、20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることが更に好ましく、5質量%以下であることが一層好ましく、1質量%以下であることがより一層好ましい。上記含有量の下限は特に限定されず、0質量%以上であればよい。
 樹脂組成物は、他の樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
When the resin composition contains other resins, the content of the other resins is preferably 0.01 mass% or more, more preferably 0.05 mass% or more, even more preferably 1 mass% or more, still more preferably 2 mass% or more, even more preferably 5 mass% or more, and even more preferably 10 mass% or more, based on the total solid content of the resin composition.
The content of other resins in the resin composition is preferably 80 mass% or less, more preferably 75 mass% or less, even more preferably 70 mass% or less, still more preferably 60 mass% or less, and even more preferably 50 mass% or less, based on the total solid content of the resin composition.
As a preferred embodiment of the resin composition, the content of the other resin may be low. In the above embodiment, the content of the other resin is preferably 20% by mass or less, more preferably 15% by mass or less, even more preferably 10% by mass or less, even more preferably 5% by mass or less, and even more preferably 1% by mass or less, based on the total solid content of the resin composition. The lower limit of the content is not particularly limited, and may be 0% by mass or more.
The resin composition may contain only one type of other resin, or may contain two or more types. When two or more types are contained, the total amount is preferably within the above range.
<化合物A>
 樹脂組成物は、ウレタン結合及びウレア結合から選択される少なくとも1種の結合と、tert-ブチル基、水酸基及びエチレン性不飽和結合を含む基から選ばれる少なくとも1つの官能基とを有する化合物Aを含むことが好ましい。樹脂組成物が化合物Aを含むことにより、本発明の硬化物の製造方法は上述の条件1を満たす。
<Compound A>
The resin composition preferably contains a compound A having at least one bond selected from a urethane bond and a urea bond, and at least one functional group selected from a tert-butyl group, a hydroxyl group, and a group containing an ethylenically unsaturated bond. When the resin composition contains the compound A, the method for producing a cured product of the present invention satisfies the above-mentioned condition 1.
 化合物Aは、上述の加熱工程においてウレタン結合又はウレア結合が開裂して、アミンを生じる化合物であることが好ましい。 Compound A is preferably a compound in which a urethane bond or urea bond is cleaved in the heating step described above to produce an amine.
 本発明において、ウレタン結合とは*-O-C(=O)-NR-*で表される結合であり、Rは水素原子又は1価の有機基を表し、*はそれぞれ、炭素原子との結合部位を表す。
 ウレア結合については上述の通りである。
In the present invention, a urethane bond is a bond represented by *--O--C(.dbd.O)-- NR.sub.N --*, where R.sub.N represents a hydrogen atom or a monovalent organic group, and * represents a bonding site with a carbon atom.
The urea bond is as described above.
 化合物Aはウレア結合又はウレタン結合を1つのみ有してもよいし、1以上のウレア結合と1以上のウレタン結合とを有してもよいし、ウレタン結合を有さず2以上のウレア結合を有してもよいし、ウレア結合を有さず2以上のウレタン結合を有してもよい。
 化合物Aにおけるウレア結合及びウレタン結合の合計数は、1以上であり、1~10であることが好ましく、1~4であることがより好ましく、1又は2であることが更に好ましい。
 化合物Aがウレタン結合を有しない場合、化合物Aにおけるウレア結合の数は1以上であり、1~10であることが好ましく、1~4であることがより好ましく、1又は2であることが更に好ましい。
 化合物Aがウレア結合を有しない場合、化合物Aにおけるウレタン結合の数は1以上であり、1~10であることが好ましく、1~4であることがより好ましく、1又は2であることが更に好ましい。
Compound A may have only one urea bond or one urethane bond, may have one or more urea bonds and one or more urethane bonds, may have no urethane bond but two or more urea bonds, or may have no urea bond but two or more urethane bonds.
The total number of urea bonds and urethane bonds in compound A is 1 or more, preferably 1 to 10, more preferably 1 to 4, and even more preferably 1 or 2.
When compound A has no urethane bond, the number of urea bonds in compound A is 1 or more, preferably 1 to 10, more preferably 1 to 4, and even more preferably 1 or 2.
When compound A has no urea bond, the number of urethane bonds in compound A is 1 or more, preferably 1 to 10, more preferably 1 to 4, and even more preferably 1 or 2.
 化合物Aは、tert-ブチル基及びウレタン結合を有する化合物、並びに、ウレア結合、2以上のヒドロキシ基及びエチレン性不飽和結合を含む基を有する化合物よりなる群から選ばれた少なくとも1種の化合物を含むことが好ましい。 Compound A preferably contains at least one compound selected from the group consisting of compounds having a tert-butyl group and a urethane bond, and compounds having a urea bond, two or more hydroxy groups, and a group containing an ethylenically unsaturated bond.
〔tert-ブチル基を有する化合物〕
 化合物Aがtert-ブチル基を有する化合物である場合、化合物Aはアミノ基がtert-ブトキシカルボニル基によって保護されたアミンであることが好ましい。
 すなわち、化合物Aがtert-ブチル基を有する化合物である場合、化合物Aはウレタン結合を有する化合物であることが好ましい。
[Compounds Having a tert-Butyl Group]
When compound A is a compound having a tert-butyl group, compound A is preferably an amine in which the amino group is protected with a tert-butoxycarbonyl group.
That is, when compound A is a compound having a tert-butyl group, compound A is preferably a compound having a urethane bond.
 t-ブトキシカルボニル基によって保護されたアミン化合物としては、例えば、エタノールアミン、3-アミノ-1-プロパノール、1-アミノ-2-プロパノール、2-アミノ-1-プロパノール、4-アミノ-1-ブタノール、2-アミノ-1-ブタノール、1-アミノ-2-ブタノール、3-アミノ-2,2-ジメチル-1-プロパノール、4-アミノ-2-メチル-1-ブタノール、バリノール、3-アミノ-1,2-プロパンジオール、2-アミノ-1,3-プロパンジオール、チラミン、ノルエフェドリン、2-アミノ-1-フェニル-1,3-プロパンジオール、2-アミノシクロヘキサノール、4-アミノシクロヘキサノール、4-アミノシクロヘキサンエタノール、4-(2-アミノエチル)シクロヘキサノール、N-メチルエタノールアミン、3-(メチルアミノ)-1-プロパノール、3-(イソプロピルアミノ)プロパノール、N-シクロヘキシルエタノールアミン、α-[2-(メチルアミノ)エチル]ベンジルアルコール、ジエタノールアミン、ジイソプロパノールアミン、3-ピロリジノール、2-ピロリジンメタノール、4-ヒドロキシピペリジン、3-ヒドロキシピペリジン、4-ヒドロキシ-4-フェニルピペリジン、4-(3-ヒドロキシフェニル)ピペリジン、4-ピペリジンメタノール、3-ピペリジンメタノール、2-ピペリジンメタノール、4-ピペリジンエタノール、2-ピペリジンエタノール、2-(4-ピペリジル)-2-プロパノール、1,4-ブタノールビス(3-アミノプロピル)エーテル、1,2-ビス(2-アミノエトキシ)エタン、2,2’-オキシビス(エチルアミン)、1,14-ジアミノ-3,6,9,12-テトラオキサテトラデカン、1-アザ-15-クラウン5-エーテル、ジエチレングリコールビス(3-アミノプロピル)エーテル、1,11-ジアミノ-3,6,9-トリオキサウンデカン、又は、アミノ酸及びその誘導体のアミノ基をt-ブトキシカルボニル基によって保護した化合物が挙げられるが、これらに限定されるものではない。 Amine compounds protected by a t-butoxycarbonyl group include, for example, ethanolamine, 3-amino-1-propanol, 1-amino-2-propanol, 2-amino-1-propanol, 4-amino-1-butanol, 2-amino-1-butanol, 1-amino-2-butanol, 3-amino-2,2-dimethyl-1-propanol, 4-amino-2-methyl-1-butanol, valinol, 3-amino-1,2-propanediol, 2-amino-1,3-propanediol, Diol, tyramine, norephedrine, 2-amino-1-phenyl-1,3-propanediol, 2-aminocyclohexanol, 4-aminocyclohexanol, 4-aminocyclohexaneethanol, 4-(2-aminoethyl)cyclohexanol, N-methylethanolamine, 3-(methylamino)-1-propanol, 3-(isopropylamino)propanol, N-cyclohexylethanolamine, α-[2-(methylamino)ethyl]benzyl alcohol, diethano diisopropanolamine, 3-pyrrolidinol, 2-pyrrolidinemethanol, 4-hydroxypiperidine, 3-hydroxypiperidine, 4-hydroxy-4-phenylpiperidine, 4-(3-hydroxyphenyl)piperidine, 4-piperidinemethanol, 3-piperidinemethanol, 2-piperidinemethanol, 4-piperidineethanol, 2-piperidineethanol, 2-(4-piperidyl)-2-propanol, 1,4-butanolbis(3-aminopropyl)ethane ether, 1,2-bis(2-aminoethoxy)ethane, 2,2'-oxybis(ethylamine), 1,14-diamino-3,6,9,12-tetraoxatetradecane, 1-aza-15-crown-5-ether, diethylene glycol bis(3-aminopropyl)ether, 1,11-diamino-3,6,9-trioxaundecane, or compounds in which the amino group of an amino acid or a derivative thereof is protected with a t-butoxycarbonyl group, but are not limited to these.
〔エチレン性不飽和結合を含む基を有する化合物〕
 化合物Aはエチレン性不飽和結合を含む基を有することが好ましい。上記エチレン性不飽和結合を含む基は、ラジカル重合性基であることがより好ましい。
 化合物Aにおけるエチレン性不飽和結合を含む基は、特に限定されないが、ビニル基、アリル基、(メタ)アクリロイル基(特に、(メタ)アクリロキシ基、又は、(メタ)アクリルアミド基)、ビニルフェニル基、マレイミド基等が挙げられ、(メタ)アクリロキシ基、(メタ)アクリルアミド基、ビニルフェニル基、又は、マレイミド基が好ましく、(メタ)アクリロキシ基がより好ましい。
 化合物Aがエチレン性不飽和結合を含む基を2以上有する場合、それぞれのエチレン性不飽和結合を含む基の構造は同一であってもよいし、異なっていてもよい。
 化合物Aにおけるエチレン性不飽和結合を含む基は、1つのみであってもよいし、2以上であってもよく、1~10が好ましく、1~6が更に好ましく、1~4が特に好ましい。
 化合物Aにおけるエチレン性不飽和結合を含む基の含有当量(エチレン性不飽和結合を含む基1モル当たりの化合物の質量)は、150~400g/molであることが好ましい。
 上記当量の下限は、硬化物の耐薬品性の観点より、200g/mol以上であることがより好ましく、210g/mol以上であることが更に好ましく、220g/mol以上であることが一層好ましく、230g/mol以上であることがより一層好ましく、240g/mol以上であることがより更に好ましく、250g/mol以上であることが特に好ましい。
[Compound having a group containing an ethylenically unsaturated bond]
Compound A preferably has a group containing an ethylenically unsaturated bond. The group containing an ethylenically unsaturated bond is more preferably a radical polymerizable group.
The group containing an ethylenically unsaturated bond in compound A is not particularly limited, and examples thereof include a vinyl group, an allyl group, a (meth)acryloyl group (particularly, a (meth)acryloxy group or a (meth)acrylamide group), a vinylphenyl group, and a maleimide group. Of these, a (meth)acryloxy group, a (meth)acrylamide group, a vinylphenyl group, or a maleimide group is preferred, and a (meth)acryloxy group is more preferred.
When compound A has two or more groups containing an ethylenically unsaturated bond, the structures of the groups containing an ethylenically unsaturated bond may be the same or different.
The number of groups containing an ethylenically unsaturated bond in compound A may be one or more, and is preferably 1 to 10, more preferably 1 to 6, and particularly preferably 1 to 4.
The equivalent weight of the group containing an ethylenically unsaturated bond in compound A (the mass of the compound per mole of the group containing an ethylenically unsaturated bond) is preferably 150 to 400 g/mol.
From the viewpoint of the chemical resistance of the cured product, the lower limit of the equivalent weight is more preferably 200 g/mol or more, even more preferably 210 g/mol or more, even more preferably 220 g/mol or more, even more preferably 230 g/mol or more, even more preferably 240 g/mol or more, and particularly preferably 250 g/mol or more.
 上記当量の上限は、現像性の観点より、350g/mol以下であることがより好ましく、330g/mol以下であることが更に好ましく、300g/mol以下であることが特に好ましい。
 中でも、上記当量は、210~400g/molであることが好ましく、220~400g/molであることがより好ましい。
From the viewpoint of developability, the upper limit of the equivalent weight is more preferably 350 g/mol or less, further preferably 330 g/mol or less, and particularly preferably 300 g/mol or less.
In particular, the equivalent weight is preferably from 210 to 400 g/mol, and more preferably from 220 to 400 g/mol.
 エチレン性不飽和結合を含む基を有する化合物Aは、ヒドロキシ基、アルコキシ基、アルキレンオキシ基、アミノ基、アミド基及びシアノ基の少なくとも1つを有することも好ましい。
 得られる硬化膜の耐薬品性の観点から、ヒドロキシ基は、アルコール性ヒドロキシ基であってもフェノール性ヒドロキシ基であってもよいが、アルコール性ヒドロキシ基であることが好ましい。
It is also preferable that the compound A having a group containing an ethylenically unsaturated bond has at least one of a hydroxy group, an alkoxy group, an alkyleneoxy group, an amino group, an amido group and a cyano group.
From the viewpoint of the chemical resistance of the resulting cured film, the hydroxy group may be an alcoholic hydroxy group or a phenolic hydroxy group, but is preferably an alcoholic hydroxy group.
 得られる硬化膜の耐薬品性の観点から、アルコキシ基としては、炭素数1~20のアルコキシ基が好ましく、炭素数1~10のアルコキシ基がより好ましく、炭素数1~4のアルコ基が更に好ましい。
 得られる硬化膜の耐薬品性の観点から、アルキレンオキシ基としては、炭素数2~20のアルキレンオキシ基が好ましく、炭素数2~10のアルキレンオキシ基がより好ましく、炭素数2~4のアルキレンオキシ基が更に好ましく、エチレン基又はプロピレン基が更により好ましく、エチレン基が特に好ましい。
 アルキレンオキシ基は、ポリアルキレンオキシ基として化合物Aに含まれてもよい。この場合のアルキレンオキシ基の繰返し数は、2~10であることが好ましく、2~6であることがより好ましい。
 アミド基は、-C(=O)-NR-により表される結合をいう。Rは上述の通りである。化合物Aがアミド基を有する場合、化合物Aはアミド基を、例えば、R-C(=O)-NR-*で表される基、又は、*-C(=O)-NR-Rで表される基として含むことができる。Rは水素原子又は1価の置換基を表し、水素原子又は炭化水素基であることが好ましく、水素原子、アルキル基又は芳香族炭化水素基であることがより好ましい。
 化合物Aは、ヒドロキシ基、アルキレンオキシ基(ただし、ポリアルキレンオキシ基を構成する場合は、ポリアルキレンオキシ基)、アミド基及びシアノ基からなる群より選ばれた構造を、分子内に2以上有してもよいが、分子内に1つのみ有する態様も好ましい。
 上記ヒドロキシ基、アルキレンオキシ基、アミド基及びシアノ基は化合物Aのいずれの位置に存在してもよいが、耐薬品性の観点からは、上記ヒドロキシ基、アルキレンオキシ基、アミド基及びシアノ基からなる群より選ばれた少なくとも1つと、化合物Aに含まれる少なくとも1つのラジカル重合性基とが、ウレア結合又はウレタン結合を含む連結基(以下、「連結基L2-1」ともいう。)により連結されていることも好ましい。
 特に、化合物Aがラジカル重合性基を1つのみ含む場合、化合物Aに含まれるラジカル重合性基と、ヒドロキシ基、アルキレンオキシ基、アミド基及びシアノ基からなる群より選ばれた少なくとも1つとが、ウレア結合又はウレタン結合を含む連結基(以下、「連結基L2-2」ともいう。)により連結されていることが好ましい。
 化合物Aがアルキレンオキシ基(ただし、ポリアルキレンオキシ基を構成する場合は、ポリアルキレンオキシ基)を含み、かつ、上記連結基L2-1又は上記連結基L2-2を有する場合、アルキレンオキシ基(ただし、ポリアルキレンオキシ基を構成する場合は、ポリアルキレンオキシ基)の連結基L2-1又は連結基L2-2とは反対の側に結合する構造は、特に限定されないが、炭化水素基、ラジカル重合性基又はこれらの組み合わせにより表される基が好ましい。上記炭化水素基としては、炭素数20以下の炭化水素基が好ましく、18以下の炭化水素基がより好ましく、16以下の炭化水素基が更に好ましい。上記炭化水素基としては、飽和脂肪族炭化水素基、芳香族炭化水素基、又は、これらの結合により表される基などが挙げられる。また、ラジカル重合性基の好ましい態様は上述の化合物Aにおけるラジカル重合性基の好ましい態様と同様である。
 化合物Aがアミド基を含み、かつ、上記連結基L2-1又は上記連結基L2-2を有する場合、アミド基の連結基L2-1又は連結基L2-2とは反対の側に結合する構造は、特に限定されないが、炭化水素基、ラジカル重合性基又はこれらの組み合わせにより表される基が好ましい。上記炭化水素基としては、炭素数20以下の炭化水素基が好ましく、18以下の炭化水素基がより好ましく、16以下の炭化水素基が更に好ましい。また、上記炭化水素基としては、飽和脂肪族炭化水素基、芳香族炭化水素基、又は、これらの結合により表される基などが挙げられる。ラジカル重合性基の好ましい態様は上述の化合物Aにおけるラジカル重合性基の好ましい態様と同様である。また、上記態様において、アミド基の炭素原子側が連結基L2-1又は連結基L2-2と結合してもよいし、アミド基の窒素原子側が連結基L2-1又は連結基L2-2と結合してもよい。
 これらの中でも、基材との密着性、耐薬品性、及び、Cuボイド抑制の観点からは、化合物Aはヒドロキシ基を有することが好ましい。
From the viewpoint of the chemical resistance of the resulting cured film, the alkoxy group is preferably an alkoxy group having 1 to 20 carbon atoms, more preferably an alkoxy group having 1 to 10 carbon atoms, and even more preferably an alkoxy group having 1 to 4 carbon atoms.
From the viewpoint of the chemical resistance of the obtained cured film, the alkyleneoxy group is preferably an alkyleneoxy group having 2 to 20 carbon atoms, more preferably an alkyleneoxy group having 2 to 10 carbon atoms, even more preferably an alkyleneoxy group having 2 to 4 carbon atoms, still more preferably an ethylene group or propylene group, and particularly preferably an ethylene group.
The alkyleneoxy group may be contained as a polyalkyleneoxy group in compound A. In this case, the number of repetitions of the alkyleneoxy group is preferably 2 to 10, and more preferably 2 to 6.
An amide group refers to a bond represented by -C(=O)-NR N -. R N is as described above. When compound A has an amide group, compound A can contain the amide group, for example, as a group represented by R-C(=O)-NR N -* or a group represented by *-C(=O)-NR N -R. R represents a hydrogen atom or a monovalent substituent, preferably a hydrogen atom or a hydrocarbon group, and more preferably a hydrogen atom, an alkyl group, or an aromatic hydrocarbon group.
Compound A may have, in the molecule, two or more structures selected from the group consisting of a hydroxy group, an alkyleneoxy group (when a polyalkyleneoxy group is formed, the group is a polyalkyleneoxy group), an amide group, and a cyano group. An embodiment having only one such structure in the molecule is also preferred.
The hydroxy group, alkyleneoxy group, amide group and cyano group may be present at any position of compound A. From the viewpoint of chemical resistance, however, it is also preferable that at least one selected from the group consisting of the hydroxy group, alkyleneoxy group, amide group and cyano group and at least one radical polymerizable group contained in compound A are linked via a linking group containing a urea bond or a urethane bond (hereinafter also referred to as "linking group L2-1").
In particular, when compound A contains only one radically polymerizable group, it is preferable that the radically polymerizable group contained in compound A and at least one selected from the group consisting of a hydroxy group, an alkyleneoxy group, an amide group, and a cyano group are linked via a linking group containing a urea bond or a urethane bond (hereinafter also referred to as "linking group L2-2").
When compound A contains an alkyleneoxy group (however, when it constitutes a polyalkyleneoxy group, it is a polyalkyleneoxy group) and has the linking group L2-1 or the linking group L2-2, the structure bonded to the side of the alkyleneoxy group (however, when it constitutes a polyalkyleneoxy group, it is a polyalkyleneoxy group) opposite to the linking group L2-1 or the linking group L2-2 is not particularly limited, but is preferably a hydrocarbon group, a radically polymerizable group, or a group represented by a combination thereof. As the hydrocarbon group, a hydrocarbon group having 20 or less carbon atoms is preferable, a hydrocarbon group having 18 or less carbon atoms is more preferable, and a hydrocarbon group having 16 or less carbon atoms is even more preferable. As the hydrocarbon group, a saturated aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a group represented by a bond thereof can be mentioned. In addition, a preferred embodiment of the radically polymerizable group is the same as the preferred embodiment of the radically polymerizable group in compound A described above.
When compound A contains an amide group and has the linking group L2-1 or the linking group L2-2, the structure bonded to the side of the amide group opposite to the linking group L2-1 or the linking group L2-2 is not particularly limited, but is preferably a hydrocarbon group, a radically polymerizable group, or a group represented by a combination thereof. The hydrocarbon group is preferably a hydrocarbon group having 20 or less carbon atoms, more preferably a hydrocarbon group having 18 or less carbon atoms, and even more preferably a hydrocarbon group having 16 or less carbon atoms. In addition, examples of the hydrocarbon group include saturated aliphatic hydrocarbon groups, aromatic hydrocarbon groups, and groups represented by a bond between these groups. A preferred embodiment of the radically polymerizable group is the same as the preferred embodiment of the radically polymerizable group in compound A described above. In addition, in the above embodiment, the carbon atom side of the amide group may be bonded to the linking group L2-1 or the linking group L2-2, or the nitrogen atom side of the amide group may be bonded to the linking group L2-1 or the linking group L2-2.
Among these, from the viewpoints of adhesion to the substrate, chemical resistance, and suppression of Cu voids, it is preferable that compound A has a hydroxy group.
 これらの中でも、エチレン性不飽和結合を含む基を有する化合物Aは、(メタ)アクリロイル基、並びに、ヒドロキシ基、アルコキシ基、及びアミノ基よりなる群から選択される少なくとも1種の官能基を含むことが好ましく、(メタ)アクリロイル基及びヒドロキシ基を有することがより好ましい。 Among these, it is preferable that the compound A having a group containing an ethylenically unsaturated bond contains a (meth)acryloyl group and at least one functional group selected from the group consisting of a hydroxy group, an alkoxy group, and an amino group, and it is more preferable that the compound A has a (meth)acryloyl group and a hydroxy group.
 また、エチレン性不飽和結合を含む基を有する化合物Aは、ウレア結合、2以上のヒドロキシ基及びエチレン性不飽和結合を含む基を有する化合物であることが好ましい。 In addition, compound A having a group containing an ethylenically unsaturated bond is preferably a compound having a urea bond, two or more hydroxy groups, and a group containing an ethylenically unsaturated bond.
 エチレン性不飽和結合を含む基を有する化合物Aは、ポリイミド前駆体との相溶性等の観点より、芳香族基を含むことも好ましい。
 上記芳香族基は、化合物Aに含まれるウレア結合又はウレタン結合と直接結合することが好ましい。化合物Aがウレア結合又はウレタン結合を2以上含む場合、ウレア結合又はウレタン結合のうち1つと、芳香族基とが直接結合することが好ましい。
 芳香族基は、芳香族炭化水素基であっても、芳香族ヘテロ環基であってもよく、これらが縮合環を形成した構造でもよいが、芳香族炭化水素基であることが好ましい。
 上記芳香族炭化水素基としては、炭素数6~30の芳香族炭化水素基が好ましく、炭素数6~20の芳香族炭化水素基がより好ましく、ベンゼン環構造から2以上の水素原子を除いた基が更に好ましい。
 上記芳香族ヘテロ環基としては、5員環又は6員環の芳香族ヘテロ環基が好ましい。このような芳香族ヘテロ環基における芳香族ヘテロ環としては、ピロール、イミダゾール、トリアゾール、テトラゾール、ピラゾール、フラン、チオフェン、オキサゾール、イソオキサゾール、チアゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン等が挙げられる。これらの環は、例えば、インドール、ベンゾイミダゾールのように更に他の環と縮合していてもよい。
 上記芳香族ヘテロ環基に含まれるヘテロ原子としては、窒素原子、酸素原子又は硫黄原子が好ましい。
 上記芳香族基は、例えば、2以上のラジカル重合性基を連結し、ウレア結合又はウレタン結合を含む連結基、又は、上述のヒドロキシ基、アルキレンオキシ基、アミド基及びシアノ基からなる群より選ばれた少なくとも1つと、化合物Aに含まれる少なくとも1つのラジカル重合性基とを連結する連結基に含まれることが好ましい。
From the viewpoint of compatibility with the polyimide precursor, the compound A having a group containing an ethylenically unsaturated bond also preferably contains an aromatic group.
The aromatic group is preferably directly bonded to a urea bond or a urethane bond contained in compound A. When compound A contains two or more urea bonds or urethane bonds, it is preferable that one of the urea bonds or urethane bonds is directly bonded to the aromatic group.
The aromatic group may be an aromatic hydrocarbon group or an aromatic heterocyclic group, or may have a structure in which these form a condensed ring, but is preferably an aromatic hydrocarbon group.
The aromatic hydrocarbon group is preferably an aromatic hydrocarbon group having 6 to 30 carbon atoms, more preferably an aromatic hydrocarbon group having 6 to 20 carbon atoms, and even more preferably a group in which two or more hydrogen atoms have been removed from a benzene ring structure.
The aromatic heterocyclic group is preferably a 5-membered or 6-membered aromatic heterocyclic group. Examples of the aromatic heterocyclic ring in such an aromatic heterocyclic group include pyrrole, imidazole, triazole, tetrazole, pyrazole, furan, thiophene, oxazole, isoxazole, thiazole, pyridine, pyrazine, pyrimidine, pyridazine, triazine, etc. These rings may be further condensed with other rings, such as indole and benzimidazole.
The heteroatom contained in the aromatic heterocyclic group is preferably a nitrogen atom, an oxygen atom or a sulfur atom.
The aromatic group is preferably contained in, for example, a linking group that links two or more radically polymerizable groups and contains a urea bond or a urethane bond, or a linking group that links at least one selected from the group consisting of the above-mentioned hydroxy group, alkyleneoxy group, amide group, and cyano group to at least one radically polymerizable group contained in compound A.
 エチレン性不飽和結合を含む基を有する化合物Aは、例えば下記式(U-1)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000011

 式(U-1)中、RU1は水素原子又は1価の有機基であり、Aは-O-又は-NR-であり、Rは水素原子又は1価の有機基であり、ZU1はm価の有機基であり、ZU2はn+1価の有機基であり、Xはエチレン性不飽和結合を含む基であり、nは1以上の整数であり、mは1以上の整数である。
The compound A having a group containing an ethylenically unsaturated bond preferably has a structure represented by the following formula (U-1), for example.
Figure JPOXMLDOC01-appb-C000011

In formula (U-1), R U1 is a hydrogen atom or a monovalent organic group, A is -O- or -NR N -, R N is a hydrogen atom or a monovalent organic group, Z U1 is an m-valent organic group, Z U2 is an (n+1)-valent organic group, X is a group containing an ethylenically unsaturated bond, n is an integer of 1 or more, and m is an integer of 1 or more.
 RU1は水素原子、アルキル基又は芳香族炭化水素基が好ましく、水素原子がより好ましい。
 Aは-O-又は-NR-であり、-NR-であることが好ましい。
 Rは水素原子、アルキル基又は芳香族炭化水素基が好ましく、水素原子がより好ましい。
 ZU1は炭化水素基、-O-、-C(=O)-、-S-、-S(=O)-、-NR-、若しくは、これらが2以上結合した基が好ましく、炭化水素基、又は、炭化水素基と、-O-、-C(=O)-、-S-、-S(=O)-、及び、-NR-からなる群より選ばれた少なくとも1種の基とが結合した基がより好ましい。
 上記炭化水素基としては、炭素数20以下の炭化水素基が好ましく、18以下の炭化水素基がより好ましく、16以下の炭化水素基が更に好ましい。上記炭化水素基としては、飽和脂肪族炭化水素基、芳香族炭化水素基、又は、これらの結合により表される基などが挙げられる。Rは水素原子又は1価の有機基を表し、水素原子又は炭化水素基であることが好ましく、水素原子又はアルキル基であることがより好ましく、水素原子又はメチル基であることが更に好ましい。
 また、上記炭化水素基は水素原子の置換機として、ヒドロキシ基、アルコキシ基、アルキレンオキシ基、アミノ基、アミド基及びシアノ基などを有していてもよい。
 特に、エチレン性不飽和結合を含む基を有する化合物Aが、ウレア結合、2以上のヒドロキシ基及びエチレン性不飽和結合を含む基を有する化合物である場合、ZU1が2以上のヒドロキシ基を含むことが好ましい。
 ZU2は炭化水素基、-O-、-C(=O)-、-S-、-S(=O)-、-NR-、若しくは、これらが2以上結合した基が好ましく、炭化水素基、又は、炭化水素基と、-O-、-C(=O)-、-S-、-S(=O)-、及び、-NR-からなる群より選ばれた少なくとも1種の基とが結合した基がより好ましい。
 上記炭化水素基としては、ZU1において挙げられたものと同様のものが挙げられ、好ましい態様も同様である。
 Xは特に限定されないが、ビニル基、アリル基、(メタ)アクリロイル基、(メタ)アクリロキシ基、(メタ)アクリルアミド基、ビニルフェニル基、マレイミド基等が挙げられ、(メタ)アクリロキシ基、(メタ)アクリルアミド基、ビニルフェニル基、又は、マレイミド基が好ましく、(メタ)アクリロキシ基がより好ましい。
 nは1~10の整数であることが好ましく、1~4の整数であることがより好ましく、1又は2であることが更に好ましく、1であることが特に好ましい。
 mは1~10の整数であることが好ましく、1~4の整数であることがより好ましく、1又は2であることが更に好ましい。
R U1 is preferably a hydrogen atom, an alkyl group or an aromatic hydrocarbon group, and more preferably a hydrogen atom.
A is —O— or —NR N —, and is preferably —NR N —.
R 3 N is preferably a hydrogen atom, an alkyl group or an aromatic hydrocarbon group, and more preferably a hydrogen atom.
Z U1 is preferably a hydrocarbon group, -O-, -C(=O)-, -S-, -S(=O) 2 -, -NR N -, or a group in which two or more of these are bonded together, and more preferably a hydrocarbon group, or a group in which a hydrocarbon group is bonded to at least one group selected from the group consisting of -O-, -C(=O)-, -S-, -S(=O) 2 -, and -NR N -.
The hydrocarbon group is preferably a hydrocarbon group having 20 or less carbon atoms, more preferably a hydrocarbon group having 18 or less carbon atoms, and even more preferably a hydrocarbon group having 16 or less carbon atoms. Examples of the hydrocarbon group include a saturated aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a group represented by a combination thereof. R N represents a hydrogen atom or a monovalent organic group, and is preferably a hydrogen atom or a hydrocarbon group, more preferably a hydrogen atom or an alkyl group, and even more preferably a hydrogen atom or a methyl group.
The above-mentioned hydrocarbon group may have a hydroxy group, an alkoxy group, an alkyleneoxy group, an amino group, an amido group, a cyano group, or the like as a substitute for a hydrogen atom.
In particular, when compound A having a group containing an ethylenically unsaturated bond is a compound having a urea bond, two or more hydroxy groups, and a group containing an ethylenically unsaturated bond, it is preferable that Z U1 contains two or more hydroxy groups.
Z U2 is preferably a hydrocarbon group, -O-, -C(=O)-, -S-, -S(=O) 2 -, -NR N -, or a group in which two or more of these are bonded together, and more preferably a hydrocarbon group, or a group in which a hydrocarbon group is bonded to at least one group selected from the group consisting of -O-, -C(=O)-, -S-, -S(=O) 2 -, and -NR N -.
The hydrocarbon group includes the same ones as those exemplified for ZU1 , and preferred embodiments are also the same.
X is not particularly limited, and examples thereof include a vinyl group, an allyl group, a (meth)acryloyl group, a (meth)acryloxy group, a (meth)acrylamide group, a vinylphenyl group, and a maleimide group. Of these, a (meth)acryloxy group, a (meth)acrylamide group, a vinylphenyl group, or a maleimide group is preferable, and a (meth)acryloxy group is more preferable.
n is preferably an integer of 1 to 10, more preferably an integer of 1 to 4, further preferably 1 or 2, and particularly preferably 1.
m is preferably an integer of 1 to 10, more preferably an integer of 1 to 4, and even more preferably 1 or 2.
 エチレン性不飽和結合を含む基を有する化合物Aにおけるウレア結合又はウレタン結合とエチレン性不飽和結合を含む基との間の原子数(連結鎖長)は、特に限定されないが、30以下であることが好ましく、2~20であることがより好ましく、2~10であることが更に好ましい。
 化合物Aがウレア結合又はウレタン結合を合計で2以上含む場合、エチレン性不飽和結合を含む基を2以上含む場合、又は、ウレア結合若しくはウレタン結合を2以上含み、かつ、エチレン性不飽和結合を含む基を2以上含む場合、ウレア結合又はウレタン結合とラジカル重合性基の間の原子数(連結鎖長)のうち、最小のものが上記範囲内であればよい。
 本明細書において、「ウレア結合又はウレタン結合と重合性基との間の原子数(連結鎖長)」とは、連結対象の2つの原子または原子群の間を結ぶ経路上の原子鎖のうち、これらの連結対象を最短(最小原子数)で結ぶものをいう。例えば、下記式で表される構造において、ウレア結合とラジカル重合性基(メタクリロイルオキシ基)との間の原子数(連結鎖長)は2である。
Figure JPOXMLDOC01-appb-C000012
In compound A having a group containing an ethylenically unsaturated bond, the number of atoms (linking chain length) between the urea bond or urethane bond and the group containing an ethylenically unsaturated bond is not particularly limited, but is preferably 30 or less, more preferably 2 to 20, and even more preferably 2 to 10.
When compound A contains a total of two or more urea bonds or urethane bonds, when it contains two or more groups containing an ethylenically unsaturated bond, or when it contains two or more urea bonds or urethane bonds and two or more groups containing an ethylenically unsaturated bond, it is sufficient that the minimum number of atoms between the urea bond or urethane bond and the radical polymerizable group (linking chain length) is within the above range.
In this specification, the "number of atoms (linking chain length) between a urea bond or a urethane bond and a polymerizable group" refers to the chain of atoms on the path connecting two atoms or groups of atoms to be linked that links these objects with the shortest length (minimum number of atoms). For example, in the structure represented by the following formula, the number of atoms (linking chain length) between the urea bond and the radical polymerizable group (methacryloyloxy group) is 2.
Figure JPOXMLDOC01-appb-C000012
 重合性基を有する化合物Aの製造方法は特に限定されないが、例えば、エチレン性不飽和結合を含む基とイソシアネート基とを有する化合物と、ヒドロキシ基又はアミノ基の少なくとも一方を有する化合物とを反応させることにより得ることができる。 The method for producing compound A having a polymerizable group is not particularly limited, but for example, it can be obtained by reacting a compound having a group containing an ethylenically unsaturated bond and an isocyanate group with a compound having at least one of a hydroxy group or an amino group.
 重合性基を有する化合物Aの具体例を以下に示すが、化合物Aはこれに限定されるものではない。

Specific examples of compound A having a polymerizable group are shown below, but compound A is not limited thereto.

 化合物Aがヒドロキシ基を有し、かつ、エチレン性不飽和結合を含む基を有しない場合、化合物Aは下記式(U-2)で表される化合物であることが好ましい。

 式(U-2)中、Aは-O-又は-NR-であり、Rは水素原子又は1価の有機基であり、ZU3はm価の有機基であり、RU2はそれぞれ独立に、1価の有機基を表し、RU3はそれぞれ独立に、1価の有機基を表し、ZU3、RU2及びRU3のうち少なくとも1つはヒドロキシ基を有する基であり、mは1以上の整数である。
When compound A has a hydroxy group and does not have a group containing an ethylenically unsaturated bond, compound A is preferably a compound represented by the following formula (U-2).

In formula (U-2), A is -O- or -NR N -, R N is a hydrogen atom or a monovalent organic group, Z U3 is an m-valent organic group, R U2 each independently represent a monovalent organic group, R U3 each independently represent a monovalent organic group, at least one of Z U3 , R U2 , and R U3 is a group having a hydroxyl group, and m is an integer of 1 or more.
 式(U-2)中、Aは-NR-が好ましい。Rは水素原子、アルキル基又はフェニル基が好ましく、水素原子がより好ましい。 In formula (U-2), A is preferably —NR N —. R N is preferably a hydrogen atom, an alkyl group or a phenyl group, and more preferably a hydrogen atom.
 式(U-2)中、ZU3はそれぞれ独立に、炭化水素基、-O-、-C(=O)-、-S-、-S(=O)-、-NR-、若しくは、これらが2以上結合した基が好ましく、炭化水素基、又は、炭化水素基と、-O-、-C(=O)-、-S-、-S(=O)-、及び、-NR-からなる群より選ばれた少なくとも1種の基とが結合した基がより好ましく、炭化水素基が更に好ましい。
 上記炭化水素基としては、炭素数20以下の炭化水素基が好ましく、18以下の炭化水素基がより好ましく、16以下の炭化水素基が更に好ましい。上記炭化水素基としては、飽和脂肪族炭化水素基、芳香族炭化水素基、又は、これらの結合により表される基などが挙げられる。Rは水素原子又は1価の有機基を表し、水素原子又は炭化水素基であることが好ましく、水素原子又はアルキル基であることがより好ましく、水素原子又はメチル基であることが更に好ましい。
 上記炭化水素基は置換基を有してもよい。
 上記炭化水素基が、置換基としてヒドロキシ基、アルキレンオキシ基、アミド基及びシアノ基を有する態様も、本発明の好ましい態様の一つである。これらの基の好ましい態様は上述の通りである。
In formula (U-2), Z U3 are each independently preferably a hydrocarbon group, -O-, -C(=O)-, -S-, -S(=O) 2 -, -NR N -, or a group in which two or more of these are bonded together, more preferably a hydrocarbon group, or a group in which a hydrocarbon group is bonded to at least one group selected from the group consisting of -O-, -C(=O)-, -S-, -S(=O) 2 -, and -NR N -, and further preferably a hydrocarbon group.
The hydrocarbon group is preferably a hydrocarbon group having 20 or less carbon atoms, more preferably a hydrocarbon group having 18 or less carbon atoms, and even more preferably a hydrocarbon group having 16 or less carbon atoms. Examples of the hydrocarbon group include a saturated aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a group represented by a combination thereof. R N represents a hydrogen atom or a monovalent organic group, and is preferably a hydrogen atom or a hydrocarbon group, more preferably a hydrogen atom or an alkyl group, and even more preferably a hydrogen atom or a methyl group.
The above hydrocarbon group may have a substituent.
In one preferred embodiment of the present invention, the hydrocarbon group has a hydroxy group, an alkyleneoxy group, an amide group, or a cyano group as a substituent. The preferred embodiments of these groups are as described above.
 式(U-2)中、RU2はそれぞれ独立に、炭化水素基であることが好ましく、アルキル基であることがより好ましく、炭素数1~20のアルキル基がより好ましく、炭素数1~4のアルキル基がより好ましい。
 上記炭化水素基は置換基を有してもよい。
 上記炭化水素基が、置換基としてヒドロキシ基、アルキレンオキシ基、アミド基及びシアノ基を有する態様も、本発明の好ましい態様の一つである。これらの基の好ましい態様は上述の通りである。
In formula (U-2), each R 1 U2 is preferably a hydrocarbon group, more preferably an alkyl group, more preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms.
The above hydrocarbon group may have a substituent.
In one preferred embodiment of the present invention, the hydrocarbon group has a hydroxy group, an alkyleneoxy group, an amide group, or a cyano group as a substituent. The preferred embodiments of these groups are as described above.
 式(U-2)中、RU3の好ましい態様は、RU2の好ましい態様と同様である。 In formula (U-2), preferred embodiments of R 1 U3 are the same as those of R 1 U2 .
 式(U-2)中、mは1~10の整数であることが好ましく、1~4の整数であることがより好ましく、1又は2であることが更に好ましい。 In formula (U-2), m is preferably an integer from 1 to 10, more preferably an integer from 1 to 4, and even more preferably 1 or 2.
〔対称軸〕
 化合物Aは対称軸を有しない構造の化合物であることも好ましい。
 化合物Aが対称軸を有しないとは、化合物全体を回転させることにより元の分子と同一の分子を生じる軸を有さず、左右非対称の化合物である事をいう。また、化合物Aの構造式を紙面上に表記した場合において、化合物Aが対称軸を有しないとは、化合物Aの構造式を、対称軸を有する形に表記することができないことをいう。
 化合物Aが対称軸を有しないことにより、組成物膜中では化合物A同士の凝集が抑制されると考えられる。
[Axis of symmetry]
It is also preferable that compound A is a compound having a structure without an axis of symmetry.
Compound A having no axis of symmetry means that the compound is asymmetric and does not have an axis that would produce an identical molecule to the original molecule by rotating the entire compound. In addition, when the structural formula of compound A is written on paper, compound A having no axis of symmetry means that the structural formula of compound A cannot be written in a form having an axis of symmetry.
It is believed that the absence of an axis of symmetry in compound A suppresses aggregation of compounds A within the composition film.
 樹脂組成物は、化合物Aとして後述する実施例におけるU-1~U-11のいずれかを含むことが好ましい。 The resin composition preferably contains, as compound A, any one of U-1 to U-11 in the examples described below.
〔分子量〕
 化合物Aの分子量は、100~2,000であることが好ましく、150~1500であることが好ましく、200~900であることがより好ましい。
[Molecular weight]
The molecular weight of compound A is preferably 100 to 2,000, more preferably 150 to 1500, and even more preferably 200 to 900.
 樹脂組成物の全固形分に対する、化合物Aの含有量は、0.1~20質量%であることが好ましい。下限は0.2質量%以上がより好ましく、0.4質量%以上が更に好ましく、0.6質量%以上が特に好ましい。上限は、15質量%以下であることがより好ましく、12質量%以下であることが更に好ましく、10質量%以下であることが特に好ましい。
 また、樹脂組成物における、ポリイミド前駆体100質量部に対する化合物Aの含有量は、0.05~15質量部が好ましく、0.10~8質量部がより好ましい。
 化合物Aは1種を単独で用いてもよいが、2種以上を併用してもよい。2種以上を併用する場合にはその合計量が上記の範囲となることが好ましい。
The content of compound A relative to the total solid content of the resin composition is preferably 0.1 to 20 mass%. The lower limit is more preferably 0.2 mass% or more, even more preferably 0.4 mass% or more, and particularly preferably 0.6 mass% or more. The upper limit is more preferably 15 mass% or less, even more preferably 12 mass% or less, and particularly preferably 10 mass% or less.
The content of compound A in the resin composition is preferably 0.05 to 15 parts by mass, more preferably 0.10 to 8 parts by mass, based on 100 parts by mass of the polyimide precursor.
Compound A may be used alone or in combination of two or more. When two or more types are used in combination, the total amount is preferably within the above range.
<重合性化合物>
 樹脂組成物は、重合性化合物を含むことが好ましい。
 重合性化合物としては、ラジカル架橋剤、又は、他の架橋剤が挙げられる。
 ただし、上述の化合物Aに該当する化合物は、ここでいう重合性化合物には含まれないものとする。
<Polymerizable Compound>
The resin composition preferably contains a polymerizable compound.
The polymerizable compound may include a radical crosslinking agent or other crosslinking agents.
However, the compound corresponding to the above-mentioned compound A is not included in the polymerizable compound referred to here.
〔ラジカル架橋剤〕
 樹脂組成物は、ラジカル架橋剤を含むことが好ましい。
 ラジカル架橋剤は、ラジカル重合性基を有する化合物である。ラジカル重合性基としては、エチレン性不飽和結合を含む基が好ましい。上記エチレン性不飽和結合を含む基としては、ビニル基、アリル基、ビニルフェニル基、(メタ)アクリロイル基、マレイミド基、(メタ)アクリルアミド基などが挙げられる。
 これらの中でも、(メタ)アクリロイル基、(メタ)アクリルアミド基、ビニルフェニル基が好ましく、反応性の観点からは、(メタ)アクリロイル基がより好ましい。
[Radical Crosslinking Agent]
The resin composition preferably contains a radical crosslinking agent.
The radical crosslinking agent is a compound having a radical polymerizable group. The radical polymerizable group is preferably a group containing an ethylenically unsaturated bond. Examples of the group containing an ethylenically unsaturated bond include a vinyl group, an allyl group, a vinylphenyl group, a (meth)acryloyl group, a maleimide group, and a (meth)acrylamide group.
Among these, a (meth)acryloyl group, a (meth)acrylamide group, and a vinylphenyl group are preferred, and from the viewpoint of reactivity, a (meth)acryloyl group is more preferred.
 ラジカル架橋剤は、エチレン性不飽和結合を1個以上有する化合物であることが好ましいが、2個以上有する化合物であることがより好ましい。ラジカル架橋剤は、エチレン性不飽和結合を3個以上有していてもよい。
 上記エチレン性不飽和結合を2個以上有する化合物としては、エチレン性不飽和結合を2~15個有する化合物が好ましく、エチレン性不飽和結合を2~10個有する化合物がより好ましく、2~6個有する化合物が更に好ましい。
 得られるパターン(硬化物)の膜強度の観点からは、樹脂組成物は、エチレン性不飽和結合を2個有する化合物と、上記エチレン性不飽和結合を3個以上有する化合物とを含むことも好ましい。また、エチレン性不飽和結合を3個以上有する化合物を用いることにより、上記減圧工程において重合性化合物自体、また、重合性化合物の重合体が揮発しにくくなるため好ましい。
The radical crosslinking agent is preferably a compound having one or more ethylenically unsaturated bonds, more preferably a compound having two or more ethylenically unsaturated bonds. The radical crosslinking agent may have three or more ethylenically unsaturated bonds.
As the compound having two or more ethylenically unsaturated bonds, a compound having 2 to 15 ethylenically unsaturated bonds is preferable, a compound having 2 to 10 ethylenically unsaturated bonds is more preferable, and a compound having 2 to 6 ethylenically unsaturated bonds is even more preferable.
From the viewpoint of the film strength of the obtained pattern (cured product), it is also preferable that the resin composition contains a compound having two ethylenically unsaturated bonds and a compound having three or more ethylenically unsaturated bonds. In addition, by using a compound having three or more ethylenically unsaturated bonds, the polymerizable compound itself and the polymer of the polymerizable compound are less likely to volatilize in the decompression step, which is preferable.
 ラジカル架橋剤の分子量は、2,000以下が好ましく、1,500以下がより好ましく、900以下が更に好ましい。ラジカル架橋剤の分子量の下限は、100以上が好ましい。 The molecular weight of the radical crosslinking agent is preferably 2,000 or less, more preferably 1,500 or less, and even more preferably 900 or less. The lower limit of the molecular weight of the radical crosslinking agent is preferably 100 or more.
 ラジカル架橋剤の具体例としては、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸など)やそのエステル類、アミド類が挙げられ、好ましくは、不飽和カルボン酸と多価アルコール化合物とのエステル、及び不飽和カルボン酸と多価アミン化合物とのアミド類である。また、ヒドロキシ基やアミノ基、スルファニル基等の求核性置換基を有する不飽和カルボン酸エステル又はアミド類と、単官能若しくは多官能イソシアネート類又はエポキシ類との付加反応物や、単官能若しくは多官能のカルボン酸との脱水縮合反応物等も好適に使用される。また、イソシアネート基やエポキシ基等の親電子性置換基を有する不飽和カルボン酸エステル又はアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との付加反応物、更に、ハロゲノ基やトシルオキシ基等の脱離性置換基を有する不飽和カルボン酸エステル又はアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との置換反応物も好適である。また、別の例として、上記の不飽和カルボン酸の代わりに、不飽和ホスホン酸、スチレン等のビニルベンゼン誘導体、ビニルエーテル、アリルエーテル等に置き換えた化合物群を使用することも可能である。具体例としては、特開2016-027357号公報の段落0113~0122の記載を参酌でき、これらの内容は本明細書に組み込まれる。 Specific examples of radical crosslinking agents include unsaturated carboxylic acids (e.g., acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.) and their esters and amides, preferably esters of unsaturated carboxylic acids and polyhydric alcohol compounds, and amides of unsaturated carboxylic acids and polyvalent amine compounds. In addition, addition reaction products of unsaturated carboxylic acid esters or amides having nucleophilic substituents such as hydroxyl groups, amino groups, and sulfanyl groups with monofunctional or polyfunctional isocyanates or epoxies, and dehydration condensation reaction products of monofunctional or polyfunctional carboxylic acids are also preferably used. In addition, addition reaction products of unsaturated carboxylic acid esters or amides having electrophilic substituents such as isocyanate groups and epoxy groups with monofunctional or polyfunctional alcohols, amines, and thiols, and substitution reaction products of unsaturated carboxylic acid esters or amides having eliminable substituents such as halogeno groups and tosyloxy groups with monofunctional or polyfunctional alcohols, amines, and thiols are also suitable. As another example, it is also possible to use a compound group in which the above unsaturated carboxylic acid is replaced with an unsaturated phosphonic acid, a vinylbenzene derivative such as styrene, a vinyl ether, an allyl ether, etc. Specific examples can be found in paragraphs 0113 to 0122 of JP 2016-027357 A, the contents of which are incorporated herein by reference.
 ラジカル架橋剤は、常圧下で100℃以上の沸点を持つ化合物も好ましい。常圧下で100℃以上の沸点を持つ化合物としては、国際公開第2021/112189号公報の段落0203に記載の化合物等が挙げられる。この内容は本明細書に組み込まれる。 The radical crosslinking agent is preferably a compound having a boiling point of 100°C or higher under normal pressure. Examples of compounds having a boiling point of 100°C or higher under normal pressure include the compounds described in paragraph 0203 of WO 2021/112189, the contents of which are incorporated herein by reference.
 上述以外の好ましいラジカル架橋剤としては、国際公開第2021/112189号公報の段落0204~0208に記載のラジカル重合性化合物等が挙げられる。この内容は本明細書に組み込まれる。 Preferable radical crosslinking agents other than those mentioned above include the radical polymerizable compounds described in paragraphs 0204 to 0208 of WO 2021/112189, the contents of which are incorporated herein by reference.
 ラジカル架橋剤としては、ジペンタエリスリトールトリアクリレート(市販品としては KAYARAD D-330(日本化薬(株)製))、ジペンタエリスリトールテトラアクリレート(市販品としては KAYARAD D-320(日本化薬(株)製)、A-TMMT(新中村化学工業(株)製))、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としては KAYARAD D-310(日本化薬(株)製))、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としては KAYARAD DPHA(日本化薬(株)製)、A-DPH(新中村化学工業社製))、及びこれらの(メタ)アクリロイル基がエチレングリコール残基又はプロピレングリコール残基を介して結合している構造が好ましい。これらのオリゴマータイプも使用できる。 Preferred radical crosslinking agents are dipentaerythritol triacrylate (commercially available products include KAYARAD D-330 (manufactured by Nippon Kayaku Co., Ltd.)), dipentaerythritol tetraacrylate (commercially available products include KAYARAD D-320 (manufactured by Nippon Kayaku Co., Ltd.) and A-TMMT (manufactured by Shin-Nakamura Chemical Co., Ltd.)), dipentaerythritol penta(meth)acrylate (commercially available products include KAYARAD D-310 (manufactured by Nippon Kayaku Co., Ltd.)), dipentaerythritol hexa(meth)acrylate (commercially available products include KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.) and A-DPH (manufactured by Shin-Nakamura Chemical Co., Ltd.)), and structures in which the (meth)acryloyl groups are bonded via ethylene glycol residues or propylene glycol residues. Oligomer types of these can also be used.
 ラジカル架橋剤の市販品としては、例えばエチレンオキシ鎖を4個有する4官能アクリレートであるSR-494、エチレンオキシ鎖を4個有する2官能メタクリレートであるSR-209、231、239(以上、サートマー社製)、ペンチレンオキシ鎖を6個有する6官能アクリレートであるDPCA-60、イソブチレンオキシ鎖を3個有する3官能アクリレートであるTPA-330(以上、日本化薬(株)製)、ウレタンオリゴマーであるUAS-10、UAB-140(以上、日本製紙社製)、NKエステルM-40G、NKエステル4G、NKエステルM-9300、NKエステルA-9300、UA-7200(以上、新中村化学工業社製)、DPHA-40H(日本化薬(株)製)、UA-306H、UA-306T、UA-306I、AH-600、T-600、AI-600(以上、共栄社化学社製)、ブレンマーPME400(日油(株)製)などが挙げられる。 Commercially available radical crosslinking agents include, for example, SR-494, a tetrafunctional acrylate with four ethyleneoxy chains, SR-209, 231, and 239, which are difunctional methacrylates with four ethyleneoxy chains (all manufactured by Sartomer Corporation), DPCA-60, a hexafunctional acrylate with six pentyleneoxy chains, TPA-330, a trifunctional acrylate with three isobutyleneoxy chains (all manufactured by Nippon Kayaku Co., Ltd.), and urethane oligomers. Examples include UAS-10 and UAB-140 (all manufactured by Nippon Paper Industries Co., Ltd.), NK Ester M-40G, NK Ester 4G, NK Ester M-9300, NK Ester A-9300, and UA-7200 (all manufactured by Shin-Nakamura Chemical Co., Ltd.), DPHA-40H (manufactured by Nippon Kayaku Co., Ltd.), UA-306H, UA-306T, UA-306I, AH-600, T-600, and AI-600 (all manufactured by Kyoeisha Chemical Co., Ltd.), and Blenmar PME400 (manufactured by NOF Corp.).
 ラジカル架橋剤としては、特公昭48-041708号公報、特開昭51-037193号公報、特公平02-032293号公報、特公平02-016765号公報に記載されているようなウレタンアクリレート類や、特公昭58-049860号公報、特公昭56-017654号公報、特公昭62-039417号公報、特公昭62-039418号公報に記載のエチレンオキサイド系骨格を有するウレタン化合物類も好適である。ラジカル架橋剤として、特開昭63-277653号公報、特開昭63-260909号公報、特開平01-105238号公報に記載される、分子内にアミノ構造やスルフィド構造を有する化合物を用いることもできる。 As radical crosslinking agents, urethane acrylates such as those described in JP-B-48-041708, JP-A-51-037193, JP-B-02-032293, and JP-B-02-016765, and urethane compounds having an ethylene oxide skeleton described in JP-B-58-049860, JP-B-56-017654, JP-B-62-039417, and JP-B-62-039418 are also suitable. As radical crosslinking agents, compounds having an amino structure or sulfide structure in the molecule, as described in JP-A-63-277653, JP-A-63-260909, and JP-A-01-105238, can also be used.
 ラジカル架橋剤は、カルボキシ基、リン酸基等の酸基を有するラジカル架橋剤であってもよい。酸基を有するラジカル架橋剤は、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルが好ましく、脂肪族ポリヒドロキシ化合物の未反応のヒドロキシ基に非芳香族カルボン酸無水物を反応させて酸基を持たせたラジカル架橋剤がより好ましい。特に好ましくは、脂肪族ポリヒドロキシ化合物の未反応のヒドロキシ基に非芳香族カルボン酸無水物を反応させて酸基を持たせたラジカル架橋剤において、脂肪族ポリヒドロキシ化合物がペンタエリスリトール又はジペンタエリスリトールである化合物である。市販品としては、例えば、東亞合成(株)製の多塩基酸変性アクリルオリゴマーとして、M-510、M-520などが挙げられる。 The radical crosslinking agent may be a radical crosslinking agent having an acid group such as a carboxy group or a phosphate group. The radical crosslinking agent having an acid group is preferably an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, and more preferably a radical crosslinking agent in which an acid group is provided by reacting an unreacted hydroxy group of an aliphatic polyhydroxy compound with a non-aromatic carboxylic anhydride. Particularly preferred is a radical crosslinking agent in which an acid group is provided by reacting an unreacted hydroxy group of an aliphatic polyhydroxy compound with a non-aromatic carboxylic anhydride, in which the aliphatic polyhydroxy compound is pentaerythritol or dipentaerythritol. Examples of commercially available products include polybasic acid modified acrylic oligomers manufactured by Toagosei Co., Ltd., such as M-510 and M-520.
 酸基を有するラジカル架橋剤の酸価は、0.1~300mgKOH/gが好ましく、1~100mgKOH/gがより好ましい。ラジカル架橋剤の酸価が上記範囲であれば、製造上の取扱性に優れ、現像性に優れる。また、重合性が良好である。上記酸価は、JIS K 0070:1992の記載に準拠して測定される。 The acid value of the radical crosslinking agent having an acid group is preferably 0.1 to 300 mgKOH/g, more preferably 1 to 100 mgKOH/g. If the acid value of the radical crosslinking agent is within the above range, the agent has excellent handling properties during manufacturing and developability. In addition, the agent has good polymerizability. The acid value is measured in accordance with the description of JIS K 0070:1992.
 樹脂組成物は、パターンの解像性と膜の伸縮性の観点から、2官能のメタアクリレート又はアクリレートを用いることが好ましい。
 具体的な化合物としては、トリエチレングリコールジアクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、テトラエチレングリコールジアクリレート、PEG(ポリエチレングリコール)200ジアクリレート、PEG200ジメタクリレート、PEG600ジアクリレート、PEG600ジメタクリレート、ポリテトラエチレングリコールジアクリレート、ポリテトラエチレングリコールジメタクリレート、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジメタクリレート、3-メチル-1,5-ペンタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,6-ヘキサンジオールジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ジメチロール-トリシクロデカンジメタクリレート、ビスフェノールAのEO(エチレンオキシド)付加物ジアクリレート、ビスフェノールAのEO付加物ジメタクリレート、ビスフェノールAのPO(プロピレンオキシド)付加物ジアクリレート、ビスフェノールAのPO付加物ジメタクリレート、2-ヒドロキシー3-アクリロイロキシプロピルメタクリレート、イソシアヌル酸EO変性ジアクリレート、イソシアヌル酸EO変性ジメタクリレート、その他ウレタン結合を有する2官能アクリレート、ウレタン結合を有する2官能メタクリレートを使用することができる。これらは必要に応じ、2種以上を混合し使用することができる。
 なお、例えばPEG200ジアクリレートとは、ポリエチレングリコールジアクリレートであって、ポリエチレングリコール鎖の式量が200程度のものをいう。
 樹脂組成物は、パターン(硬化物)の反り抑制の観点から、ラジカル架橋剤として、単官能ラジカル架橋剤を好ましく用いることができる。単官能ラジカル架橋剤としては、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、カルビトール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、グリシジル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等の(メタ)アクリル酸誘導体、N-ビニルピロリドン、N-ビニルカプロラクタム等のN-ビニル化合物類、アリルグリシジルエーテル等が好ましく用いられる。単官能ラジカル架橋剤としては、露光前の揮発を抑制するため、常圧下で100℃以上の沸点を持つ化合物も好ましい。
 その他、2官能以上のラジカル架橋剤としては、ジアリルフタレート、トリアリルトリメリテート等のアリル化合物類が挙げられる。
From the viewpoints of pattern resolution and film stretchability, it is preferable to use a difunctional methacrylate or acrylate for the resin composition.
Specific examples of the compounds include triethylene glycol diacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, tetraethylene glycol diacrylate, PEG (polyethylene glycol) 200 diacrylate, PEG 200 dimethacrylate, PEG 600 diacrylate, PEG 600 dimethacrylate, polytetraethylene glycol diacrylate, polytetraethylene glycol dimethacrylate, dipropylene glycol diacrylate, tripropylene glycol diacrylate, neopentyl glycol diacrylate, neopentyl glycol dimethacrylate, 3-methyl-1,5-pentanediol diacrylate, 1,6-hexyl 1,5-dimethylphenyl ... Xanediol diacrylate, 1,6-hexanediol dimethacrylate, dimethylol-tricyclodecane diacrylate, dimethylol-tricyclodecane dimethacrylate, EO (ethylene oxide) adduct diacrylate of bisphenol A, EO adduct dimethacrylate of bisphenol A, PO (propylene oxide) adduct diacrylate of bisphenol A, PO adduct dimethacrylate of bisphenol A, 2-hydroxy-3-acryloyloxypropyl methacrylate, isocyanuric acid EO-modified diacrylate, isocyanuric acid EO-modified dimethacrylate, other bifunctional acrylates having a urethane bond, and bifunctional methacrylates having a urethane bond can be used. Two or more of these can be mixed and used as necessary.
For example, PEG200 diacrylate refers to polyethylene glycol diacrylate with a formula weight of about 200 for the polyethylene glycol chain.
In terms of suppressing warping of the pattern (cured product), the resin composition can preferably use a monofunctional radical crosslinking agent as the radical crosslinking agent. As the monofunctional radical crosslinking agent, n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, butoxyethyl (meth)acrylate, carbitol (meth)acrylate, cyclohexyl (meth)acrylate, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, N-methylol (meth)acrylamide, glycidyl (meth)acrylate, polyethylene glycol mono(meth)acrylate, polypropylene glycol mono(meth)acrylate, and other (meth)acrylic acid derivatives, N-vinyl compounds such as N-vinylpyrrolidone and N-vinylcaprolactam, and allyl glycidyl ether are preferably used. As the monofunctional radical crosslinking agent, a compound having a boiling point of 100° C. or higher under normal pressure is also preferred in order to suppress volatilization before exposure.
Other examples of the difunctional or higher radical crosslinking agent include allyl compounds such as diallyl phthalate and triallyl trimellitate.
 ラジカル架橋剤を含有する場合、ラジカル架橋剤の含有量は、樹脂組成物の全固形分に対して、0質量%超60質量%以下であることが好ましい。下限は5質量%以上がより好ましい。上限は、50質量%以下であることがより好ましく、30質量%以下であることが更に好ましい。 When a radical crosslinking agent is contained, the content of the radical crosslinking agent is preferably more than 0 mass% and not more than 60 mass% based on the total solid content of the resin composition. The lower limit is more preferably 5 mass% or more. The upper limit is more preferably 50 mass% or less, and even more preferably 30 mass% or less.
 ラジカル架橋剤は1種を単独で用いてもよいが、2種以上を混合して用いてもよい。2種以上を併用する場合にはその合計量が上記の範囲となることが好ましい。 The radical crosslinking agent may be used alone or in combination of two or more. When two or more types are used in combination, it is preferable that the total amount is within the above range.
〔他の架橋剤〕
 樹脂組成物は、上述したラジカル架橋剤とは異なる、他の架橋剤を含むことも好ましい。
 他の架橋剤とは、上述したラジカル架橋剤以外の架橋剤をいい、上述の光酸発生剤、又は、光塩基発生剤の感光により、組成物中の他の化合物又はその反応生成物との間で共有結合を形成する反応が促進される基を分子内に複数個有する化合物であることが好ましく、組成物中の他の化合物又はその反応生成物との間で共有結合を形成する反応が酸又は塩基の作用によって促進される基を分子内に複数個有する化合物が好ましい。
 上記酸又は塩基は、露光工程において、光酸発生剤又は光塩基発生剤から発生する酸又は塩基であることが好ましい。
 他の架橋剤としては、国際公開第2022/145355号の段落0179~0207に記載の化合物が挙げられる。上記記載は本明細書に組み込まれる。
[Other crosslinking agents]
The resin composition also preferably contains another crosslinking agent different from the above-mentioned radical crosslinking agent.
The other crosslinking agent refers to a crosslinking agent other than the above-mentioned radical crosslinking agent, and is preferably a compound having, in its molecule, a plurality of groups that promote a reaction to form a covalent bond with another compound in the composition or a reaction product thereof upon exposure to light by the above-mentioned photoacid generator or photobase generator, and is preferably a compound having, in its molecule, a plurality of groups that promote a reaction to form a covalent bond with another compound in the composition or a reaction product thereof under the action of an acid or a base.
The acid or base is preferably an acid or base generated from a photoacid generator or a photobase generator in the exposure step.
Other cross-linking agents include the compounds described in paragraphs 0179 to 0207 of WO 2022/145355, the disclosures of which are incorporated herein by reference.
 他の架橋剤の含有量は、樹脂組成物の全固形分に対し0.1~30質量%であることが好ましく、0.1~20質量%であることがより好ましく、0.5~15質量%であることが更に好ましく、1.0~10質量%であることが特に好ましい。他の架橋剤は1種のみ含有していてもよいし、2種以上含有していてもよい。他の架橋剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。 The content of the other crosslinking agent is preferably 0.1 to 30 mass% relative to the total solid content of the resin composition, more preferably 0.1 to 20 mass%, even more preferably 0.5 to 15 mass%, and particularly preferably 1.0 to 10 mass%. Only one type of other crosslinking agent may be contained, or two or more types may be contained. When two or more types of other crosslinking agents are contained, the total is preferably within the above range.
〔重合開始剤〕
 樹脂組成物は、重合開始剤を含むことが好ましい。重合開始剤は熱重合開始剤であっても光重合開始剤であってもよいが、特に光重合開始剤を含むことが好ましい。
 光重合開始剤は、光ラジカル重合開始剤であることが好ましい。光ラジカル重合開始剤としては、特に制限はなく、公知の光ラジカル重合開始剤の中から適宜選択することができる。例えば、紫外線領域から可視領域の光線に対して感光性を有する光ラジカル重合開始剤が好ましい。また、光励起された増感剤と作用し、活性ラジカルを生成する活性剤であってもよい。
[Polymerization initiator]
The resin composition preferably contains a polymerization initiator. The polymerization initiator may be a thermal polymerization initiator or a photopolymerization initiator, but it is particularly preferable that the resin composition contains a photopolymerization initiator.
The photopolymerization initiator is preferably a photoradical polymerization initiator. The photoradical polymerization initiator is not particularly limited and can be appropriately selected from known photoradical polymerization initiators. For example, a photoradical polymerization initiator having photosensitivity to light rays in the ultraviolet to visible regions is preferable. Alternatively, it may be an activator that reacts with a photoexcited sensitizer to generate active radicals.
 光ラジカル重合開始剤は、波長約240~800nm(好ましくは330~500nm)の範囲内で少なくとも約50L・mol-1・cm-1のモル吸光係数を有する化合物を、少なくとも1種含有していることが好ましい。化合物のモル吸光係数は、公知の方法を用いて測定することができる。例えば、紫外可視分光光度計(Varian社製Cary-5 spectrophotometer)にて、酢酸エチル溶剤を用い、0.01g/Lの濃度で測定することが好ましい。 The photoradical polymerization initiator preferably contains at least one compound having a molar absorption coefficient of at least about 50 L·mol −1 ·cm −1 in a wavelength range of about 240 to 800 nm (preferably 330 to 500 nm). The molar absorption coefficient of the compound can be measured using a known method. For example, it is preferable to measure it using an ultraviolet-visible spectrophotometer (Varian Cary-5 spectrophotometer) at a concentration of 0.01 g/L using ethyl acetate as a solvent.
 光ラジカル重合開始剤としては、公知の化合物を任意に使用できる。例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有する化合物、オキサジアゾール骨格を有する化合物、トリハロメチル基を有する化合物など)、アシルホスフィンオキサイド等のアシルホスフィン化合物、ヘキサアリールビイミダゾール、オキシム誘導体等のオキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテル、アミノアセトフェノンなどのα-アミノケトン化合物、ヒドロキシアセトフェノンなどのα-ヒドロキシケトン化合物、アゾ系化合物、アジド化合物、メタロセン化合物、有機ホウ素化合物、鉄アレーン錯体などが挙げられる。これらの詳細については、特開2016-027357号公報の段落0165~0182、国際公開第2015/199219号の段落0138~0151の記載を参酌でき、この内容は本明細書に組み込まれる。また、特開2014-130173号公報の段落0065~0111、特許第6301489号公報に記載された化合物、MATERIAL STAGE 37~60p,vol.19,No.3,2019に記載されたパーオキサイド系光重合開始剤、国際公開第2018/221177号に記載の光重合開始剤、国際公開第2018/110179号に記載の光重合開始剤、特開2019-043864号公報に記載の光重合開始剤、特開2019-044030号公報に記載の光重合開始剤、特開2019-167313号公報に記載の過酸化物系開始剤が挙げられ、これらの内容は本明細書に組み込まれる。 Any known compound can be used as the photoradical polymerization initiator. For example, halogenated hydrocarbon derivatives (e.g., compounds having a triazine skeleton, compounds having an oxadiazole skeleton, compounds having a trihalomethyl group, etc.), acylphosphine compounds such as acylphosphine oxides, hexaarylbiimidazoles, oxime compounds such as oxime derivatives, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, ketoxime ethers, α-aminoketone compounds such as aminoacetophenones, α-hydroxyketone compounds such as hydroxyacetophenones, azo compounds, azide compounds, metallocene compounds, organic boron compounds, iron arene complexes, etc. For details of these, please refer to the descriptions in paragraphs 0165 to 0182 of JP 2016-027357 A and paragraphs 0138 to 0151 of WO 2015/199219, the contents of which are incorporated herein by reference. Further examples include the compounds described in paragraphs 0065 to 0111 of JP 2014-130173 A and JP 6301489 A, the peroxide-based photopolymerization initiators described in MATERIAL STAGE 37 to 60p, vol. 19, No. 3, 2019, the photopolymerization initiators described in WO 2018/221177 A, the photopolymerization initiators described in WO 2018/110179 A, the photopolymerization initiators described in JP 2019-043864 A, the photopolymerization initiators described in JP 2019-044030 A, and the peroxide-based initiators described in JP 2019-167313 A, the contents of which are incorporated herein by reference.
 ケトン化合物としては、例えば、特開2015-087611号公報の段落0087に記載の化合物が例示され、この内容は本明細書に組み込まれる。市販品では、カヤキュア-DETX-S(日本化薬(株)製)も好適に用いられる。 Examples of ketone compounds include the compounds described in paragraph 0087 of JP 2015-087611 A, the contents of which are incorporated herein by reference. As a commercially available product, Kayacure-DETX-S (manufactured by Nippon Kayaku Co., Ltd.) is also preferably used.
 本発明の一実施態様において、光ラジカル重合開始剤としては、ヒドロキシアセトフェノン化合物、アミノアセトフェノン化合物、及び、アシルホスフィン化合物を好適に用いることができる。より具体的には、例えば、特開平10-291969号公報に記載のアミノアセトフェノン系開始剤、特許第4225898号に記載のアシルホスフィンオキシド系開始剤を用いることができ、この内容は本明細書に組み込まれる。 In one embodiment of the present invention, hydroxyacetophenone compounds, aminoacetophenone compounds, and acylphosphine compounds can be suitably used as photoradical polymerization initiators. More specifically, for example, aminoacetophenone-based initiators described in JP-A-10-291969 and acylphosphine oxide-based initiators described in Japanese Patent No. 4225898 can be used, the contents of which are incorporated herein by reference.
 α-ヒドロキシケトン系開始剤としては、Omnirad 184、Omnirad 1173、Omnirad 2959、Omnirad 127(以上、IGM Resins B.V.社製)、IRGACURE 184(IRGACUREは登録商標)、DAROCUR 1173、IRGACURE 500、IRGACURE-2959、IRGACURE 127(以上、BASF社製)を用いることができる。 α-Hydroxyketone initiators that can be used include Omnirad 184, Omnirad 1173, Omnirad 2959, Omnirad 127 (all manufactured by IGM Resins B.V.), IRGACURE 184 (IRGACURE is a registered trademark), DAROCUR 1173, IRGACURE 500, IRGACURE-2959, and IRGACURE 127 (all manufactured by BASF).
 α-アミノケトン系開始剤としては、Omnirad 907、Omnirad 369、Omnirad 369E、Omnirad 379EG(以上、IGM Resins B.V.社製)、IRGACURE 907、IRGACURE 369、及び、IRGACURE 379(以上、BASF社製)を用いることができる。 As α-aminoketone initiators, Omnirad 907, Omnirad 369, Omnirad 369E, Omnirad 379EG (all manufactured by IGM Resins B.V.), IRGACURE 907, IRGACURE 369, and IRGACURE 379 (all manufactured by BASF) can be used.
アミノアセトフェノン系開始剤、アシルホスフィンオキシド系開始剤、メタロセン化合物としては、例えば、国際公開第2021/112189号の段落0161~0163に記載の化合物も好適に使用することができる。この内容は本明細書に組み込まれる。 As the aminoacetophenone initiator, acylphosphine oxide initiator, and metallocene compound, for example, the compounds described in paragraphs 0161 to 0163 of WO 2021/112189 can also be suitably used. The contents of this specification are incorporated herein.
 光ラジカル重合開始剤として、より好ましくはオキシム化合物が挙げられる。オキシム化合物を用いることにより、露光ラチチュードをより効果的に向上させることが可能になる。オキシム化合物は、露光ラチチュード(露光マージン)が広く、かつ、光硬化促進剤としても働くため、特に好ましい。 As a photoradical polymerization initiator, an oxime compound is more preferably used. By using an oxime compound, it becomes possible to more effectively improve the exposure latitude. Oxime compounds are particularly preferred because they have a wide exposure latitude (exposure margin) and also function as a photocuring accelerator.
 樹脂組成物は、光重合開始剤として、下記式(PPI-1)で表される化合物を含むことが好ましい。下記式(PPI-1)で表される化合物を含むことにより、露光した場合に光重合系が十分に反応し、減圧工程により除去されやすいため、耐熱信頼性に優れた硬化物が得られる。

 式(PPI-1)中、Rは炭素数1~9の有機基であり、Rはメチル基またはフェニル基であり、Rはそれぞれ独立に、炭素数1~9の有機基であり、nは0~5の整数である。
The resin composition preferably contains a compound represented by the following formula (PPI-1) as a photopolymerization initiator. By containing the compound represented by the following formula (PPI-1), the photopolymerization system reacts sufficiently when exposed to light and is easily removed by a decompression step, so that a cured product with excellent heat resistance reliability can be obtained.

In formula (PPI-1), R 1 is an organic group having 1 to 9 carbon atoms, R 2 is a methyl group or a phenyl group, R 3 is each independently an organic group having 1 to 9 carbon atoms, and n is an integer of 0 to 5.
 式(PPI-1)中、Rは炭化水素基であることが好ましく、アルキル基であることがより好ましい。
 上記炭化水素基(アルキル基)としては、炭素数2~20の炭化水素基(アルキル基)が好ましく、炭素数4~10の炭化水素基(アルキル基)がより好ましい。
 上記炭化水素基は、直鎖状、分岐鎖状、環状又はこれらの組み合わせにより表される形状のいずれであってもよい。
 これらの中でも、Rは直鎖アルキル基、分岐アルキル基、環状アルキル基又は直鎖アルキル基の水素原子が環状アルキル基で置換された構造が好ましい。これらの基の好ましい炭素数は、上記炭化水素基の好ましい炭素数と同様である。
 Rの具体例としては、n-へキシル基、1-メチルブチル基、シクロへキシルメチル基、シクロへキシル基等が挙げられる。
In formula (PPI-1), R 1 is preferably a hydrocarbon group, more preferably an alkyl group.
The above-mentioned hydrocarbon group (alkyl group) is preferably a hydrocarbon group (alkyl group) having 2 to 20 carbon atoms, and more preferably a hydrocarbon group (alkyl group) having 4 to 10 carbon atoms.
The hydrocarbon group may be linear, branched, cyclic, or a combination thereof.
Among these, R1 is preferably a linear alkyl group, a branched alkyl group, a cyclic alkyl group, or a structure in which a hydrogen atom of a linear alkyl group is substituted with a cyclic alkyl group. The preferred number of carbon atoms of these groups is the same as the preferred number of carbon atoms of the above-mentioned hydrocarbon group.
Specific examples of R1 include an n-hexyl group, a 1-methylbutyl group, a cyclohexylmethyl group, and a cyclohexyl group.
 式(PPI-1)中、Rは特に限定されないが、アルキル基、アリール基、アルコキシ基、アリーロキシ基、-C(=O)Rで表される基などが挙げられる。
 上記Rとしては特に限定されず、アルキル基、アリール基、ヘテロ脂肪族環基、又は、これらの組み合わせにより表される基などが挙げられる。
In formula (PPI-1), R3 is not particularly limited, but examples thereof include an alkyl group, an aryl group, an alkoxy group, an aryloxy group, and a group represented by -C(=O)R.
The above R is not particularly limited, and examples thereof include an alkyl group, an aryl group, a heteroaliphatic ring group, or a group represented by a combination thereof.
 式(PPI-1)中、nは0~2の整数であることが好ましく、0又は1であることがより好ましい。また、nが0である態様も、本発明の好ましい態様の一つである。 In formula (PPI-1), n is preferably an integer of 0 to 2, and more preferably 0 or 1. An embodiment in which n is 0 is also one of the preferred embodiments of the present invention.
 オキシム化合物の具体例としては、特開2001-233842号公報に記載の化合物、特開2000-080068号公報に記載の化合物、特開2006-342166号公報に記載の化合物、J.C.S.Perkin II(1979年、pp.1653-1660)に記載の化合物、J.C.S.Perkin II(1979年、pp.156-162)に記載の化合物、Journal of Photopolymer Science and Technology(1995年、pp.202-232)に記載の化合物、特開2000-066385号公報に記載の化合物、特表2004-534797号公報に記載の化合物、特開2017-019766号公報に記載の化合物、特許第6065596号公報に記載の化合物、国際公開第2015/152153号に記載の化合物、国際公開第2017/051680号に記載の化合物、特開2017-198865号公報に記載の化合物、国際公開第2017/164127号の段落番号0025~0038に記載の化合物、国際公開第2013/167515号に記載の化合物などが挙げられ、この内容は本明細書に組み込まれる。 Specific examples of oxime compounds include the compounds described in JP-A-2001-233842, the compounds described in JP-A-2000-080068, the compounds described in JP-A-2006-342166, the compounds described in J. C. S. Perkin II (1979, pp. 1653-1660), the compounds described in J. C. S. Compounds described in Perkin II (1979, pp. 156-162), compounds described in Journal of Photopolymer Science and Technology (1995, pp. 202-232), compounds described in JP-A-2000-066385, compounds described in JP-T-2004-534797, compounds described in JP-A-2017-019766, Examples of the compounds include those described in WO 6065596, WO 2015/152153, WO 2017/051680, JP 2017-198865, WO 2017/164127, paragraphs 0025 to 0038, and WO 2013/167515, the contents of which are incorporated herein by reference.
 好ましいオキシム化合物としては、例えば、下記の構造の化合物や、3-(ベンゾイルオキシ(イミノ))ブタン-2-オン、3-(アセトキシ(イミノ))ブタン-2-オン、3-(プロピオニルオキシ(イミノ))ブタン-2-オン、2-(アセトキシ(イミノ))ペンタン-3-オン、2-(アセトキシ(イミノ))-1-フェニルプロパン-1-オン、2-(ベンゾイルオキシ(イミノ))-1-フェニルプロパン-1-オン、3-((4-トルエンスルホニルオキシ)イミノ)ブタン-2-オン、及び2-(エトキシカルボニルオキシ(イミノ))-1-フェニルプロパン-1-オンなどが挙げられる。樹脂組成物においては、特に光ラジカル重合開始剤としてオキシム化合物を用いることが好ましい。光ラジカル重合開始剤としてのオキシム化合物は、分子内に>C=N-O-C(=O)-の連結基を有する。 Preferred oxime compounds include, for example, compounds having the following structure, 3-(benzoyloxy(imino))butan-2-one, 3-(acetoxy(imino))butan-2-one, 3-(propionyloxy(imino))butan-2-one, 2-(acetoxy(imino))pentan-3-one, 2-(acetoxy(imino))-1-phenylpropan-1-one, 2-(benzoyloxy(imino))-1-phenylpropan-1-one, 3-((4-toluenesulfonyloxy)imino)butan-2-one, and 2-(ethoxycarbonyloxy(imino))-1-phenylpropan-1-one. In the resin composition, it is particularly preferable to use an oxime compound as a photoradical polymerization initiator. The oxime compound as a photoradical polymerization initiator has a linking group of >C=N-O-C(=O)- in the molecule.
 オキシム化合物の市販品としては、IRGACURE OXE 01、IRGACURE OXE 02、IRGACURE OXE 03、IRGACURE OXE 04(以上、BASF社製)、アデカオプトマーN-1919((株)ADEKA製、特開2012-014052号公報に記載の光ラジカル重合開始剤2)、TR-PBG-304、TR-PBG-305(常州強力電子新材料有限公司製)、アデカアークルズNCI-730、NCI-831及びアデカアークルズNCI-930((株)ADEKA製)、DFI-091(ダイトーケミックス(株)製)、SpeedCure PDO(SARTOMER ARKEMA製)が挙げられる。また、下記の構造のオキシム化合物を用いることもできる。
 
Commercially available oxime compounds include IRGACURE OXE 01, IRGACURE OXE 02, IRGACURE OXE 03, IRGACURE OXE 04 (manufactured by BASF), ADEKA OPTOMER N-1919 (manufactured by ADEKA Corporation, photoradical polymerization initiator 2 described in JP-A-2012-014052), TR-PBG-304, TR-PBG-305 (manufactured by Changzhou Strong Electronic New Materials Co., Ltd.), ADEKA ARCLES NCI-730, NCI-831 and ADEKA ARCLES NCI-930 (manufactured by ADEKA Corporation), DFI-091 (manufactured by Daito Chemistry Co., Ltd.), and SpeedCure PDO (manufactured by SARTOMER ARKEMA). In addition, an oxime compound having the following structure can also be used.
 光ラジカル重合開始剤としては、例えば、国際公開第2021/112189号の段落0169~0171に記載のフルオレン環を有するオキシム化合物、カルバゾール環の少なくとも1つのベンゼン環がナフタレン環となった骨格を有するオキシム化合物、フッ素原子を有するオキシム化合物を用いることもできる。
 また、国際公開第2021/020359号に記載の段落0208~0210に記載のニトロ基を有するオキシム化合物、ベンゾフラン骨格を有するオキシム化合物、カルバゾール骨格にヒドロキシ基を有する置換基が結合したオキシム化合物を用いることもできる。これらの内容は本明細書に組み込まれる。
As the photoradical polymerization initiator, for example, an oxime compound having a fluorene ring described in paragraphs 0169 to 0171 of WO 2021/112189, an oxime compound having a skeleton in which at least one benzene ring of a carbazole ring is a naphthalene ring, or an oxime compound having a fluorine atom can be used.
In addition, oxime compounds having a nitro group, oxime compounds having a benzofuran skeleton, and oxime compounds having a hydroxyl group-containing substituent bonded to a carbazole skeleton described in paragraphs 0208 to 0210 of WO 2021/020359 can also be used. The contents of these compounds are incorporated herein by reference.
 光重合開始剤としては、芳香族環に電子求引性基が導入された芳香族環基ArOX1を有するオキシム化合物(以下、オキシム化合物OXともいう)を用いることもできる。上記芳香族環基ArOX1が有する電子求引性基としては、アシル基、ニトロ基、トリフルオロメチル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、シアノ基が挙げられ、アシル基およびニトロ基が好ましく、耐光性に優れた膜を形成しやすいという理由からアシル基であることがより好ましく、ベンゾイル基であることが更に好ましい。ベンゾイル基は、置換基を有していてもよい。置換基としては、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、アルキル基、アルコキシ基、アリール基、アリールオキシ基、複素環基、複素環オキシ基、アルケニル基、アルキルスルファニル基、アリールスルファニル基、アシル基またはアミノ基であることが好ましく、アルキル基、アルコキシ基、アリール基、アリールオキシ基、複素環オキシ基、アルキルスルファニル基、アリールスルファニル基またはアミノ基であることがより好ましく、アルコキシ基、アルキルスルファニル基またはアミノ基であることが更に好ましい。 As the photopolymerization initiator, an oxime compound having an aromatic ring group Ar OX1 in which an electron-withdrawing group is introduced into an aromatic ring (hereinafter, also referred to as oxime compound OX) can also be used. The electron-withdrawing group of the aromatic ring group Ar OX1 includes an acyl group, a nitro group, a trifluoromethyl group, an alkylsulfinyl group, an arylsulfinyl group, an alkylsulfonyl group, an arylsulfonyl group, and a cyano group. An acyl group and a nitro group are preferred, and an acyl group is more preferred because it is easy to form a film with excellent light resistance, and a benzoyl group is even more preferred. The benzoyl group may have a substituent. The substituent is preferably a halogen atom, a cyano group, a nitro group, a hydroxy group, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a heterocyclic group, a heterocyclic oxy group, an alkenyl group, an alkylsulfanyl group, an arylsulfanyl group, an acyl group, or an amino group, more preferably an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a heterocyclic oxy group, an alkylsulfanyl group, an arylsulfanyl group, or an amino group, and further preferably an alkoxy group, an alkylsulfanyl group, or an amino group.
 オキシム化合物OXは、式(OX1)で表される化合物および式(OX2)で表される化合物から選ばれる少なくとも1種であることが好ましく、式(OX2)で表される化合物であることがより好ましい。

 式中、RX1は、アルキル基、アルケニル基、アルコキシ基、アリール基、アリールオキシ基、複素環基、複素環オキシ基、アルキルスルファニル基、アリールスルファニル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、アシル基、アシルオキシ基、アミノ基、ホスフィノイル基、カルバモイル基またはスルファモイル基を表し、
 RX2は、アルキル基、アルケニル基、アルコキシ基、アリール基、アリールオキシ基、複素環基、複素環オキシ基、アルキルスルファニル基、アリールスルファニル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、アシルオキシ基またはアミノ基を表し、
 RX3~RX14は、それぞれ独立して水素原子または置換基を表す。
 ただし、RX10~RX14のうち少なくとも一つは、電子求引性基である。
The oxime compound OX is preferably at least one selected from the compounds represented by the formula (OX1) and the compounds represented by the formula (OX2), and more preferably the compound represented by the formula (OX2).

In the formula, R X1 represents an alkyl group, an alkenyl group, an alkoxy group, an aryl group, an aryloxy group, a heterocyclic group, a heterocyclic oxy group, an alkylsulfanyl group, an arylsulfanyl group, an alkylsulfinyl group, an arylsulfinyl group, an alkylsulfonyl group, an arylsulfonyl group, an acyl group, an acyloxy group, an amino group, a phosphinoyl group, a carbamoyl group, or a sulfamoyl group;
R X2 represents an alkyl group, an alkenyl group, an alkoxy group, an aryl group, an aryloxy group, a heterocyclic group, a heterocyclic oxy group, an alkylsulfanyl group, an arylsulfanyl group, an alkylsulfinyl group, an arylsulfinyl group, an alkylsulfonyl group, an arylsulfonyl group, an acyloxy group, or an amino group;
R X3 to R X14 each independently represent a hydrogen atom or a substituent.
However, at least one of R X10 to R X14 is an electron-withdrawing group.
 上記式において、RX12が電子求引性基であり、RX10、RX11、RX13、RX14は水素原子であることが好ましい。 In the above formula, it is preferable that R X12 is an electron-withdrawing group, and R X10 , R X11 , R X13 and R X14 are each a hydrogen atom.
 オキシム化合物OXの具体例としては、特許第4600600号公報の段落番号0083~0105に記載の化合物が挙げられ、この内容は本明細書に組み込まれる。 Specific examples of oxime compounds OX include the compounds described in paragraphs 0083 to 0105 of Japanese Patent No. 4600600, the contents of which are incorporated herein by reference.
 特に好ましいオキシム化合物としては、特開2007-269779号公報に示される特定置換基を有するオキシム化合物や、特開2009-191061号公報に示されるチオアリール基を有するオキシム化合物などが挙げられ、この内容は本明細書に組み込まれる。 Particularly preferred oxime compounds include oxime compounds having specific substituents as disclosed in JP 2007-269779 A and oxime compounds having thioaryl groups as disclosed in JP 2009-191061 A, the contents of which are incorporated herein by reference.
 光ラジカル重合開始剤は、露光感度の観点から、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、オニウム塩化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、アセトフェノン化合物及びその誘導体、シクロペンタジエン-ベンゼン-鉄錯体及びその塩、ハロメチルオキサジアゾール化合物、3-アリール置換クマリン化合物からなる群より選択される化合物が好ましい。 From the viewpoint of exposure sensitivity, the photoradical polymerization initiator is preferably a compound selected from the group consisting of trihalomethyltriazine compounds, benzyl dimethyl ketal compounds, α-hydroxyketone compounds, α-aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triarylimidazole dimers, onium salt compounds, benzothiazole compounds, benzophenone compounds, acetophenone compounds and derivatives thereof, cyclopentadiene-benzene-iron complexes and salts thereof, halomethyloxadiazole compounds, and 3-aryl substituted coumarin compounds.
 また、光ラジカル重合開始剤は、トリハロメチルトリアジン化合物、α-アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、オニウム塩化合物、ベンゾフェノン化合物、アセトフェノン化合物であり、トリハロメチルトリアジン化合物、α-アミノケトン化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、ベンゾフェノン化合物からなる群より選ばれる少なくとも1種の化合物がより好ましく、メタロセン化合物又はオキシム化合物が更に好ましい。 The photoradical polymerization initiator is a trihalomethyltriazine compound, an α-aminoketone compound, an acylphosphine compound, a phosphine oxide compound, a metallocene compound, an oxime compound, a triarylimidazole dimer, an onium salt compound, a benzophenone compound, or an acetophenone compound. At least one compound selected from the group consisting of a trihalomethyltriazine compound, an α-aminoketone compound, a metallocene compound, an oxime compound, a triarylimidazole dimer, or a benzophenone compound is more preferred, and a metallocene compound or an oxime compound is even more preferred.
 光ラジカル重合開始剤としては、国際公開第2021/020359号の段落0175~0179に記載の化合物、国際公開第2015/125469号の段落0048~0055に記載の化合物を用いることもでき、この内容は本明細書に組み込まれる。 As the photoradical polymerization initiator, the compounds described in paragraphs [0175] to [0179] of WO 2021/020359 and the compounds described in paragraphs [0048] to [0055] of WO 2015/125469 can also be used, the contents of which are incorporated herein by reference.
 光ラジカル重合開始剤としては、2官能あるいは3官能以上の光ラジカル重合開始剤を用いてもよい。そのような光ラジカル重合開始剤を用いることにより、光ラジカル重合開始剤の1分子から2つ以上のラジカルが発生するため、良好な感度が得られる。また、非対称構造の化合物を用いた場合においては、結晶性が低下して溶剤などへの溶解性が向上して、経時で析出しにくくなり、樹脂組成物の経時安定性を向上させることができる。2官能あるいは3官能以上の光ラジカル重合開始剤の具体例としては、特表2010-527339号公報、特表2011-524436号公報、国際公開第2015/004565号、特表2016-532675号公報の段落番号0407~0412、国際公開第2017/033680号の段落番号0039~0055に記載されているオキシム化合物の2量体、特表2013-522445号公報に記載されている化合物(E)および化合物(G)、国際公開第2016/034963号に記載されているCmpd1~7、特表2017-523465号公報の段落番号0007に記載されているオキシムエステル類光開始剤、特開2017-167399号公報の段落番号0020~0033に記載されている光開始剤、特開2017-151342号公報の段落番号0017~0026に記載されている光重合開始剤(A)、特許第6469669号公報に記載されているオキシムエステル光開始剤などが挙げられ、この内容は本明細書に組み込まれる。 As the photoradical polymerization initiator, a bifunctional or trifunctional or higher functional photoradical polymerization initiator may be used. By using such a photoradical polymerization initiator, two or more radicals are generated from one molecule of the photoradical polymerization initiator, resulting in good sensitivity. Furthermore, when a compound with an asymmetric structure is used, crystallinity decreases and solubility in solvents improves, making it less likely to precipitate over time, and improving the stability of the resin composition over time. Specific examples of bifunctional or trifunctional or higher functional photoradical polymerization initiators include dimers of oxime compounds described in JP-T-2010-527339, JP-T-2011-524436, WO-2015/004565, WO-2016-532675, paragraphs 0407 to 0412, and WO-2017/033680, paragraphs 0039 to 0055; compound (E) and compound (G) described in WO-T-2013-522445; Examples of such initiators include Cmpd1 to 7 described in Japanese Patent Publication No. 4963, the oxime ester photoinitiators described in paragraph 0007 of JP-T-2017-523465, the photoinitiators described in paragraphs 0020 to 0033 of JP-A-2017-167399, the photopolymerization initiator (A) described in paragraphs 0017 to 0026 of JP-A-2017-151342, and the oxime ester photoinitiators described in Japanese Patent Publication No. 6469669, the contents of which are incorporated herein by reference.
 樹脂組成物が光重合開始剤を含む場合、その含有量は、樹脂組成物の全固形分に対し0.1~30質量%が好ましく、0.1~20質量%がより好ましく、0.5~15質量%が更に好ましく、1.0~10質量%が更により好ましい。光重合開始剤は1種のみ含有していてもよいし、2種以上含有していてもよい。光重合開始剤を2種以上含有する場合は、合計量が上記範囲であることが好ましい。
 なお、光重合開始剤は熱重合開始剤としても機能する場合があるため、オーブンやホットプレート等の加熱によって光重合開始剤による架橋を更に進行させられる場合がある。
When the resin composition contains a photopolymerization initiator, the content is preferably 0.1 to 30 mass% based on the total solid content of the resin composition, more preferably 0.1 to 20 mass%, even more preferably 0.5 to 15 mass%, and even more preferably 1.0 to 10 mass%. Only one type of photopolymerization initiator may be contained, or two or more types may be contained. When two or more types of photopolymerization initiators are contained, the total amount is preferably within the above range.
In addition, since the photopolymerization initiator may also function as a thermal polymerization initiator, the crosslinking caused by the photopolymerization initiator may be further promoted by heating in an oven, a hot plate, or the like.
〔増感剤〕
 樹脂組成物は、増感剤を含んでいてもよい。増感剤は、特定の活性放射線を吸収して電子励起状態となる。電子励起状態となった増感剤は、熱ラジカル重合開始剤、光ラジカル重合開始剤などと接触して、電子移動、エネルギー移動、発熱などの作用が生じる。これにより、熱ラジカル重合開始剤、光ラジカル重合開始剤は化学変化を起こして分解し、ラジカル、酸又は塩基を生成する。
 使用可能な増感剤として、ベンゾフェノン系、ミヒラーズケトン系、クマリン系、ピラゾールアゾ系、アニリノアゾ系、トリフェニルメタン系、アントラキノン系、アントラセン系、アントラピリドン系、ベンジリデン系、オキソノール系、ピラゾロトリアゾールアゾ系、ピリドンアゾ系、シアニン系、フェノチアジン系、ピロロピラゾールアゾメチン系、キサンテン系、フタロシアニン系、ペンゾピラン系、インジゴ系等の化合物を使用することができる。
 増感剤としては、例えば、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、2,5-ビス(4’-ジエチルアミノベンザル)シクロペンタン、2,6-ビス(4’-ジエチルアミノベンザル)シクロヘキサノン、2,6-ビス(4’-ジエチルアミノベンザル)-4-メチルシクロヘキサノン、4,4’-ビス(ジメチルアミノ)カルコン、4,4’-ビス(ジエチルアミノ)カルコン、p-ジメチルアミノシンナミリデンインダノン、p-ジメチルアミノベンジリデンインダノン、2-(p-ジメチルアミノフェニルビフェニレン)-ベンゾチアゾール、2-(p-ジメチルアミノフェニルビニレン)ベンゾチアゾール、2-(p-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4’-ジメチルアミノベンザル)アセトン、1,3-ビス(4’-ジエチルアミノベンザル)アセトン、3,3’-カルボニル-ビス(7-ジエチルアミノクマリン)、3-アセチル-7-ジメチルアミノクマリン、3-エトキシカルボニル-7-ジメチルアミノクマリン、3-ベンジロキシカルボニル-7-ジメチルアミノクマリン、3-メトキシカルボニル-7-ジエチルアミノクマリン、3-エトキシカルボニル-7-ジエチルアミノクマリン(7-(ジエチルアミノ)クマリン-3-カルボン酸エチル)、N-フェニル-N’-エチルエタノールアミン、N-フェニルジエタノールアミン、N-p-トリルジエタノールアミン、N-フェニルエタノールアミン、4-モルホリノベンゾフェノン、ジメチルアミノ安息香酸イソアミル、ジエチルアミノ安息香酸イソアミル、2-メルカプトベンズイミダゾール、1-フェニル-5-メルカプトテトラゾール、2-メルカプトベンゾチアゾール、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンゾチアゾール、2-(p-ジメチルアミノスチリル)ナフト(1,2-d)チアゾール、2-(p-ジメチルアミノベンゾイル)スチレン、ジフェニルアセトアミド、ベンズアニリド、N-メチルアセトアニリド、3‘,4’-ジメチルアセトアニリド等が挙げられる。
 また、他の増感色素を用いてもよい。
 増感色素の詳細については、特開2016-027357号公報の段落0161~0163の記載を参酌でき、この内容は本明細書に組み込まれる。
[Sensitizer]
The resin composition may contain a sensitizer. The sensitizer absorbs specific active radiation and becomes electronically excited. The sensitizer in the electronically excited state comes into contact with a thermal radical polymerization initiator, a photoradical polymerization initiator, or the like, and effects such as electron transfer, energy transfer, and heat generation occur. As a result, the thermal radical polymerization initiator and the photoradical polymerization initiator undergo a chemical change and are decomposed to generate a radical, an acid, or a base.
Usable sensitizers include benzophenone-based, Michler's ketone-based, coumarin-based, pyrazole azo-based, anilino azo-based, triphenylmethane-based, anthraquinone-based, anthracene-based, anthrapyridone-based, benzylidene-based, oxonol-based, pyrazolotriazole azo-based, pyridone azo-based, cyanine-based, phenothiazine-based, pyrrolopyrazole azomethine-based, xanthene-based, phthalocyanine-based, benzopyran-based, indigo-based compounds, and the like.
Examples of the sensitizer include Michler's ketone, 4,4'-bis(diethylamino)benzophenone, 2,5-bis(4'-diethylaminobenzal)cyclopentane, 2,6-bis(4'-diethylaminobenzal)cyclohexanone, 2,6-bis(4'-diethylaminobenzal)-4-methylcyclohexanone, 4,4'-bis(dimethylamino)chalcone, 4,4'-bis(diethylamino)chalcone, p-dimethylaminocinnamylidene indanone, and p-dimethylaminobenzylidene indanone. Non, 2-(p-dimethylaminophenylbiphenylene)benzothiazole, 2-(p-dimethylaminophenylvinylene)benzothiazole, 2-(p-dimethylaminophenylvinylene)isonaphthothiazole, 1,3-bis(4'-dimethylaminobenzal)acetone, 1,3-bis(4'-diethylaminobenzal)acetone, 3,3'-carbonyl-bis(7-diethylaminocoumarin), 3-acetyl-7-dimethylaminocoumarin, 3-ethoxycarbonyl-7-dimethylaminocoumarin phosphorus, 3-benzyloxycarbonyl-7-dimethylaminocoumarin, 3-methoxycarbonyl-7-diethylaminocoumarin, 3-ethoxycarbonyl-7-diethylaminocoumarin (7-(diethylamino)coumarin-3-carboxylate ethyl), N-phenyl-N'-ethylethanolamine, N-phenyldiethanolamine, N-p-tolyldiethanolamine, N-phenylethanolamine, 4-morpholinobenzophenone, isoamyl dimethylaminobenzoate, isoethylaminobenzoate Examples of such an alkyl ester include soamyl, 2-mercaptobenzimidazole, 1-phenyl-5-mercaptotetrazole, 2-mercaptobenzothiazole, 2-(p-dimethylaminostyryl)benzoxazole, 2-(p-dimethylaminostyryl)benzothiazole, 2-(p-dimethylaminostyryl)naphtho(1,2-d)thiazole, 2-(p-dimethylaminobenzoyl)styrene, diphenylacetamide, benzanilide, N-methylacetanilide, and 3',4'-dimethylacetanilide.
Other sensitizing dyes may also be used.
For details about the sensitizing dye, the description in paragraphs [0161] to [0163] of JP2016-027357A can be referred to, the contents of which are incorporated herein by reference.
 樹脂組成物が増感剤を含む場合、増感剤の含有量は、樹脂組成物の全固形分に対し、0.01~20質量%が好ましく、0.1~15質量%がより好ましく、0.5~10質量%が更に好ましい。増感剤は、1種単独で用いてもよいし、2種以上を併用してもよい。 When the resin composition contains a sensitizer, the content of the sensitizer is preferably 0.01 to 20 mass % relative to the total solid content of the resin composition, more preferably 0.1 to 15 mass %, and even more preferably 0.5 to 10 mass %. The sensitizer may be used alone or in combination of two or more types.
〔連鎖移動剤〕
 樹脂組成物は、連鎖移動剤を含有してもよい。連鎖移動剤は、例えば高分子辞典第三版(高分子学会編、2005年)683-684頁に定義されている。連鎖移動剤としては、例えば、分子内に-S-S-、-SO-S-、-N-O-、SH、PH、SiH、及びGeHを有する化合物群、RAFT(Reversible Addition Fragmentation chain Transfer)重合に用いられるチオカルボニルチオ基を有するジチオベンゾアート、トリチオカルボナート、ジチオカルバマート、キサンタート化合物等が用いられる。これらは、低活性のラジカルに水素を供与して、ラジカルを生成するか、若しくは、酸化された後、脱プロトンすることによりラジカルを生成しうる。特に、チオール化合物を好ましく用いることができる。
[Chain transfer agent]
The resin composition may contain a chain transfer agent. The chain transfer agent is defined, for example, in the Third Edition of the Polymer Dictionary (edited by the Society of Polymer Science, 2005), pages 683-684. Examples of the chain transfer agent include compounds having -S-S-, -SO 2 -S-, -N-O-, SH, PH, SiH, and GeH in the molecule, and dithiobenzoate, trithiocarbonate, dithiocarbamate, and xanthate compounds having a thiocarbonylthio group used in RAFT (Reversible Addition Fragmentation Chain Transfer) polymerization. These donate hydrogen to a low activity radical to generate a radical, or are oxidized and then deprotonated to generate a radical. In particular, a thiol compound can be preferably used.
 また、連鎖移動剤は、国際公開第2015/199219号の段落0152~0153に記載の化合物を用いることもでき、この内容は本明細書に組み込まれる。 In addition, the chain transfer agent may be the compound described in paragraphs 0152 to 0153 of International Publication No. 2015/199219, the contents of which are incorporated herein by reference.
 樹脂組成物が連鎖移動剤を有する場合、連鎖移動剤の含有量は、樹脂組成物の全固形分100質量部に対し、0.01~20質量部が好ましく、0.1~10質量部がより好ましく、0.5~5質量部が更に好ましい。連鎖移動剤は1種のみでもよいし、2種以上であってもよい。連鎖移動剤が2種以上の場合は、その合計が上記範囲であることが好ましい。 When the resin composition contains a chain transfer agent, the content of the chain transfer agent is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, and even more preferably 0.5 to 5 parts by mass, per 100 parts by mass of the total solid content of the resin composition. The chain transfer agent may be one type or two or more types. When there are two or more types of chain transfer agents, the total is preferably within the above range.
<塩基発生剤>
 樹脂組成物は、塩基発生剤を含んでもよい。ここで、塩基発生剤とは、物理的または化学的な作用によって塩基を発生することができる化合物である。好ましい塩基発生剤としては、熱塩基発生剤および光塩基発生剤が挙げられる。
 ただし、上述の化合物Aに該当する化合物は、ここでいう塩基発生剤には該当しないものとする。
 特に、樹脂組成物が環化樹脂の前駆体を含む場合、樹脂組成物は塩基発生剤を含むことが好ましい。樹脂組成物が熱塩基発生剤を含有することによって、例えば加熱により前駆体の環化反応を促進でき、硬化物の機械特性や耐薬品性が良好なものとなり、例えば半導体パッケージ中に含まれる再配線層用層間絶縁膜としての性能が良好となる。
 塩基発生剤としては、イオン型塩基発生剤でもよく、非イオン型塩基発生剤でもよい。塩基発生剤から発生する塩基としては、例えば、2級アミン、3級アミンが挙げられる。
 塩基発生剤は特に限定されず、公知の塩基発生剤を用いることができる。公知の塩基発生剤としては、例えば、カルバモイルオキシム化合物、カルバモイルヒドロキシルアミン化合物、カルバミン酸化合物、ホルムアミド化合物、アセトアミド化合物、カルバメート化合物、ベンジルカルバメート化合物、ニトロベンジルカルバメート化合物、スルホンアミド化合物、イミダゾール誘導体化合物、アミンイミド化合物、ピリジン誘導体化合物、α-アミノアセトフェノン誘導体化合物、4級アンモニウム塩誘導体化合物、イミニウム塩、ピリジニウム塩、α-ラクトン環誘導体化合物、アミンイミド化合物、フタルイミド誘導体化合物、アシルオキシイミノ化合物等が挙げられる。
 非イオン型塩基発生剤の具体例としては、国際公開第2022/145355号の段落0249~0275に記載の化合物が挙げられる。上記記載は本明細書に組み込まれる。
<Base Generator>
The resin composition may contain a base generator. Here, the base generator is a compound capable of generating a base by physical or chemical action. Preferred base generators include a thermal base generator and a photobase generator.
However, the compound corresponding to the above-mentioned compound A does not correspond to the base generator as defined herein.
In particular, when the resin composition contains a precursor of a cyclized resin, the resin composition preferably contains a base generator. By containing the thermal base generator in the resin composition, for example, the cyclization reaction of the precursor can be promoted by heating, and the mechanical properties and chemical resistance of the cured product can be improved, and the performance as an interlayer insulating film for a rewiring layer contained in a semiconductor package can be improved.
The base generator may be an ionic base generator or a nonionic base generator. Examples of the base generated from the base generator include secondary amines and tertiary amines.
The base generator is not particularly limited, and a known base generator can be used. Examples of known base generators include carbamoyl oxime compounds, carbamoyl hydroxylamine compounds, carbamic acid compounds, formamide compounds, acetamide compounds, carbamate compounds, benzyl carbamate compounds, nitrobenzyl carbamate compounds, sulfonamide compounds, imidazole derivative compounds, amine imide compounds, pyridine derivative compounds, α-aminoacetophenone derivative compounds, quaternary ammonium salt derivative compounds, iminium salts, pyridinium salts, α-lactone ring derivative compounds, amine imide compounds, phthalimide derivative compounds, and acyloxyimino compounds.
Specific examples of the non-ionic base generator include the compounds described in paragraphs 0249 to 0275 of WO 2022/145355. The above descriptions are incorporated herein by reference.
 塩基発生剤としては、下記の化合物が挙げられるが、これらに限定されない。 Base generators include, but are not limited to, the following compounds:
 非イオン型塩基発生剤の分子量は、800以下が好ましく、600以下がより好ましく、500以下が更に好ましい。下限は、100以上が好ましく、200以上がより好ましく、300以上が更に好ましい。 The molecular weight of the nonionic base generator is preferably 800 or less, more preferably 600 or less, and even more preferably 500 or less. The lower limit is preferably 100 or more, more preferably 200 or more, and even more preferably 300 or more.
 イオン型塩基発生剤の具体的な好ましい化合物としては、例えば、国際公開第2018/038002号の段落番号0148~0163に記載の化合物が挙げられる。 Specific preferred compounds for the ionic base generator include, for example, the compounds described in paragraphs 0148 to 0163 of WO 2018/038002.
 アンモニウム塩の具体例としては、下記の化合物が挙げられるが、これらに限定されない。
Specific examples of ammonium salts include, but are not limited to, the following compounds:
 イミニウム塩の具体例としては、下記の化合物が挙げられるが、これらに限定されない。
Specific examples of iminium salts include, but are not limited to, the following compounds:
 樹脂組成物が塩基発生剤を含む場合、塩基発生剤の含有量は、樹脂組成物中の樹脂100質量部に対し、0.1~50質量部が好ましい。下限は、0.3質量部以上がより好ましく、0.5質量部以上が更に好ましい。上限は、30質量部以下がより好ましく、20質量部以下が更に好ましく、10質量部以下が一層好ましく、5質量部以下がより一層好ましく、4質量部以下が特に好ましい。
 塩基発生剤は、1種又は2種以上を用いることができる。2種以上を用いる場合は、合計量が上記範囲であることが好ましい。
When the resin composition contains a base generator, the content of the base generator is preferably 0.1 to 50 parts by mass relative to 100 parts by mass of the resin in the resin composition. The lower limit is more preferably 0.3 parts by mass or more, and even more preferably 0.5 parts by mass or more. The upper limit is more preferably 30 parts by mass or less, even more preferably 20 parts by mass or less, even more preferably 10 parts by mass or less, even more preferably 5 parts by mass or less, and particularly preferably 4 parts by mass or less.
The base generator may be used alone or in combination of two or more. When two or more types are used, the total amount is preferably within the above range.
<溶剤>
 樹脂組成物は、溶剤を含む。
 溶剤は、公知の溶剤を任意に使用できる。溶剤は有機溶剤が好ましい。有機溶剤としては、エステル類、エーテル類、ケトン類、環状炭化水素類、スルホキシド類、アミド類、ウレア類、アルコール類などの化合物が挙げられる。
<Solvent>
The resin composition contains a solvent.
The solvent may be any known solvent. The solvent is preferably an organic solvent. Examples of the organic solvent include compounds such as esters, ethers, ketones, cyclic hydrocarbons, sulfoxides, amides, ureas, and alcohols.
 エステル類として、例えば、酢酸エチル、酢酸-n-ブチル、酢酸イソブチル、酢酸へキシル、ギ酸アミル、酢酸イソアミル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン、ε-カプロラクトン、δ-バレロラクトン、γ-バレロラクトン、アルキルオキシ酢酸アルキル(例えば、アルキルオキシ酢酸メチル、アルキルオキシ酢酸エチル、アルキルオキシ酢酸ブチル(例えば、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル等))、3-アルキルオキシプロピオン酸アルキルエステル類(例えば、3-アルキルオキシプロピオン酸メチル、3-アルキルオキシプロピオン酸エチル等(例えば、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等))、2-アルキルオキシプロピオン酸アルキルエステル類(例えば、2-アルキルオキシプロピオン酸メチル、2-アルキルオキシプロピオン酸エチル、2-アルキルオキシプロピオン酸プロピル等(例えば、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル))、2-アルキルオキシ-2-メチルプロピオン酸メチル及び2-アルキルオキシ-2-メチルプロピオン酸エチル(例えば、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル等)、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル、ヘキサン酸エチル、ヘプタン酸エチル、マロン酸ジメチル、マロン酸ジエチル等が好適なものとして挙げられる。 Esters, for example, ethyl acetate, n-butyl acetate, isobutyl acetate, hexyl acetate, amyl formate, isoamyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, γ-butyrolactone, ε-caprolactone, δ-valerolactone, γ-valerolactone, alkyloxyacetates (for example, methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate (for example, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, etc.)), 3-alkyloxypropionic acid alkyl esters (for example, methyl 3-alkyloxypropionate, ethyl 3-alkyloxypropionate, etc. (for example, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, etc.)), 2- Suitable examples of alkyloxypropionic acid alkyl esters include alkyl esters (e.g., methyl 2-alkyloxypropionate, ethyl 2-alkyloxypropionate, propyl 2-alkyloxypropionate, etc. (e.g., methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate)), methyl 2-alkyloxy-2-methylpropionate and ethyl 2-alkyloxy-2-methylpropionate (e.g., methyl 2-methoxy-2-methylpropionate, ethyl 2-ethoxy-2-methylpropionate, etc.), methyl pyruvate, ethyl pyruvate, propyl pyruvate, methyl acetoacetate, ethyl acetoacetate, methyl 2-oxobutanoate, ethyl 2-oxobutanoate, ethyl hexanoate, ethyl heptanoate, dimethyl malonate, diethyl malonate, etc.
 エーテル類として、例えば、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールブチルメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールエチルメチルエーテル、プロピレングリコールモノプロピルエーテルアセテート、ジプロピレングリコールジメチルエーテル等が好適なものとして挙げられる。 Suitable examples of ethers include ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol butyl methyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol dimethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether, ethylene glycol monobutyl ether acetate, diethylene glycol ethyl methyl ether, propylene glycol monopropyl ether acetate, and dipropylene glycol dimethyl ether.
 ケトン類として、例えば、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、3-ヘプタノン、3-メチルシクロヘキサノン、レボグルコセノン、ジヒドロレボグルコセノン等が好適なものとして挙げられる。 Preferred examples of ketones include methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone, 3-methylcyclohexanone, levoglucosenone, and dihydrolevoglucosenone.
 環状炭化水素類として、例えば、トルエン、キシレン、アニソール等の芳香族炭化水素類、リモネン等の環式テルペン類が好適なものとして挙げられる。 Preferable examples of cyclic hydrocarbons include aromatic hydrocarbons such as toluene, xylene, and anisole, and cyclic terpenes such as limonene.
 スルホキシド類として、例えば、ジメチルスルホキシドが好適なものとして挙げられる。 As an example of a sulfoxide, dimethyl sulfoxide is preferred.
 アミド類として、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジメチルイソブチルアミド、3-メトキシ-N,N-ジメチルプロピオンアミド、3-ブトキシ-N,N-ジメチルプロピオンアミド、N-ホルミルモルホリン、N-アセチルモルホリン等が好適なものとして挙げられる。 Preferred examples of amides include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide, N,N-dimethylisobutyramide, 3-methoxy-N,N-dimethylpropionamide, 3-butoxy-N,N-dimethylpropionamide, N-formylmorpholine, and N-acetylmorpholine.
 ウレア類として、N,N,N’,N’-テトラメチルウレア、1,3-ジメチル-2-イミダゾリジノン等が好適なものとして挙げられる。 Preferred examples of ureas include N,N,N',N'-tetramethylurea and 1,3-dimethyl-2-imidazolidinone.
 アルコール類として、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、1-ペンタノール、1-ヘキサノール、ベンジルアルコール、エチレングリコールモノメチルエーテル、1-メトキシ-2-プロパノール、2-エトキシエタノール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノヘキシルエーテル、トリエチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、ポリエチレングリコールモノメチルエーテル、ポリプロピレングリコール、テトラエチレングリコール、エチレングリコールモノブチルエーテル、エチレングリコールモノベンジルエーテル、エチレングリコールモノフェニルエーテル、メチルフェニルカルビノール、n-アミルアルコール、メチルアミルアルコール、および、ダイアセトンアルコール等が挙げられる。 Alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 1-pentanol, 1-hexanol, benzyl alcohol, ethylene glycol monomethyl ether, 1-methoxy-2-propanol, 2-ethoxyethanol, diethylene glycol monoethyl ether, diethylene glycol monohexyl ether, triethylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether, polyethylene glycol monomethyl ether, polypropylene glycol, tetraethylene glycol, ethylene glycol monobutyl ether, ethylene glycol monobenzyl ether, ethylene glycol monophenyl ether, methylphenyl carbinol, n-amyl alcohol, methylamyl alcohol, and diacetone alcohol.
 溶剤は、塗布面性状の改良などの観点から、2種以上を混合する形態も好ましい。 From the standpoint of improving the properties of the coating surface, it is also preferable to mix two or more types of solvents.
 本発明では、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、γ-ブチロラクトン、γ-バレロラクトン、3-メトキシ-N,N-ジメチルプロピオンアミド、トルエン、ジメチルスルホキシド、エチルカルビトールアセテート、ブチルカルビトールアセテート、N-メチル-2-ピロリドン、プロピレングリコールメチルエーテル、及びプロピレングリコールメチルエーテルアセテート、レボグルコセノン、ジヒドロレボグルコセノンから選択される1種の溶剤、又は、2種以上で構成される混合溶剤が好ましい。ジメチルスルホキシドとγ-ブチロラクトンとの併用、ジメチルスルホキシドとγ-バレロラクトンとの併用、3-メトキシ-N,N-ジメチルプロピオンアミドとγ-ブチロラクトンとの併用、3-メトキシ-N,N-ジメチルプロピオンアミドとγ-ブチロラクトンとジメチルスルホキシドとの併用、又は、N-メチル-2-ピロリドンと乳酸エチルとの併用が特に好ましい。これらの併用された溶剤に、更にトルエンを溶剤の全質量に対して1~10質量%程度添加する態様も、本発明の好ましい態様の1つである。
 特に、樹脂組成物の保存安定性等の観点からは、溶剤としてγ-バレロラクトンを含む態様も、本発明の好ましい態様の1つである。このような態様において、溶剤の全質量に対するγ-バレロラクトンの含有量は、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることが更に好ましい。また、上記含有量の上限は、特に限定されず100質量%であってもよい。上記含有量は、樹脂組成物に含まれる特定樹脂などの成分の溶解度等を考慮して決定すればよい。
 また、ジメチルスルホキシドとγ-バレロラクトンとを併用する場合、溶剤の全質量に対して、60~90質量%のγ-バレロラクトンと10~40質量%のジメチルスルホキシドとを含むことが好ましく、70~90質量%のγ-バレロラクトンと10~30質量%のジメチルスルホキシドとを含むことがより好ましく、75~85質量%のγ-バレロラクトンと15~25質量%のジメチルスルホキシドとを含むことが更に好ましい。
In the present invention, one solvent selected from methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl cellosolve acetate, ethyl lactate, diethylene glycol dimethyl ether, butyl acetate, methyl 3-methoxypropionate, 2-heptanone, cyclohexanone, cyclopentanone, γ-butyrolactone, γ-valerolactone, 3-methoxy-N,N-dimethylpropionamide, toluene, dimethyl sulfoxide, ethyl carbitol acetate, butyl carbitol acetate, N-methyl-2-pyrrolidone, propylene glycol methyl ether, propylene glycol methyl ether acetate, levoglucosenone, and dihydrolevoglucosenone, or a mixed solvent composed of two or more solvents, is preferred. Particularly preferred are a combination of dimethyl sulfoxide and γ-butyrolactone, a combination of dimethyl sulfoxide and γ-valerolactone, a combination of 3-methoxy-N,N-dimethylpropionamide and γ-butyrolactone, a combination of 3-methoxy-N,N-dimethylpropionamide, γ-butyrolactone and dimethyl sulfoxide, or a combination of N-methyl-2-pyrrolidone and ethyl lactate. An embodiment in which toluene is further added to these combined solvents in an amount of about 1 to 10% by mass based on the total mass of the solvent is also one of the preferred embodiments of the present invention.
In particular, from the viewpoint of storage stability of the resin composition, an embodiment containing γ-valerolactone as a solvent is one of the preferred embodiments of the present invention. In such an embodiment, the content of γ-valerolactone relative to the total mass of the solvent is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 70% by mass or more. The upper limit of the content is not particularly limited and may be 100% by mass. The content may be determined in consideration of the solubility of components such as a specific resin contained in the resin composition, etc.
Furthermore, when dimethyl sulfoxide and γ-valerolactone are used in combination, the solvent preferably contains 60 to 90% by mass of γ-valerolactone and 10 to 40% by mass of dimethyl sulfoxide, more preferably 70 to 90% by mass of γ-valerolactone and 10 to 30% by mass of dimethyl sulfoxide, and even more preferably 75 to 85% by mass of γ-valerolactone and 15 to 25% by mass of dimethyl sulfoxide, relative to the total mass of the solvent.
 溶剤の含有量は、塗布性の観点から、樹脂組成物の全固形分濃度が5~80質量%になる量とすることが好ましく、5~75質量%となる量にすることがより好ましく、10~70質量%となる量にすることが更に好ましく、20~70質量%となる量にすることが一層好ましい。溶剤含有量は、塗膜の所望の厚さと塗布方法に応じて調節すればよい。溶剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。 From the viewpoint of coatability, the content of the solvent is preferably an amount that results in a total solids concentration of the resin composition of 5 to 80 mass%, more preferably an amount that results in a total solids concentration of 5 to 75 mass%, even more preferably an amount that results in a total solids concentration of 10 to 70 mass%, and even more preferably an amount that results in a total solids concentration of 20 to 70 mass%. The content of the solvent may be adjusted according to the desired thickness of the coating film and the coating method. When two or more types of solvents are contained, it is preferable that the total amount is within the above range.
<金属接着性改良剤>
 樹脂組成物は、電極や配線などに用いられる金属材料との接着性を向上させる観点から、金属接着性改良剤を含むことが好ましい。金属接着性改良剤としては、アルコキシシリル基を有するシランカップリング剤、アルミニウム系接着助剤、チタン系接着助剤、スルホンアミド構造を有する化合物及びチオウレア構造を有する化合物、リン酸誘導体化合物、β-ケトエステル化合物、アミノ化合物等が挙げられる。
<Metal adhesion improver>
The resin composition preferably contains a metal adhesion improver from the viewpoint of improving adhesion to metal materials used in electrodes, wiring, etc. Examples of the metal adhesion improver include a silane coupling agent having an alkoxysilyl group, an aluminum-based adhesion aid, a titanium-based adhesion aid, a compound having a sulfonamide structure, a compound having a thiourea structure, a phosphoric acid derivative compound, a β-ketoester compound, an amino compound, and the like.
〔シランカップリング剤〕
 シランカップリング剤としては、例えば、国際公開第2021/112189号の段落0316に記載の化合物、特開2018-173573の段落0067~0078に記載の化合物が挙げられ、これらの内容は本明細書に組み込まれる。また、特開2011-128358号公報の段落0050~0058に記載のように異なる2種以上のシランカップリング剤を用いることも好ましい。シランカップリング剤は、下記化合物を用いることも好ましい。以下の式中、Meはメチル基を、Etはエチル基を表す。また、下記Rはブロックイソシアネート基におけるブロック化剤由来の構造が挙げられる。ブロック化剤としては、脱離温度に応じて選択すればよいが、アルコール化合物、フェノール化合物、ピラゾール化合物、トリアゾール化合物、ラクタム化合物、活性メチレン化合物等が挙げられる。例えば、脱離温度を160~180℃としたい観点からは、カプロラクタムなどが好ましい。このような化合物の市販品としては、X-12-1293(信越化学工業株式会社製)などが挙げられる。
〔Silane coupling agent〕
Examples of the silane coupling agent include the compounds described in paragraph 0316 of International Publication No. 2021/112189 and the compounds described in paragraphs 0067 to 0078 of JP-A-2018-173573, the contents of which are incorporated herein. In addition, it is also preferable to use two or more different silane coupling agents as described in paragraphs 0050 to 0058 of JP-A-2011-128358. It is also preferable to use the following compounds as the silane coupling agent. In the following formula, Me represents a methyl group, and Et represents an ethyl group. In addition, the following R includes a structure derived from a blocking agent in a blocked isocyanate group. The blocking agent may be selected according to the desorption temperature, and examples thereof include alcohol compounds, phenol compounds, pyrazole compounds, triazole compounds, lactam compounds, and active methylene compounds. For example, from the viewpoint of setting the desorption temperature at 160 to 180 ° C., caprolactam and the like are preferred. Commercially available products of such compounds include X-12-1293 (manufactured by Shin-Etsu Chemical Co., Ltd.).
 他のシランカップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-ウレイドプロピルトリアルコキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物が挙げられる。これらは1種単独または2種以上を組み合わせて使用することができる。
 また、シランカップリング剤として、アルコキシシリル基を複数個有するオリゴマータイプの化合物を用いることもできる。
 このようなオリゴマータイプの化合物としては、下記式(S-1)で表される繰返し単位を含む化合物などが挙げられる。

 式(S-1)中、RS1は1価の有機基を表し、RS2は水素原子、ヒドロキシ基又はアルコキシ基を表し、nは0~2の整数を表す。
 RS1は重合性基を含む構造であることが好ましい。重合性基としては、エチレン性不飽和結合を有する基、エポキシ基、オキセタニル基、ベンゾオキサゾリル基、ブロックイソシアネート基、アミノ基等が挙げられる。エチレン性不飽和結合を有する基としては、ビニル基、アリル基、イソアリル基、2-メチルアリル基、ビニル基と直接結合した芳香環を有する基(例えば、ビニルフェニル基など)、(メタ)アクリルアミド基、(メタ)アクリロイルオキシ基などが挙げられ、ビニルフェニル基、(メタ)アクリルアミド基又は(メタ)アクリロイルオキシ基が好ましく、ビニルフェニル基又は(メタ)アクリロイルオキシ基がより好ましく、(メタ)アクリロイルオキシ基が更に好ましい。
 RS2はアルコキシ基であることが好ましく、メトキシ基又はエトキシ基であることがより好ましい。
 nは0~2の整数を表し、1であることが好ましい。
 ここで、オリゴマータイプの化合物に含まれる複数の式(S-1)で表される繰返し単位の構造は、それぞれ同一であってもよい。
 ここで、オリゴマータイプの化合物に含まれる複数の式(S-1)で表される繰返し単位のうち、少なくとも1つにおいてnが1又は2であることが好ましく、少なくとも2つにおいてnが1又は2であることがより好ましく、少なくとも2つにおいてnが1であることが更に好ましい。
 このようなオリゴマータイプの化合物としては市販品を用いることができ、市販品としては例えば、KR-513(信越化学工業株式会社製)が挙げられる。
Other silane coupling agents include, for example, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, N-phenyl-3-aminopropyltrimethoxysilane, tris-(trimethoxysilylpropyl)isocyanurate, 3-ureidopropyltrialkoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-isocyanatepropyltriethoxysilane, 3-trimethoxysilylpropylsuccinic anhydride. These can be used alone or in combination of two or more.
Furthermore, an oligomer type compound having a plurality of alkoxysilyl groups can also be used as the silane coupling agent.
Examples of such oligomer-type compounds include compounds containing a repeating unit represented by the following formula (S-1).

In formula (S-1), R 1 S1 represents a monovalent organic group, R 1 S2 represents a hydrogen atom, a hydroxyl group or an alkoxy group, and n represents an integer of 0 to 2.
R S1 is preferably a structure containing a polymerizable group. Examples of the polymerizable group include a group having an ethylenically unsaturated bond, an epoxy group, an oxetanyl group, a benzoxazolyl group, a blocked isocyanate group, and an amino group. Examples of the group having an ethylenically unsaturated bond include a vinyl group, an allyl group, an isoallyl group, a 2-methylallyl group, a group having an aromatic ring directly bonded to a vinyl group (e.g., a vinylphenyl group), a (meth)acrylamide group, and a (meth)acryloyloxy group. Of these, a vinylphenyl group, a (meth)acrylamide group, or a (meth)acryloyloxy group is preferred, a vinylphenyl group or a (meth)acryloyloxy group is more preferred, and a (meth)acryloyloxy group is even more preferred.
R S2 is preferably an alkoxy group, more preferably a methoxy group or an ethoxy group.
n represents an integer of 0 to 2, and is preferably 1.
Here, the structures of the repeating units represented by formula (S-1) contained in the oligomer-type compound may be the same.
Here, among the multiple repeating units represented by formula (S-1) contained in the oligomer-type compound, it is preferable that n is 1 or 2 in at least one, more preferably that n is 1 or 2 in at least two, and further preferably that n is 1 in at least two.
As such oligomer type compounds, commercially available products can be used, and an example of a commercially available product is KR-513 (manufactured by Shin-Etsu Chemical Co., Ltd.).
〔アルミニウム系接着助剤〕
 アルミニウム系接着助剤としては、例えば、アルミニウムトリス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)、エチルアセトアセテートアルミニウムジイソプロピレート等を挙げることができる。
[Aluminum-based adhesion promoter]
Examples of aluminum-based adhesion promoters include aluminum tris(ethylacetoacetate), aluminum tris(acetylacetonate), and ethylacetoacetate aluminum diisopropylate.
 その他の金属接着性改良剤としては、特開2014-186186号公報の段落0046~0049に記載の化合物、特開2013-072935号公報の段落0032~0043に記載のスルフィド系化合物を用いることもでき、これらの内容は本明細書に組み込まれる。 Other metal adhesion improvers that can be used include the compounds described in paragraphs 0046 to 0049 of JP 2014-186186 A and the sulfide-based compounds described in paragraphs 0032 to 0043 of JP 2013-072935 A, the contents of which are incorporated herein by reference.
 金属接着性改良剤の含有量はポリイミド前駆体100質量部に対して、0.01~30質量部が好ましく、0.1~10質量部がより好ましく、0.5~5質量部が更に好ましい。上記下限値以上とすることでパターンと金属層との接着性が良好となり、上記上限値以下とすることでパターンの耐熱性、機械特性が良好となる。金属接着性改良剤は1種のみでもよいし、2種以上であってもよい。2種以上用いる場合は、その合計が上記範囲であることが好ましい。 The content of the metal adhesion improver is preferably 0.01 to 30 parts by mass, more preferably 0.1 to 10 parts by mass, and even more preferably 0.5 to 5 parts by mass, per 100 parts by mass of the polyimide precursor. By making the content equal to or greater than the above lower limit, the adhesion between the pattern and the metal layer will be good, and by making the content equal to or less than the above upper limit, the heat resistance and mechanical properties of the pattern will be good. Only one type of metal adhesion improver may be used, or two or more types may be used. When two or more types are used, it is preferable that the total is within the above range.
<マイグレーション抑制剤>
 樹脂組成物は、マイグレーション抑制剤を更に含むことが好ましい。マイグレーション抑制剤を含むことにより、例えば、樹脂組成物を金属層(又は金属配線)に適用して膜を形成した際に、金属層(又は金属配線)由来の金属イオンが膜内へ移動することを効果的に抑制することができる。
<Migration Inhibitor>
The resin composition preferably further contains a migration inhibitor. By containing the migration inhibitor, for example, when the resin composition is applied to a metal layer (or metal wiring) to form a film, migration of metal ions derived from the metal layer (or metal wiring) into the film can be effectively suppressed.
 マイグレーション抑制剤としては、特に制限はないが、複素環(ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、イソオキサゾール環、イソチアゾー000000ル環、テトラゾール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペリジン環、ピペラジン環、モルホリン環、2H-ピラン環及び6H-ピラン環、トリアジン環)を有する化合物、チオ尿素類及びスルファニル基を有する化合物、ヒンダードフェノール系化合物、サリチル酸誘導体系化合物、ヒドラジド誘導体系化合物が挙げられる。特に、1,2,4-トリアゾール、ベンゾトリアゾール、3-アミノ-1,2,4-トリアゾール、3,5-ジアミノ-1,2,4-トリアゾール等のトリアゾール系化合物、1H-テトラゾール、5-フェニルテトラゾール、5-アミノ―1H-テトラゾール等のテトラゾール系化合物が好ましく使用できる。 There are no particular limitations on the migration inhibitor, but examples include compounds having a heterocycle (pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, isoxazole ring, isothiazole ring, tetrazole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, piperidine ring, piperazine ring, morpholine ring, 2H-pyran ring and 6H-pyran ring, triazine ring), thioureas and compounds having a sulfanyl group, hindered phenol compounds, salicylic acid derivative compounds, and hydrazide derivative compounds. In particular, triazole compounds such as 1,2,4-triazole, benzotriazole, 3-amino-1,2,4-triazole, and 3,5-diamino-1,2,4-triazole, and tetrazole compounds such as 1H-tetrazole, 5-phenyltetrazole, and 5-amino-1H-tetrazole are preferably used.
 これらの中でも、樹脂組成物はアゾール化合物を含むことが好ましい。
 また、硬化物におけるボイドの発生を抑制する観点からは、樹脂組成物はアゾール化合物及び金属密着性改良剤を含むことが好ましい。
 アゾール化合物とは、アゾール構造を含む化合物であり、アゾール構造とは、環員として窒素原子を含む5員環構造をいい、環員として2以上の窒素原子を含む5員環構造であることが好ましい。具体的には、アゾール構造は、イミダゾール構造、トリアゾール構造、テトラゾール構造等が挙げられる。これらの構造は、ベンゾイミダゾール、ベンゾトリアゾールなどのように、他の環構造と縮合等により多環を形成していてもよい。
 また、アゾール構造を有する化合物としては、アゾール構造に下記式(R-1)又は下記式(R-2)で表される基が直接結合した化合物も好ましい。

 式(R-1)中、Rは1価の有機基を表し、*はアゾール構造との結合部位を表す。
 式(R-2)中、Rは水素原子又は1価の有機基を表し、Rは1価の有機基を表し、*はアゾール構造との結合部位を表す。
 式(R-1)中、Rは炭化水素基、又は、炭化水素基と、-O-、-C(=O)-、-S-、-S(=O)-及び-NR-からなる群より選ばれた少なくとも1種の基との結合により表される基であることが好ましい。Rは上述の通りである。
 上記炭化水素基としては、脂肪族炭化水素基、芳香族炭化水素基又はこれらの組み合わせにより表される基が好ましい。
 また、Rの総炭素数は1~30が好ましく、2~25が好ましく、3~20がより好ましい。
 Rにおける、式(R-1)中のカルボニル基との結合部位は、炭化水素基又は-NR-が好ましい。
 式(R-1)中、*はアゾール構造との結合部位を表し、アゾール構造の環員である炭素原子との結合部位であることが好ましい。
 式(R-2)中、Rは水素原子であることが好ましい。
 Rが1価の有機基である場合、Rは、炭化水素基、又は、炭化水素基と、-O-、-C(=O)-、-S-、-S(=O)-及び-NR-からなる群より選ばれた少なくとも1種の基との結合により表される基であることが好ましい。Rは上述の通りである。
 上記炭化水素基としては、脂肪族炭化水素基、芳香族炭化水素基又はこれらの組み合わせにより表される基が好ましい。
 また、Rが1価の有機基である場合の総炭素数は1~30が好ましく、2~25が好ましく、3~20がより好ましい。
 Rが1価の有機基である場合、Rにおける式(R-2)中の窒素原子との結合部位は、炭化水素基又は-C(=O)-が好ましい。
 式(R-2)中、Rは炭化水素基、又は、炭化水素基と、-O-、-C(=O)-、-S-、-S(=O)-及び-NR-からなる群より選ばれた少なくとも1種の基との結合により表される基であることが好ましい。Rは上述の通りである。
 上記炭化水素基としては、脂肪族炭化水素基、芳香族炭化水素基又はこれらの組み合わせにより表される基が好ましい。
 また、Rが1価の有機基である場合の総炭素数は1~30が好ましく、2~25が好ましく、3~20がより好ましい。
 Rにおける、式(R-2)中の窒素原子との結合部位は、炭化水素基又は-C(=O)-が好ましい。
 式(R-2)中、*はアゾール構造との結合部位を表し、アゾール構造の環員である炭素原子との結合部位であることが好ましい。
Among these, the resin composition preferably contains an azole compound.
From the viewpoint of suppressing the generation of voids in the cured product, the resin composition preferably contains an azole compound and a metal adhesion improver.
The azole compound is a compound containing an azole structure, and the azole structure refers to a five-membered ring structure containing a nitrogen atom as a ring member, and is preferably a five-membered ring structure containing two or more nitrogen atoms as ring members.Specific examples of the azole structure include an imidazole structure, a triazole structure, and a tetrazole structure.These structures may form a polycyclic ring by condensation with another ring structure, such as benzimidazole and benzotriazole.
As the compound having an azole structure, a compound in which a group represented by the following formula (R-1) or (R-2) is directly bonded to the azole structure is also preferred.

In formula (R-1), R 1 represents a monovalent organic group, and * represents a bonding site with the azole structure.
In formula (R-2), R 2 represents a hydrogen atom or a monovalent organic group, R 3 represents a monovalent organic group, and * represents a bonding site with the azole structure.
In formula (R-1), R 1 is preferably a hydrocarbon group or a group represented by a bond between a hydrocarbon group and at least one group selected from the group consisting of -O-, -C(=O)-, -S-, -S(=O) 2 - and -NR N -, where R N is as defined above.
The above-mentioned hydrocarbon group is preferably an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a group represented by a combination thereof.
The total number of carbon atoms in R 1 is preferably 1 to 30, more preferably 2 to 25, and even more preferably 3 to 20.
The bonding site of R 1 to the carbonyl group in formula (R-1) is preferably a hydrocarbon group or -NR N -.
In formula (R-1), * represents a bonding site to the azole structure, and is preferably a bonding site to a carbon atom that is a ring member of the azole structure.
In formula (R-2), R 2 is preferably a hydrogen atom.
When R2 is a monovalent organic group, R2 is preferably a hydrocarbon group or a group represented by a bond between a hydrocarbon group and at least one group selected from the group consisting of -O-, -C(=O)-, -S-, -S(=O) 2 - and -NR N -, where R N is as defined above.
The above-mentioned hydrocarbon group is preferably an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a group represented by a combination thereof.
When R 2 is a monovalent organic group, the total number of carbon atoms is preferably 1 to 30, more preferably 2 to 25, and even more preferably 3 to 20.
When R 2 is a monovalent organic group, the bonding site of R 2 to the nitrogen atom in formula (R-2) is preferably a hydrocarbon group or -C(=O)-.
In formula (R-2), R 3 is preferably a hydrocarbon group or a group represented by a bond between a hydrocarbon group and at least one group selected from the group consisting of -O-, -C(=O)-, -S-, -S(=O) 2 - and -NR N -, where R N is as defined above.
The above-mentioned hydrocarbon group is preferably an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a group represented by a combination thereof.
When R 3 is a monovalent organic group, the total number of carbon atoms is preferably 1 to 30, more preferably 2 to 25, and even more preferably 3 to 20.
The bonding site of R3 to the nitrogen atom in formula (R-2) is preferably a hydrocarbon group or -C(=O)-.
In formula (R-2), * represents a bonding site to the azole structure, and is preferably a bonding site to a carbon atom that is a ring member of the azole structure.
 マイグレーション抑制剤としては、ハロゲンイオンなどの陰イオンを捕捉するイオントラップ剤を使用することもできる。 As a migration inhibitor, an ion trapping agent that captures anions such as halogen ions can also be used.
 その他のマイグレーション抑制剤としては、特開2013-015701号公報の段落0094に記載の防錆剤、特開2009-283711号公報の段落0073~0076に記載の化合物、特開2011-059656号公報の段落0052に記載の化合物、特開2012-194520号公報の段落0114、0116及び0118に記載の化合物、国際公開第2015/199219号の段落0166に記載の化合物などを使用することができ、この内容は本明細書に組み込まれる。 Other migration inhibitors that can be used include the rust inhibitors described in paragraph 0094 of JP 2013-015701 A, the compounds described in paragraphs 0073 to 0076 of JP 2009-283711 A, the compounds described in paragraph 0052 of JP 2011-059656 A, the compounds described in paragraphs 0114, 0116, and 0118 of JP 2012-194520 A, and the compounds described in paragraph 0166 of WO 2015/199219 A, the contents of which are incorporated herein by reference.
 マイグレーション抑制剤の具体例としては、下記化合物を挙げることができる。 Specific examples of migration inhibitors include the following compounds:
 樹脂組成物がマイグレーション抑制剤を有する場合、マイグレーション抑制剤の含有量は、樹脂組成物の全固形分に対して、0.01~5.0質量%であることが好ましく、0.05~2.0質量%であることがより好ましく、0.1~1.0質量%であることが更に好ましい。 When the resin composition contains a migration inhibitor, the content of the migration inhibitor is preferably 0.01 to 5.0 mass %, more preferably 0.05 to 2.0 mass %, and even more preferably 0.1 to 1.0 mass %, based on the total solid content of the resin composition.
 マイグレーション抑制剤は1種のみでもよいし、2種以上であってもよい。マイグレーション抑制剤が2種以上の場合は、その合計が上記範囲であることが好ましい。 The migration inhibitor may be one type or two or more types. When two or more types of migration inhibitors are used, it is preferable that the total is within the above range.
<光吸収剤>
 樹脂組成物は、露光によりその露光波長の吸光度が小さくなる化合物(光吸収剤)を含むことも好ましい。
<Light absorber>
The resin composition also preferably contains a compound (light absorber) whose absorbance at the exposure wavelength decreases upon exposure to light.
 樹脂組成物に含まれるある化合物aが光吸収剤に該当するか否か(すなわち、露光によりその露光波長の吸光度が小さくなるか否か)は、下記の方法により判定することができる。
 まず、樹脂組成物に含まれる濃度と同濃度の化合物aの溶液を調製し、露光光の波長における化合物aのモル吸光係数(mol-1・L・cm-1、「モル吸光係数1」ともいう。)を測定する。上記測定は、化合物aのモル吸光係数の低下などの変化の影響が小さくなるよう手早く行う。上記溶液における溶剤は、樹脂組成物が溶剤を含む場合はその溶剤を、樹脂組成物が溶剤を含まない場合はN-メチル-2-ピロリドンを用いる。
 次に、上記化合物aの溶液に対して露光光の照射を行う。露光量は1モルの化合物aに対して積算量として500mJとする。
 その後、露光後の上記化合物aの溶液を用い、露光光の波長における化合物aのモル吸光係数(mol-1・L・cm-1、「モル吸光係数2」ともいう。)を測定する。
 上記モル吸光係数1及びモル吸光係数2から、下記式に基づいて減衰率(%)を算出し、減衰率(%)が5%以上である場合に、化合物aは露光によりその露光波長の吸光度が小さくなる化合物(すなわち、光吸収剤)であると判断する。
 減衰率(%)=1-モル吸光係数2/モル吸光係数1×100
 上記減衰率は、10%以上であることが好ましく、20%以上であることがより好ましい。また、上記減衰率の下限は特に限定されず、0%以上であればよい。
 上記露光光の波長としては、樹脂組成物を感光膜の形成に用いる場合にはその感光膜が露光される波長であればよい。
 また、上記露光光の波長としては、樹脂組成物に含まれる光重合開始剤が感度を有する波長であることが好ましい。光重合開始剤がある波長に対して感度を有するとは、光重合開始剤をある波長において露光した際に重合開始種を生じることをいう。
 上記露光光の波長としては、光源との関係でいうと、(1)半導体レーザー(波長 830nm、532nm、488nm、405nm、375nm、355nm etc.)、(2)メタルハライドランプ、(3)高圧水銀灯、g線(波長 436nm)、h線(波長 405nm)、i線(波長 365nm)、ブロード(g,h,i線の3波長)、(4)エキシマレーザー、KrFエキシマレーザー(波長 248nm)、ArFエキシマレーザー(波長 193nm)、F2エキシマレーザー(波長 157nm)、(5)極端紫外線;EUV(波長 13.6nm)、(6)電子線、(7)YAGレーザーの第二高調波532nm、第三高調波355nm等が挙げられる。
 露光光の波長は、例えば光重合開始剤が感度を有する波長を選択すればよいが、h線(波長 405nm)又はi線(波長 365nm)が好ましく、i線(波長 365nm)がより好ましい。
Whether or not a certain compound a contained in a resin composition corresponds to a light absorbent (that is, whether or not its absorbance at the exposure wavelength decreases upon exposure) can be determined by the following method.
First, a solution of compound a is prepared at the same concentration as that contained in the resin composition, and the molar absorption coefficient of compound a at the wavelength of the exposure light (mol -1 ·L·cm -1 , also called "molar absorption coefficient 1") is measured. The measurement is carried out quickly so as to reduce the influence of changes such as a decrease in the molar absorption coefficient of compound a. As the solvent for the solution, when the resin composition contains a solvent, that solvent is used, and when the resin composition does not contain a solvent, N-methyl-2-pyrrolidone is used.
Next, the solution of compound a is irradiated with exposure light, with the cumulative exposure dose being 500 mJ per mole of compound a.
Thereafter, the molar absorption coefficient (mol −1 ·L·cm −1 , also referred to as “molar absorption coefficient 2”) of compound a at the wavelength of the exposure light is measured using the solution of compound a after exposure.
From the above molar absorption coefficient 1 and molar absorption coefficient 2, the attenuation rate (%) is calculated based on the following formula. When the attenuation rate (%) is 5% or more, compound a is determined to be a compound whose absorbance at the exposure wavelength decreases upon exposure (i.e., a light absorber).
Extinction rate (%) = 1 - molar extinction coefficient 2 / molar extinction coefficient 1 x 100
The attenuation rate is preferably 10% or more, and more preferably 20% or more. There is no particular lower limit to the attenuation rate, so long as it is 0% or more.
When the resin composition is used to form a photosensitive film, the wavelength of the exposure light may be any wavelength that exposes the photosensitive film.
The wavelength of the exposure light is preferably a wavelength to which the photopolymerization initiator contained in the resin composition has sensitivity. The photopolymerization initiator has sensitivity to a certain wavelength, meaning that the photopolymerization initiator generates a polymerization initiating species when exposed to light of a certain wavelength.
The wavelength of the exposure light, in terms of its light source, may include (1) semiconductor laser (wavelengths 830 nm, 532 nm, 488 nm, 405 nm, 375 nm, 355 nm, etc.), (2) metal halide lamp, (3) high-pressure mercury lamp, g-line (wavelength 436 nm), h-line (wavelength 405 nm), i-line (wavelength 365 nm), broad (three wavelengths of g, h, and i-lines), (4) excimer laser, KrF excimer laser (wavelength 248 nm), ArF excimer laser (wavelength 193 nm), F2 excimer laser (wavelength 157 nm), (5) extreme ultraviolet light; EUV (wavelength 13.6 nm), (6) electron beam, and (7) second harmonic 532 nm and third harmonic 355 nm of YAG laser.
The wavelength of the exposure light may be selected from those to which the photopolymerization initiator has sensitivity, and preferably, h-line (wavelength 405 nm) or i-line (wavelength 365 nm), more preferably i-line (wavelength 365 nm).
 光吸収剤は、露光によりラジカル重合開始種を発生する化合物であってもよいが、解像性及び耐薬品性の観点からは、露光によりラジカル重合開始種を発生しない化合物であることが好ましい。
 光吸収剤が露光によりラジカル重合開始種を発生する化合物であるか否かは、下記の方法により判定される。
 樹脂組成物に含まれる濃度と同濃度の光吸収剤、及び、ラジカル架橋剤を含む溶液を調製する。樹脂組成物がラジカル架橋剤を含む場合、上記溶液中のラジカル架橋剤としては、樹脂組成物に含まれるラジカル架橋剤と同一の化合物を同濃度で使用する。樹脂組成物がラジカル架橋剤を含まない場合、メタクリル酸メチルを光吸収剤の5倍の濃度で使用する。
 その後、露光光の照射を行う。露光量は積算量として500mJとする。
 露光後に、例えば高速液体クロマトグラフィにより重合性化合物の重合を判断し、重合性化合物の全モル量に対して重合した重合性化合物のモル量の割合が10%以下である場合に、光吸収剤が露光によりラジカル重合開始種を発生しない化合物であると判定する。
 上記モル量の割合は5%以下であることが好ましく、3%以下であることがより好ましい。また、上記モル量の割合の下限は特に限定されず、0%であってもよい。
 上記露光光の波長としては、樹脂組成物を感光膜の形成に用いる場合にはその感光膜が露光される波長であればよい。
 また、上記露光光の波長としては、樹脂組成物に含まれる光重合開始剤が感度を有する波長であることが好ましい。
The light absorbent may be a compound that generates radical polymerization initiating species upon exposure to light. However, from the viewpoints of resolution and chemical resistance, it is preferable that the light absorbent is a compound that does not generate radical polymerization initiating species upon exposure to light.
Whether or not a light absorbent is a compound that generates a radical polymerization initiating species upon exposure to light can be judged by the following method.
A solution containing a light absorber and a radical crosslinker at the same concentration as those contained in the resin composition is prepared. When the resin composition contains a radical crosslinker, the radical crosslinker in the solution is the same compound as the radical crosslinker contained in the resin composition and at the same concentration. When the resin composition does not contain a radical crosslinker, methyl methacrylate is used at a concentration five times that of the light absorber.
Thereafter, exposure light is irradiated to an integrated amount of 500 mJ.
After exposure, polymerization of the polymerizable compound is determined, for example, by high performance liquid chromatography, and if the ratio of the molar amount of the polymerized polymerizable compound to the total molar amount of the polymerizable compounds is 10% or less, the light absorber is determined to be a compound that does not generate radical polymerization initiating species upon exposure.
The molar ratio is preferably 5% or less, more preferably 3% or less. The lower limit of the molar ratio is not particularly limited, and may be 0%.
When the resin composition is used to form a photosensitive film, the wavelength of the exposure light may be any wavelength that exposes the photosensitive film.
The wavelength of the exposure light is preferably a wavelength to which the photopolymerization initiator contained in the resin composition has sensitivity.
 露光によりラジカル重合開始種を発生する化合物としては、上述の光ラジカル重合開始剤と同様の化合物が挙げられる。組成物が光吸収剤として光ラジカル重合開始剤を含む場合、発生するラジカル種の重合開始能が最も低いものを光吸収剤、それ以外を光重合開始剤とする。
 露光によりラジカル重合開始種を発生しない化合物としては、光酸発生剤、光塩基発生剤、その他、露光により吸収波長が変化する色素等が挙げられる。
 これらの中でも、光吸収剤としては、ナフトキノンジアジド化合物、又は、露光により吸光度が変化する色素であることが好ましく、ナフトキノンジアジド化合物であることがより好ましい。
 また、光吸収剤として、例えば、光酸発生剤又は光塩基発生剤と、pHにより露光波長の吸光度が小さくなる化合物とを組み合わせて用いることも考えられる。
Examples of the compound that generates a radical polymerization initiating species upon exposure include the same compounds as the above-mentioned photoradical polymerization initiator. When the composition contains a photoradical polymerization initiator as a light absorber, the compound that generates the radical species with the lowest polymerization initiation ability is the light absorber, and the rest are the photopolymerization initiators.
Examples of the compound that does not generate a radical polymerization initiating species upon exposure include a photoacid generator, a photobase generator, and a dye whose absorption wavelength changes upon exposure.
Among these, the light absorbent is preferably a naphthoquinone diazide compound or a dye whose absorbance changes upon exposure to light, and more preferably a naphthoquinone diazide compound.
As the light absorber, for example, a photoacid generator or a photobase generator may be used in combination with a compound whose absorbance at the exposure wavelength decreases depending on the pH.
〔ナフトキノンジアジド化合物〕
 ナフトキノンジアジド化合物としては、露光によりインデンカルボン酸を生じてその露光波長の吸光度が小さくなる化合物が挙げられ、1,2-ナフトキノンジアジド構造を有する化合物が好ましい。
 ナフトキノンジアジド化合物を用いることにより解像性が向上するが、露光時に膜内に窒素が発生し、硬化物におけるボイドの原因となる場合がある。
 本発明の硬化物の製造方法では減圧工程を行うため、このような化合物から発生する窒素等のガスを除去することができ、ボイドの発生を抑制することができる。
 このように、本発明の硬化物の製造方法において、ナフトキノンジアジド化合物を使用した場合には、解像性とボイドの発生の抑制という効果を両立することができる。
 ナフトキノンジアジド化合物としては、ヒドロキシ化合物のナフトキノンジアジドスルホン酸エステルであることが好ましい。
 上記ヒドロキシ化合物としては、下記式(H1)~(H6)のいずれかで表される化合物が好ましい。

 式(H1)中、R及びRはそれぞれ独立に、1価の有機基を表し、R及びRはそれぞれ独立に、水素原子又は1価の有機基を表し、n1、n2、m1及びm2はそれぞれ独立に、0~5の整数であり、m1及びm2の少なくとも1つは1~5の整数である。
 式(H2)中、Zは4価の有機基を表し、L、L、L及びLはそれぞれ独立に、単結合又は2価の有機基を表し、R、R、R及びRはそれぞれ独立に、1価の有機基を表し、n3、n4、n5及びn6はそれぞれ独立に、0~3の整数であり、m3、m4、m5及びm6はそれぞれ独立に、0~2の整数であり、m3、m4、m5及びm6のうち少なくとも1つは1又は2である。
 式(H3)中、R及びR10はそれぞれ独立に、水素原子又は1価の有機基を表し、Lはそれぞれ独立に、2価の有機基を表し、n7は3~8の整数を表す。
 式(H4)中、Lは2価の有機基を表し、L及びLはそれぞれ独立に、脂肪族の3級又は4級炭素を含む2価の有機基を表す。
 式(H5)中、R11、R12、R13、R14、R15、R16、R17、R18、R19及びR20はそれぞれ独立に、水素原子、ハロゲン原子又は1価の有機基を表し、L、L10およびL11はそれぞれ独立に、単結合又は2価の有機基を表し、m7、m8、m9、m10はそれぞれ独立に、0~2の整数を表し、m7、m8、m9、m10のうち少なくとも1つは1又は2である。
 式(H6)中、R42、R43、R44、及びR45はそれぞれ独立に、水素原子又は1価の有機基を表し、R46、及びR47はそれぞれ独立に、1価の有機基を表し、n16及びn17はそれぞれ独立に、0~4の整数を表し、m11及びm12はそれぞれ独立に、0~4の整数を表し、m11及びm12のうち少なくとも1つは1~4の整数である。
[Naphthoquinone diazide compounds]
The naphthoquinone diazide compound includes a compound which generates indene carboxylic acid upon exposure and has a reduced absorbance at the exposure wavelength, and is preferably a compound having a 1,2-naphthoquinone diazide structure.
The use of a naphthoquinone diazide compound improves the resolution, but nitrogen is generated in the film upon exposure, which may cause voids in the cured product.
In the method for producing a cured product of the present invention, a decompression step is carried out, so that gases such as nitrogen generated from such compounds can be removed, and the generation of voids can be suppressed.
In this way, when a naphthoquinone diazide compound is used in the method for producing a cured product of the present invention, it is possible to achieve both the effect of improving resolution and the effect of suppressing the occurrence of voids.
The naphthoquinone diazide compound is preferably a naphthoquinone diazide sulfonic acid ester of a hydroxy compound.
The hydroxy compound is preferably a compound represented by any one of the following formulas (H1) to (H6).

In formula (H1), R1 and R2 each independently represent a monovalent organic group, R3 and R4 each independently represent a hydrogen atom or a monovalent organic group, n1, n2, m1, and m2 each independently represent an integer of 0 to 5, and at least one of m1 and m2 is an integer of 1 to 5.
In formula (H2), Z represents a tetravalent organic group; L 1 , L 2 , L 3 and L 4 each independently represent a single bond or a divalent organic group; R 5 , R 6 , R 7 and R 8 each independently represent a monovalent organic group; n3, n4, n5 and n6 each independently represent an integer from 0 to 3; m3, m4, m5 and m6 each independently represent an integer from 0 to 2; and at least one of m3, m4, m5 and m6 is 1 or 2.
In formula (H3), R 9 and R 10 each independently represent a hydrogen atom or a monovalent organic group; L 5 each independently represent a divalent organic group; and n7 represents an integer of 3 to 8.
In formula (H4), L6 represents a divalent organic group, and L7 and L8 each independently represent a divalent organic group containing an aliphatic tertiary or quaternary carbon.
In formula (H5), R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 and R 20 each independently represent a hydrogen atom, a halogen atom or a monovalent organic group; L 9 , L 10 and L 11 each independently represent a single bond or a divalent organic group; m7, m8, m9 and m10 each independently represent an integer of 0 to 2, and at least one of m7, m8, m9 and m10 is 1 or 2.
In formula (H6), R 42 , R 43 , R 44 , and R 45 each independently represent a hydrogen atom or a monovalent organic group, R 46 and R 47 each independently represent a monovalent organic group, n16 and n17 each independently represent an integer of 0 to 4, m11 and m12 each independently represent an integer of 0 to 4, and at least one of m11 and m12 is an integer of 1 to 4.
 式(H1)中、R及びRはそれぞれ独立に、炭素数1~60の1価の有機基であることが好ましく、炭素数1~30の1価の有機基であることがより好ましい。R及びRにおける1価の有機基としては、置換基を有してもよい炭化水素基が挙げられ、例えば、ヒドロキシ基等の置換基を有してもよい芳香族炭化水素基等が挙げられる。
 式(H1)中、R及びRはそれぞれ独立に、炭素数1~60の1価の有機基であることが好ましく、炭素数1~30の1価の有機基であることがより好ましい。R及びRにおける1価の有機基としては、置換基を有してもよい炭化水素基が挙げられ、例えば、ヒドロキシ基等の置換基を有してもよい炭化水素基等が挙げられる。
 式(H1)中、n1及びn2はそれぞれ独立に、0又は1であることが好ましく、0であることがより好ましい。
 式(H1)中、m1及びm2はいずれも1であることが好ましい。
In formula (H1), R1 and R2 are each preferably independently a monovalent organic group having 1 to 60 carbon atoms, and more preferably a monovalent organic group having 1 to 30 carbon atoms. Examples of the monovalent organic group in R1 and R2 include a hydrocarbon group which may have a substituent, such as an aromatic hydrocarbon group which may have a substituent such as a hydroxy group.
In formula (H1), R3 and R4 are each preferably independently a monovalent organic group having 1 to 60 carbon atoms, and more preferably a monovalent organic group having 1 to 30 carbon atoms. Examples of the monovalent organic group in R3 and R4 include hydrocarbon groups which may have a substituent, such as a hydroxyl group or the like.
In formula (H1), n1 and n2 each independently are preferably 0 or 1, and more preferably 0.
In formula (H1), it is preferable that both m1 and m2 are 1.
式(H1)で表される化合物は、式(H1-1)~式(H1-5)のいずれかで表される化合物であることが好ましい。

 式(H1-1)中、R21、R22及びR23はそれぞれ独立に、水素原子又は1価の有機基を表し、水素原子又は炭素数1~20の1価の有機基が好ましく、水素原子又は下記式(R-1)で表される基がより好ましい。

 式(R-1)中、R29は水素原子、アルキル基又はアルコキシ基を表し、n13は0~2の整数を表し、*は他の構造との結合部位を表す。
 (H1-1)中、n8、n9及びn10はそれぞれ独立に、0~2の整数を表し、0又は1が好ましい。
The compound represented by formula (H1) is preferably a compound represented by any one of formulas (H1-1) to (H1-5).

In formula (H1-1), R 21 , R 22 and R 23 each independently represent a hydrogen atom or a monovalent organic group, preferably a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, and more preferably a hydrogen atom or a group represented by the following formula (R-1):

In formula (R-1), R 29 represents a hydrogen atom, an alkyl group or an alkoxy group, n13 represents an integer of 0 to 2, and * represents a bonding site to another structure.
In (H1-1), n8, n9 and n10 each independently represent an integer of 0 to 2, and preferably 0 or 1.
 式(H1-2)中、R24は水素原子又は1価の有機基を表し、水素原子、炭素数1~20のアルキル基又は炭素数1~20のアルコキシ基が好ましい。n14、n15及びn16はそれぞれ独立に、0~2の整数を表す。R30は水素原子又はアルキル基を表す。 In formula (H1-2), R 24 represents a hydrogen atom or a monovalent organic group, and is preferably a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms. n14, n15, and n16 each independently represent an integer of 0 to 2. R 30 represents a hydrogen atom or an alkyl group.
 式(H1-3)中、R25、R26、R27及びR28はそれぞれ独立に、1価の有機基を表し、水素原子、アルキル基又は上述の式(R-1)で表される基であることが好ましい。
 式(H1-3)中、n11、n12及びn13はそれぞれ独立に、0~2の整数を表し、0又は1が好ましい。
In formula (H1-3), R 25 , R 26 , R 27 and R 28 each independently represent a monovalent organic group, and are preferably a hydrogen atom, an alkyl group or a group represented by the above formula (R-1).
In formula (H1-3), n11, n12 and n13 each independently represent an integer of 0 to 2, and preferably 0 or 1.
 式(H1-1)で表される化合物としては、下記式(H1-1-1)~式(H1-1-4)のいずれかで表される化合物が好ましい。
 式(H1-2)で表される化合物としては下記式(H1-2-1)または(H1-2-2)で表される化合物が好ましい。
 式(H1-3)で表される化合物としては下記式(H1-3-1)~式(H1-3-3)で表される化合物が好ましい。
The compound represented by formula (H1-1) is preferably a compound represented by any one of the following formulas (H1-1-1) to (H1-1-4).
The compound represented by formula (H1-2) is preferably a compound represented by the following formula (H1-2-1) or (H1-2-2).
The compound represented by formula (H1-3) is preferably a compound represented by the following formulas (H1-3-1) to (H1-3-3).
 式(H2)中、Zは炭素数1~20の4価の基であることが好ましく、下記式(Z-1)~(Z-4)のいずれかで表される基がより好ましい。下記式(Z-1)~(Z-4)中、*は他の構造との結合部位を表す。

 式(H2)中、L、L、L及びLはそれぞれ独立に、単結合又はメチレン基であることが好ましい。
 式(H2)中、R、R、R及びRはそれぞれ独立に、炭素数1~30の有機基が好ましい。
 式(H2)中、n3、n4、n5及びn6はそれぞれ独立に、0~2の整数であることが好ましく、0又は1であることがより好ましい。
 式(H2)中、m3、m4、m5及びm6はそれぞれ独立に、1又は2であることが好ましく、1であることがより好ましい。
 式(H2)で表される化合物としては、下記構造の化合物が例示される。
In formula (H2), Z is preferably a tetravalent group having 1 to 20 carbon atoms, and more preferably a group represented by any one of the following formulae (Z-1) to (Z-4): In the following formulae (Z-1) to (Z-4), * represents a bonding site to other structures.

In formula (H2), it is preferable that L 1 , L 2 , L 3 and L 4 each independently represent a single bond or a methylene group.
In formula (H2), R 5 , R 6 , R 7 and R 8 are preferably each independently an organic group having 1 to 30 carbon atoms.
In formula (H2), n3, n4, n5 and n6 each independently represent an integer of 0 to 2, and more preferably 0 or 1.
In formula (H2), m3, m4, m5 and m6 each independently preferably represent 1 or 2, and more preferably represent 1.
Examples of the compound represented by formula (H2) include compounds having the following structures:
 式(H3)中、R及びR10はそれぞれ独立に、水素原子又は炭素数1~20の1価の有機基を表すことが好ましい。
 式(H3)中、Lはそれぞれ独立に、下記式(L-1)で表される基であることが好ましい。

 式(L-1)中、R30は炭素数1~20の1価の有機基を表し、n14は1~5の整数を表し、*は他の構造との結合部位を表す。
 式(H3)中、n7は4~6の整数であることが好ましい。
 式(H3)で表される化合物としては、下記化合物が挙げられる。下記式中、nはそれぞれ独立に、0~9の整数を表す。
In formula (H3), it is preferable that R 9 and R 10 each independently represent a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
In formula (H3), it is preferable that each L5 independently represents a group represented by the following formula (L-1).

In formula (L-1), R 30 represents a monovalent organic group having 1 to 20 carbon atoms, n14 represents an integer of 1 to 5, and * represents a bonding site to another structure.
In formula (H3), n7 is preferably an integer of 4 to 6.
Examples of the compound represented by formula (H3) include the following compounds: In the following formula, each n independently represents an integer of 0 to 9.
 式(H4)中、Lは-C(CF-、-S(=O)-又は-C(=O)-であることが好ましい。
 式(H4)中、L及びLはそれぞれ独立に、炭素数2~20の2価の有機基であることが好ましい。
 式(H4)で表される化合物としては、下記化合物が挙げられる。
In formula (H4), L 6 is preferably —C(CF 3 ) 2 —, —S(═O) 2 — or —C(═O)—.
In formula (H4), L 7 and L 8 are preferably each independently a divalent organic group having 2 to 20 carbon atoms.
Examples of the compound represented by formula (H4) include the following compounds.
 式(H5)中、R11、R12、R13、R14、R15、R16、R17、R18、R19及びR20はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルケニル基、アルコキシ基、アリル基又はアシル基が好ましい。
 式(H5)中、L、L10およびL11はそれぞれ独立に、単結合、-O-、-S-、-S(=O)-、-C(=O)-、-C(=O)O-、シクロペンチリデン、シクロヘキシリデン、フェニレンまたは炭素数1~20の2価の有機基が好ましく、下記式(L-2)~式(L-4)のいずれかで表される基であることがより好ましい。

 式(L-2)~式(L-4)中、R31及びR32はそれぞれ独立に、水素原子、アルキル基、アルケニル基又はアリール基を表し、R34、R35、R36及びR37はそれぞれ独立に、水素原子又はアルキル基を表し、n15は、1~5の整数であり、R38、R39、R40及びR41はそれぞれ独立に、水素原子又はアルキル基を表し、*は他の構造との結合部位を表す。
 式(H5)で表される化合物としては、下記化合物が挙げられる。
In formula (H5), R11 , R12 , R13 , R14 , R15 , R16 , R17 , R18 , R19 and R20 are each preferably independently a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an alkoxy group, an allyl group or an acyl group.
In formula (H5), L 9 , L 10 and L 11 each independently represent preferably a single bond, -O-, -S-, -S(═O) 2 -, -C(═O)-, -C(═O)O-, cyclopentylidene, cyclohexylidene, phenylene or a divalent organic group having 1 to 20 carbon atoms, and more preferably a group represented by any of the following formulae (L-2) to (L-4).

In formulas (L-2) to (L-4), R 31 and R 32 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, or an aryl group; R 34 , R 35 , R 36 , and R 37 each independently represent a hydrogen atom or an alkyl group; n15 is an integer of 1 to 5; R 38 , R 39 , R 40 , and R 41 each independently represent a hydrogen atom or an alkyl group; and * represents a bonding site to another structure.
Examples of the compound represented by formula (H5) include the following compounds.
 式(H6)中、R42、R43、R44、及びR45はそれぞれ独立に、水素原子又は1価の有機基を表し、水素原子又は炭素数1~20の1価の有機基が好ましく、水素原子又は炭素数1~20のアルキル基がより好ましく、炭素数1~4のアルキル基がより好ましい。
 式(H6)中、R46、及びR47はそれぞれ独立に、アルキル基、アルコキシ基又はアリール基が好ましく、アルキル基がより好ましい。
 式(H6)中、n16及びn17はそれぞれ独立に、0~2の整数が好ましく、0又は1がより好ましい。
 式(H6)中、n16及びn17はそれぞれ独立に、1~3の整数が好ましく、2又は3がより好ましい。
 式(H6)で表される化合物としては、下記化合物が挙げられる。
In formula (H6), R 42 , R 43 , R 44 , and R 45 each independently represent a hydrogen atom or a monovalent organic group, preferably a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms.
In formula (H6), R 46 and R 47 each independently preferably represent an alkyl group, an alkoxy group or an aryl group, and more preferably an alkyl group.
In formula (H6), n16 and n17 each independently represent preferably an integer of 0 to 2, and more preferably 0 or 1.
In formula (H6), n16 and n17 each independently represent preferably an integer of 1 to 3, and more preferably 2 or 3.
Examples of the compound represented by formula (H6) include the following compounds.
 その他、ヒドロキシ化合物としては、2,3,4-トリヒドロキシベンゾフェノン、2,4,4′-トリヒドロキシベンゾフェノン、2,4,6-トリヒドロキシベンゾフェノン、2,3,4-トリヒドロキシ-2′-メチルベンゾフェノン、2,3,4,4′-テトラヒドロキシベンゾフェノン、2,2′,4,4′-テトラヒドロキシベンゾフェノン、2,4,6,3′,4′-ペンタヒドロキシベンゾフェノン、2,3,4,2′,4′-ペンタヒドロキシベンゾフェノン、2,3,4,2′,5′-ペンタヒドロキシベンゾフェノン、2,4,6,3′,4′,5′-ヘキサヒドロキシベンゾフェノン、2,3,4,3′,4′,5′-ヘキサヒドロキシベンゾフェノン等のポリヒドロキシベンゾフェノン類、
2,3,4-トリヒドロキシアセトフェノン、2,3,4-トリヒドロキシフェニルペンチルケトン、2,3,4-トリヒドロキシフェニルヘキシルケトン等のポリヒドロキシフェニルアルキルケトン類、
ビス(2,4-ジヒドロキシフェニル)メタン、ビス(2,3,4-トリヒドロキシフェニル)メタン、ビス(2,4-ジヒドロキシフェニル)プロパン-1、ビス(2,3,4-トリヒドロキシフェニル)プロパン-1、ノルジヒドログアイアレチン酸、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン等のビス((ポリ)ヒドロキシフェニル)アルカン類、
3,4,5-トリヒドロキシ安息香酸プロピル、2,3,4-トリヒドロキシ安息香酸フェニル、3,4,5-トリヒドロキシ安息香酸フェニル等のポリヒドロキシ安息香酸エステル類、
ビス(2,3,4-トリヒドロキシベンゾイル)メタン、ビス(3-アセチル-4,5,6-トリヒドロキシフェニル)-メタン、ビス(2,3,4-トリヒドロキシベンゾイル)ベンゼン、ビス(2,4,6-トリヒドロキシベンゾイル)ベンゼン等のビス(ポリヒドロキシベンゾイル)アルカン又はビス(ポリヒドロキシベンゾイル)アリール類、
エチレングリコール-ジ(3,5-ジヒドロキシベンゾエート)、エチレングリコール-ジ(3,4,5-トリヒドロキシベンゾエート)等のアルキレン-ジ(ポリヒドロキシベンゾエート)類、
2,3,4-ビフェニルトリオール、3,4,5-ビフェニルトリオール、3,5,3′,5′-ビフェニルテトロール、2,4,2′,4′-ビフェニルテトロール、2,4,6,3′,5′-ビフェニルペントール、2,4,6,2′,4′,6′-ビフェニルヘキソール、2,3,4,2′,3′,4′-ビフェニルヘキソール等のポリヒドロキシビフェニル類、
4,4′-チオビス(1,3-ジヒドロキシ)ベンゼン等のビス(ポリヒドロキシ)スルフィド類、
2,2′,4,4′-テトラヒドロキシジフェニルエーテル等のビス(ポリヒドロキシフェニル)エーテル類、
2,2′,4,4′-テトラヒドロキシジフェニルスルフォキシド等のビス(ポリヒドロキシフェニル)スルフォキシド類、
2,2′,4,4′-ジフェニルスルフォン等のビス(ポリヒドロキシフェニル)スルフォン類、
トリス(4-ヒドロキシフェニル)メタン、4,4′,4″-トリヒドロキシ-3,5,3′,5′-テトラメチルトリフェニルメタン、4,4′,3″,4″-テトラヒドロキシ-3,5,3′,5′-テトラメチルトリフェニルメタン、4-[ビス(3,5-ジメチル-4-ヒドロキシフェニル)メチル]-2-メトキシ-フェノール、4,4′-(3,4-ジオール-ベンジリデン)ビス[2,6-ジメチルフェノール]、4,4′-[(2-ヒドロキシ-フェニル)メチレン]ビス[2-シクロヘキシル-5-メチルフェノール、4,4′,2″,3″,4″-ペンタヒドロキシ-3,5,3′,5′-テトラメチルトリフェニルメタン、2,3,4,2′,3′,4′-ヘキサヒドロキシ-5,5′-ジアセチルトリフェニルメタン、2,3,4,2′,3′,4′,3″,4″-オクタヒドロキシ-5,5′-ジアセチルトリフェニルメタン、2,4,6,2′,4′,6′-ヘキサヒドロキシ-5,5′-ジプロピオニルトリフェニルメタン等のポリヒドロキシトリフェニルメタン類、4,4′-(フェニルメチレン)ビスフェノール、4,4′-(1-フェニル-エチリデン)ビス[2-メチルフェノール]、4,4′,4″-エチリデン-トリスフェノール等のポリヒドロキシトリフェニルエタン類、
3,3,3′,3′-テトラメチル-1,1′-スピロビ-インダン-5,6,5′,6′-テトロール、3,3,3′,3′-テトラメチル-1,1′-スピロビ-インダン-5,6,7,5′,6′,7′-ヘキソオール、3,3,3′,3′-テトラメチル-1,1′-スピロビ-インダン-4,5,6,4′,5′,6′-ヘキソオール、3,3,3′,3′-テトラメチル-1,1′-スピロビ-インダン-4,5,6,5′,6′,7′-ヘキソオール等のポリヒドロキシスピロビーインダン類、2,4,4-トリメチル-2′,4′,7′-トリヒドロキシフラバン、等のポリヒドロキシフラバン類、
3,3-ビス(3,4-ジヒドロキシフェニル)フタリド、3,3-ビス(2,3,4-トリヒドロキシフェニル)フタリド、3′,4′,5′,6′-テトラヒドロキシスピロ[フタリド-3,9′-キサンテン]等のポリヒドロキシフタリド類、モリン、ケルセチン、ルチン等のフラボノ色素類、
α,α′,α″-トリス(4-ヒドロキシフェニル)1,3,5-トリイソプロピルベンゼン、α,α′,α″-トリス(3,5-ジメチル-4-ヒドロキシフェニル)1,3,5-トリイソプロピルベンゼン、α,α′,α″-トリス(3,5-ジエチル-4-ヒドロキシフェニル)1,3,5-トリイソプロピルベンゼン、α,α′,α″-トリス(3,5-ジn-プロピル-4-ヒドロキシフェニル)1,3,5-トリイソプロピルベンゼン、α,α′,α″-トリス(3,5-ジイソプロピル-4-ヒドロキシフェニル)1,3,5-トリイソプロピルベンゼン、α,α′,α″-トリス(3,5-ジn-ブチル-4-ヒドロキシフェニル)1,3,5-トリイソプロピルベンゼン、α,α′,α″-トリス(3-メチル-4-ヒドロキシフェニル)1,3,5-トリイソプロピルベンゼン、α,α′,α″-トリス(3-メトキシ-4-ヒドロキシフェニル)1,3,5-トリイソプロピルベンゼン、α,α′,α″-トリス(2,4-ジヒドロキシフェニル)1,3,5-トリイソプロピルベンゼン、1,3,5-トリス(3,5-ジメチル-4-ヒドロキシフェニル)ベンゼン、1,3,5-トリス(5-メチル-2-ヒドロキシフェニル)ベンゼン、2,4,6-トリス(3,5-ジメチル-4-ヒドロキシフェニルチオメチル)メシチレン、1-[α-メチル-α-(4′-ヒドロキシフェニル)エチル]-4-[α,α’-ビス(4″-ヒドロキシフェニル)エチル]ベンゼン、1-[α-メチル(4′-ヒドロキシフェニル)エチル]-3-[α,α’-ビス(4″-ヒドロキシフェニル)エチル]ベンゼン、1-[α-メチル-α-(3′,5′-ジメチル-4′-ヒドロキシフェニル)エチル]-4-[α,α′-ビス(3″,5″-ジメチル-4″-ヒドロキシフェニル)エチル]ベンゼン、1-[α-メチル(3′-メチル-4′-ヒドロキシフェニル)エチル]-4-[α′,α′-ビス(3″-メチル-4″-ヒドロキシフェニル)エチル]ベンゼン、1-[α-メチル-α-(3′-メトキシ-4′-ヒドロキシフェニル)エチル]-4-[α′,α′-ビス(3″-メトキシ-4″-ヒドロキシフェニル)エチル]ベンゼン、1-[α-メチル-α-(2′,4′-ジヒドロキシフェニル)エチル]-4-[α′,α′-ビス(4″-ヒドロキシフェニル)エチル]ベンゼン、1-[α-メチル(2′,4′-ジヒドロキシフェニル)エチル]-3-[α′,α′-ビス(4″-ヒドロキシフェニル)エチル]ベンゼン等の特開平4-253058に記載のポリヒドロキシ化合物、α,α,α′,α′,α″,α″-ヘキサキス-(4-ヒドロキシフェニル)-1,3,5-トリエチルベンゼン等の特開平5-224410号に記載のポリヒドロキシ化合物、1,2,2,3-テトラ(p-ヒドロキシフェニル)プロパン、1,3,3,5-テトラ(p-ヒドロキシフェニル)ペンタン等の特開平5-303200号、EP-530148に記載のポリ(ヒドロキシフェニル)アルカン類、
p-ビス(2,3,4-トリヒドロキシベンゾイル)ベンゼン、p-ビス(2,4,6-トリヒドロキシベンゾイル)ベンゼン、m-ビス(2,3,4-トリヒドロキシベンゾイル)ベンゼン、m-ビス(2,4,6-トリヒドロキシベンゾイル)ベンゼン、p-ビス(2,5-ジヒドロキシ-3-ブロムベンゾイル)ベンゼン、p-ビス(2,3,4-トリヒドロキシ-5-メチルベンゾイル)ベンゼン、p-ビス(2,3,4-トリヒドロキシ-5-メトキシベンゾイル)ベンゼン、p-ビス(2,3,4-トリヒドロキシ-5-ニトロベンゾイル)ベンゼン、p-ビス(2,3,4-トリヒドロキシ-5-シアノベンゾイル)ベンゼン、1,3,5-トリス(2,5-ジヒドロキシベンゾイル)ベンゼン、1,3,5-トリス(2,3,4-トリヒドロキシベンゾイル)ベンゼン、1,2,3-トリス(2,3,4-トリヒドロキシベンゾイル)ベンゼン、1,2,4-トリス(2,3,4-トリヒドロキシベンゾイル)ベンゼン、1,2,4,5-テトラキス(2,3,4-トリヒドロキシベンゾイル)ベンゼン、α,α′-ビス(2,3,4-トリヒドロキシベンゾイル)p-キシレン、α,α′,α′-トリス(2,3,4-トリヒドロキシベンゾイル)メシレン、
 2,6-ビス-(2-ヒドロキシ-3,5-ジメチルベンジル)-p-クレゾール、2,6-ビス-(2-ヒドロキシ-5′-メチルベンジル)-p-クレゾール、2,6-ビス-(2,4,6-トリヒドロキシベンジル)-p-クレゾール、2,6-ビス-(2,3,4-トリヒドロキシベンジル)-p-クレゾール、2,6-ビス(2,3,4-トリヒドロキシベンジル)-3,5-ジメチル-フェノール、4,6-ビス-(4-ヒドロキシ-3,5-ジメチルベンジル)-ピロガロール、2,6-ビス-(4-ヒドロキシ-3,5-ジメチルベンジル)-1,3,4-トリヒドロキシ-フェノール、4,6-ビス-(2,4,6-トリヒドロキシベンジル)-2,4-ジメチル-フェノール、4,6-ビス-(2,3,4-トリヒドロキシベンジル)-2,5-ジメチル-フェノール、2,6-ビス-(4-ヒドロキシベンジル)-p-クレゾール、2,6-ビス(4-ヒドロキシベンジル)-4-シクロヘキシルフェノール、2,6-ビス(4-ヒドロキシ-3-メチルベンジル)-p-クレゾール、2,6-ビス(4-ヒドロキシ-3,5-ジメチルベンジル)-p-クレゾール、2,6-ビス(4-ヒドロキシ-2,5-ジメチルベンジル)-p-クレゾール、2,6-ビス(4-ヒドロキシ-3-メチルベンジル)-4-フェニル-フェノール、2,2′,6,6′-テトラキス[(4-ヒドロキシフェニル)メチル]-4,4′-メチレンジフェノール、2,2′,6,6′-テトラキス[(4-ヒドロキシ-3,5-ジメチルフェニル)メチル]-4,4′-メチレンジフェノール、2,2′,6,6′-テトラキス[(4-ヒドロキシ-3-メチルフェニル)メチル]-4,4′-メチレンジフェノール、2,2′-ビス[(4-ヒドロキシ-3,5-ジメチルフェニル)メチル]6,6′-ジメチル-4,4′-メチレンジフェノール、2,2’,3,3’-テトラヒドロ-3,3,3’,3’-テトラメチル-1,1’-スピロビ(1H-インデン)-5,5’,6,6’,7,7’ヘキサノール、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-(4-ヒドロキシ-3-メトキシフェニル)メタン等を挙げることができる。
 また、ノボラック樹脂等フェノール樹脂の低核体を用いる事もできる。
Other examples of hydroxy compounds include polyhydroxybenzophenones such as 2,3,4-trihydroxybenzophenone, 2,4,4'-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone, 2,3,4-trihydroxy-2'-methylbenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 2,4,6,3',4'-pentahydroxybenzophenone, 2,3,4,2',4'-pentahydroxybenzophenone, 2,3,4,2',5'-pentahydroxybenzophenone, 2,4,6,3',4',5'-hexahydroxybenzophenone, and 2,3,4,3',4',5'-hexahydroxybenzophenone;
polyhydroxyphenyl alkyl ketones such as 2,3,4-trihydroxyacetophenone, 2,3,4-trihydroxyphenyl pentyl ketone, and 2,3,4-trihydroxyphenyl hexyl ketone;
bis((poly)hydroxyphenyl)alkanes such as bis(2,4-dihydroxyphenyl)methane, bis(2,3,4-trihydroxyphenyl)methane, bis(2,4-dihydroxyphenyl)propane-1, bis(2,3,4-trihydroxyphenyl)propane-1, nordihydroguaiaretic acid, and 1,1-bis(4-hydroxyphenyl)cyclohexane;
Polyhydroxybenzoic acid esters such as propyl 3,4,5-trihydroxybenzoate, phenyl 2,3,4-trihydroxybenzoate, and phenyl 3,4,5-trihydroxybenzoate;
bis(polyhydroxybenzoyl)alkanes or bis(polyhydroxybenzoyl)aryls such as bis(2,3,4-trihydroxybenzoyl)methane, bis(3-acetyl-4,5,6-trihydroxyphenyl)methane, bis(2,3,4-trihydroxybenzoyl)benzene, and bis(2,4,6-trihydroxybenzoyl)benzene;
Alkylene di(polyhydroxybenzoates) such as ethylene glycol di(3,5-dihydroxybenzoate) and ethylene glycol di(3,4,5-trihydroxybenzoate);
polyhydroxybiphenyls such as 2,3,4-biphenyltriol, 3,4,5-biphenyltriol, 3,5,3',5'-biphenyltetrol, 2,4,2',4'-biphenyltetrol, 2,4,6,3',5'-biphenylpentol, 2,4,6,2',4',6'-biphenylhexol, and 2,3,4,2',3',4'-biphenylhexol;
bis(polyhydroxy)sulfides such as 4,4'-thiobis(1,3-dihydroxy)benzene;
bis(polyhydroxyphenyl)ethers such as 2,2',4,4'-tetrahydroxydiphenyl ether;
bis(polyhydroxyphenyl)sulfoxides such as 2,2',4,4'-tetrahydroxydiphenylsulfoxide;
bis(polyhydroxyphenyl)sulfones such as 2,2',4,4'-diphenylsulfone,
Tris(4-hydroxyphenyl)methane, 4,4',4"-trihydroxy-3,5,3',5'-tetramethyltriphenylmethane, 4,4',3",4"-tetrahydroxy-3,5,3',5'-tetramethyltriphenylmethane, 4-[bis(3,5-dimethyl-4-hydroxyphenyl)methyl]-2-methoxy-phenol, 4,4'-(3,4-diol-benzylidene)bis[2,6-dimethylphenol], 4,4'-[(2-hydroxy-phenyl)methylene]bis[2-cyclohexyl-5-methylphenol], 4,4',2",3",4"-pentahydroxy-3,5,3',5' -tetramethyltriphenylmethane, 2,3,4,2',3',4'-hexahydroxy-5,5'-diacetyltriphenylmethane, 2,3,4,2',3',4',3",4"-octahydroxy-5,5'-diacetyltriphenylmethane, 2,4,6,2',4',6'-hexahydroxy-5,5'-dipropionyltriphenylmethane and other polyhydroxytriphenylmethanes; 4,4'-(phenylmethylene)bisphenol, 4,4'-(1-phenyl-ethylidene)bis[2-methylphenol], 4,4',4"-ethylidene-trisphenol and other polyhydroxytriphenylethanes;
Polyhydroxy spirobyindanes such as 3,3,3',3'-tetramethyl-1,1'-spirobi-indan-5,6,5',6'-tetrol, 3,3,3',3'-tetramethyl-1,1'-spirobi-indan-5,6,7,5',6',7'-hexol, 3,3,3',3'-tetramethyl-1,1'-spirobi-indan-4,5,6,4',5',6'-hexol, and 3,3,3',3'-tetramethyl-1,1'-spirobi-indan-4,5,6,5',6',7'-hexool; polyhydroxy flavans such as 2,4,4-trimethyl-2',4',7'-trihydroxy flavan;
Polyhydroxyphthalides such as 3,3-bis(3,4-dihydroxyphenyl)phthalide, 3,3-bis(2,3,4-trihydroxyphenyl)phthalide, and 3',4',5',6'-tetrahydroxyspiro[phthalide-3,9'-xanthene]; flavonoid pigments such as morin, quercetin, and rutin;
α,α',α"-tris(4-hydroxyphenyl)1,3,5-triisopropylbenzene, α,α',α"-tris(3,5-dimethyl-4-hydroxyphenyl)1,3,5-triisopropylbenzene, α,α',α"-tris(3,5-diethyl-4-hydroxyphenyl)1,3,5-triisopropylbenzene, α,α',α"-tris(3,5-di-n-propyl-4-hydroxyphenyl)1,3,5-triisopropylbenzene, α,α',α"-tris(3,5-diisopropyl-4-hydroxyphenyl)1,3,5-triisopropylbenzene, α,α',α"-tris(3,5-di-n-butyl-4-hydroxyphenyl)1,3,5-triisopropylbenzene, α,α',α" -Tris(3-methyl-4-hydroxyphenyl)1,3,5-triisopropylbenzene, α,α',α"-tris(3-methoxy-4-hydroxyphenyl)1,3,5-triisopropylbenzene, α,α',α"-tris(2,4-dihydroxyphenyl)1,3,5-triisopropylbenzene, 1,3,5-tris(3,5-dimethyl-4-hydroxyphenyl)benzene, 1,3,5-tris(5-methyl-2-hydroxyphenyl)benzene, 2,4,6-tris(3,5-dimethyl-4-hydroxyphenylthiomethyl)mesitylene, 1-[α-methyl-α-(4'-hydroxyphenyl)ethyl]-4-[α,α'-bis(4"-hydroxyphenyl)ethyl]benzene, 1-[α-methyl 1-[α-methyl-α-(3',5'-dimethyl-4'-hydroxyphenyl)ethyl]-4-[α,α'-bis(3",5"-dimethyl-4"-hydroxyphenyl)ethyl]benzene, 1-[α-methyl(3'-methyl-4'-hydroxyphenyl)ethyl]-4-[α',α'-bis(3"-methyl-4"-hydroxyphenyl)ethyl]benzene, 1-[α-methyl-α-(3'-methoxy-4'-hydroxyphenyl)ethyl]-4-[α',α'-bis(3"-methoxy-4"-hydroxyphenyl)ethyl]benzene, 1-[α-methyl-α-(2',4'-dihydroxyphenyl)ethyl]-4-[α',α'-bis(3"-methoxy-4"-hydroxyphenyl)ethyl]benzene, polyhydroxy compounds described in JP-A-4-253058, such as α,α,α',α',α",α"-hexakis-(4-hydroxyphenyl)-1,3,5-triethylbenzene; poly(hydroxyphenyl)alkanes described in JP-A-5-303200 and EP-530148, such as 1,2,2,3-tetra(p-hydroxyphenyl)propane and 1,3,3,5-tetra(p-hydroxyphenyl)pentane;
p-bis(2,3,4-trihydroxybenzoyl)benzene, p-bis(2,4,6-trihydroxybenzoyl)benzene, m-bis(2,3,4-trihydroxybenzoyl)benzene, m-bis(2,4,6-trihydroxybenzoyl)benzene, p-bis(2,5-dihydroxy-3-bromobenzoyl)benzene, p-bis(2,3,4-trihydroxy-5-methylbenzoyl)benzene, p-bis(2,3,4-trihydroxy-5-methoxybenzoyl)benzene, p-bis(2,3,4-trihydroxy-5-nitrobenzoyl)benzene, p-bis(2,3,4- trihydroxy-5-cyanobenzoyl)benzene, 1,3,5-tris(2,5-dihydroxybenzoyl)benzene, 1,3,5-tris(2,3,4-trihydroxybenzoyl)benzene, 1,2,3-tris(2,3,4-trihydroxybenzoyl)benzene, 1,2,4-tris(2,3,4-trihydroxybenzoyl)benzene, 1,2,4,5-tetrakis(2,3,4-trihydroxybenzoyl)benzene, α,α'-bis(2,3,4-trihydroxybenzoyl)p-xylene, α,α',α'-tris(2,3,4-trihydroxybenzoyl)mesylene,
2,6-bis-(2-hydroxy-3,5-dimethylbenzyl)-p-cresol, 2,6-bis-(2-hydroxy-5'-methylbenzyl)-p-cresol, 2,6-bis-(2,4,6-trihydroxybenzyl)-p-cresol, 2,6-bis-(2,3,4-trihydroxybenzyl)-p-cresol, 2,6-bis-(2,3,4-trihydroxybenzyl)-3,5-dimethyl-phenol, 4,6-bis-(4-hydroxy-3,5-dimethylbenzyl)-pyrogallol, 2,6-bis-(4 -hydroxy-3,5-dimethylbenzyl)-1,3,4-trihydroxy-phenol, 4,6-bis-(2,4,6-trihydroxybenzyl)-2,4-dimethyl-phenol, 4,6-bis-(2,3,4-trihydroxybenzyl)-2,5-dimethyl-phenol, 2,6-bis-(4-hydroxybenzyl)-p-cresol, 2,6-bis(4-hydroxybenzyl)-4-cyclohexylphenol, 2,6-bis(4-hydroxy-3-methylbenzyl)-p-cresol, 2,6-bis(4- 2,6-bis(4-hydroxy-2,5-dimethylbenzyl)-p-cresol, 2,6-bis(4-hydroxy-3-methylbenzyl)-4-phenyl-phenol, 2,2',6,6'-tetrakis[(4-hydroxyphenyl)methyl]-4,4'-methylenediphenol, 2,2',6,6'-tetrakis[(4-hydroxy-3,5-dimethylphenyl)methyl]-4,4'-methylenediphenol, 2,2',6,6'-tetrakis[(4 -hydroxy-3-methylphenyl)methyl]-4,4'-methylenediphenol, 2,2'-bis[(4-hydroxy-3,5-dimethylphenyl)methyl]6,6'-dimethyl-4,4'-methylenediphenol, 2,2',3,3'-tetrahydro-3,3,3',3'-tetramethyl-1,1'-spirobi(1H-indene)-5,5',6,6',7,7'hexanol, bis(4-hydroxy-3,5-dimethylphenyl)-(4-hydroxy-3-methoxyphenyl)methane, and the like can be mentioned.
Furthermore, a low molecular weight phenol resin such as a novolak resin can also be used.
 ナフトキノンジアジドスルホン酸としては、6-ジアゾ5,6-ジヒドロ-5-オキソ-1-ナフタレンスルホン酸、1,2-ナフトキノン-(2)-ジアゾ-5-スルホン酸等が挙げられ、これらは混合して用いてもよい。 Naphthoquinone diazide sulfonic acids include 6-diazo 5,6-dihydro-5-oxo-1-naphthalene sulfonic acid, 1,2-naphthoquinone-(2)-diazo-5-sulfonic acid, etc., which may be used in combination.
 ヒドロキシ化合物のナフトキノンジアジドスルホン酸エステルの製造方法は、特に限定されないが、例えば、ナフトキノンジアジドスルホン酸をクロルスルホン酸又は塩化チオニルでスルホニルクロリドとし、得られたナフトキノンジアジドスルホニルクロリドと、ヒドロキシ化合物とを縮合反応させることにより得られる。
 例えば、ヒドロキシ化合物とナフトキノンジアジドスルホニルクロリドの所定量をジオキサン、アセトン、又はテトラヒドロフラン等の溶媒中において、トリエチルアミン等の塩基性触媒の存在下で反応させてエステル化を行い、得られた生成物を水洗、乾燥することにより得ることができる。
The method for producing a naphthoquinone diazide sulfonate ester of a hydroxy compound is not particularly limited. For example, the ester can be obtained by converting naphthoquinone diazide sulfonic acid into a sulfonyl chloride with chlorosulfonic acid or thionyl chloride, and then subjecting the resulting naphthoquinone diazide sulfonyl chloride to a condensation reaction with the hydroxy compound.
For example, a hydroxy compound and a predetermined amount of naphthoquinone diazide sulfonyl chloride are reacted in a solvent such as dioxane, acetone, or tetrahydrofuran in the presence of a basic catalyst such as triethylamine to carry out esterification, and the resulting product is washed with water and dried to obtain the compound.
 ナフトキノンジアジドスルホン酸エステルにおけるエステル化率は、特に限定されないが、10%以上であることが好ましく、20%以上であることがより好ましい。また上記エステル化率の上限は特に限定されず、100%であってもよい。
 上記エステル化率は、ヒドロキシ化合物が有するヒドロキシ基のうち、エステル化された基の割合として、H-NMR等により確認することができる。
The esterification rate of the naphthoquinone diazide sulfonic acid ester is not particularly limited, but is preferably 10% or more, and more preferably 20% or more. The upper limit of the esterification rate is not particularly limited, and may be 100%.
The above-mentioned esterification rate can be confirmed by 1 H-NMR or the like as the proportion of esterified groups among the hydroxy groups contained in the hydroxy compound.
 その他、光吸収剤として、特開2019-206689号公報の段落0088~0108に記載の化合物を用いることもできる。 In addition, the compounds described in paragraphs 0088 to 0108 of JP 2019-206689 A can also be used as light absorbents.
 樹脂組成物の全固形分に対する光吸収剤の含有量は、特に限定されないが、0.1~20質量%であることが好ましく、0.5~10質量%であることがより好ましく、1~5質量%であることが更に好ましい。 The amount of the light absorber relative to the total solid content of the resin composition is not particularly limited, but is preferably 0.1 to 20% by mass, more preferably 0.5 to 10% by mass, and even more preferably 1 to 5% by mass.
<重合禁止剤>
 樹脂組成物は、重合禁止剤を含むことが好ましい。重合禁止剤としてはフェノール系化合物、キノン系化合物、アミノ系化合物、N-オキシルフリーラジカル化合物系化合物、ニトロ系化合物、ニトロソ系化合物、ヘテロ芳香環系化合物、金属化合物などが挙げられる。
<Polymerization inhibitor>
The resin composition preferably contains a polymerization inhibitor, such as a phenolic compound, a quinone compound, an amino compound, an N-oxyl free radical compound, a nitro compound, a nitroso compound, a heteroaromatic ring compound, or a metal compound.
 重合禁止剤の具体的な化合物としては、国際公開第2021/112189の段落0310に記載の化合物、p-ヒドロキノン、o-ヒドロキノン、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、フェノキサジン、1,4,4-トリメチル-2,3-ジアザビシクロ[3.2.2]ノナ-2-エン-N,N-ジオキシド等が挙げられる。この内容は本明細書に組み込まれる。
 また、重合禁止剤として下記化合物を使用することも好ましい。
Specific examples of the polymerization inhibitor include the compounds described in paragraph 0310 of WO 2021/112189, p-hydroquinone, o-hydroquinone, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, phenoxazine, 1,4,4-trimethyl-2,3-diazabicyclo[3.2.2]non-2-ene-N,N-dioxide, etc. The contents of which are incorporated herein by reference.
It is also preferable to use the following compounds as a polymerization inhibitor.
 樹脂組成物が重合禁止剤を有する場合、重合禁止剤の含有量は、樹脂組成物の全固形分に対して、0.01~20質量%であることが好ましく、0.02~15質量%であることがより好ましく、0.05~10質量%であることが更に好ましい。 When the resin composition contains a polymerization inhibitor, the content of the polymerization inhibitor is preferably 0.01 to 20 mass % relative to the total solid content of the resin composition, more preferably 0.02 to 15 mass %, and even more preferably 0.05 to 10 mass %.
 重合禁止剤は1種のみでもよいし、2種以上であってもよい。重合禁止剤が2種以上の場合は、その合計が上記範囲であることが好ましい。 The polymerization inhibitor may be one type or two or more types. When two or more types of polymerization inhibitors are used, it is preferable that the total is within the above range.
<その他の添加剤>
 樹脂組成物は、本発明の効果が得られる範囲で、必要に応じて、各種の添加物、例えば、界面活性剤、高級脂肪酸誘導体、熱重合開始剤、無機粒子、紫外線吸収剤、有機金属錯体、酸化防止剤、凝集防止剤、フェノール系化合物、他の高分子化合物、可塑剤及びその他の助剤類(例えば、消泡剤、難燃剤など)等を含んでいてもよい。これらの成分を適宜含有させることにより、膜物性などの性質を調整することができる。これらの成分は、例えば、特開2012-003225号公報の段落番号0183以降(対応する米国特許出願公開第2013/0034812号明細書の段落番号0237)の記載、特開2008-250074号公報の段落番号0101~0104、0107~0109等の記載を参酌でき、これらの内容は本明細書に組み込まれる。これらの添加剤を配合する場合、その合計含有量は樹脂組成物の固形分の3質量%以下とすることが好ましい。
<Other additives>
The resin composition may contain various additives, such as surfactants, higher fatty acid derivatives, thermal polymerization initiators, inorganic particles, ultraviolet absorbers, organometallic complexes, antioxidants, aggregation inhibitors, phenolic compounds, other polymer compounds, plasticizers, and other auxiliaries (e.g., defoamers, flame retardants, etc.), as necessary, within the scope of the effects of the present invention. By appropriately incorporating these components, it is possible to adjust the properties of the film, etc. These components can be referred to, for example, in paragraphs 0183 and after of JP-A-2012-003225 (corresponding to paragraph 0237 of US Patent Application Publication No. 2013/0034812), and in paragraphs 0101 to 0104, 0107 to 0109, etc. of JP-A-2008-250074, the contents of which are incorporated herein. When these additives are blended, the total content is preferably 3% by mass or less of the solid content of the resin composition.
〔無機粒子〕
 無機粒子として、具体的には、炭酸カルシウム、リン酸カルシウム、シリカ、カオリン、タルク、二酸化チタン、アルミナ、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン、ガラス等が挙げられる。
[Inorganic particles]
Specific examples of inorganic particles include calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfide, and glass.
 無機粒子の平均粒子径は、0.01~2.0μmが好ましく、0.02~1.5μmがより好ましく、0.03~1.0μmがさらに好ましく、0.04~0.5μmが特に好ましい。
 無機粒子の上記平均粒子径は、一次粒子径であり、また体積平均粒子径である。体積平均粒子径は、例えば、Nanotrac WAVE II EX-150(日機装社製)による動的光散乱法で測定できる。
 上記測定が困難である場合は、遠心沈降光透過法、X線透過法、レーザー回折・散乱法で測定することもできる。
The average particle size of the inorganic particles is preferably from 0.01 to 2.0 μm, more preferably from 0.02 to 1.5 μm, even more preferably from 0.03 to 1.0 μm, and particularly preferably from 0.04 to 0.5 μm.
The above average particle size of the inorganic particles is the primary particle size and also the volume average particle size. The volume average particle size can be measured by a dynamic light scattering method using, for example, a Nanotrac WAVE II EX-150 (manufactured by Nikkiso Co., Ltd.).
When the above measurements are difficult, the measurements can also be made by centrifugal sedimentation light transmission method, X-ray transmission method, or laser diffraction/scattering method.
〔有機金属錯体〕
 樹脂組成物はチタン、ジルコニウム及びハフニウムから選ばれる金属原子を少なくとも1つ含む、有機金属錯体を含むことも好ましい。
 有機金属錯体としては、下記式(T-1)で表される化合物を含むことが好ましい。

 式(T-1)中、Mは、チタン、ジルコニウム又はハフニウムであり、l1は、0~2の整数であり、l2は0又は1であり、l1+l2×2は0~2の整数であり、mは0~4の整数、nは0~2の整数であり、l1+l2+m+n×2=4であり、R11は各々独立に置換もしくは無置換のシクロペンタジエニル基、置換もしくは無置換のアルコキシ基、又は、置換もしくは無置換のフェノキシ基であり、R12は置換若しくは無置換の炭化水素基であり、Rは各々独立に、下記式(T-2)で表される構造を含む基であり、Rは各々独立に、下記式(T-2)で表される構造を含む基であり、Xはそれぞれ独立に、酸素原子又は硫黄原子である。

 式(T-2)中、X~Xはそれぞれ独立に、-C(-*)=又は-N=を表し、*はそれぞれ他の構造との結合部位を表し、#は金属原子との結合部位を表す。
[Organometallic Complexes]
The resin composition also preferably contains an organometallic complex containing at least one metal atom selected from titanium, zirconium, and hafnium.
The organometallic complex preferably contains a compound represented by the following formula (T-1).

In formula (T-1), M is titanium, zirconium, or hafnium, l1 is an integer of 0 to 2, l2 is 0 or 1, l1+l2×2 is an integer of 0 to 2, m is an integer of 0 to 4, n is an integer of 0 to 2, and l1+l2+m+n×2=4, R 11 is independently a substituted or unsubstituted cyclopentadienyl group, a substituted or unsubstituted alkoxy group, or a substituted or unsubstituted phenoxy group, R 12 is a substituted or unsubstituted hydrocarbon group, R 2 is independently a group containing a structure represented by formula (T-2) below, R 3 is independently a group containing a structure represented by formula (T-2) below, and X A is independently an oxygen atom or a sulfur atom.

In formula (T-2), X 1 to X 3 each independently represent -C(-*)= or -N=, * represents a bonding site to another structure, and # represents a bonding site to a metal atom.
 式(T-1)中、組成物の保存安定性の観点からは、Mはチタンであることが好ましい。
 式(T-1)中、l1及びl2が0である態様も、本発明の好ましい態様の一つである。
 式(T-1)中、mは2又は4であることが好ましく、2であることがより好ましい。
 式(T-1)中、nは1又は2であることが好ましく、1であることがより好ましい。
 ここで、式(T-1)中、l1及びl2が0であり、mが0、2又は4であることも好ましい。
In formula (T-1), from the viewpoint of storage stability of the composition, M is preferably titanium.
In formula (T-1), an embodiment in which l1 and l2 are 0 is also one of the preferred embodiments of the present invention.
In formula (T-1), m is preferably 2 or 4, and more preferably 2.
In formula (T-1), n is preferably 1 or 2, and more preferably 1.
Here, it is also preferred that l1 and l2 are 0, and m is 0, 2 or 4 in formula (T-1).
 式(T-1)中、有機金属錯体の安定性の観点からは、R11は置換又は無置換のシクロペンタジエニル配位子が好ましい。
また、R11におけるシクロペンタジエニル基、アルコキシ基及びフェノキシ基は置換されていてもよいが、無置換である態様も本発明の好ましい態様の一つである。
In formula (T-1), from the viewpoint of the stability of the organometallic complex, R 11 is preferably a substituted or unsubstituted cyclopentadienyl ligand.
In addition, the cyclopentadienyl group, alkoxy group and phenoxy group in R 11 may be substituted, but the unsubstituted embodiment is also one of the preferred embodiments of the present invention.
 式(T-1)中、R12は炭素数1~20の炭化水素基であることが好ましく、炭素数2~10の炭化水素基であることがより好ましい。
 R12における炭化水素基としては、脂肪族炭化水素基、芳香族炭化水素基のいずれであってもよいが、芳香族炭化水素基が好ましい。
 脂肪族炭化水素基としては、飽和脂肪族炭化水素基であっても不飽和脂肪族炭化水素基であってもよいが、飽和脂肪族炭化水素基が好ましい。
 芳香族炭化水素基としては、炭素数6~20の芳香族炭化水素基が好ましく、炭素数6~10の芳香族炭化水素基がより好ましく、フェニレン基が更に好ましい。
 R12における置換基としては、1価の置換基が好ましく、ハロゲン原子等が挙げられる。また、R12が芳香族炭化水素基である場合、置換基としてアルキル基を有してもよい。
 これらの中でも、式(T-1)中、R12は無置換のフェニレン基であることが好ましい。また、R12におけるフェニレン基は1,2-フェニレン基であることが好ましい。
In formula (T-1), R 12 is preferably a hydrocarbon group having 1 to 20 carbon atoms, and more preferably a hydrocarbon group having 2 to 10 carbon atoms.
The hydrocarbon group for R 12 may be either an aliphatic hydrocarbon group or an aromatic hydrocarbon group, with an aromatic hydrocarbon group being preferred.
The aliphatic hydrocarbon group may be a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group, with a saturated aliphatic hydrocarbon group being preferred.
The aromatic hydrocarbon group is preferably an aromatic hydrocarbon group having 6 to 20 carbon atoms, more preferably an aromatic hydrocarbon group having 6 to 10 carbon atoms, and even more preferably a phenylene group.
The substituent in R 12 is preferably a monovalent substituent, such as a halogen atom, etc. When R 12 is an aromatic hydrocarbon group, it may have an alkyl group as a substituent.
Among these, in formula (T-1), R 12 is preferably an unsubstituted phenylene group, and the phenylene group in R 12 is preferably a 1,2-phenylene group.
 式(T-1)中、mが2以上であり、Rが2以上含まれる場合、その2以上のRの構造はそれぞれ同一であってもよいし、異なっていてもよい。
 式(T-1)中、nが2以上であり、Rが2以上含まれる場合、その2以上のRの構造はそれぞれ同一であってもよいし、異なっていてもよい。
In formula (T-1), when m is 2 or more and two or more R 2s are included, the structures of the two or more R 2s may be the same or different.
In formula (T-1), when n is 2 or more and two or more R 3s are included, the structures of the two or more R 3s may be the same or different.
 式(T-2)中、X~Xはそれぞれ独立に、-C(-*)=又は-N=を表し、少なくとも1つが-C(-*)=を表すことが好ましく、少なくとも2つが-C(-*)=を表すことがより好ましい。 In formula (T-2), X 1 to X 3 each independently represent -C(-*)= or -N=, preferably at least one represents -C(-*)=, and more preferably at least two represent -C(-*)=.
 式(T-1)で表される化合物の具体例としては、実施例におけるI-5~I-8に該当する化合物が挙げられるが、これらに限定されるものではない。 Specific examples of compounds represented by formula (T-1) include compounds I-5 to I-8 in the examples, but are not limited to these.
 また、樹脂組成物は他の有機チタン化合物を含有してもよい。他の有機チタン化合物を含有することにより、低温で硬化した場合であっても耐薬品性に優れる樹脂層を形成できる。 The resin composition may also contain other organotitanium compounds. By containing other organotitanium compounds, a resin layer with excellent chemical resistance can be formed even when cured at low temperatures.
 使用可能な有機チタン化合物としては、チタン原子に有機基が共有結合又はイオン結合を介して結合しているものが挙げられる。
 有機チタン化合物の具体例を、以下のI)~VII)に示す:
 I)チタンキレート化合物:樹脂組成物の保存安定性がよく、良好な硬化パターンが得られることから、アルコキシ基を2個以上有するチタンキレート化合物がより好ましい。具体的な例は、チタニウムビス(トリエタノールアミン)ジイソプロポキサイド、チタニウムジ(n-ブトキサイド)ビス(2,4-ペンタンジオネート)、チタニウムジイソプロポキサイドビス(2,4-ペンタンジオネート)、チタニウムジイソプロポキサイドビス(テトラメチルヘプタンジオネート)、チタニウムジイソプロポキサイドビス(エチルアセトアセテート)等である。
 II)テトラアルコキシチタン化合物:例えば、チタニウムテトラ(n-ブトキサイド)、チタニウムテトラエトキサイド、チタニウムテトラ(2-エチルヘキソキサイド)、チタニウムテトライソブトキサイド、チタニウムテトライソプロポキサイド、チタニウムテトラメトキサイド、チタニウムテトラメトキシプロポキサイド、チタニウムテトラメチルフェノキサイド、チタニウムテトラ(n-ノニロキサイド)、チタニウムテトラ(n-プロポキサイド)、チタニウムテトラステアリロキサイド、チタニウムテトラキス[ビス{2,2-(アリロキシメチル)ブトキサイド}]等である。
 III)チタノセン化合物:例えば、ペンタメチルシクロペンタジエニルチタニウムトリメトキサイド、ビス(η5-2,4-シクロペンタジエン-1-イル)ビス(2,6-ジフルオロフェニル)チタニウム、ビス(η5-2,4-シクロペンタジエン-1-イル)ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム等である。
 IV)モノアルコキシチタン化合物:例えば、チタニウムトリス(ジオクチルホスフェート)イソプロポキサイド、チタニウムトリス(ドデシルベンゼンスルホネート)イソプロポキサイド等である。
 V)チタニウムオキサイド化合物:例えば、チタニウムオキサイドビス(ペンタンジオネート)、チタニウムオキサイドビス(テトラメチルヘプタンジオネート)、フタロシアニンチタニウムオキサイド等である。
 VI)チタニウムテトラアセチルアセトネート化合物:例えば、チタニウムテトラアセチルアセトネート等である。
VII)チタネートカップリング剤:例えば、イソプロピルトリドデシルベンゼンスルホニルチタネート等である。
Usable organic titanium compounds include those in which an organic group is bonded to a titanium atom via a covalent bond or an ionic bond.
Specific examples of the organotitanium compound are shown below in I) to VII):
I) Titanium chelate compounds: Titanium chelate compounds having two or more alkoxy groups are more preferred because they provide a resin composition with good storage stability and a good curing pattern. Specific examples include titanium bis(triethanolamine) diisopropoxide, titanium di(n-butoxide) bis(2,4-pentanedionate), titanium diisopropoxide bis(2,4-pentanedionate), titanium diisopropoxide bis(tetramethylheptanedionate), titanium diisopropoxide bis(ethylacetoacetate), etc.
II) Tetraalkoxytitanium compounds: For example, titanium tetra(n-butoxide), titanium tetraethoxide, titanium tetra(2-ethylhexoxide), titanium tetraisobutoxide, titanium tetraisopropoxide, titanium tetramethoxide, titanium tetramethoxypropoxide, titanium tetramethylphenoxide, titanium tetra(n-nonyloxide), titanium tetra(n-propoxide), titanium tetrastearyloxide, titanium tetrakis[bis{2,2-(allyloxymethyl)butoxide}], and the like.
III) Titanocene compounds: For example, pentamethylcyclopentadienyltitanium trimethoxide, bis(η5-2,4-cyclopentadiene-1-yl)bis(2,6-difluorophenyl)titanium, bis(η5-2,4-cyclopentadiene-1-yl)bis(2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl)titanium, and the like.
IV) Monoalkoxytitanium compounds: For example, titanium tris(dioctylphosphate) isopropoxide, titanium tris(dodecylbenzenesulfonate) isopropoxide, etc.
V) Titanium oxide compounds: For example, titanium oxide bis(pentanedionate), titanium oxide bis(tetramethylheptanedionate), phthalocyanine titanium oxide, and the like.
VI) Titanium tetraacetylacetonate compounds: For example, titanium tetraacetylacetonate.
VII) Titanate coupling agents: for example, isopropyl tridodecylbenzenesulfonyl titanate.
 なかでも、有機チタン化合物としては、より良好な耐薬品性の観点から、上記I)チタンキレート化合物、II)テトラアルコキシチタン化合物、及びIII)チタノセン化合物からなる群より選ばれる少なくとも1種の化合物であることが好ましい。特に、チタニウムジイソプロポキサイドビス(エチルアセトアセテート)、チタニウムテトラ(n-ブトキサイド)、及びビス(η5-2,4-シクロペンタジエン-1-イル)ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウムが好ましい。 Among these, from the viewpoint of better chemical resistance, the organic titanium compound is preferably at least one compound selected from the group consisting of I) titanium chelate compounds, II) tetraalkoxytitanium compounds, and III) titanocene compounds. In particular, titanium diisopropoxide bis(ethylacetoacetate), titanium tetra(n-butoxide), and bis(η5-2,4-cyclopentadiene-1-yl)bis(2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl)titanium are preferred.
 有機金属錯体を含む場合、その含有量は、ポリイミド前駆体100質量部に対し、0.05~10質量部であることが好ましく、0.1~2質量部であることがより好ましい。含有量が0.05質量部以上である場合、得られる硬化パターンの耐熱性及び耐薬品性がより良好となり、10質量部以下である場合、組成物の保存安定性により優れる。
これらの他の添加剤としては、国際公開第2022/145355号の段落0316~0358に記載の化合物が挙げられる。上記記載は本明細書に組み込まれる。
When an organometallic complex is contained, the content thereof is preferably 0.05 to 10 parts by mass, and more preferably 0.1 to 2 parts by mass, relative to 100 parts by mass of the polyimide precursor. When the content is 0.05 part by mass or more, the heat resistance and chemical resistance of the obtained cured pattern are improved, and when it is 10 parts by mass or less, the storage stability of the composition is superior.
These other additives include the compounds described in paragraphs 0316 to 0358 of WO 2022/145355, the disclosures of which are incorporated herein by reference.
<樹脂組成物の特性>
 樹脂組成物の粘度は、樹脂組成物の固形分濃度により調整できる。塗布膜厚の観点から、1,000mm/s~12,000mm/sが好ましく、2,000mm/s~10,000mm/sがより好ましく、2,500mm/s~8,000mm/sが更に好ましい。上記範囲であれば、均一性の高い塗布膜を得ることが容易になる。1,000mm/s以上であれば、例えば再配線用絶縁膜として必要とされる膜厚で塗布することが容易であり、12,000mm/s以下であれば、塗布面状に優れた塗膜が得られる。
<Characteristics of Resin Composition>
The viscosity of the resin composition can be adjusted by the solid content concentration of the resin composition. From the viewpoint of the coating film thickness, 1,000 mm 2 /s to 12,000 mm 2 /s is preferable, 2,000 mm 2 /s to 10,000 mm 2 /s is more preferable, and 2,500 mm 2 /s to 8,000 mm 2 /s is even more preferable. If it is within the above range, it is easy to obtain a coating film with high uniformity. If it is 1,000 mm 2 /s or more, it is easy to apply it with a film thickness required for, for example, a rewiring insulating film, and if it is 12,000 mm 2 /s or less, a coating film with excellent coating surface condition is obtained.
<樹脂組成物の含有物質についての制限>
 樹脂組成物の含水率は、2.0質量%未満であることが好ましく、1.5質量%未満であることがより好ましく、1.0質量%未満であることが更に好ましい。2.0%未満であれば、樹脂組成物の保存安定性が向上する。
 水分の含有量を維持する方法としては、保管条件における湿度の調整、保管時の収容容器の空隙率低減などが挙げられる。 
<Restrictions on substances contained in resin composition>
The water content of the resin composition is preferably less than 2.0% by mass, more preferably less than 1.5% by mass, and even more preferably less than 1.0% by mass. If the water content is less than 2.0%, the storage stability of the resin composition is improved.
Methods for maintaining the moisture content include adjusting the humidity during storage and reducing the porosity of the container during storage.
 樹脂組成物の金属含有量は、絶縁性の観点から、5質量ppm(parts per million)未満が好ましく、1質量ppm未満がより好ましく、0.5質量ppm未満が更に好ましい。金属としては、ナトリウム、カリウム、マグネシウム、カルシウム、鉄、銅、クロム、ニッケルなどが挙げられるが、有機化合物と金属との錯体として含まれる金属は除く。金属を複数含む場合は、これらの金属の合計が上記範囲であることが好ましい。 From the viewpoint of insulation, the metal content of the resin composition is preferably less than 5 ppm by mass (parts per million), more preferably less than 1 ppm by mass, and even more preferably less than 0.5 ppm by mass. Examples of metals include sodium, potassium, magnesium, calcium, iron, copper, chromium, nickel, etc., but metals contained as complexes of organic compounds and metals are excluded. When multiple metals are contained, it is preferable that the total of these metals is within the above range.
 また、樹脂組成物に意図せずに含まれる金属不純物を低減する方法としては、樹脂組成物を構成する原料として金属含有量が少ない原料を選択する、樹脂組成物を構成する原料に対してフィルターろ過を行う、装置内をポリテトラフルオロエチレン等でライニングしてコンタミネーションを可能な限り抑制した条件下で蒸留を行う等の方法を挙げることができる。 In addition, methods for reducing metal impurities unintentionally contained in the resin composition include selecting raw materials with a low metal content as the raw materials constituting the resin composition, filtering the raw materials constituting the resin composition, and lining the inside of the apparatus with polytetrafluoroethylene or the like to perform distillation under conditions that minimize contamination as much as possible.
 樹脂組成物は、半導体材料としての用途を考慮すると、ハロゲン原子の含有量が、配線腐食性の観点から、500質量ppm未満が好ましく、300質量ppm未満がより好ましく、200質量ppm未満が更に好ましい。中でも、ハロゲンイオンの状態で存在するものは、5質量ppm未満が好ましく、1質量ppm未満がより好ましく、0.5質量ppm未満が更に好ましい。ハロゲン原子としては、塩素原子及び臭素原子が挙げられる。塩素原子及び臭素原子、又は塩素イオン及び臭素イオンの合計がそれぞれ上記範囲であることが好ましい。
 ハロゲン原子の含有量を調節する方法としては、イオン交換処理などが好ましく挙げられる。
Considering the use of the resin composition as a semiconductor material, the content of halogen atoms is preferably less than 500 mass ppm, more preferably less than 300 mass ppm, and even more preferably less than 200 mass ppm from the viewpoint of wiring corrosion. Among them, those present in the form of halogen ions are preferably less than 5 mass ppm, more preferably less than 1 mass ppm, and even more preferably less than 0.5 mass ppm. Examples of halogen atoms include chlorine atoms and bromine atoms. It is preferable that the total of chlorine atoms and bromine atoms, or chlorine ions and bromine ions, is within the above range.
A preferred method for adjusting the content of halogen atoms is ion exchange treatment.
 樹脂組成物の収容容器としては従来公知の収容容器を用いることができる。収容容器としては、原材料や樹脂組成物中への不純物混入を抑制することを目的に、容器内壁を6種6層の樹脂で構成された多層ボトルや、6種の樹脂を7層構造にしたボトルを使用することも好ましい。このような容器としては例えば特開2015-123351号公報に記載の容器が挙げられる。 A conventionally known container can be used as the container for the resin composition. As the container, it is also preferable to use a multi-layer bottle whose inner wall is made of six types of six layers of resin, or a bottle with a seven-layer structure of six types of resin, in order to prevent impurities from being mixed into the raw materials or the resin composition. An example of such a container is the container described in JP 2015-123351 A.
<樹脂組成物の硬化物>
 樹脂組成物を本発明の硬化物の製造方法において用いることにより、樹脂組成物の硬化物を得ることができる。
 本発明の硬化物は、本発明の硬化物の製造方法により得られる硬化物である。
硬化物の形態は、特に限定されず、フィルム状、棒状、球状、ペレット状など、用途に合わせて選択することができる。本発明において、硬化物は、フィルム状であることが好ましい。上述の露光工程及び現像工程等によるパターン加工によって、壁面への保護膜の形成、導通のためのビアホール形成、インピーダンスや静電容量あるいは内部応力の調整、放熱機能付与など、用途にあわせて、硬化物の形状を選択することもできる。硬化物(硬化物からなる膜)の膜厚は、0.5μm以上150μm以下であることが好ましい。
 樹脂組成物を硬化した際の収縮率は、50%以下が好ましく、45%以下がより好ましく、40%以下が更に好ましい。ここで、収縮率は、樹脂組成物の硬化前後の体積変化の百分率を指し、下記の式より算出することができる。
 収縮率[%]=100-(硬化後の体積÷硬化前の体積)×100
<Cured Product of Resin Composition>
By using the resin composition in the method for producing a cured product of the present invention, a cured product of the resin composition can be obtained.
The cured product of the present invention is a cured product obtained by the method for producing a cured product of the present invention.
The form of the cured product is not particularly limited, and may be selected according to the application, such as a film, a rod, a sphere, or a pellet. In the present invention, the cured product is preferably a film. By pattern processing using the above-mentioned exposure step and development step, the shape of the cured product can be selected according to the application, such as forming a protective film on the wall surface, forming a via hole for electrical conduction, adjusting impedance, electrostatic capacitance, or internal stress, and imparting a heat dissipation function. The film thickness of the cured product (film made of the cured product) is preferably 0.5 μm or more and 150 μm or less.
The shrinkage percentage when the resin composition is cured is preferably 50% or less, more preferably 45% or less, and even more preferably 40% or less. Here, the shrinkage percentage refers to the percentage of the volume change before and after curing of the resin composition, and can be calculated by the following formula.
Shrinkage rate [%] = 100 - (volume after curing ÷ volume before curing) x 100
<樹脂組成物の硬化物の特性> 
 硬化物におけるポリイミドのイミド化反応率は、70%以上が好ましく、80%以上がより好ましく、90%以上が更に好ましい。70%以上であれば、機械特性に優れた硬化物となる場合がある。
 硬化物の破断伸びは、30%以上が好ましく、40%以上がより好ましく、50%以上が更に好ましい。
 硬化物のガラス転移温度(Tg)は、180℃以上であることが好ましく、210℃以上であることがより好ましく、230℃以上であることがさらに好ましい。
<Characteristics of the cured product of the resin composition>
The imidization reaction rate of the polyimide in the cured product is preferably 70% or more, more preferably 80% or more, and even more preferably 90% or more. If it is 70% or more, the cured product may have excellent mechanical properties.
The breaking elongation of the cured product is preferably 30% or more, more preferably 40% or more, and even more preferably 50% or more.
The glass transition temperature (Tg) of the cured product is preferably 180° C. or higher, more preferably 210° C. or higher, and even more preferably 230° C. or higher.
 硬化物の25℃から125℃の範囲での線熱膨張係数が65ppm/K以下であることが好ましく、60ppm/K以下であることがより好ましく、55ppm/K以下であることがより好ましい。上記線熱膨張係数の下限は特に限定されず、0ppm/K以下であることが好ましい。
 線熱膨張係数の測定は、例えば、理学電機(株)製、TMA8310等の公知の熱機械分析装置を用い、JIS K 7197:2012に従って測定することができる。
The linear thermal expansion coefficient of the cured product in the range of 25° C. to 125° C. is preferably 65 ppm/K or less, more preferably 60 ppm/K or less, and even more preferably 55 ppm/K or less. There is no particular lower limit for the linear thermal expansion coefficient, and it is preferably 0 ppm/K or less.
The linear thermal expansion coefficient can be measured using a known thermomechanical analyzer such as TMA8310 manufactured by Rigaku Corporation in accordance with JIS K 7197:2012.
 硬化物の25℃における引張モジュラスは、2.5GPa以上であることが好ましく、2.8GPa以上であることが好ましく、3.0GPa以上であることがより好ましい。
 上記引張モジュラスの上限は、特に限定されないが、7.0GPa以下であることが好ましい。
 引張モジュラスは、例えば、JIS K 7161-1:2014に従って測定することができる。
The tensile modulus of the cured product at 25° C. is preferably 2.5 GPa or more, more preferably 2.8 GPa or more, and even more preferably 3.0 GPa or more.
The upper limit of the tensile modulus is not particularly limited, but is preferably 7.0 GPa or less.
The tensile modulus can be measured, for example, according to JIS K 7161-1:2014.
 硬化物の25℃における引張伸びは、30%以上であることが好ましく、35%以上であることがより好ましく、40%以上であることが更に好ましい。
 上記引張伸びの上限は、特に限定されないが、200%以下であることが好ましい。
 引張伸びは、例えば、JIS K 7161-1:2014に従って測定することができる。
The tensile elongation of the cured product at 25° C. is preferably 30% or more, more preferably 35% or more, and even more preferably 40% or more.
The upper limit of the tensile elongation is not particularly limited, but is preferably 200% or less.
The tensile elongation can be measured, for example, according to JIS K 7161-1:2014.
<樹脂組成物の調製>
 樹脂組成物は、上記各成分を混合して調製することができる。混合方法は特に限定はなく、従来公知の方法で行うことができる。
 混合方法としては、撹拌羽による混合、ボールミルによる混合、タンクを回転させる混合などが挙げられる。
 混合中の温度は10~30℃が好ましく、15~25℃がより好ましい。
<Preparation of Resin Composition>
The resin composition can be prepared by mixing the above-mentioned components. The mixing method is not particularly limited, and can be a conventionally known method.
Examples of the mixing method include mixing with a stirring blade, mixing with a ball mill, and mixing by rotating a tank.
The temperature during mixing is preferably from 10 to 30°C, more preferably from 15 to 25°C.
 樹脂組成物中のゴミや微粒子等の異物を除去する目的で、フィルターを用いたろ過を行うことが好ましい。フィルター孔径は、例えば5μm以下が好ましく、1μm以下がより好ましく、0.5μm以下が更に好ましく、0.1μm以下が更により好ましい。フィルターの材質は、ポリテトラフルオロエチレン、ポリエチレン又はナイロンが好ましい。フィルターの材質がポリエチレンである場合はHDPE(高密度ポリエチレン)であることがより好ましい。フィルターは、有機溶剤であらかじめ洗浄したものを用いてもよい。フィルターろ過工程では、複数種のフィルターを直列又は並列に接続して用いてもよい。複数種のフィルターを使用する場合は、孔径又は材質が異なるフィルターを組み合わせて使用してもよい。接続態様としては、例えば、1段目として孔径1μmのHDPEフィルターを、2段目として孔径0.2μmのHDPEフィルターを、直列に接続した態様が挙げられる。また、各種材料を複数回ろ過してもよい。複数回ろ過する場合は、循環ろ過であってもよい。また、加圧してろ過を行ってもよい。加圧してろ過を行う場合、加圧する圧力は例えば0.01MPa以上1.0MPa以下が好ましく、0.03MPa以上0.9MPa以下がより好ましく、0.05MPa以上0.7MPa以下が更に好ましく、0.05MPa以上0.5MPa以下が更により好ましい。
 フィルターを用いたろ過の他、吸着材を用いた不純物の除去処理を行ってもよい。フィルターろ過と吸着材を用いた不純物除去処理とを組み合わせてもよい。吸着材としては、公知の吸着材を用いることができる。例えば、シリカゲル、ゼオライトなどの無機系吸着材、活性炭などの有機系吸着材が挙げられる。
 フィルターを用いたろ過後、ボトルに充填した樹脂組成物を減圧下に置き、脱気する工程を施しても良い。
It is preferable to perform filtration using a filter in order to remove foreign matter such as dust and fine particles in the resin composition. The filter pore size is, for example, preferably 5 μm or less, more preferably 1 μm or less, even more preferably 0.5 μm or less, and even more preferably 0.1 μm or less. The material of the filter is preferably polytetrafluoroethylene, polyethylene, or nylon. When the material of the filter is polyethylene, it is more preferable that it is HDPE (high density polyethylene). The filter may be used after being washed in advance with an organic solvent. In the filter filtration process, multiple types of filters may be connected in series or in parallel. When multiple types of filters are used, filters with different pore sizes or materials may be used in combination. As an example of a connection mode, an HDPE filter with a pore size of 1 μm as the first stage and an HDPE filter with a pore size of 0.2 μm as the second stage may be connected in series. In addition, various materials may be filtered multiple times. When filtration is performed multiple times, circulation filtration may be performed. Filtration may also be performed under pressure. When filtration is performed under pressure, the pressure to be applied is, for example, preferably 0.01 MPa or more and 1.0 MPa or less, more preferably 0.03 MPa or more and 0.9 MPa or less, even more preferably 0.05 MPa or more and 0.7 MPa or less, and even more preferably 0.05 MPa or more and 0.5 MPa or less.
In addition to filtration using a filter, impurity removal treatment using an adsorbent may be performed. Filter filtration and impurity removal treatment using an adsorbent may be combined. As the adsorbent, a known adsorbent may be used. For example, inorganic adsorbents such as silica gel and zeolite, and organic adsorbents such as activated carbon may be used.
After filtration using a filter, the resin composition filled in the bottle may be subjected to a degassing step by placing it under reduced pressure.
 以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。「部」、「%」は特に述べない限り、質量基準である。 The present invention will be explained in more detail below with reference to examples. The materials, amounts used, ratios, processing contents, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below. "Parts" and "%" are based on mass unless otherwise specified.
<ポリイミド前駆体の合成>
〔合成例P-1:ポリイミド前駆体(P-1)の合成〕
 21.2gの4,4’-オキシジフタル酸無水物と、18.0gの2-ヒドロキシエチルメタクリレートと、23.9gのピリジンと、250mLのジグリム(ダイグライム、ジエチレングリコールジメチルエーテル)とを混合し、60℃の温度で4時間撹拌して、4,4’-オキシジフタル酸と2-ヒドロキシエチルメタクリレートとのジエステルを合成した。次いで、反応混合物を-10℃に冷却し、温度を-10±5℃に保ちながら、17.0gの塩化チオニルを60分かけて加えた。50mLのN-メチルピロリドンで希釈した後、100mLのN-メチルピロリドンに12.6gの4,4’-ジアミノジフェニルエーテルを溶解させた溶液を、-10±5℃で60分かけて反応混合物に滴下して、混合物を室温で2時間撹拌した。その後、tert-ブチルアルコール 16.1gを添加して室温で1時間撹拌した。
 次いで、6000gの水を加えてポリイミド前駆体を沈殿させ、沈殿物(水-ポリイミド前駆体混合物)を15分間撹拌した。撹拌後の沈殿物(ポリイミド前駆体の固体)をろ取し、テトラヒドロフラン500gに溶解させた。得られた溶液に6000gの水(貧溶媒)を加えてポリイミド前駆体を沈殿させ、沈殿物(水-ポリイミド前駆体混合物)を15分間撹拌した。撹拌後の沈殿物(ポリイミド前駆体の固体)を再びろ過して減圧下で、45℃で3日間乾燥した。
 乾燥後の粉体46.6gをテトラヒドロフラン419.6gに溶解させた後に、2.3gのトリエチルアミンを添加して室温で35分間撹拌した。その後、エタノール3000gを添加して、沈殿物をろ取した。得られた沈殿物をテトラヒドロフラン281.8gに溶解した。そこに水17.1gとイオン交換樹脂UP6040(AmberTec社製)46.6gを添加して、4時間撹拌した。その後、イオン交換樹脂をろ過で取り除き、得られたポリマー溶液を5,600gの水に加えて沈殿物を得た。沈殿物をろ取し、減圧下45℃で24時間乾燥させることで、ポリイミド前駆体(P-1)を45.1g得た。
 H-NMRにより、ポリイミド前駆体(P-1)の構造は、下記式(P-1)で表される構造であることを確認した。ポリイミド前駆体(P-1)の分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は20,000であった。下記式(P-1)中、t-Buはtert-ブチル基を表す。
<Synthesis of polyimide precursor>
[Synthesis Example P-1: Synthesis of Polyimide Precursor (P-1)]
21.2 g of 4,4'-oxydiphthalic anhydride, 18.0 g of 2-hydroxyethyl methacrylate, 23.9 g of pyridine, and 250 mL of diglyme (diethylene glycol dimethyl ether) were mixed and stirred at a temperature of 60°C for 4 hours to synthesize a diester of 4,4'-oxydiphthalic acid and 2-hydroxyethyl methacrylate. The reaction mixture was then cooled to -10°C, and 17.0 g of thionyl chloride was added over 60 minutes while maintaining the temperature at -10±5°C. After dilution with 50 mL of N-methylpyrrolidone, a solution of 12.6 g of 4,4'-diaminodiphenyl ether dissolved in 100 mL of N-methylpyrrolidone was added dropwise to the reaction mixture at -10±5°C over 60 minutes, and the mixture was stirred at room temperature for 2 hours. Then, 16.1 g of tert-butyl alcohol was added and stirred at room temperature for 1 hour.
Next, 6000 g of water was added to precipitate the polyimide precursor, and the precipitate (water-polyimide precursor mixture) was stirred for 15 minutes. The precipitate (solid polyimide precursor) after stirring was collected by filtration and dissolved in 500 g of tetrahydrofuran. 6000 g of water (poor solvent) was added to the obtained solution to precipitate the polyimide precursor, and the precipitate (water-polyimide precursor mixture) was stirred for 15 minutes. The precipitate (solid polyimide precursor) after stirring was filtered again and dried at 45° C. under reduced pressure for 3 days.
After dissolving 46.6 g of the dried powder in 419.6 g of tetrahydrofuran, 2.3 g of triethylamine was added and stirred at room temperature for 35 minutes. Then, 3000 g of ethanol was added, and the precipitate was collected by filtration. The obtained precipitate was dissolved in 281.8 g of tetrahydrofuran. 17.1 g of water and 46.6 g of ion exchange resin UP6040 (manufactured by AmberTec) were added thereto, and the mixture was stirred for 4 hours. Then, the ion exchange resin was removed by filtration, and the obtained polymer solution was added to 5,600 g of water to obtain a precipitate. The precipitate was collected by filtration and dried at 45 ° C. under reduced pressure for 24 hours, to obtain 45.1 g of polyimide precursor (P-1).
It was confirmed by 1 H-NMR that the structure of the polyimide precursor (P-1) was a structure represented by the following formula (P-1). The molecular weight of the polyimide precursor (P-1) was measured by gel permeation chromatography (standard polystyrene equivalent) to find that the weight average molecular weight (Mw) was 20,000. In the following formula (P-1), t-Bu represents a tert-butyl group.
〔合成例P-1:ポリイミド前駆体(P-2)の合成〕
 使用する化合物を適宜変更した以外は、合成例P-1と同様の方法により下記式(P-2)で表される構造のポリイミド前駆体(P-2)を合成した。H-NMRにより、ポリイミド前駆体(P-2)の構造は、下記式(P-2)で表される2つの繰返し単位を含む樹脂であることを確認した。ポリイミド前駆体(P-2)の分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は20,000であった。
[Synthesis Example P-1: Synthesis of Polyimide Precursor (P-2)]
A polyimide precursor (P-2) having a structure represented by the following formula (P-2) was synthesized in the same manner as in Synthesis Example P-1, except that the compounds used were appropriately changed. It was confirmed by 1 H-NMR that the structure of the polyimide precursor (P-2) was a resin containing two repeating units represented by the following formula (P-2). The molecular weight of the polyimide precursor (P-2) was measured by gel permeation chromatography (standard polystyrene equivalent) and found to have a weight average molecular weight (Mw) of 20,000.
<実施例及び比較例>
 各実施例又は比較例において、それぞれ、下記表に記載の成分を混合し、各樹脂組成物を得た。
 具体的には、表に記載の各成分の含有量は、表の各欄の「質量部」の欄に記載の量(質量部)とした。
 得られた樹脂組成物を、細孔の幅が0.5μmのポリテトラフルオロエチレン製フィルターを用いて加圧ろ過した。
 また、表中、「-」の記載は該当する成分を組成物が含有していないことを示している。
<Examples and Comparative Examples>
In each of the Examples and Comparative Examples, the components shown in the following table were mixed to obtain each resin composition.
Specifically, the content of each component shown in the table is the amount (parts by mass) shown in the "parts by mass" column of each column in the table.
The obtained resin composition was pressure filtered using a polytetrafluoroethylene filter having a pore width of 0.5 μm.
In the table, "-" indicates that the composition does not contain the corresponding component.
 表に記載した各成分の詳細は下記の通りである。 Details of each ingredient listed in the table are as follows:
〔ポリイミド前駆体〕
・P-1~P-2:上記で合成したポリイミド前駆体(P-1)~(P-2)
[Polyimide precursor]
P-1 to P-2: Polyimide precursors (P-1) to (P-2) synthesized above
〔モノマー(重合性化合物)〕
・M-1:テトラエチレングリコールジメタクリレート
・M-2:テトラエチレングリコールジアクリレート
・M-3:エチレングリコールジメタクリレート
・M-4:ジエチレングリコールジメタクリレート
・M-5:トリエチレングリコールジメタクリレート
・M-6:KAYARAD DPHA(日本化薬(株)製)
・M-7:NKエステルA-TMMT(新中村化学工業(株)製)
[Monomer (polymerizable compound)]
M-1: Tetraethylene glycol dimethacrylate M-2: Tetraethylene glycol diacrylate M-3: Ethylene glycol dimethacrylate M-4: Diethylene glycol dimethacrylate M-5: Triethylene glycol dimethacrylate M-6: KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.)
M-7: NK Ester A-TMMT (manufactured by Shin-Nakamura Chemical Co., Ltd.)
〔化合物A〕
・U-1~U-11:下記構造の化合物
[Compound A]
U-1 to U-11: Compounds having the following structure
〔重合開始剤〕
・I-1:Irgacure OXE-01(BASF社製)
・I-2:Irgacure OXE-02(BASF社製)
・I-3:Irgacure OXE-03(BASF社製)
・I-4:Irgacure OXE-04(BASF社製)
・I-5:Irgacure 784(BASF社製)
・I-6~I-7:下記構造の化合物
・I-8:Omnirad 1316(IGM社製)
[Polymerization initiator]
I-1: Irgacure OXE-01 (manufactured by BASF)
I-2: Irgacure OXE-02 (manufactured by BASF)
I-3: Irgacure OXE-03 (manufactured by BASF)
I-4: Irgacure OXE-04 (manufactured by BASF)
I-5: Irgacure 784 (manufactured by BASF)
I-6 to I-7: Compounds having the following structure I-8: Omnirad 1316 (manufactured by IGM)
〔UV吸収剤〕
・V-1~V-3:下記構造の化合物
・V-4:下記合成品

<その他添加剤:ジアゾナフトキノン化合物V-4の合成>
 フラスコに4,4’-(1-(2-(4ヒドロキシフェニル)-2-プロピル)フェニル)エチリデン)ビスフェノール(本州化学工業(株)製:Tris-PA)を29.72g(70ミリモル)を添加した。続いて、アセトン300gに1,2-ナフトキノンジアジド-5-スルホン酸クロライドを46.93g(174.9ミリモル)、トリエチルアミン17.9gを撹拌溶解し、滴下ロートを用いてフラスコに30分かけて滴下し、内温30℃で30分撹拌した。続いて、塩酸を滴下して、更に30分撹拌した。続いて、ビーカーに純水1640gと塩酸30gの溶解液を準備し、これに、反応液中の塩酸塩をろ過したろ液を滴下し、析出物をろ過、水洗し、40℃で50時間真空乾燥し、ジアゾナフトキノン化合物V-4を得た。
[UV absorber]
V-1 to V-3: Compounds with the following structure V-4: The following synthetic product

<Other Additives: Synthesis of Diazonaphthoquinone Compound V-4>
29.72 g (70 mmol) of 4,4'-(1-(2-(4-hydroxyphenyl)-2-propyl)phenyl)ethylidene)bisphenol (Tris-PA, manufactured by Honshu Chemical Industry Co., Ltd.) was added to the flask. Then, 46.93 g (174.9 mmol) of 1,2-naphthoquinone diazide-5-sulfonic acid chloride and 17.9 g of triethylamine were dissolved in 300 g of acetone with stirring, and the mixture was dropped into the flask using a dropping funnel over 30 minutes, and stirred for 30 minutes at an internal temperature of 30°C. Then, hydrochloric acid was dropped and the mixture was stirred for another 30 minutes. Then, a solution of 1640 g of pure water and 30 g of hydrochloric acid was prepared in a beaker, and the filtrate obtained by filtering the hydrochloride in the reaction solution was dropped into this, and the precipitate was filtered, washed with water, and vacuum dried at 40°C for 50 hours to obtain diazonaphthoquinone compound V-4.
〔密着剤〕
・C-1:KBM-503(信越化学工業(株)製)
・C-2:N-(3-(トリエトキシシリル)プロピル)マレインアミド酸
・C-3~C-4:下記構造の化合物(ただし、Etはエチル基を表す)
・C-5:テトラエトキシシラン
・C-6:X-12-1293(信越化学工業株式会社製)
・C-7:KR-513(信越化学工業株式会社製)
[Adhesive Agent]
C-1: KBM-503 (manufactured by Shin-Etsu Chemical Co., Ltd.)
C-2: N-(3-(triethoxysilyl)propyl)maleamic acid C-3 to C-4: Compounds having the following structures (wherein Et represents an ethyl group)
C-5: Tetraethoxysilane C-6: X-12-1293 (manufactured by Shin-Etsu Chemical Co., Ltd.)
C-7: KR-513 (manufactured by Shin-Etsu Chemical Co., Ltd.)
〔マイグレーション抑制剤〕
・D-1~D-5:下記構造の化合物
[Migration Inhibitor]
D-1 to D-5: Compounds having the following structure
〔重合禁止剤〕
・B-1:4-メトキシフェノール
・B-2:p-ベンゾキノン
・B-3~B-8:下記構造の化合物
[Polymerization inhibitor]
B-1: 4-methoxyphenol B-2: p-benzoquinone B-3 to B-8: Compounds having the following structure
〔熱塩基発生剤〕
・A-1:WPBG-140(富士フイルム和光純薬(株)製)
・A-2~A-3:下記構造の化合物
[Thermal Base Generator]
A-1: WPBG-140 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
A-2 to A-3: Compounds having the following structures
〔添加剤〕
・J-1~J-4:下記構造の化合物
・J-5(パークミルD、日油株式会社製)
〔Additive〕
J-1 to J-4: Compounds having the following structure J-5 (Percumyl D, manufactured by NOF Corporation)
〔溶剤〕
・NMP:N-メチル-2-ピロリドン
・GVL:γ-バレロラクトン
・GBL:γ-ブチロラクトン
・DMSO:ジメチルスルホキシド
〔solvent〕
NMP: N-methyl-2-pyrrolidone GVL: γ-valerolactone GBL: γ-butyrolactone DMSO: dimethylsulfoxide
<ポリイミド膜の膜物性評価>
〔膜形成プロセス〕
 各実施例又は比較例において、それぞれ、SiOを100nmの厚さで成膜したSiウェハ(以下、単に「基板」という)上に、樹脂組成物を滴下し、スピンコート及びのソフトベークにより、基板上に下記表の「膜厚(μm)」の欄に記載の膜厚の塗膜を形成した。ソフトベーク温度及びソフトベーク時間は、それぞれ、表の「ソフトベーク温度(℃)」及び「ソフトベーク時間(min)」の欄に記載の温度および時間とした。
 次いで、i線露光機により400mj/cmでパターン露光した。
 露光後、表の「現像」の欄に記載の現像液により現像し、さらに下記表の「リンス」の欄に記載のリンス液によりリンスすることで、基板上にポリイミド前駆体のパターン膜を得た。
 上記パターン膜を備える基板を真空ガス置換オーブン(450PB8-2P-CP、YES社製)を用いて、キュア加熱前から加熱中の間、下記表の「キュア方法(真空度)」の欄に記載の真空度に減圧し、表の「キュア温度(℃)」の欄に記載の温度で、表の「キュア時間(h)」の時間において加熱して硬化してポリイミド膜を得た。
 本明細書において、1Torr=133.32Paである。
 フッ酸処理により、上記パターニングしたポリイミド膜を基板から剥離し、ポリイミド片を得た。
 また、下記表の実施例55~56で用いた樹脂組成物は、実施例1で用いた樹脂組成物と同じであり、57~61で用いた樹脂組成物は、実施例1で用いた樹脂組成物と同じであり、実施例62で用いた樹脂組成物は比較例1で用いた樹脂組成物と同じである。また、表中の「リンス液A」の記載は、リンス液としてPGMEAに対し上述のU-2の化合物を5質量%含む溶液を用いたことを意味している。
 表中の「減圧」の欄に「有り」と記載された例については、キュア加熱前から加熱中の間、表の「キュア方法(真空度)」の欄に記載の真空度に減圧した。また、比較例2において、表の「キュア方法(真空度)」の欄に記載の「N」は1気圧(=101,325Pa)の窒素雰囲気下で加熱を行ったことを意味する。
 実施例54及び55については、リンス後、減圧開始前に下記処理液をリンス後のパターンに接触させ、100℃、1時間の加熱を行った。
 処理液:PGMEA 90.3質量部、GBL 4.7質量部、N-(3-ジメチルアミノプロピル)メタクリルアミド 5質量部、4-メトキシフェノール 0.002質量部の混合物
 上記で得たポリイミド片を、熱機械分析(TMA)に投入し、熱膨張係数を評価した。熱膨張係数は53.0ppm/Kであり、熱膨張が少ない良好なポリイミド膜であることが確認できた。
 また、上記で得たポリイミド片を、引張試験に供した。N=6測定の平均引張伸びは44.8%であった。
<Evaluation of physical properties of polyimide film>
[Film formation process]
In each Example or Comparative Example, a resin composition was dropped onto a Si wafer (hereinafter simply referred to as "substrate") on which a SiO2 film was formed to a thickness of 100 nm, and a coating film having a thickness shown in the "Film thickness (μm)" column in the table below was formed on the substrate by spin coating and soft baking. The soft bake temperature and soft bake time were the temperatures and times shown in the "Soft bake temperature (°C)" and "Soft bake time (min)" columns in the table, respectively.
Then, the film was subjected to pattern exposure at 400 mj/cm 2 using an i-line exposure machine.
After exposure, the substrate was developed with the developer shown in the "Development" column in the table, and then rinsed with the rinse solution shown in the "Rinse" column in the table below to obtain a patterned film of the polyimide precursor on the substrate.
The substrate provided with the above-mentioned patterned film was subjected to a vacuum gas replacement oven (450PB8-2P-CP, manufactured by YES Corporation) by reducing the pressure to the degree of vacuum indicated in the "Cure method (degree of vacuum)" column in the table below before and during the curing heating, and was heated and cured at the temperature indicated in the "Cure temperature (°C)" column in the table for the time indicated in the "Cure time (h)" column in the table, to obtain a polyimide film.
In this specification, 1 Torr = 133.32 Pa.
The patterned polyimide film was peeled off from the substrate by a hydrofluoric acid treatment to obtain a polyimide piece.
Moreover, the resin composition used in Examples 55 to 56 in the table below is the same as the resin composition used in Example 1, the resin composition used in Examples 57 to 61 is the same as the resin composition used in Example 1, and the resin composition used in Example 62 is the same as the resin composition used in Comparative Example 1. Moreover, the description of "rinsing solution A" in the table means that a solution containing 5% by mass of the above-mentioned U-2 compound relative to PGMEA was used as the rinsing solution.
For the examples marked "Yes" in the "Decompression" column in the table, the pressure was reduced to the vacuum level noted in the "Cure method (vacuum level)" column before and during the cure heating. In Comparative Example 2, " N2 " in the "Cure method (vacuum level)" column in the table means that heating was performed under a nitrogen atmosphere at 1 atmosphere (=101,325 Pa).
In Examples 54 and 55, after rinsing and before the start of pressure reduction, the following treatment solution was brought into contact with the rinsed pattern, and heating was carried out at 100° C. for 1 hour.
Treatment solution: A mixture of 90.3 parts by mass of PGMEA, 4.7 parts by mass of GBL, 5 parts by mass of N-(3-dimethylaminopropyl)methacrylamide, and 0.002 parts by mass of 4-methoxyphenol. The polyimide piece obtained above was put into a thermomechanical analyzer (TMA) to evaluate the thermal expansion coefficient. The thermal expansion coefficient was 53.0 ppm/K, and it was confirmed that the polyimide film had little thermal expansion and was excellent.
The polyimide pieces obtained above were subjected to a tensile test, and the average tensile elongation of N=6 measurements was 44.8%.
〔耐熱信頼性・耐湿信頼性の評価〕
 各実施例又は比較例において、各樹脂組成物を幅10μmの銅配線を有する4inchのTEG(Test Element Group)基板に成膜及び硬化した後、得られた基板を150℃で2000時間(耐熱信頼性)、121℃、相対湿度100%、500時間(耐湿信頼性)の各信頼性試験に投入した。露光を全面露光とした以外は、上記成膜及び硬化は、上述の「膜形成プロセス」に記載の方法と同様の方法により行った。
各信頼性試験後にCu配線部の断面をSEM(Scanning Electron Microscope)にて観察した。
信頼性について以下の評価基準に従って評価した。耐熱信頼性の評価結果は表中の「耐熱信頼性」の欄に記載し、耐湿信頼性の評価結果は表中の「耐湿信頼性」の欄に記載した。
-評価基準-
 A:銅配線部にボイド及び、剥がれ等の異常は見られなかった。
 B:銅配線部に僅かなボイド(最大の直径が0.5μm未満)が見られた。
 C:銅配線部に顕著なボイド(Bより大きいボイドがある)、またはクラックが見られた。
[Evaluation of heat resistance and moisture resistance reliability]
In each example or comparative example, each resin composition was formed into a film and cured on a 4-inch TEG (Test Element Group) substrate having a copper wiring with a width of 10 μm, and the obtained substrate was subjected to reliability tests of 2000 hours at 150° C. (heat resistance reliability) and 500 hours at 121° C. and a relative humidity of 100% (humidity resistance reliability). The film formation and curing were performed in the same manner as the method described in the above-mentioned "film formation process", except that the exposure was performed on the entire surface.
After each reliability test, the cross section of the Cu wiring portion was observed with a SEM (Scanning Electron Microscope).
The reliability was evaluated according to the following evaluation criteria: The evaluation results of heat resistance reliability are shown in the "heat resistance reliability" column in the table, and the evaluation results of moisture resistance reliability are shown in the "moisture resistance reliability" column in the table.
-Evaluation criteria-
A: No abnormalities such as voids or peeling were observed in the copper wiring portion.
B: A small number of voids (maximum diameter less than 0.5 μm) were observed in the copper wiring.
C: Significant voids (voids larger than B) or cracks were observed in the copper wiring.
〔耐薬品性の評価〕
 各実施例又は比較例において、各樹脂組成物を4inchのSiウェハに成膜及び硬化した後、得られたウェハをN-メチル-2-ピロリドンに3時間浸漬し、イソプロピルアルコールで洗浄した後、風乾させた。得られたウェハ上の硬化膜(ポリイミド膜)におけるクラックの有無を目視にて観察した。露光を全面露光とした以外は、上記成膜及び硬化は、上述の「膜形成プロセス」に記載の方法と同様の方法により行った。
耐薬品性について以下の評価基準に従って評価した。評価結果は表中の「耐薬品性」の欄に記載した。
-評価基準-
A:ウェハ全面においてクラックが見られなかった
B:ウェハの一部にクラックが見られた
C:ウェハの全面にクラックが見られた。
[Evaluation of chemical resistance]
In each Example or Comparative Example, each resin composition was formed into a film on a 4-inch Si wafer and cured, and then the obtained wafer was immersed in N-methyl-2-pyrrolidone for 3 hours, washed with isopropyl alcohol, and then air-dried. The presence or absence of cracks in the cured film (polyimide film) on the obtained wafer was visually observed. The above film formation and curing were performed in the same manner as that described in the "Film formation process" above, except that the exposure was performed on the entire surface.
The chemical resistance was evaluated according to the following evaluation criteria. The evaluation results are shown in the "Chemical resistance" column in the table.
-Evaluation criteria-
A: No cracks were observed over the entire surface of the wafer. B: Cracks were observed in parts of the wafer. C: Cracks were observed over the entire surface of the wafer.
〔バイアスHAST(Highly Accelerated Stress Test)試験〕
 各実施例及び各比較例において、バイアスHAST試験を行った。
 バイアスHAST試験は、図1に示すようなシンプルなテストビークル100を使用して実行された。
 図1は、バイアスHAST試験において用いたテストビークルの概略断面図である。
 テストビークル100は、Siウエハ(シリコンウエハ)102上にSiO層104、パターン化されたTi層106、及び、パターン化された10μm L/S(ラインアンドスペース)の櫛歯型の銅配線108がこの順に積層されて構成され、配線は各組成物の硬化物110により覆われた。図1中、d1及びd2は10μmである。
 具体的には、テストビークルに含まれるSiOウエハ及びCu配線上に各樹脂組成物の塗布膜を形成した。その後、上述の「膜形成プロセス」に記載の方法と同様の方法により硬化物110を形成した。
各テストビークルを用いてバイアスHAST試験を行った。
 バイアスHAST試験は、平山製オーブンを使用して130℃/85%RH(相対湿度)/96h(96時間)で実施した。HAST試験中に印加された電圧は15Vで、試験中の配線のショートの有無で判定した。電気抵抗値が10Ω未満となった場合に、ショートしたと判定した。評価結果は表中の「bHAST」の欄に記載した。
-評価基準-
A: 96hで配線のショートが認められなかった。
B: 31h以上96h未満で配線のショートが認められた。
C: 31h未満で配線のショートが認められた。
[Bias HAST (Highly Accelerated Stress Test)]
A bias HAST test was carried out for each of the examples and comparative examples.
Biased HAST testing was performed using a simple test vehicle 100 as shown in FIG.
FIG. 1 is a schematic cross-sectional view of a test vehicle used in the biased HAST test.
The test vehicle 100 was constructed by laminating, in this order, a SiO2 layer 104, a patterned Ti layer 106, and a patterned 10 μm L/S (line and space) comb-shaped copper wiring 108 on a Si wafer (silicon wafer) 102, and the wiring was covered with a cured product 110 of each composition. In FIG. 1, d1 and d2 are 10 μm.
Specifically, a coating film of each resin composition was formed on a SiO2 wafer and Cu wiring included in the test vehicle. Then, a cured product 110 was formed by the same method as that described in the above-mentioned "film formation process".
Biased HAST tests were performed with each test vehicle.
The bias HAST test was carried out using a Hirayama oven at 130°C/85% RH (relative humidity)/96h (96 hours). A voltage of 15V was applied during the HAST test, and the test was judged based on the presence or absence of a short circuit in the wiring during the test. A short circuit was judged to have occurred when the electrical resistance value was less than 10 5 Ω. The evaluation results are shown in the "bHAST" column in the table.
-Evaluation criteria-
A: No wiring short was found at 96h.
B: A wiring short was found between 31 hours and 96 hours.
C: A wiring short was observed within 31 hours.
 以上の結果から、本発明の硬化物の製造方法により形成される硬化物は、耐熱信頼性、及び、耐薬品性に優れることが分かる。
 比較例1に係る硬化物の製造方法は、条件1及び条件2のいずれをも満たさない。また、比較例2に係る硬化物の製造方法は、減圧工程を含まない。これらのような比較例に係る硬化物の製造方法においては、得られる硬化物は耐熱信頼性、及び、耐薬品性に劣ることが分かる。
From the above results, it is apparent that the cured product formed by the method for producing a cured product of the present invention has excellent heat resistance reliability and chemical resistance.
The method for producing a cured product according to Comparative Example 1 does not satisfy either condition 1 or condition 2. In addition, the method for producing a cured product according to Comparative Example 2 does not include a decompression step. It is clear that the cured product obtained by the methods for producing a cured product according to these Comparative Examples is inferior in heat resistance reliability and chemical resistance.
100 テストビークル
102 Siウエハ
104 SiO
106 Ti層
108 Cu配線
110 硬化物
100 Test vehicle 102 Si wafer 104 SiO2 layer 106 Ti layer 108 Cu wiring 110 Hardened product

Claims (14)

  1.  樹脂層を101,325Paより低い圧力下に晒す減圧工程、及び、
     前記圧力下で前記樹脂層を加熱する加熱工程を含み、
     前記樹脂層が、ポリイミド前駆体、及び、溶剤を含む樹脂組成物から形成される層であり、
     下記条件1及び条件2の少なくとも一方を満たす
     硬化物の製造方法。
    条件1:前記樹脂組成物が、ウレタン結合及びウレア結合から選択される少なくとも1種の結合と、tert-ブチル基、水酸基及びエチレン性不飽和結合を含む基から選ばれる少なくとも1つの官能基とを有する化合物Aを更に含む。
    条件2:前記減圧工程よりも前に、前記化合物Aを含む処理液と、前記樹脂層とを接触させる工程を含む。
    a decompression step of exposing the resin layer to a pressure lower than 101,325 Pa; and
    a heating step of heating the resin layer under the pressure,
    the resin layer is a layer formed from a resin composition containing a polyimide precursor and a solvent,
    A method for producing a cured product, which satisfies at least one of the following conditions 1 and 2:
    Condition 1: The resin composition further contains a compound A having at least one bond selected from a urethane bond and a urea bond, and at least one functional group selected from a tert-butyl group, a hydroxyl group, and a group containing an ethylenically unsaturated bond.
    Condition 2: The method includes a step of contacting the resin layer with a treatment liquid containing the compound A prior to the depressurization step.
  2.  前記減圧工程よりも前に、光重合開始剤を更に含む前記樹脂組成物から形成された感光性樹脂層を露光する工程、及び、前記露光された感光性樹脂層を現像して前記樹脂層を得る工程を更に含む、請求項1に記載の硬化物の製造方法。 The method for producing a cured product according to claim 1, further comprising, prior to the decompression step, a step of exposing a photosensitive resin layer formed from the resin composition further containing a photopolymerization initiator, and a step of developing the exposed photosensitive resin layer to obtain the resin layer.
  3.  前記光重合開始剤として、下記式(PPI-1)で表される構造を含む化合物を含む、請求項2に記載の硬化物の製造方法。

     式(PPI-1)中、Rは炭素数1~9の有機基であり、Rはメチル基またはフェニル基であり、Rはそれぞれ独立に、炭素数1~9の有機基であり、nは0~5の整数である。
    The method for producing a cured product according to claim 2, wherein the photopolymerization initiator comprises a compound having a structure represented by the following formula (PPI-1):

    In formula (PPI-1), R 1 is an organic group having 1 to 9 carbon atoms, R 2 is a methyl group or a phenyl group, R 3 is each independently an organic group having 1 to 9 carbon atoms, and n is an integer of 0 to 5.
  4.  前記減圧工程が、樹脂層を0.07MPa以下の圧力下に晒す工程である、請求項1~3のいずれか1項に記載の硬化物の製造方法。 The method for producing a cured product according to any one of claims 1 to 3, wherein the decompression step is a step of exposing the resin layer to a pressure of 0.07 MPa or less.
  5.  前記加熱工程における加熱温度が、140℃以上である、請求項1~3のいずれか1項に記載の硬化物の製造方法。 The method for producing a cured product according to any one of claims 1 to 3, wherein the heating temperature in the heating step is 140°C or higher.
  6.  前記化合物Aが、tert-ブチル基及びウレタン結合を有する化合物、並びに、ウレア結合、2以上のヒドロキシ基及びエチレン性不飽和結合を含む基を有する化合物よりなる群から選ばれた少なくとも1種の化合物を含む、請求項1~3のいずれか1項に記載の硬化物の製造方法。 The method for producing a cured product according to any one of claims 1 to 3, wherein the compound A includes at least one compound selected from the group consisting of a compound having a tert-butyl group and a urethane bond, and a compound having a urea bond, two or more hydroxy groups, and a group containing an ethylenically unsaturated bond.
  7.  前記樹脂層がアゾール化合物を更に含む、請求項1~3のいずれか1項に記載の硬化物の製造方法。 The method for producing a cured product according to any one of claims 1 to 3, wherein the resin layer further contains an azole compound.
  8.  前記樹脂層がチタン、ジルコニウム及びハフニウムから選ばれる金属原子を少なくとも1つ含む、有機金属錯体を含む、請求項1~3のいずれか1項に記載の硬化物の製造方法。 The method for producing a cured product according to any one of claims 1 to 3, wherein the resin layer contains an organometallic complex containing at least one metal atom selected from titanium, zirconium, and hafnium.
  9.  得られる硬化物の25℃から125℃の範囲での線熱膨張係数が55ppm/K以下である、請求項1~3のいずれか1項に記載の硬化物の製造方法。 The method for producing a cured product according to any one of claims 1 to 3, in which the linear thermal expansion coefficient of the resulting cured product in the range of 25°C to 125°C is 55 ppm/K or less.
  10.  得られる硬化物の25℃における引張モジュラスが3.0GPa以上である、請求項1~3のいずれか1項に記載の硬化物の製造方法。 The method for producing a cured product according to any one of claims 1 to 3, in which the tensile modulus of the resulting cured product at 25°C is 3.0 GPa or more.
  11.  得られる硬化物の25℃における引張伸びが、40%以上である、請求項1~3のいずれか1項に記載の硬化物の製造方法。 The method for producing a cured product according to any one of claims 1 to 3, in which the tensile elongation of the resulting cured product at 25°C is 40% or more.
  12.  請求項1~3のいずれか1項に記載の硬化物の製造方法を含む、積層体の製造方法。 A method for producing a laminate, comprising the method for producing a cured product according to any one of claims 1 to 3.
  13.  請求項1~3のいずれか1項に記載の硬化物の製造方法を含む、半導体デバイスの製造方法。 A method for manufacturing a semiconductor device, comprising the method for manufacturing a cured product according to any one of claims 1 to 3.
  14.  請求項1~3のいずれか1項に記載の硬化物の製造方法により得られた硬化物を含む、半導体デバイス。 A semiconductor device comprising a cured product obtained by the method for producing a cured product according to any one of claims 1 to 3.
PCT/JP2023/039835 2022-11-08 2023-11-06 Production method for cured product, production method for laminate, production method for semiconductor device, and semiconductor device WO2024101295A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-179047 2022-11-08
JP2022179047 2022-11-08

Publications (1)

Publication Number Publication Date
WO2024101295A1 true WO2024101295A1 (en) 2024-05-16

Family

ID=91032367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039835 WO2024101295A1 (en) 2022-11-08 2023-11-06 Production method for cured product, production method for laminate, production method for semiconductor device, and semiconductor device

Country Status (1)

Country Link
WO (1) WO2024101295A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107250A1 (en) * 2017-11-28 2019-06-06 旭化成株式会社 Negative photosensitive resin composition, method for producing said composition, and method for producing cured relief pattern
WO2020026840A1 (en) * 2018-07-31 2020-02-06 旭化成株式会社 Negative-type photosensitive resin composition and method for producing polyimide and cured relief pattern using same
WO2023157911A1 (en) * 2022-02-21 2023-08-24 富士フイルム株式会社 Resin composition, cured product, multilayer body, method for producing cured product, method for producing multilayer body, method for producing semiconductor device, and semiconductor device
WO2023162687A1 (en) * 2022-02-24 2023-08-31 富士フイルム株式会社 Resin composition, cured article, laminate, method for producing cured article, method for producing laminate, method for producing semiconductor device, and semiconductor device
WO2023190064A1 (en) * 2022-03-29 2023-10-05 富士フイルム株式会社 Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107250A1 (en) * 2017-11-28 2019-06-06 旭化成株式会社 Negative photosensitive resin composition, method for producing said composition, and method for producing cured relief pattern
WO2020026840A1 (en) * 2018-07-31 2020-02-06 旭化成株式会社 Negative-type photosensitive resin composition and method for producing polyimide and cured relief pattern using same
WO2023157911A1 (en) * 2022-02-21 2023-08-24 富士フイルム株式会社 Resin composition, cured product, multilayer body, method for producing cured product, method for producing multilayer body, method for producing semiconductor device, and semiconductor device
WO2023162687A1 (en) * 2022-02-24 2023-08-31 富士フイルム株式会社 Resin composition, cured article, laminate, method for producing cured article, method for producing laminate, method for producing semiconductor device, and semiconductor device
WO2023190064A1 (en) * 2022-03-29 2023-10-05 富士フイルム株式会社 Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device

Similar Documents

Publication Publication Date Title
JP7259141B1 (en) Method for producing cured product, method for producing laminate, method for producing semiconductor device, and treatment liquid
WO2023190064A1 (en) Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device
JP7542069B2 (en) Method for producing cured product, method for producing laminate, and method for producing semiconductor device
WO2024101295A1 (en) Production method for cured product, production method for laminate, production method for semiconductor device, and semiconductor device
WO2024071237A1 (en) Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device
WO2024095885A1 (en) Resin composition, cured object, layered object, method for producing cured object, method for producing layered object, method for producing semiconductor device, and semiconductor device
WO2024143212A1 (en) Method for manufacturing laminate, method for manufacturing semiconductor member, photosensitive resin composition, laminate, semiconductor member, and resin composition
WO2024101266A1 (en) Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device
WO2024143210A1 (en) Member, method for manufacturing member, photosensitive resin composition, and semiconductor member
WO2024143211A1 (en) Member, method for manufacturing member, photosensitive resin composition, and semiconductor member
WO2024143209A1 (en) Method for producing multilayer body, photosensitive resin composition and method for producing semiconductor member
WO2024048605A1 (en) Resin composition, cured product, layered body, method for producing cured product, method for producing layered body, method for producing semiconductor device, and semiconductor device
WO2024090460A1 (en) Resin composition, cured product, laminate, production method for cured product, production method for laminate, manufacturing method for semiconductor device, and semiconductor device
WO2024095884A1 (en) Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for manufacturing semiconductor device, and semiconductor device
WO2024190733A1 (en) Photosensitive resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device
WO2023032475A1 (en) Method for producing cured product, method for producing multilayer body, method for producing semiconductor device, and treatment solution and resin composition
WO2024071380A1 (en) Resin composition, cured object, layered product, method for producing cured object, method for producing layered product, method for producing semiconductor device, and semiconductor device
WO2024053655A1 (en) Photosensitive resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device
WO2024048435A1 (en) Resin composition, cured article, laminate, method for producing cured article, method for producing laminate, method for producing semiconductor device, and semiconductor device
WO2024048436A1 (en) Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device
WO2024185652A1 (en) Resin composition, cured product, multilayer body, method for producing cured product, method for producing multilayer body, method for producing semiconductor device, and semiconductor device
WO2024128111A1 (en) Resin composition, cured product, laminate, cured product production method, laminate production method, semiconductor device production method, and semiconductor device
WO2024070963A1 (en) Film production method, photosensitive resin composition, cured product production method, cured product, and laminate
TW202432671A (en) Method for producing a cured product, method for producing a laminate, method for producing a semiconductor device, and semiconductor device
WO2023112573A1 (en) Method for producing cured product, method for producing laminate , method for producing semiconductor device, and treatment liquid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888643

Country of ref document: EP

Kind code of ref document: A1