WO2009136061A2 - Colonne à garnissage d'échange de chaleur et/ou matière - Google Patents

Colonne à garnissage d'échange de chaleur et/ou matière Download PDF

Info

Publication number
WO2009136061A2
WO2009136061A2 PCT/FR2009/050596 FR2009050596W WO2009136061A2 WO 2009136061 A2 WO2009136061 A2 WO 2009136061A2 FR 2009050596 W FR2009050596 W FR 2009050596W WO 2009136061 A2 WO2009136061 A2 WO 2009136061A2
Authority
WO
WIPO (PCT)
Prior art keywords
section
column
packing
sections
module
Prior art date
Application number
PCT/FR2009/050596
Other languages
English (en)
Other versions
WO2009136061A3 (fr
Inventor
François LECLERCQ
Frédéric Rousseau
Original Assignee
L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude filed Critical L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
Priority to CN2009801117607A priority Critical patent/CN101980775A/zh
Priority to EP09742259A priority patent/EP2265368A2/fr
Priority to US12/935,929 priority patent/US9108179B2/en
Publication of WO2009136061A2 publication Critical patent/WO2009136061A2/fr
Publication of WO2009136061A3 publication Critical patent/WO2009136061A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/32Packing elements in the form of grids or built-up elements for forming a unit or module inside the apparatus for mass or heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04896Details of columns, e.g. internals, inlet/outlet devices
    • F25J3/04909Structured packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04896Details of columns, e.g. internals, inlet/outlet devices
    • F25J3/04915Combinations of different material exchange elements, e.g. within different columns
    • F25J3/04921Combinations of different material exchange elements, e.g. within different columns within the same column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/3221Corrugated sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32213Plurality of essentially parallel sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32224Sheets characterised by the orientation of the sheet
    • B01J2219/32234Inclined orientation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32265Sheets characterised by the orientation of blocks of sheets
    • B01J2219/32272Sheets characterised by the orientation of blocks of sheets relating to blocks in superimposed layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/324Composition or microstructure of the elements
    • B01J2219/32408Metal

Definitions

  • the present invention relates to a packed column for the exchange of heat and / or material between a descending liquid and a rising gas, of the type comprising at least one exchange section comprising several superposed sections of packings, or defined between two liquid distributors is defined between an inlet or a fluid outlet and a liquid distributor or between a first fluid inlet or outlet and a second fluid inlet or outlet or comprising at least 2 packing modules and at most 20 packing modules superposed, preferably directly on each other, this exchange section comprising a lower section and, above it, another section. It applies in particular to air distillation columns.
  • packing is understood here to mean a device intended for putting in intimate contact a descending liquid and a rising gas, so that an exchange of heat and / or material takes place.
  • the lining sections each consist of at least one packing module or "pack".
  • These modules can be of the bulk type, that is to say each consisting of a volume of discrete particles, but are preferably of a so-called structured type. In this category in particular appear:
  • Cross-corrugated packings generally constituted by corrugated strips comprising parallel alternating corrugations each arranged in a generally vertical plane and against each other, the corrugations being oblique and descending in opposite directions of a strip at the next.
  • a perforation rate typically about 10% is generally provided for these so-called cross-corrugated packings.
  • GB-AI 004 046 discloses cross-corrugated packings, and CA-AI 095 827 proposes an improvement of this type of packing by adding a small diameter dense perforation to allow the liquid to pass on either side crossed wavy bands.
  • Such packing is generally made from a flat product, namely metal sheets in the form of strips.
  • the strips are first folded (or bent) so as to form a kind of strip corrugated sheet whose corrugations are oblique with respect to the axis of the strip.
  • the folded strips are then cut into sections and then stacked by alternately turning every other strip, so as to form modules or "packs".
  • Fan packings each of which includes a plurality of baffles which define a set of horizontal layers of fixed upstream gas stirring fans.
  • fan packings are structures having a three-dimensional effect on the gas that rises in the column. They ensure, by multiple rotation of the gas, a high turbulence of the gas, and the resulting stirring improves the exchange of heat and / or material with the descending liquid.
  • the subject of the invention is a packing column of the aforementioned type, characterized in that the lower packing section of at least one section exchange comprises at least one packing module which has a number of transfer units less than that of at least one packing module of the other packing section of the same exchange section.
  • NUTs vapor transfer units
  • the number of vapor transfer units (NUTs) of a packing module is the quotient of the module height (HM) by the height of a transfer unit in phase steam (HUT).
  • HUT is commonly used to characterize the intrinsic efficiency of a packing, it is connected to the height equivalent to a theoretical plate (HEPT) of this packing by the relation:
  • HEPT HUT mVIL - 1 ln (m.VIL) where L: molar flow rate of liquid (mol / s) V: molar flow rate of steam (mol / s) m: slope of the equilibrium line in a digraph representing the fraction molar in the vapor as a function of the molar fraction in the liquid.
  • the HUT and therefore the NUT of a packing module, depends moderately on the distilled fluids and the distillation conditions.
  • the NUTs of two packing modules are compared, it will be understood each time that these two modules are placed under identical distillation conditions.
  • this text will refer to the number of vapor phase transfer units: number of transfer units.
  • the packed column according to the invention may comprise one or more of the following characteristics, taken separately or in any technically possible combination: said module of said lower section differs from said module of said other section of the same exchange section by at least one of the following factors:
  • said factor is the average density, and said lower section occupies only a fraction of the cross section of the column, located under the jets of liquid from the section above it;
  • said sections of packing are sections of structured packing; said lower packing section is a cross-corrugated packing section, while the other packing section is a fan packing section; said lower packing section is a relatively low density cross-corrugated packing section, while the other packing section is a higher density cross-corrugated packing section, the packing modules being angularly offset, in particular 90 ° relative to each other around the vertical central axis of the column; said lower packing section consists of a single packing module;
  • said single module has a lower height than the modules of the other section of the same exchange section; in each exchange section, the packing modules are stacked on top of one another directly or with the interposition of spacer elements;
  • the column is the low pressure column of a double air distillation column or a separation column of an argon enriched air gas mixture;
  • the column comprises at least two sections one above the other of which at least the upper section has a lower section comprising at least one packing module which has a number of transfer units less than that of at least one packing module of the other packing section of the same exchange section and a space defined between the two sections, this space containing neither distributor nor fluid inlet from the outside.
  • the two sections, one above the other each comprise at least 2 modules, preferably at least 4 modules, or even at least 5 modules.
  • the section is between an inlet or a fluid outlet and a liquid distributor, the section possibly comprising at least 2 sections and at most 20 superimposed sections, preferably directly on one another,
  • the section is between a first fluid inlet or outlet and a second fluid inlet or outlet, the section optionally comprising at least 2 sections and at most 20 superimposed sections, preferably directly on each other.
  • the column operates at a pressure of less than 2 bar abs and / or constitutes the low column pressure of a double column or an argon separation column fed by an argon enriched air gas flow.
  • Figure 1 shows schematically in axial section a double air distillation column according to the invention
  • Figure 2 is a graph showing the variation. of loss of load and height per transfer unit for columns according to the prior art and a column according to the invention.
  • the double air distillation column 1 shown in the drawing has a conventional structure with the exception of the constitution of its packings. It thus consists of a medium pressure column 2 surmounted by a low pressure column 3.
  • a main vaporizer-condenser V puts the overhead vapor of the column 2 (almost pure nitrogen) in heat exchange relation with the vessel fluid (approximately pure oxygen) from column 3.
  • Column 2 has a head liquid distributor 4 and, beneath it, a single air distillation section 5.
  • Column 3 comprises: a head liquid distributor 6; an upper distillation section 9 located between the distributor 6 and the feed 12; an intermediate distillation section 10 comprising at least 2 modules and at most 20 modules below section 9; and a lower distillation section 11 comprising a minimum of 2 modules and a maximum of 20 modules located between the section 10 and the withdrawal 21.
  • a distributor 7 separates the sections 9 and 10.
  • “Poor liquid” at the top of the column 2 consisting of liquid nitrogen, is withdrawn via a line 14, expanded at low pressure in an expansion valve 15 and introduced into the distributor 6.
  • the excess of condensed liquid nitrogen in the vaporizer-condenser V falls into the distributor 4, which distributes it on the distillation section 5.
  • the incoming air rises and exchanges heat and material with the liquid nitrogen reflux in s gradually depleting oxygen.
  • the rising gas is gaseous oxygen, which exchanges heat and material with the reflux liquid.
  • the distributor 6 distributes liquid nitrogen on the distillation section 9.
  • Each liquid distributor 4, 6, 7 comprises a peripheral trough 16 and several parallel U-shaped troughs 17 which open at each end into the trough 16. Between troughs 16 are defined parallel channels 18 for the passage of the upstream gas, closed by a horizontal upper wall 19. Just below this wall are formed rows of windows 20. The bottom of the troughs 17 is perforated, which defines a large number of vertical jets of liquid under each of these chutes.
  • the double column 1 also comprises at least one product outlet such as a conduit 21 for withdrawing gaseous oxygen from the tank of column 2, situated just below section 11, and a pipe 22 for withdrawing gas. wastewater (impure nitrogen) from the top of column 3.
  • the column 2 inlet air pipe is indicated at 23. It may comprise an air inlet 25 and / or distributors between the sections 10 and 11 and / or below the section HA.
  • Each of the distillation sections 5, 9, 10, 11 consists of a stack of structured packing modules.
  • the lower module constitutes the lower section 9A, 10A, HA of the section, while the other modules form the current section of the section.
  • the modules are stacked either directly on one another or with the interposition of spacer elements.
  • Each lower section 9A, 1OA, HA of the low pressure column 3 is constituted by a packing module or "pack" more particularly adapted to distribute uniformly over the entire cross section of the column the gas it receives from below, while the modules of each other section are more particularly adapted to perform a heat exchange of high efficiency material between the liquid and the rising gas.
  • the lower section 9A may be of the same nature as the other section 9B but have an intrinsic density
  • the lower section 10A may be of a different nature from that of the other section 10B, namely less effective from the point of view of distillation and less expensive.
  • the lower section may be of the cross-corrugated type, in particular at low density or at an angle of inclination of the channels relative to the larger horizontal, whereas the current section 10B is denser or at an angle of inclination. weaker channels.
  • the lower section HA can be a packing module whose height is lower than that of the modules of the upper sections HB. In this way, the height of the column is reduced without substantially penalizing the overall efficiency of the distillation, since the upper section is not fully effective.
  • the lower section may consist of more than one packing module.
  • the sections 9A, 10A and HA may be replaced by another section whose number of transfer units is reduced by modifying the section in another way described in this description.
  • the lower section has, for each of its modules, a number of transfer units less than that of each module of the other section.
  • case (2) By definition, the lower distillation efficiency corresponds to a smaller number of transfer units. At a constant density, the lining angle of inclination of the channels with respect to the larger horizontal has a reduced number of transfer units.
  • case (3) Reducing the height of a module reduces its number of transfer units.
  • the upper section of the distillation section of the column medium pressure 2 is a single cross-corrugated packing module according to EP-A-1186843.
  • the upper section 5A of section 5 is discontinuous. It consists of several parallel strips, each of which is located below a corresponding chute 17 of the distributor 4.
  • the other section 5B is a common section consisting of a stack of corrugated-crisscross packing modules. The modules of section 5 are angularly offset by 90 ° relative to each other around the X-X axis.
  • the section HB of the section 11 is a current section consisting of a stack of corrugated-crimped packing modules whose density is greater than that of the lower section HA.
  • the modules of section 11 are angularly offset by 90 ° relative to each other about the X-X axis.
  • the HB section fulfills the role of distributor so that no distributor is required between sections 10 and 11.
  • the lower portion 10A of section 10 is a common section consisting of a stack of fan-type packing modules. These modules are angularly offset by 90 ° relative to each other around the X-X axis.
  • the section 9B of section 9 is a current section consisting of a stack of cross-corrugated packing modules of the same density as that of the lower section 9A, but of greater height than this one.
  • the modules of section 11 are also angularly offset by 90 ° relative to each other about the axis XX. It is also conceivable that the upper section of a section has a number of transfer units lower or higher than that of a section of the section other than the lower section.
  • the upper section may differ from the other section other than the lower section of the same exchange section by at least one of the following factors:
  • each exchange section is composed only of sections having the same number of transfer units, the test sections 1 having a number of transfer units greater than the number for the Test 2 sections.
  • Test 3 corresponding to the invention, all the sections of column section except the inner section have a number of transfer units identical to that for the test sections 1. The section smaller than a number of transfer units less than that of the sections greater than, equal to the number of transfer units found for Test 2 sections.
  • the height per transfer unit is substantially the same for the packed column according to the invention (Test 3) and the column according to the prior art Test 1. On the other hand, a higher height is observed for the column of Test 2.
  • the pressure drops are always of the order of 10% lower than those of the Test column 1, regardless of the congestion rate, resulting in significant energy savings.

Abstract

ABREGE Une colonne à garnissage d’échange de chaleur et/ou de matière entre un liquide descendant et un gaz montant, du type comprend au moins une section d’échange (5, 9, 10, 11) soit entre deux distributeurs soit comprenant au moins 2 tronçons et au plus 20 tronçons superposés, cettesection d’échange comprenant un tronçon inférieur (9A, 10A, 11A) et, au-dessus de celui-ci, un autre tronçon (5B, 9B, 10B, 11B), le tronçon de garnissage inférieur (9A, 10A, 11A) d’au moins une section d’échange (9, 10, 11) comprenant au moins un module de garnissage qui possède un nombre d’unités de transfert inférieur à celui d’au moins un module de garnissage de l’autre tronçon de garnissage (9B, 10B, 11B) de la même section d’échange. Application aux colonnes de distillation d’air. Figure unique

Description

Colonne à garnissage d'échange de chaleur et/ou matière
La présente invention est relative à une colonne à garnissage d'échange de chaleur et/ou de matière entre un liquide descendant et un gaz montant, du type comprenant au moins une section d'échange comprenant plusieurs tronçons superposés de garnissages , soit définie entre deux distributeurs de liquide soit définie entre une entrée ou une sortie de fluide et un distributeur de liquide soit entre une première entrée ou sortie de fluide et une deuxième entrée ou sortie de fluide soit comprenant au minimum 2 modules de garnissages et au maximum 20 modules de garnissages superposés, de préférence directement les uns sur les autres, cette section d'échange comprenant un tronçon inférieur et, au-dessus de celui-ci, un autre tronçon. Elle s'applique en particulier aux colonnes de distillation d'air.
On entend ici par garnissage un dispositif destiné à la mise en contact intime d'un liquide descendant et d'un gaz montant, afin que se produise un échange de chaleur et/ou de matière.
Les tronçons de garnissage sont constitués chacun d'au moins un module ou « pack » de garnissage. Ces modules peuvent être du type vrac, c'est-à-dire constitués chacun d'un volume de particules discrètes, mais sont de préférence d'un type dit structuré. Dans cette catégorie figurent en particulier :
(1) Les garnissages ondulés-croisés, généralement constitués par des bandes ondulées comprenant des ondulations alternées parallèles disposées chacune dans un plan général vertical et les unes contre les autres, les ondulations étant obliques et descendant dans des sens opposés d'une bande à la suivante. Un taux de perforation typiquement d'environ 10% est généralement prévu pour ces garnissages dits ondulés-croisés.
Le GB-A-I 004 046 divulgue des garnissages du type ondulé-croisé, et le CA-A-I 095 827 propose une amélioration de ce type de garnissage en ajoutant une perforation dense de petit diamètre pour permettre au liquide de transiter de part et d'autre des bandes ondulées croisées .
Un tel garnissage est généralement fabriqué à partir d'un produit plat, à savoir de feuilles métalliques sous forme de bandes. Les bandes sont d'abord pliées (ou cintrées) de façon à former une sorte de tôle ondulée en bande dont les ondulations sont obliques par rapport à l'axe de la bande. Les bandes pliées sont ensuite découpées en tronçons puis empilées en retournant alternativement une bande sur deux, de façon à former des modules ou « packs ».
(2) Les garnissages à ventilateurs, dont chaque module comprend une pluralité de déflecteurs qui définissent un ensemble de couches horizontales de ventilateurs fixes de brassage du gaz montant.
Ces garnissages à ventilateurs sont des structures à effet tridimensionnel vis-à-vis du gaz qui monte dans la colonne. Elles assurent, par mise en rotation multiple du gaz, une forte turbulence de ce gaz, et le brassage résultant améliore l'échange de chaleur et/ou de matière avec le liquide descendant.
Des exemples de tels packs de garnissage sont décrits dans le WO-A-86/06 296, dans le WO-A-90/10 497 et dans le EP-A-845 293. L'invention a pour but de réduire le coût des colonnes d'échange de chaleur et/ou de matière à garnissage.
A cet effet, l'invention a pour objet une colonne à garnissage du type précité, caractérisée en ce que le tronçon de garnissage inférieur d'au moins une section d'échange comprend au moins un module de garnissage qui possède un nombre d'unités de transfert inférieur à celui d'au moins un module de garnissage de l'autre tronçon de garnissage de la même section d'échange. Comme il est bien connu dans la technique, le nombre d'unités de transfert en phase vapeur (NUT) d'un module de garnissage est le quotient de la hauteur du module (HM) par la hauteur d'une unité de transfert en phase vapeur (HUT) . La HUT est couramment utilisée pour caractériser l'efficacité intrinsèque d'un garnissage, elle est reliée à la hauteur équivalente à un plateau théorique (HEPT) de ce même garnissage par la relation :
HEPT = HUT mVIL-1 ln(m.VIL) où L : débit molaire de liquide (mol/s) V : débit molaire de vapeur (mol/s) m : pente de la droite d'équilibre dans un digramme représentant la fraction molaire dans la vapeur en fonction de la fraction molaire dans le liquide.
La HUT, et donc le NUT d'un module de garnissage, dépendent modérément des fluides distillés et des conditions de distillation. Toutefois, lorsque dans ce texte on comparera les NUTs de deux modules de garnissage, il sera à chaque fois sous-entendu que l'on place ces deux modules dans des conditions de distillation identiques. De plus, par souci de simplification, on appellera dans ce texte le nombre d'unités de transfert en phase vapeur : nombre d'unités de transfert.
La colonne à garnissage suivant l'invention peut comporter une ou plusieurs des caractéristiques suivantes, prises isolément ou suivant toutes les combinaisons techniquement possibles : - ledit module dudit tronçon inférieur diffère dudit module dudit autre tronçon de la même section d'échange par l'un au moins des facteurs suivants :
. sa densité intrinsèque ; . sa structure ; son angle d' inclinaison des canaux par rapport à l'horizontale pour le cas dans lequel le garnissage est un garnissage structuré de type ondulé-croisé
. sa densité moyenne sur la section transversale de la colonne ; et
. sa hauteur ;
- ledit facteur est la densité moyenne, et ledit tronçon inférieur n'occupe qu'une fraction de la section transversale de la colonne, située sous les jets de liquide provenant du tronçon au-dessus de lui ;
- lesdits tronçons de garnissage sont des tronçons de garnissage structuré ; ledit tronçon de garnissage inférieur est un tronçon de garnissage ondulé-croisé, tandis que l'autre tronçon de garnissage est un tronçon de garnissage à ventilateurs ; ledit tronçon de garnissage inférieur est un tronçon de garnissage ondulé-croisé de relativement faible densité, tandis que l'autre tronçon de garnissage est un tronçon de garnissage ondulé-croisé de plus forte densité, les modules de garnissage étant décalés angulairement, notamment de 90°, les uns par rapport aux autres autour de l'axe central vertical de la colonne ; ledit tronçon de garnissage inférieur est constitué d'un module de garnissage unique ;
- ledit module unique a une hauteur plus faible que celle des modules de l'autre tronçon de la même section d' échange ; dans chaque section d'échange, les modules de garnissage sont empilés les uns sur les autres, directement ou avec interposition d'éléments formant entretoises ;
- la colonne est la colonne basse pression d'une double colonne de distillation d'air ou une colonne de séparation d'un mélange de gaz de l'air enrichi en argon ;
- la colonne comprend au moins deux sections l'une au-dessus de l'autre dont au moins la section supérieure a un tronçon inférieur comprenant au moins un module de garnissage qui possède un nombre d'unités de transfert inférieur à celui d'au moins un module de garnissage de l'autre tronçon de garnissage de la même section d'échange et une espace définie entre les deux sections, cette espace ne contenant ni de distributeur ni d'arrivée de fluide de l'extérieur. les deux sections l'une étant au-dessus de 1' autres comprennent chacune au moins 2 modules, préférablement au moins 4 modules, voire au moins 5 modules.
- la section est comprise entre une entrée ou une sortie de fluide et un distributeur de liquide, la section comprenant éventuellement au moins 2 tronçons et au plus 20 tronçons superposés, de préférence directement les uns sur les autres,
- la section est comprise entre une première entrée ou sortie de fluide et une deuxième entrée ou sortie de fluide, la section comprenant éventuellement au moins 2 tronçons et au plus 20 tronçons superposés, de préférence directement les uns sur les autres.
Selon un autre objet de l'invention, il est prévu un procédé de séparation d'un gaz de l'air utilisant une colonne telle que décrite ci-dessus dans lequel la colonne opère à une pression inférieure à 4 bars abs .
Eventuellement la colonne opère à une pression inférieure à 2 bars abs et/ou constitue la colonne basse pression d'une double colonne ou une colonne de séparation d'argon alimenté par un débit de gaz de l'air enrichi en argon .
Un exemple de réalisation de l'invention va maintenant être décrit en regard des dessins annexés, dont la Figure 1 représente schématiquement en coupe axiale une double colonne de distillation d'air conforme à l'invention et la Figure 2 est un graphique représentant la variation de perte de charge et de hauteur par unité de transfert pour des colonnes selon l'art antérieur et une colonne selon 1' invention .
La double colonne de distillation d'air 1 représentée sur le dessin, d'axe central X-X vertical, a une structure classique à l'exception de la constitution de ses garnissages. Elle est ainsi constituée d'une colonne moyenne pression 2 surmontée d'une colonne basse pression 3. Un vaporiseur-condenseur principal V met la vapeur de tête de la colonne 2 (azote à peu près pur) en relation d'échange thermique avec le liquide de cuve (oxygène à peu près pur) de la colonne 3.
La colonne 2 comporte un distributeur de liquide de tête 4 et, sous celui-ci, une section de distillation d'air unique 5.
La colonne 3 comporte : un distributeur de liquide de tête 6 ; une section de distillation supérieure 9 située entre le distributeur 6 et l'alimentation 12; une section de distillation intermédiaire 10 comprenant 2 modules au minimum et 20 modules au maximum en dessous de la section 9; et une section de distillation inférieure 11 comprenant 2 modules au minimum et 20 modules au maximum située entre la section 10 et le soutirage 21.Un distributeur 7 sépare les sections 9 et 10.
En fonctionnement, l'air à distiller, comprimé à la moyenne pression, typiquement de l'ordre de 5 bars absolus, est introduit en cuve de la colonne 2. Du « liquide riche »
(air enrichi en oxygène) recueilli en cuve de cette colonne est soutiré via une conduite 12, détendu à la basse pression, qui est de l'ordre de 1,2 bar absolu, dans une vanne de détente 13, et introduit dans la colonne 3.
Du « liquide pauvre » de tête de la colonne 2, constitué d'azote liquide, est soutiré via une conduite 14, détendu à basse pression dans une vanne de détente 15 et introduit dans le distributeur 6. L'excès d'azote liquide condensé dans le vaporiseur-condenseur V tombe dans le distributeur 4, lequel le distribue sur la section de distillation 5. Dans celle-ci, l'air entrant monte et échange de la chaleur et de la matière avec l'azote liquide de reflux en s' appauvrissant progressivement en oxygène. Dans la colonne 3, le gaz montant est de l'oxygène gazeux, qui échange de la chaleur et de la matière avec le liquide de reflux. Le distributeur 6 distribue de l'azote liquide sur la section de distillation 9.
Chaque distributeur de liquide 4, 6, 7 comporte une goulotte périphérique 16 et plusieurs goulottes parallèles à section en U 17 qui débouchent à chaque extrémité dans la goulotte 16. Entre les goulottes 16 sont définis des canaux parallèles 18 pour le passage du gaz montant, fermés par une paroi supérieure horizontale 19. Juste sous cette paroi sont ménagées des rangées de fenêtres 20. Le fond des goulottes 17 est perforé, ce qui définit un grand nombre de jets verticaux de liquide sous chacune de ces goulottes.
La double colonne 1 comporte encore au moins une sortie de produit telle qu'une conduite 21 de soutirage d'oxygène gazeux de la cuve de la colonne 2, située juste au-dessous de la section 11, et une conduite 22 de soutirage de gaz résiduaire (azote impur) qui part du sommet de la colonne 3. La conduite d'entrée d'air en cuve de la colonne 2 est indiquée en 23. Elle peut comporter une entrée d'air 25 et/ou des distributeurs entre les sections 10 et 11 et/ou en dessous du tronçon HA.
Chacune des sections de distillation 5, 9, 10, 11 est constituée d'un empilage de modules de garnissage structurés. Le module inférieur constitue le tronçon inférieur 9A, 1OA, HA de la section, tandis que les autres modules forment le tronçon courant de la section. Les modules sont empilés soit directement les uns sur les autres, soit avec interposition d'éléments formant entretoises .
Chaque tronçon inférieur 9A, 1OA, HA de la colonne basse pression 3 est constitué par un module ou « pack » de garnissage plus particulièrement adapté pour répartir uniformément sur toute la section transversale de la colonne le gaz qu'il reçoit d'en bas, tandis que les modules de chaque autre tronçon sont plus particulièrement adaptés pour réaliser un échange de chaleur de matière à haute efficacité entre ce liquide et le gaz montant. Ainsi, on peut fournir les exemples suivants :
(1) Le tronçon inférieur 9A peut être de même nature que l'autre tronçon 9B mais avoir une densité intrinsèque
(m2 de métal/m3) inférieure. On remplit ainsi la fonction de distribution du gaz à moindre coût car la quantité de métal utilisé est plus petite.
(2) Le tronçon inférieur 1OA peut être d'une nature différente de celle de l'autre tronçon 10B, à savoir de moindre efficacité du point de vue de la distillation et moins coûteuse. En particulier, le tronçon inférieur peut être du type ondulé-croisé, notamment à faible densité ou à angle d'inclinaison des canaux par rapport à l'horizontale plus grand, tandis que le tronçon 10B courant est plus dense ou à angle d'inclinaison des canaux plus faible. (3) Le tronçon inférieur HA peut être un module de garnissage dont la hauteur est plus faible que celle des modules des tronçons supérieurs HB. De cette manière, on réduit la hauteur de la colonne sans pénaliser substantiellement l'efficacité globale de la distillation, puisque le tronçon supérieur n'est pas pleinement efficace.
Ces diverses possibilités peuvent se combiner entre elles. De plus, dans les cas (1) et (2), le tronçon inférieur peut être constitué de plus d'un module de garnissage.
Les tronçons 9A, 1OA et HA peuvent être remplacés par un autre tronçon dont le nombre d'unité de transfert est réduit en modifiant le tronçon d'une autre manière décrite dans cette description. Dans chacun des cas ci-dessus, le tronçon inférieur possède, pour chacun de ses modules, un nombre d'unités de transfert inférieur à celui de chaque module de l'autre tronçon .
En effet : - cas (1) : La réduction de la densité intrinsèque abaisse le nombre d'unités de transfert pour une hauteur donnée des modules.
- cas (2) : Par définition, la moindre efficacité de distillation correspond à un moindre nombre d'unités de transfert. A densité constante un garnissage à angle d'inclinaison des canaux par rapport à l'horizontale plus grand a un nombre d'unité de transfert réduit. cas (3) : La réduction de hauteur d'un module réduit son nombre d'unités de transfert. - cas (4) : Le fait de supprimer une partie de la section active d'un module réduit son nombre d'unités de transfert .
Dans l'exemple représenté au dessin, le tronçon supérieur de la section de distillation de la colonne moyenne pression 2 est un module unique de garnissage ondulé-croisé selon EP-A-1186843.
Le tronçon supérieur 5A de la section 5 est discontinu. Il est constitué de plusieurs bandes parallèles dont chacune est située au-dessous d'une goulotte 17 correspondante du distributeur 4. L'autre tronçon 5B est un tronçon courant constitué d'un empilage de modules de garnissage ondulé-croisé. Les modules de la section 5 sont décalés angulairement de 90° les unes par rapport aux autres autour de l'axe X-X.
Le tronçon HB de la section 11 est un tronçon courant constitué d'un empilement de modules de garnissage ondulé-croisé dont la densité est plus grande que celle du tronçon inférieur HA. Les modules de la section 11 sont décalés angulairement de 90° les uns par rapport aux autres autour de l'axe X-X. Le tronçon HB remplit le rôle de distributeur de sorte qu'aucun distributeur n'est requis entre les sections 10 et 11.
Le tronçon inférieur 1OA de la section 10 est un tronçon courant constitué d'un empilage de modules de garnissage du type à ventilateurs. Ces modules sont décalés angulairement de 90° les uns par rapport aux autres autour de l'axe X-X.
Le tronçon 9B de la section 9 est un tronçon courant constitué d'un empilage de modules de garnissage ondulés- croisés de même densité que celle du tronçon inférieur 9A, mais de plus grande hauteur que celui-ci. Les modules de la section 11 sont également décalés angulairement de 90° les uns par rapport aux autres autour de l'axe X-X. II est également envisageable que le tronçon supérieur d'une section ait un nombre d'unités de transfert inférieur ou supérieur à celui d'un tronçon de la section autre que le tronçon inférieur. Le tronçon supérieur peut différer dudit autre tronçon autre que le tronçon inférieur de la même section d'échange par l'un au moins des facteurs suivants :
. sa densité intrinsèque ; . sa structure ; son angle d' inclinaison des canaux par rapport à l'horizontale pour le cas dans lequel le garnissage est un garnissage structuré de type ondulé-croisé ;
. sa densité moyenne sur la section transversale de la colonne ; et . sa hauteur.
Il sera compris que ces choix du tronçon supérieur peuvent s'appliquer à des colonnes autres que celles selon 1' invention .
Il est souvent le cas que quand le nombre de tronçons superposés dépasse un nombre donné, il est nécessaire d'entreposer un distributeur pour séparer les tronçons en deux sections afin de permettre une meilleure distribution, comme l'on voit pour les sections 10 et 11 de
EP-A-1186843, même quand il n'y a pas d'arrivée de fluide entre les deux sections.
Pour le cas de la Figure, on voit que pour deux sections de cinq tronçons, il suffit de réduire le nombre d'unités de transfert pour le tronçon inférieur de la section supérieure afin d'améliorer la distribution. Dans ce cas, il devient inutile de placer un distributeur entre les deux sections et ainsi la hauteur de la colonne peut être réduite .
Dans la Figure 2, le graphique montre les performances de garnissages Test 1 et Test 2 selon l'art antérieur. Dans ces cas, chaque section d'échange est composé uniquement de tronçons ayant le même nombre d'unité de transfert, les tronçons de Test 1 ayant un nombre d'unités de transfert supérieur à au nombre pour les tronçons de Test 2. Pour le Test 3, correspondant à l'invention, tous les tronçons de section de colonne sauf le tronçon intérieur ont un nombre d'unités de transfert identique à celui pour les tronçons de Test 1. Le tronçon inférieur à un nombre de d'unités de transfert inférieur à celui des tronçons supérieur, égal au nombre d'unités de transfert trouvé pour les tronçons de Test 2.
On peut remarquer que la hauteur par unité de transfert est sensiblement le même pour la colonne à garnissages selon l'invention (Test 3) et la colonne selon l'art antérieur Test 1. Par contre on observe une hauteur plus élevée pour la colonne de Test 2.
Pour la colonne selon l'invention, les pertes de charge sont toujours de l'ordre de 10% inférieures à celles de la colonne de Test 1, quel que soit le taux d'engorgement, d'où une importante économie d'énergie.

Claims

REVENDICATIONS
1. Colonne à garnissage d'échange de chaleur et/ou de matière entre un liquide descendant et un gaz montant, du type comprenant au moins une section d'échange (5, 9, 10, 11) soit entre deux distributeurs soit comprenant au moins 2 tronçons et au plus 20 tronçons superposés, de préférence directement les uns sur les autres, cette section d'échange comprenant un tronçon inférieur (9A, 1OA, HA) et, au-dessus de celui-ci, un autre tronçon (9B, 1OB, HB) , caractérisée en ce que le tronçon de garnissage inférieur (9A, 1OA, HA) d'au moins une section d'échange (9, 10, 11) comprend au moins un module de garnissage qui possède un nombre d'unités de transfert inférieur à celui d'au moins un module de garnissage de l'autre tronçon de garnissage (9B, 10B, HB) de la même section d'échange.
2. Colonne suivant la revendication 1, caractérisée en ce que ledit module dudit tronçon inférieur (9A, 10A, HA) diffère dudit module dudit autre tronçon (9B, 10B, HB) de la même section d'échange par l'un au moins des facteurs suivants :
- sa densité intrinsèque ;
- sa structure ; - son angle d'inclinaison des canaux par rapport à l'horizontale, pour le cas dans lequel le garnissage est un garnissage structuré de type ondulé-croisé ;
- sa densité moyenne sur la section transversale de la colonne ; et - sa hauteur.
3. Colonne suivant la revendication 2, caractérisée en ce que ledit facteur est la densité moyenne, et en ce que ledit tronçon inférieur n'occupe qu'une fraction de la section transversale de la colonne.
4. Colonne suivant l'une quelconque des revendications 1 à 3, caractérisée en ce que lesdits tronçons de garnissage (9A, 9B, 1OA, 1OB, HA, HB) sont des tronçons de garnissage structuré.
5. Colonne suivant la revendication 4, caractérisée en ce que ledit tronçon de garnissage inférieur (9A) est un tronçon de garnissage ondulé-croisé de relativement faible densité, tandis que l'autre tronçon de garnissage est un tronçon de garnissage ondulé-croisé de plus forte densité, les modules de garnissage étant éventuellement décalés angulairement, notamment de 90°, les uns par rapport aux autres autour de l'axe central vertical (X-X) de la colonne.
6. Colonne suivant l'une quelconque des revendications 1 à 5, caractérisée en ce que ledit tronçon de garnissage inférieur (5A, 9A, 1OA, HB) est constitué d'un module de garnissage unique.
7. Colonne suivant les revendications 2 et 6 prises ensemble, caractérisée en ce que ledit module unique (HA) a une hauteur plus faible que celle des modules de l'autre tronçon (HB) de la même section d'échange (H) .
8. Colonne suivant l'une quelconque des revendications 1 à 7, caractérisée en ce que, dans chaque section d'échange (5, 10, H), les modules de garnissage sont empilés les uns sur les autres, directement ou avec interposition d'éléments formant entretoises.
9. Colonne suivant l'une quelconque des revendications 1 à 8, caractérisée en ce qu'elle est la colonne basse pression (3) d'une double colonne de distillation d'air (1) ou une colonne de séparation d'un mélange de gaz de l'air enrichi en argon.
10. Colonne suivant l'une quelconque des revendications 1 à 9 caractérisée en ce qu'elle comprend au moins deux sections (10, 11) l'une au-dessus de l'autre, dont au moins la section supérieure (10) a un tronçon inférieur (10A) comprenant au moins un module de garnissage qui possède un nombre d'unités de transfert inférieur à celui d'au moins un module de garnissage de l'autre tronçon de garnissage (10B) de la même section d'échange et une espace définie entre les deux sections, cette espace ne contenant ni de distributeur ni d' arrivée de fluide de 1' extérieur .
11. Colonne selon l'une des revendications précédentes dans lequel la section est comprise entre une entrée ou une sortie de fluide et un distributeur de liquide .
12. Colonne selon l'une des revendications précédentes dans lequel la section est comprise entre une première entrée ou sortie de fluide et une deuxième entrée ou sortie de fluide
13. Procédé de séparation d'un gaz de l'air utilisant une colonne selon l'une des revendications précédentes dans lequel la colonne opère à une pression inférieure à 4 bars abs .
14. Procédé de séparation d'un gaz de l'air selon la revendication 13 dans lequel la colonne opère à une pression inférieure à 2 bars abs et constitue la colonne basse pression d'une double colonne ou une colonne de séparation d'argon alimenté par un débit de gaz de l'air enrichi en argon .
PCT/FR2009/050596 2008-04-07 2009-04-07 Colonne à garnissage d'échange de chaleur et/ou matière WO2009136061A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801117607A CN101980775A (zh) 2008-04-07 2009-04-07 具有热交换和/或物料交换填料的塔
EP09742259A EP2265368A2 (fr) 2008-04-07 2009-04-07 Colonne à garnissage d'échange de chaleur et/ou matière
US12/935,929 US9108179B2 (en) 2008-04-07 2009-04-07 Column with heat and/or material exchange packing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0852300 2008-04-07
FR0852300A FR2929532B1 (fr) 2008-04-07 2008-04-07 Colonne a garnissage d'echange de chaleur et/ou matiere

Publications (2)

Publication Number Publication Date
WO2009136061A2 true WO2009136061A2 (fr) 2009-11-12
WO2009136061A3 WO2009136061A3 (fr) 2010-04-08

Family

ID=39730758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/050596 WO2009136061A2 (fr) 2008-04-07 2009-04-07 Colonne à garnissage d'échange de chaleur et/ou matière

Country Status (5)

Country Link
US (1) US9108179B2 (fr)
EP (1) EP2265368A2 (fr)
CN (1) CN101980775A (fr)
FR (1) FR2929532B1 (fr)
WO (1) WO2009136061A2 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9630123B2 (en) * 2011-12-16 2017-04-25 Air Products And Chemicals, Inc. Liquid distributor with a mixer
US9488408B2 (en) 2014-01-29 2016-11-08 Praxair Technology, Inc. Condenser-reboiler system and method
US9366476B2 (en) 2014-01-29 2016-06-14 Praxair Technology, Inc. Condenser-reboiler system and method with perforated vent tubes
CN105126369B (zh) * 2015-07-16 2018-08-14 南京凯燕环保科技有限公司 可实现高效清洁的再生溶剂生产用蒸馏塔
CN104998430B (zh) * 2015-07-16 2018-08-14 南京凯燕环保科技有限公司 适用于再生溶剂生产的蒸馏塔
FR3059569B1 (fr) * 2016-12-07 2019-01-25 IFP Energies Nouvelles Colonne d'echange de chaleur et/ou de matiere entre un gaz et un liquide comprenant un contacteur et des moyens de restriction

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1004046A (en) 1962-07-31 1965-09-08 Sulzer Ag Material exchange columns
CA1095827A (fr) 1976-01-16 1981-02-17 Max Huber Tubes de garnissage pour colonnes de transfert de liquides
WO1986006296A1 (fr) 1985-04-27 1986-11-06 Gerd Wilhelm Materiau de garnissage tourbillonnaire forme d'elements de type pyramidal et procede de construction de l'emballage
WO1990010497A1 (fr) 1989-03-09 1990-09-20 Gebrüder Sulzer Aktiengesellschaft Garniture a passages multiples pour la generation de tourbillons
EP0845293A1 (fr) 1996-11-28 1998-06-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif d'échange de matière et de chaleur
EP1186843A1 (fr) 2000-09-11 2002-03-13 L'air Liquide Société Anonyme pour l'étude et l'exploitation des procédés Georges Claude Colonne à garnissage d'échange de chaleur et/ou de matière

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH617357A5 (fr) * 1977-05-12 1980-05-30 Sulzer Ag
GB8921428D0 (en) * 1989-09-22 1989-11-08 Boc Group Plc Separation of air
US5139544A (en) * 1990-10-22 1992-08-18 Koch Engineering Company, Inc. Gas-liquid contact column with improved mist eliminator and method
EP0491591B1 (fr) * 1990-12-17 1996-05-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Colonne de distillation d'air à garnissage ondulé-croisé
US5237823A (en) * 1992-03-31 1993-08-24 Praxair Technology, Inc. Cryogenic air separation using random packing
US5339648A (en) * 1993-08-05 1994-08-23 Praxair Technology, Inc. Distillation system with partitioned column
US5419136A (en) * 1993-09-17 1995-05-30 The Boc Group, Inc. Distillation column utilizing structured packing having varying crimp angle
US5644932A (en) * 1996-05-21 1997-07-08 Air Products And Chemicals, Inc. Use of structured packing in a multi-sectioned air seperation unit
US5901575A (en) * 1997-08-25 1999-05-11 Air Products And Chemicals, Inc. Stackable structured packing with controlled symmetry
US6713158B2 (en) * 1999-06-25 2004-03-30 The Boc Group, Inc. Structured packing
DE19936380A1 (de) * 1999-08-03 2001-02-08 Basf Ag Geordnete Packung zum Wärme- und Stoffaustausch
DE10010810A1 (de) * 2000-03-08 2001-09-13 Montz Gmbh Julius Flüssigkeitsverteiler und Verfahren zum Betreiben
DE10124386A1 (de) * 2001-05-18 2002-11-28 Basf Ag Verfahren zur Destillation oder Reaktivdestillation eines Gemisches, das mindestens eine toxische Komponente enthält
FR2827526A1 (fr) * 2001-07-20 2003-01-24 Air Liquide Bande d'interface,garnissage correspondant,et appareil de traitement de fluide(s) correspondant.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1004046A (en) 1962-07-31 1965-09-08 Sulzer Ag Material exchange columns
CA1095827A (fr) 1976-01-16 1981-02-17 Max Huber Tubes de garnissage pour colonnes de transfert de liquides
WO1986006296A1 (fr) 1985-04-27 1986-11-06 Gerd Wilhelm Materiau de garnissage tourbillonnaire forme d'elements de type pyramidal et procede de construction de l'emballage
WO1990010497A1 (fr) 1989-03-09 1990-09-20 Gebrüder Sulzer Aktiengesellschaft Garniture a passages multiples pour la generation de tourbillons
EP0845293A1 (fr) 1996-11-28 1998-06-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif d'échange de matière et de chaleur
EP1186843A1 (fr) 2000-09-11 2002-03-13 L'air Liquide Société Anonyme pour l'étude et l'exploitation des procédés Georges Claude Colonne à garnissage d'échange de chaleur et/ou de matière

Also Published As

Publication number Publication date
US20110023542A1 (en) 2011-02-03
FR2929532A1 (fr) 2009-10-09
WO2009136061A3 (fr) 2010-04-08
CN101980775A (zh) 2011-02-23
US9108179B2 (en) 2015-08-18
EP2265368A2 (fr) 2010-12-29
FR2929532B1 (fr) 2010-12-31

Similar Documents

Publication Publication Date Title
EP1186843B1 (fr) Colonne à garnissage d'échange de chaleur et/ou de matière
EP2265368A2 (fr) Colonne à garnissage d'échange de chaleur et/ou matière
EP0130122B2 (fr) Dispositif pour vaporiser un liquide par échange de chaleur avec un deuxième fluide et installation de distillation d'air comprenant un tel dispositif
EP0491591B1 (fr) Colonne de distillation d'air à garnissage ondulé-croisé
EP0546947B1 (fr) Echangeur de chaleur indirect du type à plaques
EP0566435B1 (fr) Echangeur de chaleur à ruissellement et installation de distillation d'air comportant un tel échangeur
FR3030309A1 (fr) Plateau distributeur pour colonne d'echange de chaleur et/ou de matiere comprenant des moyens de bullage
WO2005092491A1 (fr) Structure de garnissage ondule-croise
EP1073515A1 (fr) Structure maritime flottante perfectionnee
EP3323484B1 (fr) Plâteau distributeur pour colonne d'échange comprenant un matériau dispersif au sein d'une cheminée pour le passage du gaz et son utilisation dans la colonne
US6286818B1 (en) Internal members for mass transfer columns
FR2812935A1 (fr) Echangeur thermique a blocs echangeurs multiples a ligne d'alimentation en fluide a distribution uniforme, et vaporiseur-condenseur comportant un tel echangeur
EP3628386B1 (fr) Enceinte de colonne de distillation
EP3105520B1 (fr) Colonne de séparation d'air par distillation cryogénique, appareil de séparation d'air comportant une telle colonne et procédé de fabrication d'une telle colonne
WO2004102095A1 (fr) Installation de distribution comprenant des colonnes a garnissages structures ondules-croises et procede d’augmentation de capacite d’une installation de distillation
EP2368084B1 (fr) Échangeur de chaleur
FR2676371A1 (fr) Colonne de distillation d'air a garnissage ondule-croise.
FR2988821A1 (fr) Colonne de separation pour une installation de fractionnement de l'air a basse temperature ainsi qu'une installation et un procede utilisant une telle colonne.
EP4098339B1 (fr) Système de purification d' argon par distillation cryogénique
EP2918335A1 (fr) Contacteur pour colonne d'echange constitue de compartiments de garnissage vrac
FR2827527A1 (fr) Module d'interface,son procede de fabrication,et appareil de fluide(s) comportant un module d'interface correspondant.
FR3136384A1 (fr) Colonne d’échange de matière et de chaleur équipée de garnissage ondulé-croisé en mousse métallique
WO2020174173A1 (fr) Matrice intégrant au moins une fonction d'échange thermique et une fonction de distillation
EP3971504A1 (fr) Appareil et procédé de séparation d'air par distillation cryogénique
FR2915111A1 (fr) Colonne d'echange de matiere et/ou de chaleur a garnissages structures.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111760.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09742259

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2009742259

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009742259

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12935929

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE