EP3105520B1 - Colonne de séparation d'air par distillation cryogénique, appareil de séparation d'air comportant une telle colonne et procédé de fabrication d'une telle colonne - Google Patents

Colonne de séparation d'air par distillation cryogénique, appareil de séparation d'air comportant une telle colonne et procédé de fabrication d'une telle colonne Download PDF

Info

Publication number
EP3105520B1
EP3105520B1 EP15706916.2A EP15706916A EP3105520B1 EP 3105520 B1 EP3105520 B1 EP 3105520B1 EP 15706916 A EP15706916 A EP 15706916A EP 3105520 B1 EP3105520 B1 EP 3105520B1
Authority
EP
European Patent Office
Prior art keywords
column
section
sections
distillation
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15706916.2A
Other languages
German (de)
English (en)
Other versions
EP3105520A2 (fr
Inventor
Patrice Cavagne
Olivier De Cayeux
Natacha Haik-Beraud
Nathalie Schmitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP3105520A2 publication Critical patent/EP3105520A2/fr
Application granted granted Critical
Publication of EP3105520B1 publication Critical patent/EP3105520B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/0403Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04036Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04042Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of argon or argon enriched stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/0489Modularity and arrangement of parts of the air fractionation unit, in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04896Details of columns, e.g. internals, inlet/outlet devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04896Details of columns, e.g. internals, inlet/outlet devices
    • F25J3/04909Structured packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04896Details of columns, e.g. internals, inlet/outlet devices
    • F25J3/04915Combinations of different material exchange elements, e.g. within different columns
    • F25J3/04921Combinations of different material exchange elements, e.g. within different columns within the same column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04969Retrofitting or revamping of an existing air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/10Mathematical formulae, modeling, plot or curves; Design methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/42Modularity, pre-fabrication of modules, assembling and erection, horizontal layout, i.e. plot plan, and vertical arrangement of parts of the cryogenic unit, e.g. of the cold box

Definitions

  • the present invention relates to a column for separating air by cryogenic distillation, to an apparatus for separating air comprising such a column and to a process for manufacturing such a column.
  • An air distillation installation allowing the production of argon generally consists of a medium pressure column, typically operating at around 6 bar absolute, surmounted by a low pressure column typically operating slightly above atmospheric pressure and at which is coupled to a column for the production of impure argon.
  • a condenser-vaporizer puts the overhead vapor of the medium-pressure column, consisting of nearly pure nitrogen, in a heat exchange relationship with the bottom liquid of the low-pressure column, consisting of nearly pure oxygen.
  • the low pressure column comprises a distillation section, immediately above the latter, a first intermediate distillation section, and several sections above the first intermediate distillation section, generally between two and three.
  • Each of the distillation sections consists of blocks of structured packing of the "corrugated-crossed" type.
  • a corrugated-crossed packing block consists of a pack of corrugated lamellae each arranged in a generally vertical plane and joined to one another, each lamella having a generally rectangular shape.
  • the slats are wavy obliquely, and the direction of inclination of the waves is reversed from one slat to the next.
  • All lamellae have the same height, while their length, or horizontal dimension, increases from a minimum value, for an extreme lamella, to a maximum value for the middle lamella, and then decreases to the same minimum value for the another extreme lamella.
  • Each of the sections is a continuous packing section, that is to say a section consisting of a direct stack of elementary blocks on top of each other, without any intermediate fluid redistribution device, each elementary block being rotated 90 °, around the axis of the column, with respect to the two adjacent layers.
  • the first intermediate distillation section has a smaller section than the other sections and is therefore in the middle of the low pressure column with an annular section space between the edge of the section and the main shell of the column.
  • the column is designed so that the more argon-rich vapor can be drawn off into this annular section space below a baffle which divides the space into a lower section and an upper section vertically. This vapor then feeds the argon column.
  • the bottom liquid of the argon column is also returned to the lower section from which the vapor richest in argon is withdrawn.
  • the vaporized rich liquid from the top condenser of the argon column is sent to the upper section of the space.
  • the first intermediate distillation section is separated from the adjacent sections by distributors.
  • This reduced diameter for this first intermediate distillation section is possible, without increasing the diameter of the column because this section is not sizing. Indeed, a fairly large quantity of gas passes through the argon column and therefore does not pass through this section.
  • this reduced-section section is not installed, according to the prior art.
  • One of the objects of the present invention is to design a low pressure column which is suitable for production with or without argon.
  • the idea is to use a column with a first intermediate distillation section with a reduced section, with or without production of argon, and optionally to modify the density of the packing in this section, with a lower density for the case without production of argon. argon and a higher density for the case with argon production.
  • the invention makes it possible to have a standardized model for the low pressure column, with or without production of argon. This also makes it possible to standardize the architecture of the cold box, including the fluid supply lines. The delivery time to the customer can therefore be reduced because it is possible to manufacture the column before deciding on the need for argon production or not.
  • EP-A-0 664 144 describes a low pressure column of an air separation apparatus for use with argon production in which all the openings present are intended to be used. It is therefore not a standardized column intended to be adapted for different subsequent uses.
  • an air separation device comprising a medium pressure column thermally connected to a low pressure column as described above not comprising means for sending a fluid from a level intermediary of the low pressure column to another column to be separated there.
  • rich liquid used here is a term of the art to designate a liquid enriched in oxygen with respect to air.
  • the air distillation installation whose low pressure column is shown in Figure 1 consists of a medium pressure column 1, typically operating at around 6 bar absolute, surmounted by the low pressure column 2 typically operating slightly above atmospheric pressure. Note the absence of any impure or pure argon production column.
  • a condenser-vaporizer 4 puts the overhead vapor of column 1, consisting of nearly pure nitrogen, in heat exchange relationship with the bottom liquid of column 2, consisting of nearly pure oxygen.
  • Column 1 receives pressurized and purified air to be separated and produces a liquid flow enriched in oxygen and a liquid flow enriched in nitrogen, which are both sent to the low pressure column 2.
  • FIG. 1 The illustration of the Figure 1 is very schematic and essentially aims to show the fluid inlets/outlets of the installation, as well as the distillation sections that they define.
  • Section 29 is shown in dotted lines because its presence is not essential.
  • the first intermediate section 25 is a cylindrical body composed of packings surrounded by an auxiliary shroud of smaller diameter than the shroud of the column. It is arranged inside the column shroud and surrounded by a space with an annular section delimited by the column shroud and the auxiliary shroud surrounding the packings.
  • An annular sealing member 71 tightly connects the shell of the column and the auxiliary shell.
  • Each of the distillation sections 24 to 29 consists of blocks of organized packing of the "corrugated-crossed" type.
  • a corrugated-crossed packing block consists of a pack of corrugated lamellae each arranged in a generally vertical plane and joined to one another, each lamella having a generally rectangular shape.
  • the slats are wavy obliquely, and the direction of inclination of the waves is reversed from one slat to the next. All slats have the same height, while their length, or horizontal dimension, increases from a minimum value, for an extreme lamella, to a maximum value for the middle lamella, then decreases to the same minimum value for the other extreme lamella.
  • Each of the sections 24 to 29 is a continuous packing section, that is to say a section consisting of a direct stack of elementary layers (in English "packs") on top of each other, without any device for redistributing intermediate fluid, each elementary layer being turned by 90°, around the axis of the column, with respect to the two adjacent layers.
  • This is made possible, despite the great height of certain sections, in particular sections 24 and 28, which can comprise respectively 38 and 50 theoretical plates, thanks to several characteristics which will appear below.
  • distillation sections 24 and 25 on the one hand, 25 and 26 on the other hand, 26 and 27, 27 and 28, finally 28 and 29, are separated from each other by a distributor.
  • the low pressure column is not intended to be connected to an argon production column, it nevertheless contains the reduced section section 25 which is generally used for low pressure columns supplying an argon production column.
  • the packings used for the five sections 24 to 28 are identical, the packings used for the first intermediate section 25 are less dense than those of the sections 24, 26, 27 , 28 and possibly 29.
  • the presence of the section 29 is not essential.
  • the packing for section 25 can have an average density of 350 m 2 /m 3 whereas the average density of the packings for the sections 24 and 26 will be 500 m 2 /m 3 .
  • the goal is to choose, for the case without argon, a section which has a higher clogging limit than for the case with argon.
  • This limit difference can be obtained by various means, for example by choosing sections made of packings of different geometries, with or without a modified bottom edge to reduce the resistance to the passage of gas etc.
  • a rich liquid inlet (liquid enriched in oxygen) is provided. Upstream of the column, the liquid is expanded to partially vaporize and it is a liquid flow 6 and a gaseous flow 6A which are sent to the space between the two sections.
  • a liquefied air inlet is provided. Upstream of the column, the liquid is expanded to partially vaporize and it is a liquid flow 8 and a gaseous flow 8A which are sent to the space between the two sections.
  • a liquid nitrogen inlet 17 is provided as well as a liquid nitrogen inlet 18 at the head of the minaret section. If there is no minaret, liquid nitrogen is sent to the head of the column.
  • the Figure 1 therefore illustrates the standardized column 2 connected to function as the low pressure column of a double column without production of argon.
  • the packings of section 25 will have the same density as those of sections 24, 26, 27, 28 and possibly 29 (for example 500 m 2 /m 3 ). On the other hand, it will be necessary to provide openings in the column as illustrated for the Figure 2 .
  • the interior of the column will therefore be identical to that of the Figure 1 apart from the capacity of section 25.
  • a pipe 20 is connected to the lower section below the barrier 71 to supply an argon-enriched gas to the argon separation column.
  • the bottom liquid of this column arrives in the lower section via line 21.
  • the rich liquid vaporized in the top condenser of the argon column arrives via line 13 in the upper section.
  • the rich liquid 6 and the vaporized rich liquid 6A arrive between the second and third intermediate sections 26, 27 and the liquefied air 8 and the vaporized liquefied air 8A arrive between the third intermediate section 27 and the section upper 28.
  • the nitrogen inlets are identical to those of the Figure 1 .
  • openings are drilled between the first and second intermediate sections 25, 26, the second and third intermediate sections 26, 27 and between the third intermediate section 27 and the upper section 28.
  • the column is therefore manufactured with openings allowing the subsequent connection of fluid pipes intended for or coming from the argon column and also those allowing the connection to the medium column pressure in the case of argon production or not.
  • a blind flange, or another system will then be put in place to block off the unused inputs and outputs in the case of production without argon and to block off other unused inputs and outputs in the case of production with argon.
  • the opening between the first and second intermediate sections 25, 26 will be blocked, the opening between the second and third intermediate sections 26, 27 will allow the arrival of rich liquid and between the third intermediate section 27 and the upper section 28 of liquefied air.
  • the opening between the first and second intermediate sections 25, 26 will allow the arrival of rich liquid
  • the opening between the second and third intermediate sections 26, 27 will allow the arrival of liquefied air
  • the opening between the third intermediate section 27 and the upper section 28 of air will be blocked.
  • column 2 designed for argon production and column 2 designed not to produce argon.
  • the type or the dimensions of the distributors may vary from one column to another.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

  • La présente invention est relative à une colonne de séparation d'air par distillation cryogénique, à un appareil de séparation d'air comportant une telle colonne et à un procédé de fabrication d'une telle colonne.
  • Il est parfois nécessaire de modifier les dessins d'un appareil de séparation d'air en cours de conception, en fonction d'un changement des besoins du client. Par exemple, le client peut s'apercevoir qu'il aura besoin d'une production d'argon alors que l'appareil est déjà conçu sans production d'argon, voire existe sans colonne d'argon.
  • Une façon de résoudre ce problème est de concevoir l'appareil avec une colonne capable de produire de l'argon mais qui déverse le gaz épuré en argon dans l'azote résiduaire quand l'argon n'est pas requis. Il est également possible d'augmenter les dimensions de la colonne basse pression. Ces deux solutions nécessitent d'augmenter les coûts d'investissement.
  • Une installation de distillation d'air permettant la production d'argon est généralement constituée d'une colonne moyenne pression, fonctionnant typiquement sous environ 6 bars absolus, surmontée d'une colonne basse pression fonctionnant typiquement légèrement au-dessus de la pression atmosphérique et à laquelle est couplée une colonne de production d'argon impur. Un condenseur-vaporiseur met en relation d'échange thermique la vapeur de tête de la colonne moyenne pression, constituée d'azote à peu près pur, et le liquide de cuve de la colonne basse pression, constitué d'oxygène à peu près pur.
  • La colonne basse pression comprend un tronçon de distillation, immédiatement au-dessus de celui-ci, un premier tronçon de distillation intermédiaire, et plusieurs tronçons au-dessus du premier tronçon de distillation intermédiaire, généralement entre deux et trois.
  • Chacun des tronçons de distillation est constitué par des blocs de garnissage structuré du type « ondulé-croisé ».
  • Comme il est bien connu, un bloc de garnissage ondulé-croisé est constitué d'un paquet de lamelles ondulées disposées chacune dans un plan général vertical et accolées les unes aux autres, chaque lamelle ayant une forme générale rectangulaire. Les lamelles sont ondulées en oblique, et le sens d'inclinaison des ondes est inversé d'une lamelle à la suivante. Toutes les lamelles ont la même hauteur, tandis que leur longueur, ou dimension horizontale, augmente d'une valeur minimale, pour une lamelle extrême, à une valeur maximale pour la lamelle médiane, puis diminue jusqu'à la même valeur minimale pour l'autre lamelle extrême.
  • Chacun des tronçons est un tronçon de garnissage continu, c'est-à-dire un tronçon constitué d'un empilement direct de blocs élémentaires les uns sur les autres, sans aucun dispositif de redistribution de fluide intermédiaire, chaque bloc élémentaire étant tourné de 90°, autour de l'axe de la colonne, par rapport aux deux couches adjacents.
  • Le premier tronçon de distillation intermédiaire, comme décrit dans EP-A-0664144 , a une section plus petite que celle des autres tronçons et se trouve donc au milieu de la colonne basse pression avec un espace à section annulaire entre le bord du tronçon et la virole principale de la colonne. La colonne est conçue de sorte que la vapeur plus riche en argon puisse être soutirée dans cette espace à section annulaire en dessous d'une baffe qui divise l'espace en une section inférieure et une section supérieure verticalement. Cette vapeur alimente ensuite la colonne argon. Le liquide de cuve de la colonne argon est également renvoyé dans la section inférieure d'où est soutirée la vapeur la plus riche en argon. Le liquide riche vaporisé provenant du condenseur de tête de la colonne argon est envoyé en la section supérieure de l'espace.
  • Le premier tronçon de distillation intermédiaire est séparé des tronçons adjacents par des distributeurs.
  • Ainsi les soutirages et l'alimentation de gaz dans la colonne, liés à la production d'argon, ne rajoutent pas à la hauteur de la colonne.
  • Le diamètre réduit pour ce premier tronçon de distillation intermédiaire est possible, sans augmenter le diamètre de la colonne parce que ce tronçon n'est pas dimensionnant. En effet, une quantité de gaz assez important passe à la colonne argon et donc ne transite pas par ce tronçon.
  • Quand l'installation est conçue pour ne pas produire de l'argon, ce tronçon à section réduite n'est pas installé, selon l'art antérieur.
  • Un des buts de la présente invention est de concevoir une colonne basse pression qui convient à une production avec ou sans argon. L'idée est d'utiliser une colonne avec premier tronçon de distillation intermédiaire à section réduite, avec ou sans production d'argon, et optionnellement de modifier la densité du garnissage dans ce tronçon, avec une densité plus basse pour le cas sans production d'argon et une densité plus élevée pour le cas avec production d'argon.
  • L'invention permet d'avoir un modèle standardisé pour la colonne basse pression, avec ou sans production d'argon. Ceci permet de plus de standardiser l'architecture de la boîte froide, y compris les conduites d'amenée de fluides. Le temps de livraison au client peut donc être réduit car il est possible de fabriquer la colonne avant de statuer sur la nécessité de production d'argon ou pas.
  • Il est connu d'augmenter la capacité d'un tronçon de garnissage en modifiant la géométrie des garnissages, tel que décrit dans EP-A-0707885 .
  • EP-A-0 664 144 décrit une colonne basse pression d'un appareil de séparation d'air pour un usage avec production d'argon dans laquelle toutes les ouvertures présentes sont destinées à être utilisées. Il ne s'agit donc pas d'une colonne standardisée destinée à être adaptée pour des usages ultérieurs différents.
  • Selon un objet de l'invention, il est prévu une colonne selon la revendication 1.
  • Selon un autre objet facultatif de l'invention, la colonne comprend :
    • des ouvertures dans la virole prévues pour relier la section supérieure et la section inférieure avec l'extérieur de la colonne qui ont été condamnées
    • le garnissage dans le premier tronçon intermédiaire a une densité inférieure d'au moins 50 m2/m3 à celle d'au moins un des tronçons adjacents.
    • le garnissage dans le premier tronçon intermédiaire a une géométrie différente à celle d'au moins un des tronçons adjacents.
  • Selon un autre objet de l'invention, il est prévu un appareil de séparation d'air comprenant une colonne moyenne pression reliée thermiquement à une colonne basse pression tel que décrit ci-dessus ne comprenant pas de moyens pour envoyer un fluide d'un niveau intermédiaire de la colonne basse pression à une autre colonne pour y être séparé.
  • Selon un autre objet de l'invention, il est prévu un procédé selon la revendication 6.
  • Le terme « liquide riche » utilisé ici est un terme de l'art pour désigner un liquide enrichi en oxygène par rapport à l'air.
  • De manière générale, il est intéressant de concevoir une version standardisée de la colonne moyenne pression ainsi que le bas de la colonne basse pression (au moins un tronçon), quels que soient les produits requis et de concevoir le reste de la colonne basse pression en fonction des besoins du client
  • Des exemples de réalisation de l'invention vont maintenant être décrits en regard des dessins annexes, sur lesquels :
    • la Figure 1 représente schématiquement une colonne basse pression d'un appareil de distillation d'air selon l'invention adaptée pour un usage sans production d'argon
    • la Figure 2 représente schématiquement une colonne basse pression d'un appareil de distillation d'air construite utilisant le procédé de fabrication de l'invention étant adaptée pour un usage avec production d'argon
  • L'installation de distillation d'air dont la colonne basse pression est représentée à la Figure 1 est constituée d'une colonne moyenne pression 1, fonctionnant typiquement sous environ 6 bars absolus, surmontée de la colonne basse pression 2 fonctionnant typiquement légèrement au-dessus de la pression atmosphérique. On note l'absence de toute colonne de production d'argon impur ou pur. Un condenseur-vaporiseur 4 met en relation d'échange thermique la vapeur de tête de la colonne 1, constituée d'azote à peu près pur, et le liquide de cuve de la colonne 2, constitué d'oxygène à peu près pur.
  • La colonne 1 reçoit de l'air pressurisé et épuré à séparer et produit un débit liquide enrichi en oxygène et un débit liquide enrichi en azote, qui sont envoyés tous deux à la colonne basse pression 2.
  • L'illustration de la Figure 1 est très schématique et a essentiellement pour but de montrer les entrées/sorties de fluides de l'installation, ainsi que les tronçons de distillation qu'elles définissent.
  • La virole principale de la colonne basse pression 2 comprend six tronçons de distillation, à savoir :
    • un tronçon de distillation inférieur 24 compris entre la cuve de la colonne avec sa sortie de liquide 10 et le premier tronçon de distillation intermédiaire 25
    • immédiatement au-dessus du tronçon 24 avec un distributeur (non-illustré) entre les deux, le premier tronçon de distillation intermédiaire 25 en dessous de l'entrée de liquide 6, la section du premier tronçon de distillation intermédiaire étant inférieure à celle du tronçon inférieur 24
    • un deuxième tronçon de distillation intermédiaire 26 entre le premier et troisième tronçon de distillation intermédiaire
    • un troisième tronçon de distillation intermédiaire 27 entre le deuxième tronçon intermédiaire et un tronçon de distillation supérieur 28,
    • un tronçon de distillation supérieur 28 compris entre le troisième tronçon de distillation intermédiaire et un tronçon de minaret 29
    • le tronçon de minaret 29 qui a une section inférieure à celle du tronçon de distillation supérieur.
  • La section du premier tronçon de distillation intermédiaire étant inférieure à celles du tronçon inférieur, du tronçon supérieur et des deuxième et troisième tronçons intermédiaires. Le tronçon 29 est montré en pointillés car sa présence n'est pas essentielle.
  • Le premier tronçon intermédiaire 25 est un corps cylindrique composé de garnissages entouré d'une virole auxiliaire de plus petit diamètre que la virole de la colonne. Il est disposé à l'intérieur de la virole de la colonne et entouré d'une espace à section annulaire délimité par la virole de la colonne et la virole auxiliaire entourant les garnissages. Un organe d'étanchéité annulaire 71 relie à joint étanche la virole de la colonne et la virole auxiliaire.
  • Chacun des tronçons de distillation 24 à 29 est constitué par des blocs de garnissage organisé du type « ondulé-croisé ».
  • Comme il est bien connu, un bloc de garnissage ondulé-croisé est constitué d'un paquet de lamelles ondulées disposées chacune dans un plan général vertical et accolées les unes aux autres, chaque lamelle ayant une forme générale rectangulaire. Les lamelles sont ondulées en oblique, et le sens d'inclinaison des ondes est inversé d'une lamelle à la suivante. Toutes les lamelles ont la même hauteur, tandis que leur longueur, ou dimension horizontale, augmente d'une valeur minimale, pour une lamelle extrême, à une valeur maximale pour la lamelle médiane, puis diminue jusqu'à la même valeur minimale pour l'autre lamelle extrême.
  • Chacun des tronçons 24 à 29 est un tronçon de garnissage continu, c'est-à-dire un tronçon constitué d'un empilement direct de couches (en anglais « packs ») élémentaires les uns sur les autres, sans aucun dispositif de redistribution de fluide intermédiaire, chaque couche élémentaire étant tourné de 90°, autour de l'axe de la colonne, par rapport aux deux couches adjacents. Ceci est rendu possible, malgré la grande hauteur de certains tronçons, notamment des tronçons 24 et 28, qui peuvent comporter respectivement 38 et 50 plateaux théoriques, grâce à plusieurs caractéristiques qui apparaitront dans la suite.
  • Les tronçons de distillation 24 et 25 d'une part, 25 et 26 d'autre part, 26 et 27, 27 et 28, enfin 28 et 29, sont séparés les uns des autres par un distributeur.
  • Alors que la colonne basse pression n'est pas destinée à être reliée à une colonne de production d'argon, elle contient néanmoins le tronçon 25 à section réduite qui est généralement utilisé pour les colonnes basse pression alimentant une colonne de production d'argon.
  • Alors que dans une colonne basse pression alimentant une colonne de production d'argon, les garnissages utilisés pour les cinq tronçons 24 à 28 sont identiques, les garnissages utilisés pour le premier tronçon intermédiaire 25 sont moins denses que ceux des tronçons 24, 26, 27, 28 et éventuellement 29. La présence du tronçon 29 n'est pas essentielle.
  • Ceci veut dire qu'en construisant la colonne, la décision de la capacité de garnissage à installer dans le premier tronçon intermédiaire peut être prise très tardivement, dès que la décision est prise de produire de l'argon ou pas. La virole principale et les connexions extérieures peuvent être fabriquées et seule l'installation du tronçon 25 détermine l'usage ultime que l'on fera de la colonne 2.
  • Afin de modifier la capacité du garnissage du tronçon 25, plusieurs possibilités s'ouvrent. Comme proposé dans EP-A-0707885 , il est possible de modifier les bords du tronçon de garnissage afin de réduire la résistance au passage de gaz dans la partie inférieure et/ou supérieure du tronçon par rapport à l'intérieur du tronçon.
  • Il est également possible de choisir un garnissage moins dense d'au moins 50m2/m3 pour le tronçon 25 que pour les tronçons 24 et 26. Ainsi le garnissage pour le tronçon 25 peut avoir une densité moyenne de 350 m2/m3 alors que la densité moyenne des garnissages pour les tronçons 24 et 26 sera de 500 m2/m3.
  • Le but est de choisir, pour le cas sans argon, un tronçon qui a une limite d'engorgement plus élevée que pour le cas avec argon. Cette différence de limite peut être obtenue de divers moyens, par exemple en choisissant des tronçons faits de garnissages de géométries différentes, avec ou sans un bord bas modifié pour réduire la résistance au passage de gaz etc.
  • Entre le premier et le deuxième tronçon intermédiaire, une arrivée de liquide riche (liquide enrichi en oxygène) est prévue. En amont de la colonne, le liquide est détendu pour se vaporiser partiellement et ce sont un débit liquide 6 et un débit gazeux 6A qui sont envoyés à l'espace entre les deux tronçons.
  • Entre le deuxième et le troisième tronçon intermédiaires, une arrivée d'air liquéfié est prévue. En amont de la colonne, le liquide est détendu pour se vaporiser partiellement et ce sont un débit liquide 8 et un débit gazeux 8A qui sont envoyés à l'espace entre les deux tronçons.
  • Entre le tronçon supérieur 28 et le tronçon de minaret 29 (optionnel), une arrivée d'azote liquide 17 est prévue ainsi qu'une arrivée d'azote liquide 18 en tête de tronçon de minaret. En cas d'absence de minaret, l'azote liquide est envoyé en tête de colonne.
  • La Figure 1 illustre donc la colonne standardisée 2 reliée pour fonctionner comme la colonne basse pression d'une double colonne sans production d'argon.
  • S'il est décidé d'utiliser la même colonne 2 pour être la colonne alimentant une colonne de production d'argon, les garnissages du tronçon 25 auront la même densité que ceux des tronçons 24, 26,27, 28 et éventuellement 29 (par exemple 500 m2/m3). Par contre, il va falloir prévoir des ouvertures dans la colonne comme illustré pour la Figure 2.
  • L'intérieur de la colonne sera donc identique à celui de la Figure 1 à part la capacité du tronçon 25. Au niveau du tronçon 25, une conduite 20 est reliée à la section inférieure en dessous de la barrière 71 pour amener un gaz enrichi en argon vers la colonne de séparation d'argon. Le liquide de cuve de cette colonne arrive dans la section inférieure via la conduite 21. Le liquide riche vaporisé dans le condenseur de tête de la colonne argon arrive par la conduite 13 dans la section supérieure.
  • Pour les débits de reflux, le liquide riche 6 et le liquide riche vaporisé 6A arrivent entre les deuxième et troisième tronçons intermédiaires 26, 27 et l'air liquéfié 8 et l'air liquéfié vaporisé 8A arrivent entre le troisième tronçon intermédiaire 27 et le tronçon supérieur 28. Les arrivées d'azote sont identiques à celles de la Figure 1.
  • Ainsi avant de savoir si la colonne 2 servira pour produire de l'argon ou pas, des ouvertures sont percées entre les premier et deuxième tronçons intermédiaires 25, 26, les deuxième et troisième tronçons intermédiaires 26, 27 et entre le troisième tronçon intermédiaire 27 et le tronçon supérieur 28. La colonne est donc fabriquée avec des ouvertures permettant la connexion ultérieure de conduites de fluides destinés à ou provenant de la colonne argon et également celles permettant la connexion à la colonne moyenne pression dans le cas de production d'argon ou pas.
  • Une bride pleine, ou un autre système sera alors mis pour condamner les entrées et sorties inutilisées dans le cas de production sans argon et pour condamner d'autres entrées et sortie inutilisées dans le cas de production avec argon.
  • En cas de production d'argon, l'ouverture entre les premier et deuxième tronçons intermédiaires 25, 26 sera bouchée, l'ouverture entre les deuxième et troisième tronçons intermédiaires 26, 27 permettra l'arrivée de liquide riche et entre le troisième tronçon intermédiaire 27 et le tronçon supérieur 28 d'air liquéfié.
  • En l'absence de production d'argon, l'ouverture entre les premier et deuxième tronçons intermédiaires 25, 26 permettra l'arrivée de liquide riche, l'ouverture entre les deuxième et troisième tronçons intermédiaires 26, 27 permettra l'arrivée d'air liquéfié et l'ouverture entre le troisième tronçon intermédiaire 27 et le tronçon supérieur 28 d'air sera bouchée.
  • Il est néanmoins possible qu'il y ait d'autres différences entre la colonne 2 conçue pour une production d'argon et la colonne 2 conçue pour ne pas produire de l'argon. En particulier, le type ou les dimensions des distributeurs peuvent varier d'une colonne à l'autre.

Claims (6)

  1. Colonne de séparation d'air (2) par distillation cryogénique ayant une virole et au moins cinq tronçons de distillation (24, 25, 26, 27, 28, 29), chaque tronçon étant composé d'un empilement de blocs de garnissage organisé, du genre ondulé-croisé, chaque bloc comprenant un paquet de lamelles ondulées rectangulaires, les au moins cinq tronçons de distillation comprenant au moins un premier tronçon intermédiaire (25) de distillation de la colonne entouré d'une virole auxiliaire autour de laquelle est délimité dans le sens du rayon de la colonne un espace divisé en une section inférieure et une section supérieure, et un deuxième tronçon intermédiaire (26) de distillation étant disposé de sorte qu'en usage de la colonne le deuxième tronçon intermédiaire se trouve au-dessus du premier tronçon intermédiaire, les tronçons intermédiaires étant situés dans une partie intermédiaire de la colonne, la virole comprenant une première ouverture dans l'espace entre le premier et deuxième tronçons intermédiaires et une deuxième ouverture au-dessus du deuxième tronçon intermédiaire, les première et deuxième ouvertures étant adaptées à être reliées à une conduite d'arrivée de liquide et en usage de la colonne la deuxième ouverture étant ouverte, le garnissage est choisi de sorte qu'en usage de la colonne la capacité du premier tronçon intermédiaire est supérieure à celle(s) d'au moins un tronçon adjacent, voire à celle(s) des autres tronçons de la colonne et les au moins cinq tronçons de distillation comprenant un troisième tronçon intermédiaire de distillation (27) disposé de sorte qu'en usage de la colonne le troisième tronçon intermédiaire se trouve au-dessus du deuxième tronçon intermédiaire, la deuxième ouverture étant dans l'espace entre le deuxième et troisième tronçons intermédiaires et une troisième ouverture étant dans l'espace au-dessus du troisième tronçon et étant adaptée à être reliée à une conduite d'arrivée de liquide, et en usage de la colonne la troisième ouverture étant condamnée.
  2. Colonne selon la revendication 1 comprenant des ouvertures dans la virole prévues pour relier la section supérieure et la section inférieure avec l'extérieur de la colonne qui ont été condamnées.
  3. Colonne selon l'une des revendications précédentes dans lequel le garnissage dans le premier tronçon intermédiaire (25) a une densité inférieure d'au moins 50 m2/m3 à celle d'au moins un des tronçons adjacents (24, 26).
  4. Appareil de séparation d'air comprenant une colonne moyenne pression (1) reliée thermiquement à une colonne basse pression (2) selon l'une des revendications 1 à 3 ne comprenant pas de moyens pour envoyer un fluide d'un niveau intermédiaire de la colonne basse pression à une autre colonne pour y être séparé.
  5. Appareil selon la revendication 4 dans lequel la première ouverture est ouverte en usage de la colonne basse pression (2).
  6. Procédé de fabrication d'une colonne (2) d'un appareil de séparation d'air dans lequel
    a) on construit une colonne basse pression ayant une virole principale,
    b) on y installe au moins cinq tronçons de distillation (24, 25, 26, 27, 28, 29), chaque tronçon étant composé d'un empilement de blocs de garnissage organisé du genre ondulé-croisé, chaque bloc comprenant un paquet de lamelles ondulées rectangulaires, les au moins cinq tronçons de distillation comprenant au moins un premier tronçon intermédiaire (25) de distillation de la colonne basse pression étant entouré d'une virole auxiliaire autour de laquelle est délimité dans le sens du rayon de la colonne un espace divisé en une section inférieure et une section supérieure, un deuxième et un troisième tronçons intermédiaires de distillation (26,27) étant disposés de sorte qu'en usage de la colonne le deuxième tronçon intermédiaire (26) se trouve au-dessus du premier tronçon intermédiaire et le troisième tronçon intermédiaire (27) se trouve au-dessus du deuxième tronçon intermédiaire, les tronçons intermédiaires étant situés dans une partie intermédiaire de la colonne basse pression,
    c) on perce dans la virole principale une première ouverture dans l'espace entre le premier et deuxième tronçons intermédiaires, une deuxième ouverture dans l'espace entre les deuxième et troisième tronçons et une troisième ouverture dans l'espace au-dessus du troisième tronçon de telle manière que les première, deuxième et troisième ouvertures sont adaptées à être reliées à une conduite d'arrivée de liquide et
    i) si la colonne n'est pas destinée à être reliée à une colonne de production d'argon, on installe un garnissage pour le premier tronçon intermédiaire, le garnissage étant choisi de sorte qu'en usage de la colonne la capacité du premier tronçon intermédiaire est supérieure à celle(s) d'au moins un tronçon adjacent (24,26) , voire à celle(s) des autres tronçons de la colonne et on obstrue la troisième ouverture et on laisse les première et deuxième ouvertures ouvertes et
    ii) si la colonne est destinée à être reliée à une colonne de production d'argon, on installe un garnissage pour le premier tronçon intermédiaire, le garnissage étant choisi de sorte qu'en usage de la colonne la capacité du premier tronçon intermédiaire est la même que celle des autres tronçons de la colonne (24,26, 27,28, 29), on obstrue la première ouverture et on laisse les deuxième et troisième ouvertures ouvertes.
EP15706916.2A 2014-02-14 2015-02-13 Colonne de séparation d'air par distillation cryogénique, appareil de séparation d'air comportant une telle colonne et procédé de fabrication d'une telle colonne Active EP3105520B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1451166A FR3017698B1 (fr) 2014-02-14 2014-02-14 Colonne de separation d'air par distillation cryogenique, appareil de separation d'air comportant une telle colonne et procede de fabrication d'une telle colonne
PCT/FR2015/050355 WO2015121593A2 (fr) 2014-02-14 2015-02-13 Colonne de séparation d'air par distillation cryogénique, appareil de séparation d'air comportant une telle colonne et procédé de fabrication d'une telle colonne

Publications (2)

Publication Number Publication Date
EP3105520A2 EP3105520A2 (fr) 2016-12-21
EP3105520B1 true EP3105520B1 (fr) 2022-01-26

Family

ID=50513304

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15706916.2A Active EP3105520B1 (fr) 2014-02-14 2015-02-13 Colonne de séparation d'air par distillation cryogénique, appareil de séparation d'air comportant une telle colonne et procédé de fabrication d'une telle colonne

Country Status (5)

Country Link
US (1) US10473392B2 (fr)
EP (1) EP3105520B1 (fr)
CN (2) CN106211791B (fr)
FR (1) FR3017698B1 (fr)
WO (2) WO2015121594A2 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113474956B (zh) * 2019-02-25 2023-01-03 乔治洛德方法研究和开发液化空气有限公司 用于热和物质交换的设备
FR3123421B1 (fr) * 2021-05-27 2023-07-14 Air Liquide Système de purification d’argon par distillation cryogénique

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4784677A (en) * 1987-07-16 1988-11-15 The Boc Group, Inc. Process and apparatus for controlling argon column feedstreams
DE69119731T2 (de) * 1990-12-17 1996-11-14 Air Liquide Luftdistillationskolonne mit einer Well-cross Packung
DE4224068A1 (de) * 1992-03-20 1993-09-23 Linde Ag Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage
US5339648A (en) * 1993-08-05 1994-08-23 Praxair Technology, Inc. Distillation system with partitioned column
CN1091646C (zh) * 1994-10-04 2002-10-02 普莱克斯技术有限公司 用于精炼系统的高容量结构填料
US5946942A (en) * 1998-08-05 1999-09-07 Praxair Technology, Inc. Annular column for cryogenic rectification
US6202441B1 (en) * 1999-05-25 2001-03-20 Air Liquide Process And Construction, Inc. Cryogenic distillation system for air separation
US6240744B1 (en) * 1999-12-13 2001-06-05 Air Products And Chemicals, Inc. Process for distillation of multicomponent fluid and production of an argon-enriched stream from a cryogenic air separation process
FR2814229B1 (fr) * 2000-09-19 2002-10-25 Air Liquide Procede et installation de separation d'air par distillation cryogenique
US6321567B1 (en) * 2000-10-06 2001-11-27 Praxair Technology, Inc. Structured packing system for reduced distillation column height
FR2854579B1 (fr) * 2003-05-09 2005-06-17 Air Liquide Installation de distillation comprenant des colonnes a garnissages structures ondules-croises et procede d'augmentation de capacite d'une installation de distillation
US7204101B2 (en) * 2003-10-06 2007-04-17 Air Liquide Large Industries U.S. Lp Methods and systems for optimizing argon recovery in an air separation unit
US20080185350A1 (en) * 2007-02-05 2008-08-07 Koch-Glitsch, Lp Method and apparatus for separating oil sand particulates from a three-phase stream
CN201221888Y (zh) * 2008-05-06 2009-04-15 核工业西南物理研究院 带氩可变工况上塔

Also Published As

Publication number Publication date
FR3017698A1 (fr) 2015-08-21
US10473392B2 (en) 2019-11-12
WO2015121594A4 (fr) 2016-02-04
CN106211791B (zh) 2019-12-31
WO2015121594A2 (fr) 2015-08-20
FR3017698B1 (fr) 2019-03-29
US20170023296A1 (en) 2017-01-26
CN105992923A (zh) 2016-10-05
EP3105520A2 (fr) 2016-12-21
WO2015121593A2 (fr) 2015-08-20
CN105992923B (zh) 2019-07-02
CN106211791A (zh) 2016-12-07
WO2015121594A3 (fr) 2015-12-17
WO2015121593A3 (fr) 2015-12-17

Similar Documents

Publication Publication Date Title
EP0491591B1 (fr) Colonne de distillation d'air à garnissage ondulé-croisé
FR2891901A1 (fr) Procede de vaporisation et/ou de condensation dans un echangeur de chaleur
EP0566435B1 (fr) Echangeur de chaleur à ruissellement et installation de distillation d'air comportant un tel échangeur
FR2807504A1 (fr) Colonne pour separation cryogenique de melanges gazeux et procede de separation cryogenique d'un melange contenant de l'hydrogene et du co utilisant cette colonne
EP3105520B1 (fr) Colonne de séparation d'air par distillation cryogénique, appareil de séparation d'air comportant une telle colonne et procédé de fabrication d'une telle colonne
FR3052243B1 (fr) Assemblage d'elements modulaires de construction d'un appareil d'echange de masse et/ou de chaleur et procede d'echange utilisant un assemblage
EP1032464B1 (fr) Distributeur de liquide pour colonne de distillation non verticale, et colonne de distillation ainsi equipee
WO2018172644A1 (fr) Echangeur de chaleur avec dispositif melangeur liquide/gaz a portion de canal regulatrice
EP3615877B1 (fr) Echangeur de chaleur à jonction d'ondes améliorée, installation de séparation d'air associée et procédé de fabrication d'un tel échangeur
FR2865027A1 (fr) Ailette pour echangeur de chaleur et echangeur de chaleur muni de telles ailettes
FR2812935A1 (fr) Echangeur thermique a blocs echangeurs multiples a ligne d'alimentation en fluide a distribution uniforme, et vaporiseur-condenseur comportant un tel echangeur
FR2880418A1 (fr) Ensemble d'echangeurs de chaleur, appareil de distillation cryogenique incorporant un tel ensemble et procede de distillation cryogenique utilisant un tel ensemble
WO2009136061A2 (fr) Colonne à garnissage d'échange de chaleur et/ou matière
EP3491326A1 (fr) Echangeur de chaleur a tubes verticaux et procede d'echange de chaleur
EP3628386B1 (fr) Enceinte de colonne de distillation
EP1034019A1 (fr) Distributeur de liquide pour colonne de distillation, et colonne de distillation correspondante
EP3323484A1 (fr) Plâteau distributeur pour colonne d'échange comprenant un matériau dispersif au sein d'une cheminée pour le passage du gaz
EP2896447B1 (fr) Plateau distributeur pour colonne d'échange entre un gaz et un liquide avec déflecteur de liquide
WO2018172685A1 (fr) Echangeur de chaleur avec dispositif melangeur liquide/gaz a orifices de forme amelioree
FR2676371A1 (fr) Colonne de distillation d'air a garnissage ondule-croise.
FR2867697A1 (fr) Structure de garnissage ondule-croise
KR101836453B1 (ko) 분리 컬럼의 공급물 섹션
FR2988821A1 (fr) Colonne de separation pour une installation de fractionnement de l'air a basse temperature ainsi qu'une installation et un procede utilisant une telle colonne.
EP1461148A2 (fr) Bande pour module de garnissage, module et colonne correspondants
WO2004102095A1 (fr) Installation de distribution comprenant des colonnes a garnissages structures ondules-croises et procede d’augmentation de capacite d’une installation de distillation

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160914

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201016

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210611

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20210909

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1465586

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015076624

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1465586

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220526

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220426

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220526

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015076624

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220213

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20221027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220213

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230221

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230221

Year of fee payment: 9

Ref country code: DE

Payment date: 20230216

Year of fee payment: 9

Ref country code: BE

Payment date: 20230216

Year of fee payment: 9

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240219

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 10

Ref country code: GB

Payment date: 20240219

Year of fee payment: 10