WO2009133767A1 - 移動通信システム、移動局装置、基地局装置及び移動通信方法 - Google Patents

移動通信システム、移動局装置、基地局装置及び移動通信方法 Download PDF

Info

Publication number
WO2009133767A1
WO2009133767A1 PCT/JP2009/057454 JP2009057454W WO2009133767A1 WO 2009133767 A1 WO2009133767 A1 WO 2009133767A1 JP 2009057454 W JP2009057454 W JP 2009057454W WO 2009133767 A1 WO2009133767 A1 WO 2009133767A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
station device
mobile station
cell
station apparatus
Prior art date
Application number
PCT/JP2009/057454
Other languages
English (en)
French (fr)
Inventor
秀和 坪井
克成 上村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2010510077A priority Critical patent/JPWO2009133767A1/ja
Priority to US12/989,579 priority patent/US20110039551A1/en
Priority to CN2009801141682A priority patent/CN102017718A/zh
Priority to EP09738704A priority patent/EP2291035A1/en
Publication of WO2009133767A1 publication Critical patent/WO2009133767A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point

Definitions

  • the present invention relates to a mobile communication system, a mobile station apparatus, a base station apparatus, and a mobile communication method.
  • This application claims priority based on Japanese Patent Application No. 2008-117758 filed in Japan on April 28, 2008, the contents of which are incorporated herein by reference.
  • EUTRA Evolved Universal Terrestrial Radio Access
  • 3GPP 3rd Generation Partnership Project
  • EUTRA aims to increase the communication speed by introducing part of the technology that has been studied for the fourth generation in the third generation frequency band.
  • EUTRA uses an OFDMA (Orthogonal Frequency Division Multiplexing Access) system as a communication system.
  • OFDMA is a communication system that is resistant to multipath interference and suitable for high-speed transmission.
  • higher layer operations such as data transfer control and resource management control related to EUTRA, low delay and low overhead are realized, and the simplest possible technique is used.
  • the mobile station device In the cellular mobile communication system, the mobile station device needs to be wirelessly synchronized with the base station device in advance in the cell or sector. For this reason, the base station apparatus transmits a synchronization channel (SCH) having a predetermined configuration to the mobile station apparatus. The mobile station apparatus synchronizes with the base station apparatus by detecting the synchronization channel transmitted from the base station apparatus.
  • SCH synchronization channel
  • the cell or sector is a communication area of the base station device.
  • a primary synchronization channel (P-SCH: Primary SCH) and a secondary synchronization channel (S-SCH: Secondary SCH) are used as synchronization channels.
  • Each cell (or sector) is identified from the mobile station apparatus by a cell ID determined from signals of the primary synchronization channel and the secondary synchronization channel.
  • FIG. 14 is a flowchart showing a cell search procedure of the mobile station apparatus in EUTRA.
  • the mobile station apparatus performs P-SCH identification processing for correlating the replica signal of the primary synchronization channel (P-SCH) with the received signal (step S1a). Thereby, the mobile station apparatus acquires slot timing (step S1b). Then, the mobile station apparatus performs an S-SCH identification process that correlates the replica signal of the secondary synchronization channel (S-SCH) with the received signal (step S2a). Thereby, the mobile station apparatus acquires the frame timing from the obtained transmission pattern of the secondary synchronization channel, and also acquires a cell ID (Identification: identification information) for identifying the base station apparatus (step S2b).
  • Such a series of control that is, processing until the mobile station apparatus is wirelessly synchronized with the base station apparatus and further acquires the cell ID of the base station apparatus is referred to as a cell search procedure.
  • a mobile station apparatus communicates with a base station apparatus in a cell (or sector) that is a communication area of the base station apparatus.
  • a serving cell a cell in which the mobile station apparatus is located.
  • a cell located in the vicinity of the serving cell is referred to as a neighboring cell.
  • the cell IDs of those base station devices may be used for description.
  • the mobile station apparatus determines a cell with good quality by measuring and comparing the reception quality of the serving cell and the neighboring cell.
  • information on one or a plurality of neighboring cells notified from the serving cell is referred to as an adjacent cell list.
  • EUTRA normally, detailed information such as cell IDs and service contents of neighboring cells is not notified from the base station apparatus to the mobile station apparatus.
  • a mobile station apparatus moves from a serving cell to a neighboring cell and changes a cell to be wirelessly connected, it is called handover.
  • a signal used for the mobile station apparatus to determine the level of reception quality between cells is referred to as a downlink reference signal.
  • the downlink reference signal is a predetermined signal sequence corresponding to the cell ID. That is, by identifying the cell ID, it is possible to uniquely specify the downlink reference signal transmitted simultaneously in the corresponding cell (Non-Patent Document 1).
  • FIG. 15 is a diagram illustrating an example of a configuration of a radio frame in EUTRA.
  • the horizontal axis represents the time axis and the vertical axis represents the frequency axis.
  • the radio frame is configured with the region Z as a unit (Non-Patent Document 1).
  • the region Z is composed of a constant frequency region (BR) composed of a set of a plurality of subcarriers in the frequency axis direction and a constant transmission time interval (slot).
  • BR constant frequency region
  • slot constant transmission time interval
  • a transmission time interval composed of an integral multiple of one slot is called a subframe. Furthermore, a group of a plurality of subframes is called a frame. In FIG. 15, one subframe is composed of two slots. The region Z divided by this fixed frequency region (BR) by one slot length is called a resource block. One frame is composed of 10 subframes. BW in FIG. 15 indicates the system bandwidth, and BR indicates the bandwidth of the resource block.
  • FIG. 16 is a sequence diagram illustrating an example of a handover procedure.
  • the processing shown in FIG. 16 shows control for starting a state in which the mobile station apparatus is communicating with a handover source cell (also referred to as a source cell) and handing over to a handover destination cell (also referred to as an adjacent cell). Yes.
  • a handover source cell also referred to as a source cell
  • a handover destination cell also referred to as an adjacent cell.
  • the cell ID of the source cell is CID_A.
  • the cell ID of the adjacent cell is CID_B.
  • the procedure will be described using the cell ID.
  • the mobile station apparatus receives the downlink reference signals of the source cell (CID_A) and the adjacent cell (CID_B), respectively (steps S001 and S002). Then, the mobile station apparatus performs measurement report processing for measuring the reception quality obtained from each downlink reference signal (step S003).
  • the mobile station apparatus notifies the measurement result in the measurement report process to the source cell (CID_A) as a measurement report message (step S004).
  • the source cell (CID_A) transmits a handover request message from the source cell (CID_A) to the neighboring cell (CID_B) when it is determined from the content of the measurement report message that a handover to the neighboring cell (CID_B) is necessary. (Step S005). Accordingly, the source cell (CID_A) notifies the neighboring cell (CID_B) of the necessity for handover of the mobile station apparatus, and requests preparation for handover.
  • the neighbor cell (CID_B) that has received the handover request message notifies the source cell (CID_A) of a handover request permission message when it is determined that the handover can be performed (step S006).
  • the source cell (CID_A) that has received the handover request permission message transmits a handover instruction message (also referred to as a handover command) to the mobile station apparatus (step S007).
  • the handover process is started.
  • the mobile station apparatus executes the handover when the handover execution time is reached.
  • the immediate execution of the handover is specified as the handover instruction message.
  • the mobile station apparatus switches the radio frequency specified by the handover instruction message and the control parameter of the transmission / reception circuit when the handover execution time comes. Then, the mobile station apparatus performs downlink synchronization establishment processing for establishing downlink radio synchronization with the adjacent cell (CID_B), and executes handover processing (step S008).
  • the control parameter for downlink synchronization establishment processing is included in the previous handover instruction message, or is notified or notified from the source cell (CID_A) to the mobile station apparatus in advance.
  • the mobile station apparatus that has completed downlink synchronization establishment performs random access transmission in order to establish uplink synchronization with the neighboring cell (CID_B) (step S009). This process may be referred to as handover access.
  • Non-patent document 2 a preamble sequence (Dedicated Preamble) is assigned to each mobile station apparatus in advance using a handover instruction message.
  • the mobile station apparatus performs random access transmission using the preamble sequence specified by the handover instruction message.
  • the base station apparatus of the adjacent cell (CID_B) that has received the preamble sequence determines that the mobile station apparatus has completed handover.
  • the base station apparatus of the adjacent cell moves the uplink resource allocation information for transmitting the uplink synchronization information for adjusting the uplink transmission timing and the handover completion message (also referred to as a handover confirm).
  • the station apparatus is notified (step S010).
  • the mobile station apparatus adjusts the uplink transmission timing based on the information received in step S010. Then, the mobile station apparatus transmits a handover completion message to the neighboring cell (CID_B) using the designated uplink resource (step S011). Thereby, the mobile station apparatus completes the handover from the source cell (CID_A) to the neighboring cell (CID_B).
  • the handover is performed when the mobile station device is communicating with the serving cell (active state). On the other hand, when the serving cell and the mobile station apparatus are not communicating (idle state), the following cell reselection is performed instead of handover.
  • the mobile station apparatus detects a neighboring cell when the reception quality of the source cell (CID_A) satisfies a condition such as being lower than a predetermined threshold. And a mobile station apparatus acquires the information of the said cell from the alerting
  • Non-Patent Document 1 a downlink reference signal is described as a downlink reference signal (Reference signal) or a downlink reference signal (DL-RS: Downlink Reference signal), but the meaning is the same.
  • Reference signal a downlink reference signal
  • DL-RS Downlink Reference signal
  • a cell also referred to as an MBMS-dedicated cell or dMBMS cell
  • MBMS Multicast Broadcast / Multicast Service
  • a method has been proposed in which a cyclic prefix (CP) length is increased so that delayed waves from a plurality of base station apparatuses can be received as signals.
  • CP cyclic prefix
  • Examples of other cells include a mixed cell that performs communication using a shared channel between a base station apparatus and a user, and a unicast cell that does not perform transmission using a multicast channel (Non-patent Document). 2).
  • the mixed cell individual communication with each mobile station apparatus is performed using a downlink and uplink control channel and a downlink and uplink shared channel for transmitting user data and an incoming call signal in addition to the multicast channel. That is, it is possible to receive services such as reception of a multicast service using a multicast channel such as broadcasting for mobile terminals and voice communication and data communication using a shared channel, which is a function as a conventional mobile phone.
  • a multicast channel is not used in a unicast cell. Therefore, when receiving services such as broadcasting for mobile terminals, communication using a shared channel is performed for each mobile station apparatus. For this reason, when the number of mobile station devices that desire reception increases, a large amount of radio resources are consumed.
  • Non-patent Document 3 a synchronization channel (SCH) to acquire MBMS area information.
  • SCH synchronization channel
  • Non-patent Document 3 a shared channel is not used in the dMBMS cell. Therefore, a user who is waiting for a call or a user who is communicating needs to communicate with a unicast cell or a mixed cell while receiving a signal from a dMBMS cell.
  • Non-patent Document 4 it has been proposed to add an offset to the threshold value for performing the reception and the reception quality for reselection determination.
  • Non-Patent Document 4 A method described in Non-Patent Document 4 is known as a method for increasing the probability that a mobile station apparatus that wants to receive an MBMS service synchronizes with an optimal cell.
  • a neighbor cell list is used. Therefore, this method cannot be used when the neighbor cell list is not used or when only limited information (for example, carrier frequency) is notified.
  • SCH synchronization channel
  • 3GPP TS Technical Specification 36.211, Physical Channels and Modulation. V8.0.0 (http://www.3gpp.org/ftp/Specs/html-info/36211.html) 3GPP TS36.300 V8.0.0 (2007-3), Overall description; Stage2 (http://www.3gpp.org/ftp/Specs/html-info/36300.htm) Nokia Siemens Networks, Nokia, Huawei, Ericsson, “L1 Support of Dedicated MBSFN Carriers”, R1-80326, 3GPP TSG-RAN WG1inSel14 # 51S14-51 Panasonic, “Cell detection and selection information for MBMS”, R2-074851, 3GPP TSG-RAN WG2 Meeting # 51bis, Jeju, Korea, 5-9 November 2007
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a mobile communication system and a mobile station apparatus capable of improving reception characteristics and frequency utilization efficiency without imposing a heavy load on the mobile station apparatus and radio resources. Another object is to provide a base station apparatus and a mobile communication method.
  • a mobile communication system is a mobile communication system including a mobile station apparatus and a base station apparatus, and the mobile station The apparatus is based on a reception quality measurement unit that measures reception quality based on a signal transmitted from a neighboring base station apparatus, a service desired by the mobile station apparatus, and a reception quality measured by the reception quality measurement unit. And a determining unit that determines a base station device with which the mobile station device communicates, and a communication unit that communicates with the base station device determined by the determining unit.
  • a mobile communication system is a mobile communication system including a mobile station apparatus and a base station apparatus, and the mobile station apparatus communicating with the base station apparatus includes the base station A reception quality measuring unit that measures reception quality based on a signal transmitted from a base station device around the station device and a service implementation status of the base station device performing the communication, and a service desired by the mobile station device And a base station specified by the base station apparatus information transmitted from the base station apparatus, and a first transmission section that transmits the reception quality information measured by the reception quality measuring section to the base station apparatus.
  • a communication unit that communicates with the mobile station, wherein the base station device is configured to use the mobile station based on service information, reception quality information, and service implementation status of the base station device transmitted by the first transmission unit.
  • Device communicates Provided that a determination unit for determining a base station apparatus, and a second transmission unit that transmits information of the base station apparatus wherein the determination unit has determined to the mobile station apparatus.
  • the reception quality measurement unit of the mobile communication system receives the base station device information transmitted by the second transmission unit and the service implementation status of the base station device. Change the quality measurement interval.
  • the information of the base station apparatus of the mobile communication system according to the aspect of the present invention is any of a handover instruction, no service providing cell, reception quality is not satisfied.
  • the service of the mobile communication system is a multimedia broadcast / multicast service.
  • the base station apparatus that provides the multimedia broadcast / multicast service of the mobile communication system does not transmit a synchronization channel to the mobile station apparatus.
  • a mobile station apparatus is a mobile station apparatus that communicates with a base station apparatus, and is based on a signal transmitted from the base station apparatus and a service implementation status of the base station apparatus. And determining the base station apparatus with which the mobile station apparatus communicates based on the reception quality measuring section that measures the reception quality, the service desired by the mobile station apparatus, and the reception quality measured by the reception quality measurement section And a communication unit that communicates with the base station apparatus determined by the determination unit.
  • a base station apparatus is a base station apparatus that communicates with a mobile station apparatus, and information on services desired by the mobile station apparatus and peripheral bases that the mobile station apparatus measures.
  • a determination unit that determines a base station device with which the mobile station device communicates based on reception quality information of a signal transmitted from the station device; and information on the base station device determined by the determination unit And a second transmission unit for transmitting to.
  • a mobile communication method is a mobile communication method using a mobile station device and a base station device, and the mobile station device transmits a signal transmitted from a surrounding base station device.
  • the base station apparatus with which the mobile station apparatus communicates is determined based on the reception quality measurement process for measuring the reception quality based on the service, the service desired by the mobile station apparatus and the reception quality measured in the reception quality measurement process. And a communication process for communicating with the base station apparatus determined in the determination process.
  • a mobile communication method is a mobile communication method using a mobile station device and a base station device, wherein the mobile station device transmits a signal transmitted from a surrounding base station device.
  • a first transmission for transmitting, to the base station apparatus, reception quality measurement process for measuring reception quality based on the information, information on a service desired by the mobile station apparatus and reception quality information measured in the reception quality measurement process
  • a communication process for communicating with the base station apparatus specified by the base station apparatus information transmitted from the base station apparatus, and the base station apparatus transmits the service transmitted in the first transmission process.
  • a determination process for determining a base station apparatus with which the mobile station apparatus communicates based on information and reception quality information; and a base station apparatus information determined in the determination process is transmitted to the mobile station apparatus.
  • a transmission process for determining a base station apparatus with which the mobile station apparatus communicates based on information and reception quality information; and a base station apparatus information determined in the determination process is transmitted to the mobile station apparatus.
  • mobile station apparatus In the mobile communication system, mobile station apparatus, base station apparatus, and mobile communication method of the present invention, it is possible to improve reception characteristics and frequency utilization efficiency without imposing a heavy load on the mobile station apparatus and radio resources.
  • FIG. 1 It is a schematic block diagram which shows the structure of the mobile station apparatus 100 by the 1st Embodiment of this invention. It is a schematic block diagram which shows the structure of the downlink reference signal processing part 107 (FIG. 1) of the mobile station apparatus 100 by the 1st Embodiment of this invention. It is a schematic block diagram which shows the structure of the base station apparatus 200 by the 1st Embodiment of this invention. It is a figure which shows an example of the cell structure by the 1st Embodiment of this invention. It is a sequence diagram which shows the process of the mobile communication system by the 1st Embodiment of this invention.
  • the physical channel related to each embodiment of the present invention includes a physical broadcast channel, a physical uplink shared channel, a physical downlink shared channel, a physical downlink control channel, a physical uplink control channel, a physical random access channel, a synchronization channel (SCH), and a reference signal.
  • a physical multicast channel PMCH
  • Transport channels include a broadcast channel, an uplink shared channel, a downlink shared channel, a paging channel for sending an incoming call signal, and a multicast channel.
  • a common control channel assigned to the uplink shared channel a dedicated control channel, a dedicated traffic channel, a paging control channel assigned to the paging channel, a broadcast control channel assigned to the broadcast channel and the downlink shared channel, and the downlink shared channel
  • the physical multicast channel has a one-to-one correspondence with the multicast channel of the transport channel. Therefore, in each embodiment of the present invention, it is also simply referred to as a multicast channel.
  • the uplink dedicated traffic channel, downlink dedicated traffic channel, and multicast traffic channel data in the logical channel are classified as traffic data.
  • the downlink common control channel, shared control channel, dedicated control channel, multicast control channel, uplink common control channel, shared control channel signal, and uplink reference signal in the logical channel are classified as higher layer control signals.
  • the physical uplink control channel and physical downlink control channel signals in the physical channel are classified as lower layer control signals.
  • the broadcast control channel signal in the logical channel is classified as broadcast information.
  • the synchronization channel (SCH) and the downlink reference signal are classified as radio signals.
  • the synchronization channel (SCH) is as described above.
  • the broadcast control channel is transmitted from the base station apparatus to the mobile station apparatus for the purpose of reporting control parameters that are commonly used by the mobile station apparatuses in the cell.
  • P-BCH Primary BCH
  • D-BCH Dynamic BCH
  • the primary broadcast channel is determined in advance to be transmitted at a predetermined period in time and frequency. For example, the primary broadcast channel is transmitted on the center subcarrier of subframe # 0.
  • the mobile station apparatus can receive the primary broadcast channel for the cell whose cell ID is identified.
  • the primary broadcast channel is a signal assigned to the broadcast channel of the transport channel, and is a higher layer control signal.
  • the dynamic broadcast channel is traffic data transmitted on the downlink shared channel of the transport channel, and the transmission position can be varied for each cell.
  • the physical multicast channel is a physical channel for sending a multicast control channel and a multicast traffic channel, which are logical channels.
  • the physical multicast channel provides services to a wide area by performing the same MBMS transmission from a plurality of cells. Also, in order to cover a wide area, a guard interval longer than that used when transmitting other physical channels is used when transmitting a physical multicast channel.
  • the downlink reference signal is a pilot signal transmitted with substantially constant power for each cell.
  • the downlink reference signal is a signal that is periodically repeated at a predetermined time interval (for example, one frame).
  • the mobile station apparatus receives the downlink reference signal from the base station apparatus at a predetermined time interval, and uses it to determine the reception quality for each cell. Further, the downlink reference signal is used as a reference signal for demodulation of the physical downlink shared channel and the physical downlink control channel that are transmitted simultaneously with the downlink reference signal.
  • the sequence used for the downlink reference signal can be any sequence as long as it is a sequence that can be uniquely identified for each cell.
  • synchronization to a dMBMS cell will be described.
  • transmitting a synchronization channel for synchronization from a dMBMS cell has effects such as an increase in load on a mobile station device and deterioration in reception characteristics. Therefore, in the following embodiments, a method for performing synchronization to a dMBMS cell without transmitting a synchronization channel from the dMBMS cell will be described.
  • a signal used for synchronization processing such as a synchronization channel
  • it can be applied to the embodiment of the present invention. That is, it is possible to transmit a known signal from the dMBMS cell to compensate for the frequency offset after synchronization with the dMBMS cell, to increase the synchronization accuracy, or to a dedicated dMBMS reception terminal.
  • the present embodiment relates to a mobile station apparatus in an idle state.
  • FIG. 1 is a schematic block diagram showing a configuration of a mobile station apparatus 100 according to the first embodiment of the present invention.
  • the mobile station apparatus 100 includes a receiving unit 101, a demodulating unit 102, a control unit 103, a control signal processing unit 104, a data processing unit 105, a broadcast information processing unit 106, a downlink reference signal processing unit 107, a coding unit 108, a modulation unit 109, A transmission unit 110, an upper layer 111, and an antenna A1 are provided.
  • the upper layer 111 includes a determination unit 112.
  • the receiving unit 101 receives a signal having a frequency set based on the reception control information output from the control unit 103 and transmitted from the base station apparatus via the antenna A1.
  • the receiving unit 101 performs processing such as down-conversion on the signal output from the antenna A1, and outputs the result to the demodulating unit 102.
  • the demodulator 102 demodulates the signal output from the receiver 101 based on the reception control information output from the controller 103. Then, the demodulation unit 102 classifies the demodulated signals into a physical downlink shared channel, a physical multicast channel, a physical downlink control channel, a physical broadcast channel, and a downlink reference signal.
  • the reception control information includes reception timing, multiplexing method, resource allocation information, and information regarding demodulation for each channel.
  • Each classified channel is output to the data processing unit 105 if it is a physical downlink shared channel or multicast channel, is output to the control signal processing unit 104 if it is a physical downlink control channel, and is broadcast information processing if it is a physical broadcast channel. If it is a downlink reference signal, it is output to the downlink reference signal processing unit 107. Note that in the case of channels other than the channels described above, they are output to other channel processing units, respectively, but the description of the present embodiment is not affected, and thus description thereof is omitted.
  • the data processing unit 105 extracts traffic channel data and an upper layer control signal from the physical downlink shared channel and the physical multicast channel output from the demodulation unit 102 and outputs them to the upper layer 111.
  • the control signal processing unit 104 extracts a lower layer control signal from the physical downlink control channel output from the demodulation unit 102 and outputs the lower layer control signal to the upper layer 111.
  • the broadcast information processing unit 106 extracts broadcast information (primary broadcast channel information) from the physical broadcast channel output by the demodulation unit 102 and outputs the broadcast information to the upper layer 111.
  • the downlink reference signal processing unit 107 extracts reference data from the downlink reference signal output from the demodulation unit 102 and outputs the reference data to the upper layer 111. Control information is output from the upper layer 111 to the control unit 103.
  • traffic channel data and common / dedicated control channel data are output to the encoding unit 108 and encoded as a physical uplink shared channel signal.
  • an uplink reference signal and a lower layer control signal are output to the encoding unit 108 and encoded as a physical control channel signal.
  • the control unit 103 outputs the transmission control information to the encoding unit 108, the modulation unit 109, and the transmission unit 110.
  • the transmission control information includes transmission timing and multiplexing method regarding uplink channels, arrangement information of transmission data of each channel, information regarding modulation and transmission power.
  • Each transmission data encoded by the encoding unit 108 based on the transmission control information is output to the modulation unit 109.
  • Modulation section 109 modulates transmission data with an appropriate modulation scheme in accordance with information instructed by control section 103 and outputs the result to transmission section 110.
  • the data modulated by modulation section 109 is output to transmission section 110, and after appropriate power control, is transmitted from antenna A1 to the base station apparatus based on the channel arrangement.
  • the description is abbreviate
  • the operations of the reception unit 101 to the transmission unit 110 of the mobile station device 100 are comprehensively controlled by the upper layer 111.
  • FIG. 2 is a schematic block diagram showing a configuration of the downlink reference signal processing unit 107 (FIG. 1) of the mobile station device 100 according to the first embodiment of the present invention.
  • the downlink reference signal processing unit 107 includes a downlink reference signal extraction unit 1071, a sequence selection unit 1072, a correlation processing unit 1074, and a quality management unit 1075.
  • the reception control information required for the sequence selection unit 1072 includes, for example, frequency bandwidth, reception time information, reception frequency information, cell ID, and the like.
  • the reception time information includes frame information, subframe information, slot information, and the like.
  • the reception frequency information includes a reception resource block number and a subcarrier number.
  • Sequence selection section 1072 selects or generates an appropriate downlink reference signal sequence to be used for demodulation based on reception control information input from control section 103 (FIG. 1), and uses that signal as a selection signal as a correlation processing section. It outputs to 1074.
  • the received downlink reference signal is input to the downlink reference signal extraction unit 1071.
  • the downlink reference signal extraction unit 1071 rearranges the input downlink reference signals in the order of the signal sequence according to the reception control information, and outputs the result to the correlation processing unit 1074 as an extraction signal.
  • Correlation processing section 1074 performs correlation processing between the selection signal based on the cell ID and the extracted signal, and outputs the correlation signal to quality management section 1075.
  • the quality management unit 1074 measures the reception quality for each cell ID based on the correlation signal, and outputs it as reference data to the upper layer 111 (FIG. 1).
  • reception quality refers to EUTRA Carrier RSSI (Received Signal Strength Indicator), RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Signal), RSRQ (Reference Signal Received Quality). Such as path loss.
  • the quality management unit 1075 measures a quality information indicator (CQI: Channel Quality Indicator) for each of one or more resource blocks or a plurality of subcarriers in the serving cell, and uses it as reference data in the upper layer 111 (FIG. 1). Output.
  • CQI Channel Quality Indicator
  • the operation of the downlink reference signal processing unit 107 uses a method other than the processing method described in FIG. 2 as long as it can extract a downlink reference signal and perform a process capable of outputting reference data indicating reception quality from the extracted signal. May be.
  • FIG. 3 is a schematic block diagram showing the configuration of the base station apparatus 200 according to the first embodiment of the present invention.
  • the base station apparatus 200 includes a reception unit 201, a demodulation unit 202, a control unit 203, a data processing unit 204, a control signal processing unit 205, an encoding unit 206, a modulation unit 207, a transmission unit 209, an upper layer 210, and an antenna A2. Yes.
  • the upper layer 210 includes a determining unit 211.
  • the receiving unit 201 receives a reception signal (a transmission signal from the mobile station device 100 (FIG. 1) or another base station device) via the antenna A2.
  • the control unit 203 outputs reception control information related to data reception control to the reception unit 201, the demodulation unit 202, the data processing unit 204, and the control signal processing unit 205.
  • the upper layer 210 outputs transmission / reception control information to the control unit 203 based on schedule information determined in advance by the communication system.
  • the reception signal is output from the reception unit 201 to the demodulation unit 202, and is divided into a physical uplink shared channel signal and a physical control channel signal based on reception control information instructed from the control unit 203, and is demodulated. Note that in the case of channels other than the channels described above, they are output to other channel processing units, respectively, but the description of the present embodiment is not affected, and thus description thereof is omitted.
  • Each data demodulated by the demodulation unit 202 is output to the data processing unit 204 if it is a physical uplink shared channel signal, and is output to the control signal processing unit 205 if it is a physical uplink control channel signal.
  • the data processing unit 204 extracts an upper layer control signal and traffic data from the physical uplink shared channel signal output from the demodulation unit 202 and outputs the upper layer control signal and traffic data to the upper layer 210.
  • the control signal processing unit 205 extracts a lower layer control signal from the physical uplink control channel signal output from the demodulation unit 202 and outputs the lower layer control signal to the upper layer 210.
  • the lower layer control signal or the upper layer control signal includes data related to the base station device 200 such as quality information of the base station device 200 measured by the mobile station device 100 (FIG. 1) and cell ID information of neighboring cells ( Peripheral base station device data).
  • the base station apparatus 200 is a dMBMS cell having no uplink, the base station apparatus 200 is not provided with the data processing unit 204 and the control signal processing unit 205 used in the acquisition process of control data and traffic data. Or the operation may be stopped.
  • Upper layer 210 outputs an upper layer control signal, traffic data, a lower layer control signal, and a downlink reference signal to encoding section 206.
  • the higher layer control signal includes a broadcast control channel and a downlink shared control channel.
  • the control unit 203 outputs the transmission control information to the encoding unit 206, the modulation unit 207, and the transmission unit 209.
  • the signal encoded by the encoding unit 206 is output to the modulation unit 207.
  • Modulation section 207 modulates each transmission data with an appropriate modulation scheme in accordance with transmission control information from control section 203 and outputs the result to transmission section 209.
  • the data modulated by the modulation unit 207 is output to the transmission unit 209, and after appropriate power control, based on the channel arrangement, from the antenna A2 to the mobile station apparatus 100 (FIG. 1) at the frequency set by the transmission control information.
  • Sent since the structure of the other base station apparatus 200 is not related to description of this embodiment, the description is abbreviate
  • FIG. 4 is a diagram illustrating an example of a cell configuration according to the first embodiment of the present invention.
  • Cells A, B, C, and D are cells using the same carrier frequency F1, and only the cell E is a cell using a different carrier frequency F2.
  • Cells A and C are unicast cells and do not provide an MBMS service.
  • Cells B and D are mixed cells.
  • Cell E is a dMBMS cell.
  • Cell E may be configured by transmitting a signal from a single base station apparatus, or may be configured by transmitting the same signal from a plurality of base station apparatuses.
  • a cell D in the same area as a part of the cell E acquires information about the cell E that is a dMBMS cell from the cell E and broadcasts the information.
  • FIG. 5 is a sequence diagram showing processing of the mobile communication system according to the first embodiment of the present invention.
  • FIG. 5 shows cell reselection processing in the mobile station apparatus 100 in the idle state.
  • the mobile station device 100 is in a state before or during the measurement of the reception quality of the serving cell and the neighboring cells. From cell A, the neighbor cell list is not provided to mobile station apparatus 100.
  • mobile station apparatus 100 is about to receive the MBMS service.
  • the mobile station device 100 receives broadcast information transmitted from the cell A (step S101). Thereby, the mobile station apparatus 100 acquires information that the MBMS service is not provided in the cell A (step S108).
  • the data processor 105 (FIG. 1) needs to demodulate and acquire the physical downlink shared channel.
  • the mobile station device 100 performs detection of neighboring cells for cell reselection regardless of the signal quality of the cell A. The shorter the detection processing cycle, the shorter the standby time of the mobile station apparatus 100.
  • an appropriate cycle is set by setting based on the number of detection trials and the remaining battery level. For example, in the present embodiment, the detection process cycle is lengthened as the number of detection trials increases.
  • the mobile station device 100 receives the synchronization channel (SCH) from each of the adjacent cells B, C, and D (steps S102, S103, and S104). Note that the synchronization channel (SCH) is not transmitted from the cell E, which is an adjacent cell, to the mobile station device 100.
  • the mobile station apparatus 100 acquires broadcast information of detected cells (for example, cell B, cell C, and cell D) (steps S105, S106, and S107). Thereby, the mobile station apparatus 100 determines the presence or absence of the cell which is performing MBMS, or the cell which has dMBMS cell information. If the corresponding cell is not found, the mobile station device 100 waits for a signal from the cell A until the next detection processing cycle.
  • the mobile station device 100 receives the downlink reference signal of the cell (steps S109 and S110). Then, the mobile station device 100 performs reception quality comparison processing (step S111). When the measured reception quality exceeds a predetermined threshold value, the mobile station device 100 selects the cell. When a plurality of cells exceed the threshold, the mobile station apparatus 100 normally selects a cell with the best reception quality. In FIG. 5, the mobile station device 100 selects the cell B as the cell with the best reception quality, and changes the source cell from the cell A to the cell B (steps S112 and S113).
  • the mobile station apparatus 100 transmits an MBMS parameter request to the cell (here, cell B) selected by the mobile station apparatus 100 (step S114). Then, the mobile station apparatus 100 receives a service permission that is transmitted from the base station apparatus of the cell B and includes parameters necessary for reception (step S115). The mobile station apparatus 100 performs MBMS reception setting based on the service permission information received in step S115 (step S116).
  • the mobile station apparatus 100 uses the cell or a cell of a different frequency in the same area as the cell (if the selected cell is the cell D, the cell of the different frequency is the cell E) and the service desired by the mobile station apparatus 100 Is provided, the process of step S117 is performed. That is, reception of MBMS or unicast data is started through processing necessary for receiving services such as authentication / billing processing with the cell (step S117). Note that when there is no need for user-specific authentication or the like for MBMS reception, the MBMS parameter request signal and service permission signal shown in FIG. 5 are unnecessary.
  • FIG. 6 is a flowchart showing cell reselection processing in the mobile station device 100 in the idle state according to the first embodiment of the present invention.
  • the mobile station apparatus 100 determines whether the reception quality based on the downlink reference signal of the cell selected by the mobile station apparatus 100 is equal to or lower than a predetermined threshold (step S710). If it is below the threshold (“Yes” in step S710), the mobile station device 100 detects neighboring cells and acquires broadcast information (step S711). Next, based on the detected downlink reference signal of the cell, the mobile station apparatus 100 measures reception quality and selects a cell with the best reception quality (step S712). Then, the mobile station device 100 performs cell selection for the selected cell (step S78).
  • step S71 determines whether or not the mobile station apparatus 100 desires MBMS reception. If not desired (“No” in step S71), the process of the flowchart of FIG. 6 ends. If the mobile station device 100 desires MBMS reception (“Yes” in step S71), it is determined whether or not the MBMS reception service is in service in the source cell (step S72). When the MBMS reception service is in service (“Yes” in step S72), the process of the flowchart in FIG.
  • the mobile station device 100 determines whether or not it is a neighboring cell measurement period, that is, whether or not it is a timing for performing a neighboring cell search (step). S73). If it is not time to perform the neighboring cell search (“No” in step S73), the process returns to step S71. If it is the timing of the neighbor cell search (“Yes” in step S73), the mobile station device 100 detects the neighbor cell and acquires broadcast information (step S74).
  • the mobile station apparatus 100 determines whether there exists a cell which performs MBMS from the alerting
  • step S78 If the predetermined quality is satisfied (“Yes” in step S77), the cell is selected (step S78), and the process returns to step 71.
  • a method of changing the measurement cycle in step S79 will be described.
  • the mobile station device 100 sets a time Ta as an initial cycle when the power is turned on or as a cycle Ts after cell reselection.
  • the mobile station apparatus 100 adds a known constant Tb and sets Ts + Tb as a new Ts.
  • the new Ts exceeds the constant Tc, the mobile station device 100 sets Tc as Ts.
  • the mobile station device 100 sets an initial period Ta as Ts. In other words, when a cell serving in the vicinity is detected, the mobile station device 100 shortens the period of the measurement of the cell. As a result, it is possible to reduce the delay in performing cell reselection.
  • the mobile communication system includes a mobile station device 100 (FIG. 1) and a base station device 200 (FIG. 3). Then, downlink reference signal processing section 107 (also referred to as reception quality measurement section) of mobile station apparatus 100 is received quality based on the reference signal transmitted from the base station apparatus of the source cell or the neighboring cell and received by reception section 101. Is measured (steps S109 and S110 in FIG. 5).
  • the determination unit 112 included in the upper layer 111 of the mobile station apparatus 100 includes information on the presence / absence of MBMS, which is a service desired by the mobile station apparatus 100, and the source cell and neighboring cells measured by the downlink reference signal processing unit 107.
  • the base station device to be reselected to which the mobile station device 100 communicates is determined (step S111 in FIG. 5, flowchart in FIG. 6).
  • Transmitter 110 and receiver 101 (also referred to as a communication unit) reselect the base station device determined by determination unit 112 and communicate with the base station device.
  • a mobile station apparatus cannot perform cell detection and reselection at idle time unless there is a neighboring cell list for power saving.
  • the mobile station device 100 when the reception quality of the source cell is good, the mobile station device 100 performs cell detection and reselection based on information on the presence / absence of a desired service in the source cell and changes according to the measurement cycle conditions. Do. As a result, it is possible to efficiently detect and measure neighboring cells without reducing the accuracy of conventional cell reselection. Therefore, the mobile station apparatus 100 can easily receive provision of a desired service.
  • the present embodiment relates to a mobile station apparatus in an active state.
  • the mobile station apparatus and the base station apparatus according to the second embodiment of the present invention use the same configurations as those of the mobile station apparatus 100 (FIG. 1) and the base station apparatus 200 (FIG. 3) according to the first embodiment of the present invention. Therefore, detailed description thereof is omitted.
  • the configuration of the cell in the second embodiment of the present invention is the same as that in the first embodiment (FIG. 4), and thus the description thereof is omitted.
  • FIG. 7 is a sequence diagram showing processing of the mobile communication system according to the second embodiment of the present invention.
  • FIG. 7 shows the handover process in the mobile station device 100 in the active state.
  • the mobile station device 100 is in a state before or during the measurement of the reception quality of the serving cell and the neighboring cells. From cell A (CID_A), the adjacent cell list is not provided to mobile station apparatus 100.
  • CID_A From cell A (CID_A), the adjacent cell list is not provided to mobile station apparatus 100.
  • the mobile station apparatus 100 acquires information on whether or not the MBMS service is provided in the cell A (CID_A) based on the broadcast information received from the cell A (CID_A) (step S201).
  • CID_A cell A
  • the mobile station apparatus 100 performs the detection of the neighboring cell regardless of the reception quality of the signal from the cell A (CID_A).
  • the mobile station apparatus 100 measures the reception quality of each cell using the downlink reference signals of the detected cells (for example, cell B, cell C, and cell D) (steps S205, S206, and S207) (step S208).
  • cell B (CID_B), cell C (CID_C), and cell D (CID_D), which are neighboring cells, each transmit a synchronization channel (SCH) to mobile station apparatus 100 (steps S202, S203, and S204).
  • cell E (CID_E), which is an adjacent cell, does not transmit a synchronization channel (SCH) to mobile station apparatus 100.
  • the mobile station apparatus 100 notifies the source cell A (CID_A) of the reception quality information measured for the cell B (CID_B), the cell C (CID_C), and the cell D (CID_D) (step S210). At this time, the mobile station device 100 also notifies the cell A (CID_A) of a signal indicating that MBMS reception is desired (step S209). This desired signal may be notified as a lower layer control signal simultaneously with the notification of the measurement result, may be notified in advance as an upper (L2 / L3) layer control signal, or the mobile station apparatus 100 It may be notified at the time of initial connection as one parameter of information (UE Capability) indicating the performance of the network.
  • UE Capability one parameter of information
  • the base station apparatus of the notified source cell A receives the MBMS reception request signal and the quality information of neighboring cells (cell B, cell C, cell D) from the mobile station apparatus 100.
  • the base station apparatus of the cell A has a cell that provides the MBMS service or dMBMS cell information from the information on the neighboring cells that it holds.
  • the presence / absence of a cell is searched (step S211).
  • the base station apparatus of cell A returns information “no corresponding cell” to the mobile station apparatus 100 (step S214).
  • the notification is preferably transmitted as an upper layer control signal. Further, the case where there is no reply to the mobile station device 100 within a certain time may be “no corresponding cell”.
  • the mobile station device 100 notified that there is no corresponding cell, or the mobile station device 100 that has determined that there is no corresponding cell because there is no explicit reply, is idle when there is no serving cell in the detected neighboring cell.
  • the measurement cycle is changed (step S215).
  • the mobile station apparatus 100 detects a cell, and notifies the base station apparatus again if the detection result is updated. Further, when there is a corresponding cell in the base station apparatus, and the reception quality of the cell reported from the mobile station apparatus 100 exceeds a predetermined threshold, the base station apparatus of the cell A (CID_A) Then, a handover to a cell (for example, cell D) having the best reception quality in the cell is requested (step S212). On the other hand, the cell D (CID_D) that is the neighboring cell notifies the handover request permission to the cell A (CID_A) that is the source cell (step S213).
  • the cell A (CID_A) that is the source cell transmits a handover instruction to the cell D (CID_D) to the mobile station device 100 (step S216). Then, a handover process is performed between the mobile station device 100 and the cell D (CID_D) (step S217). As a result, the source cell is changed from cell A (CID_A) to cell D (CID_D). Since the handover process is the same as the conventional process, the description here is omitted.
  • the handover destination is the cell D (CID_D)
  • the MBMS parameter is requested from the mobile station device 100 to the base station device after the handover to the cell D (CID_D) (step S218).
  • MBMS information (cell ID, carrier frequency, band, information necessary for synchronization, etc.) is transmitted from cell E (CID_E), which is a neighboring cell, to cell D (CID_D) (step S220).
  • a service permission including parameters (MBMS information and the like) necessary for reception is transmitted from the cell D (CID_D) to the mobile station device 100 (step S219).
  • the mobile station apparatus 100 performs MBMS reception setting based on the information included in the service permission received in step S219 (step S221).
  • the mobile station apparatus 100 performs unicast communication in the cell D (CID_D) (step S223), and performs MBMS reception from the cell E (CID_E) through processing necessary to receive the MBMS service such as authentication / billing processing. Is started (step S222). If there is no need for user-specific authentication or the like for MBMS reception, the MBMS parameter request signal and service permission signal shown in FIG. 7 are unnecessary.
  • Tc is set as Ts.
  • the initial period Ta is set as Ts. Set.
  • the cell ID is notified to the mobile station apparatus 100, and only the reception quality of the cell is measured and reported, so that the measurement efficiency can be improved. That is, by transmitting the best cell candidate to the mobile station device 100 that needs the service without transmitting an enormous neighboring cell list to the entire cell or a specific mobile station device 100, the radio Resource utilization can be made efficient.
  • FIG. 8 is a flowchart showing a handover process in the mobile station device 100 in the active state according to the second embodiment of the present invention.
  • the mobile station apparatus 100 determines whether or not the mobile station apparatus 100 desires MBMS reception (step S81). If the mobile station device 100 does not wish to receive MBMS (“No” in step S81), the mobile station device 100 ends the process of the flowchart of FIG.
  • the mobile station apparatus 100 desires to receive MBMS (“Yes” in step S81)
  • the mobile station apparatus 100 determines whether or not the MBMS service is being serviced in the source cell (step S82).
  • the mobile station device 100 ends the process of the flowchart of FIG.
  • the mobile station device 100 determines whether or not it is the neighboring cell measurement period, that is, whether or not it is the timing for performing the neighboring cell search. (Step S83). If it is not time to perform the neighbor cell search (“No” in step S83), the mobile station device 100 returns to step S81. If it is time to perform a neighbor cell search (“Yes” in step S83), the mobile station device 100 detects a neighbor cell and measures reception quality (step S84).
  • the mobile station apparatus 100 transmits a measurement result and a request signal for MBMS service reception to the base station apparatus of the source cell (step S85). Then, the mobile station device 100 determines whether or not the reply from the base station device is “no applicable cell” (step S86). In the case of “no applicable cell” (“Yes” in step S86), the mobile station device 100 sets the measurement cycle of the neighboring cell by changing the measurement cycle of the neighboring cell (step S87), and the process of step S88 I do.
  • step S86 determines whether or not there is a handover instruction. If there is no handover instruction (“No” in step S88), the mobile station apparatus 100 returns to step 81. When there is a handover instruction (“Yes” in step S88), the mobile station device 100 executes a handover process (step S89), and performs the process of step 81 on the cell after the handover.
  • the cycle changing process in step S87 is the same as step S79 as described above.
  • FIG. 9 is a flowchart showing a handover process in the base station apparatus according to the second embodiment of the present invention.
  • the base station apparatus receives a report of reception quality of neighboring cells and an MBMS reception request signal from the mobile station apparatus 100 (step S901).
  • the MBMS reception request signal may be notified from the mobile station apparatus 100 to the base station apparatus in advance.
  • the base station apparatus determines whether or not the mobile station apparatus 100 desires an MBMS service (step S902). When the mobile station device 100 does not desire the MBMS service (“No” in step S902), a normal handover process is performed (step S910), and the process of the flowchart in FIG.
  • the base station device 100 determines whether the MBMS service is being performed in the own cell (step S903).
  • the base station apparatus provides the MBMS service (“Yes” in step S903), the base station apparatus obtains a known value from the reception quality of the reported non-MBMS cell among the neighboring cells. Subtraction is performed (step S906). Note that the base station apparatus may add a known value to the reception quality of the cell that is providing the MBMS service, including the own cell.
  • the base station apparatus performs a normal handover process described later in step S910 using the reception quality calculated in step S906, and ends the process of the flowchart in FIG.
  • the base station apparatus determines whether there is a cell performing MBMS service in the reported neighboring cell (step S904). ). When there is no corresponding cell (“No” in step S904), the base station apparatus notifies the mobile station apparatus 100 that “no corresponding cell” (step S905). Then, the base station apparatus moves to a normal handover process described later in step S910, and ends the process of the flowchart of FIG.
  • the base station apparatus determines whether the reception quality of the corresponding cell is equal to or higher than a predetermined threshold (step S907). If it is less than the threshold (“No” in step S907), the base station apparatus notifies the mobile station apparatus 100 that “the reception quality is not satisfied” (step S908), and proceeds to the handover process in step S910. If it is equal to or greater than the threshold (“Yes” in step S907), the base station apparatus performs a handover process to the corresponding cell described later (step SS909), and ends the process of the flowchart of FIG.
  • FIG. 10 is a flowchart showing the handover process in step S909 of FIG.
  • the base station apparatus sorts and lists the service-corresponding cells having the quality equal to or higher than the known threshold selected in step S904 (FIG. 9) in the order of good quality (step S1501). Then, the base station apparatus sets an index N to 1 in order to select a cell from the top of the list (step S1502). Then, the base station apparatus issues a handover request to the Nth cell in the list (step S1503). Then, the base station apparatus determines whether or not the handover request permission is returned from the Nth cell within a predetermined time (step S1504).
  • the base station apparatus When the handover request permission is returned (“Yes” in step S1504), the base station apparatus includes information related to synchronization with the Nth cell in the handover instruction and notifies the mobile station apparatus 100 (step S1505). ). When there is no reply in step S1504, the base station apparatus adds 1 to N (step S1506). Then, the base station apparatus determines whether N exceeds the number of cells on the list (step S1507). When N exceeds the number of cells on the list, the base station apparatus does not issue a handover instruction to the mobile station apparatus 100 and ends the process of the flowchart of FIG. 10 (“Yes” in step S1507). If N does not exceed the number of cells on the list, the base station apparatus returns to the process of step S1503 (“No” in step S1507).
  • FIG. 11 is a flowchart showing the handover process in step S910 of FIG.
  • the base station apparatus determines whether the reception quality of the own cell notified from the mobile station apparatus 100 is equal to or less than a known threshold (step S1601).
  • the base station apparatus ends the process of the flowchart of FIG.
  • the base station apparatus sorts and lists the cells reported from the mobile station apparatus 100 in order of good quality (step S1602). Then, the base station apparatus sets an index N to 1 in order to select a cell from the top of the list (step S1603).
  • the base station apparatus issues a handover request to the Nth cell in the list (step S1604). Then, the base station apparatus determines whether handover request permission is returned from the Nth cell within a predetermined time (step S1605). When the handover request permission is returned (“Yes” in step S1605), the base station apparatus includes information related to synchronization with the Nth cell in the handover instruction and notifies the mobile station apparatus 100 (step S1606). ). When there is no reply in step S1605, the base station apparatus adds 1 to N (step S1607). Then, the base station device determines whether N exceeds the number of cells on the list (step S1608).
  • the base station apparatus When N exceeds the number of cells on the list, the base station apparatus does not issue a handover instruction to the mobile station apparatus 100 and ends the process of the flowchart of FIG. 11 (“Yes” in step S1608). When N does not exceed the number of cells on the list, the base station apparatus returns to the process of step S1604 (“No” in step S1608).
  • the mobile station apparatus 100 performs measurement and reporting of neighboring cells at an efficient measurement period set based on a response from the base station apparatus without being affected by the reception quality of the source cell.
  • the mobile station device 100 can easily receive the desired service.
  • the base station apparatus notifies the mobile station apparatus 100 of a huge amount of neighboring cell information to which the service correspondence information of the own station is added without using the radio resource that is a finite resource. The handover process based on the desired service can be performed.
  • a more efficient measurement cycle is set in the mobile station device 100 by notifying the mobile station device 100 of the reason why the service is not provided from the base station device. As a result, it is possible to suppress excessive neighboring cell searches and to achieve power saving of the mobile station apparatus 100.
  • FIG. 12 is a sequence diagram showing another example of processing of the mobile communication system according to the second embodiment of the present invention.
  • the cell A (CID_A) that is a source cell notifies the mobile station device 100 of broadcast information including presence / absence information indicating whether or not the own cell is providing MBMS (step S301). Further, the mobile station device 100 notifies the cell A (CID_A) of the service (in this case, MBMS) desired by the mobile station device 100 when the cell A (CID_A) is connected to the base station device or network.
  • Step S302 When notifying, control signals of each layer, information indicating the performance of the mobile station apparatus 100, and the like can be used.
  • the mobile station device 100 starts a neighbor cell search when the reception quality of the cell A (CID_A) falls below a predetermined threshold (step S303).
  • the mobile station device 100 may change the predetermined threshold based on the MBMS presence / absence information in the cell A (CID_A) acquired from the broadcast information of the cell A.
  • the adjacent cells B (CID_B), C (CID_C), and D (CID_D) transmit a synchronization channel (SCH) to the mobile station device 100 (steps S304, S305, and S306).
  • cell E which is an adjacent cell, does not transmit a synchronization channel (SCH) to mobile station apparatus 100.
  • cell B (CID_B), cell C (CID_C), and cell D (CID_D), which are adjacent cells, transmit downlink reference signals to mobile station apparatus 100 (steps S307, S308, and S309).
  • the mobile station apparatus 100 measures the reception quality of each cell based on the downlink reference signal transmitted from the adjacent cell (step S310).
  • the reception quality of neighboring cells measured by the mobile station device 100 is reported to the base station device of the cell A (CID_A) (step S311).
  • the base station apparatus of cell A determines the handover destination cell by confirming the presence / absence of the MBMS service of the neighboring cell and comparing the reception quality of the neighboring cell (step S312). For example, the base station apparatus of the cell A (CID_A) has a good value of the neighboring cell performing the service desired by the mobile station apparatus 100 with respect to the reception quality value of the neighboring cell reported from the mobile station apparatus 100.
  • a handover destination cell is determined by performing correction so as to obtain reception quality.
  • cell D CID_D
  • the base station apparatus of cell A transmits a handover request to cell D (CID_D) (step S313).
  • the base station apparatus of cell D (CID_D) returns a handover request permission to the base station apparatus of cell A (CID_A) (step S314).
  • the base station apparatus of cell A (CID_A) transmits a handover instruction to cell D (CID_D) to mobile station apparatus 100 (step S315).
  • a handover process is performed between the mobile station device 100 and the base station device of the cell D (CID_D) (step S316). Since this handover process is the same as the conventional process, its detailed description is omitted.
  • the mobile communication system includes a mobile station device 100 (FIG. 1) and a base station device 200 (FIG. 3).
  • the downlink reference signal processing unit 107 also referred to as reception quality measurement unit
  • the transmission unit 110 also referred to as a first transmission unit
  • the mobile station apparatus 100 includes information on MBMS that is a service desired by the mobile station apparatus 100 and information on reception quality measured by the downlink reference signal processing unit 107. Are transmitted to the base station apparatus 200 (steps S209 and S210 in FIG. 7).
  • the transmission unit 110 and the reception unit 101 (also referred to as a communication unit) of the mobile station device 100 perform handover to the base station device specified by the information of the base station device transmitted from the base station device 200, and the base station device It communicates with the station apparatus (step 217 in FIG. 7).
  • the determination unit 211 included in the upper layer 210 of the base station apparatus 200 is information on the service transmitted by the transmission unit 110 of the mobile station apparatus 100 as an upper layer control signal (here, the service desired by the mobile station apparatus 100).
  • the mobile station apparatus 100 communicates based on the information on the reception quality of the reference signal transmitted from the neighboring base station apparatus measured by the downlink reference signal processing unit 107 of the mobile station apparatus 100).
  • the handover destination base station apparatus to be determined is determined (step S211 in FIG. 7, flowchart in FIG. 9). Also, the transmission unit 209 (also referred to as a second transmission unit) of the base station apparatus 200 transmits the information of the base station apparatus determined by the determination unit 211 to the mobile station apparatus 100 as an upper layer control signal (in FIG. 7). Step S216).
  • the mobile station apparatus 100 (FIG. 1) and the base station apparatus 200 (FIG. 3) described in the first embodiment can be used. Detailed description thereof will be omitted. Further, the configuration of the cell used in this embodiment is the same as that shown in the first embodiment (FIG. 4), and thus the description thereof is omitted.
  • FIG. 13 is a sequence diagram showing processing of the mobile communication system according to the third embodiment of the present invention.
  • FIG. 13 illustrates a handover process in the mobile station device 100 in an active state.
  • the mobile station apparatus 100 is in a state before or during the measurement of the reception quality of the serving cell and the neighboring cells.
  • the neighbor cell list is not provided from the cell A (CID_A).
  • the mobile station apparatus 100 receives broadcast information including MBMS presence / absence information from the base station apparatus of the cell A (CID_A) (step S401).
  • CID_A broadcast information
  • the mobile station apparatus 100 notifies the cell A (CID_A) of a signal indicating that MBMS reception is desired (step S402).
  • This desired signal may be notified as a lower layer control signal simultaneously with the notification of the measurement result, may be notified in advance as an upper (L2 / L3) layer control signal, or may be a mobile station apparatus. It may be notified at the time of initial connection as one parameter of 100 performance information.
  • the base station apparatus of the source cell A receives the MBMS reception request signal from the mobile station apparatus 100.
  • the base station apparatus of the cell A provides the MBMS service from the information of neighboring cells held by the own station, or dMBMS cell information
  • the presence or absence of a cell having “” is searched (step S403).
  • the cell A (CID_A) returns information “no corresponding cell” to the mobile station device 100.
  • the notification is preferably transmitted as an upper layer control signal. Alternatively, the case where there is no reply to the mobile station device 100 within a certain time may be “no corresponding cell”.
  • the mobile station device 100 notified that there is no corresponding cell changes the measurement cycle similarly to the detection processing cycle of the second embodiment, performs cell detection, and if the detection result is updated, again returns to the base station device. Notice.
  • the cell A (CID_A) notifies the mobile station device 100 as lower layer or higher layer control signal with the ID information of the corresponding cell as measurement target peripheral cell information (step S404). ).
  • the mobile station device 100 that has received the measurement target neighboring cell information (for example, cell B and cell D) receives the synchronization channel (SCH) transmitted in steps S405 and S406 or the downlink reference signal transmitted in steps S407 and S408. And cell B (CID_B) and cell D (CID_D) are detected.
  • SCH synchronization channel
  • the mobile station apparatus 100 measures the reception quality of each cell using the downlink reference signal of the detected cell (for example, cell D) (step S409).
  • the mobile station apparatus 100 notifies the measured quality information to the source cell A (CID_A) (step S410).
  • the base station apparatus of cell A (CID_A) compares the reception quality of neighboring cells (step S411). Then, if the reception quality of the cell reported from mobile station apparatus 100 is equal to or higher than a predetermined threshold, the base station apparatus of cell A (CID_A) provides the best reception quality within the cell to mobile station apparatus 100. Is instructed to be handed over to the next cell (here, cell D) (step S414).
  • the base station apparatus of the cell A (CID_A) that is the source cell transmits a handover request to the cell D (CID_D) (step S412).
  • the base station apparatus of cell D (CID_D) returns a handover request permission to the base station apparatus of cell A (CID_A) (step S413).
  • the mobile station device 100 performs a handover process with the cell D (CID_D) (step S415). Since this handover process is the same as the conventional process, a description thereof is omitted here. If there is no need for user-specific authentication or the like for MBMS reception, the MBMS parameter request signal and service permission signal shown in FIG. 13 are unnecessary. If there is no cell whose reception quality exceeds the threshold, information such as “no corresponding cell” or “not satisfying reception quality” is returned to the mobile station apparatus, as in the second embodiment. Further, in the mobile station apparatus 100 of the present embodiment, in the cell list reported in step S410, only cells having quality exceeding a known threshold may be reported in advance. Thereby, it becomes possible to omit the comparison process between the reception quality of the cell reported from the mobile station apparatus 100 and the predetermined threshold value in the base station apparatus.
  • the mobile communication system includes a mobile station device 100 (FIG. 1) and a base station device 200 (FIG. 3).
  • Downlink reference signal processing section 107 also referred to as reception quality measurement section
  • the transmission unit 110 also referred to as a first transmission unit
  • the base station apparatus 200 includes information on MBMS that is a service desired by the mobile station apparatus 100 and information on reception quality measured by the downlink reference signal processing unit 107. Are transmitted to the base station apparatus 200 (steps S402 and S410 in FIG. 13).
  • the transmission unit 110 and the reception unit 101 (also referred to as a communication unit) of the mobile station device 100 perform handover to the base station device specified by the information of the base station device transmitted from the base station device 200, and the base station device It communicates with the station apparatus (step 415 in FIG. 13).
  • the determination unit 211 included in the upper layer 210 of the base station apparatus 200 is information on the service transmitted by the transmission unit 110 of the mobile station apparatus 100 as an upper layer control signal (here, the service desired by the mobile station apparatus 100 is The mobile station apparatus 100 communicates based on the information of the reception quality of the reference signal transmitted from the neighboring base station apparatus measured by the downlink reference signal processing unit 107 of the mobile station apparatus 100) A handover destination base station apparatus is determined (steps S403 and S411 in FIG. 13). Further, the transmission unit 209 (also referred to as a second transmission unit) of the base station apparatus 200 transmits information on the base station apparatus determined by the determination unit 211 to the mobile station apparatus 100 as an upper layer control signal (in FIG. 13). Step S414).
  • the mobile station device 100 performs measurement and reporting of neighboring cells at an efficient measurement period set based on a response from the base station device, without being affected by the reception quality of the source cell.
  • the mobile station device 100 can easily receive the desired service.
  • the base station apparatus selects only cell information based on the service request for each mobile station apparatus 100 out of a large amount of neighboring cell information to which the mobile station apparatus 100 has added service correspondence information of its own station. To the mobile station apparatus 100. Thereby, it is possible to perform a handover process based on a desired service while effectively using radio resources.
  • the function of each unit of the mobile station apparatus and the base station apparatus or a program for realizing a part of these functions is recorded on a computer-readable recording medium and recorded on this recording medium.
  • the mobile station apparatus or the base station apparatus may be controlled by causing the computer system to read and execute the program.
  • the “computer system” includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, or a hard disk built in a computer system.
  • the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line, In this case, it also includes those that hold a program for a certain period of time, such as a volatile memory inside a computer system serving as a server or client.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • the present invention can be applied to a mobile communication system, a mobile station apparatus, a base station apparatus, a mobile communication method, and the like that can improve reception characteristics and frequency use efficiency without imposing a heavy load on the mobile station apparatus and radio resources.
  • DESCRIPTION OF SYMBOLS 100 ... Mobile station apparatus, 101 ... Reception part, 102 ... Demodulation part, 103 ... Control part, 104 ... Control signal processing part, 105 ... Data processing part, 106 ... Broadcast information processing section, 107 ... downlink reference signal processing section, 108 ... coding section, 109 ... modulation section, 110 ... transmission section, 111 ... upper layer, 200 ... base station apparatus , 201 ... receiving unit, 202 ... demodulating unit, 203 ... control unit, 204 ... data processing unit, 205 ... control signal processing unit, 206 ... coding unit, 207 ... Modulation unit, 209 ... transmission unit, 210 ... upper layer, A1, A2 ... antenna

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 移動局装置と基地局装置とを備える移動通信システムであって、移動局装置は、周辺の基地局装置から送信される信号に基づいて受信品質を測定する受信品質測定部と、自移動局装置が希望するサービスと受信品質測定部が測定した受信品質とに基づいて、自移動局装置が通信する基地局装置を決定する決定部と、決定部が決定した基地局装置と通信する通信部とを備える。

Description

移動通信システム、移動局装置、基地局装置及び移動通信方法
 本発明は、移動通信システム、移動局装置、基地局装置及び移動通信方法に関する。
 本願は、2008年4月28日に、日本に出願された特願2008-117758号に基づき優先権を主張し、その内容をここに援用する。
 現在、EUTRA(Evolved Universal Terrestrial Radio Access)が、標準化団体である3GPP(3rd Generation Partnership Project:第3世代パートナーシッププロジェクト)にて検討されている(非特許文献1)。
 EUTRAは、第3世代の周波数帯に第4世代向けに検討されていた技術の一部を導入することによって、通信速度の高速化を目的としている。
 EUTRAでは、通信方式として、OFDMA(Orthogonal Frequency Division Multiplexing Access:直交周波数分割多重接続)方式を用いる。OFDMAは、マルチパス干渉に強く、高速伝送に適した通信方式である。
 また、EUTRAに関するデータ転送制御やリソース管理制御といった上位レイヤの動作に関しては、低遅延、低オーバーヘッド化を実現し、更に可能な限り簡易な技術が用いられる。
 セルラ移動通信方式では、移動局装置が、セルまたはセクタ内において、事前に基地局装置と無線同期している必要がある。そのため、基地局装置は、所定の構成からなる同期チャネル(SCH:Synchronization Channel)を移動局装置に送信する。移動局装置は、基地局装置から送信された同期チャネルを検出することで、基地局装置と同期を取る。なお、セルまたはセクタとは、基地局装置の通信エリアである。
 EUTRAでは、同期チャネルとしてプライマリ同期チャネル(P-SCH:Primary SCH)と、セカンダリ同期チャネル(S-SCH:Secondary SCH)とが用いられる。各セル(またはセクタ)は、プライマリ同期チャネルとセカンダリ同期チャネルの信号より決定されるセルIDによって移動局装置から識別される。
 セルIDは、3種類のプライマリ同期チャネルと、168種類のセカンダリ同期チャネルの組み合わせによって決まる。その組み合わせの数は、504種類である(3×168=504)。
 図14は、EUTRAにおける移動局装置のセルサーチ手順を示すフローチャートである。移動局装置は、プライマリ同期チャネル(P-SCH)のレプリカ信号と、受信信号とで相関を取るP-SCH同定処理を行う(ステップS1a)。これにより、移動局装置は、スロットタイミングを取得する(ステップS1b)。
 そして、移動局装置は、セカンダリ同期チャネル(S-SCH)のレプリカ信号と、受信信号とで相関を取るS-SCH同定処理を行う(ステップS2a)。これにより、移動局装置は、得られたセカンダリ同期チャネルの送信パターンによってフレームタイミングを取得すると共に、基地局装置を識別するためのセルID(Identification:識別情報)を取得する(ステップS2b)。
 このような一連の制御、すなわち、移動局装置が基地局装置と無線同期を取り、更にその基地局装置のセルIDを取得するまでの処理をセルサーチ手順と称する。
 EUTRAを含むセルラ移動通信方式では、移動局装置は、基地局装置の通信エリアであるセル(またはセクタ)内において基地局装置と通信を行う。移動局装置が、ある基地局装置と無線接続されているとき、その移動局装置が位置するセルのことを在圏セルと称する。
 一方、在圏セルの周辺に位置するセルのことを周辺セルと称する。なお、以下では、複数の基地局装置を説明する際に、それらの基地局装置のセルIDを用いて説明することがある。移動局装置は、在圏セルと周辺セルの受信品質を測定し、比較することで、良好な品質のセルを判定する。
 このとき、在圏セルから通知される1つ又は複数の周辺セルに関する情報を、隣接セルリストと称する。EUTRAにおいては通常、周辺セルのセルIDやサービス内容など詳細な情報は、基地局装置から移動局装置に通知されない。
 具体的には、同一キャリア周波数のセルに関する情報は、基地局装置から移動局装置に送信せず、異なるキャリア周波数の周辺基地局装置がある場合は、そのキャリア周波数情報のみを送信する。
 移動局装置が在圏セルから周辺セルへと移動し、無線接続するセルを変更することをハンドオーバーと称する。このとき、セル間の受信品質の高低を移動局装置が判定するために使用される信号を、下りリファレンス信号と称する。
 下りリファレンス信号は、セルIDに対応した所定の信号系列である。すなわち、セルIDを同定することによって、同時に該当セルで送信される下りリファレンス信号を一意に特定することが可能である(非特許文献1)。
 図15は、EUTRAにおける無線フレームの構成の一例を示す図である。図15では、横軸に時間軸をとっており、縦軸に周波数軸をとっている。
 無線フレームは、領域Zを一単位として構成されている(非特許文献1)。領域Zは、周波数軸方向の複数のサブキャリアの集合で構成される一定の周波数領域(BR)と、一定の送信時間間隔(スロット)で構成される。
 また、1スロットの整数倍から構成される送信時間間隔をサブフレームと称する。更に、複数のサブフレームをまとめたものをフレームとよぶ。図15では、1サブフレームが、2スロットから構成される。
 この一定の周波数領域(BR)と1スロット長で区切られた領域Zを、リソースブロックと称する。また、1フレームは10サブフレームから構成される。図15中のBWはシステム帯域幅を示しており、BRはリソースブロックの帯域幅を示している。
 図16は、ハンドオーバー手順の一例を示すシーケンス図である。図16に示す処理は、移動局装置がハンドオーバー元セル(ソースセルとも称する)と通信を行っている状態から開始し、ハンドオーバー先セル(隣接セルとも称する)へハンドオーバーする制御を示している。
 なお、ソースセルのセルIDは、CID_Aである。また、隣接セルのセルIDは、CID_Bである。以降セルIDを用いて手順を説明する。
 ここで、移動局装置は、ソースセル(CID_A)と、隣接セル(CID_B)の下りリファレンス信号をそれぞれ受信する(ステップS001、S002)。そして、移動局装置は、各々の下りリファレンス信号から得られる受信品質を測定する測定報告処理を行う(ステップS003)。
 移動局装置は、測定報告処理での測定結果を、測定報告メッセージとして、ソースセル(CID_A)へ通知する(ステップS004)。
 ソースセル(CID_A)は、測定報告メッセージの内容から、隣接セル(CID_B)へのハンドオーバーが必要であると判定したとき、ソースセル(CID_A)から隣接セル(CID_B)へハンドオーバー要求メッセージを送信する(ステップS005)。これにより、ソースセル(CID_A)は、移動局装置のハンドオーバーの必要性を、隣接セル(CID_B)に通知し、ハンドオーバーのための準備を要求する。
 ハンドオーバー要求メッセージを受信した隣接セル(CID_B)は、ハンドオーバーが実行可能と判定した場合、ハンドオーバー要求許可メッセージを、ソースセル(CID_A)に通知する(ステップS006)。
 ハンドオーバー要求許可メッセージを受信したソースセル(CID_A)は、移動局装置に対し、ハンドオーバー指示メッセージ(ハンドオーバーコマンドとも称する)を送信する(ステップS007)。
 移動局装置が、ハンドオーバー指示メッセージを受信することで、ハンドオーバー処理が開始される。なお、ハンドオーバー指示メッセージに、ハンドオーバー実行時刻の情報が含まれている場合には、移動局装置は、ハンドオーバー実行時刻になった時点で、ハンドオーバーを実行する。
 ハンドオーバー指示メッセージとして、ハンドオーバーの即時実行が指定される場合もある。いずれの場合であっても、移動局装置は、ハンドオーバー実行時刻になった時点で、ハンドオーバー指示メッセージで指定された無線周波数や送受信回路の制御パラメータの切り替えを行う。そして、移動局装置は、隣接セル(CID_B)との下り無線同期を確立するための下り同期確立処理を行い、ハンドオーバー処理を実行する(ステップS008)。
 下り同期確立処理のための制御パラメータは、先のハンドオーバー指示メッセージに含まれていたり、事前にソースセル(CID_A)から移動局装置に報知または通知されたりする。
 下り同期確立が完了した移動局装置は、隣接セル(CID_B)との上り同期確立のために、ランダムアクセス送信を行う(ステップS009)。この処理を、ハンドオーバーアクセスと称する場合もある。
 本来、ランダムアクセスには、衝突が発生しうる(コンテンションベース)のチャネルが用いられる。これに対して、衝突が発生しない(コンテンションフリー)ランダムアクセス送信を行うため、ハンドオーバー指示メッセージを用いてプリアンブル系列(Dedicated Preamble)を、事前に移動局装置毎に割り当てる方法が提案されている(非特許文献2)。
 移動局装置は、ハンドオーバー指示メッセージで指定されたプリアンブル系列を用いて、ランダムアクセス送信を行う。プリアンブル系列を受信した隣接セル(CID_B)の基地局装置は、移動局装置のハンドオーバーが完了したと判定する。そして、隣接セル(CID_B)の基地局装置は、上り送信タイミング調整のための上り同期情報と、ハンドオーバー完了メッセージ(ハンドオーバーコンファームとも称する)とを送信するための上りリソース割当情報を、移動局装置に通知する(ステップS010)。
 移動局装置は、ステップS010で受信した情報を元に、上り送信タイミングを調整する。そして、移動局装置は、指定された上りリソースを用いてハンドオーバー完了メッセージを隣接セル(CID_B)へ送信する(ステップS011)。これにより、移動局装置は、ソースセル(CID_A)から隣接セル(CID_B)に対するハンドオーバーを完了する。
 なお、上記ハンドオーバーは、在圏セルとの通信を移動局装置が行っている場合(アクティブ状態)に行われる。一方、在圏セルと移動局装置が通信を行っていない場合(アイドル状態)では、ハンドオーバーではなく、以下に示すセル再選択が行われる。
 移動局装置は、ソースセル(CID_A)の受信品質が、予め定められた閾値を下回るなどの条件を満たす場合に、周辺セルを検出する。そして、移動局装置は、周辺セルから送信される報知情報より、当該セルの情報を取得する。
 移動局装置は、取得した情報をもとに、下りリファレンス信号の受信品質の測定を一定時間行う。その結果、移動局装置は、自局の接続が許可される最も受信品質の良いセルにて待ち受けを行う。
 なお、非特許文献1において、下りリファレンス信号のことを、下りリファレンスシグナル(Reference signal)や、下りリンク参照シグナル(DL-RS:Downlink Reference signal)と記載してあるが、意味は同じである。
 さらにEUTRAでは、マルチメディア ブロードキャスト/マルチキャスト サービス(MBMS:Multimedia Broadcast/Multicast Service)を、マルチキャストチャネルを利用して専用の周波数帯域で送信するセル(MBMS-dedicated cell、dMBMSセルとも称する)が検討されている。
 dMBMSセルでは、複数の基地局装置からの遅延波も信号として受信できるようにサイクリックプレフィックス(CP:Cyclic Prefix)長を長くする方法が提案されている。この方法では、送信可能な情報量が少なくなってしまう分を、サブキャリア間隔を狭めることで補う。
 その他のセルとしては、基地局装置とユーザ間で共用チャネルを用いた通信を行うミックスド(Mixed)セルや、マルチキャストチャネルを用いた送信を行わないユニキャスト(Unicast)セルがある(非特許文献2)。
 ミックスドセルでは、マルチキャストチャネル以外に、下りと上りの制御チャネル、ユーザデータや着呼信号を送る下りと上りの共用チャネルを用いて、各移動局装置との個別の通信を行う。すなわち、モバイル端末向け放送などのマルチキャストチャネルを用いたマルチキャストサービスの受信と、従来からの携帯電話としての機能である共用チャネルを用いた音声通話、データ通信などのサービスを受けることができる。
 また、ユニキャストセルでは、マルチキャストチャネルが用いられない。そのため、モバイル端末向け放送などのサービスを受ける場合、移動局装置ごとに共用チャネルを用いた通信を行うことになる。そのため、受信を希望する移動局装置が多くなると無線リソースを大量に消費してしまう。
 dMBMSセルに対しても上記のように、同期チャネル(SCH)を用いて同期をとり、MBMSエリア情報を取得することが検討されている(非特許文献3)。
 しかし、dMBMSセルでは、共用チャネルが用いられない。そのため、電話の待ち受けを行っているユーザ、あるいは通信を行っているユーザは、dMBMSセルからの信号を受信する合間に、ユニキャストセルあるいはミックスドセルとの通信を行う必要がある。
 すなわち、dMBMSセルに同期すると同時に、ユニキャストセルあるいはミックスドセルにも同期する必要がある。
 また、MBMSサービスを受けたい移動局装置がハンドオーバーを行う場合については、在圏セルの隣接セルリストにMBMSサービスの有無情報を付加する。そして、この情報を利用して移動局装置が、MBMSサービスを行っていない在圏セルに同期している場合に、MBMSサービスを行っている周辺セルへのハンドオーバーを促すために、前述の測定を行うための閾値や再選択判定のための受信品質にオフセットを付加することが提案されている(非特許文献4)。
 MBMSサービスを受けたい移動局装置が、最適なセルへ同期する確率を高める方法として、非特許文献4に記載されている方法が知られている。しかし、この方法では、隣接セルリストを利用することになる。そのため、この方法は、隣接セルリストを用いない場合や、限られた情報(例えばキャリア周波数)のみ通知される場合には用いることができない。
 また、dMBMSセルに、同期チャネル(SCH)を設定することも検討されているが、以下の(1)~(3)のような問題がある。
(1) 前述のようなサブキャリア間隔を狭めたdMBMSセルが存在する場合、複数種類の同期チャネルを受信する必要があり、移動局装置での処理負荷が高くなってしまう。
(2) また、サブキャリア間隔を狭めたdMBMSセルにおいて、同期チャネルのみ(あるいは同期に必要なチャネルも含めたもの)を、他のユニキャストセルで用いられるのと同様のサブキャリア間隔や系列を用いた場合、ユニキャストセルへ同期したい移動局装置も、dMBMSセルを検出してしまい、同期処理に遅延が生じてしまう。
(3) さらに、上記(2)の場合、遅延波を考慮してサイクリックプレフィックス長を長くする必要がある状況で、同期チャネルのサイクリックプレフィックス長が、ユニキャストセルと同等の長さになってしまうことで、シンボル間干渉が生じてしまい、特性の劣化につながる恐れがある。
3GPP TS(Technical Specification)36.211、Physical Channels and Modulaltion.V8.0.0(http://www.3gpp.org/ftp/Specs/html-info/36211.htm) 3GPP TS36.300 V8.0.0(2007-3),Overall discription;Stage2(http://www.3gpp.org/ftp/Specs/html-info/36300.htm) Nokia Siemens Networks、Nokia、Huawei、 Ericsson,"L1 Support of Dedicated MBSFN Carriers",R1-080326,3GPP TSG-RAN WG1 Meeting #51bis,Selvilla,Spain,14-18 January 2008 Panasonic,"Cell detection and reselection information for MBMS",R2-074851,3GPP TSG-RAN WG2 Meeting #51bis,Jeju,Korea,5-9 November 2007
 本発明は、上記事情に鑑みてなされたものであり、その目的は、移動局装置や無線リソースに大きな負荷をかけず、受信特性や周波数利用効率を高めることができる移動通信システム、移動局装置、基地局装置及び移動通信方法を提供することにある。
(1) 本発明は、上記課題を解決するためになされたもので、本発明の一態様による移動通信システムは、移動局装置と基地局装置とを備える移動通信システムであって、前記移動局装置は、周辺の基地局装置から送信される信号に基づいて受信品質を測定する受信品質測定部と、自移動局装置が希望するサービスと前記受信品質測定部が測定した受信品質とに基づいて、自移動局装置が通信する基地局装置を決定する決定部と、前記決定部が決定した基地局装置と通信する通信部とを備える。
(2) また、本発明の一態様による移動通信システムは、移動局装置と基地局装置とを備える移動通信システムであって、基地局装置と通信を行なっている前記移動局装置は、前記基地局装置の周辺の基地局装置から送信される信号と前記通信を行なっている基地局装置のサービス実施状況とに基づいて受信品質を測定する受信品質測定部と、自移動局装置が希望するサービスの情報と前記受信品質測定部が測定した受信品質の情報とを前記基地局装置に送信する第1の送信部と、前記基地局装置から送信される基地局装置の情報で特定される基地局装置と通信する通信部とを備え、前記基地局装置は、前記第1の送信部が送信したサービスの情報と受信品質の情報と自基地局装置のサービス実施状況とに基づいて、前記移動局装置が通信する基地局装置を決定する決定部と、前記決定部が決定した基地局装置の情報を前記移動局装置に送信する第2の送信部とを備える。
(3) また、本発明の一態様による移動通信システムの前記受信品質測定部は、前記第2の送信部が送信した基地局装置の情報と前記基地局装置のサービス実施状況とに基づいて受信品質の測定周期を変更する。
(4) また、本発明の一態様による移動通信システムの前記基地局装置の情報は、サービス提供セルなし、受信品質満たさず、ハンドオーバー指示の何れかである。
(5) また、本発明の一態様による移動通信システムの前記サービスは、マルチメディア ブロードキャスト/マルチキャスト サービスである。
(6) また、本発明の一態様による移動通信システムのマルチメディア ブロードキャスト/マルチキャスト サービスを提供する基地局装置は、同期チャネルを前記移動局装置に送信しない。
(7) また、本発明の一態様による移動局装置は、基地局装置と通信する移動局装置であって、前記基地局装置から送信される信号と前記基地局装置のサービス実施状況とに基づいて受信品質を測定する受信品質測定部と、自移動局装置が希望するサービスと前記受信品質測定部が測定した受信品質とに基づいて、自移動局装置が通信する基地局装置を決定する決定部と、前記決定部が決定した基地局装置と通信する通信部とを備える。
(8) また、本発明の一態様による基地局装置は、移動局装置と通信する基地局装置であって、前記移動局装置が希望するサービスの情報と前記移動局装置が測定する周辺の基地局装置から送信された信号の受信品質の情報とに基づいて、前記移動局装置が通信する基地局装置を決定する決定部と、前記決定部が決定した基地局装置の情報を前記移動局装置に送信する第2の送信部とを備える。
(9) また、本発明の一態様による移動通信方法は、移動局装置と基地局装置とを用いた移動通信方法であって、前記移動局装置は、周辺の基地局装置から送信される信号に基づいて受信品質を測定する受信品質測定過程と、自移動局装置が希望するサービスと前記受信品質測定過程で測定した受信品質とに基づいて、自移動局装置が通信する基地局装置を決定する決定過程と、前記決定過程で決定した基地局装置と通信する通信過程とを有する。
(10) また、本発明の一態様による移動通信方法は、移動局装置と基地局装置とを用いた移動通信方法であって、前記移動局装置は、周辺の基地局装置から送信される信号に基づいて受信品質を測定する受信品質測定過程と、自移動局装置が希望するサービスの情報と前記受信品質測定過程で測定した受信品質の情報とを前記基地局装置に送信する第1の送信過程と、前記基地局装置から送信される基地局装置の情報で特定される基地局装置と通信する通信過程とを有し、前記基地局装置は、前記第1の送信過程で送信したサービスの情報と受信品質の情報とに基づいて、前記移動局装置が通信する基地局装置を決定する決定過程と、前記決定過程で決定した基地局装置の情報を前記移動局装置に送信する第2の送信過程とを有する。
 本発明の移動通信システム、移動局装置、基地局装置及び移動通信方法では、移動局装置や無線リソースに大きな負荷をかけず、受信特性や周波数利用効率を高めることができる。
本発明の第1の実施形態による移動局装置100の構成を示す概略ブロック図である。 本発明の第1の実施形態による移動局装置100の下りリファレンス信号処理部107(図1)の構成を示す概略ブロック図である。 本発明の第1の実施形態による基地局装置200の構成を示す概略ブロック図である。 本発明の第1の実施形態によるセル構成の一例を示す図である。 本発明の第1の実施形態による移動通信システムの処理を示すシーケンス図である。 本発明の第1の実施形態によるアイドル状態の移動局装置100におけるセル再選択処理を示すフローチャートである。 本発明の第2の実施形態による移動通信システムの処理を示すシーケンス図である。 本発明の第2の実施形態によるアクティブ状態の移動局装置100におけるハンドオーバー処理を示すフローチャートである。 本発明の第2の実施形態による基地局装置におけるハンドオーバー処理を示すフローチャートである。 図9のステップS909のハンドオーバー処理を示すフローチャートである。 図9のステップS910のハンドオーバー処理を示すフローチャートである。 本発明の第2の実施形態による移動通信システムの処理の他の一例を示すシーケンス図である。 本発明の第3の実施形態による移動通信システムの処理を示すシーケンス図である。 EUTRAにおける移動局装置のセルサーチ手順を示すフローチャートである。 EUTRAにおける無線フレームの構成の一例を示す図である。 ハンドオーバー手順の一例を示すシーケンス図である。
 以下、図面を参照し、本発明の各実施形態について説明する。
 本発明の各実施形態に関わる物理チャネルには、物理報知チャネル、物理上り共用チャネル、物理下り共用チャネル、物理下り制御チャネル、物理上り制御チャネル、物理ランダムアクセスチャネル、同期チャネル(SCH)、リファレンス信号、物理マルチキャストチャネル(PMCH:Physical Multicast Channel)がある。トランスポートチャネルとしては、報知チャネル、上り共用チャネル、下り共用チャネル、着呼信号を送るページングチャネル、マルチキャストチャネルがある。
 また、論理チャネルとしては、上り共用チャネルに割り当てられる共通制御チャネル、個別制御チャネル、個別トラフィックチャネル、ページングチャネルに割り当てられるページング制御チャネル、報知チャネルと下り共用チャネルに割り当てられる報知制御チャネル、下り共用チャネルに割り当てられる共通制御チャネル、個別制御チャネル、個別トラフィックチャネル、下り共用チャネルとマルチキャストチャネルに割り当てられるマルチキャスト制御チャネル、マルチキャストトラフィックチャネルがある。
 なお、物理マルチキャストチャネルは、トランスポートチャネルのマルチキャストチャネルと1対1に対応している。そのため、本発明の各実施形態では、単にマルチキャストチャネルとも称している。
 本発明の各実施形態においては、論理チャネルにおける上りの個別トラフィックチャネル、下りの個別トラフィックチャネル、マルチキャストトラフィックチャネルのデータを、トラフィックデータとして分類する。
 また、論理チャネルにおける下りの共通制御チャネル、共用制御チャネル、個別制御チャネル、マルチキャスト制御チャネル、上りの共通制御チャネル、共用制御チャネルの信号、上りリファレンス信号を、上位レイヤ制御信号として分類する。
 また、物理チャネルにおける物理上り制御チャネル、物理下り制御チャネルの信号を、下位レイヤ制御信号として分類する。
 また、論理チャネルにおける報知制御チャネルの信号を、報知情報として分類する。
 また、同期チャネル(SCH)と下りリファレンス信号を、無線信号として分類する。
 同期チャネル(SCH)に関しては、すでに説明したとおりである。
 報知制御チャネルは、セル内の移動局装置で共通に用いられる制御パラメータを通知する目的で基地局装置から移動局装置に送信される。報知制御チャネルであるプライマリ報知チャネル(P-BCH:Primary BCH)の他に、ダイナミック報知チャネル(D-BCH:Dynamic BCH)が存在する。
 プライマリ報知チャネルは、時間的・周波数的に所定の周期で送信することが予め決められている。例えば、プライマリ報知チャネルは、サブフレーム#0の中心サブキャリアで送信される。移動局装置は、セルIDが同定されたセルについて、プライマリ報知チャネルを受信することが可能である。プライマリ報知チャネルは、トランスポートチャネルの報知チャネルに割り当てられる信号であって、上位レイヤ制御信号である。
 一方、ダイナミック報知チャネルは、トランスポートチャネルの下り共用チャネルで送信されるトラフィックデータであり、セル毎に送信位置を可変にすることも可能である。
 物理マルチキャストチャネルは、論理チャネルのマルチキャスト制御チャネルとマルチキャストトラフィックチャネルを送るための物理チャネルである。物理マルチキャストチャネルは、複数のセルから同一のMBMS送信が行われることで、広範囲のエリアにサービスを行う。
 また、広範囲のエリアをカバーするために、物理マルチキャストチャネル送信時は、他の物理チャネル送信時よりも長いガード区間を用いる。
 下りリファレンス信号は、セル毎にほぼ一定の電力で送信されるパイロット信号である。また、下りリファレンス信号は、所定の時間間隔(例えば1フレーム)で周期的に繰り返される信号である。移動局装置は、所定の時間間隔において下りリファレンス信号を基地局装置から受信することによって、セル毎の受信品質の判定に用いる。
 また、下りリファレンス信号は、下りリファレンス信号と同時に送信される物理下り共用チャネルおよび物理下り制御チャネルの復調のための参照用の信号として用いられる。
 下りリファレンス信号に使用される系列は、セル毎に一意に識別可能な系列であれば、任意の系列を用いることができる。
 次に、dMBMSセルへの同期について説明する。
 前述のように、dMBMSセルから同期のための同期チャネルを送信することは、移動局装置の負荷増加や受信特性の劣化などの影響がある。
 そのため以降の実施形態では、dMBMSセルから同期チャネルを送信することなく、dMBMSセルへの同期を行う方法を説明する。
 ただし、dMBMSセルから同期チャネルのような同期処理に利用する信号を送信する場合であっても本発明の実施形態に適用することができる。
 すなわち、dMBMSセルに同期した後の周波数オフセットの補償や、同期精度を高めるため、あるいはdMBMS受信専用端末向けに、既知の信号をdMBMSセルから送信することもできる。
(第1の実施形態)
 始めに、本発明の第1の実施形態について説明する。本実施形態はアイドル状態の移動局装置に関する。
 図1は、本発明の第1の実施形態による移動局装置100の構成を示す概略ブロック図である。移動局装置100は、受信部101、復調部102、制御部103、制御信号処理部104、データ処理部105、報知情報処理部106、下りリファレンス信号処理部107、符号部108、変調部109、送信部110、上位レイヤ111、アンテナA1を備えている。
 また、上位レイヤ111は、決定部112を備えている。
 受信部101は、制御部103が出力する受信制御情報に基づいて設定される周波数の信号であって、基地局装置が送信した信号を、アンテナA1を介して、受信する。
 受信部101は、アンテナA1が出力した信号に対して、ダウンコンバートなどの処理を行い、復調部102に出力する。
 復調部102は、受信部101が出力する信号を、制御部103が出力する受信制御情報に基づいて復調する。そして、復調部102は、復調した信号を、物理下り共用チャネル、物理マルチキャストチャネル、物理下り制御チャネル、物理報知チャネル、下りリファレンス信号に分類する。
 受信制御情報には、各チャネルに関する受信タイミング、多重方法、リソース配置情報や復調に関する情報が含まれている。
 分類された各チャネルは、物理下り共有チャネルあるいはマルチキャストチャネルであればデータ処理部105へ出力され、物理下り制御チャネルであれば制御信号処理部104へ出力され、物理報知チャネルであれば報知情報処理部106へ出力され、下りリファレンス信号であれば下りリファレンス信号処理部107へ出力される。
 なお、上述したチャネル以外のチャネルの場合、それぞれ他のチャネル処理部へと出力されるが、本実施形態の説明には影響しないため、その説明を省略する。
 データ処理部105は、復調部102が出力する物理下り共用チャネルと物理マルチキャストチャネルから、トラフィックチャネルデータと上位レイヤ制御信号を取り出して上位レイヤ111へと出力する。
 制御信号処理部104は、復調部102が出力する物理下り制御チャネルから、下位レイヤ制御信号を取り出して上位レイヤ111へと出力する。
 報知情報処理部106は、復調部102が出力する物理報知チャネルから、報知情報(プライマリ報知チャネル情報)を取り出して上位レイヤ111へと出力する。
 下りリファレンス信号処理部107は、復調部102が出力する下りリファレンス信号から、リファレンスデータを取り出して上位レイヤ111へと出力する。
 上位レイヤ111から制御部103には制御情報が出力される。
 一方、上位レイヤ111からは、トラフィックチャネルデータと共通・個別制御チャネルデータが符号部108に出力され、物理上り共有チャネル信号として符号化される。
 また、上位レイヤ111からは、上りリファレンス信号と下位レイヤ制御信号が符号部108に出力され、物理制御チャネル信号として符号化される。
 制御部103は、送信制御情報を、符号部108、変調部109、送信部110に出力する。
 送信制御情報には、上りチャネルに関する送信タイミングや多重方法、各チャネルの送信データの配置情報、変調や送信電力に関する情報が含まれている。
 送信制御情報に基づき符号部108にて符号化された各送信データは、変調部109に出力される。
 変調部109は、制御部103から指示される情報に従って、送信データを適切な変調方式で変調し、送信部110に出力する。
 変調部109で変調されたデータは、送信部110に出力され、適切に電力制御された後に、チャネル配置に基づきアンテナA1から基地局装置に送信される。
 なお、その他の移動局装置100の構成は本実施形態の説明に関係ないため、その説明を省略する。
 また、移動局装置100の受信部101~送信部110の動作は、上位レイヤ111によって統括的に制御される。
 図2は、本発明の第1の実施形態による移動局装置100の下りリファレンス信号処理部107(図1)の構成を示す概略ブロック図である。下りリファレンス信号処理部107は、下りリファレンス信号抽出部1071、系列選択部1072、相関処理部1074、品質管理部1075を備えている。
 系列選択部1072には、制御部103(図1)から受信制御情報が入力される。系列選択部1072に必要となる受信制御情報としては、例えば周波数帯域幅や受信時間情報、受信周波数情報、セルIDなどがある。受信時間情報には、フレーム情報、サブフレーム情報やスロット情報などがある。受信周波数情報には、受信リソースブロック番号やサブキャリア番号などがある。
 系列選択部1072は、制御部103(図1)から入力された受信制御情報を基に、復調に用いる適切な下りリファレンス信号の系列を選択又は生成し、その信号を、選択信号として相関処理部1074に出力する。
 下りリファレンス信号抽出部1071には、受信した下りリファレンス信号が入力される。下りリファレンス信号抽出部1071は、受信制御情報に従って、入力された下りリファレンス信号を信号の系列順に並び替え、抽出信号として相関処理部1074へ出力する。
 相関処理部1074は、セルIDに基づく選択信号と抽出信号との相関処理を行い、品質管理部1075へ相関信号を出力する。
 品質管理部1074は、相関信号を基に、セルID毎の受信品質を測定し、上位レイヤ111(図1)にリファレンスデータとして出力する。
 ここで、受信品質とは、EUTRA Carrier RSSI(Received Signal Strength Indicator:搬送波受信信号強度指標)、RSRP(Reference Signal Received Power:リファレンス信号受信電力)、RSRQ(Reference Signal Received Quality:リファレンス信号受信品質)、パスロスなどである。
 また、品質管理部1075は、在圏セルにおける一つ以上のリソースブロック、または複数サブキャリア毎の品質情報指標(CQI:Channel Quality Indicator)を測定し、上位レイヤ111(図1)にリファレンスデータとして出力する。 
 なお、下りリファレンス信号処理部107の動作は、下りリファレンス信号を抽出し、抽出した信号から受信品質を示すリファレンスデータを出力可能な処理を実施できれば、図2で説明した処理方法以外の方法を用いても良い。
 図3は、本発明の第1の実施形態による基地局装置200の構成を示す概略ブロック図である。基地局装置200は、受信部201、復調部202、制御部203、データ処理部204、制御信号処理部205、符号部206、変調部207、送信部209、上位レイヤ210、アンテナA2を備えている。
 また、上位レイヤ210は、決定部211を備えている。
 受信部201は、受信信号(移動局装置100(図1)や他の基地局装置からの送信信号)を、アンテナA2を介して受信する。
 制御部203は、データ受信制御に関連する受信制御情報を、受信部201、復調部202、データ処理部204、制御信号処理部205に出力する。
 上位レイヤ210は、あらかじめ通信システムで定められたスケジュール情報に基づいた送信・受信の制御情報を、制御部203へ出力する。
 受信信号は、受信部201から復調部202へと出力され、制御部203から指示される受信制御情報を基に、物理上り共有チャネル信号、物理制御チャネル信号に分けられ、それぞれ復調される。
 なお、上述したチャネル以外のチャネルの場合、それぞれ他のチャネル処理部へと出力されるが、本実施形態の説明には影響しないため、その説明を省略する。
 復調部202で復調された各データは、物理上り共有チャネル信号であればデータ処理部204へ出力され、物理上り制御チャネル信号であれば制御信号処理部205へと出力される。
 データ処理部204は、復調部202が出力する物理上り共有チャネル信号から、上位レイヤ制御信号とトラフィックデータを取り出し、上位レイヤ210へ出力する。
 制御信号処理部205は、復調部202が出力する物理上り制御チャネル信号から、下位レイヤ制御信号を取り出して、上位レイヤ210へと出力する。
 なお、下位レイヤ制御信号、あるいは上位レイヤ制御信号には、移動局装置100(図1)が測定した基地局装置200の品質情報や、周辺セルのセルID情報などの基地局装置200に関するデータ(周辺基地局装置データ)も含まれる。
 ここで、基地局装置200が上りリンクが存在しないdMBMSセルであれば、制御データやトラフィックデータの取得過程で用いられるデータ処理部204や制御信号処理部205を、基地局装置200に設けないようにしたり、動作を停止させたりしても良い。
 上位レイヤ210は、上位レイヤ制御信号、トラフィックデータ、下位レイヤ制御信号、下りリファレンス信号を、符号部206に出力する。ユニキャストセルやミックスドセルであれば、上位レイヤ制御信号は、報知制御チャネル、下り共用制御チャネルを含む。
 さらに基地局装置200がミックスドセルあるいはdMBMSセルであれば、上位レイヤ制御信号は、マルチキャスト制御チャネルを含む。
 また、制御部203は、送信制御情報を、符号部206、変調部207、送信部209に出力する。符号部206にて符号化された信号は、変調部207に出力される。
 変調部207は、制御部203からの送信制御情報に従って、各送信データを適切な変調方式で変調し、送信部209に出力する。
 変調部207で変調されたデータは、送信部209に出力され、適切に電力制御された後にチャネル配置に基づき、送信制御情報で設定された周波数でアンテナA2から移動局装置100(図1)に送信される。
 なお、その他の基地局装置200の構成は本実施形態の説明に関係ないため、その説明を省略する。また、基地局装置200の受信部201~送信部209の動作は、上位レイヤ210によって統括的に制御される。
 図4は、本発明の第1の実施形態によるセル構成の一例を示す図である。移動局装置100は、図4に示すようにソースセルA(セルID=CID_A)に在圏している。4つの隣接セルB、C、D、E(セルID=CID_B、CID_C、CID_D、CID_E)が、移動局装置100が測定可能な同じエリアに存在している。
 セルA、B、C、Dは同一キャリア周波数F1を用いるセルであり、セルEのみ異なるキャリア周波数F2を用いるセルである。
 また、セルA、Cはユニキャストセルであり、MBMSサービスを提供していない。セルB、Dはミックスドセルである。セルEはdMBMSセルである。セルEは、単一の基地局装置から信号を送信することにより構成しても良いし、複数の基地局装置から同一信号を送信することにより構成しても良い。
 セルEの一部と同じエリアにあるセルDが、dMBMSセルであるセルEに関する情報をセルEから取得して報知する。
 図5は、本発明の第1の実施形態による移動通信システムの処理を示すシーケンス図である。図5は、アイドル状態の移動局装置100におけるセル再選択処理について示している。
 移動局装置100は、在圏セル並びに周辺セルの受信品質の測定を開始する前、あるいは測定中の状態である。セルAからは、移動局装置100に隣接セルリストは提供されていない。
 ここでは、移動局装置100が、MBMSサービスを受けようとしている場合について説明する。
 始めに、移動局装置100は、セルAから送信される報知情報を受信する(ステップS101)。これにより、移動局装置100は、セルAにてMBMSサービスが提供されていないという情報を取得する(ステップS108)。なおMBMSサービスの有無がダイナミック報知チャネルに含まれる場合、データ処理部105(図1)において物理下り共用チャネルを復調して取得する必要がある。
 移動局装置100は、セル再選択のための周辺セルの検出を、セルAの信号品質に関わらず実施する。検出処理を行う周期は、短くするほど移動局装置100の待ち受け時間が低下する。本実施形態においては、検出の試行回数、電池残量をもとに設定を行うことにより、適切な周期設定を行う。例えば、本実施形態では、検出の試行回数が多くなるほど、検出処理を行う周期を長くする。
 移動局装置100は、隣接セルであるセルB、セルC、セルDからそれぞれ同期チャネル(SCH)を受信する(ステップS102、S103、S104)。なお、隣接セルであるセルEからは、移動局装置100に対して同期チャネル(SCH)は送信されない。
 移動局装置100は、検出されたセル(例えばセルBとセルCとセルD)の報知情報を取得する(ステップS105、S106、S107)。これにより、移動局装置100は、MBMSを行っているセル、あるいはdMBMSセル情報をもつセルの有無を判定する。
 該当するセルが見つからない場合は、移動局装置100は、次の検出処理を行う周期までセルAからの信号の待ち受けを行う。
 該当するセル(ここではセルBとセルD)を発見した場合は、移動局装置100は、当該セルの下りリファレンス信号を受信する(ステップS109、S110)。そして、移動局装置100は、受信品質比較処理を行う(ステップS111)。測定した受信品質が既定の閾値を上回る場合は、移動局装置100は、当該セルを選択する。複数のセルが閾値を上回る場合は、移動局装置100は、最も受信品質の良いセルを通常は選択する。
 図5では、移動局装置100は、最も受信品質の良いセルとしてセルBを選択し、ソースセルをセルAからセルBに変更する(ステップS112、S113)。
 移動局装置100が選択したセル(ここでは、セルB)に対して、移動局装置100は、MBMSパラメータの要求を送信する(ステップS114)。
 そして、セルBの基地局装置から送信される、受信に必要なパラメータが含まれるサービス許可を、移動局装置100が受信する(ステップS115)。
 移動局装置100は、ステップS115で受信したサービス許可の情報に基づいて、MBMS受信設定を行う(ステップS116)。
 そして、移動局装置100は、当該セル、あるいは当該セルと同エリアの異周波数のセル(選択したセルがセルDであれば、異周波のセルはセルE)で移動局装置100が希望するサービスが提供されている場合、ステップS117の処理を行う。つまり、当該セルとの認証・課金処理などのサービスを受けるために必要な処理を経て、MBMSやユニキャストのデータの受信を開始する(ステップS117)。
 なお、MBMS受信にユーザ別の認証などの必要がない場合、図5のMBMSパラメータ要求信号とサービス許可信号は不要である。
 図6は、本発明の第1の実施形態によるアイドル状態の移動局装置100におけるセル再選択処理を示すフローチャートである。
 始めに、移動局装置100は、自移動局装置100が選択しているセルの下りリファレンス信号に基づいた受信品質が、既定の閾値以下であるかを判定する(ステップS710)。
 閾値以下であれば(ステップS710で「Yes」)、移動局装置100は、周辺セルの検出、報知情報の取得を行う(ステップS711)。次に検出されたセルの下りリファレンス信号に基づいて、移動局装置100は、受信品質を測定し、最も受信品質の良いセルを選択する(ステップS712)。そして、移動局装置100は、選択されたセルに対するセル選択を行う(ステップS78)。
 ステップS710において閾値より大きい場合(ステップS710で「No」)、移動局装置100は、自移動局装置100がMBMS受信を希望しているか否かを判定する(ステップS71)。希望していない場合(ステップS71で「No」)、図6のフローチャートの処理を終了する。
 移動局装置100がMBMS受信を希望する場合(ステップS71で「Yes」)、ソースセルで、MBMS受信のサービスをサービス中か否かを判定する(ステップS72)。MBMS受信のサービスをサービス中である場合(ステップS72で「Yes」)、図6のフローチャートの処理を終了する。
 MBMS受信のサービスをサービス中でない場合(ステップS72で「No」)、移動局装置100は、周辺セル測定周期か否か、つまり、周辺セルサーチを行うタイミングであるか否かを判定する(ステップS73)。周辺セルサーチを行うタイミングでない場合(ステップS73で「No」)、ステップS71へ戻る。
 周辺セルサーチのタイミングである場合(ステップS73で「Yes」)、移動局装置100は、周辺セルの検出、報知情報の取得を行う(ステップS74)。
 そして、移動局装置100は、検出したセルの報知情報から、MBMSを行うセルがあるかを判定する(ステップS75)。MBMSを行うセルがない場合(ステップS75で「No」)、移動局装置100は、周辺セルの測定周期を変更して(ステップS79)、ステップS71へ戻る。
 MBMSを行うセルがある場合(ステップS75で「Yes」)、移動局装置100は、当該セルの受信品質を測定する(ステップS76)。そして、移動局装置100は、受信品質が既定の品質を満たすか否かを判定する(ステップS77)。
 既定の品質を満たさない場合(ステップS77で「No」)、移動局装置100は、周辺セルの測定周期を変更して(ステップS79)、ステップ71へ戻る。
 既定の品質を満たす場合(ステップS77で「Yes」)、当該セルを選択し(ステップS78)、ステップ71へ戻る。
 ここでステップS79における測定周期の変更方法について述べる。
 移動局装置100は、電源投入時、あるいはセル再選択後の周期Tsとして、初期周期として時間Taを設定する。
 ステップS75の処理後にステップS79の処理を行う場合、移動局装置100は、既知の定数Tbを加えTs+Tbを新たなTsとして設定する。新たなTsが定数Tcを超える場合、移動局装置100は、Tsとして、Tcを設定する。すなわち周囲にサービスを行うセルが見つからない場合、既知の最大周期Tcに至るまで最小周期のTaからTbずつ周期を長くしていく。
 また、ステップS77の処理後にステップS79の処理を行う場合、移動局装置100は、Tsとして、初期周期Taを設定する。すなわち周囲にサービスを行うセルを検出した場合、移動局装置100は、当該セルの測定を周期を短くする。これにより、セル再選択を行う遅延を小さくすることが可能となる。
 本発明の第1の実施形態による移動通信システムは、移動局装置100(図1)と基地局装置200(図3)とを備えている。そして、移動局装置100の下りリファレンス信号処理部107(受信品質測定部とも称する)は、ソースセルあるいは周辺セルの基地局装置から送信され、受信部101で受信されるリファレンス信号に基づいた受信品質を測定する(図5のステップS109、S110)。
 また、移動局装置100の上位レイヤ111に含まれる決定部112は、自移動局装置100が希望するサービスであるMBMS有無の情報と、下りリファレンス信号処理部107で測定したソースセルおよび周辺セルから送信されるリファレンス信号の受信品質とに基づいて、自移動局装置100が通信する再選択先の基地局装置を決定する(図5のステップS111、図6のフローチャート)。
 また、送信部110と受信部101(通信部とも称する)は、決定部112が決定した基地局装置を再選択し、その基地局装置と通信する。
 従来では、移動局装置は、アイドル時におけるセル検出および再選択を、省電力化のために隣接セルリストがある状態でなければ行えなかった。本実施形態では、移動局装置100は、ソースセルの受信品質が良い場合、セル検出および再選択を、ソースセルにおける希望するサービスの有無の情報による判定と、測定周期の条件に応じた変更を行う。これにより、従来のセル再選択の精度を低下させることなく、効率的に周辺セルの検出・測定を行うことができる。よって、移動局装置100は、希望するサービスの提供を受けやすくなる。
(第2の実施形態)
 次に、本発明の第2の実施形態について説明する。
 本実施形態はアクティブ状態の移動局装置に関する。本発明の第2の実施形態の移動局装置と基地局装置は、本発明の第1の実施形態による移動局装置100(図1)と基地局装置200(図3)と同様の構成を用いることができるため、それらの詳細な説明を省略する。
 また、本発明の第2の実施形態におけるセルの構成は、第1の実施形態の場合と同様(図4)であるため、その説明を省略する。
 図7は、本発明の第2の実施形態による移動通信システムの処理を示すシーケンス図である。図7は、アクティブ状態の移動局装置100におけるハンドオーバー処理について示している。
 移動局装置100は、在圏セル並びに周辺セルの受信品質の測定を開始する前、あるいは測定中の状態である。セルA(CID_A)からは、移動局装置100に対して、隣接セルリストは提供されていない。
 まず、移動局装置100は、セルA(CID_A)から受信した報知情報に基づいて、セルA(CID_A)ではMBMSサービスが提供されているか否かについての情報を取得する(ステップS201)。ここでは、移動局装置100は、セルA(CID_A)がMBMSサービスを提供していないと情報を取得した場合について説明する。
 移動局装置100は、周辺セルの検出を、セルA(CID_A)からの信号の受信品質に関わらず実施する。移動局装置100は、検出されたセル(例えばセルBとセルCとセルD)の下りリファレンス信号を用いて(ステップS205、S206、S207)、各セルの受信品質測定を行う(ステップS208)。
 なお、隣接セルであるセルB(CID_B)、セルC(CID_C)、セルD(CID_D)は、それぞれ移動局装置100に同期チャネル(SCH)を送信する(ステップS202、S203、S204)。ただし、隣接セルであるセルE(CID_E)は、移動局装置100に同期チャネル(SCH)を送信しない。
 移動局装置100は、セルB(CID_B)、セルC(CID_C)、セルD(CID_D)について測定した受信品質情報を、ソースセルA(CID_A)に対して通知する(ステップS210)。この際に、移動局装置100は、MBMS受信を希望する旨の信号もセルA(CID_A)に対して通知する(ステップS209)。
 この希望する旨の信号は、測定結果の通知と同時に下位レイヤの制御信号として通知しても良いし、事前に上位(L2/L3)レイヤ制御信号として通知しても良いし、移動局装置100の性能を示す情報(UE Capability)の1パラメータとして初期接続時に通知しても良い。
 通知されたソースセルA(CID_A)の基地局装置は、移動局装置100からMBMS受信希望信号と、周辺セル(セルB、セルC、セルD)の品質情報を受信する。移動局装置100がMBMS受信を希望している場合、セルA(CID_A)の基地局装置は、保持している周辺セルの情報から、MBMSサービスを提供しているセル、あるいはdMBMSセル情報を持つセルの有無を検索する(ステップS211)。そして、セルA(CID_A)の基地局装置は、該当するセルがない場合は、移動局装置100に対して「該当セルなし」の情報を返信する(ステップS214)。
 通知は上位レイヤ制御信号として送信すると良い。また、一定時間以内に移動局装置100への返信がない場合を「該当セルなし」としても良い。
 該当セルがないと通知された移動局装置100、または明示された返信がないため該当セルなしと判定した移動局装置100は、検出された周辺セルにサービスを行うセルがなかった場合のアイドル時の検出処理周期と同様に、測定周期を変更する(ステップS215)。そして、移動局装置100は、セルの検出を行い、検出結果に更新があれば基地局装置へ再度通知する。
 また、基地局装置にて該当するセルがあった場合であって、移動局装置100から報告された当該セルの受信品質が既定の閾値を超える場合に、セルA(CID_A)の基地局装置は、当該セル内で最良の受信品質のセル(例えばセルD)へのハンドオーバーを要求する(ステップS212)。これに対して、隣接セルであるセルD(CID_D)は、ソースセルであるセルA(CID_A)に対して、ハンドオーバー要求許可を通知する(ステップS213)。
 そして、ソースセルであるセルA(CID_A)は、移動局装置100に対してセルD(CID_D)へのハンドオーバー指示を送信する(ステップS216)。
 そして、移動局装置100とセルD(CID_D)との間でハンドオーバー処理を行う(ステップS217)。これにより、ソースセルがセルA(CID_A)からセルD(CID_D)に変更される。なお、ハンドオーバー処理は従来と同様の処理であるため、ここでの説明は省略する。
 ハンドオーバー先がセルD(CID_D)である場合には、セルD(CID_D)へのハンドオーバー後に、移動局装置100から基地局装置にMBMSパラメータを要求する(ステップS218)。
 一方、隣接セルであるセルE(CID_E)からセルD(CID_D)には、MBMS情報(セルID、キャリア周波数、帯域、同期に必要な情報など)が送信される(ステップS220)。
 また、受信に必要なパラメータ(MBMS情報など)を含むサービス許可が、セルD(CID_D)から移動局装置100に送信される(ステップS219)。
 移動局装置100は、ステップS219で受信したサービス許可に含まれる情報に基づいて、MBMSの受信設定を行う(ステップS221)。
 移動局装置100は、セルD(CID_D)でユニキャスト通信を行いつつ(ステップS223)、認証・課金処理などのMBMSサービスを受けるために必要な処理を経て、セルE(CID_E)からのMBMS受信を開始する(ステップS222)。
 なお、MBMS受信にユーザ別の認証などの必要がない場合、図7のMBMSパラメータ要求信号とサービス許可信号は不要である。
 アクティブ状態における処理にて、MBMSサービスを提供している場合、あるいはdMBMSセル情報を持つセルが周辺に存在しているが、受信品質が既定の閾値を超えるセルがない場合も「該当セルなし」の情報を移動局装置100に返信する。なお、該当しない理由を付加して通知することで、移動局装置100における測定周期を適切に変更しても良い。すなわち、前述のアイドル時におけるステップS79と同様に、以下の制御を行っても良い。
 周期Tsに初期周期として時間Taを設定する。そして、「該当セルなし」かつ基地局装置が持つ隣接セルの情報にサービスを行うセルが含まれない場合は、既知の定数Tbを加えTs+Tbを新たなTsとして設定する。この際、新たなTsが定数Tcを超える場合、Tsとして、Tcを設定する。
 また、「該当セルなし」の場合であって、かつ基地局装置が持つ隣接セルの情報にサービスを行うセルが含まれるが移動局装置100の受信状態が悪い場合は、Tsとして、初期周期Taを設定する。
 また、受信品質を満たさない場合は、当該セルIDを移動局装置100に通知し、当該セルの受信品質のみを測定して報告することにより、測定の効率化を図ることも可能である。
 すなわち、セル全体、あるいは特定の移動局装置100に対して、膨大な隣接セルリストを送信することなく、サービスを必要とする移動局装置100に対して最良のセル候補を通知することにより、無線リソースの利用を効率化することができる。
 図8は、本発明の第2の実施形態によるアクティブ状態の移動局装置100におけるハンドオーバー処理を示すフローチャートである。
 始めに、移動局装置100は、自移動局装置100がMBMS受信を希望しているか否かを判定する(ステップS81)。移動局装置100がMBMS受信を希望していない場合(ステップS81で「No」)、移動局装置100は、図8のフローチャートの処理を終了する。移動局装置100がMBMS受信を希望する場合(ステップS81で「Yes」)、移動局装置100は、ソースセルでMBMSサービスをサービス中か否かを判定する(ステップS82)。
 ソースセルでMBMSサービスをサービス中である場合(ステップS82で「Yes」)、移動局装置100は、図8のフローチャートの処理を終了する。ソースセルでMBMSサービスをサービス中でない場合(ステップS82で「No」)、移動局装置100は、周辺セル測定周期であるか否か、つまり、周辺セルサーチを行うタイミングであるか否かを判定する(ステップS83)。
 周辺セルサーチを行うタイミングでない場合(ステップS83で「No」)、移動局装置100は、ステップS81へ戻る。周辺セルサーチを行うタイミングである場合(ステップS83で「Yes」)、移動局装置100は、周辺セルの検出と、受信品質の測定を行う(ステップS84)。
 次に、移動局装置100は、ソースセルの基地局装置へ測定結果と、MBMSサービス受信の要求信号を送信する(ステップS85)。そして、移動局装置100は、基地局装置からの返信が「該当するセルなし」であるか否かを判定する(ステップS86)。
 「該当セルなし」の場合(ステップS86で「Yes」)、移動局装置100は、周辺セルの測定周期を変更することにより、周辺セルの測定周期を設定し(ステップS87)、ステップS88の処理を行う。
 「該当セルなし」ではない場合(ステップS86で「No」)またはステップS87処理後、移動局装置100は、ハンドオーバー指示があるか否かを判定する(ステップS88)。
 ハンドオーバー指示がない場合(ステップS88で「No」)、移動局装置100は、ステップ81へ戻る。
 ハンドオーバー指示がある場合(ステップS88で「Yes」)、移動局装置100は、ハンドオーバー処理を実行して(ステップS89)、ハンドオーバー後のセルに対してステップ81の処理を行う。
 ステップS87における周期の変更の処理は、前述のようにステップS79と同様の処理である。
 図9は、本発明の第2の実施形態による基地局装置におけるハンドオーバー処理を示すフローチャートである。
 始めに、基地局装置は、移動局装置100から周辺セルの受信品質の報告およびMBMS受信希望信号を受信する(ステップS901)。MBMS受信希望信号は事前に、移動局装置100から基地局装置に通知するようにしても良い。
 基地局装置は、移動局装置100がMBMSのサービスを希望しているか否かを判定する(ステップS902)。移動局装置100がMBMSのサービスを希望していない場合(ステップS902で「No」)、通常のハンドオーバー処理を行い(ステップS910)、図9のフローチャートの処理を終了する。
 移動局装置100がMBMSのサービスを希望している場合(ステップS902で「Yes」)、基地局装置は、自セルでMBMSのサービス中であるか否かを判定する(ステップS903)。基地局装置がMBMSのサービスを行っている場合(ステップS903で「Yes」)、基地局装置は、報告された周辺セルのうち、MBMSのサービスを行っていないセルの受信品質から既知の値を減算する(ステップS906)。なお、基地局装置は、自セルも含めて、MBMSのサービスを行っているセルの受信品質に既知の値を加算しても良い。
 基地局装置は、ステップS906で演算を行った受信品質を用いて、ステップS910の後述する通常のハンドオーバー処理を行い、図9のフローチャートの処理を終了する。
 基地局装置がMBMSのサービスを行っていない場合(ステップS903で「No」)、基地局装置は、報告された周辺セル内にMBMSのサービスを行うセルがあるか否かを判定する(ステップS904)。対応するセルがない場合(ステップS904で「No」)、基地局装置は、移動局装置100に「該当セルなし」と通知する(ステップS905)。そして、基地局装置は、ステップS910の後述する通常のハンドオーバー処理へ移り、図9のフローチャートの処理を終了する。
 MBMSのサービスを提供するセルがある場合(ステップS904で「Yes」)、基地局装置は、該当するセルの受信品質が既定の閾値以上であるかを判定する(ステップS907)。閾値未満である場合(ステップS907で「No」)、基地局装置は、移動局装置100に「受信品質満たさず」と通知し(ステップS908)、ステップS910のハンドオーバー処理へ移る。
 閾値以上である場合(ステップS907で「Yes」)、基地局装置は、後述する該当するセルへのハンドオーバー処理を行い(ステップSS909)、図9のフローチャートの処理を終了する。
 図10は、図9のステップS909のハンドオーバー処理を示すフローチャートである。
 始めに、基地局装置は、ステップS904(図9)で選択された既知の閾値以上の品質のサービス対応セルを、品質の良い順に並び替えてリスト化する(ステップS1501)。
 そして、基地局装置は、リストの先頭からセルを選択するために、インデックスNを1に設定する(ステップS1502)。
 そして、基地局装置は、リストのN番目のセルに対してハンドオーバー要求を行う(ステップS1503)。
 そして、基地局装置は、既定時間以内にハンドオーバー要求許可が、N番目のセルから返信されたかを判定する(ステップS1504)。
 ハンドオーバー要求許可が返答された場合(ステップS1504で「Yes」)、基地局装置は、N番目のセルへの同期に関する情報をハンドオーバー指示に含めて、移動局装置100へ通知する(ステップS1505)。
 ステップS1504で返信がなかった場合、基地局装置は、Nに1を加える(ステップS1506)。そして、基地局装置は、Nがリスト上のセル数を超えたかを判定する(ステップS1507)。Nがリスト上のセル数を超えている場合、基地局装置は、移動局装置100へのハンドオーバー指示は行わず、図10のフローチャートの処理を終了する(ステップS1507で「Yes」)。Nがリスト上のセル数を超えていない場合、基地局装置は、ステップS1503の処理へ戻る(ステップS1507で「No」)。
 図11は、図9のステップS910のハンドオーバー処理を示すフローチャートである。
 始めに、基地局装置は、移動局装置100から通知された自セルの受信品質が既知の閾値以下であるかを判定する(ステップS1601)。
 自セルの受信品質が既知の閾値以下でない場合(ステップS1601で「No」)、基地局装置は、図11のフローチャートの処理を終了する。自セルの受信品質が既知の閾値以下である場合(ステップS1601で「Yes」)、基地局装置は、移動局装置100から報告されたセルを、品質の良い順に並び替えてリスト化する(ステップS1602)。
 そして、基地局装置は、リストの先頭からセルを選択するために、インデックスNを1に設定する(ステップS1603)。
 そして、基地局装置は、リストのN番目のセルに対してハンドオーバー要求を行う(ステップS1604)。
 そして、基地局装置は、既定時間以内にハンドオーバー要求許可が、前記N番目のセルから返信されたかを判定する(ステップS1605)。
 ハンドオーバー要求許可が返答された場合(ステップS1605で「Yes」)、基地局装置は、N番目のセルへの同期に関する情報をハンドオーバー指示に含めて、移動局装置100へ通知する(ステップS1606)。
 ステップS1605で返信がなかった場合、基地局装置は、Nに1を加える(ステップS1607)。そして、基地局装置は、Nがリスト上のセル数を超えたかを判定する(ステップS1608)。Nがリスト上のセル数を超えている場合、基地局装置は、移動局装置100へのハンドオーバー指示は行わず、図11のフローチャートの処理を終了する(ステップS1608で「Yes」)。Nがリスト上のセル数を超えていない場合、基地局装置は、ステップS1604の処理へ戻る(ステップS1608で「No」)。
 本実施形態では、移動局装置100はソースセルの受信品質に影響されず、基地局装置からの返信に基づいて設定した効率的な測定周期で、周辺セルの測定、報告を行う。これにより、希望するサービスの提供を移動局装置100が受けやすくすることが可能となる。また、基地局装置は移動局装置100に対して、自局が持つサービス対応情報を付加した膨大な隣接セル情報を、有限の資源である無線リソースを用いて移動局装置100へ通知することなく、希望サービスに基づいたハンドオーバー処理を行うことが可能となる。
 さらには、サービスが提供されない理由を、基地局装置から移動局装置100に通知することにより、移動局装置100においてさらに効率的な測定周期を設定する。これにより、過剰な周辺セルサーチを抑制することが可能となり、移動局装置100の省電力化を図ることが可能となる。
 図12は、本発明の第2の実施形態による移動通信システムの処理の他の一例を示すシーケンス図である。
 始めに、ソースセルであるセルA(CID_A)は、自セルがMBMSを提供しているかの有無情報を含む報知情報を移動局装置100に通知する(ステップS301)。また、移動局装置100は、セルA(CID_A)の基地局装置、あるいはネットワークへの接続時に、自移動局装置100の希望するサービス(ここではMBMS)を、セルA(CID_A)に通知する(ステップS302)。通知する際には、各レイヤの制御信号、移動局装置100の性能を示す情報などを用いることができる。
 次に、移動局装置100は、セルA(CID_A)の受信品質が既定の閾値を下回る際に周辺セルサーチを開始する(ステップS303)。移動局装置100は、既定の閾値を、セルAの報知情報より取得したセルA(CID_A)でのMBMS有無情報をもとに変更しても良い。
 隣接セルであるセルB(CID_B)、セルC(CID_C)、セルD(CID_D)は、移動局装置100に対して、同期チャネル(SCH)を送信する(ステップS304、S305、S306)。なお、隣接セルであるセルE(CID_E)は、移動局装置100に対して同期チャネル(SCH)を送信しない。
 また、隣接セルであるセルB(CID_B)、セルC(CID_C)、セルD(CID_D)は、移動局装置100に対して下りリファレンス信号を送信する(ステップS307、S308、S309)。
 移動局装置100は、隣接セルから送信される下りリファレンス信号に基づいて、各セルの受信品質を測定する(ステップS310)。
 移動局装置100で測定された周辺セルの受信品質は、セルA(CID_A)の基地局装置に報告される(ステップS311)。
 セルA(CID_A)の基地局装置は、周辺セルのMBMSサービス有無を確認するとともに、周辺セルの受信品質を比較することにより、ハンドオーバー先のセルを決定する(ステップS312)。
 例えば、セルA(CID_A)の基地局装置は、移動局装置100から報告された周辺セルの受信品質の値に対して、移動局装置100の希望するサービスを行っている周辺セルの値が良い受信品質となるように補正を行うことにより、ハンドオーバー先のセルを決定する。ここでは、ステップS312で、ハンドオーバー先のセルとしてセルD(CID_D)を決定した場合について説明する。
 セルA(CID_A)の基地局装置は、ハンドオーバー要求をセルD(CID_D)に送信する(ステップS313)。これに対して、セルD(CID_D)の基地局装置は、ハンドオーバーの要求許可をセルA(CID_A)の基地局装置に対して返信する(ステップS314)。
 そして、セルA(CID_A)の基地局装置は、移動局装置100に対して、セルD(CID_D)へのハンドオーバー指示を送信する(ステップS315)。
 そして、移動局装置100とセルD(CID_D)の基地局装置との間で、ハンドオーバー処理を行う(ステップS316)。このハンドオーバーの処理は、従来と同様の処理であるため、その詳細な説明を省略する。
 図12の処理を行うことにより、隣接セルリストを必要とせず、移動局装置100が希望するサービスの提供を受けやすくすることが可能となる。
 本発明の第2の実施形態による移動通信ステムは、移動局装置100(図1)と基地局装置200(図3)とを備えている。
 移動局装置100の下りリファレンス信号処理部107(受信品質測定部とも称する)は、ソースセルあるいは周辺セルの基地局装置から送信されるリファレンス信号に基づいて受信品質を測定する(図7のステップS208)。
 また、移動局装置100の送信部110(第1の送信部とも称する)は、自移動局装置100が希望するサービスであるMBMSの情報と、下りリファレンス信号処理部107が測定した受信品質の情報とを基地局装置200に送信する(図7のステップS209、S210)。
 また、移動局装置100の送信部110と受信部101(通信部とも称する)は、基地局装置200から送信される基地局装置の情報で特定される基地局装置にハンドオーバーを行い、その基地局装置と通信する(図7のステップ217)。
 また、基地局装置200の上位レイヤ210に含まれる決定部211は、移動局装置100の送信部110が、上位レイヤ制御信号として送信したサービスの情報(ここでは、移動局装置100が希望するサービスがMBMSであるという情報)と、移動局装置100の下りリファレンス信号処理部107で測定した周辺の基地局装置から送信されるリファレンス信号の受信品質の情報とに基づいて、移動局装置100が通信するハンドオーバー先の基地局装置を決定する(図7のステップS211、図9のフローチャート)。
 また、基地局装置200の送信部209(第2の送信部とも称する)は、決定部211が決定した基地局装置の情報を上位レイヤ制御信号として、移動局装置100に送信する(図7のステップS216)。
(第3の実施形態)
 次に、本発明の第3の実施形態について説明する。第2の実施形態では、移動局装置100が受信品質測定を行った周辺セルに対して、基地局装置でMBMSのサービスの提供の有無を判定後、ハンドオーバー処理を行う場合について説明した。
 第3の実施形態では、基地局装置から測定を行う周辺セルのセルIDを、事前に移動局装置100に対して通知する。そして、移動局装置100は、基地局装置から通知された周辺セルの受信品質のみを測定し報告する。
 なお、本実施形態で用いる移動局装置や基地局装置としては、第1の実施形態で説明した移動局装置100(図1)や基地局装置200(図3)を用いることが可能であるため、それらの詳細な説明は省略する。
 また、本実施形態で用いるセルの構成も、第1の実施形態(図4)で示したものと同様であるため、その説明を省略する。
 図13は、本発明の第3の実施形態による移動通信システムの処理を示すシーケンス図である。図13は、アクティブ状態の移動局装置100におけるハンドオーバー処理を示している。移動局装置100は、在圏セル並びに周辺セルの受信品質の測定を開始する前、あるいは測定中の状態である。セルA(CID_A)からは隣接セルリストは提供されていない。
 始めに、移動局装置100は、セルA(CID_A)の基地局装置からMBMS有無の情報を含む報知情報を受信する(ステップS401)。ここでは、移動局装置100は、セルA(CID_A)からの報知情報によって、セルA(CID_A)にてMBMSサービスが提供されていないという情報を受信する場合について説明する。
 移動局装置100は、MBMS受信を希望する旨の信号をセルA(CID_A)に対して通知する(ステップS402)。この希望する旨の信号は、測定結果の通知と同時に下位レイヤの制御信号として通知しても良いし、事前に上位(L2/L3)レイヤの制御信号として通知しても良いし、移動局装置100の性能情報の1パラメータとして初期接続時に通知されても良い。
 ソースセルA(CID_A)の基地局装置は、移動局装置100からMBMS受信希望信号を受信する。移動局装置100が、MBMS受信を希望している場合、セルA(CID_A)の基地局装置は、自局が保持している周辺セルの情報からMBMSサービスを提供している、あるいはdMBMSセル情報を持つセルの有無を検索する(ステップS403)。そして、セルA(CID_A)は、該当するセルがない場合は、移動局装置100に対して「該当セルなし」の情報を返信する。通知は、上位レイヤ制御信号として送信されるのが望ましい。あるいは一定時間以内に移動局装置100への返信がない場合を「該当セルなし」としても良い。
 該当セルがないと通知された移動局装置100は、第2の実施形態の検出処理周期と同様に測定周期を変更し、セルの検出を行い、検出結果に更新があれば基地局装置へ再度通知する。該当するセルがある場合、セルA(CID_A)は、該当するセルのID情報などを測定対象周辺セル情報として、移動局装置100に対して下位レイヤ、あるいは上位レイヤ制御信号として通知する(ステップS404)。
 測定対象周辺セル情報(例えばセルBとセルD)を受信した移動局装置100は、ステップS405、S406で送信される同期チャネル(SCH)、あるいは、ステップS407、S408で送信される下りリファレンス信号を用いて、セルB(CID_B)とセルD(CID_D)の検出を行う。
 移動局装置100は、検出されたセル(例えばセルD)の下りリファレンス信号を用いて、各セルの受信品質測定を行う(ステップS409)。移動局装置100は、測定した品質情報をソースセルA(CID_A)に対して通知する(ステップS410)。セルA(CID_A)の基地局装置は、周辺セルの受信品質を比較する(ステップS411)。そして、セルA(CID_A)の基地局装置は、移動局装置100から報告されたセルの受信品質が、既定の閾値以上であれば、移動局装置100に対して当該セル内で最良の受信品質のセル(ここではセルD)へのハンドオーバーを指示する(ステップS414)。
 また、ソースセルであるセルA(CID_A)の基地局装置は、セルD(CID_D)に対してハンドオーバー要求を送信する(ステップS412)。これに対して、セルD(CID_D)の基地局装置は、セルA(CID_A)の基地局装置に対して、ハンドオーバー要求許可を返信する(ステップS413)。
 そして、移動局装置100は、セルD(CID_D)との間で、ハンドオーバー処理を行う(ステップS415)。このハンドオーバー処理は、従来と同様の処理であるため、ここでの説明は省略する。
 なお、MBMS受信にユーザ別の認証などの必要がない場合、図13のMBMSパラメータ要求信号とサービス許可信号は不要である。
 なお、受信品質が閾値を超えるセルがない場合、第2の実施形態と同様、「該当セルなし」、あるいは「受信品質満たさず」等の情報を移動局装置に返信する。
 また、本実施形態の移動局装置100内においてステップS410で報告するセルリストにおいて、あらかじめ既知の閾値を超える品質のセルのみを報告するようにしても良い。これにより、基地局装置における移動局装置100から報告されたセルの受信品質と既定の閾値との比較処理を省略することが可能となる。
 本発明の第3の実施形態による移動通信ステムは、移動局装置100(図1)と基地局装置200(図3)とを備えている。
 移動局装置100の下りリファレンス信号処理部107(受信品質測定部とも称する)は、ソースセルあるいは周辺セルの基地局装置から送信されるリファレンス信号に基づいて受信品質を測定する(図13のステップS409)。
 また、移動局装置100の送信部110(第1の送信部とも称する)は、自移動局装置100が希望するサービスであるMBMSの情報と、下りリファレンス信号処理部107が測定した受信品質の情報とを、基地局装置200に送信する(図13のステップS402、S410)。
 また、移動局装置100の送信部110と受信部101(通信部とも称する)は、基地局装置200から送信される基地局装置の情報で特定される基地局装置にハンドオーバーを行い、その基地局装置と通信する(図13のステップ415)。
 また、基地局装置200の上位レイヤ210に含まれる決定部211は、移動局装置100の送信部110が上位レイヤ制御信号として送信したサービスの情報(ここでは、移動局装置100が希望するサービスがMBMSであるという情報)と、移動局装置100の下りリファレンス信号処理部107で測定した周辺の基地局装置から送信されるリファレンス信号の受信品質の情報とに基づいて、移動局装置100が通信するハンドオーバー先の基地局装置を決定する(図13のステップS403、S411)。
 また、基地局装置200の送信部209(第2の送信部とも称する)は、決定部211が決定した基地局装置の情報を、上位レイヤ制御信号として移動局装置100に送信する(図13のステップS414)。
 本実施形態では、移動局装置100は、ソースセルの受信品質に影響されず、基地局装置からの返信に基づいて設定した効率的な測定周期で、周辺セルの測定、報告を行う。これにより、希望するサービスの提供を移動局装置100が受けやすくすることが可能となる。また、基地局装置は、移動局装置100に対して、自局が持つサービス対応情報を付加した膨大な隣接セル情報のうち、移動局装置100ごとのサービス希望に基づいたセル情報のみを選択して移動局装置100へ通知する。これにより、無線リソースを有効に利用しつつ、希望サービスに基づいたハンドオーバー処理を行うことが可能となる。
 なお、以上説明した実施形態において、移動局装置および基地局装置の各部の機能又はこれらの機能の一部を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより移動局装置や基地局装置の制御を行っても良い。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含む。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。
 本発明は、移動局装置や無線リソースに大きな負荷をかけず、受信特性や周波数利用効率を高めることができる移動通信システム、移動局装置、基地局装置及び移動通信方法などに適用できる。
100・・・移動局装置、101・・・受信部、102・・・復調部、103・・・制御部、104・・・制御信号処理部、105・・・データ処理部、106・・・報知情報処理部、107・・・下りリファレンス信号処理部、108・・・符号部、109・・・変調部、110・・・送信部、111・・・上位レイヤ、200・・・基地局装置、201・・・受信部、202・・・復調部、203・・・制御部、204・・・データ処理部、205・・・制御信号処理部、206・・・符号部、207・・・変調部、209・・・送信部、210・・・上位レイヤ、A1、A2・・・アンテナ

Claims (10)

  1.  移動局装置と基地局装置とを備える移動通信システムであって、
     前記移動局装置は、
     周辺の基地局装置から送信される信号に基づいて受信品質を測定する受信品質測定部と、
     自移動局装置が希望するサービスと前記受信品質測定部が測定した受信品質とに基づいて、自移動局装置が通信する基地局装置を決定する決定部と、
     前記決定部が決定した基地局装置と通信する通信部と、
     を備える移動通信システム。
  2.  移動局装置と基地局装置とを備える移動通信システムであって、
     基地局装置と通信を行なっている前記移動局装置は、
     前記基地局装置の周辺の基地局装置から送信される信号と前記通信を行なっている基地局装置のサービス実施状況とに基づいて受信品質を測定する受信品質測定部と、
     自移動局装置が希望するサービスの情報と前記受信品質測定部が測定した受信品質の情報とを前記基地局装置に送信する第1の送信部と、
     前記基地局装置から送信される基地局装置の情報で特定される基地局装置と通信する通信部とを備え、
     前記基地局装置は、
     前記第1の送信部が送信したサービスの情報と受信品質の情報と自基地局装置のサービス実施状況とに基づいて、前記移動局装置が通信する基地局装置を決定する決定部と、
     前記決定部が決定した基地局装置の情報を前記移動局装置に送信する第2の送信部と、
     を備える移動通信システム。
  3.  前記受信品質測定部は、前記第2の送信部が送信した基地局装置の情報と前記基地局装置のサービス実施状況とに基づいて受信品質の測定周期を変更する請求項2に記載の移動通信システム。
  4.  前記基地局装置の情報は、サービス提供セルなし、受信品質満たさず、ハンドオーバー指示の何れかである請求項3に記載の移動通信システム。
  5.  前記サービスは、マルチメディア ブロードキャスト/マルチキャスト サービスである請求項1又は2に記載の移動通信システム。
  6.  マルチメディア ブロードキャスト/マルチキャスト サービスを提供する基地局装置は、同期チャネルを前記移動局装置に送信しない請求項1又は2に記載の移動通信システム。
  7.  基地局装置と通信する移動局装置であって、
     前記基地局装置から送信される信号と前記基地局装置のサービス実施状況とに基づいて受信品質を測定する受信品質測定部と、
     自移動局装置が希望するサービスと前記受信品質測定部が測定した受信品質とに基づいて、自移動局装置が通信する基地局装置を決定する決定部と、
     前記決定部が決定した基地局装置と通信する通信部と、
     を備える移動局装置。
  8.  移動局装置と通信する基地局装置であって、
     前記移動局装置が希望するサービスの情報と前記移動局装置が測定する周辺の基地局装置から送信された信号の受信品質の情報とに基づいて、前記移動局装置が通信する基地局装置を決定する決定部と、
     前記決定部が決定した基地局装置の情報を前記移動局装置に送信する第2の送信部と、
     を備える基地局装置。
  9.  移動局装置と基地局装置とを用いた移動通信方法であって、
     前記移動局装置は、
     周辺の基地局装置から送信される信号に基づいて受信品質を測定する受信品質測定過程と、
     自移動局装置が希望するサービスと前記受信品質測定過程で測定した受信品質とに基づいて、自移動局装置が通信する基地局装置を決定する決定過程と、
     前記決定過程で決定した基地局装置と通信する通信過程と、
     を有する移動通信方法。
  10.  移動局装置と基地局装置とを用いた移動通信方法であって、
     前記移動局装置は、
     周辺の基地局装置から送信される信号に基づいて受信品質を測定する受信品質測定過程と、
     自移動局装置が希望するサービスの情報と前記受信品質測定過程で測定した受信品質の情報とを前記基地局装置に送信する第1の送信過程と、
     前記基地局装置から送信される基地局装置の情報で特定される基地局装置と通信する通信過程とを有し、
     前記基地局装置は、
     前記第1の送信過程で送信したサービスの情報と受信品質の情報とに基づいて、前記移動局装置が通信する基地局装置を決定する決定過程と、
     前記決定過程で決定した基地局装置の情報を前記移動局装置に送信する第2の送信過程と、
     を有する移動通信方法。
PCT/JP2009/057454 2008-04-28 2009-04-13 移動通信システム、移動局装置、基地局装置及び移動通信方法 WO2009133767A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010510077A JPWO2009133767A1 (ja) 2008-04-28 2009-04-13 移動通信システム、移動局装置、基地局装置及び移動通信方法
US12/989,579 US20110039551A1 (en) 2008-04-28 2009-04-13 Mobile communication system, mobile station device, base station device, and mobile communication method
CN2009801141682A CN102017718A (zh) 2008-04-28 2009-04-13 移动通信系统、移动台装置、基站装置及移动通信方法
EP09738704A EP2291035A1 (en) 2008-04-28 2009-04-13 Mobile communication system, mobile station device, base station device, and mobile communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-117758 2008-04-28
JP2008117758 2008-04-28

Publications (1)

Publication Number Publication Date
WO2009133767A1 true WO2009133767A1 (ja) 2009-11-05

Family

ID=41254986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057454 WO2009133767A1 (ja) 2008-04-28 2009-04-13 移動通信システム、移動局装置、基地局装置及び移動通信方法

Country Status (5)

Country Link
US (1) US20110039551A1 (ja)
EP (1) EP2291035A1 (ja)
JP (1) JPWO2009133767A1 (ja)
CN (1) CN102017718A (ja)
WO (1) WO2009133767A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135693A1 (ja) * 2010-04-28 2011-11-03 富士通株式会社 移動通信システム、基地局、移動局および無線通信方法
WO2011157216A1 (en) 2010-06-15 2011-12-22 Mediatek Inc. Methods to support mbms service continuity and counting and localized mbms service
JP2012010300A (ja) * 2010-06-28 2012-01-12 Kyocera Corp 無線基地局及び通信制御方法
JP2012050058A (ja) * 2010-08-25 2012-03-08 Askey Computer Corp フェムトセル基地局及びその通信サービス切替方法
JP2013078025A (ja) * 2011-09-30 2013-04-25 Kddi Corp マルチキャストで送信する基地局を無線端末によって切り替えるデータ配信方法及びシステム
WO2013111905A1 (ja) * 2012-01-27 2013-08-01 京セラ株式会社 移動通信システム、ユーザ端末、基地局、及びプロセッサ
JP2014512766A (ja) * 2011-04-19 2014-05-22 富士通株式会社 情報取得方法及び基地局
JP2014522191A (ja) * 2011-08-12 2014-08-28 華為技術有限公司 ブロードキャスト・マルチキャスト・セルに関する再選択またはハンドオーバするための方法、基地局、およびシステム
US9185682B2 (en) 2010-06-15 2015-11-10 Mediatek Inc. Methods to support continuous MBMS reception without network assistance
JPWO2014013646A1 (ja) * 2012-07-17 2016-06-30 日本電気株式会社 移動通信システム、無線局、移動通信制御方法、及び移動通信制御プログラム
CN106851591A (zh) * 2011-08-10 2017-06-13 诺基亚通信公司 信令发送关于在其他频率载波上正在进行和开始广播服务会话

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10070346B2 (en) * 2010-03-31 2018-09-04 Nokia Technologies Oy Method and apparatus for employing an indication of stored temporary information during redirection
CN102075867A (zh) * 2011-01-19 2011-05-25 大唐移动通信设备有限公司 设备切换方法及装置
US9357514B2 (en) * 2011-03-18 2016-05-31 Alcatel Lucent Methods for synchronizing macro cell and small cell systems
CN102413524B (zh) * 2011-11-09 2014-10-08 华为技术有限公司 共小区的通信方法、基站控制器、基站及其通信系统
JP5726717B2 (ja) * 2011-12-09 2015-06-03 株式会社Nttドコモ 無線基地局及び無線システム間遷移制御方法
WO2015081993A1 (en) * 2013-12-04 2015-06-11 Telefonaktiebolaget L M Ericsson (Publ) Backhaul beam searching
CN111988098B (zh) 2013-12-25 2022-08-12 松下电器(美国)知识产权公司 基站、终端、集成电路及通信方法
EP3509259B1 (en) 2016-09-26 2023-05-03 Huawei Technologies Co., Ltd. Method and device for transmitting parameter set of cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006333243A (ja) * 2005-05-27 2006-12-07 Kyocera Corp 無線通信システム、無線通信装置、無線基地局装置及びハンドオフ制御方法
JP2007089184A (ja) * 2005-09-23 2007-04-05 Samsung Electronics Co Ltd ディジタル放送システムにおけるハンドオーバーを遂行するための方法及び装置
WO2007052922A1 (en) * 2005-10-31 2007-05-10 Lg Electronics Inc. Data transfer management in a radio communications network
JP2008117758A (ja) 2006-10-12 2008-05-22 Matsushita Electric Ind Co Ltd 非水電解質二次電池およびその負極の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100532263B1 (ko) * 2001-12-29 2005-11-29 삼성전자주식회사 이동통신시스템에서 단말에 의해 방송서비스를 개시하기 위한 장치 및 방법
KR100640344B1 (ko) * 2003-03-08 2006-10-30 삼성전자주식회사 광대역 무선 접속 통신 시스템의 기지국에서 핸드오버 시스템 및 방법
JP4415598B2 (ja) * 2003-07-30 2010-02-17 日本電気株式会社 移動通信システム、移動局及びそれに用いる周辺セル検出監視方法
WO2005020474A1 (en) * 2003-08-22 2005-03-03 Samsung Electronics Co., Ltd. Cell reselection method for receiving packet data in a mobile communication system supporting mbms
KR100689508B1 (ko) * 2003-09-04 2007-03-02 삼성전자주식회사 통신 시스템에서 핸드오버 수행 방법
KR101069451B1 (ko) * 2004-04-14 2011-09-30 엘지전자 주식회사 이동통신 시스템의 인접 셀 서비스 수신 방법
CN100484265C (zh) * 2004-08-10 2009-04-29 株式会社Ntt都科摩 无线控制装置、移动站以及移动通信方法
JP4512502B2 (ja) * 2004-08-10 2010-07-28 株式会社エヌ・ティ・ティ・ドコモ 無線制御装置、移動局及び移動通信方法
WO2007052916A1 (en) * 2005-10-31 2007-05-10 Lg Electronics Inc. Method for processing control information in a wireless mobile communication system
EP1811712B1 (en) * 2006-01-19 2013-06-05 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving common channel in a cellular wireless communication system supporting scalable bandwidth
CN101132215B (zh) * 2006-08-25 2012-01-11 上海贝尔股份有限公司 演进多媒体广播多播业务基站、用户设备和方法
EP2068465B1 (en) * 2006-09-26 2014-09-03 Mitsubishi Electric Corporation Data communication method and mobile communication system
AU2008226789B2 (en) * 2007-03-13 2011-06-16 Interdigital Technology Corporation Cell reselection process for wireless communications
JP5047274B2 (ja) * 2007-03-23 2012-10-10 パナソニック株式会社 無線通信基地局装置及び無線通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006333243A (ja) * 2005-05-27 2006-12-07 Kyocera Corp 無線通信システム、無線通信装置、無線基地局装置及びハンドオフ制御方法
JP2007089184A (ja) * 2005-09-23 2007-04-05 Samsung Electronics Co Ltd ディジタル放送システムにおけるハンドオーバーを遂行するための方法及び装置
WO2007052922A1 (en) * 2005-10-31 2007-05-10 Lg Electronics Inc. Data transfer management in a radio communications network
JP2008117758A (ja) 2006-10-12 2008-05-22 Matsushita Electric Ind Co Ltd 非水電解質二次電池およびその負極の製造方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135693A1 (ja) * 2010-04-28 2011-11-03 富士通株式会社 移動通信システム、基地局、移動局および無線通信方法
US9214989B2 (en) 2010-04-28 2015-12-15 Fujitsu Limited Mobile communication system, base station, mobile station, and radio communication method
WO2011157216A1 (en) 2010-06-15 2011-12-22 Mediatek Inc. Methods to support mbms service continuity and counting and localized mbms service
US9686770B2 (en) 2010-06-15 2017-06-20 Mediatek Inc. Methods to support MBMS service continuity and counting and localized MBMS service
EP2468068A4 (en) * 2010-06-15 2016-03-02 Mediatek Inc METHOD FOR CONTINUOUSLY SUPPORTING AND COUNTING MBMS SERVICE AND LOCALIZED MBMS SERVICE
JP2013534087A (ja) * 2010-06-15 2013-08-29 聯發科技股▲ふん▼有限公司 Mbmsサービス継続性と計数および局部的mbmsサービスのサポート方法
US9185682B2 (en) 2010-06-15 2015-11-10 Mediatek Inc. Methods to support continuous MBMS reception without network assistance
JP2012010300A (ja) * 2010-06-28 2012-01-12 Kyocera Corp 無線基地局及び通信制御方法
JP2012050058A (ja) * 2010-08-25 2012-03-08 Askey Computer Corp フェムトセル基地局及びその通信サービス切替方法
US9860794B2 (en) 2011-04-19 2018-01-02 Fujitsu Limited Information acquiring method and base station
US9648521B2 (en) 2011-04-19 2017-05-09 Fujitsu Limited Information acquiring method and base station
JP2014512766A (ja) * 2011-04-19 2014-05-22 富士通株式会社 情報取得方法及び基地局
US9510226B2 (en) 2011-04-19 2016-11-29 Fujitsu Limited Information acquiring method and base station
CN106851591B (zh) * 2011-08-10 2020-06-26 诺基亚技术有限公司 信令发送关于在其他频率载波上正在进行和开始广播服务会话
CN106851591A (zh) * 2011-08-10 2017-06-13 诺基亚通信公司 信令发送关于在其他频率载波上正在进行和开始广播服务会话
JP2014522191A (ja) * 2011-08-12 2014-08-28 華為技術有限公司 ブロードキャスト・マルチキャスト・セルに関する再選択またはハンドオーバするための方法、基地局、およびシステム
US9591542B2 (en) 2011-08-12 2017-03-07 Huawei Technologies Co. Ltd. Method, base station and system for reselection or handover to broadcast multicast cell
JP2013078025A (ja) * 2011-09-30 2013-04-25 Kddi Corp マルチキャストで送信する基地局を無線端末によって切り替えるデータ配信方法及びシステム
JPWO2013111905A1 (ja) * 2012-01-27 2015-05-11 京セラ株式会社 移動通信システム、ユーザ端末、基地局、及びプロセッサ
US20140341188A1 (en) * 2012-01-27 2014-11-20 Kyocera Corporation Mobile communication system, user terminal, base station, and processor
WO2013111905A1 (ja) * 2012-01-27 2013-08-01 京セラ株式会社 移動通信システム、ユーザ端末、基地局、及びプロセッサ
US9398504B2 (en) 2012-07-17 2016-07-19 Nec Corporation Mobile communication system, wireless station, mobile communication control method, and non-transitory computer-readable medium stored with mobile communication control program
JPWO2014013646A1 (ja) * 2012-07-17 2016-06-30 日本電気株式会社 移動通信システム、無線局、移動通信制御方法、及び移動通信制御プログラム

Also Published As

Publication number Publication date
JPWO2009133767A1 (ja) 2011-09-01
US20110039551A1 (en) 2011-02-17
CN102017718A (zh) 2011-04-13
EP2291035A1 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
WO2009133767A1 (ja) 移動通信システム、移動局装置、基地局装置及び移動通信方法
JP6382864B2 (ja) セルラ通信ネットワークにおけるノード検出
EP2721877B1 (en) Method and device for performing an access request by a user equipment
EP2443887B1 (en) Systems and methods for component carrier selection in a wireless communication system
EP2767119B1 (en) A user equipment and a radio network node, and methods therein for device-to-device communication
US8355411B2 (en) Method and arrangement for handover in a radio access network
CA2802630C (en) Cell search and measurement in heterogeneous networks
US8639210B2 (en) Mobile station apparatus, base station apparatus, and mobile communication system
WO2015069064A1 (ko) 단말의 셀 재선택 방법 및 이를 이용하는 단말
CN106375965B (zh) 一种广播系统信息的方法、装置及系统
WO2018130153A1 (zh) 小区切换方法、终端及基站
WO2014154103A1 (zh) 一种移动性优化方法、用户设备和接入网设备
US20190053179A1 (en) Device to device synchroinzation for limited bandwidth ues
US20170223760A1 (en) User terminal and base station
WO2009133764A1 (ja) 基地局装置、移動局装置、移動通信システム及び移動通信方法
KR101012007B1 (ko) 광대역 무선 통신시스템에서 인접 기지국 신호를스캐닝하기 위한 방법 및 장치
CN112584426B (zh) 一种系统帧号和帧定时偏差sftd测量方法
CN112714405B (zh) 小区选择方法、装置、设备及计算机可读存储介质
KR20180101750A (ko) 무선 통신 시스템에서 셀 주파수를 검색하는 방법 및 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980114168.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738704

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010510077

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009738704

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12989579

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE