WO2009133104A1 - Procede de representation visuelle de l'evolution temporelle d'un ecart courant entre une valeur reelle et une valeur optimale d'un parametre a l'aide d'au moins trois signaux lumineux activables - Google Patents

Procede de representation visuelle de l'evolution temporelle d'un ecart courant entre une valeur reelle et une valeur optimale d'un parametre a l'aide d'au moins trois signaux lumineux activables Download PDF

Info

Publication number
WO2009133104A1
WO2009133104A1 PCT/EP2009/055130 EP2009055130W WO2009133104A1 WO 2009133104 A1 WO2009133104 A1 WO 2009133104A1 EP 2009055130 W EP2009055130 W EP 2009055130W WO 2009133104 A1 WO2009133104 A1 WO 2009133104A1
Authority
WO
WIPO (PCT)
Prior art keywords
values
range
current
value
delay
Prior art date
Application number
PCT/EP2009/055130
Other languages
English (en)
Inventor
Jean-Laurent Franchineau
Emmanuel De Verdalle
Vincent Martin
Original Assignee
Eurolum
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eurolum filed Critical Eurolum
Priority to CN2009801154292A priority Critical patent/CN102099841A/zh
Priority to EP09738148A priority patent/EP2291834A1/fr
Priority to AU2009242089A priority patent/AU2009242089A1/en
Priority to US12/989,936 priority patent/US20110043351A1/en
Publication of WO2009133104A1 publication Critical patent/WO2009133104A1/fr

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/123Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/02Registering or indicating driving, working, idle, or waiting time only
    • G07C5/06Registering or indicating driving, working, idle, or waiting time only in graphical form

Definitions

  • the present invention relates to the field of human-machine interfaces, in particular those intended to assist the steering of a vehicle.
  • the present invention more specifically relates to a method intended to be implemented in a human-machine interface of a land vehicle, such as a bus, a tram, a train or any other type of land vehicle.
  • a land vehicle such as a bus, a tram, a train or any other type of land vehicle.
  • the driving is generally performed by a human driver who himself determines the operating parameters of the vehicle, such as speed, acceleration or engine speed, depending on the course but also its experience and his pilot dexterity.
  • the driver also takes into account certain constraints such as the time required to travel the route or the energy available to travel this route.
  • pilot assistance methods for determining an optimum value of a parameter for a current position of the vehicle and, consequently, a current difference between this optimum value and a real value of the parameter for said current position of the vehicle.
  • current position is meant the position of the vehicle at the current time.
  • An object of the present invention is to propose a method of visual representation of the temporal evolution of this current difference using at least three activatable light signals.
  • the invention achieves its object by the fact that the method comprises;
  • a second transition step which is carried out if the current range of values is not contiguous with the previous range of values, a step in which, after the lapse of a second delay, the luminous signal associated with the range of values values are deactivated and the light signal associated with a value range contiguous to the previous range of values, the intermediate range of values, is activated, then, after a third delay has elapsed, the light signal associated with the range. value is deactivated and the signal light associated with the current value range is activated.
  • the current range of values is the range of values in which the current deviation at the current time is found, while the previous range of values corresponds to the range of values in which the current deviation was located. at the previous moment.
  • the previous range of values is the old range of values.
  • contiguous is meant, in the sense of the present invention, that the previous range of values has a single value in common with the current value range.
  • this common value is the lower bound of one of the two ranges and the upper bound of the other range of values.
  • no transition step is performed if the current range of values is identical to the previous range of values. It is also understood that the second transition step is performed only if the current value range and the previous value range have no value in common. That is, when the intersection of these two ranges is empty.
  • the driver is informed in real time of the temporal evolution of the current difference, so that he can act on the controls of the vehicle to correct this difference in the reducing or even canceling it.
  • the actual value of the parameter is changed as a result of which the difference between the actual value and the optimum value changes.
  • one of the three light signals serves to indicate an acceptable deviation while the other two light signals serve to indicate that the difference between the actual value and the optimum value is not acceptable so that the driver must modify his behavior to reduce the gap.
  • One of these two other light signals preferably allows to indicate a positive unacceptable difference, that is to say that the real value is too much greater than the optimum value, while the other light signal is used to indicate a negative unacceptable deviation, ie the actual value is too much lower than the optimal value.
  • the parameter is the speed
  • the light signal which serves to signal the driver a positive unacceptable difference when activated, it means that the actual speed is too much higher than the optimal speed and therefore that the driver must slow down.
  • the light signal used to signal the driver an unacceptable negative deviation when activated, it means that the actual speed is too low to the optimal speed and therefore that the driver must accelerate to reduce the current gap.
  • the first transition stage corresponds to an insignificant change in the current gap, whereas the second transition stage corresponds to a relatively greater evolution of this difference.
  • the second transition step causes the temporary activation of at least one light signal associated with the intermediate value range.
  • This second transition has the advantage of providing the driver with information that evolves smoothly and not abruptly. In fact, in the event of a significant change in the difference, the driver could be annoyed by an activation of a light signal which suddenly indicates to him that the current deviation has suddenly become unacceptable.
  • the process according to continuously the driver of the evolution of the gap by activating one or more intermediate signals respectively associated with one or more ranges of intermediate values.
  • each light signal is preferably composed of one or more diodes, preferably three adjacent diodes.
  • diodes preferably three adjacent diodes.
  • the second delay is equal to the third delay so as to represent a progressive change in the evolution of the difference during the second transition step.
  • the second delay is equal to half of the first delay. It follows that the third period, equal to the second period, is also equal to half of the first period. As a result, the duration of the second transition step is equal to the duration of the first transition step. In other words, the light signal associated with the intermediate value range remains on for half as long as the light signal associated with the previous range of values.
  • the sum of the second and third delays is equal to the first delay.
  • Another benefit of having a second transition stage as fast as the first step is to provide the driver with accurate information. Indeed, if the second transition step is too slow, the current gap may have already changed when the light signal corresponding to the current range of values is activated, after which the information provided would be erroneous.
  • the first transition step is carried out if the current difference belongs to a sub-range of the current range of values which is not contiguous to the previous range of values.
  • the first transition step is only performed if the deviation revolution is greater than a predetermined threshold, the latter corresponding to the distance between the previous range of values and the sub-range of the current range of values.
  • the first and second transition steps are not performed if the current difference is greater than a predetermined limit value.
  • a predetermined limit value This makes it possible to deactivate the process as soon as the driver takes the initiative to control the vehicle without worrying about the optimization of the parameter. Such a case may occur for example if the driver must avoid an obstacle or make an unexpected maneuver.
  • two light signals associated with two non-contiguous ranges of values are preferably activated, this particular configuration making it possible to signal to the driver that the method is temporarily deactivated.
  • the parameter comprises at least a magnitude such as a speed.
  • the parameter can be constituted solely by the speed or by a combination of magnitudes taken among the speed, the acceleration, the engine speed or any other quantity usually encountered in the vehicles and which relates to a characteristic of the operation of the vehicle. .
  • each of the ranges of values is defined from the optimum value of the parameter.
  • the ranges of values are redefined over time for each optimum value of the parameter.
  • each of the ranges of values comprises a lower bound and an upper bound which depend on the optimum value of the parameter.
  • each of the ranges of values is between its lower bound and its upper bound.
  • the lower and upper bounds of a value range are proportional to a multiple of the optimum value of the parameter, the proportionality factor may depend on the optimum value of the parameter. They can also be predetermined fixed values.
  • the present invention also relates to a display interface comprising a device implementing the visual representation method according to the invention, a receiving member for receiving a current difference, a calculation device for defining at least three value ranges, and minus three emitters of luminous signals associated with the ranges of values.
  • each of said light signal emitters is constituted by at least one light emitting diode.
  • each of said light signal emitters is constituted by a group of three light-emitting diodes, it being understood that two light signals associated with two contiguous value ranges preferably have two diodes in common, and two value ranges separated by a single one. Intermediate range of values have a diode in common.
  • Such an arrangement makes it possible to offer the driver a progressive and continuous visual effect.
  • the interface comprises successively three red diodes, three green diodes and three red diodes.
  • the invention finally relates to an urban vehicle intended to make a journey, which vehicle comprises a display interface according to the invention, a speed sensor for measuring a real speed of the vehicle, a memory containing a plurality of optimal speeds, a transmission member calculation for calculating a current difference between the actual speed and the optimum speed corresponding to the current position of the vehicle, and for transmitting it to the receiving member of said viewing interface.
  • FIG. 1 represents an urban vehicle according to the present invention which comprises a viewing interface also in accordance with the present invention
  • FIG. 2 is a schematic representation of the display interface mounted in the vehicle of FIG. 1;
  • FIG. 3 is a diagram indicating the steps of the visual representation method according to the invention.
  • FIG. 4 is a graph illustrating the temporal evolution of the difference.
  • FIG. 5 shows the different configurations that can take the display interface in a second embodiment of the invention.
  • Figure 1 shows a city vehicle 10, in this case a city bus, which is equipped with a display interface 12 according to the present invention.
  • This visualization interface 12 makes it possible to assist the driver in real time in controlling the vehicle 10. More specifically, the visualization interface 12 indicates to the driver whether his driving is optimal or not.
  • the display interface 12 comprises a device 14 implementing the method of visual representation of the temporal evolution of a difference between a real value and an optimum value of a parameter, in this case the speed of the vehicle, using three activatable light signals 16.
  • a device 14 implementing the method of visual representation of the temporal evolution of a difference between a real value and an optimum value of a parameter, in this case the speed of the vehicle, using three activatable light signals 16.
  • driving profiles constituted by one or more magnitudes taken from the acceleration, the engine speed or any other quantity characteristic of the operation of an urban vehicle.
  • the optimum speed may for example correspond to the speed of the bus which minimizes the energy consumed and the time taken to travel a given path in a given time.
  • the three light signals 16a, 16b and 16c are here in the form of a two-color light with three diodes: red (diode 16a) -green (diode 16b) -red (diode 16c) arranged in a vertical row.
  • red red
  • diode 16b green
  • red red
  • diode 16c red
  • the green diode 16b when the green diode 16b is activated (on), this means that the real value of the vehicle speed 10 corresponds substantially to the optimum speed of the vehicle 10. Furthermore, when the difference ⁇ between the actual speed and the optimum speed is greater than a first predetermined threshold b3, one of the light signals associated with a red diode, preferably the upper diode 16a, is activated. In this situation, the vehicle 10 rolls too fast compared to the optimal speed that it should present at this point of the journey.
  • the driver is therefore invited to slow down the vehicle until the activation of the green diode 16b.
  • the difference ⁇ between the real speed and the optimal speed is less than a second predetermined threshold b2
  • one of the light signals associated with the other red diode, preferably the lower diode 16c is activated. In this situation, the vehicle 10 rolls too slowly with respect to the optimal speed that it should present at this point of the journey.
  • the driver is therefore invited to accelerate the vehicle until the activation of the green diode 16b.
  • the vehicle 10 can have an optimal driving profile throughout the journey. We will now explain in more detail the structure and operation of the interface according to the invention.
  • the actual speed for a current position of the vehicle is measured by means of a speed sensor 18 which is mounted on one of the axles of the vehicle 10 or raised on the multiplex bus the bus or obtained using a GPS.
  • the latter furthermore comprises a calculation unit 20 for calculating a current difference ⁇ between the real speed and the optimum speed Vopt for the current position, it being specified that the optimum speed value is stored in a memory 22 containing a plurality of optimal speeds. .
  • This memory and the calculating unit are described in more detail in the aforementioned patent application, to which reference is made.
  • the current difference ⁇ is transmitted to the display interface 12 as shown schematically in FIG.
  • the current difference ⁇ is transmitted to a receiving member 24 of the display interface 12.
  • a computing device 26 of the display interface 12 defines three ranges of speed values contiguous to the optimal speed.
  • the device 14 determines which of the three light signals must be activated.
  • the method according to the invention in this embodiment, consists in the visual representation of the time evolution of the difference between the real value of the vehicle speed and the optimum value of the vehicle. speed using the three light signals 16a, 16b and 16c.
  • said method firstly comprises a step 101 for receiving the current difference, in this case via the reception element 24. Then, a definition step 102 is performed, during which the three consecutive value ranges P1, P2 and P3 are defined.
  • the ranges P1, P2 and P3 are contiguous, in that the upper bound b2 of the range P1 corresponds to the lower bound b2 of the range P2 and the upper bound b3 of the range P2 corresponds to the lower bound b3. from the P3 beach.
  • the upper bound b3 of the range P2 corresponds to the first predetermined threshold which has been mentioned above, while the lower bound b2 of the range P2 corresponds to the second predetermined threshold which has also been mentioned above.
  • each of these value ranges is associated with one of the light signals 16a, 16b, 16c.
  • the value range P1 is associated with the light signal 16a, the value range P2 with the light signal 16b and the range of values P3 with the light signal 16c.
  • the ranges P1, P2 and P3 are preferably chosen as a percentage of the optimum value of speed.
  • the terminal b3 corresponds to 110% of the optimal speed
  • the terminal b4 corresponds to 120% of the optimal speed
  • the terminal b2 corresponds to 90% of the optimal speed
  • the terminal bl corresponds to 80% of the speed. optimal.
  • the curve represents the evolution of the current difference ⁇ during the course of time. time.
  • the light signal 16b green diode
  • the light signal 16c red diode
  • the transition between the first and second states is done by a first transition step 105.
  • the previous range of values is the range P2
  • the current range of values is P3 because is the range in which the current difference ⁇ is found just after time t1.
  • this first transition step 105 is performed if it has been positively tested, during a test step 104, that the current range of values is contiguous to the previous range of values, which is the case here: the beach P3 is contiguous to the beach P2.
  • the delay d1 is between 600 and 1000 ms, preferably 800 ms.
  • a hysteresis-type transition may be provided in that, in order to avoid unwanted blinking of the light signals 16b, 16c if the current difference varies around the value b3, it is expected that the first transition step only if the current deviation falls within a sub-range of the current range of values that is not contiguous to the previous range of values.
  • the first transition step is carried out after the current difference has become greater than the threshold b3 '(at time t2), that is, the current difference belongs to the sub-threshold.
  • P3 'range that is not contiguous to the P2 range since it is distant from it.
  • a first transition step is again performed in which, after the first delay d1 has elapsed, the light signal 16c (red diode) is deactivated and the light signal 16b (green diode) is activated.
  • this new first transition step is performed shortly after time t3, that is to say after time t4, for the same reasons as those mentioned above, namely to avoid unwanted blinking.
  • the current difference decreases further to come in the range P1 after time t5
  • a new first transition step is performed after time t5 (preferably t6) so that after the flow of the first delay dl, the light signal 16b (green diode) is off and the light signal 16a (red diode) is activated.
  • the invention advantageously provides a second transition step 107 which is performed (test step 106) if the current range of values is not contiguous to the previous range of values, this is the case in this case because the current range of values P3 is not considered at the earlier value range Pl.
  • the second transition step is performed when the acceleration of the vehicle is greater than a first predetermined threshold, for example 2 m / s 2 and / or when the deceleration of the vehicle is greater than a second predetermined threshold of the order of 2.5 m / s 2 .
  • a first predetermined threshold for example 2 m / s 2 and / or when the deceleration of the vehicle is greater than a second predetermined threshold of the order of 2.5 m / s 2 .
  • a first predetermined threshold for example 2 m / s 2 and / or when the deceleration of the vehicle is greater than a second predetermined threshold of the order of 2.5 m / s 2 .
  • the light signal 16b (green diode) associated with the intermediate value range P2 is deactivated and the light signal 16c (red diode) associated with the current value range P3 is activated. .
  • the second delay is equal to the third delay and, advantageously, the sum of the second and third delays is equal to the first delay.
  • the duration of the first transition step 105 is advantageously equal to the duration of the second transition step 107, whereby progressive and rapid information is provided to the driver regardless of the evolution of the current gap.
  • the first and second transition steps 105, 107 are not performed if the current difference is greater than a predetermined limit value ⁇ max.
  • a test is provided during an additional step 103a which preferably takes place before step 104.
  • a specific signaling is also provided if the actual value of the vehicle exceeds the legally permitted speed, for example by simultaneously activating the light signals (red diodes) 16a and 16c.
  • the first and second transition steps 105, 106 are not performed if the current difference is less than a predetermined limit value ⁇ min.
  • the vehicle 10 which rolls too slowly is probably in the maneuvering phase so that there is no interest in informing the driver that he is not traveling at the optimum speed.
  • a test is provided, for example also in the additional step 103bis.
  • FIG. 5 shows the various configurations that the light signals of a display interface can take according to a second embodiment of the invention.
  • 12 tracks numbered Q1 to Q12 are provided in FIG. 5 with values and 7 distinct light signals, each of the light signals being generated by three adjacent color diodes.
  • the interface comprises, namely successively three red diodes 200, 202, 204, three green diodes 206,208,210, and three red diodes 212,214,216.
  • the first light signal 116a is associated with the ranges Q2 to Q4.
  • the second light signal 116b is associated with the range Q5 and is composed of two red diodes 202, 204 and the green diode 208.
  • the third light signal 116c is associated with the range Q6 and is composed of the red diode 204 and the two green diodes 206,208.
  • the fourth light signal 116d is associated with the range Q7 and is composed of three green diodes 206,208,210.
  • the fifth light signal 116e is associated with the range Q8 and is composed of the two green diodes 208,210 and the red diode 212.
  • the sixth light signal 116f is associated with the range Q9 and is composed of the green diode 210 and the two diodes reds 212, 214.
  • the seventh light signal 116g is associated with the ranges Q10 and Q11, and is composed of the three red diodes 212,214,216.
  • the range Q1 is associated with the light signals 16a and 16g which are intended to be activated simultaneously.
  • the ranges Q2 and Q3, associated with the light signal 16a, are distinguished by the fact that this light signal 16a is flashed differently.
  • the light signal 16g is flashing.
  • the Q12 range is not associated with any light signal (all LEDs are off).
  • the interface further comprises a memory for storing chase sequences, that is successive flashes of diodes.
  • chase sequences can be used to blink for the Q2, Q3 and Q4 ranges.
  • the vertical axis represents the evolution of the distance ⁇ as well as the lower and upper bounds for each of the Q value ranges.

Abstract

L'invention concerne un procédé de représentation visuelle de l'évolution temporelle d'un écart entre une valeur réelle et une valeur optimale d'un paramètre à l'aide d'au moins trois signaux lumineux activables, ledit procédé comportant : - une première étape (105) de transition qui est réalisée si la plage de valeurs courante est contiguë à une plage de valeurs antérieure, étape lors de laquelle, après l'écoulement d'un premier délai, le signal associé à la plage de valeurs antérieure est désactivé et le signal lumineux associé à la plage de valeurs courante est activé; et - une seconde étape de transition (107) qui est réalisée si la plage de valeurs courante n'est pas contiguë à la plage de valeurs antérieure, étape lors de laquelle, après l'écoulement d'un deuxième délai, le signal lumineux associé à la plage de valeurs antérieure est désactivé et le signal lumineux associé à une plage de valeur contigϋe à la plage de valeurs antérieure, la plage de valeurs intermédiaire, est activé, puis, après l'écoulement d'un troisième délai, le signal lumineux associé à la plage de valeurs intermédiaire est désactivé et le signal lumineux associé à la plage de valeurs courante est activé.

Description

Procédé de représentation visuelle de révolution temporelle d'un écart courant entre une valeur réelle et une valeur optimale d'un paramètre à l'aide d'au moins trois signaux lumineux activables
La présente invention concerne le domaine des interfaces homme- machine, notamment celles qui sont destinées à assister le pilotage d'un véhicule.
La présente invention concerne plus précisément un procédé destiné à être mis en œuvre dans une interface homme-machine d'un véhicule terrestre, tel un bus, un tramway, un train ou tout autre type de véhicule terrestre.
Pour ce type de véhicules, le pilotage est généralement effectué par un conducteur humain qui règle lui-même les paramètres de fonctionnement du véhicule, comme par exemple la vitesse, l'accélération ou le régime moteur, en fonction du parcours mais aussi de son expérience et de sa dextérité de pilote. Le conducteur prend également en compte certaines contraintes comme la durée imposée pour parcourir le trajet ou encore l'énergie disponible pour parcourir ce trajet.
Face à toutes ces données, il est bien rare que le conducteur puisse piloter le véhicule tout en optimisant un ou plusieurs paramètres. II existe des procédés d'assistance au pilotage permettant de déterminer une valeur optimale d'un paramètre pour une position courante du véhicule et, par suite, un écart courant entre cette valeur optimale et une valeur réelle du paramètre pour ladite position courante du véhicule. Par position courante, on entend la position du véhicule à l'instant courant.
Un but de la présente invention est de proposer un procédé de représentation visuelle de l'évolution temporelle de cet écart courant à l'aide d'au moins trois signaux lumineux activables. L'invention atteint son but par le fait que le procédé comporte ;
- une étape de réception de l'écart courant ;
- une étape de définition au cours de laquelle on définit au moins trois plages de valeurs contiguës et on associe à chacune de ces plages de valeurs l'un des signaux lumineux ;
- une étape lors de laquelle on détermine à laquelle des plages de valeurs, la plage de valeurs courante, appartient l'écart courant ; - une première étape de transition qui est réalisée si la plage de valeurs courante est contiguë à une plage de valeurs antérieure, étape lors de laquelle, après l'écoulement d'un premier délai, le signal associé à la plage de valeurs antérieure est désactivé et le signal lumineux associé à la plage de valeurs courante est activé ;
- une seconde étape de transition qui est réalisée si la plage de valeurs courante n'est pas contiguë à la plage de valeurs antérieure, étape lors de laquelle, après l'écoulement d'un deuxième délai, le signal lumineux associé à la plage de valeurs antérieure est désactivé et le signal lumineux associé à une plage de valeur contiguë à la plage de valeurs antérieure, la plage de valeurs intermédiaire, est activé, puis, après l'écoulement d'un troisième délai, le signal lumineux associé à la plage de valeurs intermédiaire est désactivé et le signal lumineux associé à la plage de valeurs courante est activé.
Selon l'invention, la plage de valeurs courante est la plage de valeurs dans laquelle se trouve l'écart courant à l'instant courant, tandis que la plage de valeurs antérieure correspond à la plage de valeurs dans laquelle se trouvait l'écart courant à l'instant précédent. Autrement dit, la plage de valeurs antérieure est l'ancienne plage de valeurs courante.
Par « contiguë » on entend, au sens de la présente invention, que la plage de valeurs antérieure comporte une unique valeur en commun avec la plage de valeur courante. De préférence, cette valeur commune est la borne inférieure de l'une des deux plages et la borne supérieure de l'autre plage de valeurs.
Selon le procédé, aucune étape de transition n'est réalisée si la plage de valeurs courante est identique à la plage de valeurs antérieure. On comprend aussi que la seconde étape de transition n'est réalisée que si la plage de valeurs courante et la plage de valeurs antérieure n'ont pas de valeur en commun. C'est-à-dïre quand l'intersection de ces deux plages est vide.
Grâce à la présente invention, le conducteur est informé en temps réel de l'évolution temporelle de l'écart courant, de telle sorte qu'il peut agir sur les commandes du véhicule afin de corriger cet écart en le réduisant, voire l'annulant. En effet, lorsque le conducteur agit sur les commandes du véhicule, la valeur réelle du paramètre est modifiée en conséquence de quoi l'écart entre la valeur réelle et la valeur optimale évolue. Dans ce procédé, l'un des trois signaux lumineux sert à indiquer un écart acceptable tandis que les deux autres signaux lumineux servent à indiquer que l'écart entre la valeur réelle et la valeur optimale n'est pas acceptable de sorte que le conducteur doit modifier sa conduite afin de réduire l'écart. L'un de ces deux autres signaux lumineux permet préférentiel lement d'indiquer un écart inacceptable positif, c'est-à-dire que la valeur réelle est trop supérieure à la valeur optimale, tandis que l'autre signal lumineux sert à indiquer un écart inacceptable négatif, c'est-à-dire que la valeur réelle est trop inférieure à la valeur optimale.
Autrement dit, si on prend l'exemple particulier où le paramètre est la vitesse, lorsque le signal lumineux qui sert à signaler au conducteur un écart inacceptable positif est activé, cela signifie que la vitesse réelle est trop supérieure à la vitesse optimale et donc que le conducteur doit ralentir. Inversement, lorsque le signal lumineux qui sert à signaler au conducteur un écart inacceptable négatif est activé, cela signifie que la vitesse réelle est trop inférieure à la vitesse optimale et donc que le conducteur doit accélérer afin de réduire l'écart courant.
On comprend par ailleurs que c'est le signal lumineux associé à la plage de valeur courante qui est destiné à être activé afin de fournir au conducteur une représentation visuelle de cet écart courant. Ainsi, la première étape de transition correspond à une évolution peu importante de l'écart courant tandis que la seconde étape de transition correspond à une évolution relativement plus importante de cet écart.
Selon l'invention, la seconde étape de transition entraine l'activation temporaire d'au moins un signal lumineux associé à la plage de valeurs intermédiaire. Cette seconde transition présente l'intérêt de fournir au conducteur une information qui évolue de manière douce et non pas brusque. En effet, en cas d'évolution sensible de l'écart, le conducteur pourrait être surpris par une activatîon d'un signal lumineux qui lui indique brusquement que l'écart courant est devenu soudainement inacceptable. Bien au contraire, le procédé selon (Invention informe progressivement et continûment le conducteur de l'évolution de l'écart en activant un ou plusieurs signaux intermédiaires associés respectivement à une ou plusieurs plages de valeurs intermédiaires.
De préférence, chaque signal lumineux est préférentiellement composé d'une ou plusieurs diodes, de préférence trois diodes adjacentes. On peut toutefois prévoir d'autres agencements de diodes ou de tout autre organe apte à émettre de la lumière.
Avantageusement, le deuxième délai est égal au troisième délai de manière à représenter une évolution progressive de l'évolution de l'écart au cours de la seconde étape de transition.
De préférence, le deuxième délai est égal à la moitié du premier délai. Il s'ensuit que le troisième délai, égal au deuxième délai, est également égal à la moitié du premier délai. Il en résulte que la durée de la seconde étape de transition est égale à la durée de la première étape de transition. Autrement dit, le signal lumineux associé à la plage de valeurs intermédiaire reste allumé deux fois moins longtemps que le signal lumineux associé à la plage de valeurs antérieure.
L'intérêt est de pouvoir informer rapidement le conducteur d'une évolution importante de l'écart. En effet, le conducteur ne doit certes pas être surpris mais doit cependant être informé rapidement de l'évolution, ce que l'invention assure.
De manière générale et dans la même idée, on prévoit, de préférence, que la somme des deuxième et troisième délais soit égale au premier délai. Un autre intérêt d'avoir une seconde étape de transition aussi rapide que la première étape, est de fournir au conducteur une information précise. En effet, si la seconde étape de transition est trop lente, l'écart courant peut déjà avoir évolué lorsque le signal lumineux correspondant à la plage de valeurs courante est activé, à la suite de quoi l'information fournie serait erronée.
Selon une variante de l'invention, la première étape de transition est réalisée si l'écart courant appartient à une sous-plage de la plage de valeurs courante qui n'est pas contigϋe à la plage de valeurs antérieure.
Autrement dit, la première étape de transition n'est réalisée que si révolution de l'écart est supérieure à un seuil prédéterminé, ce dernier correspondant à Ia distance entre la plage de valeurs antérieure et la sous-plage de la plage de valeurs courante.
Cela permet d'éviter le clignotement intempestif de signaux lumineux si l'écart varie en passant rapidement d'une plage de valeurs à une autre plage de valeurs qui lui est contiguë. Grâce à l'invention, l'écart évolue donc en hystérésis.
Avantageusement, les première et seconde étapes de transition ne sont pas réalisées si l'écart courant est supérieur à une valeur limite prédéterminée. Cela permet de désactiver le procédé dès lors que le conducteur prend l'initiative de piloter le véhicule sans se soucier de l'optimisation du paramètre. Un tel cas de figure peut par exemple se rencontrer si le conducteur doit éviter un obstacle ou faire une manœuvre imprévue. Dans ce cas, on active de préférence deux signaux lumineux associés à deux plages de valeurs non contiguës, cette configuration particulière permettant de signaler au conducteur que le procédé est temporairement désactivé.
Conformément à l'invention, le paramètre comporte au moins une grandeur telle une vitesse. Ainsi, le paramètre peut être constitué uniquement par la vitesse ou bien par une combinaison de grandeurs prises parmi la vitesse, l'accélération, le régime moteur ou tout autre grandeur habituellement rencontrée dans les véhicules et qui se rapporte à une caractéristique du fonctionnement du véhicule.
De préférence, chacune des plages de valeurs est définie à partir de la valeur optimale du paramètre. Ainsi, de préférence, les plages de valeurs sont redéfinies au cours du temps pour chaque valeur optimale du paramètre.
Avantageusement, chacune des plages de valeurs comporte une borne inférieure et une borne supérieure qui dépendent de la valeur optimale du paramètre. En d'autres termes, chacune des plages de valeurs est comprise entre sa borne inférieure et sa borne supérieure.
Par exemple, les bornes inférieure et supérieure d'une plage de valeur sont proportionnelles à un multiple de la valeur optimale du paramètre, le facteur de proportionnalité pouvant dépendre de la valeur optimale du paramètre. Elles peuvent également être des valeurs fixes prédéterminées. La présente invention concerne également une interface de visualisation comportant un dispositif mettant en œuvre le procédé de représentation visuelle selon l'invention, un organe de réception pour recevoir un écart courant, un dispositif de calcul pour définir au moins trois plages de valeurs, et au moins trois émetteurs de signaux lumineux associés aux plages de valeurs.
De préférence, chacun desdits émetteurs de signal lumineux est constitué par au moins une diode électroluminescente.
De préférence, chacun desdits émetteurs de signal lumineux est constitué par un groupe de trois diodes électroluminescentes, étant entendu que deux signaux lumineux associés à deux plages de valeurs contiguës ont de préférence deux diodes en commun, et que deux plages de valeurs séparées par une seule plage de valeurs intermédiaire ont une diode en commun. Un tel agencement permet d'offrir au conducteur un effet visuel progressif et continu.
Par exemple, on prévoit que l'interface comporte successivement trois diodes rouges, trois diodes vertes et trois diodes rouges.
L'invention concerne enfin un véhicule urbain destiné à effectuer un trajet, lequel véhicule comporte une interface de visualisation selon l'invention, un capteur de vitesse pour mesurer une vitesse réelle du véhicule, une mémoire contenant une pluralité de vitesses optimales, un organe de calcul pour calculer un écart courant entre la vitesse réelle et la vitesse optimale correspondant à la position courante du véhicule, et pour le transmettre à l'organe de réception de ladite interface de visualisation. L'invention sera mieux comprise et ses avantages apparaîtront mieux à la lecture de la description détaillée qui suit, de deux modes de réalisation indiqués à titre d'exemples non limitatifs. La description se réfère aux dessins annexés sur lesquels :
- la figure 1 représente un véhicule urbain conforme à la présente invention qui comporte une interface de visualisation également conforme à la présente invention ;
- la figure 2 est une représentation schématique de l'interface de visualisation montée dans le véhicule de la figure 1 ;
- la figure 3 est un diagramme indiquant les étapes du procédé de représentation visuelle selon l'invention ; - la figure 4 est un graphique illustrant l'évolution temporelle de l'écart ; et
- la figure 5 montre les différentes configurations que peut prendre l'interface de visualisation dans un second mode de réalisation de l'invention.
La figure 1 représente un véhicule urbain 10, en l'espèce un bus de ville, qui est équipé d'une interface de visualisation 12 conforme à la présente invention.
Cette interface de visualisation 12, détaillée sur la figure 2, permet d'assister en temps réel Ie conducteur dans le pilotage du véhicule 10. Plus précisément, l'interface de visualisation 12 indique au conducteur si sa conduite est optimale ou pas. Pour ce faire, l'interface de visualisation 12 comporte un dispositif 14 mettant en œuvre Ie procédé de représentation visuelle de l'évolution temporelle d'un écart entre une valeur réelle et une valeur optimale d'un paramètre, en l'espèce la vitesse du véhicule, à l'aide de trois signaux lumineux 16 activables. Bien évidemment on peut choisir d'autres types de paramètres, également appelés profils de conduite, constitués par une ou plusieurs grandeurs prises parmi l'accélération, Ie régime moteur ou toute autre grandeur caractéristique du fonctionnement d'un véhicule urbain.
II faut ici préciser ce que l'on entend par vitesse optimale. La vitesse optimale peut par exemple correspondre à la vitesse du bus qui minimise l'énergie consommée et Ie temps mis pour parcourir un trajet déterminé en un temps donné. On se rapportera à Ia demande de brevet français n° 07 56076 déposée par Ia présente demanderesse pour plus de précisions.
Les trois signaux lumineux 16a, 16b et 16c se présentent ici sous Ia forme d'un feu bicolore à trois diodes: rouge (diode 16a)-vert (diode 16b)-rouge (diode 16c) disposés en rang vertical. On peut toutefois prévoir un feu présentant davantage de signaux lumineux.
Selon l'invention, lorsque Ia diode verte 16b est activée (allumée), cela signifie que Ia valeur réelle de la vitesse du véhicule 10 correspond sensiblement à Ia vitesse optimale du véhicule 10. Par ailleurs, lorsque l'écart ε entre Ia vitesse réelle et Ia vitesse optimale est supérieur à un premier seuil prédéterminé b3, l'un des signaux lumineux associé à une diode rouge, de préférence la diode supérieure 16a, est activé. Dans cette situation, le véhicule 10 roule trop rapidement par rapport à la vitesse optimale qu'il devrait présenter à cet endroit du trajet.
Le conducteur est donc invité à ralentir le véhicule jusqu'à l'activation de la diode verte 16b. De manière similaire, lorsque l'écart ε entre la vitesse réelle et la vitesse optimale est inférieur à un second seuil prédéterminé b2, l'un des signaux lumineux associé à l'autre diode rouge, de préférence la diode inférieure 16c, est activé. Dans cette situation, le véhicule 10 roule trop lentement par rapport à la vitesse optimale qu'il devrait présenter à cet endroit du trajet.
Le conducteur est donc invité à accélérer le véhicule jusqu'à l'activation de la diode verte 16b.
On comprend donc que grâce à la présente invention, le véhicule 10 peut présenter un profil de conduite optimal tout au long du trajet. Nous allons maintenant expliquer plus en détail la structure et le fonctionnement de l'interface selon l'invention.
Tout d'abord, la vitesse réelle pour une position courante du véhicule, la vitesse réelle (courante), est mesurée grâce à un capteur de vitesse 18 qui est monté sur l'un des essieux du véhicule 10 ou bien relevé sur le bus multiplexe du bus ou bien obtenu à l'aide d'un GPS. Ce dernier comporte en outre un organe de calcul 20 pour calculer un écart courant ε entre la vitesse réelle et la vitesse optimale Vopt pour la position courante, étant précisé que la valeur de vitesse optimale est stockée dans une mémoire 22 contenant une pluralité de vitesses optimales. Cette mémoire et l'organe de calcul sont décrits plus en détail dans la demande de brevet mentionnée ci-dessus, à laquelle on renvoie.
L'écart courant ε est transmis à l'interface de visualisation 12 comme cela est schématisé sur la figure 1.
Dans cet exemple, l'écart courant ε est transmis à un organe de réception 24 de l'interface de visualisation 12.
Un dispositif de calcul 26 de l'interface de visualisation 12 définit trois plages de valeurs de vitesse contiguës à partir de la vitesse optimale
Vopt pour la position courante. Ces plages de valeurs sont appelées ici
Pl, P2 et P3. L'idée ici est d'associer chacune des plages de valeurs à l'un des signaux lumineux et d'activer le signal lumineux qui correspond à la plage de valeurs, la plage de valeur courante, dans laquelle se situe l'écart courant.
Puis, à partir de ces plages de valeurs et de l'écart courant ε, le dispositif 14 détermine lequel des trois signaux lumineux doit être activé. A l'aide de la figure 3, on va maintenant décrire plus en détail le procédé selon l'invention.
Comme on l'a déjà dit, le procédé selon l'invention, dans ce mode de réalisation, consiste en la représentation visuelle de l'évolution temporelle de l'écart entre la valeur réelle de la vitesse du véhicule 10 et la valeur optimale de vitesse à l'aide des trois signaux lumineux 16a, 16b et 16c.
Pour ce faire, ledit procédé comporte tout d'abord une étape de réception 101 de l'écart courant, en l'espèce par le biais de l'organe de réception 24. Puis, une étape de définition 102 est réalisée, lors de laquelle on définit les trois plages de valeurs consécutives Pl, P2 et P3.
Les plages de valeurs Pl, P2 et P3 sont contiguës, en ce sens que la borne supérieure b2 de la plage Pl correspond à la borne inférieure b2 de la plage P2 et que la borne supérieure b3 de la plage P2 correspond à la borne inférieure b3 de la plage P3.
En l'espèce, la borne supérieure b3 de la plage P2 correspond au premier seuil prédéterminé qui a été mentionné ci-dessus, tandis que la borne inférieure b2 de la plage P2 correspond au second seuil prédéterminé qui a aussi été mentionné ci-dessus. Qui plus est, on associe à chacune de ces plages de valeurs l'un des signaux lumineux 16a,16b,16c. C'est ainsi que la plage de valeurs Pl est associée au signal lumineux 16a, la plage de valeurs P2 au signal lumineux 16b et la plage de valeurs P3 au signal lumineux 16c.
Dans l'exemple représenté sur la figure 3, les plages Pl, P2 et P3 sont préférentiellement choisies comme un pourcentage de la valeur optimale de vitesse. Par exemple la borne b3 correspond à 110% de la vitesse optimale, la borne b4 correspond à 120% de la vitesse optimale, la borne b2 correspond à 90% de la vitesse optimale, tandis que la borne bl correspond à 80% de la vitesse optimale. Ensuite, au cours de l'étape 103, on détermine à laquelle des plages de valeurs Pl, P2 ou P3 appartient l'écart courant ε. Par exemple, si l'écart courant est de 105%, ce qui signifie que la valeur réelle dépasse Ia valeur optimale de vitesse de 5% alors l'écart courant appartient à la plage P2. Si l'écart courant est de 112% alors il appartient à la plage P3 et si l'écart courant est de 90% (ce qui signifie que la valeur réelle de vitesse correspond à 90% de la valeur courante) alors il appartient à la plage Pl.
Sans sortir du cadre de la présente invention, on peut tout à fait prévoir d'autres configurations de plages en choisissant d'autres méthodes de détermination de seuils. On va maintenant aborder un aspect important de la présente invention.
Lors du déplacement du véhicule 10, il est fréquent que l'écart courant fluctue au cours du temps, comme cela est illustré sur la figure 4. Sur cette figure, la courbe 30 représente l'évolution de l'écart courant ε au cours du temps. Dans cet exemple, on voit que l'écart ε est tout d'abord compris dans la plage P2 (entre t=0 et t=tl, puis augmente de sorte qu'il se trouve dans la plage P3 entre tl et t3.
Entre 0 et tl, lorsque l'écart courant ε est dans la plage P2, le signal lumineux 16b (diode verte) est activé. Il s'agit d'un premier état. Entre tl et t3, lorsque l'écart courant ε est dans la plage P3, le signal lumineux 16c (diode rouge) est activé. Il s'agit d'un deuxième état.
Selon l'invention, la transition entre le premier et le deuxième état se fait par une première étape de transition 105. Pour cette transition, la plage de valeurs antérieure est la plage P2, tandis que la plage de valeurs courante est P3 car c'est la plage dans laquelle se trouve l'écart courant ε juste après l'instant tl. D'une manière générale, cette première étape de transition 105 est réalisée si l'on a positivement testé, au cours d'une étape de test 104, que la plage de valeurs courante est contigϋe à la plage de valeurs antérieure, ce qui est bien le cas ici : la plage P3 est contigϋe à la plage P2.
Lors de cette première étape de transition, après l'écoulement d'un premier délai dl, le signal lumineux (diode verte) 16b associé à la plage de valeurs antérieure P2 est désactivé (éteint) et le signal lumineux (diode rouge) 16c associé à la plage de valeurs courante P3 est activé (allumé). De préférence, le délai dl est compris entre 600 et 1000 ms, de préférence 800 ms. Dans une variante, on peut prévoir une transition de type hystérésis en ce sens que, pour éviter des clignotements intempestifs des signaux lumineux 16b, 16c si l'écart courant varie autour de la valeur b3, on prévoit que Ia première étape de transition n'est réalisée que si l'écart courant appartient à une sous plage de la plage de valeurs courante qui n'est pas contigϋe à la plage de valeurs antérieure. En l'espèce, la première étape de transition est réalisée après que l'écart courant est devenu supérieure au seuil b3' (à l'instant t2), c'est-à-dire que l'écart courant appartient à la sous-plage P3' qui n'est pas contigϋe à la plage P2 puisque distante de celle-ci.
En se référant à nouveau à la figure 4, on constate que l'écart courant diminue pour revenir dans la plage Ψ2 après l'instant t3.
On comprend donc qu'une première étape de transition est à nouveau réalisée lors de laquelle, après l'écoulement du premier délai dl, le signal lumineux 16c (diode rouge) est désactivé et le signal lumineux 16b (diode verte) est activé. De préférence, cette nouvelle première étape de transition est réalisée un peu après l'instant t3, c'est-à-dire après l'instant t4, pour les mêmes raisons que celles mentionnées ci-dessus, à savoir éviter les clignotements intempestifs. Ensuite l'écart courant diminue encore pour venir dans la plage Pl après l'instant t5, on comprend qu'une nouvelle première étape de transition est réalisée après l'instant t5 (de préférence t6) de sorte qu'après l'écoulement du premier délai dl, le signal lumineux 16b (diode verte) est désactivé et le signal lumineux 16a (diode rouge) est activé. On constate qu'ensuite, l'écart courant augmente brusquement puisqu'il passe très rapidement de la plage Pl à la plage P3. En d'autres termes, la durée entre entre l'instant t7 et l'instant t8 est très rapide. Dans le but de fournir au conducteur une information progressive, l'invention prévoit avantageusement une seconde étape de transition 107 qui est réalisée (étape de test 106) si la plage de valeurs courante, n'est pas contigϋe à la plage de valeurs antérieure, ce qui est le cas en l'espèce car la plage de valeurs courante P3 n'est pas contïgϋe à la plage de valeurs antérieure Pl.
Plus précisément, la seconde étape de transition est réalisée lorsque l'accélération du véhicule est supérieure à un premier seuil prédéterminé, par exemple 2 m/s2 et/ou lorsque la décélération du véhicule est supérieure à un second seuil prédéterminé de l'ordre de 2,5 m/s2. Au cours de cette seconde étape de transition 107, après l'écoulement d'un deuxième délai Û2, le signal lumineux 16a associé à la plage de valeurs antérieure Pl est désactivé et le signal lumineux 16b (diode verte) associé à la plage de valeurs contigϋe à la plage de valeurs antérieure Pl, à savoir en l'espèce la plage de valeurs P2, est activé. Cette plage de valeurs P2 qui est contigϋe à la plage de valeurs antérieure Pl est appelée plage de valeurs intermédiaire.
Ensuite, après l'écoulement d'un troisième délai d3, le signal lumineux 16b (diode verte) associé à la plage de valeurs intermédiaire P2 est désactivé et le signal lumineux 16c (diode rouge) associé à la plage de valeurs courante P3 est activé.
Ainsi obtient-on une transition progressive entre lors de l'évolution brusque de l'écart courant. De manière préférentielle, le deuxième délai est égal au troisième délai et, de manière avantageuse la somme des deuxième et troisième délais est égale au premier délai.
Autrement dit, la durée de la première étape de transition 105 est avantageusement égale à la durée de la seconde étape de transition 107, grâce à quoi on fournit une information progressive et rapide au conducteur quelle que soit l'évolution de l'écart courant.
Par ailleurs, de préférence, les première et seconde étapes de transition 105, 107 ne sont pas réalisées si l'écart courant est supérieur à une valeur limite εmax prédéterminée. Un test est prévu lors d'une étape supplémentaire 103bis qui a lieu de préférence avant l'étape 104.
De préférence, on prévoit également un signalement spécifique si la valeur réelle du véhicule dépasse la vitesse légalement permise, par exemple en activant simultanément les signaux lumineux (diodes rouges) 16a et 16c. De manière similaire, on peut également prévoir que les première et seconde étapes de transition 105,106 ne sont pas réalisées si l'écart courant est inférieur à une valeur limite εmin prédéterminée. Dans ce cas, le véhicule 10 qui roule trop lentement est probablement en phase de manœuvre si bien qu'il n'y a pas d'intérêt à informer le conducteur qu'il ne roule pas à la vitesse optimale. Un test est prévu, par exemple également lors de l'étape supplémentaire 103bis. Sur Ia figure 5 on a représenté les différentes configurations que peuvent prendre les signaux lumineux d'une interface de visualisation selon un second mode de réalisation de l'invention.
Dans ce second mode de réalisation, on prévoit 12 plages numérotées Ql à Q12 sur la figure 5 de valeurs et 7 signaux lumineux distincts, chacun des signaux lumineux étant généré par trois diodes de couleur adjacentes. Pour ce faire, l'interface comporte, à savoir successivement trois diodes rouges 200, 202, 204, trois diodes vertes 206,208,210, et trois diodes rouges 212,214,216. Le premier signal lumineux 116a est associé aux plages Q2 à Q4.
Il est composé des trois diodes rouges 200,202 et 204.
Le deuxième signal lumineux 116b est associé à la plage Q5 et est composé des deux diodes rouges 202,204 et de la diode verte 208.
Le troisième signal lumineux 116c est associé à la plage Q6 et est composé de la diode rouge 204 et des deux diodes vertes 206,208.
Le quatrième signal lumineux 116d est associé à la plage Q7 et est composé des trois diodes vertes 206,208,210.
Le cinquième signal lumineux 116e est associé à la plage Q8 et est composé des deux diodes vertes 208,210 et de la diode rouge 212. Le sixième signal lumineux 116f est associé à la plage Q9 et est composé des de la diode verte 210 et des deux diodes rouges 212, 214.
Le septième signal lumineux 116g est associé aux plages QlO et QIl, et est composé des trois diodes rouges 212,214,216.
Qui plus est, la plage Ql est associée aux signaux lumineux 16a et 16g qui sont destinés à être activés simultanément. Les plages Q2 et Q3, associées au signal lumineux 16a se distinguent en ce que l'on fait clignoter ce signal lumineux 16a, de manière différente.
Pour la plage QIl, le signal lumineux 16g est clignotant.
La plage Q12 n'est associée à aucun signal lumineux (toutes les diodes sont éteintes).
De préférence, l'interface comporte en outre une mémoire destinée à stocker des séquences de chenillard, c'est-à-dire de clignotements successifs de diodes. A ce titre, des séquences de chenillard peuvent être utilisées pour réaliser le clignotement pour les plages Q2, Q3 et Q4. L'axe vertical représente l'évolution de l'écart ε ainsi que les bornes inférieure et supérieure pour chacune des plages de valeurs Q. Ce deuxième mode de réalisation constitue un exempte d'application préférentiel mais non limitatif.

Claims

REVENDICATIONS
1. Procédé de représentation visuelle de l'évolution temporelle d'un écart courant entre une valeur réelle et une valeur optimale d'un paramètre à l'aide d'au moins trois signaux lumineux activables
(16a, 16b, 16c) , ledit procédé comportant :
- une étape (101) de réception de l'écart courant ;
- une étape (102) de définition au cours de laquelle on définit au moins trois plages de valeurs contiguës (Pl, P2, P3) et on associe à chacune de ces plages de valeurs l'un des signaux lumineux (16a, 16b, 16c) ;
- une étape lors de laquelle on détermine à laquelle des plages de valeurs, la plage de valeurs courante, appartient l'écart courant ; - une première étape de transition (105) qui est réalisée si la plage de valeurs courante est contiguë à une plage de valeurs antérieure, étape lors de laquelle, après l'écoulement d'un premier délai, le signal associé à la plage de valeurs antérieure est désactivé et le signal lumineux associé à la plage de valeurs courante est activé ;
- une seconde étape de transition (107) qui est réalisée si la plage de valeurs courante est distincte de la plage de valeurs antérieure et si elle n'est pas contiguë à la plage de valeurs antérieure, étape lors de laquelle, après l'écoulement d'un deuxième délai, le signal lumineux associé à la plage de valeurs antérieure est désactivé et le signal lumineux associé à une plage de valeur contîgϋe à la plage de valeurs antérieure, la plage de valeurs intermédiaire, est activé, puis, après l'écoulement d'un troisième délai, le signal lumineux associé à la plage de valeurs intermédiaire est désactivé et le signal lumineux associé à la plage de valeurs courante est activé.
2. Procédé selon la revendication 1, dans lequel le deuxième délai est égal au troisième délai.
3. Procédé selon Ia revendication 2, dans lequel le deuxième délai est égal à la moitié du premier délai.
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel la somme des deuxième et troisième délais est égale au premier délai.
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel la première étape de transition est réalisée si l'écart courant (ε) appartient à une sous-plage (P31) de la plage de valeurs courante (P3) qui n'est pas contiguë à la plage de valeurs antérieure (P2).
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel les première et seconde étapes de transition ne sont pas réalisées si l'écart courant est supérieur à une valeur limite prédéterminée.
7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel le paramètre comprend au moins une grandeur, notamment une vitesse.
8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel chacune des plages de valeurs comporte une borne inférieure et une borne supérieure qui dépendent de la valeur optimale du paramètre.
9. Interface de visualisation (12) comportant un dispositif (14) mettant en œuvre le procédé de représentation visuelle selon l'une quelconque des revendications 1 à 8, un organe de réception (24) pour recevoir un écart courant, un dispositif de calcul (26) pour définir au moins trois plages de valeurs, et au moins trois émetteurs (16a, 16b, 16c) de signaux lumineux associés aux plages de valeurs.
10. Interface de visualisation selon Ia revendication 9, caractérisé en ce que chacun desdits émetteurs de signal lumineux est constitué par au moins une diode électroluminescente (16a, 16b, 16c).
11. Véhicule urbain (10) destiné à effectuer un trajet, caractérisé en ce que ledit véhicule comporte une interface de visualisation selon la revendication 9 ou 10, un capteur de vitesse (18) pour mesurer une vitesse réelle du véhicule (10), une mémoire (22) contenant une pluralité de vitesses optimales, un organe de calcul (20) pour calculer un écart courant entre la vitesse réelle et la vitesse optimale correspondant à la position courante du véhicule, et pour le transmettre à l'organe de réception (24) de ladite interface de visualisation (12).
PCT/EP2009/055130 2008-04-30 2009-04-28 Procede de representation visuelle de l'evolution temporelle d'un ecart courant entre une valeur reelle et une valeur optimale d'un parametre a l'aide d'au moins trois signaux lumineux activables WO2009133104A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801154292A CN102099841A (zh) 2008-04-30 2009-04-28 使用至少三个可激活光信号在视觉上表示参数的实际值和最优值之间的当前差异随时间变化的方法
EP09738148A EP2291834A1 (fr) 2008-04-30 2009-04-28 Procede de representation visuelle de l'evolution temporelle d'un ecart courant entre une valeur reelle et une valeur optimale d'un parametre a l'aide d'au moins trois signaux lumineux activables
AU2009242089A AU2009242089A1 (en) 2008-04-30 2009-04-28 Method of visually representing the temporal evolution of a current deviation between a real value and an optimal value of a parameter with the aid of at least three activatable luminous signals
US12/989,936 US20110043351A1 (en) 2008-04-30 2009-04-28 method of visually representing the variation over time of a current difference between a real value and an optimum value for a parameter, using at least three activatable light signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0852924A FR2930834B1 (fr) 2008-04-30 2008-04-30 Procede de representation visuelle de l'evolution temporelle d'un ecart courant entre une valeur reelle et une valeur optimale d'un parametre a l'aide d'au moins trois signaux lumineux activables
FR0852924 2008-04-30

Publications (1)

Publication Number Publication Date
WO2009133104A1 true WO2009133104A1 (fr) 2009-11-05

Family

ID=40368570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/055130 WO2009133104A1 (fr) 2008-04-30 2009-04-28 Procede de representation visuelle de l'evolution temporelle d'un ecart courant entre une valeur reelle et une valeur optimale d'un parametre a l'aide d'au moins trois signaux lumineux activables

Country Status (7)

Country Link
US (1) US20110043351A1 (fr)
EP (1) EP2291834A1 (fr)
CN (1) CN102099841A (fr)
AU (1) AU2009242089A1 (fr)
CL (1) CL2009001054A1 (fr)
FR (1) FR2930834B1 (fr)
WO (1) WO2009133104A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3707497A1 (de) * 1986-03-10 1987-09-17 Siemens Ag Einrichtung zum uebermitteln von informationen
DE3819215A1 (de) * 1988-06-06 1989-12-07 Siemens Ag Verfahren zur begrenzung der fahrgeschwindigkeit von strassenfahrzeugen und einrichtung zur durchfuehrung des verfahrens
DE10014818A1 (de) * 2000-03-27 2001-10-18 Daimler Chrysler Ag Vorrichtung zur Bestimmung und Anzeige eines optimalen Drehzahlbereichs
FR2838226A1 (fr) * 2002-04-05 2003-10-10 J C Decaux Mobilier urbain de securite routiere comportant au moins un moyen de signalisation d'un risque et procede de signalisation d'un risque a l'aide d'un mobilier
JP2007121000A (ja) * 2005-10-26 2007-05-17 Nissan Motor Co Ltd ナビゲーション装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2338197Y (zh) * 1998-07-10 1999-09-15 华通贸易有限公司 汽车冷气恒温装置
US7526103B2 (en) * 2004-04-15 2009-04-28 Donnelly Corporation Imaging system for vehicle
CN101130364B (zh) * 2006-08-21 2011-12-28 五十铃自动车株式会社 车辆行驶控制装置
CN102741780B (zh) * 2008-10-30 2016-01-27 福特全球技术公司 车辆以及提醒车辆的驾驶员的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3707497A1 (de) * 1986-03-10 1987-09-17 Siemens Ag Einrichtung zum uebermitteln von informationen
DE3819215A1 (de) * 1988-06-06 1989-12-07 Siemens Ag Verfahren zur begrenzung der fahrgeschwindigkeit von strassenfahrzeugen und einrichtung zur durchfuehrung des verfahrens
DE10014818A1 (de) * 2000-03-27 2001-10-18 Daimler Chrysler Ag Vorrichtung zur Bestimmung und Anzeige eines optimalen Drehzahlbereichs
FR2838226A1 (fr) * 2002-04-05 2003-10-10 J C Decaux Mobilier urbain de securite routiere comportant au moins un moyen de signalisation d'un risque et procede de signalisation d'un risque a l'aide d'un mobilier
JP2007121000A (ja) * 2005-10-26 2007-05-17 Nissan Motor Co Ltd ナビゲーション装置

Also Published As

Publication number Publication date
CL2009001054A1 (es) 2009-08-21
FR2930834A1 (fr) 2009-11-06
AU2009242089A1 (en) 2009-11-05
FR2930834B1 (fr) 2010-06-04
US20110043351A1 (en) 2011-02-24
EP2291834A1 (fr) 2011-03-09
CN102099841A (zh) 2011-06-15

Similar Documents

Publication Publication Date Title
EP0435738A2 (fr) Procédé de contrôle d'un réseau de stations électroniques et réseau obtenu, notamment pour véhicules automobiles
WO2014191209A1 (fr) Procede de fonctionnement d'un vehicule en mode manuel et en mode autonome
FR2711601A1 (fr) Dispositif de commande pour le système de direction assistée commandé par moteur d'un véhicule à moteur.
WO2008102090A2 (fr) Procede et dispositif d'aide a la conduite d'un véhicule
WO2022128528A1 (fr) Système de commande, et véhicule automobile associé
EP2291834A1 (fr) Procede de representation visuelle de l'evolution temporelle d'un ecart courant entre une valeur reelle et une valeur optimale d'un parametre a l'aide d'au moins trois signaux lumineux activables
EP1791715B1 (fr) Procede de commande a plusieurs modes de fonctionnement d'une transmission automatisee pour un vehicule automobile, notamment pour un avancement au ralenti du vehicule automobile avec frein active et dispositif correspondant
EP2467277B1 (fr) Procede et dispositif de distribution d'un couple moteur entre un train avant et un train arriere de vehicule automobile muni de quatre roues motrices
EP3202014B1 (fr) Dispositif de commande d'un regulateur d'un alternateur d'un vehicule automobile et alternateur comprenant le regulateur correspondant
FR2988052A1 (fr) Procede d'adaptation d'au moins un parametre photometrique d'une source lumineuse de vehicule automobile et systeme d'adaptation correspondant
EP2185375B1 (fr) Procédé et dispositif de contrôle du fonctionnement d'un régulateur de vitesse de véhicule automobile
EP4031425B1 (fr) Procédé de pilotage d'un véhicule automobile
FR3046392A1 (fr) Procede et systeme de commande de freinage automatique pour vehicule automobile en mode de fonctionnement autonome
EP3077225A1 (fr) Systeme et procede de detection indirecte du sous-gonflage d'un pneumatique
FR2923440A1 (fr) Procede et dispositif de gestion d'une unite d'entrainement d'un vehicule
FR3043045A1 (fr) Procede de controle d'une boite de vitesses a actionnement manuel interagissant avec un embrayage
EP2454115B1 (fr) Dispositif de selection d'un mode de motricite d'un vehicule a quatre roues motrices
WO2023079007A1 (fr) Procédé de pilotage d'un véhicule automobile en cas de non-activité du conducteur
WO2001036261A1 (fr) Dispositif de commande manuelle semi-automatique de selection de vitesses d'un vehicule motorise a guidon et vehicule equipe de ce dispositif
EP4209400A1 (fr) Procédé d'adaptation automatique d'au moins un paramètre de personnalisation d'un véhicule automobile
WO2023247848A1 (fr) Procédé et dispositif de contrôle d'une interface utilisateur d'un véhicule
WO2010070220A1 (fr) Procede de pilotage d'un groupe d'organes de vehicule en fonction des situations de conduite et dispositif correspondant
FR3099424A1 (fr) Dispositif de commande, et système d’aide à la conduite, véhicule et procédé de commande associés
FR2947928A1 (fr) Procede de controle d'un systeme de regulation a controle de distance, systeme de regulation et calculateur de tableau de bord associes
FR2656122A1 (fr) Procede de controle d'un reseau de stations electroniques et reseau obtenu, notamment pour vehicules automobiles.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980115429.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738148

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12989936

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009242089

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2009738148

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009242089

Country of ref document: AU

Date of ref document: 20090428

Kind code of ref document: A