WO2009132368A1 - Élément absorbeur tubulaire pour capteurs solaires - Google Patents

Élément absorbeur tubulaire pour capteurs solaires Download PDF

Info

Publication number
WO2009132368A1
WO2009132368A1 PCT/AT2009/000173 AT2009000173W WO2009132368A1 WO 2009132368 A1 WO2009132368 A1 WO 2009132368A1 AT 2009000173 W AT2009000173 W AT 2009000173W WO 2009132368 A1 WO2009132368 A1 WO 2009132368A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
absorber element
transfer medium
heat transfer
inner tube
Prior art date
Application number
PCT/AT2009/000173
Other languages
German (de)
English (en)
Inventor
Richard Matthias Knopf
Original Assignee
Richard Matthias Knopf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richard Matthias Knopf filed Critical Richard Matthias Knopf
Priority to EP09737520A priority Critical patent/EP2404123A1/fr
Publication of WO2009132368A1 publication Critical patent/WO2009132368A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • F24S10/45Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors the enclosure being cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/40Arrangements for controlling solar heat collectors responsive to temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/80Accommodating differential expansion of solar collector elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the invention relates to a tubular absorber tube for solar panels, which is formed from at least two nested tubes arranged at a mutual radial distance, wherein one tube, the supply of the fresh heat transfer medium and the other tube has the derivative of the heated heat transfer medium, wherein the supply line in or the discharge from the absorber element are adjacent and at the ends remote from the terminals of the tubes, the heat transfer medium under deflection of a pipe into the other tube, and wherein the two tubes are connected to each other in the region of the feed line and the discharge end ,
  • Such absorber tubes are e.g. From DE 2536800 Al or DE 3934535 Al or JP 56061539 Al known. All these known embodiments have in common that a more or less constant large gap is present in the deflection, through which the flow rate is not influenced.
  • the invention is now the Tempegäbe to provide an embodiment of the aforementioned type, in which due to the existing solar radiation, an automatic control of the flow rate of the heat transfer medium is achieved.
  • the deflection of the heat transfer medium causing end of the tubular absorber element is designed as a valve, wherein the mouth of the inner tube is the valve seat and the conclusion of the outer tube forms the closure body.
  • the feed line to the inner tube and the discharge can be located on the outer tube, whereby the inner tube is cooled by fresh supplied heat transfer medium, thereby increasing the response accuracy is increased.
  • the closure body may be formed in the outer tube as in the pipe end tightly inserted fitting. This makes it possible to adjust the sealing body material to the desired seal.
  • the fitting can be guided limited displaceable in the pipe end in at least the axial direction, wherein it is held to the mouth of the inner tube out by a compression spring into contact with a stop in the outer tube.
  • the outer tube may have a higher coefficient of thermal expansion than the inner tube, causing a more rapid response to the radiated heat energy.
  • a heat-shielding tube can be provided, whereby an even stronger thermal insulation between the inner and outer tube is achieved and thus excessive cooling of the outside Pipe flowing heat transfer medium is prevented by flowing in the inner tube fresh heat transfer medium.
  • the mating surface of the closure body may be the lateral surface of a circular cross-section recess with decreasing diameter away from the mouth.
  • the lateral surface is located at the outer boundary of the mouth the inner tube, whereby at the same time a centering of the inner tube is achieved with respect to the mating surface.
  • the outer tube, the inner tube and the heat-shielding tube may be adjustable and fixable with respect to each other in the axial direction.
  • the absorber tube according to the invention can be arranged in an advantageous manner along the focal line of a parabolic mirror or a converging lens, whereby the efficiency of the absorber tube is increased.
  • Fig. 1 shows a longitudinal section of the absorber tube according to the invention in the closed state.
  • Fig. 2 shows the absorber tube according to the invention in operating position of the individual parts, in Fig. 3, the end portion, which represents the valve closure, is reproduced on a larger scale.
  • Fig. 4 illustrates the individual parts of the absorber tube at very low outside temperatures at which the outer tube is more contracted than the inner tube.
  • Fig. 5 shows schematically the attachment of the absorber tube within a parabolic mirror-like reflector channel.
  • the absorber tube 1 consists of an inner tube 2 and a coaxially arranged to this outer tube 3, which is completed at the end by a fitting 4.
  • the fitting 4 opposite the mouth 5 of the inner tube 2, which is sealingly engageable on the lateral surface 6 of a recess 7 in the fitting 4 in abutment.
  • the fitting 4 is slidably disposed in a guide 8 of the outer tube 3 in the axial direction and is held by a spring 9 to stops 10 in Appendix.
  • the space between the outer tube 3 and the heat-shielding tube 11 is sealed by an annular seal to the outside.
  • the entire absorber tube 1 is located in an outer protective tube 15, which is heat-permeable and is attached via a connecting flange 16 on the outer tube.
  • the three concentrically arranged tubes namely inner tube 2, outer tube 3 and heat-shielding tube 11 are arranged displaceable to each other in the axial direction, wherein for fixing the tubes to each other flanges 17,18,19 are provided which are mounted radially projecting from tubes to these ,
  • the connecting flanges 17, 18, 19 can be fixed relative to one another via a connecting rod 20.
  • the absorber tube 1 is arranged in the focal line of a trough-shaped parabolic mirror 21 via a suspension 22.
  • the heat transfer medium comes without significant heating to the mouth 5 of the inner tube, whereby an undesirable expansion of the inner tube is prevented. Furthermore, it is also prevented by the heat-shielding pipe 11 that low-temperature incoming heat transfer medium, the already heated medium is cooled again.
  • the heating in the space between the heat-shielding tube 11 and the outer tube 3 can be carried out so far that in the end near the Ent Spotifyöffhung 3 already vaporous heat transfer medium is present.
  • the outer tube 3 again assumes the original length extension, wherein the fitting body 4 by the spring 9 in Plant is held at the mouth 5 of the inner tube 2, and thus prevents further flow of heat transfer medium.

Abstract

L'invention concerne un élément absorbeur tubulaire (1) pour capteurs solaires, composé de deux tubes (2, 3) emboîtés l'un dans l'autre de manière espacée radialement l'un par rapport à l'autre, l'un de ces tubes présentant l'amenée (2') de l'agent caloporteur frais et l'autre tube présentant l'évacuation (3') de l'agent caloporteur réchauffé. L'amenée (2') et l'évacuation (3') sont disposées adjacentes respectivement dans l'élément absorbeur et à l'extérieur de celui-ci et, à l'extrémité des tubes qui est opposée aux raccords, l'agent caloporteur est dévié de manière à passer du tube intérieur (2) au tube extérieur (3), les deux tubes étant reliés dans la région de l'extrémité comprenant l'amenée et l'évacuation. L'objectif de l'invention est d'obtenir une régulation automatique du débit d'agent caloporteur. À cet effet, l'extrémité de l'élément absorbeur tubulaire permettant de dévier l'agent caloporteur se présente sous la forme d'une soupape, l'orifice (5) du tube intérieur (2) formant le siège de cette soupape et le bout du tube extérieur (3) formant l'élément obturateur (4).
PCT/AT2009/000173 2008-04-29 2009-04-28 Élément absorbeur tubulaire pour capteurs solaires WO2009132368A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09737520A EP2404123A1 (fr) 2008-04-29 2009-04-28 Élément absorbeur tubulaire pour capteurs solaires

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0067208A AT506680B1 (de) 2008-04-29 2008-04-29 Rohrförmiges absorberelement für sonnenkollektoren
ATA672/2008 2008-04-29

Publications (1)

Publication Number Publication Date
WO2009132368A1 true WO2009132368A1 (fr) 2009-11-05

Family

ID=40903162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2009/000173 WO2009132368A1 (fr) 2008-04-29 2009-04-28 Élément absorbeur tubulaire pour capteurs solaires

Country Status (3)

Country Link
EP (1) EP2404123A1 (fr)
AT (1) AT506680B1 (fr)
WO (1) WO2009132368A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107238220B (zh) * 2017-08-08 2023-06-27 李春信 一种全玻璃直通型太阳能真空集热器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4103673A (en) * 1976-12-06 1978-08-01 Woodworth Robert N Non-tracking solar energy concentrator
US4205655A (en) * 1978-02-22 1980-06-03 Corning Glass Works Solar collector
GB1575031A (en) * 1976-01-26 1980-09-17 Owens Illinois Inc Solar energy collector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1575031A (en) * 1976-01-26 1980-09-17 Owens Illinois Inc Solar energy collector
US4103673A (en) * 1976-12-06 1978-08-01 Woodworth Robert N Non-tracking solar energy concentrator
US4205655A (en) * 1978-02-22 1980-06-03 Corning Glass Works Solar collector

Also Published As

Publication number Publication date
AT506680B1 (de) 2010-01-15
AT506680A1 (de) 2009-11-15
EP2404123A1 (fr) 2012-01-11

Similar Documents

Publication Publication Date Title
DE102009047548B4 (de) Absorberrohr
DE102009046064B4 (de) Absorberrohr und Verfahren zum reversiblen Be- und Entladen eines Gettermaterials
DE10231467A1 (de) Absorberrohr für solarthermische Anwendungen
EP1787067B1 (fr) Tube d'absorbeur
DE1279225B (de) Thermische Abschirmung fuer einen Behaelter eines Atomkernreaktors
EP2246647B1 (fr) Sonde d'échauffement de la terre
AT506680B1 (de) Rohrförmiges absorberelement für sonnenkollektoren
WO2013087556A2 (fr) Système récepteur pour installation solaire fresnel
DE19916514A1 (de) Nachführbarer Sonnenkollektor
DE2063668A1 (de) Reformierungsofen
DE102013201409B3 (de) Haltevorrichtung für Absorberrohre
DE102011075123B4 (de) Durchflussbegrenzungselement, Durchflussbegrenzungseinheit, Verfahren zur Durchflussbegrenzung, Heizkörper und Durchlauferhitzer
DE102009046061B4 (de) Absorberrohr
DE19618093C2 (de) Vorrichtung zur Regelung der Temperatur von Brauchwasser
DE4407968A1 (de) Kollektorsegment für einen Solarkollektor sowie Solarkollektor mit mehreren derartigen Kollektorsegmenten
DE102017223756A1 (de) Solarreceiver zum Aufnehmen von Sonnenstrahlen und zum Aufheizen eines Mediums
DE102011017276A1 (de) Absorberrohr für Kollektoren und/oder Reflektoren eines solarthermischen Kraftwerks
DE102022107882A1 (de) Vakuumisolierter absorber
DE3623814A1 (de) Thermostatventil
DE3933733A1 (de) Strahlungsempfaenger fuer eine solarspiegelanordnung
DE102014213061A1 (de) Spiegelkragenset, Receiverrohr und Solarkollektor
DE3100252A1 (de) Einrichtung zur abfuhr von waerme aus einem heizkessel
DE1929681A1 (de) Mehrwegeventil,insbesondere fuer den Anschluss von Heizkoerpern
EP2883008A1 (fr) Système de thermosiphon solaire
DE202014101727U1 (de) Spiegelkragen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09737520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009737520

Country of ref document: EP