WO2009129894A1 - Abgasstromführungseinrichtung und brennkraftmaschine mit einer abgasstromführungseinrichtung - Google Patents

Abgasstromführungseinrichtung und brennkraftmaschine mit einer abgasstromführungseinrichtung Download PDF

Info

Publication number
WO2009129894A1
WO2009129894A1 PCT/EP2009/001833 EP2009001833W WO2009129894A1 WO 2009129894 A1 WO2009129894 A1 WO 2009129894A1 EP 2009001833 W EP2009001833 W EP 2009001833W WO 2009129894 A1 WO2009129894 A1 WO 2009129894A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
exhaust
internal combustion
combustion engine
guide device
Prior art date
Application number
PCT/EP2009/001833
Other languages
English (en)
French (fr)
Inventor
Michael Becker
Heike Koch
Timo Schmidt
Stefan Stauch
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Publication of WO2009129894A1 publication Critical patent/WO2009129894A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/001Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/001Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel
    • F02B37/002Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel the exhaust supply to one of the exhaust drives can be interrupted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/007Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an exhaust gas flow guidance device for arrangement in an exhaust gas tract of an internal combustion engine of a motor vehicle, in particular of a heavy goods vehicle.
  • the invention further relates to an internal combustion engine specified in the preamble of claim 7 Art.
  • Internal combustion engines in particular for trucks, are known from motor vehicle series production, which comprise an exhaust tract within which a turbine of a first exhaust gas turbocharger and a turbine of a second exhaust gas turbocharger are arranged.
  • turbines of the turbocharger turbine wheels are arranged, which can be acted upon by the exhaust gas flow through the exhaust gas flow of the internal combustion engine and can be set in rotation to drive via associated with the aid of waves compressor wheels in the intake tract of the internal combustion engine.
  • the compressor wheels thus provide a pre-compressed fresh gas charge to the internal combustion engine, so that the cylinder or the cylinders of the internal combustion engine supplied a correspondingly larger amount of fuel and the power of the internal combustion engine can be increased accordingly.
  • At least one exhaust gas turbocharger has an additional flap, by means of which the exhaust gas quantity to be passed to the relevant turbine wheel can be changed.
  • the object of the present invention is to enable improved flow guidance of the exhaust gas in the exhaust tract of internal combustion engines.
  • An improved flow guidance of the exhaust gas in the exhaust tract of internal combustion engines according to the invention by an exhaust gas flow guide device for arrangement in an exhaust tract of an internal combustion engine of a motor vehicle, in particular a truck, allows the
  • Exhaust gas flow guide device a first exhaust gas duct, which can be coupled upstream with the exhaust tract and downstream with an exhaust gas inlet of a turbine of a first exhaust gas turbocharger, a second exhaust duct, which can be coupled upstream with the exhaust tract and downstream with an exhaust gas inlet of a turbine of a second exhaust gas turbocharger, and a valve element which for changing a flow cross section of at least one of the exhaust gas guide lines is movably mounted on the exhaust gas flow guide device comprises.
  • the exhaust gas flow guiding device according to the invention thus permits a loss-free separation or merging of the exhaust gas flows which can be separately conducted through the exhaust gas guide line, as a result of which a considerable increase in the efficiency of the associated internal combustion engine can be achieved.
  • Exhaust gas flow guidance device can also be easily and inexpensively adapted to the particular configuration of the internal combustion engine, the exhaust tract and the exhaust gas turbocharger.
  • the valve element is designed as a flap.
  • the flap is adapted to a cross-sectional geometry of the at least one exhaust ducts adapted.
  • the valve element is associated with an actuating element, by means of which the valve element is movable in response to an operating state of the internal combustion engine for changing the flow cross-section of at least one of the exhaust gas ducts.
  • the respective flow cross section can be optimally adapted to the respective operating state, so that turbines of the exhaust gas turbocharger can be optimally acted upon by the exhaust gas flows that can be conducted through the exhaust gas guide lines and an additional increase in the efficiency of the internal combustion engine is achieved.
  • valve element between a first, the flow cross-section of at least one of the exhaust ducts at least largely released position and a second, the flow cross-section of at least one of the exhaust ducts at least largely closing position is movable, in particular pivotable.
  • the respective associated turbine or the exhaust gas turbocharger can be activated or deactivated depending on the situation, so that different load ranges of the internal combustion engine can be optimally operated.
  • a third exhaust duct is provided, which is coupled upstream with an exhaust gas outlet of the turbine of at least one exhaust gas turbocharger and coupled downstream with the first and / or the second exhaust duct.
  • the two turbines of the exhaust gas turbocharger can be flowed through serially with exhaust gas, whereby an optimal utilization of the exhaust gas energy and a corresponding optimization of the efficiency of the internal combustion engine is given.
  • a fourth exhaust-gas duct which is coupled upstream to the first and / or the second exhaust-gas duct and can be coupled downstream to an exhaust-gas inlet of a boost-pressure regulating system, in particular a wastegate, of the internal combustion engine.
  • a boost-pressure regulating system in particular a wastegate
  • a further aspect of the invention relates to an internal combustion engine for a motor vehicle, wherein an improved flow guidance of the exhaust gas in the exhaust tract of the internal combustion engine according to the invention is enabled by the exhaust tract comprises an exhaust gas flow guide device according to one of the preceding embodiments, which is arranged upstream of the first and the second turbine.
  • an improved flow guidance of the exhaust gas in the exhaust tract of the internal combustion engine according to the invention is enabled by the exhaust tract comprises an exhaust gas flow guide device according to one of the preceding embodiments, which is arranged upstream of the first and the second turbine.
  • the first exhaust gas turbocharger is designed as a high-pressure turbocharger and / or the second exhaust gas turbocharger as a low-pressure turbocharger.
  • different operating states of the internal combustion engine can be optimally operated and the efficiency of the internal combustion engine can be further optimized accordingly.
  • the first and / or the second exhaust gas turbocharger comprises a boost pressure control system, by means of which the valve element of the exhaust gas flow guiding device can be actuated in response to an operating state of the internal combustion engine for changing the flow cross section of at least one of the exhaust gas ducts.
  • the boost pressure control system can be designed, for example, mechanically, pneumatically and / or electronically. In this way, the flow guidance of the exhaust gas in the exhaust tract can be optimally adapted to the respective operating state of the internal combustion engine and the internal combustion engine can be operated with optimum efficiency.
  • first and / or the second exhaust duct of the exhaust gas flow guide device is coupled to an exhaust manifold of the internal combustion engine. This ensures a particularly advantageous flow guidance with low space requirement, high tightness and correspondingly low flow losses.
  • Fig. 1 is a schematic and partial perspective view of a
  • Fig. 2 is a schematic perspective view of that shown in Fig. 1
  • Fig. 3 is a schematic and partially transparent perspective view of
  • FIG. 4 is a schematic and fragmentary perspective view of the exhaust gas flow guide device shown in FIG. 3, wherein a first exhaust gas guide line having a turbine of a first and a second exhaust gas guide line are coupled to a turbine of a second exhaust gas turbocharger; and
  • FIG. 5 shows a schematic sectional view of the exhaust gas flow guide device along the sectional plane V-V shown in FIG. 4.
  • FIG. 1 shows a schematic and partial perspective view of an embodiment of an exhaust tract 10 of an internal combustion engine (not shown) of a motor vehicle, in particular a truck, with an exhaust gas flow guide device 12 and two exhaust gas turbochargers 14a, 14b.
  • the internal combustion engine can basically be designed as a gasoline engine, as a diesel engine or as a so-called "Diesotto" engine.
  • the exhaust gas flow guide device 12 will be explained below in conjunction with FIG. 2, which shows a schematic perspective view of the exhaust gas flow guide device 12 shown in FIG.
  • the exhaust gas flow guide device 12 comprises a first exhaust gas guide line 16a, which is coupled via a flange 18a upstream with an exhaust manifold 20 and downstream with an exhaust gas inlet of a turbine 22a of the first exhaust gas turbocharger 14a.
  • the exhaust gas flow guide device 12 further comprises a second exhaust gas guide line 16 b, which is upstream with the exhaust manifold 20 and is coupled downstream with an exhaust gas inlet of a turbine 22b of the second exhaust gas turbocharger 14b.
  • the first exhaust gas turbocharger 14a is designed as a high-pressure turbocharger and the second exhaust gas turbocharger 14b as a low-pressure turbocharger.
  • the exhaust gas flow guiding device 12 has a valve element 24 (see Fig.
  • valve element 24 is associated with an actuating element 26, by means of which the valve element 24 is pivoted depending on an operating state of the internal combustion engine for varying the flow cross section of the exhaust gas guide line 16b between a first, the flow cross-section released position and a second, the flow cross-section closing position.
  • the actuating element 26 is in turn coupled via a control linkage 28 to a boost pressure control system 30 of the first exhaust gas turbocharger 14a, which opens the valve element 24 when a predetermined exhaust gas pressure is exceeded or closes the valve element 24 accordingly when it falls below this exhaust gas pressure.
  • the exhaust gas flow guide device 12 furthermore has a third exhaust gas guide line 16c, which is coupled or can be coupled upstream with an exhaust gas outlet of the turbine 22a of the first exhaust gas turbocharger 14a and downstream with the second exhaust gas guide line 16b.
  • a third exhaust gas guide line 16c which is coupled or can be coupled upstream with an exhaust gas outlet of the turbine 22a of the first exhaust gas turbocharger 14a and downstream with the second exhaust gas guide line 16b.
  • the valve element 24 If, however, the valve element 24 is pivoted into the first position releasing the flow cross section of the second exhaust gas guide line 16b, exhaust gas flows through the first and the second turbine 22a, 22b of the two exhaust gas turbochargers 14a, 14b in parallel.
  • the exhaust-gas turbochargers 14a, 14b can furthermore be made structurally simpler and more space-saving and can be arranged more flexibly.
  • FIG 3 shows a schematic and partially transparent perspective view of the exhaust gas flow guide device 12 according to a further exemplary embodiment.
  • the flap element designed as a valve element 24 and this associated actuator 26 recognizable.
  • the valve element 24 is moved into the second position closing the flow cross-section of the second exhaust-gas guide lines 16b.
  • the exhaust gas flow guide device 12 additionally comprises a valve seat element 25, which is pressed into the second exhaust gas guide line 16b.
  • the first exhaust gas guide line 16a and the third exhaust gas guide line 16c which can be coupled upstream with the exhaust gas outlet of the first turbine 22a and opens into the second exhaust gas guide line 16b.
  • the exhaust gas flow guide device 12 further comprises a fourth exhaust gas guide line 16d, which is coupled upstream of the second exhaust gas guide line 16b and can be coupled downstream with an exhaust gas inlet of a charge pressure control system 32 (see FIG. 4) of the internal combustion engine designed as a wastegate. This ensures that with particularly high amounts of exhaust gas, a part of the exhaust gas is conducted past both exhaust gas turbochargers 14a, 14b and these are reliably protected from damage.
  • FIG. 4 shows a schematic and partial perspective view of the exhaust gas flow guide device 12 shown in FIG. 3, with the first exhaust gas guide line 16a being coupled to the turbine 22a of the first exhaust gas turbocharger 14a and the second exhaust gas guide line 16b being connected to the turbine 22b of the second exhaust gas turbocharger 14b.
  • the fourth exhaust duct 16d is coupled to the wastegate control system 32 formed as a wastegate.
  • FIG. 5 shows a schematic sectional view of FIG
  • the flap element designed as a valve element 24 is shown both in the first, the flow cross section of the second exhaust gas guide line 16b released position and in the second, the flow cross-section closing position.
  • the exhaust gas flow guiding device 12 comprises a fundamentally optional receiving region 34, in which the valve element 24 can be completely received in the first position in order to provide additional flow optimization achieve.
  • the valve seat element 25 which serves for improved sealing.

Abstract

Die Erfindung betrifft eine Abgasstromführungseinrichtung zur Anordnung in einem Abgastrakt (10) einer Brennkraftmaschine eines Kraftfahrzeugs, insbesondere eines Lastkraftwagens, mit einer ersten Abgasführungsleitung (16a), die stromauf mit dem Abgastrakt (10) und stromab mit einem Abgaseintritt einer Turbine (22a) eines ersten Abgasturboladers (14a) koppelbar ist, einer zweiten Abgasführungsleitung (16b), die stromauf mit dem Abgastrakt (10) und stromab mit einem Abgaseintritt einer Turbine (22b) eines zweiten Abgasturboladers (14b) koppelbar ist und einem Ventilelement (24), welches zum Verändern eines Strömungsquerschnitts wenigstens einer der Abgasführungsleitungen (16b) bewegbar an der Abgasstromführungseinrichtung (12) gelagert ist. Die Erfindung betrifft weiterhin eine Brennkraftmaschine für ein Kraftfahrzeug, insbesondere einen Lastkraftwagen.

Description

Abgasstromführungseinrichtung und Brennkraftmaschine mit einer Abgässtromführungseinrichtung
Die Erfindung betrifft eine Abgasstromführungseinrichtung zur Anordnung in einem Abgastrakt einer Brennkraftmaschine eines Kraftfahrzeugs, insbesondere eines Lastkraftwagens. Die Erfindung betrifft weiterhin eine Brennkraftmaschine der im Oberbegriff des Patentanspruchs 7 angegebenen Art.
Aus dem Kraftfahrzeugserienbau sind Brennkraftmaschinen, insbesondere für Lastkraftwagen, bekannt, welche einen Abgastrakt umfassen, innerhalb welchem eine Turbine eines ersten Abgasturboladers sowie eine Turbine eines zweiten Abgasturboladers angeordnet sind. Innerhalb der Turbinen der Abgasturbolader sind Turbinenräder angeordnet, welche mit dem durch den Abgastrakt führbaren Abgasstrom der Brennkraftmaschine beaufschlagt und in Rotation versetzt werden können, um über mit Hilfe von Wellen zugeordnete Verdichterräder im Ansaugtrakt der Brennkraftmaschine anzutreiben. Die Verdichterräder liefern somit eine vorverdichtete Frischgasladung an die Brennkraftmaschine, so dass dem bzw. den Zylindern der Brennkraftmaschine eine entsprechend größere Kraftstoffmenge zugeführt und die Leistung der Brennkraftmaschine entsprechend gesteigert werden kann. Um die Verteilung des Abgasstroms zwischen den beiden Turbinen steuern zu können, weist üblicherweise wenigstens ein Abgasturbolader eine zusätzliche Klappe auf, mittels welcher die auf das betreffende Turbinenrad zu leitende Abgasmenge veränderbar ist. Aufgabe der vorliegenden Erfindung ist es, eine verbesserte Strömungsführung des Abgases im Abgastrakt von Brennkraftmaschinen zu ermöglichen.
Die Aufgabe wird erfindungsgemäß durch eine Abgasstromführungseinrichtung gemäß Patentanspruch 1 sowie durch eine Brennkraftmaschine mit den Merkmalen des Patentanspruchs 7 gelöst. Vorteilhafte Ausgestaltungen mit zweckmäßigen und nichttrivialen Weiterbildungen der Erfindung sind in den jeweiligen Unteransprüchen angegeben, wobei vorteilhafte Ausgestaltungen der Abgasstromführungseinrichtung - soweit anwendbar - als vorteilhafte Ausgestaltungen der Brennkraftmaschine und umgekehrt anzusehen sind.
Eine verbesserte Strömungsführung des Abgases im Abgastrakt von Brennkraftmaschinen ist erfindungsgemäß durch eine Abgasstromführungseinrichtung zur Anordnung in einem Abgastrakt einer Brennkraftmaschine eines Kraftfahrzeugs, insbesondere eines Lastkraftwagens, ermöglicht, wobei die
Abgasstromführungseinrichtung eine erste Abgasführungsleitung, die stromauf mit dem Abgastrakt und stromab mit einem Abgaseintritt einer Turbine eines ersten Abgasturboladers koppelbar ist, eine zweite Abgasführungsleitung, die stromauf mit dem Abgastrakt und stromab mit einem Abgaseintritt einer Turbine eines zweiten Abgasturboladers koppelbar ist, sowie ein Ventilelement, welches zum Verändern eines Strömungsquerschnitts wenigstens einer der Abgasführungsleitungen bewegbar an der Abgasstromführungseinrichtung gelagert ist, umfasst. Die erfindungsgemäße Abgasstromführungseinrichtung erlaubt somit ein verlustfreies Trennen bzw. Zusammenführen der getrennt durch die Abgasführungsleitung führbaren Abgasströme, wodurch eine erhebliche Steigerung des Wirkungsgrads der zugeordneten Brennkraftmaschine erzielbar ist. Neben der verbesserten Strömungsführung können mit Hilfe der erfindungsgemäßen Abgasstromführungseinrichtung zusätzlich Druckverluste im Abgastrakt reduziert und bislang bestehende Probleme hinsichtlich der Dichtheit des Abgastrakts gelöst werden. Darüber hinaus ist es im Gegensatz zum Stand der Technik nicht erforderlich, zusätzliche Ventilelemente, Klappen oder dergleichen in den Turbinengehäusen der Abgasturbolader vorsehen zu müssen, wodurch neben der optimierten Strömungsführung zusätzlich eine vorteilhafte Reduzierung der Komplexität und damit der Kosten der Abgasturbolader erzielt wird. Die
Abgasstromführungseinrichtung kann zudem einfach und kostengünstig an die jeweilige Ausgestaltung der Brennkraftmaschine, des Abgastrakts und der Abgasturbolader angepasst werden.
In einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass das Ventilelement als Klappe ausgebildet ist. Hierdurch ist eine konstruktiv einfache Möglichkeit zum Verändern des Strömungsquerschnitts wenigstens einer der Abgasführungsleitungen ermöglicht. Dabei kann vorteilhaft vorgesehen sein, dass die Klappe an eine Querschnittgeometrie der wenigstens einen Abgasführungsleitungen angepasst ausgebildet ist. In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass dem Ventilelement ein Betätigungselement zugeordnet ist, mittels welchem das Ventilelement in Abhängigkeit eines Betriebszustands der Brennkraftmaschine zum Verändern des Strömungsquerschnitts wenigstens einer der Abgasführungsleitungen bewegbar ist. Hierdurch kann der betreffende Strömungsquerschnitt optimal an den jeweiligen Betriebszustand angepasst werden, so dass Turbinen der Abgasturbolader optimal mit den durch die Abgasführungsleitungen führbaren Abgasströmen beaufschlagt werden können und eine zusätzliche Erhöhung des Wirkungsgrads der Brennkraftmaschine erzielt wird.
Weitere Vorteile ergeben sich, indem das Ventilelement zwischen einer ersten, den Strömungsquerschnitt wenigstens einer der Abgasführungsleitungen zumindest weitgehend freigegeben Stellung und einer zweiten, den Strömungsquerschnitt wenigstens einer der Abgasführungsleitungen zumindest weitgehend verschließenden Stellung bewegbar, insbesondere verschwenkbar ist. Hierdurch kann die jeweils zugeordnete Turbine bzw. der Abgasturbolader situationsabhängig aktiviert oder deaktiviert werden, so dass unterschiedliche Lastbereiche der Brennkraftmaschine optimal bedient werden können.
In weiterer Ausgestaltung der Erfindung ist eine dritte Abgasführungsleitung vorgesehen, die stromauf mit einem Abgasaustritt der Turbine wenigstens eines Abgasturboladers koppelbar und stromab mit der ersten und/oder der zweiten Abgasführungsleitung gekoppelt ist. Auf diese Weise können die beiden Turbinen der Abgasturbolader seriell mit Abgas durchströmt werden, wodurch eine optimale Ausnutzung der Abgasenergie und eine entsprechende Optimierung des Wirkungsgrads der Brennkraftmaschine gegeben ist.
Weitere Vorteile ergeben sich, indem eine vierte Abgasführungsleitung vorgesehen ist, die stromauf mit der ersten und/oder der zweiten Abgasführungsleitung gekoppelt und stromab mit einem Abgaseintritt eines Ladedruckregelsystems, insbesondere einem Wastegate, der Brennkraftmaschine koppelbar ist. Auf diese Weise kann insbesondere bei hohen Motordrehzahlen bzw. großen Abgasmengen eine Beschädigung der Brennkraftmaschine durch zu hohe Ladedrücke sowie eine Beschädigung der betreffenden Turbine durch unzulässig hohe Drehzahlen des Turbinenrads zuverlässig und strömungsoptimiert verhindert werden. Ein weiterer Aspekt der Erfindung betrifft eine Brennkraftmaschine für ein Kraftfahrzeug, wobei eine verbesserte Strömungsführung des Abgases im Abgastrakt der Brennkraftmaschine erfindungsgemäß dadurch ermöglicht ist, dass der Abgastrakt eine Abgasstromführungseinrichtung gemäß einem der vorhergehenden Ausführungsbeispiele umfasst, welche stromauf der ersten und der zweiten Turbine angeordnet ist. Auf diese Weise wird neben der verbesserten Strömungsführung eine verbesserte Dichtheit des Abgastrakts und eine damit verbundene Reduzierung des Druckverlustes sichergestellt, so dass der Wirkungsgrad der Brennkraftmaschine erheblich gesteigert wird. Weiterhin ist es im Gegensatz zum Stand der Technik nicht erforderlich, zusätzliche Klappen oder dergleichen in den Turbinengehäusen der Abgasturbolader vorsehen zu müssen, wodurch eine Vereinfachung der Gehäusegeometrien der Abgasturbolader erzielt wird.
Dabei hat es sich als vorteilhaft gezeigt, dass der erste Abgasturbolader als Hochdruck- Turbolader und/oder der zweite Abgasturbolader als Niederdruck-Turbolader ausgebildet ist. Hierdurch können unterschiedliche Betriebszustände der Brennkraftmaschine optimal bedient und der Wirkungsgrad der Brennkraftmaschine entsprechend weiter optimiert werden.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass der erste und/oder der zweite Abgasturbolader ein Ladedruckregelsystem umfasst, mittels welchem das Ventilelement der Abgasstromführungseinrichtung in Abhängigkeit eines Betriebszustands der Brennkraftmaschine zum Verändern des Strömungsquerschnitts wenigstens einer der Abgasführungsleitungen betätigbar ist. Das Ladedruckregelsystem kann dabei beispielsweise mechanisch, pneumatisch und/oder elektronisch ausgebildet sein. Auf diese Weise können die Strömungsführung des Abgases im Abgastrakt optimal an den jeweiligen Betriebszustand der Brennkraftmaschine angepasst und die Brennkraftmaschine mit optimalem Wirkungsgrad betrieben werden.
Dabei hat es sich in weiterer Ausgestaltung als vorteilhaft gezeigt, wenn die erste und/oder die zweite Abgasführungsleitung der Abgasstromführungseinrichtung mit einem Abgaskrümmer der Brennkraftmaschine gekoppelt ist. Hierdurch ist eine besonders vorteilhafte Strömungsführung bei geringem Bauraumbedarf, hoher Dichtheit und entsprechend geringen Strömungsverlusten sichergestellt.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich anhand der nachfolgenden Beschreibung von Ausführungsbeispielen sowie anhand der Zeichnungen, in welchen gleiche oder funktionsgleiche Elemente mit identischen Bezugszeichen versehen sind. Dabei zeigen:
Fig. 1 eine schematische und ausschnittsweise Perspektivansicht eines
Ausführungsbeispiels eines Abgastrakts einer Brennkraftmaschine mit einer Abgasstromführungseinrichtung und zwei Abgasturboladern;
Fig. 2 eine schematische Perspektivansicht der in Fig. 1 gezeigten
Abgasstromführungseinrichtung;
Fig. 3 eine schematische und teiltransparente Perspektivansicht der
Abgasstromführungseinrichtung gemäß einem weiteren Ausführungsbeispiel;
Fig. 4 eine schematische und ausschnittsweise Perspektivansicht der in Fig. 3 gezeigten Abgasstromführungseinrichtung, wobei eine erste Abgasführungsleitung mit einer Turbine eines ersten und eine zweite Abgasführungsleitung mit einer Turbine eines zweiten Abgasturboladers gekoppelt sind; und
Fig. 5 eine schematische Schnittansicht der Abgasstromführungseinrichtung entlang der in Fig. 4 gezeigten Schnittebene V-V.
Fig. 1 zeigt eine schematische und ausschnittsweise Perspektivansicht eines Ausführungsbeispiels eines Abgastrakts 10 einer Brennkraftmaschine (nicht dargestellt) eines Kraftfahrzeugs, insbesondere eines Lastkraftwagens, mit einer Abgasstromführungseinrichtung 12 und zwei Abgasturboladern 14a, 14b. Die Brennkraftmaschine kann dabei grundsätzlich als Ottomotor, als Dieselmotor oder als sogenannter "Diesotto"-Motor ausgebildet sein. Die Abgasstromführungseinrichtung 12 wird im Folgenden in Zusammenschau mit Fig. 2 erläutert werden, welche eine schematische Perspektivansicht der in Fig. 1 gezeigten Abgasstromführungseinrichtung 12 zeigt. Die Abgasstromführungseinrichtung 12 umfasst eine erste Abgasführungsleitung 16a, die über einen Flansch 18a stromauf mit einem Abgaskrümmer 20 und stromab mit einem Abgaseintritt einer Turbine 22a des ersten Abgasturboladers 14a gekoppelt ist. Die Abgasstromführungseinrichtung 12 umfasst weiterhin eine zweite Abgasführungsleitung 16b, die stromauf mit dem Abgaskrümmer 20 und stromab mit einem Abgaseintritt einer Turbine 22b des zweiten Abgasturboladers 14b gekoppelt ist. Der erste Abgasturbolader 14a ist dabei als Hochdruck-Turbolader und der zweite Abgasturbolader 14b als Niederdruck-Turbolader ausgebildet. Zur Strömungsführung des Abgases weist die Abgasstromführungseinrichtung 12 ein als Klappe ausgebildetes Ventilelement 24 (s. Fig. 3) auf, welches zum Verändern eines Strömungsquerschnitts der zweiten Abgasführungsleitung 16b verschwenkbar in der Abgasstromführungseinrichtung 12 gelagert ist. Dem Ventilelement 24 ist dabei ein Betätigungselement 26 zugeordnet, mittels welchem das Ventilelement 24 in Abhängigkeit eines Betriebszustands der Brennkraftmaschine zum Verändern des Strömungsquerschnitts der Abgasführungsleitung 16b zwischen einer ersten, den Strömungsquerschnitt freigegeben Stellung und einer zweiten, den Strömungsquerschnitt verschließenden Stellung verschwenkt wird. Das Betätigungselement 26 wird hierzu seinerseits über ein Steuergestänge 28 mit einem Ladedruckregelsystem 30 des ersten Abgasturboladers 14a gekoppelt, welches beim Überschreiten eines vorbestimmten Abgasdrucks das Ventilelement 24 öffnet bzw. beim Unterschreiten dieses Abgasdrucks das Ventilelement 24 entsprechend schließt. Die Abgasstromführungseinrichtung 12 weist darüber hinaus eine dritte Abgasführungsleitung 16c auf, die stromauf mit einem Abgasaustritt der Turbine 22a des ersten Abgasturboladers 14a und stromab mit der zweiten Abgasführungsleitung 16b gekoppelt bzw. koppelbar ist. Wenn das Ventilelement 24 in die zweite, den Strömungsquerschnitt der zweiten Abgasführungsleitung 16b verschließende Stellung verschwenkt ist, werden auf diese Weise die beiden Turbinen 22a, 22b nacheinander mit Abgas durchströmt. Hierdurch können Betriebszustände der Brennkraftmaschine mit niedrigen Motordrehzahlen und entsprechend geringen Abgasmengen optimal und mit hohem Wirkungsgrad bedient werden. Ist das Ventilelement 24 hingegen in die erste, den Strömungsquerschnitt der zweiten Abgasführungsleitung 16b freigebende Stellung verschwenkt, werden die erste und die zweite Turbine 22a, 22b der beiden Abgasturbolader 14a, 14b parallel mit Abgas durchströmt. Hierdurch können insbesondere Betriebszustände der Brennkraftmaschine mit hohen Motordrehzahlen und entsprechend hohen Abgasmengen optimal bedient werden. Zudem wird hierdurch eine Beschädigung der ersten Turbine 22a bzw. der Brennkraftmaschine zuverlässig verhindert. Neben einer Optimierung der Strömungsführung können die Abgasturbolader 14a, 14b darüber hinaus konstruktiv einfacher und bauraumsparender ausgebildet und flexibler angeordnet werden.
Fig. 3 zeigt eine schematische und teiltransparente Perspektivansicht der Abgasstromführungseinrichtung 12 gemäß einem weiteren Ausführungsbeispiel. Dabei sind insbesondere das als Klappe ausgebildete Ventilelement 24 sowie das diesem zugeordnete Betätigungselement 26 erkennbar. Das Ventilelement 24 ist vorliegend in die zweite, den Strömungsquerschnitt der zweiten Abgasführungsleitungen 16b verschließende Stellung bewegt. Zur verbesserten Abdichtung umfasst die Abgasstromführungseinrichtung 12 zusätzlich ein Ventilsitzelement 25, welches in die zweite Abgasführungsleitung 16b eingepresst ist. Ebenfalls erkennbar sind die erste Abgasführungsleitung 16a sowie die dritte Abgasführungsleitung 16c, die stromauf mit dem Abgasaustritt der ersten Turbine 22a koppelbar ist und in die zweite Abgasführungsleitung 16b mündet. Bei geschlossenem Ventilelement 24 strömt somit das Abgas zunächst durch die erste Abgasführungsleitung 16a in die erste Turbine 22a, von dort aus durch die dritte Abgasführungsleitung 16c zurück in die zweite Abgasführungsleitung 16b und schließlich in die zweite Turbine 22b. Bei geöffnetem Ventilelement 24 strömt das Abgas hingegen sowohl durch die erste Abgasführungsleitung 16a in die erste Turbine 22a als auch durch die zweite Abgasführungsleitung 16b in die zweite Turbine 22b. Die Abgasstromführungseinrichtung 12 umfasst vorliegend weiterhin eine vierte Abgasführungsleitung 16d, die stromauf mit der zweiten Abgasführungsleitung 16b gekoppelt ist bzw. in diese mündet und stromab mit einem Abgaseintritt eines als Wastegate ausgebildete Ladedruckregelsystems 32 (s. Fig. 4) der Brennkraftmaschine koppelbar ist. Hierdurch wird sichergestellt, dass bei besonders hohen Abgasmengen ein Teil des Abgases an beiden Abgasturbolader 14a, 14b vorbeigeleitet wird und diese zuverlässig vor Beschädigung geschützt werden.
Fig. 4 zeigt zur weiteren Verdeutlichung eine schematische und ausschnittsweise Perspektivansicht der in Fig. 3 gezeigten Abgasstromführungseinrichtung 12, wobei die erste Abgasführungsleitung 16a mit der Turbine 22a des ersten Abgasturboladers 14a und die zweite Abgasführungsleitung 16b mit der Turbine 22b des zweiten Abgasturboladers 14b gekoppelt sind. Zusätzlich ist die vierte Abgasführungsleitung 16d mit dem als Wastegate ausgebildeten Ladedruckregelsystem 32 gekoppelt.
Fig. 5 zeigt schließlich eine schematische Schnittansicht der
Abgasstromführungseinrichtung 12 entlang der in Fig. 4 gezeigten Schnittebene V-V. Dabei ist das als Klappe ausgebildete Ventilelement 24 sowohl in der ersten, den Strömungsquerschnitt der zweiten Abgasführungsleitung 16b freigegeben Stellung als auch in der zweiten, den Strömungsquerschnitt verschließenden Stellung gezeigt. Hierbei ist zudem gut erkennbar, dass die Abgasstromführungseinrichtung 12 einen grundsätzlich optionalen Aufnahmebereich 34 umfasst, in welchen das Ventilelement 24 in der ersten Stellung vollständig aufnehmbar ist, um eine zusätzliche Strömungsoptimierung zu erzielen. Ebenfalls erkennbar ist das zur verbesserten Abdichtung dienende Ventilsitzelement 25.

Claims

Patentansprüche
1. Abgasstromführungseinrichtung zur Anordnung in einem Abgastrakt (10) einer Brennkraftmaschine eines Kraftfahrzeugs, insbesondere eines Lastkraftwagens, mit: einer ersten Abgasführungsleitung (16a), die stromauf mit dem Abgastrakt (10) und stromab mit einem Abgaseintritt einer Turbine (22a) eines ersten
Abgasturboladers (14a) koppelbar ist; einer zweiten Abgasführungsleitung (16b), die stromauf mit dem Abgastrakt
(10) und stromab mit einem Abgaseintritt einer Turbine (22b) eines zweiten
Abgasturboladers (14b) koppelbar ist; und einem Ventilelement (24), welches zum Verändern eines
Strömungsquerschnitts wenigstens einer der Abgasführungsleitungen (16b) bewegbar an der Abgasstromführungseinrichtung (12) gelagert ist.
2. Abgasstromführungseinrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass das Ventilelement (24) als Klappe ausgebildet ist.
3. Abgasstromführungseinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass dem Ventilelement (24) ein Betätigungselement (26) zugeordnet ist, mittels welchem das Ventilelement (24) in Abhängigkeit eines Betriebszustands der Brennkraftmaschine zum Verändern des Strömungsquerschnitts wenigstens einer der Abgasführungsleitungen (16b) bewegbar ist.
4. Abgasstromführungseinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Ventilelement (24) zwischen einer ersten, den Strömungsquerschnitt wenigstens einer der Abgasführungsleitungen (16b) zumindest weitgehend freigegeben Stellung und einer zweiten, den Strömungsquerschnitt wenigstens einer der Abgasführungsleitungen (16b) zumindest weitgehend verschließenden Stellung bewegbar, insbesondere verschwenkbar ist.
5. Abgasstromführungseinrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine dritte Abgasführungsleitung (16c) vorgesehen ist, die stromauf mit einem Abgasaustritt der Turbine (22a) wenigstens eines Abgasturboladers (14a) koppelbar und stromab mit der ersten und/oder der zweiten Abgasführungsleitung (16a, 16b) gekoppelt ist.
6. Abgasstromführungseinrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass eine vierte Abgasführungsleitung (16d) vorgesehen ist, die stromauf mit der ersten und/oder der zweiten Abgasführungsleitung (16a, 16b) gekoppelt und stromab mit einem Abgaseintritt eines Ladedruckregelsystems (32), insbesondere einem Wastegate, der Brennkraftmaschine koppelbar ist.
7. Brennkraftmaschine für ein Kraftfahrzeug, insbesondere einen Lastkraftwagen, mit einem Abgastrakt (10), welcher eine Turbine (22a) eines ersten Abgasturboladers (14a) sowie eine Turbine (22b) eines zweiten Abgasturboladers (14b) umfasst, dadurch gekennzeichnet, dass der Abgastrakt (10) eine Abgasstromführungseinrichtung (12) gemäß einem der Ansprüche 1 bis 6 umfasst, welche stromauf der ersten und der zweiten Turbine (14a, 14b) angeordnet ist.
8. Brennkraftmaschine nach Anspruch 7, dadurch gekennzeichnet, dass der erste Abgasturbolader (14a) als Hochdruck-Turbolader und/oder der zweite Abgasturbolader (14b) als Niederdruck-Turbolader ausgebildet ist.
9. Brennkraftmaschine nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass der erste und/oder der zweite Abgasturbolader (14a, 14b) ein Ladedruckregelsystem (30) umfasst, mittels welchem das Ventilelement (24) der Abgasstromführungseinrichtung (12) in Abhängigkeit eines Betriebszustands der Brennkraftmaschine zum Verändern des Strömungsquerschnitts wenigstens einer der Abgasführungsleitungen (16b) betätigbar ist.
10. Brennkraftmaschine nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die erste und/oder die zweite Abgasführungsleitung (16a, 16b) der Abgasstromführungseinrichtung (12) mit einem Abgaskrümmer (20) der Brennkraftmaschine gekoppelt ist.
PCT/EP2009/001833 2008-04-25 2009-03-13 Abgasstromführungseinrichtung und brennkraftmaschine mit einer abgasstromführungseinrichtung WO2009129894A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008020745A DE102008020745A1 (de) 2008-04-25 2008-04-25 Abgasstromführungseinrichtung und Brennkraftmaschine mit einer Abgasstromführungseinrichtung
DE102008020745.4 2008-04-25

Publications (1)

Publication Number Publication Date
WO2009129894A1 true WO2009129894A1 (de) 2009-10-29

Family

ID=40679548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/001833 WO2009129894A1 (de) 2008-04-25 2009-03-13 Abgasstromführungseinrichtung und brennkraftmaschine mit einer abgasstromführungseinrichtung

Country Status (2)

Country Link
DE (1) DE102008020745A1 (de)
WO (1) WO2009129894A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8499559B2 (en) 2006-04-05 2013-08-06 GM Global Technology Operations LLC Two-stage turbo-charger engine system
EP2496807A4 (de) * 2009-11-03 2017-07-26 Honeywell International Inc. Turbolader mit ringförmigem drehumleitungsventil für eine turbine
US9822712B2 (en) 2011-11-10 2017-11-21 Ford Global Technologies, Llc Four-cylinder engine with two deactivatable cylinders

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009052167A1 (de) * 2009-11-06 2011-05-12 Mtu Friedrichshafen Gmbh Rohranordnung
EP2626531A1 (de) * 2012-02-08 2013-08-14 Ford Global Technologies, LLC Mehrzylinder-Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Mehrzylinder-Brennkraftmaschine
DE102016223730A1 (de) * 2016-11-30 2018-05-30 Bayerische Motoren Werke Aktiengesellschaft Antriebssystem für ein Kraftfahrzeug sowie Kraftfahrzeug mit dem Antriebssystem
DE102017200221A1 (de) * 2017-01-09 2018-07-12 Bayerische Motoren Werke Aktiengesellschaft Abgaskrümmer für eine Verbrennungskraftmaschine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2773348A (en) * 1952-03-27 1956-12-11 Nordberg Manufacturing Co Turbo-charger system, involving plural turbine driven superchargers
JPH02153226A (ja) * 1988-12-05 1990-06-12 Mazda Motor Corp エンジンの過給装置
US5083543A (en) * 1990-02-05 1992-01-28 Mazda Motor Corporation Engine control system
JPH04164123A (ja) * 1990-10-24 1992-06-09 Fuji Heavy Ind Ltd 自動車用エンジンの2段過給装置
DE4434777C1 (de) * 1994-09-29 1995-09-07 Mailaender Fa J G Aufgeladener Mehrzylinder-Dieselmotor
JPH09324643A (ja) * 1996-06-10 1997-12-16 Yanmar Diesel Engine Co Ltd 内燃機関の排気系構造
DE102005008657A1 (de) * 2005-02-25 2006-08-31 Daimlerchrysler Ag Motorbremsverfahren für eine Brennkraftmaschine mit zwei in Reihe geschalteten Abgasturboladern
EP1843019A1 (de) * 2006-04-05 2007-10-10 GM Global Technology Operations, Inc. Zweistufiger Turbolader für Brennkraftmaschine
WO2009010679A1 (fr) * 2007-07-12 2009-01-22 Renault S.A.S Agencement pour un moteur a combustion interne comportant deux turbocompresseurs
WO2009056214A1 (de) * 2007-11-02 2009-05-07 Daimler Ag Brennkraftmaschine mit einem abgasturbolader

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2773348A (en) * 1952-03-27 1956-12-11 Nordberg Manufacturing Co Turbo-charger system, involving plural turbine driven superchargers
JPH02153226A (ja) * 1988-12-05 1990-06-12 Mazda Motor Corp エンジンの過給装置
US5083543A (en) * 1990-02-05 1992-01-28 Mazda Motor Corporation Engine control system
JPH04164123A (ja) * 1990-10-24 1992-06-09 Fuji Heavy Ind Ltd 自動車用エンジンの2段過給装置
DE4434777C1 (de) * 1994-09-29 1995-09-07 Mailaender Fa J G Aufgeladener Mehrzylinder-Dieselmotor
JPH09324643A (ja) * 1996-06-10 1997-12-16 Yanmar Diesel Engine Co Ltd 内燃機関の排気系構造
DE102005008657A1 (de) * 2005-02-25 2006-08-31 Daimlerchrysler Ag Motorbremsverfahren für eine Brennkraftmaschine mit zwei in Reihe geschalteten Abgasturboladern
EP1843019A1 (de) * 2006-04-05 2007-10-10 GM Global Technology Operations, Inc. Zweistufiger Turbolader für Brennkraftmaschine
WO2009010679A1 (fr) * 2007-07-12 2009-01-22 Renault S.A.S Agencement pour un moteur a combustion interne comportant deux turbocompresseurs
WO2009056214A1 (de) * 2007-11-02 2009-05-07 Daimler Ag Brennkraftmaschine mit einem abgasturbolader

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8499559B2 (en) 2006-04-05 2013-08-06 GM Global Technology Operations LLC Two-stage turbo-charger engine system
EP2496807A4 (de) * 2009-11-03 2017-07-26 Honeywell International Inc. Turbolader mit ringförmigem drehumleitungsventil für eine turbine
EP3511545A1 (de) * 2009-11-03 2019-07-17 Garrett Transportation I Inc. Turbolader mit ringförmigem drehumleitungsventil für eine turbine
US9822712B2 (en) 2011-11-10 2017-11-21 Ford Global Technologies, Llc Four-cylinder engine with two deactivatable cylinders

Also Published As

Publication number Publication date
DE102008020745A1 (de) 2009-10-29

Similar Documents

Publication Publication Date Title
EP1718851B1 (de) Brennkraftmaschine mit zwei abgasturboladern
EP1375868B1 (de) Motorbremseinrichtung für eine turboaufgeladene Brennkraftmaschine
EP3141735B1 (de) Brennkraftmaschine mit booster
DE102008044382A1 (de) Motor mit sequentieller geteilter Reihenturboaufladung
WO2009129894A1 (de) Abgasstromführungseinrichtung und brennkraftmaschine mit einer abgasstromführungseinrichtung
DE102006019780A1 (de) Abgasturbolader in einer Brennkraftmaschine
DE102007051505A1 (de) Brennkraftmaschine mit Abgasturbolader und Ladeluftkühler
WO2010020323A1 (de) Abgasturbolader für eine brennkraftmaschine eines kraftfahrzeugs
DE102005008657A1 (de) Motorbremsverfahren für eine Brennkraftmaschine mit zwei in Reihe geschalteten Abgasturboladern
EP2634393B1 (de) Funktionsmodul mit einem Abgasturbolader und einem Abgaskrümmer
DE102005025885A1 (de) Aufladevorrichtung für eine Verbrennungskraftmaschine
EP2395224A2 (de) Kraftwagen sowie Verfahren zum Betreiben einer Verbrennungskraftmaschine
WO2010069301A2 (de) Vollvarioturbinen für abgasturbolader
EP2305991B1 (de) Brennkraftmaschine mit einem Abgasturbolader und einem Abgasrückführsystem
WO2013020632A1 (de) Verbrennungskraftmaschine für einen kraftwagen
EP2545265A1 (de) Brennkraftmaschine mit zweistufiger aufladung
EP3244035B1 (de) Verdichter, abgasturbolader und brennkraftmaschine
DE102008020049B4 (de) Brennkraftmaschine mit mehrstufiger Aufladung
DE102010020709A1 (de) Steuereinrichtung für eine turboaufgeladene Verbrennungskraftmaschine
EP1619366B1 (de) Schaltung einer Registeraufladung
DE10352712A1 (de) Mehrstufige Luftversorgungseinrichtung mit Zweistrom-Maschine
DE102011120168A1 (de) Verdichter für einen Abgasturbolader
EP2405111A1 (de) Verbrennungskraftmaschine mit einer Aufladevorrichtung zum Verdichten eines Betriebsgases
DE102011107120A1 (de) Aufladeeinrichtung für eine Verbrennungskraftmaschine
WO2009018896A1 (de) Brennkraftmaschine für ein kraftfahrzeug mit einem ersten und einem zweiten abgasturbolader

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09735087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09735087

Country of ref document: EP

Kind code of ref document: A1