WO2009125845A1 - Method for manufacturing flexible wiring board - Google Patents
Method for manufacturing flexible wiring board Download PDFInfo
- Publication number
- WO2009125845A1 WO2009125845A1 PCT/JP2009/057374 JP2009057374W WO2009125845A1 WO 2009125845 A1 WO2009125845 A1 WO 2009125845A1 JP 2009057374 W JP2009057374 W JP 2009057374W WO 2009125845 A1 WO2009125845 A1 WO 2009125845A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyimide
- flexible wiring
- wiring board
- producing
- compound
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/28—Applying non-metallic protective coatings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/42—Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
- C08G59/4246—Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof polymers with carboxylic terminal groups
- C08G59/4269—Macromolecular compounds obtained by reactions other than those involving unsaturated carbon-to-carbon bindings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1057—Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
- C08G73/106—Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/038—Macromolecular compounds which are rendered insoluble or differentially wettable
- G03F7/0387—Polyamides or polyimides
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/40—Treatment after imagewise removal, e.g. baking
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0393—Flexible materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0137—Materials
- H05K2201/0154—Polyimide
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/08—Treatments involving gases
- H05K2203/086—Using an inert gas
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/24—Reinforcing the conductive pattern
- H05K3/243—Reinforcing the conductive pattern characterised by selective plating, e.g. for finish plating of pads
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/28—Applying non-metallic protective coatings
- H05K3/285—Permanent coating compositions
- H05K3/287—Photosensitive compositions
Definitions
- the present invention relates to a method for producing a flexible wiring board having a polyimide layer formed of a polyimide composition.
- polyimide resin is easily obtained by reacting an aromatic tetracarboxylic dianhydride such as pyromellitic dianhydride and an aromatic diamine such as diaminodiphenyl ether in an aprotic polar solvent such as dimethylacetamide in an equimolar reaction.
- aromatic tetracarboxylic dianhydride such as pyromellitic dianhydride
- aromatic diamine such as diaminodiphenyl ether
- aprotic polar solvent such as dimethylacetamide
- this polyimide resin has properties such as excellent heat resistance, chemical resistance, radiation resistance, electrical insulation and mechanical properties, it is formed on a conductor such as copper foil, Widely used in various electronic devices.
- a flexible wiring board using such a polyimide resin is manufactured by the method shown in Patent Document 1 below.
- a polyimide composition obtained by polymerizing diamine and acid dianhydride in a solution is applied onto a stainless steel foil.
- a polyimide layer is formed on the stainless steel foil by heating and drying the applied polyimide composition at a temperature of 60 to 600 ° C. in an atmosphere of air, nitrogen, argon, etc., and a predetermined flexible wiring board is formed by pattern formation or plating. Is manufacturing.
- a photosensitive polyimide composition used for a flexible wiring board or the like is subjected to pattern formation by alkali development so as to have a predetermined shape on a conductor.
- a pattern can be formed by removing a predetermined portion with an alkaline solution such as sodium hydroxide or potassium hydroxide.
- the present invention provides a method for producing a flexible wiring board in which the interface between the polyimide layer and the conductor is not discolored even after the reaction between the polyimide resin and the crosslinking agent in order to prevent the polyimide layer from floating after plating.
- the purpose is to do.
- the method for producing a flexible wiring board of the present invention includes a step of preparing a polyimide composition containing a polyimide compound obtained by a reaction between an acid dianhydride and a diamine, a photosensitive agent, and a crosslinking agent. Applying the polyimide composition to a conductor circuit to form a polyimide layer; forming the polyimide layer in a predetermined pattern by exposure and alkali development; and exposing a predetermined region of the conductor circuit; After the pattern is formed, it has a step of heat-treating in an atmosphere having an oxygen concentration of 1 vol% or less to react the polyimide compound and the crosslinking agent.
- a heat treatment in which a polyimide compound constituting the polyimide layer and a crosslinking agent are reacted is performed with an oxygen concentration of 1 vol. % Atmosphere. Discoloration of the conductor generated by oxidation can be prevented not only at the exposed surface of the conductor circuit but also at the interface between the conductor and the polyimide layer by heat treatment in an extremely poor oxygen state of 1 vol% or less.
- FIG. 1 is a cross-sectional view showing a state in which a polyimide composition is applied to a conductor by the method of the present invention.
- FIG. 2 is a sectional view showing an exposed state by the method of the present invention.
- FIG. 3 is a sectional view showing a state after the alkali treatment in the method of the present invention.
- FIG. 4 is a diagram showing temporal changes in oxygen concentration and temperature.
- FIG. 5 is a photograph showing the state of the exposed copper foil surface of the flexible wiring board heated in an atmosphere having an oxygen concentration of 1 vol% or less.
- FIG. 6 is a photograph showing the state of the exposed copper foil surface of the flexible wiring board heated in an atmosphere having an oxygen concentration higher than 1 vol%.
- FIG. 7 is a photograph showing a cross section near the discoloration region of the flexible wiring board shown in FIG.
- the method for producing a flexible wiring board of the present invention is a method for preventing discoloration of the interface between the conductor and the polyimide layer by heating the conductor on which the pattern of the polyimide layer is formed in an extremely poor oxygen state.
- the polyimide composition for forming the polyimide layer in the method of the present invention comprises a polyimide compound obtained by a reaction between an acid dianhydride and a diamine, a photosensitive agent, and a crosslinking agent.
- Acid dianhydrides used to obtain the polyimide composition prepared by the method of the present invention include, for example, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride (DSDA), pyromerit Acid dianhydride (PMDA), 2,3,6,7-naphthalenetetracarboxylic dianhydride (NTCDA), 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), 3,4, 3 ′, 4′-benzophenonetetracarboxylic dianhydride (BTDA), 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride (BPDA or s-BPDA), 4,4′-oxydiphthalic anhydride Product (ODPA), 9,9-bis [4- (3,4-dicarboxyphenoxy) phenyl] fluorene dianhydride (BPF-PA), 1,2,3,4-cyclobutane Aroma
- DSDA has sulfur and oxygen atoms with high electronegativity, and the influence of these atoms extends to imide carbonyl carbon through conjugation and is susceptible to base nucleophilic attack, so it dissolves in alkali. It is considered that the property is improved, and is a preferred acid dianhydride.
- the diamine that reacts with the acid dianhydride to form a polyimide compound preferably has a hydroxyl group in the molecule in order to improve developability.
- a hydroxyl group in the molecule in order to improve developability.
- 3,3′-diamino-4,4′-dihydroxydiphenyl sulfone (BSDA), 4,4′-diamino-3,37′-biphenyldiol (HAB), 9,9-bis (3-amino-4 -Hydroxyphenyl) fluorene (BAHF) may be mentioned, but BSDA is preferred as it does not impair the alkali developability and low elasticity of the polyimide layer.
- the polyimide compound forming the polyimide composition is a polyimide compound having a relatively low elastic modulus, specifically, A polyimide compound having an elastic modulus of Young's modulus of 1 GPa or less is preferable.
- the polyimide compound having such a low elastic modulus include a polyimide compound having a siloxane structure in which silicon and oxygen are alternately bonded.
- the polyimide compound having a siloxane structure can be produced by using a monomer having a siloxane structure in which silicon and oxygen are alternately bonded to a part of the acid dianhydride component and / or the diamine component.
- the monomer having a siloxane structure is preferably contained in the range of 55 wt% or more and 72 wt% or less, and in the range of 60 wt% or more and 70 wt% or less with respect to the total weight of the acid dianhydride and diamine (total weight of all monomers). It is more preferable that it is contained.
- the weight range of the monomer having a siloxane structure is less than 55 wt% or greater than 72 wt%, the alkali developability may be deteriorated or 1 GPa as one measure of low elasticity may not be achieved. is there.
- the color change region of the conductor generated in the production of the conventional flexible wiring board is oxidized, and the color change of the conductor is considered to be caused by oxygen.
- the siloxane structure has oxygen permeability
- a monomer having a siloxane structure is used to obtain a low-elasticity polyimide compound, oxygen easily passes through the polyimide layer, and the interface between the conductor and the polyimide layer. Discoloration tends to occur.
- discoloration of the interface between the conductor and the polyimide layer can be prevented even when such a monomer having a siloxane structure that increases oxygen permeability is used.
- siloxane diamine is a siloxane diamine having a dimethylsilylene skeleton and a diphenylsilylene skeleton represented by the following structural formula 1.
- R 1 and R 2 are alkylene groups which may be substituted. Specific examples thereof include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group. Can be mentioned. Examples of the substituent include a lower alkyl group such as a methyl group and an ethyl group, and an aryl group such as a phenyl group. Of these, a trimethylene group is desirable because of the availability of raw materials. R 1 and R 2 may be the same or different from each other, but they are preferably the same because it is difficult to obtain raw materials.
- n is an integer of 0 to 20, preferably 1 to 20, more preferably an integer of 1 to 10. This is because when n is 1 or more, a diphenylsiloxane unit excellent in flame retardancy is introduced, the flame retardancy is improved as compared with the case where it is not introduced, and when it exceeds 20, the contribution to low elasticity is small. It is to become.
- a polyimide composition using a siloxane diamine having a dimethylsilylene skeleton and a diphenylsilylene skeleton gives low elasticity and flame retardancy and is suitable for a coverlay material for a flexible wiring board.
- siloxane diamines include KF-8010 having a dimethylsilylene skeleton, X-22-9409 and X-22-1660B-3 having a dimethylsilylene skeleton and a diphenylsilylene skeleton (both Shin-Etsu Chemical Co., Ltd.) ) Made).
- the polyimide compound contained in the polyimide composition is obtained by dissolving the above acid dianhydride and diamine in a solvent such as N-methyl-2-pyrrolidone (NMP), triethylene glycol dimethyl ether (triglyme), ⁇ -butyrolactone, etc.
- NMP N-methyl-2-pyrrolidone
- triglyme triethylene glycol dimethyl ether
- ⁇ -butyrolactone etc.
- the acid dianhydride and the diamine in the solvent are subjected to addition polymerization, and then formed by a cyclization dehydration reaction (heat imidization in a solution or chemical imidation with a dehydrating agent).
- Add an azeotropic agent such as toluene or xylene into the polyimide precursor and heat and stir to 180 ° C.
- a tertiary amine such as triethylamine, a basic catalyst such as aromatic isoquinoline, pyridine, or an acid catalyst such as benzoic acid or parahydroxybenzoic acid may be added as a catalyst for imidation.
- a tertiary amine such as triethylamine
- a basic catalyst such as aromatic isoquinoline, pyridine
- an acid catalyst such as benzoic acid or parahydroxybenzoic acid
- the polyamic acid can also be ring-closed by a chemical imidizing agent such as acetic anhydride / pyridine or dicyclohexylcarbodiimide which is a dehydrating cyclization reagent.
- the polyimide composition contains a photosensitizer. By containing this photosensitizer, photosensitivity can be imparted to the formed polyimide composition.
- the photosensitizer include a diazonaphthoquinone compound.
- the polyimide composition containing the diazonaphthoquinone compound changes its alkali solubility upon exposure. Before exposure, the solubility in an alkaline aqueous solution is low. On the other hand, after the exposure, the molecular structure of the diazonaphthoquinone compound changes to produce ketene, which reacts with an alkaline aqueous solution to produce carboxylic acid. The produced carboxylic acid is further reacted with water and dissolved. Therefore, the solubility in alkaline aqueous solution becomes high by irradiating light.
- the polyimide compound When the polyimide compound has a hydroxyl group and the polyimide composition contains a diazonaphthoquinone compound as a photosensitizer, the hydroxyl group of the polyimide compound and the diazonaphthoquinone compound are hydrogen bonded.
- the polyimide compound originally has a relatively high alkali solubility due to having a hydroxyl group, but the alkali solubility is lowered because the hydroxyl group that is easily dissolved in alkali is protected by hydrogen bonding with the diazonaphthoquinone compound.
- the molecular structure of the diazonaphthoquinone compound is changed as described above, and the alkali solubility of the polyimide compound is expressed. Therefore, by containing a diazonaphthoquinone compound as a photosensitizer, sodium hydroxide (NaOH), potassium hydroxide, sodium carbonate, sodium bicarbonate, tetramethylammonium hydroxide (TMAH), etc. after exposure to the flexible wiring board.
- the pattern can be formed with an alkaline aqueous solution.
- the diazonaphthoquinone compound of the photosensitizer is not particularly limited as long as it is a compound having a diazonaphthoquinone skeleton.
- 2,3,4-trihydroxybenzophenone-o-naphthoquinonediazide-4-sulfonic acid ester examples include 2,3,4-trihydroxybenzophenone-o-naphthoquinonediazide-5-sulfonic acid ester, 2,3,4-trihydroxybenzophenone-o-benzoquinonediazide-4-sulfonic acid ester, and the like.
- the polyimide composition contains a crosslinking agent having a plurality of epoxy groups.
- This crosslinking agent can cause an addition reaction at a low temperature of 200 ° C. or less with a polyimide compound after alkali development with an alkali solution, thereby crosslinking the polyimide compound. If it is a functional group having a plurality of epoxy groups, it can be reacted with a polyimide compound having an amino group or a carboxyl group at a relatively low temperature, and even when used for a flexible wiring board, it is less affected by heating to other members. can do. Moreover, the adhesiveness between conductors, such as copper foil, and a polyimide can be improved with this crosslinking agent.
- the amount of the polyimide composition to contain the crosslinking agent is preferably 20 parts by weight or less with respect to 100 parts by weight of the polyimide compound.
- the crosslinking agent is contained in an amount of 20 parts by weight or more, the stability of the polyimide composition is deteriorated and the viscosity is increased, so that the handling of the polyimide composition is deteriorated.
- the epoxy group may be hydrolyzed by an aqueous alkali solution, and therefore it is desirable to add 1 part by weight or more in order to maintain the crosslinking effect.
- the crosslinking agent having an epoxy group is not particularly limited as long as it has good compatibility with the polyimide composition to be formed, and examples thereof include the following compounds.
- the crosslinking agent include bis-F type epoxy compounds, bis-A type epoxy compounds, alicyclic epoxy compounds such as 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate, sorbitol polyglycidyl ether, poly Glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, glycerol polyglycidyl ether, trimethylolpropane polyglycidyl ether, resorcinol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether , Hydrogenated bisphenol A diglycidy
- the polyimide composition may contain an oxazine compound.
- the oxazine compound In the oxazine compound, the oxazine skeleton in the molecule is opened by heat and cured.
- this oxazine compound acts as a crosslinking agent, and the flame retardancy and adhesion to a metal such as copper can be improved in the polyimide composition.
- the addition amount may be as small as 5 parts by weight or less with respect to 100 parts by weight of the polyimide compound, for example.
- oxazine compound examples include bisphenol F type benzoxazine (6,6 ′-(1-methylidene) bis [3,4-dihydro-3-phenyl-2H-1,3-benzoxazine]), bisphenol S type Benzoxazine (6,6′-sulfonylbis [3,4-dihydro-3-phenyl-2H-1,3-benzoxazine]), bisphenol A type benzoxazine (the following structural formula 2), phenol novolac type benzoxazine ( The following structural formula 3) and the like can be mentioned.
- bisphenol F type benzoxazine (6,6 ′-(1-methylidene) bis [3,4-dihydro-3-phenyl-2H-1,3-benzoxazine]
- bisphenol S type Benzoxazine (6,6′-sulfonylbis [3,4-dihydro-3-phenyl-2H-1,3-benzox
- the polyimide composition may contain a rust preventive agent.
- rust preventive examples include 2,3-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] propionohydrazide (CDA-), which is a hydrazide metal deactivator. 10), and when used for a flexible wiring board, resin deterioration of the polyimide composition in contact with the metal can be prevented.
- Examples of rust preventives other than CDA-10 include decamethylenecarboxylic acid disalicyloyl hydrazide as hydrazide-based compounds, and 3- (N-salicyloyl) amino-1,2,4-triazole as triazole-based compounds. However, it is not limited to these.
- the flexible wiring board manufactured by the method of the present invention covers the conductor 4 such as copper formed on the substrate 2 so as to have a predetermined pattern by a known coating method.
- a polyimide composition containing such a compound is applied and dried to evaporate the solvent to form the polyimide layer 3 (uncured state).
- a mask layer 5 that exposes light to a portion to be removed of the polyimide layer 3 is provided and exposed.
- the structure of the photosensitive agent in the polyimide layer 3 is changed to enhance the alkali solubility of the exposed portion.
- the exposed portion is removed to form a predetermined pattern (positive pattern) as shown in FIG. 3, and a part of the conductor circuit on the substrate 2 is exposed.
- the oxygen concentration around the flexible wiring board 1 to be heated by an inert gas such as nitrogen or helium is in an extremely poor oxygen state of 1 vol% or less, preferably 0.1 vol% or less. To do.
- This oxygen concentration can be measured with a galvanic cell type combustion exhaust gas analyzer.
- the polyimide compound is crosslinked by the crosslinking agent in the polyimide layer 3 by heating to a temperature at which the crosslinking agent in the polyimide layer 3 reacts with the polyimide compound. It becomes a cured state.
- the cured state refers to a state in which the crosslinking agent is crosslinked by heating the polyimide layer
- the uncured state refers to a state where the cured state has not yet been reached.
- an inert gas such as nitrogen gas has been introduced into the heating chamber of the flexible wiring board to reduce the oxygen concentration in the chamber, but in order to reduce the oxygen concentration in the chamber to 1 vol% or less. Requires an introduction amount of several times the introduction amount of the conventional inert gas.
- the flow rate of inert gas such as nitrogen is preferably 8.5 L / min for 30 minutes or longer, more preferably 12 L / min for 30 minutes or longer.
- a predetermined pattern can be formed by alkali development after exposure, and the exposed conductor can be prevented from being discolored by oxidation.
- the exposed surface of the conductor, the conductor and the polyimide can be reduced by setting the oxygen concentration to 1 vol% or less. Discoloration with the interface with the layer can be prevented.
- Example 1 Preparation of polyimide composition
- Example 1 137.47 g (100.48 mmol) of siloxane diamine, X-22-9409 (manufactured by Shin-Etsu Chemical Co., Ltd.), 16.41 g (purity 99.5%, 58.26 mmol) of BSDA was added to Dean-Stark. The solution was put into a 500 ml four-necked separable flask attached and completely dissolved with 238.5 g of N-methylpyrodon under a nitrogen atmosphere. Thereafter, 57.62 g (purity 99.7%, 160.33 mmol) of DSDA was added, and after stirring at 80 ° C.
- Example 2 143.34 g (104.78 mmol) of siloxane diamine X-22-9409 (manufactured by Shin-Etsu Chemical Co., Ltd.), 18.71 g (purity 99.5%, 66.41 mmol) of BSDA was added to Dean-Stark. The flask was put into a 500 ml four-necked separable flask, and completely dissolved with 229.5 g of N-methylpyrodon under a nitrogen atmosphere. Then, 58.45 g (purity 99.7%, 162.65 mmol) of DSDA was added and stirred at 80 ° C.
- Example 3 106.41 g (77.78 mmol) of siloxane diamine X-22-9409 (manufactured by Shin-Etsu Chemical Co., Ltd.), 25.72 g (purity 99.5%, 91.30 mmol) of BSDA was added to Dean-Stark. The solution was put into a 500 ml four-necked separable flask attached and completely dissolved with 256.5 g of N-methylpyrodon under a nitrogen atmosphere. Thereafter, 61.37 g (purity 99.7%, 170.77 mmol) of DSDA was added, and the mixture was stirred at 80 ° C. for 2 hours. Then, 70 ml of an azeotropic agent toluene for removing imidized condensed water was added to the oil bath. The mixture was stirred and refluxed at 180 ° C. for 5 hours to obtain the desired product.
- siloxane diamine X-22-9409 manufactured by Shin-Ets
- Example 4 10 parts by weight of diazonaphthoquinone photosensitizer (4NT-300, manufactured by Toyo Gosei Co., Ltd.) and epoxy resin (jER807, Japan Epoxy) with respect to 100 parts by weight of the solid content of the polyimide compound solution obtained in Example 1 5 parts by weight of Resin Co., Ltd. was added to complete the target polyimide composition.
- diazonaphthoquinone photosensitizer 4NT-300, manufactured by Toyo Gosei Co., Ltd.
- epoxy resin jER807, Japan Epoxy
- an ultrahigh pressure mercury lamp is exposed with a cumulative light amount of 2500 mJ / cm 2 through a positive mask for resolution evaluation (300 ⁇ m / 300 ⁇ m line & space pattern), and immersed in an aqueous solution of sodium hydroxide 3 wt% at 40 ° C., Then, alkali development was performed by immersing in warm water at 40 ° C. for 2 minutes. Thereafter, it was thoroughly washed with distilled water and dried to complete a series of development processes. The evaluation of developability was evaluated based on the minimum immersion time when the 300 ⁇ m / 300 ⁇ m line & space was opened and the open state of the line & space when the immersion time was 60 seconds. The results are shown in Table 1.
- the polyimide compositions of Examples 1 to 4 and Comparative Example 1 or Comparative Example 2 can all be alkali-developed within 40 seconds as shown in Table 1.
- Example 4 when the immersion time was up to 60 seconds, workability was poor because an opening outside the exposed area was seen. As a result of examining the immersion time, it was found that it is desirable to be within 40 seconds.
- Example 1 (Confirmation of discoloration of opening) The polyimide composition of Example 1 was applied to one side of a copper foil that had been subjected to a chemical polishing treatment corresponding to 0.3 ⁇ m in advance so as to have a thickness of 10 ⁇ m, and dried at 80 ° C. for 10 minutes. Next, exposure is carried out with a cumulative amount of light of 2500 mJ / cm 2 of an ultra-high pressure mercury lamp through a positive mask, immersed in an aqueous solution of sodium hydroxide 3 wt% at 40 ° C., and then immersed in warm water at 40 ° C. for 2 minutes for alkali development. went.
- the copper foil is put into an inert oven DN410I (manufactured by Yamato Chemical Co., Ltd.), forced air circulation type, nitrogen gas is introduced into the chamber (volume 95L) at 15 L / min, and the chamber temperature is set to 40 C. for 30 minutes.
- the oxygen concentration in the chamber at this time was measured by a combustion exhaust gas analyzer (TESTO-325M, manufactured by Testo Co., Ltd.) and found to be 0.5 vol%.
- the temperature was raised from 40 ° C. to 200 ° C. in 14 minutes.
- the oxygen concentration in the chamber at this time was 0.1 vol% or less.
- nitrogen gas was continuously introduced, and the chamber was heated at 200 ° C.
- FIG. 4 shows the change in temperature and the change in oxygen concentration in the chamber over time.
- FIG. 4 shows the change in temperature and the change in oxygen concentration in the chamber over time. After cooling, when the copper foil taken out from the interior was visually confirmed, the exposed surface of the copper foil turned purple as shown in FIG. A cross section of this copper foil is shown in FIG. As shown in FIG.
- the oxygen concentration in the chamber As shown in FIG. 4, by changing the oxygen concentration in the chamber to 0.1 vol% or less before reaching 200 ° C. at which the crosslinking agent and the polyimide compound react, the discoloration of the copper foil, the copper foil, and the polyimide layer Discoloration at the interface between the cross-linking agent and the oxygen concentration in the chamber is higher than 1 vol%, even if it is 5 vol% or less, the oxygen concentration is lowered to a temperature lower than the reaction temperature between the crosslinking agent and the polyimide compound. As a result, it was found that the interface between the copper foil and the polyimide layer was oxidized and confirmed as a discoloration region.
- the siloxane diamine is 55 wt% or more and 72 wt% or less with respect to the total monomer weight. It is preferable that it is 60 wt% or more and 70 wt% or less.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Non-Metallic Protective Coatings For Printed Circuits (AREA)
- Epoxy Resins (AREA)
Abstract
Disclosed is a method for manufacturing a flexible wiring board. In the method, heat treatment for reacting a polyimide compound constituting a polyimide layer, on which a predetermined pattern has been formed by exposure and alkali developing treatment, with a crosslinking agent is performed under an atmosphere having an oxygen concentration of not more than 1% by volume. The heat treatment in the very low oxygen content of not more than 1% by volume can prevent a change in color in not only an exposed surface of a conductor circuit but also an interface between a conductor and the polyimide layer and can prevent the occurrence of the lifting of the polyimide layer after plating.
Description
本発明は、ポリイミド組成物により形成されたポリイミド層を有するフレキシブル配線板を製造する方法に関する。
The present invention relates to a method for producing a flexible wiring board having a polyimide layer formed of a polyimide composition.
一般にポリイミド樹脂は、無水ピロメリット酸二無水物などの芳香族テトラカルボン酸二無水物とジアミノジフェニルエーテル等の芳香族ジアミンとをジメチルアセトアミド等の非プロトン性極性溶媒中で等モル反応させて容易に得られる高重合度のポリイミド前駆体を膜などに成形し、加熱又は化学イミド化して得られる。
In general, polyimide resin is easily obtained by reacting an aromatic tetracarboxylic dianhydride such as pyromellitic dianhydride and an aromatic diamine such as diaminodiphenyl ether in an aprotic polar solvent such as dimethylacetamide in an equimolar reaction. The obtained high polymerization degree polyimide precursor is formed into a film and the like, and is obtained by heating or chemical imidization.
そして、このポリイミド樹脂は、優れた耐熱性、耐薬品性、耐放射線性、電気絶縁性、機械的性質などの性質を併せ持つことから、銅箔等の導体上に形成され、フレキシブル配線板などの種々の電子デバイスに広く利用されている。
And since this polyimide resin has properties such as excellent heat resistance, chemical resistance, radiation resistance, electrical insulation and mechanical properties, it is formed on a conductor such as copper foil, Widely used in various electronic devices.
このようなポリイミド樹脂が用いられたフレキシブル配線板は、下記特許文献1に示された方法により製造されている。まず、ジアミンと酸二無水物を溶液中で重合して得られたポリイミド組成物をステンレス箔上に塗布する。そして、塗布したポリイミド組成物を空気、窒素、アルゴンなどの雰囲気下、60~600℃の温度での加熱乾燥によってステンレス箔上にポリイミド層を形成し、パターン形成やめっきなどにより所定のフレキシブル配線板を製造している。
A flexible wiring board using such a polyimide resin is manufactured by the method shown in Patent Document 1 below. First, a polyimide composition obtained by polymerizing diamine and acid dianhydride in a solution is applied onto a stainless steel foil. A polyimide layer is formed on the stainless steel foil by heating and drying the applied polyimide composition at a temperature of 60 to 600 ° C. in an atmosphere of air, nitrogen, argon, etc., and a predetermined flexible wiring board is formed by pattern formation or plating. Is manufacturing.
フレキシブル配線板等に利用される感光性のポリイミド組成物は、導体上で所定の形状となるようにアルカリ現像によるパターン形成が行われる。例えば、水酸化ナトリウムや水酸化カリウムといったアルカリ溶液で所定の箇所を除去して、パターンを形成することができる。
A photosensitive polyimide composition used for a flexible wiring board or the like is subjected to pattern formation by alkali development so as to have a predetermined shape on a conductor. For example, a pattern can be formed by removing a predetermined portion with an alkaline solution such as sodium hydroxide or potassium hydroxide.
しかしながら、ポリイミド組成物に架橋剤を添加しておき、パターン形成後、ポリイミド層と導体との密着性を向上させるためにポリイミド樹脂と架橋剤とを反応させると、パターン形成によって導体が一部露出した状態で加熱することにより、露出した導体が酸化され、変色してしまうことがわかった。この変色は、銅箔の露出面に留まらず、ポリイミド層と導体との界面にも広がっており、この状態で無電解めっきを行うと、前処理によって変色は除去されるものの、変色が発生したポリイミド層と導体との界面に隙間が形成される。すなわちポリイミド層の浮きが発生してしまう。
However, when a cross-linking agent is added to the polyimide composition and the polyimide resin and the cross-linking agent are reacted after the pattern formation to improve the adhesion between the polyimide layer and the conductor, the conductor is partially exposed by the pattern formation. It was found that the exposed conductor is oxidized and discolored by heating in the above state. This discoloration extends not only to the exposed surface of the copper foil but also to the interface between the polyimide layer and the conductor. When electroless plating was performed in this state, discoloration occurred although pre-treatment removed the discoloration. A gap is formed at the interface between the polyimide layer and the conductor. That is, the polyimide layer is lifted.
上記特許文献1に示されたフレキシブル配線板の製造方法では、ステンレス箔上に形成されたポリイミド層を硬化・乾燥させるために不活性ガス中での加熱を行っているが、ポリイミド化合物と架橋剤とを反応させるための加熱は行っていない。したがって、ポリイミド層と導体であるステンレス箔との界面の変色に対して検討されていない。
In the method for producing a flexible wiring board disclosed in Patent Document 1, heating is performed in an inert gas in order to cure and dry a polyimide layer formed on a stainless steel foil. The heating for making it react is not performed. Therefore, the discoloration of the interface between the polyimide layer and the stainless steel foil as a conductor has not been studied.
そこで発明者は、このような課題を鑑みて鋭意研究を行った。そこで、本発明は、めっき後のポリイミド層の浮きの発生を防止するために、ポリイミド樹脂と架橋剤との反応後においてもポリイミド層と導体との界面が変色しないフレキシブル配線板の製造方法を提供することを目的とする。
Therefore, the inventor conducted diligent research in view of such problems. Therefore, the present invention provides a method for producing a flexible wiring board in which the interface between the polyimide layer and the conductor is not discolored even after the reaction between the polyimide resin and the crosslinking agent in order to prevent the polyimide layer from floating after plating. The purpose is to do.
上記課題を解決する本発明のフレキシブル配線板の製造方法は、酸二無水物とジアミンとの反応によって得られるポリイミド化合物と、感光剤と、架橋剤とを含有するポリイミド組成物を調製する工程と、上記ポリイミド組成物を導体回路に塗布してポリイミド層を形成する工程と、上記ポリイミド層を露光及びアルカリ現像処理により所定のパターンに形成すると共に、導体回路の所定領域を露出させる工程と、上記パターンが形成された後、酸素濃度が1vol%以下の雰囲気下で加熱処理してポリイミド化合物と架橋剤とを反応させる工程とを有することを特徴とする。
The method for producing a flexible wiring board of the present invention that solves the above problems includes a step of preparing a polyimide composition containing a polyimide compound obtained by a reaction between an acid dianhydride and a diamine, a photosensitive agent, and a crosslinking agent. Applying the polyimide composition to a conductor circuit to form a polyimide layer; forming the polyimide layer in a predetermined pattern by exposure and alkali development; and exposing a predetermined region of the conductor circuit; After the pattern is formed, it has a step of heat-treating in an atmosphere having an oxygen concentration of 1 vol% or less to react the polyimide compound and the crosslinking agent.
本発明のフレキシブル配線板の製造方法は、露光、アルカリ現像処理によってポリイミド層を所定のパターンに形成した後、そのポリイミド層を構成するポリイミド化合物と架橋剤とを反応させる加熱処理を、酸素濃度1vol%以下の雰囲気下で行う。酸化によって発生する導体の変色を、1vol%以下という極端な貧酸素の状態で加熱処理することで、導体回路の露出面に限らず導体とポリイミド層との界面においても防止することができる。
In the method for producing a flexible wiring board of the present invention, after a polyimide layer is formed in a predetermined pattern by exposure and alkali development treatment, a heat treatment in which a polyimide compound constituting the polyimide layer and a crosslinking agent are reacted is performed with an oxygen concentration of 1 vol. % Atmosphere. Discoloration of the conductor generated by oxidation can be prevented not only at the exposed surface of the conductor circuit but also at the interface between the conductor and the polyimide layer by heat treatment in an extremely poor oxygen state of 1 vol% or less.
図1は本発明の方法で、ポリイミド組成物を導体に塗布した状態を示す断面図である。
図2は本発明の方法で、露光した状態を示す断面図である。
図3は本発明の方法で、アルカリ処理後の状態を示す断面図である。
図4は酸素濃度と温度との時間変化を示す図である。
図5は酸素濃度が1vol%以下の雰囲気下で加熱したフレキシブル配線板の銅箔露出面の状態を示す写真である。
図6は酸素濃度が1vol%より高い雰囲気下で加熱したフレキシブル配線板の銅箔露出面の状態を示す写真である。
図7は図6に示したフレキシブル配線板の変色域付近の断面を示す写真である。 FIG. 1 is a cross-sectional view showing a state in which a polyimide composition is applied to a conductor by the method of the present invention.
FIG. 2 is a sectional view showing an exposed state by the method of the present invention.
FIG. 3 is a sectional view showing a state after the alkali treatment in the method of the present invention.
FIG. 4 is a diagram showing temporal changes in oxygen concentration and temperature.
FIG. 5 is a photograph showing the state of the exposed copper foil surface of the flexible wiring board heated in an atmosphere having an oxygen concentration of 1 vol% or less.
FIG. 6 is a photograph showing the state of the exposed copper foil surface of the flexible wiring board heated in an atmosphere having an oxygen concentration higher than 1 vol%.
FIG. 7 is a photograph showing a cross section near the discoloration region of the flexible wiring board shown in FIG.
図2は本発明の方法で、露光した状態を示す断面図である。
図3は本発明の方法で、アルカリ処理後の状態を示す断面図である。
図4は酸素濃度と温度との時間変化を示す図である。
図5は酸素濃度が1vol%以下の雰囲気下で加熱したフレキシブル配線板の銅箔露出面の状態を示す写真である。
図6は酸素濃度が1vol%より高い雰囲気下で加熱したフレキシブル配線板の銅箔露出面の状態を示す写真である。
図7は図6に示したフレキシブル配線板の変色域付近の断面を示す写真である。 FIG. 1 is a cross-sectional view showing a state in which a polyimide composition is applied to a conductor by the method of the present invention.
FIG. 2 is a sectional view showing an exposed state by the method of the present invention.
FIG. 3 is a sectional view showing a state after the alkali treatment in the method of the present invention.
FIG. 4 is a diagram showing temporal changes in oxygen concentration and temperature.
FIG. 5 is a photograph showing the state of the exposed copper foil surface of the flexible wiring board heated in an atmosphere having an oxygen concentration of 1 vol% or less.
FIG. 6 is a photograph showing the state of the exposed copper foil surface of the flexible wiring board heated in an atmosphere having an oxygen concentration higher than 1 vol%.
FIG. 7 is a photograph showing a cross section near the discoloration region of the flexible wiring board shown in FIG.
1 フレキシブル配線板
2 基材
3 ポリイミド層
4 導体
5 マスク層 DESCRIPTION OFSYMBOLS 1 Flexible wiring board 2 Base material 3 Polyimide layer 4 Conductor 5 Mask layer
2 基材
3 ポリイミド層
4 導体
5 マスク層 DESCRIPTION OF
以下、本発明のフレキシブル配線板の製造方法について説明する。なお、本発明は、以下の説明に限られるものではなく、本発明の趣旨を逸脱しない範囲において適宜変更可能である。
Hereinafter, a method for producing the flexible wiring board of the present invention will be described. Note that the present invention is not limited to the following description, and can be appropriately changed without departing from the spirit of the present invention.
本発明のフレキシブル配線板の製造方法は、ポリイミド層のパターンが形成された導体の加熱を、極端な貧酸素状態で行うことにより、導体とポリイミド層との界面の変色を防止する方法である。本発明の方法においてポリイミド層を形成するポリイミド組成物は、酸二無水物とジアミンとの反応によって得られるポリイミド化合物と、感光剤と、架橋剤とを含有してなるものである。
The method for producing a flexible wiring board of the present invention is a method for preventing discoloration of the interface between the conductor and the polyimide layer by heating the conductor on which the pattern of the polyimide layer is formed in an extremely poor oxygen state. The polyimide composition for forming the polyimide layer in the method of the present invention comprises a polyimide compound obtained by a reaction between an acid dianhydride and a diamine, a photosensitive agent, and a crosslinking agent.
本発明の方法で調製されるポリイミド組成物を得るために使用される酸二無水物は、例えば、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、ピロメリット酸二無水物(PMDA)、2,3,6,7-ナフタレンテトラカルボン酸二無水物(NTCDA)、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)、3,4,3’,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,4,3’,4’-ビフェニルテトラカルボン酸二無水物(BPDA又はs-BPDA)、4,4’-オキシジフタル酸無水物(ODPA)、9,9-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]フルオレン二無水物(BPF-PA)、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物等といった芳香族酸二無水物や脂環式酸二無水物が挙げられる。
Acid dianhydrides used to obtain the polyimide composition prepared by the method of the present invention include, for example, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride (DSDA), pyromerit Acid dianhydride (PMDA), 2,3,6,7-naphthalenetetracarboxylic dianhydride (NTCDA), 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), 3,4, 3 ′, 4′-benzophenonetetracarboxylic dianhydride (BTDA), 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride (BPDA or s-BPDA), 4,4′-oxydiphthalic anhydride Product (ODPA), 9,9-bis [4- (3,4-dicarboxyphenoxy) phenyl] fluorene dianhydride (BPF-PA), 1,2,3,4-cyclobutane Aromatic dianhydrides such as tracarboxylic dianhydride (CBDA), bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride and alicyclic An acid dianhydride is mentioned.
なかでも、DSDAは、電気陰性度が大きい硫黄原子、酸素原子を有しており、これら原子の影響が共役を介してイミドカルボニル炭素までおよび、塩基の求核攻撃を受けやすくなるため、アルカリ溶解性が向上するものであると考えられ、好ましい酸二無水物である。
Among them, DSDA has sulfur and oxygen atoms with high electronegativity, and the influence of these atoms extends to imide carbonyl carbon through conjugation and is susceptible to base nucleophilic attack, so it dissolves in alkali. It is considered that the property is improved, and is a preferred acid dianhydride.
上記酸二無水物と反応し、ポリイミド化合物を生成させるジアミンは、現像性を高めるために、分子中にヒドロキシル基を有するものが好ましい。例えば、3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルスルホン(BSDA)、4,4’-ジアミノ-3,37’-ビフェニルジオール(HAB)、9,9-ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン(BAHF)が挙げられるが、ポリイミド層のアルカリ現像性及び低弾性を損なわないものとして、BSDAの使用が好ましい。
The diamine that reacts with the acid dianhydride to form a polyimide compound preferably has a hydroxyl group in the molecule in order to improve developability. For example, 3,3′-diamino-4,4′-dihydroxydiphenyl sulfone (BSDA), 4,4′-diamino-3,37′-biphenyldiol (HAB), 9,9-bis (3-amino-4 -Hydroxyphenyl) fluorene (BAHF) may be mentioned, but BSDA is preferred as it does not impair the alkali developability and low elasticity of the polyimide layer.
本発明の方法において調製するポリイミド組成物は、フレキシブル配線板のカバーレイ材としても使用されるため、ポリイミド組成物を形成するポリイミド化合物としては、弾性率が比較的低いポリイミド化合物、具体的には、ヤング率が1GPa以下の弾性率を有するポリイミド化合物が好ましい。このような低弾性率を有するポリイミド化合物として、例えば、ケイ素と酸素とが交互に結合したシロキサン構造を有するポリイミド化合物をあげることができる。シロキサン構造を有するポリイミド化合物は、酸二無水物成分及び/又はジアミン成分の一部にケイ素と酸素とが交互に結合したシロキサン構造を有するモノマーを使用して生成することができる。このシロキサン構造を有するモノマーは、酸二無水物及びジアミンの総重量(全モノマー総重量)に対して、55wt%以上72wt%以下の範囲で含まれることが好ましく、60wt%以上70wt%以下の範囲で含まれることがより好ましい。シロキサン構造を有するモノマーの重量範囲が55wt%未満であるか、或いは72wt%よりも大きい場合は、アルカリ現像性が低下したり、低弾性の一つの目安となる1GPaを達成することができない場合がある。
Since the polyimide composition prepared in the method of the present invention is also used as a coverlay material for flexible wiring boards, the polyimide compound forming the polyimide composition is a polyimide compound having a relatively low elastic modulus, specifically, A polyimide compound having an elastic modulus of Young's modulus of 1 GPa or less is preferable. Examples of the polyimide compound having such a low elastic modulus include a polyimide compound having a siloxane structure in which silicon and oxygen are alternately bonded. The polyimide compound having a siloxane structure can be produced by using a monomer having a siloxane structure in which silicon and oxygen are alternately bonded to a part of the acid dianhydride component and / or the diamine component. The monomer having a siloxane structure is preferably contained in the range of 55 wt% or more and 72 wt% or less, and in the range of 60 wt% or more and 70 wt% or less with respect to the total weight of the acid dianhydride and diamine (total weight of all monomers). It is more preferable that it is contained. When the weight range of the monomer having a siloxane structure is less than 55 wt% or greater than 72 wt%, the alkali developability may be deteriorated or 1 GPa as one measure of low elasticity may not be achieved. is there.
従来のフレキシブル配線板の製造において発生する導体の変色域は、元素分析の結果から酸化していることが確認でき、導体の変色は酸素に起因するものであると考えられる。一般にシロキサン構造は酸素透過性を有していることから、低弾性のポリイミド化合物を得るためにシロキサン構造を有するモノマーを使用すると、酸素がポリイミド層を透過しやすくなり、導体とポリイミド層との界面の変色が発生しやすくなる。本発明においては、このような酸素透過性を高くするシロキサン構造を有するモノマーを使用しても導体とポリイミド層との界面の変色を防止することができる。
It can be confirmed from the results of elemental analysis that the color change region of the conductor generated in the production of the conventional flexible wiring board is oxidized, and the color change of the conductor is considered to be caused by oxygen. In general, since the siloxane structure has oxygen permeability, if a monomer having a siloxane structure is used to obtain a low-elasticity polyimide compound, oxygen easily passes through the polyimide layer, and the interface between the conductor and the polyimide layer. Discoloration tends to occur. In the present invention, discoloration of the interface between the conductor and the polyimide layer can be prevented even when such a monomer having a siloxane structure that increases oxygen permeability is used.
シロキサンジアミンの一例としては、下記構造式1に示されるジメチルシリレン骨格とジフェニルシリレン骨格とを有するシロキサンジアミンが挙げられる。
An example of the siloxane diamine is a siloxane diamine having a dimethylsilylene skeleton and a diphenylsilylene skeleton represented by the following structural formula 1.
上記構造式1中、R1及びR2は、置換されてもよいアルキレン基であるが、その具体例としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基を挙げることができる。置換基としては、メチル基、エチル基、等の低級アルキル基、フェニル基等のアリール基を挙げることができる。なかでも、原材料の入手の容易さからトリメチレン基が望ましい。また、R1及びR2は同一であっても、互いに相違していてもよいが、原材料の入手が困難となることから同一である方が望ましい。
In the structural formula 1, R 1 and R 2 are alkylene groups which may be substituted. Specific examples thereof include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group. Can be mentioned. Examples of the substituent include a lower alkyl group such as a methyl group and an ethyl group, and an aryl group such as a phenyl group. Of these, a trimethylene group is desirable because of the availability of raw materials. R 1 and R 2 may be the same or different from each other, but they are preferably the same because it is difficult to obtain raw materials.
また、上記構造式1中、mは1~30の整数であるが、好ましくは1~20、より好ましくは2~20の整数である。これは、mが0であると原材料の入手が困難となり、30を越えると、溶媒に混ざらず分離してしまうためである。一方、nは0~20の整数であるが、好ましくは1~20、より好ましくは1~10の整数である。これは、nが1以上であると難燃性に優れたジフェニルシロキサン単位が導入されることになり、導入されない場合よりも難燃性が向上し、20を越えると低弾性への寄与が小さくなるためである。
In the structural formula 1, m is an integer of 1 to 30, preferably 1 to 20, more preferably an integer of 2 to 20. This is because it is difficult to obtain raw materials when m is 0, and when m exceeds 30, the raw materials are separated without being mixed with the solvent. On the other hand, n is an integer of 0 to 20, preferably 1 to 20, more preferably an integer of 1 to 10. This is because when n is 1 or more, a diphenylsiloxane unit excellent in flame retardancy is introduced, the flame retardancy is improved as compared with the case where it is not introduced, and when it exceeds 20, the contribution to low elasticity is small. It is to become.
このようなジメチルシリレン骨格を有することで、本発明のポリイミド組成物層からなるカバーレイ層に好ましい低弾性を与え、その結果フレキシブル配線板の反りを小さくすることができる。
By having such a dimethylsilylene skeleton, it is possible to give preferable low elasticity to the coverlay layer made of the polyimide composition layer of the present invention, and as a result, it is possible to reduce the warp of the flexible wiring board.
特に、ジメチルシリレン骨格とジフェニルシリレン骨格とを有するシロキサンジアミンを使用したポリイミド組成物は、低弾性と難燃性を与え、フレキシブル配線板のカバーレイ材に好適である。このようなシロキサンジアミンの具体例としては、ジメチルシリレン骨格を有するKF-8010、ジメチルシリレン骨格及びジフェニルシリレン骨格を有するX-22-9409、X-22-1660B-3(いずれも信越化学工業(株)製)を挙げることができる。
Particularly, a polyimide composition using a siloxane diamine having a dimethylsilylene skeleton and a diphenylsilylene skeleton gives low elasticity and flame retardancy and is suitable for a coverlay material for a flexible wiring board. Specific examples of such siloxane diamines include KF-8010 having a dimethylsilylene skeleton, X-22-9409 and X-22-1660B-3 having a dimethylsilylene skeleton and a diphenylsilylene skeleton (both Shin-Etsu Chemical Co., Ltd.) ) Made).
ポリイミド組成物に含有されるポリイミド化合物は、N-メチル-2-ピロリドン(NMP)、トリエチレングリコールジメチルエーテル(トリグライム)、γ-ブチロラクトン等の溶媒に上記のような酸二無水物とジアミンとを溶解させて溶媒中の酸二無水物とジアミンとを付加重合させた後、環化脱水反応(溶液中での加熱イミド化や脱水剤による化学イミド化)により生成する。ポリイミド前駆体中にトルエン、キシレン等の共沸剤を添加し、180℃以上に加熱撹拌することでポリアミック酸成分の脱水反応を行い、ポリアミック酸の一部又は全てを閉環したポリイミド成分を形成する。このとき、必要に応じてトリエチルアミン等の3級アミン、芳香族系イソキノリン、ピリジン等の塩基性触媒や、安息香酸、パラヒドロキシ安息香酸等の酸触媒をイミド化の触媒として添加してもよく、これらの化合物を単独で使用しても、複数の化合物を併用してもよい。また、脱水環化試薬である無水酢酸/ピリジン系やジシクロヘキシルカルボジイミド等の化学イミド化剤によってもポリアミック酸を閉環することができる。
The polyimide compound contained in the polyimide composition is obtained by dissolving the above acid dianhydride and diamine in a solvent such as N-methyl-2-pyrrolidone (NMP), triethylene glycol dimethyl ether (triglyme), γ-butyrolactone, etc. The acid dianhydride and the diamine in the solvent are subjected to addition polymerization, and then formed by a cyclization dehydration reaction (heat imidization in a solution or chemical imidation with a dehydrating agent). Add an azeotropic agent such as toluene or xylene into the polyimide precursor and heat and stir to 180 ° C. or higher to dehydrate the polyamic acid component to form a polyimide component in which part or all of the polyamic acid is closed. . At this time, if necessary, a tertiary amine such as triethylamine, a basic catalyst such as aromatic isoquinoline, pyridine, or an acid catalyst such as benzoic acid or parahydroxybenzoic acid may be added as a catalyst for imidation. These compounds may be used alone or a plurality of compounds may be used in combination. The polyamic acid can also be ring-closed by a chemical imidizing agent such as acetic anhydride / pyridine or dicyclohexylcarbodiimide which is a dehydrating cyclization reagent.
ポリイミド組成物には、感光剤が含有される。この感光剤の含有により、形成されるポリイミド組成物に感光性を付与することができる。その感光剤としては、例えば、ジアゾナフトキノン化合物が挙げられる。上記のジアゾナフトキノン化合物を含有したポリイミド組成物は、露光によりアルカリ溶解性が変化する。露光する前は、アルカリ水溶液への溶解性が低い。一方、露光された後は、ジアゾナフトキノン化合物の分子構造が変化してケテンが生じ、アルカリ水溶液と反応してカルボン酸が生じる。そして、生成したカルボン酸が水とさらに反応して溶解する。したがって、光照射することで、アルカリ水溶液への溶解性が高くなる。
The polyimide composition contains a photosensitizer. By containing this photosensitizer, photosensitivity can be imparted to the formed polyimide composition. Examples of the photosensitizer include a diazonaphthoquinone compound. The polyimide composition containing the diazonaphthoquinone compound changes its alkali solubility upon exposure. Before exposure, the solubility in an alkaline aqueous solution is low. On the other hand, after the exposure, the molecular structure of the diazonaphthoquinone compound changes to produce ketene, which reacts with an alkaline aqueous solution to produce carboxylic acid. The produced carboxylic acid is further reacted with water and dissolved. Therefore, the solubility in alkaline aqueous solution becomes high by irradiating light.
ポリイミド化合物がヒドロキシル基を有する場合に、ポリイミド組成物が感光剤であるジアゾナフトキノン化合物を含有すると、ポリイミド化合物のヒドロキシル基とジアゾナフトキノン化合物が水素結合する。ポリイミド化合物は、ヒドロキシル基を有することで本来アルカリ溶解性が比較的高いが、ジアゾナフトキノン化合物との水素結合により、アルカリに溶解し易いヒドロキシル基が保護されるので、アルカリ溶解性が低下する。この状態のポリイミド化合物に露光を行うと、上述のようにジアゾナフトキノン化合物の分子構造が変化し、ポリイミド化合物のアルカリ溶解性が発現する。したがって、感光剤としてジアゾナフトキノン化合物を含有させることで、フレキシブル配線板への露光後、水酸化ナトリウム(NaOH)、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化テトラメチルアンモニウム(TMAH)等のアルカリ水溶液によってパターンを形成することができる。
When the polyimide compound has a hydroxyl group and the polyimide composition contains a diazonaphthoquinone compound as a photosensitizer, the hydroxyl group of the polyimide compound and the diazonaphthoquinone compound are hydrogen bonded. The polyimide compound originally has a relatively high alkali solubility due to having a hydroxyl group, but the alkali solubility is lowered because the hydroxyl group that is easily dissolved in alkali is protected by hydrogen bonding with the diazonaphthoquinone compound. When the polyimide compound in this state is exposed, the molecular structure of the diazonaphthoquinone compound is changed as described above, and the alkali solubility of the polyimide compound is expressed. Therefore, by containing a diazonaphthoquinone compound as a photosensitizer, sodium hydroxide (NaOH), potassium hydroxide, sodium carbonate, sodium bicarbonate, tetramethylammonium hydroxide (TMAH), etc. after exposure to the flexible wiring board. The pattern can be formed with an alkaline aqueous solution.
感光剤のジアゾナフトキノン化合物としては、ジアゾナフトキノン骨格を有する化合物であれば特に限定されるものではないが、例えば、2,3,4-トリヒドロキシベンゾフェノン-o-ナフトキノンジアジド-4-スルホン酸エステル、2,3,4-トリヒドロキシベンゾフェノン-o-ナフトキノンジアジド-5-スルホン酸エステル、2,3,4-トリヒドロキシベンゾフェノン-o-ベンゾキノンジアジド-4-スルホン酸エステル等が挙げられる。
The diazonaphthoquinone compound of the photosensitizer is not particularly limited as long as it is a compound having a diazonaphthoquinone skeleton. For example, 2,3,4-trihydroxybenzophenone-o-naphthoquinonediazide-4-sulfonic acid ester, Examples include 2,3,4-trihydroxybenzophenone-o-naphthoquinonediazide-5-sulfonic acid ester, 2,3,4-trihydroxybenzophenone-o-benzoquinonediazide-4-sulfonic acid ester, and the like.
ポリイミド組成物には、複数のエポキシ基を有する架橋剤が含有される。この架橋剤は、アルカリ溶液によるアルカリ現像後のポリイミド化合物と200℃以下の低い温度で付加反応を起こし、ポリイミド化合物を架橋することができる。エポキシ基を複数有する官能基であれば、比較的低い温度でアミノ基やカルボキシル基を有するポリイミド化合物と反応させることができ、フレキシブル配線板に用いられても他の部材への加熱による影響を少なくすることができる。また、この架橋剤により、銅箔等の導体とポリイミドとの密着性を向上させることができる。
The polyimide composition contains a crosslinking agent having a plurality of epoxy groups. This crosslinking agent can cause an addition reaction at a low temperature of 200 ° C. or less with a polyimide compound after alkali development with an alkali solution, thereby crosslinking the polyimide compound. If it is a functional group having a plurality of epoxy groups, it can be reacted with a polyimide compound having an amino group or a carboxyl group at a relatively low temperature, and even when used for a flexible wiring board, it is less affected by heating to other members. can do. Moreover, the adhesiveness between conductors, such as copper foil, and a polyimide can be improved with this crosslinking agent.
ポリイミド組成物にこの架橋剤を含有させる量としては、ポリイミド化合物100重量部に対して、20重量部以下であることが好ましい。架橋剤が20重量部以上含有させた場合、ポリイミド組成物の安定性が悪くなり、粘度が上昇してしまうため、ポリイミド組成物の取り扱いが悪くなる。また、感光性が低下してしまうため、アルカリ現像が難しくなる。一方、エポキシ基はアルカリ水溶液による加水分解を起こすおそれがあるため、架橋効果を維持させるには、1重量部以上添加するのが望ましい。
The amount of the polyimide composition to contain the crosslinking agent is preferably 20 parts by weight or less with respect to 100 parts by weight of the polyimide compound. When the crosslinking agent is contained in an amount of 20 parts by weight or more, the stability of the polyimide composition is deteriorated and the viscosity is increased, so that the handling of the polyimide composition is deteriorated. Moreover, since photosensitivity falls, alkali development becomes difficult. On the other hand, the epoxy group may be hydrolyzed by an aqueous alkali solution, and therefore it is desirable to add 1 part by weight or more in order to maintain the crosslinking effect.
エポキシ基を有する架橋剤は、形成されるポリイミド組成物に対して相溶性がよいものであれば特に限定するものではないが、例えば下記のような化合物を挙げることができる。架橋剤としては、ビスF型エポキシ化合物、ビスA型エポキシ化合物、3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート等の脂環式エポキシ化合物、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、レゾルシノールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、水素化ビスフェノールAジグリシジルエーテル、ポリエチレングリコールグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ヒドロキノンジグリシジルエーテル等のグリシジルエーテル化合物、フタル酸ジグリシジルエステル、テレフタル酸グリシジルエステル等のグリシジルエステル化合物、ジブロモネオペンチルグリコールグリシジルエーテル等のハロゲン化された難燃性エポキシ化合物、クレゾールノボラックエポキシ樹脂、フェノールノボラックエポキシ樹脂等が挙げられる。
The crosslinking agent having an epoxy group is not particularly limited as long as it has good compatibility with the polyimide composition to be formed, and examples thereof include the following compounds. Examples of the crosslinking agent include bis-F type epoxy compounds, bis-A type epoxy compounds, alicyclic epoxy compounds such as 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate, sorbitol polyglycidyl ether, poly Glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, glycerol polyglycidyl ether, trimethylolpropane polyglycidyl ether, resorcinol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether , Hydrogenated bisphenol A diglycidyl ether, polyethylene glycol glycidyl ether, polypropylene glycol diglycidyl Glycidyl ether compounds such as ether, hydroquinone diglycidyl ether, glycidyl ester compounds such as diglycidyl phthalate and glycidyl terephthalate, halogenated flame retardant epoxy compounds such as dibromoneopentylglycol glycidyl ether, cresol novolac epoxy resin And phenol novolac epoxy resins.
ポリイミド組成物には、オキサジン化合物が含有されていてもよい。オキサジン化合物は、分子内のオキサジン骨格が熱によって開環し、硬化する。このオキサジン化合物を本発明のポリイミド組成物に含有させることで、架橋剤として作用し、ポリイミド組成物に難燃性と、銅等の金属に対する密着性を向上させることができる。その添加量は、例えばポリイミド化合物100重量部に対して、5重量部以下といった少量でよい。
The polyimide composition may contain an oxazine compound. In the oxazine compound, the oxazine skeleton in the molecule is opened by heat and cured. By containing this oxazine compound in the polyimide composition of the present invention, it acts as a crosslinking agent, and the flame retardancy and adhesion to a metal such as copper can be improved in the polyimide composition. The addition amount may be as small as 5 parts by weight or less with respect to 100 parts by weight of the polyimide compound, for example.
このオキサジン化合物としては、例えば、ビスフェノールF型ベンゾオキサジン(6,6’-(1-メチリデン)ビス[3,4-ジヒドロ-3-フェニル-2H-1,3-ベンゾオキサジン])、ビスフェノールS型ベンゾオキサジン(6,6’-スルホニルビス[3,4-ジヒドロ-3-フェニル-2H-1,3-ベンゾオキサジン])、ビスフェノールA型ベンゾオキサジン(下記構造式2)、フェノールノボラック型ベンゾオキサジン(下記構造式3)等が挙げられる。
Examples of the oxazine compound include bisphenol F type benzoxazine (6,6 ′-(1-methylidene) bis [3,4-dihydro-3-phenyl-2H-1,3-benzoxazine]), bisphenol S type Benzoxazine (6,6′-sulfonylbis [3,4-dihydro-3-phenyl-2H-1,3-benzoxazine]), bisphenol A type benzoxazine (the following structural formula 2), phenol novolac type benzoxazine ( The following structural formula 3) and the like can be mentioned.
ポリイミド組成物には、防錆剤が含有されていてもよい。この防錆剤としては、例えば、ヒドラジド系の金属不活性剤である2,3-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル]プロピオノヒドラジド(CDA-10)が挙げられ、フレキシブル配線板に使用する場合に、金属と接触するポリイミド組成物の樹脂劣化を防止することができる。
The polyimide composition may contain a rust preventive agent. Examples of the rust preventive include 2,3-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] propionohydrazide (CDA-), which is a hydrazide metal deactivator. 10), and when used for a flexible wiring board, resin deterioration of the polyimide composition in contact with the metal can be prevented.
CDA-10以外の防錆剤としては、ヒドラジド系のものとしてデカメチレンカルボン酸ジサリチロイルヒドラジド、トリアゾール系のものとして3-(N-サリチロイル)アミノ-1,2,4-トリアゾール等が挙げられるが、これらに限定されるものではない。
Examples of rust preventives other than CDA-10 include decamethylenecarboxylic acid disalicyloyl hydrazide as hydrazide-based compounds, and 3- (N-salicyloyl) amino-1,2,4-triazole as triazole-based compounds. However, it is not limited to these.
本発明の方法により製造されるフレキシブル配線板は、図1のように、基材2上に所定のパターンを有するように形成された銅などの導体4を覆うように、公知のコーティング法で上記のような化合物を含有してなるポリイミド組成物を塗布し、溶媒を蒸発させるように乾燥してポリイミド層3(未硬化状態)を形成する。
As shown in FIG. 1, the flexible wiring board manufactured by the method of the present invention covers the conductor 4 such as copper formed on the substrate 2 so as to have a predetermined pattern by a known coating method. A polyimide composition containing such a compound is applied and dried to evaporate the solvent to form the polyimide layer 3 (uncured state).
ポリイミド層3の形成後、図2のように、ポリイミド層3の取り除きたい部分に光が当たるようなマスク層5を備えて露光する。露光によって、ポリイミド層3中の感光剤の構造を変化させて、露光を行った箇所のアルカリ溶解性を高める。そして、アルカリ溶液に浸漬させることで、図3のように、露光した箇所を除去し所定のパターン(ポジパターン)を形成するとともに、基材2上の導体回路の一部を露出させる。
After the formation of the polyimide layer 3, as shown in FIG. 2, a mask layer 5 that exposes light to a portion to be removed of the polyimide layer 3 is provided and exposed. By the exposure, the structure of the photosensitive agent in the polyimide layer 3 is changed to enhance the alkali solubility of the exposed portion. Then, by immersing in an alkaline solution, the exposed portion is removed to form a predetermined pattern (positive pattern) as shown in FIG. 3, and a part of the conductor circuit on the substrate 2 is exposed.
パターン形成後、例えば窒素やヘリウムといった不活性ガスによって、加熱するフレキシブル配線板1の周囲の酸素濃度を1vol%以下という極端な貧酸素の状態、好ましくは0.1vol%以下というさらに貧酸素の状態する。この酸素濃度は、ガルバニ電池方式の燃焼排ガス分析計で測定することができる。
After the pattern is formed, the oxygen concentration around the flexible wiring board 1 to be heated by an inert gas such as nitrogen or helium is in an extremely poor oxygen state of 1 vol% or less, preferably 0.1 vol% or less. To do. This oxygen concentration can be measured with a galvanic cell type combustion exhaust gas analyzer.
酸素濃度が1vol%以下となった後、ポリイミド層3内の架橋剤とポリイミド化合物とが反応する温度に加熱することで、ポリイミド層3内の架橋剤でポリイミド化合物が架橋し、ポリイミド層3が硬化状態となる。本発明において、硬化状態とは、ポリイミド層を加熱することで架橋剤が架橋した状態のことを示し、未硬化状態とは、硬化状態にまだ至っていない状態でのことである。
After the oxygen concentration becomes 1 vol% or less, the polyimide compound is crosslinked by the crosslinking agent in the polyimide layer 3 by heating to a temperature at which the crosslinking agent in the polyimide layer 3 reacts with the polyimide compound. It becomes a cured state. In the present invention, the cured state refers to a state in which the crosslinking agent is crosslinked by heating the polyimide layer, and the uncured state refers to a state where the cured state has not yet been reached.
この加熱で、酸素濃度が1vol%よりも高い場合、周囲の酸素の影響によって導体4の露出面に限らず、導体4とポリイミド層3との界面も酸化されて変色してしまう。また変色を例えば硫酸-過酸化水素などで除去すると、導体4とポリイミド層3との界面に隙間が形成してしまう。本発明のように、酸素濃度が1vol%以下という極端な貧酸素の雰囲気下でフレキシブル配線板1を加熱することで、ポリイミド層を酸素が透過することによる導体4の酸化も抑制されるため、導体4の露出面の変色防止だけでなく、導体4とポリイミド層3との界面も防止できる。なお、酸素濃度を0.1vol%以下とすることで、ほぼ完全に導体4の酸化を抑制することができるためより好適である。
In this heating, when the oxygen concentration is higher than 1 vol%, not only the exposed surface of the conductor 4 but also the interface between the conductor 4 and the polyimide layer 3 is oxidized and discolored due to the influence of surrounding oxygen. If the discoloration is removed with, for example, sulfuric acid-hydrogen peroxide, a gap is formed at the interface between the conductor 4 and the polyimide layer 3. As in the present invention, by heating the flexible wiring board 1 in an extremely poor oxygen atmosphere with an oxygen concentration of 1 vol% or less, oxidation of the conductor 4 due to oxygen permeation through the polyimide layer is also suppressed. Not only can the exposed surface of the conductor 4 be prevented from being discolored, but also the interface between the conductor 4 and the polyimide layer 3 can be prevented. Note that it is more preferable that the oxygen concentration be 0.1 vol% or less because the oxidation of the conductor 4 can be almost completely suppressed.
従来、フレキシブル配線板の加熱庫内に窒素ガス等の不活性ガスを導入して庫内の酸素濃度を低減させることは行われているが、庫内の酸素濃度を1vol%以下にするためには、従来の不活性ガスの導入量の数倍程度の導入量を必要とする。例えば、庫内の容積が90~100L程度の場合に、窒素等の不活性ガス流量を好ましくは8.5L/minで30分以上、より好ましくは12L/minで30分以上とする。
Conventionally, an inert gas such as nitrogen gas has been introduced into the heating chamber of the flexible wiring board to reduce the oxygen concentration in the chamber, but in order to reduce the oxygen concentration in the chamber to 1 vol% or less. Requires an introduction amount of several times the introduction amount of the conventional inert gas. For example, when the internal volume is about 90 to 100 L, the flow rate of inert gas such as nitrogen is preferably 8.5 L / min for 30 minutes or longer, more preferably 12 L / min for 30 minutes or longer.
このように、本発明のフレキシブル配線板の製造方法では、露光後のアルカリ現像によって所定のパターンを形成でき、露出した導体が酸化によって変色することを防止することができる。特に、上記構造式1に示したようなシロキサン骨格を有するモノマーを使用した酸素透過性の高いポリイミド層であっても、酸素濃度を1vol%以下とすることで、導体の露出面と導体とポリイミド層との界面との変色を防止することができる。したがって、パターン形成後に無電解めっきを行っても、導体とポリイミド層との界面が浮くことがなく、めっき液がポリイミド層と導体との間に差し込む現象を防止することができる。したがって、この方法で製造された配線板を電子部品に使用することで、信頼性の高い電子部品を提供することができる。
Thus, in the method for producing a flexible wiring board of the present invention, a predetermined pattern can be formed by alkali development after exposure, and the exposed conductor can be prevented from being discolored by oxidation. In particular, even in a polyimide layer having a high oxygen permeability using a monomer having a siloxane skeleton as shown in the structural formula 1 above, the exposed surface of the conductor, the conductor and the polyimide can be reduced by setting the oxygen concentration to 1 vol% or less. Discoloration with the interface with the layer can be prevented. Therefore, even if electroless plating is performed after pattern formation, the interface between the conductor and the polyimide layer does not float, and the phenomenon that the plating solution is inserted between the polyimide layer and the conductor can be prevented. Therefore, a highly reliable electronic component can be provided by using the wiring board manufactured by this method for an electronic component.
[実施例]
(ポリイミド組成物の作成)
[実施例1]
137.47g(100.48mmol)、のシロキサンジアミンであるX-22-9409(信越化学工業(株)製)、16.41g(純度99.5%、58.26mmol)のBSDAをDean-Starkを取り付けた500mlの四口セパラブルフラスコに投入し、窒素雰囲気下N-メチルピロドン238.5gで完全に溶解させた。その後、57.62g(純度99.7%、160.33mmol)のDSDAを加え、80℃で2時間撹拌させた後、イミド化縮合水を除去するための共沸剤トルエンを70mlを加え、オイルバスにて180℃で5時間撹拌保持還流させ、目的物を得た。 [Example]
(Preparation of polyimide composition)
[Example 1]
137.47 g (100.48 mmol) of siloxane diamine, X-22-9409 (manufactured by Shin-Etsu Chemical Co., Ltd.), 16.41 g (purity 99.5%, 58.26 mmol) of BSDA was added to Dean-Stark. The solution was put into a 500 ml four-necked separable flask attached and completely dissolved with 238.5 g of N-methylpyrodon under a nitrogen atmosphere. Thereafter, 57.62 g (purity 99.7%, 160.33 mmol) of DSDA was added, and after stirring at 80 ° C. for 2 hours, 70 ml of toluene, an azeotropic agent for removing imidized condensed water, was added. The mixture was stirred and refluxed at 180 ° C. for 5 hours in a bath to obtain the desired product.
(ポリイミド組成物の作成)
[実施例1]
137.47g(100.48mmol)、のシロキサンジアミンであるX-22-9409(信越化学工業(株)製)、16.41g(純度99.5%、58.26mmol)のBSDAをDean-Starkを取り付けた500mlの四口セパラブルフラスコに投入し、窒素雰囲気下N-メチルピロドン238.5gで完全に溶解させた。その後、57.62g(純度99.7%、160.33mmol)のDSDAを加え、80℃で2時間撹拌させた後、イミド化縮合水を除去するための共沸剤トルエンを70mlを加え、オイルバスにて180℃で5時間撹拌保持還流させ、目的物を得た。 [Example]
(Preparation of polyimide composition)
[Example 1]
137.47 g (100.48 mmol) of siloxane diamine, X-22-9409 (manufactured by Shin-Etsu Chemical Co., Ltd.), 16.41 g (purity 99.5%, 58.26 mmol) of BSDA was added to Dean-Stark. The solution was put into a 500 ml four-necked separable flask attached and completely dissolved with 238.5 g of N-methylpyrodon under a nitrogen atmosphere. Thereafter, 57.62 g (purity 99.7%, 160.33 mmol) of DSDA was added, and after stirring at 80 ° C. for 2 hours, 70 ml of toluene, an azeotropic agent for removing imidized condensed water, was added. The mixture was stirred and refluxed at 180 ° C. for 5 hours in a bath to obtain the desired product.
上記得られたポリイミド化合物溶液の固形分100重量部に対し、ジアゾナフトキノン感光剤(4NT-300、東洋合成工業(株)製)を10重量部、及び、架橋剤としてビスフェノールF型エポキシ樹脂(jER807、ジャパンエポキシレジン株式会社製)を2重量部添加して、目的のポリイミド組成物を完成させた。
10 parts by weight of diazonaphthoquinone photosensitizer (4NT-300, manufactured by Toyo Gosei Co., Ltd.) and 100 parts by weight of solid content of the polyimide compound solution obtained above, and bisphenol F type epoxy resin (jER807 as a crosslinking agent) 2 parts by weight of Japan Epoxy Resin Co., Ltd.) was added to complete the target polyimide composition.
[実施例2]
143.34g(104.78mmol)、のシロキサンジアミンであるX-22-9409(信越化学工業(株)製)、18.71g(純度99.5%、66.41mmol)のBSDAをDean-Starkを取り付けた500mlの四口セパラブルフラスコに投入し、窒素雰囲気下N-メチルピロドン229.5gで完全に溶解させた。その後、58.45g(純度99.7%、162.65mmol)のDSDAを加え、80℃で2時間撹拌させた後、イミド化縮合水を除去するための共沸剤トルエン70ml加え、オイルバスにて180℃で5時間撹拌保持還流させ、目的物を得た。 [Example 2]
143.34 g (104.78 mmol) of siloxane diamine X-22-9409 (manufactured by Shin-Etsu Chemical Co., Ltd.), 18.71 g (purity 99.5%, 66.41 mmol) of BSDA was added to Dean-Stark. The flask was put into a 500 ml four-necked separable flask, and completely dissolved with 229.5 g of N-methylpyrodon under a nitrogen atmosphere. Then, 58.45 g (purity 99.7%, 162.65 mmol) of DSDA was added and stirred at 80 ° C. for 2 hours, and then 70 ml of an azeotropic agent toluene for removing imidized condensed water was added to the oil bath. The mixture was stirred and refluxed at 180 ° C. for 5 hours to obtain the desired product.
143.34g(104.78mmol)、のシロキサンジアミンであるX-22-9409(信越化学工業(株)製)、18.71g(純度99.5%、66.41mmol)のBSDAをDean-Starkを取り付けた500mlの四口セパラブルフラスコに投入し、窒素雰囲気下N-メチルピロドン229.5gで完全に溶解させた。その後、58.45g(純度99.7%、162.65mmol)のDSDAを加え、80℃で2時間撹拌させた後、イミド化縮合水を除去するための共沸剤トルエン70ml加え、オイルバスにて180℃で5時間撹拌保持還流させ、目的物を得た。 [Example 2]
143.34 g (104.78 mmol) of siloxane diamine X-22-9409 (manufactured by Shin-Etsu Chemical Co., Ltd.), 18.71 g (purity 99.5%, 66.41 mmol) of BSDA was added to Dean-Stark. The flask was put into a 500 ml four-necked separable flask, and completely dissolved with 229.5 g of N-methylpyrodon under a nitrogen atmosphere. Then, 58.45 g (purity 99.7%, 162.65 mmol) of DSDA was added and stirred at 80 ° C. for 2 hours, and then 70 ml of an azeotropic agent toluene for removing imidized condensed water was added to the oil bath. The mixture was stirred and refluxed at 180 ° C. for 5 hours to obtain the desired product.
上記得られたポリイミド化合物溶液の固形分100重量部に対し、ジアゾナフトキノン感光剤(4NT-300、東洋合成工業(株)製)を10重量部、及び、エポキシ樹脂(jER807、ジャパンエポキシレジン株式会社製)を2重量部添加して、目的のポリイミド組成物を完成させた。
10 parts by weight of a diazonaphthoquinone photosensitizer (4NT-300, manufactured by Toyo Gosei Co., Ltd.) and an epoxy resin (jER807, Japan Epoxy Resin Co., Ltd.) with respect to 100 parts by weight of the solid content of the polyimide compound solution obtained above. 2 parts by weight) was added to complete the target polyimide composition.
[実施例3]
106.41g(77.78mmol)、のシロキサンジアミンであるX-22-9409(信越化学工業(株)製)、25.72g(純度99.5%、91.30mmol)のBSDAをDean-Starkを取り付けた500mlの四口セパラブルフラスコに投入し、窒素雰囲気下N-メチルピロドン256.5gで完全に溶解させた。その後、61.37g(純度99.7%、170.77mmol)のDSDAを加え、80℃で2時間撹拌させた後、イミド化縮合水を除去するための共沸剤トルエン70ml加え、オイルバスにて180℃で5時間撹拌保持還流させ、目的物を得た。 [Example 3]
106.41 g (77.78 mmol) of siloxane diamine X-22-9409 (manufactured by Shin-Etsu Chemical Co., Ltd.), 25.72 g (purity 99.5%, 91.30 mmol) of BSDA was added to Dean-Stark. The solution was put into a 500 ml four-necked separable flask attached and completely dissolved with 256.5 g of N-methylpyrodon under a nitrogen atmosphere. Thereafter, 61.37 g (purity 99.7%, 170.77 mmol) of DSDA was added, and the mixture was stirred at 80 ° C. for 2 hours. Then, 70 ml of an azeotropic agent toluene for removing imidized condensed water was added to the oil bath. The mixture was stirred and refluxed at 180 ° C. for 5 hours to obtain the desired product.
106.41g(77.78mmol)、のシロキサンジアミンであるX-22-9409(信越化学工業(株)製)、25.72g(純度99.5%、91.30mmol)のBSDAをDean-Starkを取り付けた500mlの四口セパラブルフラスコに投入し、窒素雰囲気下N-メチルピロドン256.5gで完全に溶解させた。その後、61.37g(純度99.7%、170.77mmol)のDSDAを加え、80℃で2時間撹拌させた後、イミド化縮合水を除去するための共沸剤トルエン70ml加え、オイルバスにて180℃で5時間撹拌保持還流させ、目的物を得た。 [Example 3]
106.41 g (77.78 mmol) of siloxane diamine X-22-9409 (manufactured by Shin-Etsu Chemical Co., Ltd.), 25.72 g (purity 99.5%, 91.30 mmol) of BSDA was added to Dean-Stark. The solution was put into a 500 ml four-necked separable flask attached and completely dissolved with 256.5 g of N-methylpyrodon under a nitrogen atmosphere. Thereafter, 61.37 g (purity 99.7%, 170.77 mmol) of DSDA was added, and the mixture was stirred at 80 ° C. for 2 hours. Then, 70 ml of an azeotropic agent toluene for removing imidized condensed water was added to the oil bath. The mixture was stirred and refluxed at 180 ° C. for 5 hours to obtain the desired product.
上記得られたポリイミド化合物溶液の固形分100重量部に対し、ジアゾナフトキノン感光剤(4NT-300、東洋合成工業(株)製)を10重量部、及び、エポキシ樹脂(jER807、ジャパンエポキシレジン株式会社製)を2重量部添加して、目的のポリイミド組成物を完成させた。
10 parts by weight of a diazonaphthoquinone photosensitizer (4NT-300, manufactured by Toyo Gosei Co., Ltd.) and an epoxy resin (jER807, Japan Epoxy Resin Co., Ltd.) with respect to 100 parts by weight of the solid content of the polyimide compound solution obtained above. 2 parts by weight) was added to complete the target polyimide composition.
[実施例4]
実施例1で得られたポリイミド化合物溶液の固形分100重量部に対し、ジアゾナフトキノン感光剤(4NT-300、東洋合成工業(株)製)を10重量部、及び、エポキシ樹脂(jER807、ジャパンエポキシレジン株式会社製)を5重量部添加して、目的のポリイミド組成物を完成させた。 [Example 4]
10 parts by weight of diazonaphthoquinone photosensitizer (4NT-300, manufactured by Toyo Gosei Co., Ltd.) and epoxy resin (jER807, Japan Epoxy) with respect to 100 parts by weight of the solid content of the polyimide compound solution obtained in Example 1 5 parts by weight of Resin Co., Ltd. was added to complete the target polyimide composition.
実施例1で得られたポリイミド化合物溶液の固形分100重量部に対し、ジアゾナフトキノン感光剤(4NT-300、東洋合成工業(株)製)を10重量部、及び、エポキシ樹脂(jER807、ジャパンエポキシレジン株式会社製)を5重量部添加して、目的のポリイミド組成物を完成させた。 [Example 4]
10 parts by weight of diazonaphthoquinone photosensitizer (4NT-300, manufactured by Toyo Gosei Co., Ltd.) and epoxy resin (jER807, Japan Epoxy) with respect to 100 parts by weight of the solid content of the polyimide compound solution obtained in Example 1 5 parts by weight of Resin Co., Ltd. was added to complete the target polyimide composition.
[比較例1]
実施例1で得られたポリイミド化合物溶液の固形分100重量部に対し、ジアゾナフトキノン感光剤(4NT-300、東洋合成工業(株)製)を10重量部、及び、エポキシ樹脂(jER807、ジャパンエポキシレジン株式会社製)を2重量部添加して、目的のポリイミド組成物を完成させた。 [Comparative Example 1]
10 parts by weight of diazonaphthoquinone photosensitizer (4NT-300, manufactured by Toyo Gosei Co., Ltd.) and epoxy resin (jER807, Japan Epoxy) with respect to 100 parts by weight of the solid content of the polyimide compound solution obtained in Example 1 2 parts by weight of Resin Co., Ltd. was added to complete the target polyimide composition.
実施例1で得られたポリイミド化合物溶液の固形分100重量部に対し、ジアゾナフトキノン感光剤(4NT-300、東洋合成工業(株)製)を10重量部、及び、エポキシ樹脂(jER807、ジャパンエポキシレジン株式会社製)を2重量部添加して、目的のポリイミド組成物を完成させた。 [Comparative Example 1]
10 parts by weight of diazonaphthoquinone photosensitizer (4NT-300, manufactured by Toyo Gosei Co., Ltd.) and epoxy resin (jER807, Japan Epoxy) with respect to 100 parts by weight of the solid content of the polyimide compound solution obtained in Example 1 2 parts by weight of Resin Co., Ltd. was added to complete the target polyimide composition.
[比較例2]
実施例3で得られたポリイミド化合物溶液の固形分100重量部に対し、ジアゾナフトキノン感光剤(4NT-300、東洋合成工業(株)製)を10重量部、及び、エポキシ樹脂(jER807、ジャパンエポキシレジン株式会社製)を2重量部添加して、目的のポリイミド組成物を完成させた。 [Comparative Example 2]
10 parts by weight of diazonaphthoquinone photosensitizer (4NT-300, manufactured by Toyo Gosei Co., Ltd.) and epoxy resin (jER807, Japan Epoxy) with respect to 100 parts by weight of the solid content of the polyimide compound solution obtained in Example 3 2 parts by weight of Resin Co., Ltd. was added to complete the target polyimide composition.
実施例3で得られたポリイミド化合物溶液の固形分100重量部に対し、ジアゾナフトキノン感光剤(4NT-300、東洋合成工業(株)製)を10重量部、及び、エポキシ樹脂(jER807、ジャパンエポキシレジン株式会社製)を2重量部添加して、目的のポリイミド組成物を完成させた。 [Comparative Example 2]
10 parts by weight of diazonaphthoquinone photosensitizer (4NT-300, manufactured by Toyo Gosei Co., Ltd.) and epoxy resin (jER807, Japan Epoxy) with respect to 100 parts by weight of the solid content of the polyimide compound solution obtained in Example 3 2 parts by weight of Resin Co., Ltd. was added to complete the target polyimide composition.
(現像性の確認)
実施例1乃至実施例4、及び、比較例1又は比較例2のポリイミド組成物を予め0.3μm相当の化学研磨処理を施した銅箔の片面に10μmとなるように塗布し、80℃10分で乾燥させた。 (Confirm development)
The polyimide composition of Examples 1 to 4 and Comparative Example 1 or Comparative Example 2 was applied to one side of a copper foil that had been subjected to a chemical polishing treatment corresponding to 0.3 μm in advance so as to have a thickness of 10 μm. Dry in minutes.
実施例1乃至実施例4、及び、比較例1又は比較例2のポリイミド組成物を予め0.3μm相当の化学研磨処理を施した銅箔の片面に10μmとなるように塗布し、80℃10分で乾燥させた。 (Confirm development)
The polyimide composition of Examples 1 to 4 and Comparative Example 1 or Comparative Example 2 was applied to one side of a copper foil that had been subjected to a chemical polishing treatment corresponding to 0.3 μm in advance so as to have a thickness of 10 μm. Dry in minutes.
次いで、解像度評価用のポジマスク(300μm/300μmのライン&スペースパターン)を介して超高圧水銀ランプを2500mJ/cm2の積算光量にて露光を行い、水酸化ナトリウム3wt%40℃水溶液に浸漬し、その後40℃の温水で2分間浸漬することによりアルカリ現像を行った。その後、蒸留水で十分に洗浄し乾燥させて一連の現像プロセスを完結させた。現像性の評価は、300μm/300μmのライン&スペースが開口した時の浸漬最小時間と、浸漬時間を60秒にした場合のライン&スペースの開口状態により評価した。結果を表1に示す。
Next, an ultrahigh pressure mercury lamp is exposed with a cumulative light amount of 2500 mJ / cm 2 through a positive mask for resolution evaluation (300 μm / 300 μm line & space pattern), and immersed in an aqueous solution of sodium hydroxide 3 wt% at 40 ° C., Then, alkali development was performed by immersing in warm water at 40 ° C. for 2 minutes. Thereafter, it was thoroughly washed with distilled water and dried to complete a series of development processes. The evaluation of developability was evaluated based on the minimum immersion time when the 300 μm / 300 μm line & space was opened and the open state of the line & space when the immersion time was 60 seconds. The results are shown in Table 1.
実施例1乃至実施例4、及び、比較例1又は比較例2のポリイミド組成物は、表1の通り、いずれも40秒以内でアルカリ現像することができる。実施例4では、浸漬時間を60秒までとした場合、露光部外での開口が見られたため、作業性が悪い。浸漬時間を検討した結果、40秒以内であることが望ましいことが分かった。
The polyimide compositions of Examples 1 to 4 and Comparative Example 1 or Comparative Example 2 can all be alkali-developed within 40 seconds as shown in Table 1. In Example 4, when the immersion time was up to 60 seconds, workability was poor because an opening outside the exposed area was seen. As a result of examining the immersion time, it was found that it is desirable to be within 40 seconds.
(開口部の変色の確認)
実施例1のポリイミド組成物を予め0.3μm相当の化学研磨処理を施した銅箔の片面に10μmとなるように塗布し、80℃10分で乾燥させた。次いで、ポジマスクを介して超高圧水銀ランプ2500mJ/cm2の積算光量にて露光を行い、水酸化ナトリウム3wt%40℃水溶液へ浸漬し、その後40℃の温水で2分間浸漬することによりアルカリ現像を行った。パターン形成後、銅箔をイナートオーブンDN410I(ヤマト化学(株)製)に投入し、強制送風循環式で、窒素ガスを15L/minで庫内(容積95L)に導入し、庫内温度を40℃として30分間保った。このときの庫内の酸素濃度を燃焼排ガス分析計(TESTO-325M、株式会社テストー製)により測定したところ、0.5vol%であった。30分経過後、14分間で40℃から200℃に昇温した。このときの庫内の酸素濃度は0.1vol%以下であった。そして、引き続き窒素ガスを導入して庫内の酸素濃度を0.1vol%以下に保ったまま、200℃で1時間加熱し、放冷した。この温度変化及び庫内の酸素濃度の時間変化を図4に示す。庫内から取り出した銅箔を目視によって確認したところ、図5のように、銅箔の露出面の変色は確認されなかった。これは、実施例2乃至4のポリイミド組成物であっても同様の結果であった。 (Confirmation of discoloration of opening)
The polyimide composition of Example 1 was applied to one side of a copper foil that had been subjected to a chemical polishing treatment corresponding to 0.3 μm in advance so as to have a thickness of 10 μm, and dried at 80 ° C. for 10 minutes. Next, exposure is carried out with a cumulative amount of light of 2500 mJ / cm 2 of an ultra-high pressure mercury lamp through a positive mask, immersed in an aqueous solution ofsodium hydroxide 3 wt% at 40 ° C., and then immersed in warm water at 40 ° C. for 2 minutes for alkali development. went. After pattern formation, the copper foil is put into an inert oven DN410I (manufactured by Yamato Chemical Co., Ltd.), forced air circulation type, nitrogen gas is introduced into the chamber (volume 95L) at 15 L / min, and the chamber temperature is set to 40 C. for 30 minutes. The oxygen concentration in the chamber at this time was measured by a combustion exhaust gas analyzer (TESTO-325M, manufactured by Testo Co., Ltd.) and found to be 0.5 vol%. After 30 minutes, the temperature was raised from 40 ° C. to 200 ° C. in 14 minutes. The oxygen concentration in the chamber at this time was 0.1 vol% or less. Then, nitrogen gas was continuously introduced, and the chamber was heated at 200 ° C. for 1 hour while being kept at 0.1 vol% or less, and allowed to cool. FIG. 4 shows the change in temperature and the change in oxygen concentration in the chamber over time. When the copper foil taken out from the interior was confirmed by visual observation, no discoloration of the exposed surface of the copper foil was confirmed as shown in FIG. This was the same result even with the polyimide compositions of Examples 2 to 4.
実施例1のポリイミド組成物を予め0.3μm相当の化学研磨処理を施した銅箔の片面に10μmとなるように塗布し、80℃10分で乾燥させた。次いで、ポジマスクを介して超高圧水銀ランプ2500mJ/cm2の積算光量にて露光を行い、水酸化ナトリウム3wt%40℃水溶液へ浸漬し、その後40℃の温水で2分間浸漬することによりアルカリ現像を行った。パターン形成後、銅箔をイナートオーブンDN410I(ヤマト化学(株)製)に投入し、強制送風循環式で、窒素ガスを15L/minで庫内(容積95L)に導入し、庫内温度を40℃として30分間保った。このときの庫内の酸素濃度を燃焼排ガス分析計(TESTO-325M、株式会社テストー製)により測定したところ、0.5vol%であった。30分経過後、14分間で40℃から200℃に昇温した。このときの庫内の酸素濃度は0.1vol%以下であった。そして、引き続き窒素ガスを導入して庫内の酸素濃度を0.1vol%以下に保ったまま、200℃で1時間加熱し、放冷した。この温度変化及び庫内の酸素濃度の時間変化を図4に示す。庫内から取り出した銅箔を目視によって確認したところ、図5のように、銅箔の露出面の変色は確認されなかった。これは、実施例2乃至4のポリイミド組成物であっても同様の結果であった。 (Confirmation of discoloration of opening)
The polyimide composition of Example 1 was applied to one side of a copper foil that had been subjected to a chemical polishing treatment corresponding to 0.3 μm in advance so as to have a thickness of 10 μm, and dried at 80 ° C. for 10 minutes. Next, exposure is carried out with a cumulative amount of light of 2500 mJ / cm 2 of an ultra-high pressure mercury lamp through a positive mask, immersed in an aqueous solution of
比較として、庫内に導入する窒素ガスの流量を3L/minとし、上記と同様に庫内の温度をコントロールして加熱処理した後、加熱後の銅箔の露出面の変色を確認した。イナートオーブンに投入するものは、上記変色の確認で使用したものと同様にポリイミド層にパターンを形成した銅箔を使用した。この温度変化及び庫内の酸素濃度の時間変化を図4に示す。放冷後、庫内から取り出した銅箔を目視によって確認したところ、図6のように、銅箔の露出面が紫色に変色していた。この銅箔の断面を図7に示す。図7のように、銅箔とポリイミド層との界面に変色域(不明物)が確認できる。この変色域を元素分析した結果、銅と酸素が検出されたことからこの変色域は酸化していることが分かった。
As a comparison, the flow rate of nitrogen gas introduced into the chamber was set to 3 L / min, and the temperature in the chamber was controlled in the same manner as described above, followed by heat treatment, and then the discoloration of the exposed surface of the copper foil after heating was confirmed. The thing thrown into an inert oven used the copper foil which formed the pattern in the polyimide layer similarly to what was used by the confirmation of the said discoloration. FIG. 4 shows the change in temperature and the change in oxygen concentration in the chamber over time. After cooling, when the copper foil taken out from the interior was visually confirmed, the exposed surface of the copper foil turned purple as shown in FIG. A cross section of this copper foil is shown in FIG. As shown in FIG. 7, a discoloration region (unknown thing) can be confirmed at the interface between the copper foil and the polyimide layer. As a result of elemental analysis of this discoloration region, it was found that this discoloration region was oxidized because copper and oxygen were detected.
図4に示すように、架橋剤とポリイミド化合物とが反応する温度の200℃に達する前に庫内の酸素濃度を0.1vol%以下とすることで、銅箔の変色と銅箔とポリイミド層との界面の変色が防止できるのに対し、庫内の酸素濃度が1vol%よりも高いと5vol%以下であっても、架橋剤とポリイミド化合物との反応温度より低い温度に降温するまでに酸素濃度が1vol%以下に下がることが無く、その結果、銅箔とポリイミド層との界面が酸化され、変色域として確認されたことが分かった。この結果は、全モノマー重量に対するシロキサンジアミン量を変えた実施例2乃至4のポリイミド組成物でも同様であり、現像性を考慮すると、シロキサンジアミンが全体のモノマー重量に対して55wt%以上72wt%以下であることが好ましく、より好ましくは60wt%以上70wt%以下である。
As shown in FIG. 4, by changing the oxygen concentration in the chamber to 0.1 vol% or less before reaching 200 ° C. at which the crosslinking agent and the polyimide compound react, the discoloration of the copper foil, the copper foil, and the polyimide layer Discoloration at the interface between the cross-linking agent and the oxygen concentration in the chamber is higher than 1 vol%, even if it is 5 vol% or less, the oxygen concentration is lowered to a temperature lower than the reaction temperature between the crosslinking agent and the polyimide compound. As a result, it was found that the interface between the copper foil and the polyimide layer was oxidized and confirmed as a discoloration region. This result is the same for the polyimide compositions of Examples 2 to 4 in which the amount of siloxane diamine with respect to the total monomer weight is changed. In consideration of developability, the siloxane diamine is 55 wt% or more and 72 wt% or less with respect to the total monomer weight. It is preferable that it is 60 wt% or more and 70 wt% or less.
Claims (10)
- 酸二無水物とジアミンとの反応によって得られるポリイミド化合物と、感光剤と、架橋剤とを含有するポリイミド組成物を調製する工程と、
上記ポリイミド組成物を導体回路に塗布してポリイミド層を形成する工程と、
上記ポリイミド層を露光及びアルカリ現像処理により所定のパターンに形成すると共に、導体回路の所定領域を露出させる工程と、
上記パターンが形成された後、酸素濃度が1vol%以下の雰囲気下で加熱処理してポリイミド化合物と架橋剤とを反応させる工程とを有することを特徴とするフレキシブル配線板の製造方法。 A step of preparing a polyimide composition containing a polyimide compound obtained by a reaction between an acid dianhydride and a diamine, a photosensitizer, and a crosslinking agent;
Applying the polyimide composition to a conductor circuit to form a polyimide layer;
Forming the polyimide layer in a predetermined pattern by exposure and alkali development, and exposing a predetermined region of the conductor circuit;
After the said pattern is formed, it has a process which heat-processes in the atmosphere whose oxygen concentration is 1 vol% or less, and makes a polyimide compound and a crosslinking agent react, The manufacturing method of the flexible wiring board characterized by the above-mentioned. - 上記ポリイミド化合物の原料モノマーとしてシロキサン構造を有するモノマーが含まれる請求項1に記載のフレキシブル配線板の製造方法。 The method for producing a flexible wiring board according to claim 1, wherein a monomer having a siloxane structure is contained as a raw material monomer of the polyimide compound.
- 上記シロキサン構造を有するモノマーが、上記ポリイミド化合物の原料モノマーの総重量に対して、55wt%以上72wt%以下の範囲で含まれる請求項2に記載のフレキシブル配線板の製造方法。 The method for producing a flexible wiring board according to claim 2, wherein the monomer having the siloxane structure is contained in a range of 55 wt% to 72 wt% with respect to the total weight of the raw material monomers of the polyimide compound.
- 上記シロキサン構造を有するモノマーが、上記ポリイミド化合物の原料の総重量に対して、60wt%以上70wt%以下の範囲で含まれる請求項2に記載のフレキシブル配線板の製造方法。 The method for producing a flexible wiring board according to claim 2, wherein the monomer having the siloxane structure is contained in a range of 60 wt% to 70 wt% with respect to a total weight of the raw material of the polyimide compound.
- シロキサン構造を有するモノマーとして、下記構造式1
(上記構造式1中のmは1以上の整数であり、nは0又は1以上の整数であり、R1及びR2は、それぞれ独立に置換されていてもよいアルキレン基である)で示されるシロキサンジアミンを含むことを特徴とする請求項2に記載のフレキシブル配線板の製造方法。 As a monomer having a siloxane structure, the following structural formula 1
(In the structural formula 1, m is an integer of 1 or more, n is 0 or an integer of 1 or more, and R 1 and R 2 are each independently an optionally substituted alkylene group) The method for producing a flexible wiring board according to claim 2, further comprising siloxane diamine. - 上記ポリイミド化合物と上記架橋剤とを反応させる工程において、上記酸素濃度が0.1vol%以下の雰囲気下となった後にポリイミド化合物と架橋剤との反応温度に加熱する請求項1に記載のフレキシブル配線板の製造方法。 2. The flexible wiring according to claim 1, wherein in the step of reacting the polyimide compound and the cross-linking agent, heating is performed to a reaction temperature between the polyimide compound and the cross-linking agent after the oxygen concentration is 0.1 vol% or less. A manufacturing method of a board.
- 上記酸二無水物は、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物を含む請求項1に記載のフレキシブル配線板の製造方法。 The method for producing a flexible wiring board according to claim 1, wherein the acid dianhydride includes 3,3 ', 4,4'-diphenylsulfonetetracarboxylic dianhydride.
- 上記ジアミンは、3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルスルホンを含む請求項1に記載のフレキシブル配線板の製造方法。 The method for producing a flexible wiring board according to claim 1, wherein the diamine contains 3,3'-diamino-4,4'-dihydroxydiphenylsulfone.
- 上記架橋剤は、複数のエポキシ基を有する請求項1に記載のフレキシブル配線板の製造方法。 The method for producing a flexible wiring board according to claim 1, wherein the crosslinking agent has a plurality of epoxy groups.
- ポリイミド組成物がオキサジン化合物を含有する請求項1記載のフレキシブル配線板の製造方法。 The method for producing a flexible wiring board according to claim 1, wherein the polyimide composition contains an oxazine compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010507286A JPWO2009125845A1 (en) | 2008-04-10 | 2009-04-10 | Manufacturing method of flexible wiring board |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-102368 | 2008-04-10 | ||
JP2008102368 | 2008-04-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009125845A1 true WO2009125845A1 (en) | 2009-10-15 |
Family
ID=41161976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/057374 WO2009125845A1 (en) | 2008-04-10 | 2009-04-10 | Method for manufacturing flexible wiring board |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2009125845A1 (en) |
TW (1) | TW200944563A (en) |
WO (1) | WO2009125845A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013097227A (en) * | 2011-11-02 | 2013-05-20 | Sumitomo Bakelite Co Ltd | Positive photosensitive resin composition, cured film, protective film, insulating film, semiconductor device and display device |
EP3310137A1 (en) * | 2016-10-14 | 2018-04-18 | ATOTECH Deutschland GmbH | Method for manufacturing a printed circuit board |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0897525A (en) * | 1994-07-13 | 1996-04-12 | Hitachi Ltd | Wiring structure and it manufacture |
JPH10265571A (en) * | 1997-01-24 | 1998-10-06 | Ube Ind Ltd | Photosensitive polyimidesiloxane, composition and insulating film |
WO2004109403A1 (en) * | 2003-06-02 | 2004-12-16 | Toray Industries, Inc. | Photosensitive resin composition, and electronic component and display using same |
JP2008038031A (en) * | 2006-08-07 | 2008-02-21 | Sony Chemical & Information Device Corp | Polyimide composition, flexible wiring board and method of producing flexible wiring board |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008018352A1 (en) * | 2006-08-08 | 2008-02-14 | Sumitomo Electric Industries, Ltd. | Photosensitive polyimide composition, positive photosensitive resin composition, and fpc |
-
2009
- 2009-04-10 TW TW098112245A patent/TW200944563A/en unknown
- 2009-04-10 JP JP2010507286A patent/JPWO2009125845A1/en active Pending
- 2009-04-10 WO PCT/JP2009/057374 patent/WO2009125845A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0897525A (en) * | 1994-07-13 | 1996-04-12 | Hitachi Ltd | Wiring structure and it manufacture |
JPH10265571A (en) * | 1997-01-24 | 1998-10-06 | Ube Ind Ltd | Photosensitive polyimidesiloxane, composition and insulating film |
WO2004109403A1 (en) * | 2003-06-02 | 2004-12-16 | Toray Industries, Inc. | Photosensitive resin composition, and electronic component and display using same |
JP2008038031A (en) * | 2006-08-07 | 2008-02-21 | Sony Chemical & Information Device Corp | Polyimide composition, flexible wiring board and method of producing flexible wiring board |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013097227A (en) * | 2011-11-02 | 2013-05-20 | Sumitomo Bakelite Co Ltd | Positive photosensitive resin composition, cured film, protective film, insulating film, semiconductor device and display device |
EP3310137A1 (en) * | 2016-10-14 | 2018-04-18 | ATOTECH Deutschland GmbH | Method for manufacturing a printed circuit board |
WO2018069421A1 (en) | 2016-10-14 | 2018-04-19 | Atotech Deutschland Gmbh | Method for manufacturing a printed circuit board |
CN109845415A (en) * | 2016-10-14 | 2019-06-04 | 德国艾托特克公司 | Method for manufacturing printed circuit board |
TWI669041B (en) * | 2016-10-14 | 2019-08-11 | 德商德國艾托特克公司 | Printed circuit board and methods for producing the same |
JP2019530986A (en) * | 2016-10-14 | 2019-10-24 | アトテック ドイチェランド ゲーエムベーハー | Method for manufacturing a printed circuit board |
US10477700B2 (en) | 2016-10-14 | 2019-11-12 | Atotech Deutschland Gmbh | Method for manufacturing a printed circuit board |
CN109845415B (en) * | 2016-10-14 | 2020-12-08 | 德国艾托特克公司 | Method for manufacturing printed circuit board |
JP7213801B2 (en) | 2016-10-14 | 2023-01-27 | アトテック ドイチェランド ゲーエムベーハー ウント コ カーゲー | Method for manufacturing a printed circuit board |
Also Published As
Publication number | Publication date |
---|---|
TW200944563A (en) | 2009-11-01 |
JPWO2009125845A1 (en) | 2011-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5426851B2 (en) | Polyimide composition, flexible wiring board, and method for producing flexible wiring board | |
TWI386433B (en) | Polyimide compounds and flexible wiring boards | |
KR101848522B1 (en) | Process for production of element substrate and composition to be used therein | |
JP2009068002A (en) | New polyimide resin and photosensitive polyimide resin composition | |
WO2010038543A1 (en) | Photosensitive siloxane polyimide resin composition | |
JP5362811B2 (en) | Raw material liquid for protective film formation, protective film, wiring board with protective film | |
JP5242958B2 (en) | Polyimide composition and flexible wiring board | |
WO2009125845A1 (en) | Method for manufacturing flexible wiring board | |
JP2008038031A (en) | Polyimide composition, flexible wiring board and method of producing flexible wiring board | |
JP2010053336A (en) | Polyimide resin | |
JP6240471B2 (en) | Reaction development image forming method | |
JPH08157597A (en) | Copolyimide and its production | |
JP4969941B2 (en) | Polyimide composition, flexible wiring board and method for producing flexible wiring board | |
JP2007217476A (en) | Novel polyimide resin | |
JP2003041189A (en) | Varnish and cross-linkable polyimide | |
JP2007099842A (en) | Novel polyimide resin | |
JP4749606B2 (en) | Epoxy group-containing polyimide copolymer and cured product thereof | |
JP5505215B2 (en) | Photosensitive polyimide resin composition, flexible printed wiring board and method for producing the same | |
JP4401893B2 (en) | Polyimide precursor resin composition | |
JP5140758B2 (en) | Wiring board | |
JP4251947B2 (en) | Polyimide film and metal laminate using the polyimide film | |
JP3143891B2 (en) | Method for producing polyamic acid and polymer obtained by dehydrating and cyclizing polyamic acid | |
JP2005200435A (en) | Polyimide film, and metal laminated plate obtained using polyimide film | |
JPH0881555A (en) | Polyimide copolymer and its production | |
JPH10152647A (en) | Polyimide-base coating material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09730183 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010507286 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09730183 Country of ref document: EP Kind code of ref document: A1 |