WO2009125593A1 - Reactor device - Google Patents

Reactor device Download PDF

Info

Publication number
WO2009125593A1
WO2009125593A1 PCT/JP2009/001644 JP2009001644W WO2009125593A1 WO 2009125593 A1 WO2009125593 A1 WO 2009125593A1 JP 2009001644 W JP2009001644 W JP 2009001644W WO 2009125593 A1 WO2009125593 A1 WO 2009125593A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
reactor
metal case
case
coils
Prior art date
Application number
PCT/JP2009/001644
Other languages
French (fr)
Japanese (ja)
Inventor
阿部徹
濱欠裕貴
菊池慶子
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008100761A external-priority patent/JP2011124242A/en
Priority claimed from JP2008209529A external-priority patent/JP2011124245A/en
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Publication of WO2009125593A1 publication Critical patent/WO2009125593A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/022Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles

Definitions

  • the present invention relates to a reactor device used in a power supply circuit.
  • the present invention relates to a reactor device suitable for use in vehicles such as hybrid vehicles or power conditioners such as solar power generation systems.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-291046
  • Patent Document 1 shows a reactor formed such that a coil provided with an insulation coating is enclosed by a mixture of an Fe-based magnetic powder and an epoxy resin.
  • the characteristics of the reactor obtained using a mixture of resin and resin mixed at a ratio of 4/6 to 1/9 with respect to the volume of the magnetic powder alone as the mixture of magnetic powder and resin have an allowable current with respect to the inductance value. It is doubled compared to the conventional one. Furthermore, by using the Fe-based magnetic powder as the magnetic powder, miniaturization has been achieved compared to conventional products.
  • the hybrid vehicle described above has a large output electric motor, and a power supply circuit for driving the motor is required to have a reactor device that can withstand a large current. Since there is a strong demand for miniaturization of such reactor devices, it is conceivable to achieve miniaturization by the method of Patent Document 1 described above.
  • Patent Document 2 discloses a coil-sealed resin-molded reactor, in which a mixture of Fe powder and resin is poured in after resin molding of two flat wire coils. It is described that a reactor can be obtained. And since this coil sealing type resin molding reactor is molded using a mixture of Fe powder and resin without using ferrite, it is possible to reduce the manufacturing cost while suppressing the deterioration and loss of the magnetic characteristics. Have been described.
  • a coil-sealed resin-molded reactor having a structure in which a mixture of magnetic powder and resin is molded to surround a coil is difficult to obtain a high magnetic powder space factor. For this reason, the relative permeability is low, and the eddy current loss generated in the coil tends to be large due to the leakage flux passing through the coil winding in the radial direction.
  • the case or coil which is a metal material conducts heat well, but the mixture of the magnetic powder and the resin is inferior in thermal conductivity. Since the coil-sealed resin molding reactor has a large eddy current loss generated in the coil, the heat generated there is contained by the mixture of magnetic powder and resin in close contact with the coil, making it difficult to conduct well to the metal case There is a problem that the heat dissipation of the reactor is not good.
  • an object of the present invention is a reactor device having a configuration in which the leakage flux to the metal case is small, and the resin molding in which the leakage flux entering the inside of the wire of the coil is reduced to suppress the eddy current loss generated in the coil. It is to provide a reactor device of Another object of the present invention is, in addition to the above-mentioned advantages, to provide a heat dissipating reactor apparatus in which heat is efficiently conducted to a metal case.
  • a reactor device concerning the 1st invention is a reactor device using a mixture containing a metal case, a coil part arranged in the metal case concerned, and magnetic powder and resin.
  • the coil section has two coils magnetically coupled, and is disposed adjacent to the bottom or side of the case via an insulating sheet having high thermal conductivity.
  • a reactor device comprises a metal case, two coils using a flat wire arranged in the metal case, and a mixture containing a magnetic powder and a resin filled in the metal case.
  • the two coils are arranged substantially in parallel and magnetically coupled, and the coils are further connected between the rectangular wires by 0.3 mm to 2 mm.
  • a gap of .5 mm is formed, and the mixture is filled in the gap.
  • the coil is preferably a reactor device whose axial direction is disposed parallel to the bottom surface of the case.
  • between the flat electric wires refers to between the adjacent flat electric wires in the coil axial direction.
  • the coil is a flat electric wire wound so that the outer shape of the axial cross section is rectangular, and at least two side surfaces of the coil are in contact with the heat conductive sheet adhered to the inner surface of the metal case. Is preferred.
  • the side surface of the coil is disposed in contact with both the bottom and the side surface of the metal case.
  • the gap between the flat wires is larger at the end side than at the center of the coil.
  • the inductance L is 200 to 450 ⁇ H when the DC superimposed current is zero amp (0 A), and high reactor characteristics can be obtained.
  • the two coils to be used are disposed to be in contact with the inner wall surface of the metal case to form an inner iron type reactor, whereby the leakage flux is greater than that of the conventional coil sealing type resin molded reactor apparatus. Can be reduced as much as possible.
  • the mixture of magnetic powder and resin is also filled in the gap between the flat electric wires, the magnetic flux is concentrated on the magnetic powder and the penetration of the magnetic flux into the inside of the electric wire can be impeded. The current loss can be reduced. Further, even if the amount of heat generated by the coil and the magnetic powder is large, the heat is efficiently conducted to the metal case.
  • the gap between the flat wires is 0.3 mm or more, the filling of the magnetic powder is easy and the sufficient amount of the magnetic powder is filled, so the magnetic flux inside the wire even in the high operating magnetic flux density region Can block the entry of Moreover, if the space
  • the two coils wound with the flat wire are wound in a rectangular shape and at least two of the side surfaces are in contact with the inner wall surface of the metal case via the high thermal conductivity sheet, they are generated by the coils Heat is efficiently conducted to the metal case through the mixture between the coils. As a result, the heat dissipation during reactor operation is improved.
  • the reactor size and loss are designed in a well-balanced manner, and the inductance L is 200 at DC superimposed current of 0 A
  • the present invention is particularly useful as a vehicle reactor or power conditioner reactor device because it exhibits a value in the range of 450 ⁇ H.
  • FIG. 18 is a schematic view showing the result of analysis of case loss occurring on the bottom surface of the metal case when the reactor device of Example 3-1 is operated. It is the schematic which shows the result of having analyzed the case loss which generate
  • FIG. 1 is a perspective view showing an example of a reactor device of the present invention.
  • the shape of the aluminum metal case 10 differs depending on the application of the reactor device and the like.
  • the reactor body is cooled by water-cooling a part of the case or by coupling it to a water-cooled cooling device (not shown).
  • the high thermal conductive sheet 11 having an insulating property is attached to the inner surface of the aluminum alloy case 10.
  • the high thermal conductivity sheet 11 is attached only to the side surface, but may be attached to both the bottom surface and the side surface.
  • the high thermal conductive sheet 11 for example, a flexible silicon sheet manufactured by Denki Kagaku Kogyo Co., Ltd., or a graphite sheet to which insulating property is added manufactured by Matsushita Electric Industrial Co., Ltd. can be used.
  • the thickness of the high thermal conductivity sheet 11 is preferably from 0.1 mm to 3 mm in consideration of the heat dissipation and the installation space.
  • the high thermal conductive sheet 11 is attached to the coil portion 12 (with an insulation coating) in which the first coil 21a and the second coil 21b shown in FIG. 3 are magnetically coupled and the ends are connected. Install in contact with the surface.
  • the insulating spacer 13 is disposed between the two coils.
  • the mixture 14 of magnetic powder and resin is poured into the aluminum alloy case 10. At this time, since the mixture 14 is filled up to the gap between the flat electric wires of the coil portion 12, the coil portion 12 is more firmly fixed and held.
  • FIG. 1 shows a state in which the mixture 14 is solidified and the reactor device of the present invention is completed.
  • no pressure is required since the mixture is poured by gravity when filling the mixture.
  • the filling rate may be increased by applying air pressure or the like, or bubbles may be removed from the inside of the mixture or between the windings of the coil under reduced pressure.
  • the mixture does not necessarily have to immerse the entire coil, and even if a portion of the upper surface of the coil is visible, it can withstand practical use.
  • FIG. 4A and 4B are respectively a cross-sectional view taken along the line AA and a cross-sectional view taken along the line BB of the reactor apparatus shown in FIG.
  • Arrows shown in FIG. 4A schematically show the flow direction of the magnetic flux when a current is supplied to the coil portion 12.
  • the magnetic flux passes through the inner diameter portion of the coil and flows back.
  • the magnetic flux from one side passes through the mixture 14 filled between the end of the coil 12 and the metal case 10, and flows back through the mixture filled in the inner diameter of the other coil.
  • magnetic powder for example, pure Fe powder, Fe-Si alloy powder, Fe-Al alloy powder, Fe-Si-Al alloy powder, Fe-Ni alloy powder, Fe-Co alloy powder, amorphous soft magnetic powder, nano Crystalline soft magnetic powder can be used. Moreover, these magnetic powders may be used alone, or may be used as a combined powder as appropriate.
  • the magnetic powder may be a spherical powder produced by atomization, or a powder obtained by pulverizing a band-like magnetic thin strip may be used.
  • a spherical magnetic powder is preferable to increase the filling rate, but if it has a uniform particle size, a gap is easily formed between the magnetic powder, it is preferable to use a powder mixture with a fine powder that fills the gap. .
  • a nonmagnetic filler when added to a composite of magnetic powder and resin, high relative permeability can be obtained even in a high magnetic field. Therefore, according to the specification of a product, a nonmagnetic filler can be added suitably and a magnetic characteristic can be adjusted suitably.
  • the nonmagnetic filler ceramic powders such as silica, alumina, magnesia and the like, quartz glass powder and the like can be used.
  • the resin has a role of covering the surface of the magnetic powder described above to insulate the powders from each other. It is preferable to insulate so as to provide a sufficiently large electrical resistance so as to suppress the generation of an eddy current with respect to AC magnetization of the entire magnetic core.
  • the resin also functions as a binder for binding these magnetic powders.
  • resin various resin, such as an epoxy resin, a polyamide resin, a polyimide resin, a polyester resin, a silicone resin, can be used, for example. These resins may be used alone or in combination as appropriate.
  • the coil portion 12 is preferably disposed adjacent to the bottom and the pair of side surfaces of the case via a thermally conductive sheet having an insulating property. Since the bottom portion and the side surface of the coil portion 12 are in thermal contact with the metal case 10 (or the heat conductive sheet 11), the copper loss heat of the coil portion 12 is efficiently dissipated to the outside of the reactor.
  • the heat conductive sheet 11 preferably has a heat conductivity of 0.5 W / (m ⁇ K) or more.
  • the insulating film of the coil portion 12 does not peel off by sliding with the case, and the aging of the reactor characteristics occurs Can be suppressed.
  • a rectangular copper wire is wound in a rectangular shape, and the outer peripheral side surface of the coil is flat. Therefore, the area adjacent to the case (heat conductive sheet) is large, and the cooling performance is high.
  • the rectangular copper wire is preferably wound so that the thin thickness direction is parallel to the axial direction of the coil. For example, as shown in FIG. 3 and FIG. 6, a coil in which a flat wire is vertically wound is preferable.
  • the reactor apparatus of the present invention adopting such a structure has high reliability. It is particularly useful to use such a reactor device for on-vehicle use and power conditioners.
  • Example 1 In the reactor apparatus of the present embodiment, an aluminum metal case 10 having a width of 86 mm, a length of 123 to 206 mm, and a height of 53 mm was used as a housing.
  • the thickness of the metal case 10 is 3 mm.
  • a high thermal conductivity sheet 11 On the inner surface of the metal case 10, a high thermal conductivity sheet 11 with a thickness of 1 mm is attached.
  • the high thermal conductivity sheet 11 is a flexible silicon sheet manufactured by Denki Kagaku Kogyo Co., Ltd.
  • the coil portion 12 is disposed inside the metal case 10 described above.
  • the coil unit 12 is configured by magnetically connecting two coils 21a and 21b in parallel.
  • Each of the coils 21a and 21b is formed by winding a rectangular copper wire (width 6 mm, thickness 1.6 mm) in a rectangular shape, and is 38 turns wide 36 mm, length 72.2 to 155.8 mm, height 48 mm Is a coil of Therefore, the total number of turns of the coil section 12 is 76.
  • the intervals in the thickness direction of the rectangular copper wire in the coil portion 12 are 0.3 mm (Example 1-1), 0.6 mm (Example 1-2), 1.0 mm (1.0 mm).
  • Example 1-3 1.5 mm (Example 1-4), 2.0 mm (Example 1-5), 2.5 mm (Example 1-6).
  • the coil portion 12 was placed at the center of the aluminum metal case 10 and in such a manner that the outer peripheral surface (only the side surface) of the coil portion 12 was in contact with the high thermal conductivity sheet 11. Further, an insulating member (insulating spacer) 13 is provided between the two coils 21a and 21b in order to improve voltage resistance between the coils.
  • the mixture 14 was poured into an aluminum metal case 10 in which the coil portion 12 was installed, and poured so that the upper surface thereof was flush with the upper surface of the coil portion 12. Thereafter, the entire metal case 10 was heated to 120 ° C. and tapped to fill the space between the copper wires of the rectangular copper wire with the mixture 14. After this filling, it was kept at 120 ° C. for 2 hours to cure the resin.
  • the inductance of the reactor thus produced was measured using an LCR meter.
  • the measurement conditions are a frequency of 10 kHz, a voltage of 0.5 Vrms, and a DC superimposed current of 0 A.
  • the obtained results are shown in Table 1.
  • this reactor device was mounted as an inductor of a boost type DC-DC converter with a driving frequency of 10 kHz, and was driven at an input voltage of 200 V, a DC superimposed current of 20 A, and a frequency of 10 kHz. And under this condition, the reactor loss at the time of reactor operation was examined.
  • Example 1 An aluminum metal case having the same shape as that of Example 1 (1-1 to 1-6) was used except that the length dimension of the case was changed to 119 to 225 mm. Further, as in the first embodiment, the high thermal conductivity sheet is attached to the inner surface of the metal case.
  • a coil portion is disposed inside the metal case.
  • the coil unit is configured by magnetically coupling two coils in parallel.
  • Each of these coils is a rectangular winding of a rectangular copper wire (width 6 mm, thickness 1.6 mm) and is a 38-turn coil having a width of 36 mm and a height of 48 mm. Therefore, the total number of turns of the coil portion is 76.
  • the coil of Comparative Example 1-1 has a length of 68.4 mm (a gap of 0.2 mm between rectangular copper wires), and the coil of Comparative Example 1-2 has a length of 174.8 mm (a gap of 3.0 mm). The coil part of the kind was produced.
  • Example 1 As in Example 1, this coil portion was placed at the center of the metal case made of aluminum so that the outer peripheral surface (only the side surface) of the coil portion was in contact with the high thermal conductivity sheet. And the same mixture 14 as Example 1 was prepared, and it carried out similarly to Example 1, and produced the reactor apparatus.
  • Comparative Example 1-1 and Comparative Example 1-2 the mixture 14 was filled in the gaps between the rectangular copper wires, and in Comparative Example 1-3, the gaps between the copper wires were filled with only the resin.
  • the electromagnetic field analysis was performed about each of the reactor apparatus of the Example of this invention, and the reactor apparatus of a comparative example.
  • FIG. 7 shows calculated results (flux distribution calculation value) of the magnetic flux entering the inside of the rectangular copper wire constituting the coil using the reactor devices of Example 1-2 of the present invention and Comparative Example 1-3 as models.
  • FIG. 7 shows calculated results (flux distribution calculation value) of the magnetic flux entering the inside of the rectangular copper wire constituting the coil using the reactor devices of Example 1-2 of the present invention and Comparative Example 1-3 as models.
  • FIG. 8 shows the DC bias characteristics of the reactor device of Example 1-2.
  • FIG. 1 is schematic views of a conventional reactor device manufactured as Comparative Example 2.
  • the metal case, the coil, and the high thermal conductivity sheet are the same as in Example 1-2, and a powder compact is used for the magnetic core.
  • the cross-sectional area of the core leg 16 disposed inside the coil is 20.5 mm ⁇ 32 mm, and the magnetic core leg 16 is provided with a magnetic gap 15.
  • the width of the magnetic gap 15 is 1.1 mm each, for a total of 8 locations. did.
  • a magnetic gap 15 (width: 1.1 mm) was also provided between the core leg 16 and the core joint 17.
  • the core joining portion 17 is a block having a width of 60 mm in the longitudinal direction and a height of 32 mm.
  • the core joining portion 17 is not in a rectangular parallelepiped shape, and a projecting portion is formed toward the inside of the coil.
  • Table 2 shows the results of measurement of DC copper loss, AC copper loss, core loss, and coil linkage flux loss for each of the reactor device of Example 1-2 and the reactor device of Comparative Example 2 of the above-described configuration. Also, these losses were summed to obtain the sum of losses.
  • the reactor apparatus of the embodiment 1-2 of the present invention has a smaller total sum of losses compared to the reactor apparatus 2 of the comparative example 2, and high reactor performance is obtained.
  • Example 2 As Example 2, the reactor apparatus of the present invention was manufactured in the same manner as Example 1 except that the metal case made of aluminum and the coil shape were changed. The same metal case, heat conductive sheet, insulating spacer, and mixture of magnetic powder and resin as used in Example 1 are used.
  • the coil is the same as in Example 1; the flat copper wire having a width of 6 mm and a thickness of 1.6 mm is 36 mm wide and long
  • Two 38-turn coils were prepared to be 91.2 mm in length and 48 mm in height, and were connected in parallel to form 76 turns.
  • the gap between the rectangular copper wires at the center of each coil is 0.6 mm, and the gap between the rectangular copper wires at the end of the coil is 1.0 mm.
  • flat rectangular copper wire was wound in the shape of a rectangle so that the interval might spread gradually toward the end from a central part.
  • the inductance measurement by the LCR meter was performed under the same conditions (frequency 10 kHz, voltage 0.5 Vrms, superimposed DC current 0 A) as the reactor apparatus using this coil as described in the first embodiment.
  • the reactor loss of the reactor system of the second embodiment is 31 W, which is much lower than that of the reactor system of the embodiment 1-2 shown in Table 1 (the gap of the flat copper wire is uniformly 0.6 mm). is there.
  • the loss of the reactor device of Example 2 is substantially the same value as that of the reactor device of Example 1-3 (with the gap of the flat copper wire being uniformly 1.0 mm). This fact means that the leakage magnetic flux can be efficiently reduced by widening the gap of the flat copper wire on the end side, and the entire length of the coil can be shortened, so that miniaturization can be achieved.
  • Example 3 In Example 3, it was investigated how the heat dissipation of the reactor changed when the mixture 14 was filled and when it was not filled between the rectangular copper wires. Also in the present example, a reactor was manufactured in the same procedure as in Example 1.
  • Example 3 6 parts by weight of magnesia powder having an average particle diameter of 0.2 ⁇ m and an epoxy resin were added to Fe-6.5% Si powder having an average particle diameter of 60 ⁇ m and a tap density of 5.0 g / cm 3. 10 parts by weight was added to obtain a mixture 14 comprising magnetic powder, insulating oxide powder and resin. The magnetic powder space factor of this mixture 14 is 63%. Then, the mixture 14 was poured into an aluminum metal case 10 in which the coil portion 12 is installed, and poured so that the upper surface thereof was flush with the upper surface of the coil portion 12. Apart from this, the metal case, the heat conductive sheet and the insulating spacer used are the same as in the first embodiment.
  • the distance between flat rectangular copper wires of the coil is 0.4 mm (Example 3-1), 0.8 mm (Example 3-2), 1.2 mm (Example 3-3), 1.6 mm (Example 3)
  • the reactor of this example was manufactured by changing -4) and 2.0 mm (Example 3-4).
  • the gap between the rectangular copper wires is filled with a resin to substantially make the magnetic permeability 1, and the same reactor as described above (comparative examples 3-1 to 3) is other than that. -5) was produced.
  • reactors are mounted as an inductor of a boost type DC-DC converter with a driving frequency of 10 kHz, driven at an input voltage of 200 V, a DC superimposed current of 20 A, and a frequency of 10 kHz, to obtain a voltage of 500 V as a converter output.
  • the temperature difference between the inside of the reactor and the surface of the reactor during operation was investigated.
  • the temperature difference between the inside of the reactor and the surface of the case 10 made of aluminum is smaller than that in the comparative example. This is because the magnetic powder filled in the thickness direction of the rectangular copper wire efficiently conducted the heat generated by the coil of the reactor and the magnetic powder to the aluminum case. Moreover, since equivalent heat dissipation is obtained by copper wire intervals narrower than a comparative example, it turns out that it is suitable for miniaturization of a reactor.
  • heat dissipation is further improved by changing the axial cross-sectional shape of a coil, and increasing the contact area of a coil side surface and a heat conductive sheet.
  • a reactor satisfying the required heat dissipation can be obtained.
  • the coil shape also affects reactor performance such as superposition characteristics, it is necessary to design appropriately to satisfy the required value required.
  • Example 4 a reactor apparatus of the present invention was manufactured in which the axis of the coil was disposed perpendicular to the bottom of the case.
  • FIG. 10 is a perspective view showing the metal case used in the present example, and a metal case 10 made of aluminum having a width of 86 mm, a length of 136 mm and a height of 44 to 81 mm was used for the reactor device of the present example.
  • the thickness of this case is 3 mm.
  • the metal case has a 1 mm thick high thermal conductivity sheet attached to the inner surface.
  • This high thermal conductivity sheet is a flexible silicon sheet manufactured by Denki Kagaku Kogyo Co., Ltd.
  • FIG. 6 is a perspective view showing the shape of the coil portion 12 disposed inside the above-mentioned metal case, and this coil portion 12 is a rectangular copper wire having a width of 6 mm and a thickness of 1.2 mm and wound in a rectangular shape.
  • Two 17-turn coils 22a and 22b wound so as to have a width of 50 mm, a length of 26 to 63 mm, and a height of 78 mm were connected in parallel to form 34 turns.
  • the distance in the thickness direction of the rectangular copper wire in the coil portion 12 is a value shown in Table 4 as Examples 4-1 to 4-5.
  • the coil portion 12 is disposed at the center of a metal case made of aluminum and in such a manner that the outer peripheral surface of the coil portion 12 contacts the high thermal conductivity sheet.
  • an insulating spacer 13 is provided between the coils 22a and 22b in order to improve the voltage resistance between the two coils.
  • the mixture 14 consisting of the same magnetic powder, insulating oxide powder and resin as in Example 3 is poured into the metal case 10 in which the coil is disposed. The top of the mixture was flush with the top of the metal case.
  • the entire aluminum case is heated to 120 ° C. and tapped to fill the gaps between the copper wires of the rectangular copper wire with the mixture of the magnetic powder and the resin. After this filling, the resin is held at 120 ° C. for 2 hours, and the resin is cured to form a reactor device.
  • FIG. 11 is a schematic view of a reactor device obtained by the above-described procedure.
  • 12A and 12B are schematic views of a CC cross section and a DD cross section of the reactor device shown in FIG. 11, respectively.
  • This reactor apparatus was mounted as an inductor of a boost type DC-DC converter with a driving frequency of 10 kHz. Driving was performed at an input voltage of 200 V, a DC superimposed current of 20 A, and a frequency of 10 kHz, and a voltage of 500 V was obtained as a converter output. And the temperature difference between the inside of the reactor and the surface of the reactor at the time of reactor operation under this condition was examined. The results are shown in Table 4.
  • the reactor between the rectangular copper wires was filled with resin, and the reactor powder (Comparative Examples 4-1 to 4-5) in which the magnetic powder was not filled between the rectangular copper wires was also manufactured. It evaluated similarly.
  • FIG. 13 is a diagram showing the results of measuring the DC bias characteristics of the reactor devices of Example 3-1 and Example 4-1 under the conditions of a frequency of 10 kHz and a signal voltage of 0.5 Vrms.
  • Example 5 In Example 5, the reactor device of Example 3-1 in which the axis of the coil was parallel to the bottom surface of the metal case was compared with the reactor device of Example 4-1 in which the axis of the coil was perpendicular to the bottom surface of the metal case . In the said comparison, when metal case 10 was made into the same dimension and direct current resistance of coil part 12 was made into the same conditions, analysis evaluated which reactor loss was large by analysis.
  • FIG. 14A and 14B are schematic views of analysis results of reactor loss. These figures are the result of measuring the case loss at the time of operating a reactor apparatus, and FIG. 14A shows the case loss which generate
  • the reactor apparatus of Example 3-1 remains in partial loss although the case loss is large between the ends of the coil.
  • the case loss is still large between the ends of the coil, and in addition to that, a portion with a large case loss appears so as to cross the bottom of the case.
  • Table 5 summarizes the results of measurement of DC copper loss, AC copper loss, core loss, coil linkage flux loss, and case loss of the reactor devices of Example 3-1 and Example 4-1.
  • the sum of DC copper loss, AC copper loss, core loss, and coil linkage flux loss is smaller in the reactor apparatus of Example 3-1 than in the reactor apparatus of Example 4-1. Also, the case loss is smaller in the reactor apparatus of Example 3-1. Furthermore, in the sum of all losses, the reactor apparatus of Example 3-1 in which the coil is disposed in parallel to the bottom of the case is 30% or more smaller than the reactor apparatus of Example 4-1.
  • the loss is smaller in the reactor device in which the axis of the coil is parallel to the bottom of the case.
  • the present invention is a reactor device having a configuration in which the leakage flux itself to the metal case is small, and the leakage flux entering the wire of the coil is reduced to reduce the eddy current loss generated in the coil. It is possible to provide a suppressed resin molded reactor device. Further, according to the present invention, in addition to the above advantages, it is possible to provide a highly heat dissipating reactor device in which heat is efficiently conducted to the metal case.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

A high heat transfer sheet (11) having insulating characteristics is adhered on an inner surface of a metal case (10). In a coil section (12), a first coil (21a) and a second coil (21b) wherein a rectangular cable is used are magnetically coupled and connected at the end portions. The coil section is arranged in contact with the surface whereupon the high heat transfer sheet (11) is adhered. An insulating spacer (13) is arranged between the two coils. A mixture (14) of a magnetic powdery material and a resin is applied into the metal case (10). The two coils (21a, 21b) are arranged substantially in parallel and magnetically coupled, and furthermore, in the coils, a gap of 0.3mm to 2.5mm is formed between the rectangular cables, and the gap is filled with the mixture.

Description

リアクトル装置Reactor device 関連する出願Related application
 本出願は、2008年4月8日に日本国に出願された特許出願番号2008-100761および2008年8月18日に日本国に出願された特許出願番号2008-209529の利益を主張する。これらの出願の内容は全て、引用によりここに組み込まれているものとする。 This application claims the benefit of patent application number 2008-100761 filed in Japan on April 8, 2008 and patent application number 2008-209529 filed in Japan on August 18, 2008. The contents of all of these applications are incorporated herein by reference.
 本発明は、電源回路に用いられるリアクトル装置に関するものである。特に、ハイブリッド自動車などの車載用、あるいは太陽光発電システムなどのパワーコンディショナー用などの用途に適するリアクトル装置に関するものである。 The present invention relates to a reactor device used in a power supply circuit. In particular, the present invention relates to a reactor device suitable for use in vehicles such as hybrid vehicles or power conditioners such as solar power generation systems.
 リアクトルの製造方法として、磁性粉末と樹脂の混合体を成形してコイルを囲覆した構造をもつコイル封止型樹脂成形リアクトルが知られている。例えば、特開平5-291046号公報(特許文献1)には、絶縁被覆を施したコイルが、Fe基磁性粉末とエポキシ系樹脂との混合物により包み込まれるように成形されたリアクトルが示されている。磁性粉末と樹脂の混合体として、樹脂を磁性粉末のみの体積に対して4/6から1/9の割合で混合させたものを用いて得られたリアクトルの特性は、インダクタンス値に対する許容電流が従来比で2倍となる。さらに、磁性粉末としてFe基磁性粉末を使用したことで、従来品に比較して小型化が達成されている。 As a method of manufacturing a reactor, a coil-sealed resin-molded reactor having a structure in which a mixture of magnetic powder and resin is molded to enclose a coil is known. For example, Japanese Patent Laid-Open No. 5-291046 (Patent Document 1) shows a reactor formed such that a coil provided with an insulation coating is enclosed by a mixture of an Fe-based magnetic powder and an epoxy resin. . The characteristics of the reactor obtained using a mixture of resin and resin mixed at a ratio of 4/6 to 1/9 with respect to the volume of the magnetic powder alone as the mixture of magnetic powder and resin have an allowable current with respect to the inductance value. It is doubled compared to the conventional one. Furthermore, by using the Fe-based magnetic powder as the magnetic powder, miniaturization has been achieved compared to conventional products.
 前述したハイブリッド自動車は大出力の電気モータを有しており、これを駆動する電源回路には大電流に耐えうるリアクトル装置が求められている。このようなリアクトル装置には小型化の要求が強いため、前述した特許文献1の方法により、小型化を図ることが考えられる。 The hybrid vehicle described above has a large output electric motor, and a power supply circuit for driving the motor is required to have a reactor device that can withstand a large current. Since there is a strong demand for miniaturization of such reactor devices, it is conceivable to achieve miniaturization by the method of Patent Document 1 described above.
 また、特開2007-19402号公報(特許文献2)は、コイル封止型樹脂成形リアクトルを開示しており、二つの平角電線コイルを樹脂モールドした後、Fe粉と樹脂の混合物を流し入れることでリアクトルが得られることが記載されている。そして、このコイル封止型樹脂成形リアクトルは、フェライトを用いずにFe粉と樹脂の混合物を使って成形されるために、磁気特性の劣化や損失を抑止しつつ製造コスト低減が可能であると記載されている。 Further, Japanese Patent Application Laid-Open No. 2007-19402 (Patent Document 2) discloses a coil-sealed resin-molded reactor, in which a mixture of Fe powder and resin is poured in after resin molding of two flat wire coils. It is described that a reactor can be obtained. And since this coil sealing type resin molding reactor is molded using a mixture of Fe powder and resin without using ferrite, it is possible to reduce the manufacturing cost while suppressing the deterioration and loss of the magnetic characteristics. Have been described.
 磁性粉末と樹脂の混合体を成形してコイルを囲覆した構造をもつコイル封止型樹脂成形リアクトルは、高い磁性粉末占積率が得られ難い。このため、比透磁率が低く、コイルの巻線を径方向に通過する漏れ磁束によりコイルで発生する渦電流損失が大きくなり易い。 A coil-sealed resin-molded reactor having a structure in which a mixture of magnetic powder and resin is molded to surround a coil is difficult to obtain a high magnetic powder space factor. For this reason, the relative permeability is low, and the eddy current loss generated in the coil tends to be large due to the leakage flux passing through the coil winding in the radial direction.
 また、放熱性の観点からは、金属材であるケースやコイルは熱を良好に伝導するが、磁性粉末と樹脂の混合体は熱伝導性に劣る。コイル封止型樹脂成形リアクトルは、コイルで発生する渦電流損失が大きいため、そこで発生する熱がコイルに密着する磁性粉末と樹脂の混合体によって封じ込められ、金属製ケースに良好に伝導し難くなり、リアクトルの放熱性が良くないという問題がある。 Further, from the viewpoint of heat dissipation, the case or coil which is a metal material conducts heat well, but the mixture of the magnetic powder and the resin is inferior in thermal conductivity. Since the coil-sealed resin molding reactor has a large eddy current loss generated in the coil, the heat generated there is contained by the mixture of magnetic powder and resin in close contact with the coil, making it difficult to conduct well to the metal case There is a problem that the heat dissipation of the reactor is not good.
 よって、本発明の課題は、金属ケースへの漏れ磁束自体が少ない構成のリアクトル装置であって、コイルの電線内部に進入する漏れ磁束を低減してコイルに発生する渦電流損失を抑えた樹脂成形のリアクトル装置を提供することである。本発明の更なる課題は、上記の利点に加え、熱が効率良く金属製ケースに伝導される、放熱性の良いリアクトル装置を提供することである。 Therefore, an object of the present invention is a reactor device having a configuration in which the leakage flux to the metal case is small, and the resin molding in which the leakage flux entering the inside of the wire of the coil is reduced to suppress the eddy current loss generated in the coil. It is to provide a reactor device of Another object of the present invention is, in addition to the above-mentioned advantages, to provide a heat dissipating reactor apparatus in which heat is efficiently conducted to a metal case.
 このような課題を解決するために、第1の発明に係るリアクトル装置は、金属ケースと、当該金属ケース内に配置されたコイル部と、磁性粉末と樹脂を含む混合物を用いたリアクトル装置であって、上記コイル部は、磁気的に結合された2個のコイルを有し、かつ、高熱伝導性を有する絶縁性シートを介してケースの底部または側面に隣接するように配置される。 In order to solve such a subject, a reactor device concerning the 1st invention is a reactor device using a mixture containing a metal case, a coil part arranged in the metal case concerned, and magnetic powder and resin. The coil section has two coils magnetically coupled, and is disposed adjacent to the bottom or side of the case via an insulating sheet having high thermal conductivity.
 また、第2の発明に係るリアクトル装置は、金属ケースと、当該金属ケース内に配置された平角電線を用いた2つのコイルと、上記金属ケース内に充填された磁性粉末と樹脂を含む混合物とで主に構成された内鉄型のリアクトル装置であり、上記2つのコイルは、実質的に平行に配置されて磁気的に結合され、さらに前記コイルは平角電線同士の間に0.3mmから2.5mmの隙間が形成されて前記混合物がこの隙間に充填されていることを特徴とする。 A reactor device according to a second aspect of the present invention comprises a metal case, two coils using a flat wire arranged in the metal case, and a mixture containing a magnetic powder and a resin filled in the metal case. The two coils are arranged substantially in parallel and magnetically coupled, and the coils are further connected between the rectangular wires by 0.3 mm to 2 mm. A gap of .5 mm is formed, and the mixture is filled in the gap.
 コイルは軸方向がケースの底面に対して平行に配置されるリアクトル装置とすることが好ましい。コイルの軸方向がケースの底面に対して垂直にしたリアクトル装置よりもケースで発生する渦電流損失が小さいリアクトル装置が得られる。 The coil is preferably a reactor device whose axial direction is disposed parallel to the bottom surface of the case. The reactor device in which the eddy current loss generated in the case is smaller than that of the reactor device in which the axial direction of the coil is perpendicular to the bottom surface of the case is obtained.
 ここで、平角電線同士の間とは、コイル軸方向の隣り合う平角電線同士の間を指す。 Here, between the flat electric wires refers to between the adjacent flat electric wires in the coil axial direction.
 コイルは軸断面の外形が矩形状になるよう平角電線が巻かれたものであり、かつ、コイルの少なくとも2つの側面が金属製ケースの内面に接着された熱伝導シートにそれぞれ接触していることが好ましい。また、コイルの側面が金属ケースの底部と側面の両面に接するように配置されていることが好ましい。この構造とすることで本発明のリアクトル装置は放熱性に優れている。コイルの外周面の30%以上が熱伝導シートに接触していることがなお好ましい。 The coil is a flat electric wire wound so that the outer shape of the axial cross section is rectangular, and at least two side surfaces of the coil are in contact with the heat conductive sheet adhered to the inner surface of the metal case. Is preferred. Preferably, the side surface of the coil is disposed in contact with both the bottom and the side surface of the metal case. By adopting this structure, the reactor device of the present invention is excellent in heat dissipation. More preferably, at least 30% of the outer peripheral surface of the coil is in contact with the heat conductive sheet.
 平角電線間の隙間は、コイルの中央部よりも端部側の方が大きく開いていることが好ましい。コイル間の隙間を中央部と端部で変えることで漏れ磁束を極力少なくできる。 It is preferable that the gap between the flat wires is larger at the end side than at the center of the coil. By changing the gap between the coils at the center and at the end, the leakage flux can be minimized.
 この構成のリアクトル装置は直流重畳電流がゼロアンペア(0A)時のインダクタンスLが200~450μHであり高いリアクトル特性が得られる。 In the reactor apparatus of this configuration, the inductance L is 200 to 450 μH when the DC superimposed current is zero amp (0 A), and high reactor characteristics can be obtained.
 本発明のリアクトル装置によれば、使用する2つのコイルを金属ケースの内壁面に接するように配置して内鉄型リアクトルとしたことで、従来のコイル封止型樹脂成形リアクトル装置よりも漏れ磁束を極力減らすことができる。これに加えて、平角電線の間の隙間にも磁性粉末と樹脂からなる混合物を充填するので、磁性粉末に磁束が集中し電線内部への磁束の進入を妨げることができ、コイルに発生する渦電流損失を低減することができる。また、コイルや磁性粉末で発生する熱量が多くても、効率良く熱が金属製ケースに伝導する。 According to the reactor apparatus of the present invention, the two coils to be used are disposed to be in contact with the inner wall surface of the metal case to form an inner iron type reactor, whereby the leakage flux is greater than that of the conventional coil sealing type resin molded reactor apparatus. Can be reduced as much as possible. In addition to this, since the mixture of magnetic powder and resin is also filled in the gap between the flat electric wires, the magnetic flux is concentrated on the magnetic powder and the penetration of the magnetic flux into the inside of the electric wire can be impeded. The current loss can be reduced. Further, even if the amount of heat generated by the coil and the magnetic powder is large, the heat is efficiently conducted to the metal case.
 このとき、平角電線の間の隙間が0.3mm以上であれば、磁性粉末の充填が容易であり、十分な量の磁性粉末が充填されるので、高い動作磁束密度領域でも電線内部への磁束の進入を妨げることができる。また、平角電線の厚さ方向の間隔が2.5mm以下であれば、コイルが占有する体積が少ないので、小型のリアクトル装置が作製できる。 At this time, if the gap between the flat wires is 0.3 mm or more, the filling of the magnetic powder is easy and the sufficient amount of the magnetic powder is filled, so the magnetic flux inside the wire even in the high operating magnetic flux density region Can block the entry of Moreover, if the space | interval of the thickness direction of a flat electric wire is 2.5 mm or less, since the volume which a coil occupies is small, a small reactor apparatus can be produced.
 また、コイルの軸がケースの底面に対して平行に配置されているので、ケースへの漏れ磁束が小さくなり、ケースでの渦電流損失(ケース損)が小さいリアクトルを得ることができる。 In addition, since the axis of the coil is disposed in parallel to the bottom of the case, the leakage flux to the case becomes small, and a reactor with small eddy current loss (case loss) in the case can be obtained.
 また、平角電線を巻いた2つのコイルは矩形状に巻かれ、かつ側面の少なくとも2面が高熱伝導シートを介して金属製ケースの内壁面に接するように配置されているので、コイルで発生する熱がコイル間の混合物を通って効率良く金属製ケースに伝導する。その結果、リアクトル動作時の放熱性が良くなる。 In addition, since the two coils wound with the flat wire are wound in a rectangular shape and at least two of the side surfaces are in contact with the inner wall surface of the metal case via the high thermal conductivity sheet, they are generated by the coils Heat is efficiently conducted to the metal case through the mixture between the coils. As a result, the heat dissipation during reactor operation is improved.
 さらに、平角電線の厚さ方向の間隔が0.3mm~2.5mmの範囲であれば、リアクトルのサイズ及び損失がバランス良く設計された上で、直流重畳電流が0A時のインダクタンスLが200~450μHの範囲の値を示すので、本発明は車載用やパワーコンディショナー用のリアクトル装置として特に有用である。 Furthermore, if the distance in the thickness direction of the flat wire is in the range of 0.3 mm to 2.5 mm, the reactor size and loss are designed in a well-balanced manner, and the inductance L is 200 at DC superimposed current of 0 A The present invention is particularly useful as a vehicle reactor or power conditioner reactor device because it exhibits a value in the range of 450 μH.
本発明のリアクトル装置の概略図である。It is the schematic of the reactor apparatus of this invention. 本発明に係る金属ケースを示す斜視図である。It is a perspective view showing the metal case concerning the present invention. 本発明に係る第一のコイルと第二のコイルを示す斜視図である。It is a perspective view showing the 1st coil concerning the present invention, and the 2nd coil. 図1に示したリアクトル装置のA-A断面の模式図である。It is a schematic diagram of the AA cross section of the reactor apparatus shown in FIG. 図1に示したリアクトル装置のB-B断面の模式図である。It is a schematic diagram of the BB cross section of the reactor apparatus shown in FIG. リアクトル装置の製造工程を説明する図である。It is a figure explaining the manufacturing process of a reactor apparatus. 本発明に係るコイル部を示す斜視図である。It is a perspective view showing a coil part concerning the present invention. 本発明の実施例と比較例の磁束分布計算値を示した図である。It is the figure which showed the magnetic flux distribution calculation value of the Example of this invention, and a comparative example. 本発明のリアクトル装置の直流重畳特性を示す図である。It is a figure which shows the direct current superposition characteristic of the reactor apparatus of this invention. 従来のリアクトル装置の概略図である。It is the schematic of the conventional reactor apparatus. 従来のリアクトル装置の概略図である。It is the schematic of the conventional reactor apparatus. 本発明に係る金属ケースを示す斜視図である。It is a perspective view showing the metal case concerning the present invention. 本発明の別のリアクトル装置の概略図である。It is the schematic of another reactor apparatus of this invention. 図11に示したリアクトル装置のC-C断面の模式図である。It is a schematic diagram of the CC cross section of the reactor apparatus shown in FIG. 図11に示したリアクトル装置のD-D断面の模式図である。It is a schematic diagram of the DD cross section of the reactor apparatus shown in FIG. 本発明のリアクトル装置の直流重畳特性を示す図である。It is a figure which shows the direct current superposition characteristic of the reactor apparatus of this invention. 実施例3-1のリアクトル装置を稼動させたときに金属ケースの底面で発生するケース損を解析した結果を示す概略図である。FIG. 18 is a schematic view showing the result of analysis of case loss occurring on the bottom surface of the metal case when the reactor device of Example 3-1 is operated. 実施例4-1のリアクトル装置を稼動させたときに金属ケースの底面で発生するケース損を解析した結果を示す概略図である。It is the schematic which shows the result of having analyzed the case loss which generate | occur | produces at the bottom face of a metal case when the reactor apparatus of Example 4-1 is operated.
 本発明のリアクトル装置の製作工程例を図1から図5を使って説明する。図1は本発明のリアクトル装置の一例を示す斜視図である。アルミニウム製の金属ケース10はリアクトル装置の用途などにより形状が異なる。車載用では、本ケースの一部を水冷するか、あるいは水冷された冷却装置(図示せず)に結合させることでリアクトル素体を冷却する。 An example of the manufacturing process of the reactor device of the present invention will be described using FIGS. 1 to 5. FIG. 1 is a perspective view showing an example of a reactor device of the present invention. The shape of the aluminum metal case 10 differs depending on the application of the reactor device and the like. In the on-vehicle application, the reactor body is cooled by water-cooling a part of the case or by coupling it to a water-cooled cooling device (not shown).
 図2に図示したように、アルミニウム合金性ケース10の内面には、絶縁性を有する高熱伝導シート11が付着される。なお、本実施例では、側面のみに高熱伝導シート11を貼り付けたが、底面と側面の両方に貼り付けてもよい。 As illustrated in FIG. 2, the high thermal conductive sheet 11 having an insulating property is attached to the inner surface of the aluminum alloy case 10. In the present embodiment, the high thermal conductivity sheet 11 is attached only to the side surface, but may be attached to both the bottom surface and the side surface.
 高熱伝導シート11としては、例えば、電気化学工業(株)製の柔軟性シリコンシート、あるいは、松下電器産業(株)製の絶縁性を付加したグラファイトシートなどを用いることができる。高熱伝導シート11の厚さは、放熱性と設置スペースとの兼ね合いから、0.1mmから3mmのものが好ましい。 As the high thermal conductive sheet 11, for example, a flexible silicon sheet manufactured by Denki Kagaku Kogyo Co., Ltd., or a graphite sheet to which insulating property is added manufactured by Matsushita Electric Industrial Co., Ltd. can be used. The thickness of the high thermal conductivity sheet 11 is preferably from 0.1 mm to 3 mm in consideration of the heat dissipation and the installation space.
 次に、図3に示した第1のコイル21aと第2のコイル21bを磁気的に結合して端部を繋いだコイル部12(絶縁被覆付き)を、高熱伝導シート11が付着されている面に接触するように設置する。 Next, the high thermal conductive sheet 11 is attached to the coil portion 12 (with an insulation coating) in which the first coil 21a and the second coil 21b shown in FIG. 3 are magnetically coupled and the ends are connected. Install in contact with the surface.
 また、2つのコイル間の耐電圧性を向上させるために、図4Aと図5に示したように、2つのコイルの間に絶縁スペーサ13を配置する。 Also, in order to improve the voltage resistance between the two coils, as shown in FIGS. 4A and 5, the insulating spacer 13 is disposed between the two coils.
 次に、磁性粉末と樹脂との混合物14を、アルミニウム合金製ケース10に注入する。このとき、混合物14はコイル部12の平角電線間の隙間まで充填されるので、コイル部12はより強固に固定保持される。 Next, the mixture 14 of magnetic powder and resin is poured into the aluminum alloy case 10. At this time, since the mixture 14 is filled up to the gap between the flat electric wires of the coil portion 12, the coil portion 12 is more firmly fixed and held.
 図1は、混合物14が固まって本発明のリアクトル装置が完成した状態を示す。混合物を充填する際は重力によって流し込まれるので基本的には加圧は不要である。しかし、混合物を充填した後に空圧などをかけて充填率を高めてもよいし、減圧下において混合物の内部やコイルの巻線間の気泡などを抜いてもよい。また、混合物は必ずしもコイル全体を埋没させる必要はなく、コイルの上面の一部が見えていても実用に耐えることができる。 FIG. 1 shows a state in which the mixture 14 is solidified and the reactor device of the present invention is completed. Basically, no pressure is required since the mixture is poured by gravity when filling the mixture. However, after filling the mixture, the filling rate may be increased by applying air pressure or the like, or bubbles may be removed from the inside of the mixture or between the windings of the coil under reduced pressure. In addition, the mixture does not necessarily have to immerse the entire coil, and even if a portion of the upper surface of the coil is visible, it can withstand practical use.
 図4A及び図4Bはそれぞれ、図1に示したリアクトル装置のA-A断面図及びB-B断面図である。図4A中に示した矢印は、コイル部12に電流を流したときの磁束の流れる向きを簡略して示したものである。本発明のリアクトル装置は、2つのコイル21a,21bが磁気的に結合しているので、コイルの内径部に磁束が通って還流する。一方の側から出た磁束はコイル12の端部と金属ケース10の間に充填された混合物14を通過して、他方のコイルの内径部に充填された混合物を通って還流する。 4A and 4B are respectively a cross-sectional view taken along the line AA and a cross-sectional view taken along the line BB of the reactor apparatus shown in FIG. Arrows shown in FIG. 4A schematically show the flow direction of the magnetic flux when a current is supplied to the coil portion 12. In the reactor device of the present invention, since the two coils 21a and 21b are magnetically coupled, the magnetic flux passes through the inner diameter portion of the coil and flows back. The magnetic flux from one side passes through the mixture 14 filled between the end of the coil 12 and the metal case 10, and flows back through the mixture filled in the inner diameter of the other coil.
 磁性粉末としては、例えば、純Feの粉、Fe-Si合金粉、Fe-Al合金粉、Fe-Si-Al合金粉、Fe-Ni合金粉、Fe-Co合金粉、アモルファス軟磁性粉、ナノ結晶質軟磁性粉などを用いることができる。また、これらの磁性粉末は、単独で用いても良いし、適宜、組合せた粉末として用いても良い。 As magnetic powder, for example, pure Fe powder, Fe-Si alloy powder, Fe-Al alloy powder, Fe-Si-Al alloy powder, Fe-Ni alloy powder, Fe-Co alloy powder, amorphous soft magnetic powder, nano Crystalline soft magnetic powder can be used. Moreover, these magnetic powders may be used alone, or may be used as a combined powder as appropriate.
 さらに、これらの磁性粉末は、アトマイズによって作製された球状粉末でもよいし、帯状の磁性薄帯材から粉砕して得たものを使用してもよい。充填率を上げるためには球状の磁性粉末が好ましいが、一律な粒径のものだと磁性粉末間に隙間ができ易いので、その隙間を埋めるような微細粉との混合粉とすることが好ましい。 Furthermore, the magnetic powder may be a spherical powder produced by atomization, or a powder obtained by pulverizing a band-like magnetic thin strip may be used. A spherical magnetic powder is preferable to increase the filling rate, but if it has a uniform particle size, a gap is easily formed between the magnetic powder, it is preferable to use a powder mixture with a fine powder that fills the gap. .
 また、磁性粉末及び樹脂の混成物に対して非磁性フィラーを加えると、高磁界中でも高比透磁率を得ることができる。そのため、製品の仕様に応じて、非磁性フィラーを適当量添加して、磁気特性を適宜調整することができる。非磁性フィラーとしては、シリカ、アルミナ、マグネシアなどのセラミック粉末、石英ガラス粉などが使用できる。 In addition, when a nonmagnetic filler is added to a composite of magnetic powder and resin, high relative permeability can be obtained even in a high magnetic field. Therefore, according to the specification of a product, a nonmagnetic filler can be added suitably and a magnetic characteristic can be adjusted suitably. As the nonmagnetic filler, ceramic powders such as silica, alumina, magnesia and the like, quartz glass powder and the like can be used.
 樹脂は、上述した磁性粉の表面を被覆して粉末相互間を絶縁状態する役割をもつ。磁心全体の交流磁化に対する渦電流の発生を抑えるよう、充分に大きな電気抵抗を付与するよう絶縁することが好ましい。また、樹脂はこれら磁性粉末を結着する結合剤としても機能する。 The resin has a role of covering the surface of the magnetic powder described above to insulate the powders from each other. It is preferable to insulate so as to provide a sufficiently large electrical resistance so as to suppress the generation of an eddy current with respect to AC magnetization of the entire magnetic core. The resin also functions as a binder for binding these magnetic powders.
 樹脂としては、例えば、エポキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂、シリコン樹脂など各種の樹脂を用いることができる。これらの樹脂は、単独で使用しても良いし、適宜組合せて使用しても良い。 As resin, various resin, such as an epoxy resin, a polyamide resin, a polyimide resin, a polyester resin, a silicone resin, can be used, for example. These resins may be used alone or in combination as appropriate.
 コイル部12は、絶縁性をもつ熱伝導性シートを介してケースの底部および一対の側面に隣接するように配置することが好ましい。コイル部12の底部と側面が金属ケース10(または熱伝導性シート11)に接して熱的に結合しているため、コイル部12の銅損熱が効率的にリアクトル外部に放熱される。熱伝導性シート11は0.5W/(m・K)以上の熱伝導性を持つものが好ましい。 The coil portion 12 is preferably disposed adjacent to the bottom and the pair of side surfaces of the case via a thermally conductive sheet having an insulating property. Since the bottom portion and the side surface of the coil portion 12 are in thermal contact with the metal case 10 (or the heat conductive sheet 11), the copper loss heat of the coil portion 12 is efficiently dissipated to the outside of the reactor. The heat conductive sheet 11 preferably has a heat conductivity of 0.5 W / (m · K) or more.
 また、コイル部12は、熱伝導性シート11を介して金属ケース10に接触することとなるため、コイル部12の絶縁皮膜がケースとの摺動によって剥れることがなく、リアクトル特性の経年劣化を抑制できる。 In addition, since the coil portion 12 contacts the metal case 10 through the heat conductive sheet 11, the insulating film of the coil portion 12 does not peel off by sliding with the case, and the aging of the reactor characteristics occurs Can be suppressed.
 さらに、コイルは平角銅線が矩形状に巻かれており、コイルの外周側面が平らになっている。このため、ケース(熱伝導性シート)と隣接する面積が大きく、冷却性能が高い。平角銅線は、薄肉の厚さ方向がコイルの軸方向と平行になるように巻くことが好ましい。例えば、図3や図6で示すような、平角電線を縦巻きにしたコイルが好ましい。 Furthermore, in the coil, a rectangular copper wire is wound in a rectangular shape, and the outer peripheral side surface of the coil is flat. Therefore, the area adjacent to the case (heat conductive sheet) is large, and the cooling performance is high. The rectangular copper wire is preferably wound so that the thin thickness direction is parallel to the axial direction of the coil. For example, as shown in FIG. 3 and FIG. 6, a coil in which a flat wire is vertically wound is preferable.
 また、コイルとコイルの間に絶縁部材13を設けると、コイル間の耐電圧性が向上してリアクトル性能が高くなる。従って、大電流を流したときでもコイルの温度上昇が抑制される。したがって、このような構造を採用した本発明のリアクトル装置は、高い信頼性をもつことになる。このようなリアクトル装置は、車載用やパワーコンディショナー用として用いることが特に有用である。 Moreover, when the insulating member 13 is provided between the coils, the voltage resistance between the coils is improved and the reactor performance is enhanced. Therefore, even when a large current flows, the temperature rise of the coil is suppressed. Therefore, the reactor apparatus of the present invention adopting such a structure has high reliability. It is particularly useful to use such a reactor device for on-vehicle use and power conditioners.
 以下に、本発明を実施例によって具体的に説明するが、これら実施例により本発明が限定されるものではない。 EXAMPLES The present invention will be specifically described below by way of Examples, but the present invention is not limited by these Examples.
(実施例1)
 本実施例のリアクトル装置では、筐体として、幅86mm、長さ123~206mm、高さ53mmのアルミニウム製の金属ケース10を用いた。この金属ケース10の肉厚は3mmである。金属ケース10の内面には、厚さ1mmの高熱伝導シート11が貼り付けられている。なお、高熱伝導シート11は、電気化学工業(株)製の柔軟性シリコンシートである。
Example 1
In the reactor apparatus of the present embodiment, an aluminum metal case 10 having a width of 86 mm, a length of 123 to 206 mm, and a height of 53 mm was used as a housing. The thickness of the metal case 10 is 3 mm. On the inner surface of the metal case 10, a high thermal conductivity sheet 11 with a thickness of 1 mm is attached. The high thermal conductivity sheet 11 is a flexible silicon sheet manufactured by Denki Kagaku Kogyo Co., Ltd.
 上記の金属ケース10の内部には、コイル部12が配置される。コイル部12は、2つのコイル21a,21bを並列に磁気的に繋げて構成されている。コイル21a,21bは何れも、平角銅線(幅6mm、厚さ1.6mm)を矩形状に巻いたものであり、幅36mm、長さ72.2~155.8mm、高さ48mmの38巻きのコイルである。従って、コイル部12の全巻数は76巻となる。 The coil portion 12 is disposed inside the metal case 10 described above. The coil unit 12 is configured by magnetically connecting two coils 21a and 21b in parallel. Each of the coils 21a and 21b is formed by winding a rectangular copper wire (width 6 mm, thickness 1.6 mm) in a rectangular shape, and is 38 turns wide 36 mm, length 72.2 to 155.8 mm, height 48 mm Is a coil of Therefore, the total number of turns of the coil section 12 is 76.
 このコイル部12における平角銅線の厚さ方向の間隔は、表1に示したように、0.3mm(実施例1-1)、0.6mm(実施例1-2)、1.0mm(実施例1-3)、1.5mm(実施例1-4)、2.0mm(実施例1-5)、2.5mm(実施例1-6)である。 As shown in Table 1, the intervals in the thickness direction of the rectangular copper wire in the coil portion 12 are 0.3 mm (Example 1-1), 0.6 mm (Example 1-2), 1.0 mm (1.0 mm). Example 1-3), 1.5 mm (Example 1-4), 2.0 mm (Example 1-5), 2.5 mm (Example 1-6).
(表1)
Figure JPOXMLDOC01-appb-I000001
(Table 1)
Figure JPOXMLDOC01-appb-I000001
 このコイル部12を、アルミニウム製の金属ケース10の中央で、かつ、コイル部12の外周面(側面のみ)が高熱伝導シート11に接触するように設置した。また、2つのコイル21a,21bの間には、これらコイル間の耐電圧性を向上させるために、絶縁部材(絶縁性のスペーサ)13を設置した。 The coil portion 12 was placed at the center of the aluminum metal case 10 and in such a manner that the outer peripheral surface (only the side surface) of the coil portion 12 was in contact with the high thermal conductivity sheet 11. Further, an insulating member (insulating spacer) 13 is provided between the two coils 21a and 21b in order to improve voltage resistance between the coils.
 次に、平均粒径が60μmのFe-6.5%Si粉末(タップ密度5.0g/cm)に、エポキシ樹脂を10重量部添加し、磁性粉末と樹脂からなる混合物14を得た。なお、この混合物14の磁性粉末占積率は67%である。 Next, 10 parts by weight of an epoxy resin was added to Fe-6.5% Si powder (tap density 5.0 g / cm 3 ) having an average particle diameter of 60 μm, to obtain a mixture 14 composed of magnetic powder and resin. In addition, the magnetic powder space factor of this mixture 14 is 67%.
 この混合物14を、コイル部12を設置したアルミニウム製の金属ケース10の中に注ぎ、その上面がコイル部12の上面と同じ高さになるまで流し込んだ。その後、この金属ケース10全体を120℃に熱し、タッピングして、平角銅線の銅線間の隙間に混合物14を充填させた。この充填の後、120℃の状態で2時間保ち、樹脂を硬化させた。 The mixture 14 was poured into an aluminum metal case 10 in which the coil portion 12 was installed, and poured so that the upper surface thereof was flush with the upper surface of the coil portion 12. Thereafter, the entire metal case 10 was heated to 120 ° C. and tapped to fill the space between the copper wires of the rectangular copper wire with the mixture 14. After this filling, it was kept at 120 ° C. for 2 hours to cure the resin.
 このようにして製作したリアクトル装置のインダクタンスを、LCRメータを用いて測定した。測定条件は、周波数10kHz、電圧0.5Vrms、直流重畳電流0Aである。得られた結果を、表1に示した。 The inductance of the reactor thus produced was measured using an LCR meter. The measurement conditions are a frequency of 10 kHz, a voltage of 0.5 Vrms, and a DC superimposed current of 0 A. The obtained results are shown in Table 1.
 表1から分かるように、実施例1-1~1-6のインダクタンスは、200~450μHの範囲に入っている。従って、これら実施例のものは、リアクトル装置として動作させるのに適していることが理解できる。 As can be seen from Table 1, the inductances of Examples 1-1 to 1-6 fall within the range of 200 to 450 μH. Therefore, it can be understood that these examples are suitable for operating as a reactor device.
 次に、このリアクトル装置を、駆動周波数10kHzのブースト型DC-DCコンバータのインダクタとして搭載し、入力電圧200V、直流重畳電流20A、周波数10kHzにおいて駆動させたところ、コンバータ出力として電圧500Vを得た。そして、この条件の下で、リアクトル動作時のリアクトル損失を調べた。 Next, this reactor device was mounted as an inductor of a boost type DC-DC converter with a driving frequency of 10 kHz, and was driven at an input voltage of 200 V, a DC superimposed current of 20 A, and a frequency of 10 kHz. And under this condition, the reactor loss at the time of reactor operation was examined.
 その結果、表1に示すように、実施例1-1~1-6のもののリアクトル損失は31~35Wであり、低損失であることが確認された。 As a result, as shown in Table 1, the reactor losses of Examples 1-1 to 1-6 were 31 to 35 W, and it was confirmed that the losses were low.
(比較例1)
 筐体の長さ寸法を119~225mmと変えた以外は、実施例1(1-1~1-6)のものと同じ形状のアルミニウム製の金属ケースを用いた。また、実施例1と同様に、金属ケースの内面には高熱伝導シートが貼り付けられている。
(Comparative example 1)
An aluminum metal case having the same shape as that of Example 1 (1-1 to 1-6) was used except that the length dimension of the case was changed to 119 to 225 mm. Further, as in the first embodiment, the high thermal conductivity sheet is attached to the inner surface of the metal case.
 金属ケースの内部には、コイル部が配置される。実施例1と同様に、コイル部は、2つのコイルを並列に磁気的に結合させて構成されている。これらのコイルは何れも、平角銅線(幅6mm、厚さ1.6mm)を矩形状に巻いたものであり、幅36mm、高さ48mmの38巻きのコイルである。従って、コイル部の全巻数は76巻となる。なお、比較例1-1のコイルは長さ68.4mm(平角銅線間の隙間0.2mm)とし、比較例1-2のコイルは長さ174.8mm(隙間3.0mm)として、2種類のコイル部を作製した。 A coil portion is disposed inside the metal case. As in the first embodiment, the coil unit is configured by magnetically coupling two coils in parallel. Each of these coils is a rectangular winding of a rectangular copper wire (width 6 mm, thickness 1.6 mm) and is a 38-turn coil having a width of 36 mm and a height of 48 mm. Therefore, the total number of turns of the coil portion is 76. The coil of Comparative Example 1-1 has a length of 68.4 mm (a gap of 0.2 mm between rectangular copper wires), and the coil of Comparative Example 1-2 has a length of 174.8 mm (a gap of 3.0 mm). The coil part of the kind was produced.
 実施例1と同様に、このコイル部を、アルミニウム製の金属ケースの中央で、かつ、コイル部の外周面(側面のみ)が高熱伝導シートに接触するように設置した。そして、実施例1と同じ混合物14を準備し、実施例1と同様にしてリアクトル装置を作製した。 As in Example 1, this coil portion was placed at the center of the metal case made of aluminum so that the outer peripheral surface (only the side surface) of the coil portion was in contact with the high thermal conductivity sheet. And the same mixture 14 as Example 1 was prepared, and it carried out similarly to Example 1, and produced the reactor apparatus.
 なお、比較例1-1及び比較例1-2では平角銅線間の隙間に混合物14を充填し、比較例1-3では銅線間の隙間を樹脂のみで埋めた。 In Comparative Example 1-1 and Comparative Example 1-2, the mixture 14 was filled in the gaps between the rectangular copper wires, and in Comparative Example 1-3, the gaps between the copper wires were filled with only the resin.
 表1から分かるように比較例1-1及び比較例1-2のインダクタンスは200~450μHの範囲に入っていないので、リアクトルとして動作させるのに適していないことが分かる。同様にしてリアクトル損失を調べると、表1に示すように比較例1-3のリアクトル損失は43Wであり、平角銅線間の隙間に磁性粉末を充填した場合と比較して損失が高いことが確認できる。 As can be seen from Table 1, since the inductances of Comparative Example 1-1 and Comparative Example 1-2 do not fall within the range of 200 to 450 μH, it is understood that they are not suitable for operation as a reactor. Similarly, when the reactor loss is examined, as shown in Table 1, the reactor loss of Comparative Example 1-3 is 43 W, and the loss is higher than when the magnetic powder is filled in the gaps between the rectangular copper wires. It can confirm.
 本発明の実施例のリアクトル装置と比較例のリアクトル装置のそれぞれについて、電磁界解析を行った。 The electromagnetic field analysis was performed about each of the reactor apparatus of the Example of this invention, and the reactor apparatus of a comparative example.
 図7は、本発明の実施例1-2と比較例1-3のリアクトル装置をモデルとして、コイルを構成する平角銅線内部に進入する磁束を計算した結果(磁束分布計算値)を示した図である。 FIG. 7 shows calculated results (flux distribution calculation value) of the magnetic flux entering the inside of the rectangular copper wire constituting the coil using the reactor devices of Example 1-2 of the present invention and Comparative Example 1-3 as models. FIG.
 この結果から明らかなように、実施例のものでは銅線内部に進入する磁束は少ないのに対して、比較例のものでは銅線内部に進入する磁束が実施例のものよりも多い。実施例のリアクトル装置が低損失である理由は、平角銅線の厚さ方向に充填した磁性粉末が銅線内部に進入する磁束を抑制し、それにより生ずる渦電流損失を低減させたためと推察される。 As is clear from this result, while the magnetic flux entering the inside of the copper wire is small in the example, the magnetic flux entering the inside of the copper wire is larger in the comparative example than in the example. The reason why the reactor apparatus of the example has low loss is presumed to be that the magnetic powder filled in the thickness direction of the rectangular copper wire suppresses the magnetic flux entering the inside of the copper wire and reduces the eddy current loss caused thereby. Ru.
 また、図8に、実施例1-2のリアクトル装置の直流重畳特性を示した。 Further, FIG. 8 shows the DC bias characteristics of the reactor device of Example 1-2.
(比較例2)
 図9A及び図9Bは、比較例2として作製した、従来のリアクトル装置の概略図である。このリアクトル装置では、金属ケース、コイル、及び高熱伝導シートは実施例1-2と同じものを用いており、磁心には圧粉体を用いている。コイル内部に配置する磁心脚部16の断面積は20.5mm×32mmとし、磁心脚部16には磁気ギャップ15を設け、その磁気ギャップ15の幅は各1.1mmとし、計8箇所で配置した。また、磁心脚部16と磁心継部17の間にも磁気ギャップ15(幅1.1mm)を設けた。
(Comparative example 2)
9A and 9B are schematic views of a conventional reactor device manufactured as Comparative Example 2. FIG. In this reactor device, the metal case, the coil, and the high thermal conductivity sheet are the same as in Example 1-2, and a powder compact is used for the magnetic core. The cross-sectional area of the core leg 16 disposed inside the coil is 20.5 mm × 32 mm, and the magnetic core leg 16 is provided with a magnetic gap 15. The width of the magnetic gap 15 is 1.1 mm each, for a total of 8 locations. did. A magnetic gap 15 (width: 1.1 mm) was also provided between the core leg 16 and the core joint 17.
 磁心継部17は、縦方向の幅が60mmで高さは32mmのブロックである。磁心継部17は直方体形状ではなく、コイル内部に向けて突出部が形成されている。 The core joining portion 17 is a block having a width of 60 mm in the longitudinal direction and a height of 32 mm. The core joining portion 17 is not in a rectangular parallelepiped shape, and a projecting portion is formed toward the inside of the coil.
 表2は、実施例1-2のリアクトル装置と、上述の構成の比較例2のリアクトル装置それぞれの、直流銅損、交流銅損、磁心損失、コイル鎖交磁束損失を測定した結果である。また、これらの損失を総計して損失の総和を求めた。 Table 2 shows the results of measurement of DC copper loss, AC copper loss, core loss, and coil linkage flux loss for each of the reactor device of Example 1-2 and the reactor device of Comparative Example 2 of the above-described configuration. Also, these losses were summed to obtain the sum of losses.
(表2)
Figure JPOXMLDOC01-appb-I000002
(Table 2)
Figure JPOXMLDOC01-appb-I000002
 本発明の実施例1-2のリアクトル装置の方が、比較例2のリアクトル装置2に比較して損失の総和が少なく、高いリアクトル性能が得られている。 The reactor apparatus of the embodiment 1-2 of the present invention has a smaller total sum of losses compared to the reactor apparatus 2 of the comparative example 2, and high reactor performance is obtained.
(実施例2)
 実施例2として、アルミニウム製の金属ケースとコイル形状を変えた以外は実施例1と同様にして、本発明のリアクトル装置を製作した。用いた金属ケース、熱伝導シート、絶縁スペーサ、及び磁性粉末と樹脂の混合物とも、実施例1と同じものを用いている。
(Example 2)
As Example 2, the reactor apparatus of the present invention was manufactured in the same manner as Example 1 except that the metal case made of aluminum and the coil shape were changed. The same metal case, heat conductive sheet, insulating spacer, and mixture of magnetic powder and resin as used in Example 1 are used.
 具体的には、幅86mm、長さ142mm、高さ53のアルミニウム製の金属ケース10を用い、コイルは実施例1と同じ、幅6mm、厚さ1.6mmの平角銅線が幅36mm、長さ91.2mm、高さ48mmになるように巻かれた38巻きのコイルを2つ準備し、それを並列に繋げて76巻きとした。但し、この各コイルの中央部での平角銅線間の隙間は0.6mmとし、コイルの端部での平角銅線間の隙間は1.0mmと変えている。そして、平角銅線を、中央部から端部に向かって徐々にその間隔が広がるように矩形状に巻いた。 Specifically, using a metal case 10 made of aluminum having a width of 86 mm, a length of 142 mm and a height of 53, the coil is the same as in Example 1; the flat copper wire having a width of 6 mm and a thickness of 1.6 mm is 36 mm wide and long Two 38-turn coils were prepared to be 91.2 mm in length and 48 mm in height, and were connected in parallel to form 76 turns. However, the gap between the rectangular copper wires at the center of each coil is 0.6 mm, and the gap between the rectangular copper wires at the end of the coil is 1.0 mm. And flat rectangular copper wire was wound in the shape of a rectangle so that the interval might spread gradually toward the end from a central part.
 このコイルを用いたリアクトル装置を、実施例1で説明したのと同様の条件(周波数10kHz、電圧0.5Vrms、直流重畳電流0A)で、LCRメータによるインダクタンス測定を行なった。 The inductance measurement by the LCR meter was performed under the same conditions (frequency 10 kHz, voltage 0.5 Vrms, superimposed DC current 0 A) as the reactor apparatus using this coil as described in the first embodiment.
 実施例2のリアクトル装置のリアクトル損失は31Wであり、表1に示した実施例1-2のリアクトル装置(平角銅線の隙間を一律0.6mmにしたもの)よりも、遥かに低損失である。実施例2のリアクトル装置の損失は、実施例1-3のリアクトル装置(平角銅線の隙間を一律1.0mmにしたもの)のものと略同じ値である。この事実は、端部側の平角銅線の隙間を広げることで効率良く漏れ磁束を少なくできるとともに、コイルの全長を短くできるので小型化を図ることができることを意味している。 The reactor loss of the reactor system of the second embodiment is 31 W, which is much lower than that of the reactor system of the embodiment 1-2 shown in Table 1 (the gap of the flat copper wire is uniformly 0.6 mm). is there. The loss of the reactor device of Example 2 is substantially the same value as that of the reactor device of Example 1-3 (with the gap of the flat copper wire being uniformly 1.0 mm). This fact means that the leakage magnetic flux can be efficiently reduced by widening the gap of the flat copper wire on the end side, and the entire length of the coil can be shortened, so that miniaturization can be achieved.
(実施例3)
 実施例3では、平角銅線の間に混合物14を充填した場合と充填しなかった場合に、リアクトルの放熱性がどのように変わるかを調べた。本実施例においても、実施例1と同様の手順により、リアクトルを製作した。
(Example 3)
In Example 3, it was investigated how the heat dissipation of the reactor changed when the mixture 14 was filled and when it was not filled between the rectangular copper wires. Also in the present example, a reactor was manufactured in the same procedure as in Example 1.
 実施例3においては、平均粒径が60μmでタップ密度が5.0g/cmのFe-6.5%Si粉末に、平均粒径が0.2μmのマグネシア粉末を6重量部、エポキシ樹脂を10重量部添加し、磁性粉末と絶縁酸化物粉末と樹脂からなる混合物14を得た。この混合物14の磁性粉末占積率は63%である。そして、この混合物14をコイル部12の設置してあるアルミニウム製の金属ケース10の中に注ぎ、その上面がコイル部12の上面と同じ高さになるまで流し込んだ。この他は、用いた金属ケース、熱伝導シート、絶縁スペーサともに、実施例1と同じものである。 In Example 3, 6 parts by weight of magnesia powder having an average particle diameter of 0.2 μm and an epoxy resin were added to Fe-6.5% Si powder having an average particle diameter of 60 μm and a tap density of 5.0 g / cm 3. 10 parts by weight was added to obtain a mixture 14 comprising magnetic powder, insulating oxide powder and resin. The magnetic powder space factor of this mixture 14 is 63%. Then, the mixture 14 was poured into an aluminum metal case 10 in which the coil portion 12 is installed, and poured so that the upper surface thereof was flush with the upper surface of the coil portion 12. Apart from this, the metal case, the heat conductive sheet and the insulating spacer used are the same as in the first embodiment.
 コイルの平角銅線間の距離は、0.4mm(実施例3-1)、0.8mm(実施例3-2)、1.2mm(実施例3-3)、1.6mm(実施例3-4)、2.0mm(実施例3-4)と変えて本実施例のリアクトルを作製した。なお、これらの実施例との対比のため、比較例として、平角銅線の隙間を樹脂で埋めて実質的に透磁率1とし、それ以外は上記と同様のリアクトル(比較例3-1~3-5)を作製した。 The distance between flat rectangular copper wires of the coil is 0.4 mm (Example 3-1), 0.8 mm (Example 3-2), 1.2 mm (Example 3-3), 1.6 mm (Example 3) The reactor of this example was manufactured by changing -4) and 2.0 mm (Example 3-4). For comparison with these examples, as a comparative example, the gap between the rectangular copper wires is filled with a resin to substantially make the magnetic permeability 1, and the same reactor as described above (comparative examples 3-1 to 3) is other than that. -5) was produced.
 これらのリアクトルを、駆動周波数10kHzのブースト型DC-DCコンバータのインダクタとして搭載し、入力電圧200V、直流重畳電流20A、周波数10kHzにおいて駆動し、コンバータ出力として電圧500Vを得て、この条件でのリアクトル動作時のリアクトル内部とリアクトル表面の温度差を調べた。 These reactors are mounted as an inductor of a boost type DC-DC converter with a driving frequency of 10 kHz, driven at an input voltage of 200 V, a DC superimposed current of 20 A, and a frequency of 10 kHz, to obtain a voltage of 500 V as a converter output. The temperature difference between the inside of the reactor and the surface of the reactor during operation was investigated.
 上記条件下での評価結果は、表3に示すとおりである。 The evaluation results under the above conditions are as shown in Table 3.
 実施例3-1~3-5のものは何れも、リアクトル内部とアルミニウム製ケース10の表面の温度差が比較例のものと比較して小さい。これは、平角銅線の厚さ方向に充填した磁性粉末が、リアクトルのコイル及び磁性粉末で発生した熱を効率良くアルミニウム製ケースに伝導したためである。また、比較例よりも狭い銅線間隔で同等の放熱性が得られることから、リアクトルの小型化に適していることがわかる。 In any of Examples 3-1 to 3-5, the temperature difference between the inside of the reactor and the surface of the case 10 made of aluminum is smaller than that in the comparative example. This is because the magnetic powder filled in the thickness direction of the rectangular copper wire efficiently conducted the heat generated by the coil of the reactor and the magnetic powder to the aluminum case. Moreover, since equivalent heat dissipation is obtained by copper wire intervals narrower than a comparative example, it turns out that it is suitable for miniaturization of a reactor.
 なお、放熱性は、コイルの軸断面形状を変えて、コイル側面と熱伝導シートとの接触面積を増やすことにより、さらに向上する。コイルの外周面の面積が30%以上熱伝導シートと接触していると、要求される放熱性を満たすリアクトルが得られる。但し、コイル形状は重畳特性などのリアクトル性能にも影響を与えるため、求められる要求値を満たすように適宜設計する必要がある。 In addition, heat dissipation is further improved by changing the axial cross-sectional shape of a coil, and increasing the contact area of a coil side surface and a heat conductive sheet. When the area of the outer peripheral surface of the coil is in contact with the heat conduction sheet by 30% or more, a reactor satisfying the required heat dissipation can be obtained. However, since the coil shape also affects reactor performance such as superposition characteristics, it is necessary to design appropriately to satisfy the required value required.
(表3)
Figure JPOXMLDOC01-appb-I000003
(Table 3)
Figure JPOXMLDOC01-appb-I000003
(実施例4)
 実施例4では、コイルの軸がケース底面に対して垂直になるように配置される本発明のリアクトル装置を製作した。
(Example 4)
In Example 4, a reactor apparatus of the present invention was manufactured in which the axis of the coil was disposed perpendicular to the bottom of the case.
 図10は、本実施例で用いた金属ケースを示す斜視図で、本実施例のリアクトル装置には、幅86mm、長さ136mm、高さ44~81mmのアルミニウム製の金属ケース10を用いた。このケースの肉厚は3mmである。金属ケースは内面に厚さ1mmの高熱伝導シートが貼り付けられている。この高熱伝導シートは電気化学工業(株)製の柔軟性シリコンシートである。 FIG. 10 is a perspective view showing the metal case used in the present example, and a metal case 10 made of aluminum having a width of 86 mm, a length of 136 mm and a height of 44 to 81 mm was used for the reactor device of the present example. The thickness of this case is 3 mm. The metal case has a 1 mm thick high thermal conductivity sheet attached to the inner surface. This high thermal conductivity sheet is a flexible silicon sheet manufactured by Denki Kagaku Kogyo Co., Ltd.
 図6は、上述の金属ケースの内部に配置されるコイル部12の形状を示す斜視図で、このコイル部12は、幅6mm、厚さ1.2mmの平角銅線を矩形状に巻いたものであり、幅50mm、長さ26~63mm、高さ78mmになるよう巻かれた17巻きのコイル22a,22bを2つ並列に繋げて34巻きとした。このコイル部12における平角銅線の厚さ方向の間隔は、表4に実施例4-1~4-5として示した値とした。 FIG. 6 is a perspective view showing the shape of the coil portion 12 disposed inside the above-mentioned metal case, and this coil portion 12 is a rectangular copper wire having a width of 6 mm and a thickness of 1.2 mm and wound in a rectangular shape. Two 17- turn coils 22a and 22b wound so as to have a width of 50 mm, a length of 26 to 63 mm, and a height of 78 mm were connected in parallel to form 34 turns. The distance in the thickness direction of the rectangular copper wire in the coil portion 12 is a value shown in Table 4 as Examples 4-1 to 4-5.
 このコイル部12は、アルミニウム製の金属ケースの中央で、かつ、コイル部12の外周面が高熱伝導シートに接触するように設置される。また、各コイル22a,22bの間には、2つのコイル間の耐電圧性を向上させるため、間に絶縁性スペーサ13が設置される。このコイルが配置された金属ケース10の内部には、実施例3と同じ磁性粉末と絶縁酸化物粉末と樹脂からなる混合物14が流し込まれる。その混合物の上面は金属ケースの上面と同じ高さとした。 The coil portion 12 is disposed at the center of a metal case made of aluminum and in such a manner that the outer peripheral surface of the coil portion 12 contacts the high thermal conductivity sheet. In addition, an insulating spacer 13 is provided between the coils 22a and 22b in order to improve the voltage resistance between the two coils. The mixture 14 consisting of the same magnetic powder, insulating oxide powder and resin as in Example 3 is poured into the metal case 10 in which the coil is disposed. The top of the mixture was flush with the top of the metal case.
 その後、このアルミケースは、全体を120℃に熱せられ、タッピングされて、平角銅線の銅線間の隙間に磁性粉末と樹脂の混合物が充填される。この充填の後、120℃の状態で2時間保持され、樹脂が硬化されてリアクトル装置となる。 Thereafter, the entire aluminum case is heated to 120 ° C. and tapped to fill the gaps between the copper wires of the rectangular copper wire with the mixture of the magnetic powder and the resin. After this filling, the resin is held at 120 ° C. for 2 hours, and the resin is cured to form a reactor device.
 図11は、上述の手順で得られたリアクトル装置の概略図である。また、図12A及び図12Bはそれぞれ、図11に示したリアクトル装置のC-C断面及びD-D断面の模式図である。このリアクトル装置を、駆動周波数10kHzのブースト型DC-DCコンバータのインダクタとして搭載した。入力電圧200V、直流重畳電流20A、周波数10kHzにおいて駆動し、コンバータ出力として電圧500Vを得た。そして、この条件でのリアクトル動作時のリアクトル内部とリアクトル表面の温度差を調べた。その結果を表4に示す。 FIG. 11 is a schematic view of a reactor device obtained by the above-described procedure. 12A and 12B are schematic views of a CC cross section and a DD cross section of the reactor device shown in FIG. 11, respectively. This reactor apparatus was mounted as an inductor of a boost type DC-DC converter with a driving frequency of 10 kHz. Driving was performed at an input voltage of 200 V, a DC superimposed current of 20 A, and a frequency of 10 kHz, and a voltage of 500 V was obtained as a converter output. And the temperature difference between the inside of the reactor and the surface of the reactor at the time of reactor operation under this condition was examined. The results are shown in Table 4.
 なお、比較のため、平角銅線間を樹脂埋めして、磁性粉末を平角銅線間に充填させなかったリアクトル装置(比較例4-1~4-5)も作製して、実施例のものと同様に評価した。 In addition, for comparison, the reactor between the rectangular copper wires was filled with resin, and the reactor powder (Comparative Examples 4-1 to 4-5) in which the magnetic powder was not filled between the rectangular copper wires was also manufactured. It evaluated similarly.
 表4に纏めた結果から、実施例3で説明した結果と同様に、混合物を充填させた本発明のリアクトル装置は、従来のリアクトル装置に比較して、放熱性能が高いことが解る。 From the results summarized in Table 4, it is understood that the reactor device of the present invention filled with the mixture has a higher heat radiation performance than the conventional reactor device, as in the results described in Example 3.
(表4)
Figure JPOXMLDOC01-appb-I000004
(Table 4)
Figure JPOXMLDOC01-appb-I000004
 図13は、実施例3-1と実施例4-1のリアクトル装置の直流重畳特性を、周波数10kHz、信号電圧0.5Vrmsの条件で測定した結果を示す図である。 FIG. 13 is a diagram showing the results of measuring the DC bias characteristics of the reactor devices of Example 3-1 and Example 4-1 under the conditions of a frequency of 10 kHz and a signal voltage of 0.5 Vrms.
(実施例5)
 実施例5では、コイルの軸を金属ケースの底面に平行にした実施例3-1のリアクトル装置と、コイルの軸を金属ケースの底面に垂直にした実施例4-1のリアクトル装置を比較した。当該比較において、金属ケース10は同じ寸法とし、かつ、コイル部12の直流抵抗を同じ条件にしたときに、どちらのリアクトル損失が大きいかを解析により評価した。
(Example 5)
In Example 5, the reactor device of Example 3-1 in which the axis of the coil was parallel to the bottom surface of the metal case was compared with the reactor device of Example 4-1 in which the axis of the coil was perpendicular to the bottom surface of the metal case . In the said comparison, when metal case 10 was made into the same dimension and direct current resistance of coil part 12 was made into the same conditions, analysis evaluated which reactor loss was large by analysis.
 図14A及び図14Bは、リアクトル損失の解析結果の模式図である。これらの図は、リアクトル装置を稼動させた場合のケース損を測定した結果であり、図14Aは、実施例3-1のリアクトル装置を稼動させたときに金属ケースの底面10aで発生するケース損を表示したものである。また、図14Bは、実施例4-1のリアクトル装置を稼動させたときに金属ケースの底面10bで発生するケース損を表示したものである。 14A and 14B are schematic views of analysis results of reactor loss. These figures are the result of measuring the case loss at the time of operating a reactor apparatus, and FIG. 14A shows the case loss which generate | occur | produces at the bottom face 10a of a metal case when operating the reactor apparatus of Example 3-1. Is displayed. Further, FIG. 14B shows the case loss generated on the bottom surface 10b of the metal case when the reactor device of Example 4-1 is operated.
 実施例3-1のリアクトル装置は、コイルの端部同士の間でケース損失が大きくなっているものの部分的な損失に留まっている。一方、実施例4-1のリアクトル装置は、やはりコイルの端部同士の間でケース損失が大きくなっており、それに加えて、ケース底面を両断するようにケース損失の大きい部分が現れている。 The reactor apparatus of Example 3-1 remains in partial loss although the case loss is large between the ends of the coil. On the other hand, in the reactor device of Example 4-1, the case loss is still large between the ends of the coil, and in addition to that, a portion with a large case loss appears so as to cross the bottom of the case.
 なお、ケース損失が0.5MW/mを超える部分の面積は、明らかに、実施例4-1のリアクトル装置の方が大きい。 The area of the portion where the case loss exceeds 0.5 MW / m 3 is obviously larger in the reactor apparatus of Example 4-1.
 表5に、これら実施例3-1及び実施例4-1のリアクトル装置の、直流銅損、交流銅損、磁心損失、コイル鎖交磁束損失、ケース損失をそれぞれ測定した結果を纏めた。 Table 5 summarizes the results of measurement of DC copper loss, AC copper loss, core loss, coil linkage flux loss, and case loss of the reactor devices of Example 3-1 and Example 4-1.
 直流銅損、交流銅損、磁心損失、コイル鎖交磁束損失の和は、実施例4-1のリアクトル装置よりも実施例3-1のリアクトル装置の方が小さい。また、ケース損失も、実施例3-1のリアクトル装置の方が小さい。さらに、全ての損失の総和では、コイルをケース底面に並行に配置した実施例3-1のリアクトル装置の方が、実施例4-1のリアクトル装置よりも30%以上小さい。 The sum of DC copper loss, AC copper loss, core loss, and coil linkage flux loss is smaller in the reactor apparatus of Example 3-1 than in the reactor apparatus of Example 4-1. Also, the case loss is smaller in the reactor apparatus of Example 3-1. Furthermore, in the sum of all losses, the reactor apparatus of Example 3-1 in which the coil is disposed in parallel to the bottom of the case is 30% or more smaller than the reactor apparatus of Example 4-1.
 これは、コイルの軸をケース底面に垂直に配置する実施例4-1のリアクトル装置では、コイルの端部がケースの底面近くに配置されてしまうため、還流する磁束が一方のコイルから他方のコイルに流れづらく、ケース10の方に漏れてしまうためである。 This is because, in the reactor apparatus of Example 4-1 in which the axis of the coil is disposed vertically to the bottom of the case, the end of the coil is disposed near the bottom of the case, so that the returning magnetic flux flows from one coil to the other. It is because it is hard to flow to the coil and leaks to the case 10.
 よって、外形寸法が同じである場合には、コイルの軸をケース底面に平行にさせたリアクトル装置の方が損失は小さくなる。 Therefore, when the external dimensions are the same, the loss is smaller in the reactor device in which the axis of the coil is parallel to the bottom of the case.
(表5)
Figure JPOXMLDOC01-appb-I000005
(Table 5)
Figure JPOXMLDOC01-appb-I000005
 以上説明したように、本発明によれば、金属ケースへの漏れ磁束自体が少ない構成のリアクトル装置であって、コイルの電線内部に進入する漏れ磁束を低減してコイルに発生する渦電流損失を抑えた樹脂成形のリアクトル装置を提供することが可能となる。また、本発明によれば、上記の利点に加え、熱が効率良く金属製ケースに伝導される、放熱性の良いリアクトル装置を提供することも可能となる。
 
 
 
 
 
 
 
As described above, according to the present invention, it is a reactor device having a configuration in which the leakage flux itself to the metal case is small, and the leakage flux entering the wire of the coil is reduced to reduce the eddy current loss generated in the coil. It is possible to provide a suppressed resin molded reactor device. Further, according to the present invention, in addition to the above advantages, it is possible to provide a highly heat dissipating reactor device in which heat is efficiently conducted to the metal case.






Claims (7)

  1.  金属ケースと、前記金属ケース内に配置されたコイル部と、磁性粉末と樹脂を含む混合物を用いたリアクトル装置であって、
     前記コイル部品は磁気的に結合された2個のコイルを有し、かつ前記コイル部品は高熱伝導性を有する絶縁性シートを介してケースの底部または側面に隣接するように配置されることを特徴とするリアクトル装置。
    A reactor device using a mixture including a metal case, a coil portion disposed in the metal case, and a magnetic powder and a resin,
    The coil component has two magnetically coupled coils, and the coil component is disposed adjacent to the bottom or side of the case through an insulating sheet having high thermal conductivity. Reactor device to be.
  2.  金属ケースと、前記金属ケース内に配置された平角電線を用いた2つのコイルと、前記金属ケース内に充填された磁性粉末と樹脂を含む混合物を用いた内鉄型のリアクトル装置であり、
     前記2つのコイルは実質平行に配置されて磁気的に結合され、さらに前記コイルは平角電線同士の間に0.3mmから2.5mmの隙間が形成されて前記混合物がこの隙間に充填されていることを特徴とするリアクトル装置。
    An inner iron type reactor device using a mixture including a metal case, two coils using a flat wire arranged in the metal case, and a magnetic powder and a resin filled in the metal case,
    The two coils are disposed substantially in parallel and magnetically coupled, and the coils have a gap of 0.3 mm to 2.5 mm formed between flat wires and the mixture is filled in the gap. Reactor apparatus characterized by the above.
  3.  前記コイルは軸方向がケースの底面に対して平行に配置されることを特徴とする請求項1または2に記載のリアクトル装置。 The reactor apparatus according to claim 1 or 2, wherein the coil is disposed such that the axial direction is parallel to the bottom surface of the case.
  4.  前記コイルは軸断面が矩形状になるよう平角銅線が巻かれたものであり、かつ、コイルの少なくとも2つの側面が金属製ケースの内面に接着された熱伝導シートにそれぞれ接触していることを特徴とする請求項1乃至請求項3に記載のリアクトル装置。 The coil is formed by winding a rectangular copper wire so that the axial cross section is rectangular, and at least two side surfaces of the coil are in contact with the heat conductive sheet adhered to the inner surface of the metal case. The reactor apparatus according to any one of claims 1 to 3, characterized by
  5.  前記コイルの側面が金属ケースの底部と側面の両面に接するように配置されていることを特徴とする請求項1乃至請求項4に記載のリアクトル装置。 The reactor apparatus according to any one of claims 1 to 4, wherein the side surface of the coil is disposed in contact with both the bottom and the side surface of the metal case.
  6.  前記の隙間はコイルの中央部よりも端部側の方が大きく開いていることを特徴とする請求項1乃至請求項5に記載のリアクトル装置。 The reactor according to any one of claims 1 to 5, wherein the gap is larger at the end side than at the center of the coil.
  7.  直流重畳電流がゼロアンペア(0A)時のインダクタンスLが200~450μHであることを特徴とする請求項1乃至請求項6に記載のリアクトル装置。 The reactor apparatus according to any one of claims 1 to 6, wherein an inductance L at a time of zero amperes (0 A) of DC superimposed current is 200 to 450 μH.
PCT/JP2009/001644 2008-04-08 2009-04-08 Reactor device WO2009125593A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008100761A JP2011124242A (en) 2008-04-08 2008-04-08 Reactor device
JP2008-100761 2008-04-08
JP2008209529A JP2011124245A (en) 2008-08-18 2008-08-18 Reactor device
JP2008-209529 2008-08-18

Publications (1)

Publication Number Publication Date
WO2009125593A1 true WO2009125593A1 (en) 2009-10-15

Family

ID=41161729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001644 WO2009125593A1 (en) 2008-04-08 2009-04-08 Reactor device

Country Status (1)

Country Link
WO (1) WO2009125593A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199257A (en) * 2010-02-25 2011-10-06 Sumitomo Electric Ind Ltd Method for manufacturing reactor
JP2011199265A (en) * 2010-02-25 2011-10-06 Sumitomo Electric Ind Ltd Reactor and method for manufacturing the same
JP2011238775A (en) * 2010-05-11 2011-11-24 Denso Corp Reactor and method of manufacturing the same
WO2012008328A1 (en) * 2010-07-13 2012-01-19 住友電気工業株式会社 Reactor
JP2012119454A (en) * 2010-11-30 2012-06-21 Sumitomo Electric Ind Ltd Reactor
JP2012119617A (en) * 2010-12-03 2012-06-21 Mitsubishi Electric Corp Reactor
WO2012108398A1 (en) * 2011-02-08 2012-08-16 三洋電機株式会社 Power conditioner
JP2012164878A (en) * 2011-02-08 2012-08-30 Sanyo Electric Co Ltd Power conditioner
JP2012165597A (en) * 2011-02-08 2012-08-30 Sanyo Electric Co Ltd Power conditioner
WO2012147644A1 (en) * 2011-04-28 2012-11-01 住友電気工業株式会社 Reactor, composite material, reactor core, converter, and power conversion device
WO2012164998A1 (en) * 2011-05-31 2012-12-06 住友電気工業株式会社 Reactor, converter, power conversion apparatus, and method for manufacturing reactor
WO2013005573A1 (en) * 2011-07-04 2013-01-10 住友電気工業株式会社 Reactor, converter and power conversion device
JP2013012664A (en) * 2011-06-30 2013-01-17 Tamura Seisakusho Co Ltd Coil device and coil
JP2014192359A (en) * 2013-03-27 2014-10-06 Toyota Motor Corp Reactor
WO2019235368A1 (en) * 2018-06-05 2019-12-12 株式会社オートネットワーク技術研究所 Reactor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192428U (en) * 1984-05-30 1985-12-20 株式会社日立国際電気 Shunt coil for instantaneous large current
JPH07106138A (en) * 1993-05-26 1995-04-21 Nippon Telegr & Teleph Corp <Ntt> Emc filter for multiwire balanced communication wire
JP2003007551A (en) * 2001-06-20 2003-01-10 Taiyo Yuden Co Ltd Coil component and method of manufacturing the same
JP2003303723A (en) * 2002-04-12 2003-10-24 Tokyo Coil Engineering Kk Choke coil
WO2006016554A1 (en) * 2004-08-10 2006-02-16 Tamura Corporation Reactor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192428U (en) * 1984-05-30 1985-12-20 株式会社日立国際電気 Shunt coil for instantaneous large current
JPH07106138A (en) * 1993-05-26 1995-04-21 Nippon Telegr & Teleph Corp <Ntt> Emc filter for multiwire balanced communication wire
JP2003007551A (en) * 2001-06-20 2003-01-10 Taiyo Yuden Co Ltd Coil component and method of manufacturing the same
JP2003303723A (en) * 2002-04-12 2003-10-24 Tokyo Coil Engineering Kk Choke coil
WO2006016554A1 (en) * 2004-08-10 2006-02-16 Tamura Corporation Reactor

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199265A (en) * 2010-02-25 2011-10-06 Sumitomo Electric Ind Ltd Reactor and method for manufacturing the same
JP2011199257A (en) * 2010-02-25 2011-10-06 Sumitomo Electric Ind Ltd Method for manufacturing reactor
US8830022B2 (en) 2010-02-25 2014-09-09 Sumitomo Electric Industries, Ltd. Reactor and method for manufacturing reactor
CN102782783A (en) * 2010-02-25 2012-11-14 住友电气工业株式会社 Reactor and method for manufacturing reactor
JP2011238775A (en) * 2010-05-11 2011-11-24 Denso Corp Reactor and method of manufacturing the same
CN102985987A (en) * 2010-07-13 2013-03-20 住友电气工业株式会社 Reactor
WO2012008328A1 (en) * 2010-07-13 2012-01-19 住友電気工業株式会社 Reactor
JP2012039099A (en) * 2010-07-13 2012-02-23 Sumitomo Electric Ind Ltd Reactor
US8754739B2 (en) 2010-07-13 2014-06-17 Sumitomo Electric Industries, Ltd. Reactor
DE112011102342T5 (en) 2010-07-13 2013-04-18 Sumitomo Electric Industries, Ltd. throttle
JP2012119454A (en) * 2010-11-30 2012-06-21 Sumitomo Electric Ind Ltd Reactor
JP2012119617A (en) * 2010-12-03 2012-06-21 Mitsubishi Electric Corp Reactor
WO2012108398A1 (en) * 2011-02-08 2012-08-16 三洋電機株式会社 Power conditioner
JP2012164878A (en) * 2011-02-08 2012-08-30 Sanyo Electric Co Ltd Power conditioner
JP2012165597A (en) * 2011-02-08 2012-08-30 Sanyo Electric Co Ltd Power conditioner
JP2012238836A (en) * 2011-04-28 2012-12-06 Sumitomo Electric Ind Ltd Reactor, composite material, core for reactor, converter, and power conversion apparatus
WO2012147644A1 (en) * 2011-04-28 2012-11-01 住友電気工業株式会社 Reactor, composite material, reactor core, converter, and power conversion device
CN103534770A (en) * 2011-04-28 2014-01-22 住友电气工业株式会社 Reactor, composite material, reactor core, converter, and power conversion device
US9343219B2 (en) 2011-05-31 2016-05-17 Sumitomo Electric Industries, Ltd. Reactor, converter, power converter apparatus, and method for manufacturing reactor
JP2013012701A (en) * 2011-05-31 2013-01-17 Sumitomo Electric Ind Ltd Reactor, converter, electric power conversion system and method of manufacturing reactor
WO2012164998A1 (en) * 2011-05-31 2012-12-06 住友電気工業株式会社 Reactor, converter, power conversion apparatus, and method for manufacturing reactor
JP2013012664A (en) * 2011-06-30 2013-01-17 Tamura Seisakusho Co Ltd Coil device and coil
JP2013033928A (en) * 2011-07-04 2013-02-14 Sumitomo Electric Ind Ltd Reactor, converter, and electronic power conversion apparatus
WO2013005573A1 (en) * 2011-07-04 2013-01-10 住友電気工業株式会社 Reactor, converter and power conversion device
JP2014192359A (en) * 2013-03-27 2014-10-06 Toyota Motor Corp Reactor
WO2019235368A1 (en) * 2018-06-05 2019-12-12 株式会社オートネットワーク技術研究所 Reactor
CN112204686A (en) * 2018-06-05 2021-01-08 株式会社自动网络技术研究所 Electric reactor
JPWO2019235368A1 (en) * 2018-06-05 2021-03-11 株式会社オートネットワーク技術研究所 Reactor
JP7072788B2 (en) 2018-06-05 2022-05-23 株式会社オートネットワーク技術研究所 Reactor

Similar Documents

Publication Publication Date Title
WO2009125593A1 (en) Reactor device
JP4737477B1 (en) Reactor manufacturing method
JP5617461B2 (en) Reactor and manufacturing method of reactor
EP2528073B1 (en) Reactor
JP5605550B2 (en) Reactor and manufacturing method thereof
JP6098786B2 (en) Composite material, reactor, converter, and power converter
JP5561536B2 (en) Reactor and converter
US20140050001A1 (en) Reactor, composite material, reactor core, converter, and power conversion device
US20130114319A1 (en) Reactor
JP5637391B2 (en) Reactor and reactor manufacturing method
JP6048652B2 (en) Reactor, converter, and power converter
JP2011124245A (en) Reactor device
JP2011142193A (en) Reactor
JP2011165977A (en) Reactor
JP2011129593A (en) Reactor
JP2021141122A (en) Reactor, converter, and power conversion device
JP2011124242A (en) Reactor device
US11295888B2 (en) Reactor
WO2021177190A1 (en) Reactor, converter, and power conversion device
US20190214186A1 (en) Coil, reactor, and coil design method
US8618899B2 (en) Converter and power conversion device
JP6809440B2 (en) Reactor
JP2009253105A (en) Reactor device
JP7089671B2 (en) Reactor
JP6525225B2 (en) Reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09730951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09730951

Country of ref document: EP

Kind code of ref document: A1