WO2009123350A1 - 結晶ろ過の方法および装置 - Google Patents

結晶ろ過の方法および装置 Download PDF

Info

Publication number
WO2009123350A1
WO2009123350A1 PCT/JP2009/057042 JP2009057042W WO2009123350A1 WO 2009123350 A1 WO2009123350 A1 WO 2009123350A1 JP 2009057042 W JP2009057042 W JP 2009057042W WO 2009123350 A1 WO2009123350 A1 WO 2009123350A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
liquid
filter
filtration layer
mixture
Prior art date
Application number
PCT/JP2009/057042
Other languages
English (en)
French (fr)
Inventor
城昌冶
手塚正博
Original Assignee
株式会社 城
北海道
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 城, 北海道 filed Critical 株式会社 城
Priority to JP2010506008A priority Critical patent/JP5422794B2/ja
Priority to JP2010548369A priority patent/JP5613895B2/ja
Priority to PCT/JP2009/067452 priority patent/WO2010087055A1/ja
Publication of WO2009123350A1 publication Critical patent/WO2009123350A1/ja
Priority to US12/896,448 priority patent/US9248455B2/en
Priority to US14/328,441 priority patent/US20140346126A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B3/00Centrifuges with rotary bowls in which solid particles or bodies become separated by centrifugal force and simultaneous sifting or filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/08Thickening liquid suspensions by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/004Fractional crystallisation; Fractionating or rectifying columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B15/00Other accessories for centrifuges
    • B04B15/10Other accessories for centrifuges for forming a filtering layer in the rotary bowl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B7/00Elements of centrifuges
    • B04B7/08Rotary bowls
    • B04B7/18Rotary bowls formed or coated with sieving or filtering elements

Definitions

  • the present invention relates to the technology of separation of a solution and a mixture composed of liquid and solid insoluble in the solution.
  • the separation techniques for liquid-liquid mixtures and solid-liquid mixtures there are chemical and physical separation techniques.
  • the chemical separation technology is to extract a target substance using a solvent such as hexane.
  • the physical separation technique the following separation plate type centrifugal separation method is mainly used, and there is also a filtration method and the like.
  • the liquid-liquid mixture is a mixture of a solution and a liquid insoluble in the solution (hereinafter referred to as an insoluble liquid) (may be a plurality of insoluble liquids), and a solid-liquid mixture is a liquid It is a mixture of solids (solids may be solidified oil).
  • the liquid-liquid mixture and the solid-liquid mixture may be collectively referred to as a mixture to be separated.
  • Patent Document 1 and Non-patent Documents 1 and 2 describe the structure and principle of the technique of the above-mentioned separation plate type centrifugal separation method (Disk entrifuge).
  • Patent document 1 U.S. PAT. 2179941, 1 1 1939, 233/27
  • Non-Patent Document 1 P erry R devist H., "P erry's Chemical Engineers' Handbook," 6th ed .; P. 19-84-19-103 (1984)
  • Non Patent Literature 2 Kenzo Toyama, Toru Takagi, Takeshi Watanabe; "Aquaculture of Oil", Hoshisei Co., Ltd., P. 19 (1988) 2. Filtration method
  • a filtration layer is formed of porous (such as diatomaceous earth) or fibrous filter material, and the mixture to be separated is supplied by pressure or centrifugal force to the filtration layer, and the viscosity small liquid is a filtration layer.
  • porous such as diatomaceous earth
  • fibrous filter material such as fibrous filter material
  • the viscosity small liquid is a filtration layer.
  • a type of filtration method there is a corerase technology using a fibrous substance.
  • Coalescer technology is used as a separation technology for liquid-liquid mixtures.
  • the above filtration method has higher separation efficiency than other physical separation techniques
  • Non-Patent Document 6 It is also considered as a technology that can be used to separate solid-liquid and liquid-liquid mixtures with a small difference in specific gravity (see, for example, Non-Patent Document 6).
  • Patent Document 2 U.S. PAT. 4368119, 1 1983, 210 137
  • Non-Patent Document 3 Perry Robert H., 'Perry's Chemical Engineers Handbook, 6th ed .; P. 19-65-19-89 (1984)
  • Non-patent literature 4 Spielman, LA and Goren, SL, "A review of the progress in the coalescence of liquid-liquid suspension and a new theoretical framework for coalescence by porous media are presented," Ind. Eng. Chem., Vol. 62, No. 10, P. 10-24 (1970)
  • Non-Patent Document 5 Scheidegger, A. E., "The Physics of Flow through Porous Media,” 3rd ed., University of Toronto Press, Toronto (1974)
  • Non-Patent Document 6 Toshio Furukawa, “Cost-down measures in liquid cleaning,” Chemical Equipment, Industrial Survey, P. 32-43 (1998)
  • the above conventional chemical separation technique involves modification of the target substance with a solvent such as hexane and recovery of the solvent. Distilling operation for high cost.
  • the separation plate type centrifugal separation method and filtration method which are physical separation techniques, have the following problems.
  • the separation plate type centrifugation method is a separation plate type centrifugation method.
  • the separation of the solvent and the trapped substance after the use of the solvent is generally an expensive method because it is an evaporation method.
  • the filter crystal of the present invention is an ice crystal, it has the problem of denaturation of the substance to be trapped. become.
  • An object of the present invention is to solve the problems of the conventional separation method and apparatus such as described above for recovering a target substance from a mixture to be separated.
  • the present invention is basically a method and apparatus of physical separation comprising the following filter crystal generator 2, a liquid drainer 3, a separator 6, and a melting tank 8 (see below. Figure 1 ).
  • Filter crystal generator 2 The filter crystal generator 2 is used to generate a stock solution 2a which is a mixture of the stock solution 1a and the filter crystals from the stock solution 1a (single component solution or multicomponent solution).
  • the film crystals are a crystal group including fine crystals, needle crystals, rod crystals, dendrites, flakes, plate crystals, or a mixture of the crystals described above.
  • Draining machine 3 The liquid is drained from the stock solution crystal 2a using a draining machine 3 to form a drained liquid ⁇ crystal 3a.
  • Separator 6 In the separator 6, a filtration layer (hereinafter, crystal filtration layer 6a) is formed by the above-mentioned liquid removal filter crystals 3a. Next, the separation mixture 5a is supplied to the surface of the crystal filtration layer 6a, and the separation mixture 5a is supported on the crystal filtration layer and the crystal filtration layer support wall (the support wall of the rotating basket hole wall, filter cloth and screen Etc.) and the substance to be trapped in the crystal filtration layer (large viscosity solution 8b and solid) trapped in the crystal filtration layer.
  • crystal filtration layer 6a the separation mixture 5a is supplied to the surface of the crystal filtration layer 6a, and the separation mixture 5a is supported on the crystal filtration layer and the crystal filtration layer support wall (the support wall of the rotating basket hole wall, filter cloth and screen Etc.) and the substance to be trapped in the crystal filtration layer (large viscosity solution 8b and solid) trapped in the crystal filtration layer.
  • Melting tank 8 Collect crystal filter layer 6a and the substance to be trapped in melting tank 8. The crystal filter bed is melted in the melting tank 8.
  • the stock solution 1 a is sent from the stock solution tank 1 to the filter crystal generator 2.
  • a filter crystal generator 2 produces a raw liquid crystalline substance 2a containing filter crystals by rapid crystallization of a single component liquid from the stock solution 1a or crystallization and rapid crystallization of a multicomponent liquid.
  • Non-Patent Document 7 describes the following regarding the formation of ice crystals from an aqueous solution.
  • Non Patent Literature 7 Thijssen, H.A.C., 'Advance in Preconcentration and Dehydration of Foods,' A. Spicer ed., Applied Scinence Pub. LTD., London UK, P. 117-121 (1974)
  • Non-Patent Documents 8 and 9 disclose that with regard to water freezing, the slower the cooling rate, the more granular crystals become, and the faster the cooling rate, the more a dendritic shape.
  • Non Patent Literature 8 W Shimada, "Experimental studies on the pattern formation in growth of ice crystals," Doctoral Thesis, Hokkaido Univ., (1995)
  • Non-Patent Document 9 W. Shimada and Y. Furukawa, "Pattern formation of ice crystal during the free growth in supercooled water,” J. Phys. Chem., B 101 6171-6173 (1997)
  • Non-Patent Document 10 regarding the freezing of an aqueous solution, the relationship between the cooling rate and the crystal shape (crystal growth from nuclei) indicates that the faster the cooling rate, the more the crystals grow from one direction to another. It is done.
  • Non-Patent Document 11 describes that the aqueous solution is more likely to be a dendritic crystal than water.
  • Non-Patent Document 11 PETER V. HOBBS, "ICE PHYSICS,” CLARENDON PRESS OXFORD,
  • Patent Document 3 describes a technique for controlling the growth of a dendrimer crystal in an aqueous solution. It is also noted that dendrite crystal growth is related to aqueous solution solute concentration and cooling temperature.
  • Patent Document 3 U.S. PAT. 6453683 B1 9/2002, 62/75
  • Patent Document 4 U.S. PAT. 6237346 B1 5/2001, 62/4
  • the amount of microcrystals, needle crystals, rod crystals, dendrites and flakes, and plate crystals in the crystal group constituting the filter crystal is other than the left crystal.
  • the proportion is preferably larger than the amount of crystals (eg, large granular crystals).
  • the undiluted crystalline substance 2a from the filter crystal generator 2 is put into the liquid drainer 3.
  • the undiluted liquid crystal substance 2a supplied is drained by centrifugal force, pressure difference, or a combination thereof to form a drained filter crystal 3a (the drained liquid is taken as drained liquid 4a).
  • drainage may not have high drainage efficiency.
  • the drained liquid 4a may be reused as a stock solution la (to filter crystal generator 2). Reuse of the drained liquid 4a is performed by replenishing the stock solution 1 with fresh stock solution 1a, energy for cooling (or heating) the stock solution 1a, and discharging the drained liquid 4a. Energy-saving methods and devices.
  • the liquid concentration of the drained liquid 4a is different from that of the stock solution 1a. In this case, the liquid 4a may be adjusted to the same solute concentration as the stock solution 1a.
  • the drained filter crystal 3a drained in the drainer is sent to the separator 6, and in the separator, the crystal filter layer 6a is formed using the drained filter crystal 3a as a filter material.
  • the mixture 5a to be separated is supplied to the surface of the crystal filtration layer 6a (with dewatered film 3a) (in which the centrifugal force, pressure difference, or a combination of them works in the separator 6).
  • the temperature of the mixture 5a to be separated to be supplied is a temperature at which the dewatering filter crystal 3a keeps the role of the filter material.
  • the temperature of the mixture to be separated may be lower than the melting point of the film crystals.
  • the mixture 5a to be separated is subjected to the following actions in the crystal filtration layer 6a.
  • the small viscosity solution (such as an aqueous solution) in the liquid-liquid mixture passes through the pores of the crystal filtration layer 6a between the crystals and the support wall of the crystal filtration layer (for example, a circular basket wall, filter cloth, screen, etc.) Discharge to the outside of the filter support wall, and capture the high viscosity solution 8 b (oil etc.) in the crystal filter.
  • the small viscosity solution and the large viscosity solution 8b are the solution in the liquid-liquid mixture and the insoluble liquid in the small viscosity solution and the large viscosity solution 8b in comparison of their viscosities.
  • the present invention is a method and apparatus suitable for separating the high viscosity solution 8b and the low viscosity solution.
  • oil-containing solutions mixturetures of fats and oils and aqueous solutions
  • the viscosity the lower the temperature, the more it solidifies.
  • the aqueous solution has a slow increase in viscosity due to low temperature.
  • the low temperature oil-containing solution such as a natural product enlarges the difference in viscosity between the solution and the insoluble matter, and becomes a separated mixture 5a that is suitable for application to the present invention.
  • the liquid in the solid-liquid mixture passes through the pores of the crystal filtration layer and the crystal filtration layer support wall and is discharged to the outside of the crystal filtration layer support wall, and the solid is trapped in the crystal filtration layer 9 and further liquid in the solid-liquid mixture
  • the high viscosity solution 8b may or may not be trapped in the crystal filtration layer depending on the application of the present invention.
  • the viscosity in the insoluble liquid is large (due to the viscosity difference between the insoluble liquids) according to the same principle as the liquid-liquid mixture described above. It may be used as a method and apparatus for separating a solution and a small viscosity solution.
  • a solution or an insoluble liquid may be added to the mixture to be separated before separation (in this case, the mixture to be separated may contain solids).
  • the liquid substance is not limited to the component substances of the mixture to be separated.
  • the separation efficiency may be reduced or not changed in the separation plate centrifugation method (see the above-mentioned page 1, pages 15 to 27). This means that in the plate-in-plate method, the increase in the solution time of the mixture to be separated or the increase in the insoluble liquid increases the residence time of the solution in the centrifugal field or the particles (solution, insoluble liquid and solid) in the insoluble liquid, etc. Is considered to be the cause.
  • the application of the present invention by liquid addition is suitable.
  • liquid drainer 3 and the separator 6 may be continuously performed in one device (liquid drain separator 36).
  • the separation plate type centrifugal separation method (the above-mentioned page 1, lines 5 to 27, even if the centrifugal separation method is used as the above-mentioned liquid drainage machine 3, separator 6, or liquid drainage separator 36). Does not require high-speed rotation compared to It does not have to be high in the drainage efficiency of the drainage machine of the present invention.
  • the separation principle (use of centrifugal force) in the separator of the present invention is mainly due to the difference in permeability between the solid-liquid and liquid-liquid filter layers (including the aggregation effect of particles and droplets (such as emulsion)).
  • the separation principle utilization of centrifugal force in the separation plate type centrifugal separation method is because the specific gravity difference is obtained.
  • the low speed rotation reduces the strength of the material and structure of the centrifuge, and makes it possible to increase the size of the centrifuge (make it possible to process a large amount) and reduce the cost.
  • the flow-through liquid 7a of the support wall of the crystal filtration layer is collected in the flow-through liquid tank 7, and the crystal
  • the trapped matter (oversized solution 8 b and solid matter) of the overlayer 6 a and the crystal filtration layer is collected in the melting tank 8.
  • the crystal filtration layer is melted in the melting tank 8 (hereinafter, the melt of the crystal filtration layer is referred to as the melt 8a).
  • Separation of the molten solution 8a and the large viscosity solution 8b (and solid) in the solution tank can be performed by stationary separation (separation by specific gravity difference), separation plate type centrifugation, cylindrical centrifugation, decanter type separation It can be carried out by a method or a membrane, a filter, a coalescer or the like. Furthermore, the aggregation effect of the particles and droplets in the above filtration layer can be determined by passing liquid 7a, melt 8a and melt with high viscosity 8b (and solids) in the melt tank, or melt 8a in the melt tank.
  • the separated melt 8a may be used as the stock solution 1a of the filter crystal generator 2 (reused). In this case, replenishment of the stock solution 1a to the stock solution tank 1, energy for cooling (or heating) of the stock solution la, and drainage of the above-mentioned melt 8a are reduced, resulting in low cost and energy saving. It becomes a method and an apparatus. In addition, reuse of the Melt 8a and Liquid Drain 4a reduces the cost of filter material for filter medium replacement and the cost for disposal of used filter medium (disposal etc.) compared to the conventional filtration method.
  • the present invention is a method of separating the filter medium and the substance to be trapped by melting the filter medium. This is a method with the following advantages.
  • the present filtration method is a low cost method in many cases, compared with the case where water, an aqueous solution, or an organic solvent is used for recovery of the substance to be captured from the capture material by the existing filtration and membrane technology. See page 3 line 20 to page 4 line 1).
  • This is generally due to the fact that the heat energy required for the present invention (melting and solidification latent heat of the filter material) is smaller than the heat energy required for the above-mentioned existing filtration and membrane technology (eg, latent heat of evaporation and large amount of washing liquid).
  • water has a latent heat of evaporation of about 560 Kcal Kg and a latent heat of solidification of about 80 Kcak /
  • the target substance 5a in the mixture to be separated is not affected by temperature denaturation or oxidation. It may be performed in a low temperature environment.
  • the present invention is a batch system (batch system) in which the operations of the above-mentioned respective configurations (filter crystal generator 2, drainer 3, separator 6 and melting tank 8) are not repeated for research, experiments and demonstrations. You may use as a method and apparatus of processing of to-be-separated mixture 5 a.
  • the filter medium of the present invention may be used as a filter aid (body feeding and precoating method).
  • Patent Documents 5 and 6 there is described a technique in which a solid-liquid mixture or a liquid passes through a layer formed of ice crystals.
  • Patent Document 5 describes a centrifugal dehydration (filtration) method of forming an ice crystal layer using a rotating basket described in the best mode for carrying out the invention to be described later.
  • slow ice is used to lengthen the residence time to form spherical ice crystals, and further, in rapid freezing, if the residence time is shortened, fine ice crystals are formed.
  • Patent Document 6 mentioned above is a technology for separating WAX solidified from ice crystals from oil.
  • Patent document 5 U.S.P AT. 3845230, 10 1974, 426/384
  • Patent Document 6 U.S.P AT. 3320153, 5 1967, 208/33 Effects of the Invention
  • the present invention is a method and apparatus having the following effects.
  • the filtering material is ice (or natural snow may be used)
  • the following advantages are obtained in addition to the above.
  • FIG. 1 is a process diagram showing an embodiment of the present invention.
  • separation after melting of the trapped crystal filtration layer is a stationary separation method in the case of a liquid-liquid mixture.
  • dotted lines indicate cases where the liquid drainage 4a and the melt 8a in the stationary separation method are reused as stock solutions.
  • FIG. 2 is a schematic view of a filter crystal generator and a rotating cylindrical type.
  • FIG. 3 is a schematic cross-sectional view of a cylinder inside of a fill crystal generator.
  • FIG. 4 is a schematic cross-sectional view showing the operation of the press-type separator with a drainage separator.
  • FIG. 5 is a screw-type separator for liquid removal and is a schematic cross-sectional view showing the operation thereof.
  • FIG. 6 is a liquid discharge separator which is of the inverted filter cloth type, and is a schematic cross-sectional view showing the operation thereof.
  • FIG. 7 is a schematic view showing the operation of a liquid separation separator of an automatic batch type.
  • FIG. 8 is a schematic cross-sectional view showing the operation of a drainage separator of conical basket type.
  • FIG. 9 is a bottom view of the drainage separator, and is a schematic cross-sectional view showing the operation thereof. Explanation of sign
  • the filter crystal generator 2 of the present invention includes the following rotating cylindrical type 21 (FIG. 2) and a cylindrical internal repelling type (including a complete set of augers (FIG. 3) and an annular space repelling type). There is a device.
  • the liquid discharge machine 3, the separator 6 and the liquid discharge separator according to the present invention include the following push-out plate type 361 (FIG. 4), screw type 362 (FIG. 5), filter cloth reverse type 363 (FIG. 6), There are such devices as automatic batch type 364 (Fig. 7), conical basket type 365 (Fig. 8) and bottom discharge type 366 (Fig. 9).
  • the above-described drainage separator means that the functions of the drainage device 3 and the separator 6 described on the page 7 lines 19 to 20 of the present invention are continuously provided in one device. It is something to do.
  • the combination of the filter crystal generator 2, the liquid drainer 3 and the separator 6 of the present invention is the above (and the following) filter crystal generator 2, liquid drainer 3, separator 6, liquid drainer Any combination of separators 36 You may
  • FIGS. 2 to 9 An embodiment of the present invention will be described based on FIGS. 2 to 9.
  • the stock solution 1a from the stock solution tank 1 is sent to the following film-generators of the rotating cylindrical type 2 1 (FIG. 2) and the cylindrical internal type 22 (FIG. 3).
  • This type is basically constituted by a rotating cylinder 21 1, a rotating cylinder stock solution tank 2 12 and a rotating cylinder removing blade 2 1 3.
  • the stock solution 1 a is sent to the rotating cylindrical stock solution tank 212.
  • a refrigerant or thermal medium flows on the back of the rotating cylindrical outer surface.
  • crystals are generated on the outer surface of the cylinder, and the outside of the cylinder is produced as the rotating cylinder 2 1 1 rotates.
  • a stock solution crystal 2a is formed on the surface.
  • the shape and size of the crystal in the filter crystal can be determined by adjusting the temperature and rotational speed of the rotating cylinder 21 1.
  • the undiluted liquid crystal substance 2a formed on the outer surface of the cylinder is continuously peeled off from the outer surface of the rotating cylinder by the rotating cylindrical loosening blade 2 1 3 brought close to the outer surface of the cylinder.
  • the stock solution la is sent to the inside of the hollow cylinder.
  • a refrigerant or heat medium flows on the back of the inner surface of the cylinder.
  • Crystals are generated on the inner surface 222 of the hollow cylinder filled with the stock solution 1 a.
  • the unscrewing blade such as a rotating screw 223 is configured to move the undiluted crystal substance 2a in the discharge direction while unscrewing the crystals generated on the inner surface 222 of the hollow cylinder.
  • the shape and size of the crystals in the film formed by the above-mentioned rotating cylindrical and internal cylindrical rolling filter crystal generators are the outer surface of the rotating cylinder (2 ⁇ 1) or the inner surface of the hollow cylinder 222
  • the adjustment can be performed by adjusting the temperature and the number of rotations of the rotating cylinder (2 1 1) or the winding blade such as the rotating screw 223 or the like.
  • the undiluted liquid crystals 2a produced by the filter crystal generator 2 described above are extruded plate type 36 1 (FIG. 4), screw type 362 (FIG. 5), filter cloth inverted type 363 (FIG. 6), automatic batch type 364 (Fig. 7), conical basket type 365 (Fig. 8) and bottom discharge type 366 (Fig. 9), etc. (It should be noted that the model type of these liquid discharge separators is a liquid drainage machine. Or as separator 6).
  • liquid discharge separators shown in the figure are as follows: (a) stock liquid crystal supply process ⁇ (b) liquid discharge process ⁇ (c) supply process of mixture to be separated ⁇ (d) discharge process of captured crystal filtration layer
  • the separated mixture 5a supplied in (c) has a viscosity of After passing through the kerf wall pores, the high viscosity solution 8b and the solid matter will be trapped in the crystal filtration layer.
  • extruded plate type 36 1 (Fig. 4) and screw type 362 (Fig. 5) described above are at the bottom (in the case of a basket vertical type) or at the end (in the case of a basket horizontal type) of rotating hole wall basket 3600.
  • the undiluted product 2a is supplied, and the undiluted product 2a and the drained crystalline material 3a are discharged by the pushing plate 361 1 or a screw-like unscrewing blade 3621 in the discharge direction (upward in the case of the basket vertical type, basket) In the case of the horizontal type, it is moved from the upstream side (supply side) to the downstream side (outside side), and in the movement process, the liquid in the undiluted product crystal is drained and drained by the filter crystal (crystal filtration layer 6a). The separation mixture 5a is separated.
  • the moving speed of the undiluted crystal 2a and the liquid draining filter crystal 3a in the discharge direction is the time interval of pushing out of the following pushing plate 36 11 or the rotational difference between the screw-like loosening blade 362 1 and the basket 3600 It can be adjusted quickly.
  • the rotating basket 3600 may be either cylindrical or conical.
  • a screen that rotates integrally with the basket may be attached to the inside of the basket.
  • the operation of the pusher plate type drainage separator 361 (Fig. 4) will be described below.
  • the hole wall basket here is vertical.
  • Undiluted crystals 2a from the filter crystal generator 2 are introduced into the bottom of the rotating hole wall basket 3 & 00.
  • the undiluted substance crystal substance 2a which has been fed is spread on the inner wall of the basket 3600 under the centrifugal force of the rotating basket 3600, and is moved up and down the inner wall of the basket sequentially by the push plate 361 which moves up and down at the basket bottom (b) , (C), (d).
  • screw type drainage separator 362 (Fig. 5) is described below.
  • the hole wall basket here is vertical.
  • Undiluted crystals 2a from the filter crystal generator 2 are introduced into the bottom of the rotating hole wall basket 3600.
  • the undiluted liquid crystal substance 2a introduced is spread on the inner wall of the basket 3600 under the centrifugal force of the rotating basket 3600, and is moved (differential velocity) upward in the basket inner wall by the screw-like loosening blade 3621 (b) ), (C) and (d).
  • the separated mixture 5a is supplied to the surface of the formed crystal filtration layer 6a.
  • the viscosity small solution passes through the crystal filtration layer and the basket wall pores, and the large viscosity solution 8b and the solid matter are trapped in the crystal filtration layer.
  • liquid discharge separators liquid drainers and separators
  • the feed amount and feed rate of the stock solution crystalline substance 2a and the mixture 5a to be separated in order to enhance the separation efficiency and the amount of separation of the target substance, and rotary holes.
  • the supply of the stock solution crystals 2a and the mixture 5a to be separated to the drainage separator, the drainage machine and the separator is carried out by means of a feed pipe or by drop supply to the dispersion plate 3661.
  • the supply pipe for the undiluted liquid crystal and the supply pipe for the mixture to be separated may be common.
  • the supply pipe may be a screw feeder, a tube conveyor or the like.
  • the supply of the separated mixture 5 a is preferably spraying.
  • the flow through liquid 7a of the crystal filtration layer support wall is collected in the flow through tank 7 and the trapped material of the crystal filtration layer and the crystal filtration layer ( The high viscosity solution (8b and solids) is collected in the melting tank 8.
  • the crystal filter bed is melted in the melting tank 8.
  • the separation of the molten liquid 8a, the large viscosity solution 8b and the solid in the thawing tank can be performed by stationary separation (separation by specific gravity difference), separation plate type centrifugation method, cylindrical centrifugation method, decanter separation method, or It can be performed by membrane, filtration, corer, etc.
  • the present invention is suitable when the filter crystals are ice and the mixture to be separated is a natural product (a mixture of oil and aqueous solution).
  • a natural product a mixture of oil and aqueous solution.
  • Useful components separated from natural products are often harmless to animals (human body etc.) and plants. Their use is rapidly expanding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Centrifugal Separators (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

従来、液液および固液の混合物から目的物質を回収するための分離技術は、それぞれに以下等の問題点を持つ。捕捉された目的成分を分離できない。比重差の小さい混合物の分離ができない。酸化、変性が進行する。本発明は、上記問題点を解決するため、フイルタ結晶をろ過材として、被分離混合物をろ過層を通過させる液とろ過層に捕捉する粘度大溶液および固形物として分離する。その方法および装置は、基本的にフイルタ結晶生成機、脱液機、分離機および融解タンクから構成されている。

Description

明 細 書
結晶ろ過の方法および装置
技術分野
本発明は、溶液とその溶液に不溶の液体および固形物から構成される混合物の分離の技術 に関する。 背景技術
従来、液液混合物および固液混合物の分離技術としては、化学的および物理的分離技術があ る。化学的分離技術は、へキサン等溶剤を用い目的物質を抽出するものである。また、物理的分離 技術としては、主に以下の分離板型遠心分離法が用いられ、またろ過法等もある。なお、ここでの 液液混合物とは溶液とその溶液に不溶の液体 (以下不溶液体とする)(複数の不溶液体の場合もあ る)の混合した物であり、固液混合物とは液体と固形物(固形物が固化油の場合もある)の混合した 物である。また、以下では液液混合物および固液混合物を被分離混合物と総称する場合がある。
1 .分離板型遠心分離法
分離板型遠心分離法は、高速度の回転体が生ずる(強力な)遠心力を被分離混合物に与えると、 被分離混合物中の構成物物質が比重の差によって運動速度に差を生じ分離する現象を利用するも のである。原理的にその分離能力は、被分離混合物中の分散媒と分散媒に不溶の液体および固形 物の比重差に比例し、また分散媒の粘度に反比例する。この技術は、液液、固液の分離技術として よく用いられる技術である。
上記分離板型遠心分離法 (Disk entrifuge)の技術は、例えば特許文献 1および非特許文献 1, 2にその構造および原理が記されている。
特許文献 1 : U.S.PAT. 2179941 , 1 1 1939, 233/27
非特許文献 1 : P erry R obert H . , " P erry's Chemical Engineers ' Handbook," 6th ed. ; P . 19 -84-19 - 103 (1984)
非特許文献 2 : 外山健三、高木徹、渡辺武; 「水産油糧学」、 (株)恒星社厚生閣、 P .19 (1988) 2.ろ過法
ろ過法は、多孔性(珪藻土等)、または繊維状のろ過材でろ過層を形成し、そのろ過層に被分離混 合物を圧力、または遠心力をかけ供給し、粘度小液体はろ過層を通過させ、粘度大液体、または固 形物をそのろ過層に捕捉し分離するものである。なお、ろ過法の一種として繊維状物質を用いたコ ァレッサ技術がある。コアレッサ技術は、液液混合物の分離技術として用いられている。
上記ろ過法は、他の物理的分離技術に比べ高分離効率、
また微小'少量の粘性液体およびェマルジヨン、サスペンジョンの分離、
また比重差の小さい固液、液液混合物の分離に用いることのできる技術とされている(例えば非特 許文献 6参照)。
上記ろ過法 (Filtration)の技術は、例えば特許文献 2および非特許文献 3、 4、 5、 6に記されて いる。
特許文献 2 : U.S.PAT. 4368119, 1 1983, 210 137
非 許文献 3 : Perry Robert H., 'Perry s Chemical Engineers Handbook, 6th ed. ; P .19-65-19-89 (1984)
非特許文献 4 Spielman, L. A. and Goren, S. L. , "A review of progress in the coale scence of liquid-liquid suspension and a new theoretical framework for coalescence by porou s media are presented," Ind. Eng. Chem. , Vol.62, No.10, P .10-24 (1970)
非特許文献 5 : Scheidegger, A. E. , "The Physics of Flow through Porous Media," 3rd ed. , University of Toronto Press, Toronto (1974)
非特許文献 6 : 古川俊夫、「液体清浄化におけるコス卜ダウンの方策」、化学装置、工業調 査会、 P .32-43 (1998)
発明の開示
発明が解決しょうとする課題
上記従来の化学的分離枝術は、へキサン等溶剤による目的物質の変性、また溶剤回収のた めの蒸留操作により高コストな方法となる。
一方、物理的分離技術である分離板型遠心分離法およびろ過法等では、以下の問題点を抱え ている。
1 .分離板型遠心分離法
分離板型遠心分離法は、
①(前記 1ページ 1 5〜27行目の原理から)分離対象物間にほとんど比重差がとれない場合、ま たは分散媒の粘度が大きい場合には用いることができない。
②強力(高回転)な遠心力を必要とするため処理量(装置の大きさ)に限界がある。
2.ろ過法
従来のろ過法は、ろ過処理後のろ過材に捕捉された被捕捉物 (粘性液体および固形物)とろ過材の 分離が困難である。
このため多くのろ過材 (珪藻土等)は、以下の問題点を抱えている。
①ろ適材に捕捉された被捕捉物の回収ができない。
②上記①は、ろ過材の廃棄が悪臭等の公害問題にもなる。
③ろ過材交換のためのろ過材料費および使用後のろ過材の処分(廃棄等)に過剰のコストがか かる。
④上記②、③は、被分離混合物に高濃度の(ろ過材への)被捕捉の液体および固形物を含む場 合、または被分離混合物に低濃度の被捕捉の液体および固形物を含む場合の多量処理には適用 できないことを意味することにもなる。
上記問題点の解決の方法として以下の捕捉材料(ろ過材、または膜材料)の再生のための洗 浄、または被捕捉物の回収の方法があるが、それらにも問題点がある。
①捕捉材料再生のための水、または水溶液による洗浄:
(被捕捉物が細孔、または微細空間へ捕捉されているために)再生が不完全になる場合が多い。ま た、上記液の多量使用となり(被捕捉物の濃度の低い多量水溶液では蒸発等における)被捕捉物 の回収が (コスト的に)困難、または上記多量水溶液 (廃液)の処理が高コストになる。
②捕捉材料の再生のための洗浄、または被捕捉物の回収に有機性溶媒を用いる:
上記溶媒使用後の溶媒と被捕捉物の分離は、一般的には蒸発法によるために高コストな方法とな る。また、本発明のフィルタ結晶を氷結晶とした場合に比べ、被捕捉物の変性の問題を抱えること になる。
本発明は、被分離混合物から目的物質を回収するための上記等の従来の分離の方法および 装置の問題点を解決することを目的とするものである。
課題を解決するための手段
本発明は上記目的を達成するために、基本的に以下のフィルタ結晶生成機 2、脱液機 3、分離 機 6および融解タンク 8から構成される物理的分離の方法および装置となっている(図 1 )。
1 )フィルタ結晶生成機 2: フィルタ結晶生成機 2を用い原液 1 a (単一成分液、または多成分 液)から原液 1 aとフィル 晶の混合物である原液結晶物 2 aを生成する。ここで、フィル 晶と は、微細結晶、または針状結晶、または棒状結晶、または樹枝状結晶、または薄片 ·板状結晶、ま たは左記の結晶の混合物が含まれる結晶群である。
2 )脱液機 3: 脱液機 3を用い原液結晶物 2 aから液体を脱液し脱液フィル^晶 3 aを作る。
3 )分離機 6: 分離機 6内で上記脱液フィルタ結晶 3 aによるろ過層(以下結晶ろ過層 6 a)を形 成する。次に、その結晶ろ過層 6 aの表面に被分離混合物 5aを供給し、被分離混合物 5aを結晶ろ 過層および結晶ろ過層支持壁(左記支持壁には回転バスケット孔壁、ろ布およびスクリーン等があ る)を通過する通過液 7 aと結晶ろ過層に捕捉される結晶ろ過層の被捕捉物(粘度大溶液 8bおよび 固形物)とに分離する。
4 )融解タンク 8: 結晶ろ過層 6 aと被捕捉物を融解タンク 8に収集する。結晶ろ過層は、融解 タンク 8で融解される。
本発明の上記構成の作用は、以下となる(上記構成の 1 )、 2 )、 3 )、 4 )に対応させて記述す る)。
1 )原液タンク 1からフィルタ結晶生成機 2に原液 1 aが送られる。
フィルタ結晶生成機 2で原液 1 aから単一成分液の急速結晶化、または多成分液の結晶化およ び急速結晶化によりフィルタ結晶を含む原液結晶物 2aを生成する。
上記に関しては、以下のことが知られている。
非特許文献 7には、水溶液からの氷結晶の生成に関して以下のことが記されている。
①冷却面からの冷却(一方向冷却)の場合、冷却面に対して垂直に(枝を持つ)針状、あるいは棒 状の形の氷結晶となる。、 ②液体中では、
② -υ冷却速度が速い(急速冷却)ほど結晶核の発生速度を増加させ、微細結晶を増加させる。
② -2)溶質濃度の増加とと に微細結晶を増加させる (結晶核(微細氷)の発生速度が増加)。
③時間の経過とともに氷結晶が大きくなる。
非特許文献 7 Thijssen, H.A.C., 'Advance in Preconcentration and Dehydration of F oods," A. Spicer ed. , Applied Scinence Pub. LTD. , London UK, P .117-121 (1974)
また、非特許文献 8および 9には、水の凍結に関して、冷却速度が遅いほど粒状結晶となり、 冷却速度が早いほどデンドライ卜状となることが記されている。
非特許文献 8 W. Shimada, "Experimental studies on the pattern formation in growth of ice crystals," Doctoral Thesis, Hokkaido Univ., (1995)
非特許文献 9 W. Shimada and Y. Furukawa, "Pattern formation of ice crystal during the free growth in supercooled water," J. Phys. Chem., B 101 6171-6173 (1997)
また、非特許文献 10には水溶液の凍結に関して、冷却速度と結晶形状 (核からの結晶成長) の関係は、冷却速度が早いほど結晶の成長が多方向から一方向になっていくことが記されている。
非特許文献 10 K. Nagashima and Y. Furukawa, 'Nonequilibrium effect of anisotropic interface kinetics on the directional growth of ice crystals," J. CRYSTAL GROWTH, P.584 (1 997)
また、非特許文献 11には、水溶液は水に比べデンドライ卜結晶になりやすいことが記されてい る。
非特許文献 11 : PETER V. HOBBS, "ICE PHYSICS," CLARENDON PRESS OXFORD,
P .580-581 (1974)
なお、特許文献 3には水溶液におけるデンドライ卜結晶の成長を制御する技術が記されている。 また、デンドライト結晶の成長は、水溶液溶質濃度および冷却温度に関係することも記されている。
特許文献 3 : U.S.PAT. 6453683 B1 9/2002, 62/75
水以外で本発明のフィルタ結晶となり得る物の例としては、包接水和物(特許文献 4)等がある。 特許文献 4 : U.S.PAT. 6237346 B1 5/2001, 62/4
上記の単一成分液の急速結晶化、または多成分液の結晶化および急速結晶化による結晶の 大きさおよび形状は、粘性溶液および固形物の捕捉のためのろ過材として適した構造を持つと考え られる。
なお、フィルタ結晶生成機 2で生成したフィルタ結晶は、そのフィルタ結晶を構成する結晶群中 の微細結晶、針状結晶、棒状結晶、樹枝状結晶および薄片,板状結晶の量が左記結晶以外の結晶 (粒状大結晶等)の量よりも多い割合であることが好ましい。
2 )次に上記フィルタ結晶生成機 2からの原液結晶物 2 aを脱液機 3に投入する。投入された原 液結晶物 2 aは、遠心力、圧力差、またはそれらの併用により脱液され脱液フィルタ結晶 3 aを作る (脱液された液体を脱液液体 4aとする)。なお、脱液は、脱液効率が高くなくともよい。
上記脱液液体 4 aは、(フィルタ結晶生成機 2への) 原液 l aとして再利用してもよい。この脱液 液体 4 aの再利用は、原液タンク 1への新しい原液 1 aの補充、原液 1 aの冷却(または加温)のため のエネルギ、また上記脱液液体 4 aの排液処理等が低減され低コス卜、省エネルギな方法、装置とな る。なお、原液 1 aが多成分液の場合、脱液液体 4aは、原液 1 aとは溶質濃度が異なることになる。 この場合は、脱液液体 4aを原液 1 aと同じ溶質濃度へ調整してもよい。
3 )脱液機内で脱液した脱液フィルタ結晶 3aを分離機 6に送り、分離機内で脱液フィルタ結晶 3 aをろ過材とした結晶ろ過層 6 aを形成する。
次に被分離混合物 5aを (分離機 6において遠心力、圧力差、またはそれらの併用力の働いて いる)結晶ろ過層 6a (脱液フィル 晶 3 a)の表面へ供給する。
なお、供給する被分離混合物 5aの温度は、脱液フィルタ結晶 3 aがろ過材の役割を保つ温度と する。また、被分離混合物の温度は、フィル 晶の融点よりも低い温度であってもよい。
被分離混合物 5aは、結晶ろ過層 6aで以下の作用を受ける。
被分離混合物 5a液液混合物の場合は、
液液混合物中の粘度小溶液(水溶液等)を結晶ろ過層 6 aの結晶間および結晶ろ過層支持壁 (例え ば回耘バスケット孔壁、ろ布およびスクリーン等がある)の孔を通過し結晶ろ過層支持壁外に排出し、 粘度大溶液 8 b (油等)を結晶ろ過層に捕捉する。ここで粘度小溶液および粘度大溶液 8 bとは、液 液混合物中の溶液と不溶液体をその粘度の比較において粘度小溶液と粘度大溶液 8bとしている。
なお、溶液のろ過においては、ろ過層での溶液の捕捉能力(単位時間当たりの透過流量の逆 数)はその溶液の粘度に比例することは公知のことである (例えば非特許文献 4および非特許文献 5 (P .73-78, 99-123)参照)。したがって、本発明は、粘度大溶液 8bと粘度小溶液の分離に適した方 法、装置となる。特に天然物等の油含有溶液(油脂と水溶液の混合物)においては、一般的に油は 低温度になるほどその粘度を著レく増大させる (低温度が進むと固化する)。一方、水溶液は、低温 度化による粘度の増加が緩慢である。このことから低温度な天然物等の油含有溶液は、溶液と不 溶液体の粘度差が拡大し本発明への適用に好条件な被分離混合物 5aとなる。
一方、被分離混合物 5 aが固液混合物の場合は、
固液混合物中の液体が結晶ろ過層および結晶ろ過層支持壁の孔を通過し結晶ろ過層支持壁外に 排出され、固形物が結晶ろ過層に捕捉される 9さらに、固液混合物中の液体が上記の液液混合物 と同じに溶液と不溶液体から構成される場合は、本発明の用途別に粘度大溶液 8bを結晶ろ過層に 捕捉する場合もあり、捕捉しない場合もある。
さらに、本発明は、液液および固液混合物中の複数の不溶液体の分離を目的として、上記の 液液混合物の場合と同じ原理により(不溶液体どうしの粘度差による)不溶液体中の粘度大溶液と 粘度小溶液の分離を行う方法、装置として用いてもよい。
なお、発明では、分離前の被分離混合物に溶液、または不溶液体を加えてもよい(この場合、 被分離混合物に固形物を含む場合であってもよい)。なお、この加液物は、被分離混合物の成分物 質に限定されない。この被分離混合物への加液による処理は、分離板遠心法(前記 1ページ 1 5〜 27行目参照)においては、分離効率が低下、または変わらない場合がある。このことは、分離板遠 心法では被分離混合物の溶液、または不溶液体の増加により遠心力場での溶液、または不溶液体 中の微粒子 (溶液、不溶液体および固形物)の滞留時間の増加等がその原因と考えられる。このよ うな被分離混合物の場合、加液による本発明の適用は好適である。
また、本発明は、上記脱液機 3と分離機 6の操作、作用を一つの機器 (脱液分離機 36 )内で連 続的に行わせてもよい。
また、本発明は、上記の脱液機 3、分離機 6、または脱液分離機 36として遠心分離法を用いた としても分離板型遠心分離法(前記 1ぺ一ジ 1 5〜27行目参照)に比べ高速回転を必要としない。そ れは、本発明の脱液機の脱液効率が高くなくともよい。また、本発明の分離機での分離原理(遠心 力の利用)が主に固液および液液のろ過層での透過性の差によるもの(粒 ·滴(ェマルジヨン等)の 集合効果も含む)であり、一方、分離板型遠心分離法での分離原理 (遠心力の利用)が比重差を求 めていることによる。低速回転は、遠心分離機の材料および構造の強度を緩和させ遠心分離機を 大型化(多量処理を可能とする)、また低コスト化できることになる。
4 )上記操作を経て上記結晶ろ過層支持壁の通過液 7 aは通過液タンク 7に収集し、また結晶ろ 過層 6aと結晶ろ過層の被捕捉物 («度大溶液 8bおよび固形物)は融解タンク 8に収集する。結晶ろ 過層は、融解タンク 8で融解される (以下結晶ろ過層の融解物を融解液 8aとする)。
解タンク中の融解液 8aと粘度大溶液 8b (および固形物)の分離は、静置分離法 (比重差に よる分離)、または分離板型遠心分離法、円筒型遠心分離法、デカンター型分離法、または膜、ろ 過、コアレッサ等により行うことができる。さらに上記ろ過層での粒 ·滴の集合効果は、通過液 7a、ま たは融解タンク中の融解液 8 aと粘度大溶液 8 b (および固形物)、または融解タンク中の融解液 8 a と粘度大溶液 8b (および固形物)と通過液 7aの混合物において固形物、溶液、不溶液体、粘度大 溶液 8 b、粘度小溶液および融解液 8aの分離に分離板型遠心分離法、円筒型遠心分離法、デカン ター型分離法、または膜、ろ過、コアレッサ等の使用を可能とする。
なお、分離した融解液 8aは、フィルタ結晶生成機 2の原液 1 aとして用いてもよい(再使用)。こ の場合、原液タンク 1への新しい原液 1 aの補充、原液 l aの冷却(または加温)のためのエネルギ、 また上記融解液 8aの排液処理等が低減され低コス卜、省エネルギな方法、装置となる。また、融解 液 8aおよび脱液液体 4aの再使用は、従来のろ過法に比べろ過材交換のためのろ過材料費および 使 後のろ過材の処分 (廃棄等)のためのコストを低減する。
このように本発明は、ろ過材と被捕捉物の分離をろ過材を融解することにより行う方法である。 このため以下の利点を持つ方法となる。
①捕捉材料(ろ過材、または膜材料)と被捕捉物の分離が容易となり、(左記分離のおいて) 高 い分離効率が得られる。このため被捕捉物を分離目的物質とすることも可能となる。
②ろ過材再生のためのろ過材の洗浄を必要としない。
③ろ過材廃棄の公害問題を解決する (融解液および脱液液体の再利用、またはろ過材を氷等の 無公害物質とした場合)。
また、既存のろ過および膜技術で、捕捉材料からの被捕捉物の回収に水、水溶液、または有 機性溶媒を用いた場合に比べ本発明は多くの場合において低コストな方法となる(前記 3ページ 20 行目〜 4ページ 1行目参照)。これは、一般的に本発明で必要な熱エネルギ (ろ適材の融解および 凝固潜熱)が、上記既存のろ過および膜技術で必要な熱エネルギ (蒸発潜熱および多量の洗浄液 等)に比べ小さいことによる。例えば水は、蒸発潜熱が約 560Kcal Kgであり、凝固潜熱が約 80Kcak/
Kgである。
本発明は、被分離混合物中 5aの目的物質が温度にょリ変性、または酸化の懸念のされない 低温度環境で行ってもよい。
また、本発明は、研究、実験および実証用等として上記各構成(フィルタ結晶生成機 2、脱液機 3、分離機 6および融解タンク 8 )の操作を繰り返し行わない回分式(バッチ式)の被分離混合物 5 a の処理の方法、装置として用いてもよい。
また、本発明は、本発明のろ過材(フィルタ結晶および脱液フィルタ結晶 3 a)をろ過助剤(ボデ ィフィード沬(body feeding)およびプリコート法(precoating) )として用いてもよい。
なお、米特許(特許文献 5、特許文献 6 )には、氷結晶で形成された層を固液混合物、または液 体が通過する技術が記されている。また、上記特許文献 5には、以後の 発明を実施するための最 良の形態 で記す回転するバスケットを用いて氷結晶層を形成する遠心脱水 (ろ過)法が記されて いる。また、緩慢凍結で滞留時間を長くして球状氷結晶を作ること、さらに急速凍結で滞留時間を短 くすると微細な氷結晶が生成することが記されている。また、上記特許文献 6は、氷結晶と固形化し. た WAXを O ilから分離する技術である。
特許文献 5 : U .S .P AT. 3845230, 10 1974, 426/384
特許文献 6 : U .S .P AT. 3320153, 5 1967, 208/33 発明の効果
上記により本発明は、以下の効果をもつ方法、装置となる。
その技術がろ過法であるため他の物理的分離技術に比べ高分離効率、
また微小'少量の粘性液体およびェマルジヨン、サスペンジョンの分離(特に天然物は、脂肪酸およ びモノグリセリド等が界面活性作用を持ち油脂等が微細化している)、
また比重差の小さい固液、液液混合物の分離が可能となる。
また、本発明では、
①低温度化にょリ被分離混合物 5 a中の溶液と不溶液体の粘度差が拡大する場合に適する。特 に天然物(油と水溶液の混合物)は、低温度化により溶液 (水溶液)と不溶液体 (油)の粘度差が拡 大する。
②捕捉材料に捕捉された固形物および液体の回収を可能としている。
③ろ過材の再生のためのろ過材の洗浄を必要としない。 ④ろ過材廃專の公害問題を解決する(融解液および脱液液体の再利用、またはろ過材を氷等の 無公害物質とした場合)。
さらに、本発明では、ろ過材を氷(天然雪であってもよい)とした場合、上記以外に以下の利点 を持つことになる。
①分離後の分離物へのろ過材の混入による有害性の問題を生じることがない。
②ろ適材の新たな製造が容易である。
③分離目的物質の劣化 (酸化 ·変成等)を防ぐことができる。 図面の簡単な説明
図 1は本発明の実施の形態を示す工程図である。なお、この図 1では、捕捉結晶ろ過層の融 解後の分離は、液液混合物の場合での静置分離法としている。 また、静置分離法での脱液液体 4 aおよび融解液 8aを原液として再使用する場合を点線で示している。
図 2はフィルタ結晶生成機で回転円筒型の概略図である。
図 3はフィル^晶生成機で円筒内部搔き取り型の断面概略図である。
図 4は脱液分離機で押し {liし板型のものであり、その動作を示す断面概略図である。
図 5は脱液分離機でスクリュー型のものであり、その動作を示す断面概略図である。
図 6は脱液分離機でろ布反転型のものであり、その動作を示す断面概略図である。
図 7は脱液分離機で自動回分型のものであり、その動作を示す断面概略図である。
図 8は脱液分離機で円錐バスケット型のものであり、その動作を示す断面概略図である。 図 9は脱液分離機で底部排出型のものであり、その動作を示す断面概略図である。 符号の説明
1 原液タンク
l a 原液
2 フィルタ結晶生成機
21 回転円筒型のフィルタ結晶生成機
21 1 回転円筒 212 回転円筒原液タンク
213 回転円筒接き取り刃
円筒内部搔き取り型のフィルタ結晶生成機
221 冷媒、または熱媒体の通路
222 中空円筒内表面
223 中空円筒スクリュー搔き取り刃
224 原液供給管
225 原液結晶物排出管
2a 原液結晶物
脱液機
3a 脱液フィル^晶
脱液液体タンク
4a 脱液液体
被分離混合物タンク
5a 被分離混合物
分離機
6a 結晶ろ過層
6b 捕捉結晶ろ過層(結晶ろ過層と結晶ろ過層に捕捉した粘度大溶液および固形物) 通過液タンク
7a 通過液
脱液分離機
3600 回転孔壁バスケット
3601 脱液分離機搔き取り刃
361 押し出し板型脱液分離機
3611 押し出し板
3612 被分離混合物分散板
362 スクリュー型脱液分離機
3621 スクリュー型脱液分離機の搔き取り刃 363 ろ布反転型の脱液分離機
3631 ろ布
364 自動回分型の脱液分離機
3641 排出スクリューコンベア
365 円錐バスケット型の脱液分離機
3650 回転円錐孔壁バスケット
366 底部排出型の脱液分離機
3661 分散板
8 融解タンク
8a 融解液
8b 粘度大溶液 a : 原液結晶物供給工程
b : 脱液工程
c : 被分離混合物の供給工程
d : 捕捉結晶ろ過層の排出工程 発明を実施するための最良の形態
本発明のフィルタ結晶生成機 2としては、以下の回転円筒型 21 (図 2)および円筒内部搔き取 り型 (オーガ一式(図 3)および円環状空隙搔き取り型も含まれる)等の機器がある。
また、本発明の脱液機 3、分離機 6および脱液分離機には、以下の押し出し板型 361 (図 4)、 スクリュー型 362(図 5)、ろ布反転型 363(図 6)、自動回分型 364 (図 7)、円錐バスケット型 365 (図 8)および底部排出型 366 (図 9)等の機器がある。なお、上記の脱液分離機とは、本発明の 課題を解決するための手段 7ページ 19~20行目に記した脱液機 3と分離機 6の作用を一つの 機器内で連続的に行うものである。
なお、本発明は、本発明のフィルタ結晶生成機 2、脱液機 3および分離機 6の組み合わせを上 記 (および以下)のフィルタ結晶生成機 2、脱液機 3、分離機 6、脱液分離機 36のどの組み合わせと してもよい。
以下、本発明の実施の形態を図 2〜図 9に基づいて説明する。
原液タンク 1からの原液 1 aが以下の回転円筒型 2 1 (図 2 )および円筒内部接き取り型 22 (図 3 )のフィル^晶生成機に送られる。
以下に回転円筒型フィル 晶生成機 2 1 (図 2 )の動作を説明する。
この型は、回転円筒 2 1 1、回転円筒原液タンク 2 1 2および回転円筒搔き取り刃 2 1 3によって基本 的に構成されている。原液 1 aが回転円筒原液タンク 2 1 2に送られる。回転する円筒外表面の裏面 には、冷媒、または熱媒体(Thermal medium)が流れている。回転円筒 2 1 1の円筒下部が回転円 筒原液タンク 2 1 2内の原液 l aに浸されているとき、円筒外表面上に結晶が発生し、回転円筒 2 1 1 の回転に伴い、円筒外表面上に原液結晶物 2aを形成する。なお、フィルタ結晶中の結晶の形状お よび大きさは回転円筒 2 1 1の温度と回転数の調整により行うことができる。円筒外表面に形成され た原液結晶物 2 aは、円筒外表面に近接された回転円筒搔き取リ刃 2 1 3により回転円筒外表面か ら連続的に剥離される。
以下に円筒内部搔き取り型フィルタ結晶生成機 22 (図 3 )の動作を説明する。
原液 l aが中空円筒の内部に送られる。円筒内表面の裏面には、冷媒、または熱媒体が流れている。 原液 1 aで満たされた中空円筒内表面 222に結晶が発生する。回転するスクリュー 223等の搔き取 リ刃が中空円筒内表面 222に発生した結晶を搔き取りながら原液結晶物 2 aを排出方向へ移動さ せる構造となっている。
なお、上記回転円筒型および円筒内部搔き取り型フィルタ結晶生成機で生成されるフィル^ 晶中の結晶の形状および大きさは回転円筒(2〗 1 )外表面、または中空円筒内表面 222の温度と 回転円筒(2 1 1 )、または回転するスクリュー 223等の搔き取り刃の回転数の調整により行うことが できる。
上記のフィルタ結晶生成機 2で生成された原液結晶物 2aは、以下の押し出し板型 36 1 (図 4 )、 スクリュー型 362 (図 5 )ろ布反転型 363 (図 6 )、自動回分型 364 (図 7 )、円錐バスケット型 365 (図 8 )および底部排出型 366 (図 9 )等の脱液分離機に送られる(なお、これらの脱液分離機の型 式は、脱液機 3、または分離機 6として用いてもよい)。なお、図に示したこれらの脱液分離機は、 (a)原液結晶物供給工程→(b)脱液工程→(c)被分離混合物の供給工程→(d)捕捉 晶ろ過層の 排出工程を経、(c)において供給された被分離混合物 5 aが、粘度小溶液は結晶ろ過層およびバス ケッ卜壁孔を通過し、粘度大溶液 8bおよび固形物は結晶ろ過層に捕捉されることになる。
なお、上記の押し出し板型 36 1 (図 4 )およびスクリユー型 362 (図 5 )は、回転する孔壁バスケ ッ卜 3600の底部 (バスケット縦型の場合)、または端 (バスケット横型の場合)に原液結晶物 2aを供 給し、押し出し板 361 1、またはスクリュー状の搔き取り刃 3621により原液結晶物 2aおよび脱液フ ィル 晶 3aを排出方向(バスケット縦型の場合は上方向、バスケット横型の場合は上流 (供給側) から下流 (排出側)への横方向)へ移動させ、その移動過程で原液結晶物中の液体の脱液および脱 液フィルタ結晶(結晶ろ過層 6a)による被分離混合物 5aの分離が行われる仕組みとなっている。ま た、原液結晶物 2aおよび脱液フィルタ結晶 3aの排出方向への移動速度は、以下の押し出し板 36 1 1の押し出し時間間隔、またはスクリュー状の搔き取り刃 362 1とバスケット 3600の回転差速に より調整できる。また、回転バスケット 3600は円筒形状、円錐形状のどちらであってもよい。また、 バスケットの内側にバスケットと一体となり回転するスクリーンが装着されていてもよい。
以下に押し出し板型脱液分離機 361 (図 4)の動作を説明する。 なお、ここでの孔壁バスケット は縦型である。
(a)フィルタ結晶生成機 2からの原液結晶物 2aが、回転する孔壁バスケット 3&00の底部に投入 される。投入された原液結晶物 2 aは、回転するバスケット 3600の遠心力を受けバスケット 3600 の内壁に広がりバスケット底部で上下動する押し出し板 361 1によりバスケット内壁を順次、上方向 に移動しながら(b)、(c)、(d)の過程を経る。
以下にスクリュー型脱液分離機 362 (図 5)の動作を説明する。 なお、ここでの孔壁バスケット は縦型である。
(a)フィルタ結晶生成機 2からの原液結晶物 2aが、回転する孔壁バスケット 3600の底部に投入 される。投入された原液結晶物 2aは、回転するバスケット 3600の遠心力を受けバスケット 3600 の内壁に広がり(差速)回転するスクリュー状の搔き取り刃 3621によりバスケット内壁を上方向に 移動しながら(b)、(c)、(d)の過程を経る。
以下にろ布反転型脱液分離機 363 (図 6 )の動作を説明する。
(a)フィルタ結晶生成機 2からの原液結晶物 2aが、回転する孔壁バスケット 3600の内側に装着 されたろ布 3631に投入される (ろ布は、バスケットと一体となり回転する)。
(b)孔壁バスケット 3600の回転遠心力により上記原液結晶物中の液体を脱液し、脱液フィルタ 結晶 3aをろ過材とした結晶ろ過層 6aを形成する。 (c) 形成された結晶ろ過層 6aの表面へ被分離混合物 5aを供給する。供給された被分離混合物 5aは、粘度小溶液は結晶ろ過層およびバスケット壁孔を通過し、粘度大溶液 8bおよび固形物は結 晶ろ過層に捕捉される。
(d)被分離混合物の供給を停止する。その後、ろ布 363 1を反転(裏返り)させ捕捉結晶ろ過層 6 b (結晶ろ過層と結晶ろ過層に捕捉した粘度大溶液および固形物)をろ布から剥離する。剥離された 捕捉結晶ろ過層 6bは、脱液分離機底部から落下排出される。
以下に自動回分型脱液分離機 364 (図 7)の動作を説明する。なお、以下の自動回分型、円錐 バスケット型および底部排出型では、バスケットの内側にバスケットと一体となり回転するスクリーン が装着されていてもよい。
(a)フィル^ ¾晶生成機 2からの原液結晶物 2aが、回転する孔壁バスケット 3600に投入される。
(b)孔壁バスケット 3600の回転遠心力により上記原液結晶物中の液体を脱液し、脱液フィルタ 結晶 3aをろ過材とした結晶ろ過層 6aを形成する。
(c)形成された結晶ろ過層 6 aの表面へ被分離混合物 5 aを供給する。供給された被分離混合物 5 aは、粘度小溶液は結晶ろ過層およびバスケット壁孔を通過し、粘度大溶液 8bおよび固形物は結 晶ろ過層に捕捉される。
(d)被分離混合物 5aの供給を停止する。その後、脱液分離機搔き取り刃 3601を駆動'接近させ 捕捉結晶ろ過層 6bを搔き取る。なお、搔き取り終了後、バスケット内側に残った捕捉結晶ろ過層を 剥離させるためバスケット外側、または内側から気体ブローを行ってもよいにのブローは、接き取り と同時であってもよい)。搔き取られ(また剥離され)た捕捉結晶ろ過層 6 bは、脱液分離機搔き取り 刃 3601の下方向に位置する排出シュートまたは排出スクリューコンベア 364 1等により脱液分離 機外へ排出される。
以下に 円錐バスケット型脱液分離機 365 (図 8)の動作を説明する。
(a)フィルタ結晶生成機 2からの原液結晶物 2aを回転する円錐形孔壁バスケット 3650の中心 底部に供給する。原液結晶物 2 aは自身に働く遠心力で円錐壁を上昇しながら(b)、(c)、(d)の過 程を経る。
以下に底部排出型 366 (図 9)を用いた脱液分離機の動作を説明する。
(a)フィル 晶生成機 2からの原液結晶物 2aが回転する孔壁バスケット 3600に投入される。 以下(b) (c)CD過程を絰、 (d)次に被分離混合物の供給を停止し、脱液分離機搔き取り刃 3601 (搔き取り扁平円盤および 気体ブロー等を併用してもよい)を駆動 ·接近させ捕捉結晶ろ過層 6 bを搔き取る。搔き取られた捕 捉結晶ろ過層 6 bは、バスケット底部に開けられた開口部から落下排出される。
なお、これらの脱液分離機、脱液機および分離機においては、目的物の分離効率および分離 量を高めるために原液結晶物 2 aおよび被分離混合物 5aの供給量および供給速度、また回転孔壁 バスケット、または回転円錐孔壁バスケットの回転速度および回転時間の調整を行う。
また、これらの脱液分離機、脱液機および分離機への原液結晶物 2 aおよび被分離混合物 5 a の供給は、供給管により、または分散板 366 1への落下供給により行う。このとき供給管の場合は、 原液結晶物の供給管と被分離混合物の供給管が共通のものであってもよい。またこの供給管はス クリューフィーダ一、またはチューブコンベア等であってもよい。また、被分離混合物 5 aの供給は、 散布が好ましい。
上記等の脱液分離機、脱液機および分離機の操作を経て結晶ろ過層支持壁の通過液 7aは通 過液タンク 7に収集し、また結晶ろ過層と結晶ろ過層の被捕捉物(粘度大溶液 8bおよび固形物)は 融解タンク 8に収集する。結晶ろ過層は、融解タンク 8で融解される。
融解タンク中の融解液 8aと粘度大溶液 8bおよび固形物の分離は、静置分離法 (比重差による 分離)、または分離板型遠心分離法、円筒型遠心分離法、デカンター型分離法、または膜、ろ過、コ ァレッサ等により行うことができる。 産業上の利用可能性
本発明は、フィルタ結晶を氷とし、被分離混合物を天然物(油と水溶液の混合物)とした場合に 好適である。天然物から分離される有用成分は、(化学合成物に比べ)動物(人体等) ·植物へ無害 である場合が多ぐその利用は急拡大している。

Claims

請求の範囲
1 . 被分離混合物の分離において、以下のフィルタ結晶生成機、脱液機、分離機および融 解タンクから構成される方法。
1 )フィルタ結晶生成機: フィルタ結晶生成機を用い原液から原液結晶物を生成する。
2 )脱液機: 脱液機を用 t、原液結晶物から液体を脱液し脱液フィルタ結晶を作る。
3)分離機: 分離機内で上記脱液フィルタ結晶によるろ過層(以下結晶ろ過層)を形成する。次 に、その結晶ろ過層の表面に被分離混合物として液 ¾混合物、または固液混合物を供給する。供 給された被分離混合物は、その液体中の粘度大溶液が結晶ろ過層に捕捉され、粘度小溶液が結 晶ろ過層および結晶ろ過層支持壁の孔を通過し結晶ろ過層支持壁外に排出される。
4)融解タンク: 上記の結晶ろ過層と結晶ろ過層の被捕捉物を融解タンクに収集する。結晶ろ過 層は、融解タンクで融解される。
2. 請求の範囲第 1項において 3 )分離機を以下とした方法。
被分離混合物として固液混合物を結晶ろ過層に供給し、固形物が結晶ろ過層に捕捉され、液体が 結晶ろ過層および結晶ろ過層支持壁の孔を通過し結晶ろ過層支持壁外に排出される。
3 . 請求の範囲第 1項、第 2項において結晶ろ過層の結晶を氷とした方法。
4 . 請求の範囲第 1項、第 2項 において 1 )フィルタ結晶生成機および 2 )脱液機を用いず
3)の分離機の結晶ろ過層の結晶を天然雪とした方法。
5. 請求の範囲第 1項、第 2項、第 3項において 4 )での融解液を原液として再使用する方法。
6 · 請求の範囲第 1項、第 2項、第 3項、第 5項において 2)での脱液液体を原液として再使 用する方法。
7. 請求の範囲第 1項、第 2項、第 3項、第 5項、第 6項において 1 )のフィル^晶生成機を 以下の回転円筒型フィルタ結晶生成機とした装置。 回転円筒、回転円筒原液タンクおよび回転 円筒搔き取り刃からなり、回転円筒の温度と回転数の調整により回転円筒の円筒外表面に原液結 晶物を形成し、その原液結晶物を回転円筒搔き取り刃によリ搔き取る構造とする。
8. 請求の範囲第 1項、第 2項、第 3項、第 4項、第 5項、第 6項、第 7項において 3 )分離機を 以下のろ布反転型分離機とした装置。
脱液フィルタ結晶、または雪が、回転する孔壁バスケットの内側に装着されたろ布に投入される (ろ 布は 、'スケッ卜と一体となり回転する)。
上記バスケッ卜で形成された結晶ろ過層の表面へ被分離混合物を供給する。供給された被分離混 合物は、請求の範囲第 1項、第 2項の 3 )に記述された作用を受ける。
被分離混合物の供給を停止し、その後、ろ布を反耘させ捕捉結晶ろ過層をろ布から剥離する。剥離 された捕捉結晶ろ過層は、分離機底部から排出される。
9. 請求の範囲第 1項、第 2項、第 3項、第 4項、第 5項、第 6項、第 7項、第 8項での通過液、 または融解液と粘度大溶液 (および固形物)、または融解液と粘度大溶液 (および固形物)と通過液 の混合物の分離に分離板型遠心分離法を用いる装置。
PCT/JP2009/057042 2008-04-04 2009-03-31 結晶ろ過の方法および装置 WO2009123350A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010506008A JP5422794B2 (ja) 2008-04-04 2009-03-31 結晶ろ過の方法および装置
JP2010548369A JP5613895B2 (ja) 2009-02-02 2009-09-30 結晶ろ過の方法
PCT/JP2009/067452 WO2010087055A1 (ja) 2009-02-02 2009-09-30 結晶ろ過の方法および装置
US12/896,448 US9248455B2 (en) 2008-04-04 2010-10-01 Filter melting method for separating mixtures
US14/328,441 US20140346126A1 (en) 2008-04-04 2014-07-10 Method and system using melting filter for separating mixture

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-120011 2008-04-04
JP2008120011 2008-04-04
JP2009-041440 2009-02-02
JP2009041440 2009-02-02

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067452 Continuation-In-Part WO2010087055A1 (ja) 2008-04-04 2009-09-30 結晶ろ過の方法および装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/067452 Continuation-In-Part WO2010087055A1 (ja) 2008-04-04 2009-09-30 結晶ろ過の方法および装置
US12/896,448 Continuation-In-Part US9248455B2 (en) 2008-04-04 2010-10-01 Filter melting method for separating mixtures

Publications (1)

Publication Number Publication Date
WO2009123350A1 true WO2009123350A1 (ja) 2009-10-08

Family

ID=41135698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057042 WO2009123350A1 (ja) 2008-04-04 2009-03-31 結晶ろ過の方法および装置

Country Status (3)

Country Link
US (1) US9248455B2 (ja)
JP (1) JP5422794B2 (ja)
WO (1) WO2009123350A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010087055A1 (ja) * 2009-02-02 2012-07-26 株式会社城 結晶ろ過の方法および装置
US20140346126A1 (en) * 2008-04-04 2014-11-27 Local Independent Administrative Agency Method and system using melting filter for separating mixture

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422794B2 (ja) 2008-04-04 2014-02-19 株式会社城 結晶ろ過の方法および装置
US8956542B1 (en) * 2013-07-30 2015-02-17 Showa Freezing Plant Co., Ltd. Method for processing radioactively-contaminated water
EP3660140A1 (en) 2014-01-31 2020-06-03 DSM IP Assets B.V. Adipose tissue processing centrifuge and methods of use
NL2012621B1 (nl) * 2014-04-15 2016-05-09 Van Den Berg Bart Trommelfilter voor waterfiltratie en werkwijze daarvoor.
US20200316501A1 (en) * 2017-12-19 2020-10-08 Xeros Limited Filter for a treatment apparatus
EP3806975A1 (en) * 2018-06-13 2021-04-21 Cargill, Incorporated Liquid discharge filter and its use
US20200254463A1 (en) * 2019-02-08 2020-08-13 Donaldson Company, Inc. Centrifuge filters using a layered, replaceable media cartridge
KR102504657B1 (ko) * 2019-11-18 2023-02-27 주식회사 엘지화학 가압 원심 탈수기
CN110882854B (zh) * 2019-12-10 2023-12-19 张家港市蓝鸟机械有限公司 一种油热式离心装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114585B1 (ja) * 1969-08-01 1976-05-11
JPS62250923A (ja) * 1986-04-23 1987-10-31 Hitachi Ltd ろ過方法
JPH06226018A (ja) * 1993-02-08 1994-08-16 Ebara Corp プレコート材の混合スラリーの調整方法
JP2001009218A (ja) * 1999-04-26 2001-01-16 Ishii Noboru バスケット型遠心分離機を用いた濾過方法及び濾過装置

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2007546A (en) * 1933-07-27 1935-07-09 Alco Products Inc Fractional crystallization of waxes
US2769852A (en) * 1953-04-01 1956-11-06 California Research Corp Separation of xylene isomers by fractional crystallization
US2780663A (en) * 1953-05-29 1957-02-05 Standard Oil Co Fractional crystallization and crystal washing
US2931841A (en) * 1954-05-20 1960-04-05 Phillips Petroleum Co Fractional crystallization process
US2816938A (en) * 1954-06-18 1957-12-17 Texas Co Fractional crystallization under pressure
US2874199A (en) * 1954-12-22 1959-02-17 Phillips Petroleum Co Fractional crystallization process and apparatus
US2855100A (en) * 1954-12-31 1958-10-07 Phillips Petroleum Co Fractional crystallization process and apparatus
US2815364A (en) * 1955-02-21 1957-12-03 Phillips Petroleum Co Fractional crystallization process and apparatus
US2891099A (en) * 1955-05-16 1959-06-16 Phillips Petroleum Co Fractional crystallization process and apparatus
US2910363A (en) * 1955-10-11 1959-10-27 Canada Packers Ltd Method for the fractional crystallization of cottonseed oil
US2945903A (en) * 1956-12-26 1960-07-19 Phillips Petroleum Co Fractional crystallization process and apparatus
US3198607A (en) * 1957-04-02 1965-08-03 Phillips Petroleum Co Fractional crystallization apparatus including recycle control
US3171727A (en) * 1959-01-06 1965-03-02 Halcon International Inc Fresh water recovery by fractional crystallization
NL276323A (ja) * 1961-03-23
US3218817A (en) * 1962-04-02 1965-11-23 Phillips Petroleum Co Fractional crystallization
US3395547A (en) * 1962-06-28 1968-08-06 Phillips Petroleum Co Fractional crystallization system
US3222881A (en) * 1963-01-14 1965-12-14 Phillips Petroleum Co Fractional crystallization
US3233420A (en) * 1963-05-27 1966-02-08 Phillips Petroleum Co Fractional crystallization
NL137432C (ja) * 1964-08-13 1900-01-01
US3403029A (en) * 1964-11-06 1968-09-24 Phillips Petroleum Co Reconstituted beer process using fractional crystallization
US3320153A (en) 1964-12-10 1967-05-16 Chevron Res Process for dewaxing oils
US3314243A (en) * 1964-12-31 1967-04-18 Phillips Petroleum Co Fractional crystallization with mother liquor recycle
FR1508956A (fr) * 1965-10-08 1968-01-12 Inst Francais Du Petrole Procédé de séparation en continu de matériaux solides contenus dans un liquide
US3487652A (en) * 1966-08-22 1970-01-06 Phillips Petroleum Co Crystal separation and purification
US3845230A (en) 1969-08-01 1974-10-29 Gen Foods Corp Freeze concentration of instant coffee
US3653929A (en) 1969-10-21 1972-04-04 Gen Foods Corp Process of freeze drying coffee
US3916018A (en) * 1973-03-26 1975-10-28 Atlantic Richfield Co Separation of paraxylene
JPS5274960A (en) * 1975-12-18 1977-06-23 Nikku Ind Co Oil and water separating device
FR2375890A1 (fr) 1977-01-04 1978-07-28 Anvar Procede et dispositif de separation d'emulsions par coalescence
US4497184A (en) 1980-07-23 1985-02-05 King Seeley Thermos Company Auger-type ice making apparatus for producing high quality ice
NL8202517A (nl) * 1982-06-22 1984-01-16 Tno Inrichting voor het verdichten van een suspensie.
JPS59109264A (ja) * 1982-12-14 1984-06-23 Toray Ind Inc スラリ−の遠心分離方法
US5250192A (en) * 1984-05-18 1993-10-05 The United States Of America As Represented By The Secretary Of The Amry Sludge dewatering by freezing
CH675626A5 (ja) * 1986-08-27 1990-10-15 Sulzer Ag
GB8624266D0 (en) * 1986-10-09 1986-11-12 Ici Plc Separation process
US4810274A (en) * 1989-03-06 1989-03-07 Cheng Chen Yen Vacuum freezing ambient pressure melting (VFAPM) process and sub-triple point vapor processing unit for use therein
US5060483A (en) * 1990-10-04 1991-10-29 The United States Of America As Represented By The Secretary Of Agriculture Twin rinse columns for freeze concentration of rinsable concentrates
US5394706A (en) * 1993-05-20 1995-03-07 Waterworks International, Inc. Freeze crystallization for the removal of water from a solution of dissolved solids
JPH06327915A (ja) * 1993-05-24 1994-11-29 Mitsui Petrochem Ind Ltd スラリーから結晶を回収する方法及び装置
US5470473A (en) * 1994-02-17 1995-11-28 Baker Hughes Incorporated Rotary vacuum filtration drum with valved hopper cake treatment means
JPH0938405A (ja) * 1995-08-01 1997-02-10 Kiichi Watanabe 油水分離装置
US6237346B1 (en) 1997-04-14 2001-05-29 Nkk Corporation Method for transporting cold latent heat and system therefor
US6076364A (en) * 1999-03-05 2000-06-20 Stripp; Heinz G Ship with snow making capabilities utilizing seawater
JP4243912B2 (ja) * 2000-07-05 2009-03-25 三菱瓦斯化学株式会社 スラリーからの結晶回収方法
DE10311997A1 (de) 2003-03-19 2004-10-07 Johannes Gerteis Stülpfilterzentrifuge
US8211319B2 (en) * 2003-09-16 2012-07-03 Bp Corporation North America Inc. Solid-liquid separation process
DE102004044638A1 (de) * 2004-09-13 2006-03-30 Stockhausen Gmbh Aufreinigung eines (Meth)Acrylsäure enthaltenen Destillationssumpfprodukts durch Kristallisation
US7812206B2 (en) * 2006-03-21 2010-10-12 Bp Corporation North America Inc. Apparatus and process for the separation of solids and liquids
BE1018534A3 (fr) * 2007-07-11 2011-03-01 Basf Se Procede pour la separation avec purification de cristaux acrylique, d'acide methacrylique, de n-vinulpyrrolidone ou de p-xylene a partir de leur suspension dans une lessive-mere.
US20140346126A1 (en) * 2008-04-04 2014-11-27 Local Independent Administrative Agency Method and system using melting filter for separating mixture
JP5422794B2 (ja) 2008-04-04 2014-02-19 株式会社城 結晶ろ過の方法および装置
EP2130572A1 (en) * 2008-06-06 2009-12-09 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Rotating knife, washing column, and method for disintegrating a crystal bed in a washing column
EP2248569A1 (en) * 2009-05-06 2010-11-10 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Wash column
US8562932B2 (en) * 2009-08-21 2013-10-22 Silicor Materials Inc. Method of purifying silicon utilizing cascading process
US8461383B2 (en) * 2009-10-16 2013-06-11 Basf Se Process for starting up a separating process for purifying removal of acrylic acid crystals from a suspension S of crystals thereof in mother liquor
EP2471585A1 (en) * 2011-01-04 2012-07-04 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Apparatus and method for separating solid particles from a slurry
EP2471739A1 (en) * 2011-01-04 2012-07-04 Solvay Sa Process for the purification of phosphoric acid
US8956542B1 (en) * 2013-07-30 2015-02-17 Showa Freezing Plant Co., Ltd. Method for processing radioactively-contaminated water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114585B1 (ja) * 1969-08-01 1976-05-11
JPS62250923A (ja) * 1986-04-23 1987-10-31 Hitachi Ltd ろ過方法
JPH06226018A (ja) * 1993-02-08 1994-08-16 Ebara Corp プレコート材の混合スラリーの調整方法
JP2001009218A (ja) * 1999-04-26 2001-01-16 Ishii Noboru バスケット型遠心分離機を用いた濾過方法及び濾過装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140346126A1 (en) * 2008-04-04 2014-11-27 Local Independent Administrative Agency Method and system using melting filter for separating mixture
JPWO2010087055A1 (ja) * 2009-02-02 2012-07-26 株式会社城 結晶ろ過の方法および装置
JP5613895B2 (ja) * 2009-02-02 2014-10-29 株式会社城 結晶ろ過の方法

Also Published As

Publication number Publication date
JP5422794B2 (ja) 2014-02-19
JPWO2009123350A1 (ja) 2012-03-22
US20110079044A1 (en) 2011-04-07
US9248455B2 (en) 2016-02-02

Similar Documents

Publication Publication Date Title
WO2009123350A1 (ja) 結晶ろ過の方法および装置
JP2011504951A5 (ja)
AU2013202643A1 (en) Process for recovering valuable or harmful water-miscible liquids from slurries and an apparatus therefor
US3966445A (en) Freeze refining method
US20140346126A1 (en) Method and system using melting filter for separating mixture
JP5802609B2 (ja) クーラント再生方法
US2921444A (en) Processes for removing salts and other soluble substances from sea water
JPH11514022A (ja) 膜分離を用いる潤滑油の脱ロウ
JP5613895B2 (ja) 結晶ろ過の方法
JP3866029B2 (ja) 凍結融解分離方法
AU2017299361B2 (en) Method and apparatus for increased recovery of oil from lemons and other citrus fruit using desorption
CA2740468C (en) Method of processing a bituminous feed by staged addition of a bridging liquid
JP2001181439A (ja) ポリスチレン回収装置とそのための夾雑物除去方法
US20070119313A1 (en) Apparatus for filtering volume-reduced gel-state polystyrene resin
JPH0931486A (ja) 圧延油の浄化方法
Sutherland Centrifuge focus: solids removal–the options
TWI490173B (zh) Method for recovering waste silicon waste from cutting oil
RU2465209C2 (ru) Способ очистки нефтепромысловых вод
US4457845A (en) Recovery of phosphorus from sludge
JP2015120146A (ja) 融解性ろ過材を用いた混合物の分離の方法
JP2008119671A (ja) 高濃度原液対応の凍結濃縮装置
JPWO2003072216A1 (ja) 凍結融解による濃縮物の製造方法及び製造装置
BE519876A (ja)
JP5105661B2 (ja) カロテンの製造方法およびそれに用いる装置
JP4132466B2 (ja) クラゲ処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010506008

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09727767

Country of ref document: EP

Kind code of ref document: A1