WO2009122516A1 - ミラー装置,光スイッチ,光ノード装置およびミラーデバイスの制御方法 - Google Patents
ミラー装置,光スイッチ,光ノード装置およびミラーデバイスの制御方法 Download PDFInfo
- Publication number
- WO2009122516A1 WO2009122516A1 PCT/JP2008/056379 JP2008056379W WO2009122516A1 WO 2009122516 A1 WO2009122516 A1 WO 2009122516A1 JP 2008056379 W JP2008056379 W JP 2008056379W WO 2009122516 A1 WO2009122516 A1 WO 2009122516A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- surface angle
- reflection surface
- switching
- mirror
- electric signal
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/02—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
Definitions
- This case relates to a mirror device, an optical switch, an optical node device, and a mirror device control method suitable for use in an optical communication system.
- the small mirror array is a device in which mirrors that can change the angle of the reflection surface are arranged in an array by applying MEMS (Micro Electric Mechanical System) technology.
- MEMS Micro Electric Mechanical System
- By using this small mirror array it is possible to configure an optical switch that switches an output port as a light output destination from the input port.
- WDM Widelength Division Multiplexing
- each mirror constituting the small mirror array is tilted by an electrostatic force generated by an applied electric signal (voltage signal).
- an applied electric signal voltage signal
- each mirror can be variably set to a desired angle with the electric signal to apply.
- the voltage signal for generating the electrostatic force may require a high voltage of about 200 V when attempting to increase the mirror tilt angle.
- a discharge phenomenon occurs between the mirror potential in the device and the ground point, and a temporary voltage drop is likely to occur.
- the control of the reflection surface angle of the mirror becomes unstable, which hinders stable light output.
- the purpose of this case is to realize stable setting of the reflecting surface angle and high-speed response.
- the present invention is not limited to the above-mentioned object, and is an effect derived from each configuration shown in the best mode for carrying out the invention, which will be described later. Can do.
- this mirror apparatus is a mirror in which a plurality of mirror devices each having a mirror body that reflects input light and a rotation mechanism that can change the reflection surface angle of the mirror body by an electrostatic force are arranged. And a control unit that supplies an electric signal that generates an electrostatic force that sets an angle of reflection surface of each mirror device to the rotation mechanism, and the control unit includes a reflection surface of each mirror device. It is a requirement to supply an electrical signal having an initial motion fluctuation amount exceeding the fluctuation amount to the electrical signal corresponding to the reflecting surface angle to be set at the time of the initial switching of the angle.
- the optical switch includes a plurality of ports for inputting and outputting light, and switches an optical coupling combination between the ports for inputting and outputting the light.
- a mirror array having a plurality of mirror devices arranged with a mirror body to be reflected and a rotating mechanism capable of changing a reflection surface angle of the mirror body by electrostatic force is provided, and light from the plurality of ports is dispersed.
- a condensing unit that guides each wavelength light split by the spectroscopic unit as the input light to the corresponding mirror body, and an electrostatic force that sets a reflection surface angle of each mirror body is generated.
- a controller configured to set an output destination port through which reflected light of the input light is guided through the condenser lens and the spectroscopic unit by supplying an electric signal to the rotation mechanism;
- the control unit from the initial operation of the switching operation of the reflection surface angle of each mirror body for switching the port, from the electrical signal value at the start of the switching operation to the electrical signal value corresponding to the reflection surface angle to be set It is a requirement that an electrical signal having an initial movement fluctuation amount exceeding the fluctuation amount by an excess amount is supplied to the rotating mechanism.
- this optical node device is required to have the optical switch of (2) above.
- this mirror body control method is a method of variably controlling the reflection surface angle of the mirror body that reflects the input light by electrostatic force, and at the initial operation of the operation of switching the reflection surface angle, The amount of electrical signal supplied to the mirror body after the amount of electrical signal exceeding the amount of variation to the amount of electrical signal to generate an electrostatic force corresponding to the target reflecting surface angle to be set is supplied to the mirror body, It is a requirement to converge to an electric signal amount corresponding to the target reflecting surface angle.
- the mirror device includes a mirror body that reflects input light, a rotating mechanism that can change a reflection surface angle of the mirror body by an electrostatic force, and an electric signal that sets the reflection surface angle of the mirror body. And a control unit that supplies the rotation mechanism to the rotation mechanism, and the control unit exceeds the amount of fluctuation to the electric signal amount corresponding to the reflection surface angle to be set at the time of the initial switching of the reflection surface angle of the mirror body. The requirement is to supply a variable amount of electrical signals.
- the control unit can supply an electrical signal with an initial movement fluctuation amount that exceeds the fluctuation amount to the electrical signal corresponding to the reflection surface angle to be set at the initial movement of the reflection surface angle of each mirror device.
- (A)-(c) is a figure explaining generation
- (A), (b) is a figure which shows the example which incorporated correction control by overcharge.
- (A), (b) is a figure which shows the example which incorporated correction control by overcharge.
- (A), (b) is a figure which shows the example which incorporated correction control by overdischarge. It is a figure which shows the example incorporating correction control by overdischarge.
- FIGS. 1 and 2 are views showing an optical switch 1 according to the present embodiment, FIG. 1 is a top view showing the optical switch 1, and FIG. 1 is a side view showing 1.
- the optical switch 1 shown in FIGS. 1 and 2 includes an input port that introduces light from an external optical fiber and a plurality of collimators 2 that can function as output ports that guide light to the external optical fiber. Switch the combination of optical coupling between output ports to wavelength units. For this reason, the optical switch 1 includes a plurality of collimators 2 described above, a spectroscopic element 3, a condensing lens 4, and a mirror device 5.
- the collimator 2 functioning as an input port forms a spatial beam of parallel light for the light input from the optical fiber and guides it to the spectroscopic element 3.
- the collimator 2 functioning as an output port guides the reflected light from the spectroscopic element 3 (at the mirror device 5) to the optical fiber.
- a plurality of (three in the figure) collimators 2 are arranged in the Z direction as shown in FIGS. 1 and 2, and m collimators 2 functioning as input ports and collimators 2 functioning as output ports.
- the spectroscopic element (spectral part) 3 separates light input from the collimator 2 as an input port. That is, the light from the collimator 2 is output at different emission angles for each wavelength in the Y direction in the figure.
- the condensing lens (condenser) 4 guides each wavelength light split by the spectroscopic element 3 as input light to a corresponding mirror device 56a in a mirror array 56 described later. In FIG. 1, five mirror devices 56a respectively corresponding to the wavelengths ⁇ 1 to ⁇ 5 are illustrated.
- the mirror device 5 reflects the light of each wavelength from the condenser lens 4 and switches the collimator 2 serving as the output port of the coupling destination through the condenser lens 4 and the spectroscopic element 3, as shown in FIG.
- an optical fabric 51 an FPGA (Field Programmable Gate Array) 52, a RAM (Random Access Memory) 53, and a DPRAM (Dual Port RAM) 54 are provided.
- the optical fabric 51 includes a mirror array 56 having a mirror device 56a for reflecting light from the isolator 55 together with an isolator 55 for introducing each light beam input through the condenser lens 4.
- 3 shows the configuration of the optical fabric 51 in the side view direction shown in FIG. 2, and shows that nine collimators 2 in the figure are arranged as input ports.
- the isolator 55 is arranged in a two-dimensional direction along the ZY axis in FIG. 3, and the number of arrangements on the Z axis is equivalent to the number of collimators 2 as input ports. Can be made to correspond to the number of wavelengths that can be dispersed by the spectroscopic element 3. In other words, light having different wavelengths input from the same collimator 2 is reflected by the mirror devices 56a arranged substantially along the Y axis.
- each mirror device 56a has a configuration as shown in FIGS. 4 is a cross-sectional view of the mirror device 56a viewed from the Y-axis direction, and FIG. 5 is a cross-sectional view of the mirror device 56a viewed from the Z-axis direction.
- the mirror device 56 a includes a frame 62 formed on a substrate 61 via an insulating layer 65, and is supported rotatably on the frame 62 via a support 63.
- the mirror body 64 that reflects the input light is provided. Then, for example, by applying a positive voltage signal with the mirror body 64 as an electrode and grounding the substrate 61 side, an electrostatic force is generated between the mirror body 64 and the substrate 61, and the mirror device is passed through the support body 63.
- the reflection surface angle 56a can be varied. Therefore, the support body 63 and the mirror body 64 as an electrode constitute a rotation mechanism that can change the reflection surface angle of the mirror device 56a by electrostatic force.
- each mirror device 56a shown in FIGS. 1 to 3 is also configured to rotate about the Y axis, so that a collimator as an input / output port is obtained.
- the connection between the two can be switched.
- the angle of the reflection surface of the mirror device 56a that reflects the corresponding wavelength is controlled to rotate about the Y axis under the control of the FPGA 52, which will be described later, and thereby through the ports # 1 to # 9.
- the input light only the light from any one of the ports # 1 to # 9 can be guided to the collimator 2 forming the com port (output port).
- the structure which paid its attention to the structure rotated about the Y-axis in FIG. 4 is shown, but as the mirror device 56a, the Y-axis is shown.
- the Z-axis orthogonal to the Y-axis is used as a rotation axis.
- the reflecting surface that can optically couple the reflected light of the mirror body 64 to any of the ports # 1 to # 9 and the com port according to the rotation state of the Z axis It is possible to switch between an on state that is an angle and an off state that leads to the shutter region S where optical coupling is interrupted to any of the ports # 1 to # 9 and the com port.
- the support body 63 constituting the mirror device 56a and the mirror body 64 serving as an electrode have the Y axis as a rotation axis and the reflection axis angle of each mirror device 56a with the optical axis of the reflected light as the port arrangement direction (A first mechanism for switching in a direction corresponding to (Z-axis direction) and a first mechanism that can be changed in a direction (Y-axis direction) for switching on / off of optical coupling to an output destination port with the Z-axis as a rotation axis. It can have a function as two mechanisms.
- the FPGA 52 generates, controls, and supplies an electric signal for setting the reflection surface angle, that is, a voltage signal for driving, to the mirror body 64 as an electrode forming the plurality of mirror devices 56a.
- the RAM 53 stores voltage signal value information for driving corresponding to the set reflection surface angle in each mirror device 56a. That is, for example, an electrostatic force for switching and setting the reflection surface angle can be generated by a voltage signal generated by using the mirror body 64 as an electrode. Therefore, in the RAM 53, the reflection surface angle of the mirror body 64 is associated with the setting. The value of the voltage signal to be supplied can be stored.
- the reflection with respect to the mirror body 64 is optically coupled between the ports to be set according to the command received from the outside as input ports and output ports.
- the above-mentioned voltage signal is generated and controlled.
- the DPRAM 54 receives command information for external port switching setting (that is, combination setting of ports that are optically coupled as input / output ports), and holds the command information for transfer to the FPGA 52.
- the light input from the collimator 2 that forms the input port is split by the spectroscopic element 3 and arranged in a wavelength-corresponding manner through the condenser lens 4 to the mirror body 64 of the mirror device 56a. Reflected by.
- the reflection surface angle of the mirror body 64 is switched by an electrical signal that the FPGA 52 gives to the mirror body 64 constituting each mirror device 56a, the reflected light path between the collimators forming the input / output ports can also be switched.
- the collimator 2 to which the reflected light is guided through the condenser lens 4 and the spectroscopic element 3 is switched.
- FIG. 7 shows a configuration example of an OADM (Optical Add-Drop Multiplexer) node (optical node device) 70 formed by appropriately connecting a plurality of optical switches configured as described above.
- OADM Optical Add-Drop Multiplexer
- reference numerals 71 and 77 denote optical amplifiers
- 72 denotes a branching part that branches the drop light and the through light
- 73 and 74 denote optical switches that can select and output the drop light in units of wavelengths
- 75 is an optical switch that selects add light in units of wavelengths
- 76 is a unit of wavelength for light to be sent to the transmission line in response to through light from the branching unit 72 and add light from the optical switch 75.
- the node device 70 configured as shown in FIG. 7 has flexible expandability according to the number of operating wavelengths, such as channel addition according to the number of operating wavelengths, reduction of port connection work, and flexible route change of a plurality of channels. This is advantageous in that it can be assumed to be one of the mainstream node configurations in future wavelength division multiplexing optical transmission systems.
- the charge concentrates particularly at the corner 62C of the frame 62 adjacent to the region of the substrate 61 through the insulating layer 65. Discharge phenomenon is likely to occur. When such a discharge phenomenon occurs, the electrostatic force applied to the mirror body 64 also fluctuates, resulting in unstable control of the reflecting surface angle. In contrast, the formation of the insulating layer 66 described above can also stabilize the control of the reflection surface angle.
- the insulating layer 66 when the insulating layer 66 is coated with a dielectric, a phenomenon in which charges are accumulated inside the insulating layer 66 (charging) occurs.
- the insulating layer 66 When a relatively high voltage electrical signal is applied to the mirror body 64, the insulating layer 66 substantially functions as a capacitor, and charges are accumulated in the insulating layer 66 (charging).
- the electrostatic force due to the charge accumulated by such charging becomes a factor of fluctuation of the electrostatic force expected at the set applied voltage.
- the amount of charge accumulated in the insulating layer 66 affects the electrostatic force that drives the mirror body 64, which may hinder accurate control of the angle of the mirror body 64.
- the amount of displacement of the mirror body 64 due to charging is related to the dielectric constant and volume (area, film thickness) of the insulating layer 66 and the voltage applied to the electrode as the mirror body 64.
- Equation (1) When the magnitude F of the electrostatic force for rotating the mirror body 64 affected by charging as described above is derived by the simplified parallel plate model shown in FIG. 8C, the following equation (1) is obtained.
- V is the value of the voltage signal applied to the mirror body 64
- Voffset is the amount of change in the effective voltage caused by charging of the insulating layer 66
- A is an insulating layer having a substantial function as a capacitor.
- the area of 66, dins indicates the dielectric film thickness forming the insulating layer 66
- ⁇ ins indicates the dielectric constant
- Qtrapped indicates the charge accumulated in the dielectric forming the insulating layer 66.
- FIG. 9 is a diagram for explaining light output fluctuation at the time of switching applied voltage due to the influence of charging as described above.
- the reflection surface angle of the mirror body 64 when the reflection surface angle of the mirror body 64 is switched, the electric signal value supplied to the mirror body 64 as an electrode is switched. At this time, the supply voltage to the mirror body 64 is switched. Is increased from the voltage signal value corresponding to the reflection surface angle before switching to the voltage signal value corresponding to the reflection surface angle after switching, when the reflection surface angle of the mirror body 64 is switched, the applied voltage is switched. A considerable switching time T1 is required to stabilize the switched reflecting surface angle (corresponding to the light output level) from time t1. This is because when the applied voltage is increased, the electrostatic force changes gently while charges are accumulated in the insulating layer 66, so that the change in the reflection surface angle also becomes gentle.
- the applied voltage signal when the applied voltage signal is decreased, the charge accumulated in the insulating layer 66 is discharged (discharged). Also in this discharging, as shown in FIG. As in the case of charging, the change in electrostatic force affects the angle of the mirror body 64 (corresponding to the light output level), which can hinder accurate control of the reflection surface angle of the mirror body 64.
- the electrostatic force changes gradually while the charge of the insulating layer 66 is discharged (see time T2 from the applied voltage switching time t2 in FIG. 10), and therefore the change in the reflection surface angle also occurs. This is because it becomes moderate.
- the reflection surface angle of each mirror body 64 is quickly determined according to the combination of the input port that guides light to the spectroscopic element 3 and the output port that guides reflected light among the plurality of ports.
- Information on electrical signal values for enabling formation is stored. Specifically, control information for reducing the influence of electrostatic force characteristics that can be received by charging or discharging by the insulating layer 66 as described above is stored in the RAM 53 in advance.
- the drive electric signal is supplied to the mirror device 56a based on the contents of the RAM 53 in which such control information is stored, so that the influence of the electrostatic force exerted by the insulating layer 66 can be suppressed.
- a value is determined by referring to the RAM 53 described above.
- the value corresponds to the reflection surface angle to be set.
- the FPGA 52 refers to the RAM 53 when it receives a port switching instruction via the DPRAM 54. Then, for the time Et1 corresponding to the fluctuation amount from the electric signal value at the start of the switching operation to the electric signal value corresponding to the reflecting surface angle to be set, the value changed with the initial movement fluctuation amount at the time of the initial switching operation Supply electrical signals.
- the FPGA 52 refers to the RAM 53 when it receives a port switching instruction via the DPRAM 54.
- a voltage signal having a value having an initial movement fluctuation amount at the time of the first switching operation is supplied for a time Et2 corresponding to the fluctuation amount from the electric signal value at the start of the switching operation to the electric signal value corresponding to the reflection surface angle to be set.
- the supplied voltage signal is reduced from the voltage signal value corresponding to the target reflecting surface angle, and the discharge of the charge accumulated in the insulating layer 66 can be promoted.
- the initial movement variation amount is an electric signal value to the mirror body 64 such that the optical axis of the reflected light corresponds to the port position of the switching destination, and an electric signal to the mirror body 64 corresponding to the port position before the switching. It can be expressed as an amount obtained by adding the excess amount Ev to the difference between the two values.
- the case where both the above-described difference in electric signal value and the value of Ev are positive corresponds to the case where control of overcharge (see FIG. 11) is performed, and both the difference in electric signal value and the value of Ev are both.
- the negative case corresponds to overdischarge control.
- the excess amount Ev at this time can be an excess amount corresponding to the amount of variation from the electrical signal value at the start of the switching operation to the electrical signal value corresponding to the reflecting surface angle to be set.
- the amount of fluctuation in charging can be predicted in advance based on the dielectric constant, volume, and applied voltage of the dielectric. For this reason, a fixed time from the start of the route switching operation to the start of the stable region is set as a time for overcharge or overdischarge. As a result, as shown in FIGS. 11 and 12, it is possible to shorten the time from the initial movement of the route switching to the stabilization of the reflecting surface angle. Also, by setting the voltage value itself to overcharge or overdischarge according to the amount of change in applied voltage for route switching, it is possible to efficiently stabilize the reflecting surface angle by switching the route. Will be able to.
- the RAM 53 has a memory map as shown in FIG. In the one shown in FIG. 13, for each mirror device 56a specified by an input port and a channel (corresponding to each wavelength split by the spectroscopic element 3), the reflected light is a com port as an output port (see FIG. 3). Information on the optimum point voltage that gives the angle of the reflecting surface led to is stored.
- the RAM 53 information regarding the optimum point voltage that gives the reflection surface angle in the mirror device 56a when a port other than the com port is used as an output port can also be stored in the same manner.
- the RAM 53 for each mirror device 56a that reflects each light split by the spectroscopic element 3, the power of the reflected light coupled to the output destination port according to the output port position where the reflected light is guided.
- the mirror device 56a is configured to be rotatable in the Y and Z directions in FIGS. 1 and 2, as shown in FIG. Information can be stored.
- the RAM 53 stores an excess amount Ev of a value corresponding to the magnitude of the fluctuation amount to the electric signal value corresponding to the reflection surface angle to be set by the switching operation, and the excess amount at the time of the initial switching.
- the time information Et for supplying the electrical signal having is also stored.
- the excess amount Ev when the voltage signal is increased by switching, it indicates an amount (overcharge) for exceeding the increased amount and further increasing, and when the voltage signal is decreased by switching. The amount (over discharge) for further decreasing beyond the said amount of reduction is shown.
- the switching operation is performed based on the electrical signal value corresponding to the reflecting surface angle to be set, the excess amount Ev, and the time information Et giving the excess amount, which are stored in the RAM 53.
- the drive electrical signal supplied from the FPGA 52 varies from the electrical signal value at the start of the switching operation to the electrical signal value (optimum point voltage) corresponding to the reflection surface angle to be set when the switching operation is initially performed. While the value has an excess amount exceeding the amount, the value thereafter corresponds to the reflection surface angle to be set.
- the power of the reflected light coupled to the output destination port is set for each mirror device 56a that reflects each light split by the spectroscopic element 3 according to the setting of the output port to which the reflected light is guided.
- Information on the electrical signal value corresponding to the reflection surface angle adjusted to a predetermined level can also be stored. That is, in the RAM 53, the values of the drive electric signals to be supplied to the mirror body 64 are also stored as information corresponding to a plurality of levels required as the optical power when guided to the output destination optical fiber. Can do it.
- FIG. 14 is a diagram showing the relationship between the voltage applied to the mirror body 64 and the charging in the mirror device 56a.
- charging occurs early in proportion to the increase in applied voltage, and the reflection surface angle reaches the stable region earlier. Accordingly, as shown in FIG. 9 or FIG. 10, it takes a considerable time T1 or T2 to reach the stable region only by switching to the optimum point voltage, whereas as shown in FIG. 11 or FIG.
- Ev excess amount
- FIG. 15 is a diagram comparing the light output fluctuation (corresponding to the reflection surface angle) at the time of port switching between the case where the overcharge is performed (a) and the case where it is not performed (b).
- a control voltage signal for port switching is supplied (time point t2)
- time point t2 when the above overcharge is performed (a), the optical output is stabilized at an early stage as compared with the case where the overcharge is not performed (b). And virtually no fluctuations due to charging.
- FIG. 16 is a flowchart for explaining a memory map construction method in the RAM 53 as shown in FIG.
- the value of the drive electric signal to each mirror device 56a is prior to the start of operation so as to be optimally adapted to the path switching. Need to be built.
- step A1 information on the drive voltage signal of each mirror device 56a corresponding to the correspondence relationship of the input / output ports as the initial value is stored in the RAM 53 as the optimum point voltage (step A1).
- step A2 the charging or charging is measured by measuring the change in the charge amount in the insulating layer 66 according to the combination of the input / output ports scheduled to be optically coupled in each mirror device 56a before and after switching. The change characteristic of the discharging amount is measured (step A2).
- the excess amount Ev and the time Et for supplying the electric signal of the initial fluctuation amount are derived by arithmetic processing in accordance with the change characteristics of the charging or discharging amount measured as described above (step A3).
- information on Ev and Et as a derivation result is stored corresponding to the combination of ports assumed to be switched in each mirror device 56a (step A4).
- FIG. 17 illustrates an example of a drive control mode of the mirror device 56a according to the switching command in the optical switch 1 to which the mirror device 5 configured as described above is applied. It is a flowchart of. As shown in FIG. 17, when a switching command is received through the DPRAM 54 (step B1), the FPGA 52 reads the contents of the RAM 53, thereby reflecting the mirror device 56a that reflects the light input through the input port to be switched. Acquires information on the control voltage signal for setting the reflection surface angle guided to the shutter area S (see FIG. 6) (step B2), and guides the reflected light to the shutter area according to the acquired control voltage signal (step B3). .
- the optical axis coupled in the vicinity of the collimator 2 of the reflected light is optically coupled to any collimator 2.
- the reflection surface angle of the mirror device 56a is switched so as to be blocked (see time Ts in FIG. 15).
- the FPGA 52 reads out information on the initial movement fluctuation amount when guiding to the switching destination output port from the RAM 53 (step B4). Thereby, the information regarding the excess amount Ev and the time Et for the above-described overcharge or overdischarge is acquired.
- the FPGA 52 obtains information on the optimum point voltage for setting the reflection surface angle for optically coupling the reflected light to the output port of the switching destination, along with the information on the read excess amount Ev and the time Et. Based on this information, a voltage signal for overcharge or overdischarge is supplied to the mirror body 64 as an electrode. Thereby, the reflective surface angle of the mirror device 56a can be moved toward an angle corresponding to the overcharge or overdischarge position (step B5).
- Step B6 when the time Et for overcharge or overdischarge elapses, information on the optimum point voltage for setting the reflection surface angle for optically coupling the reflected light to the output port of the switching destination is stored in the RAM 53. (Step B6), and a control voltage signal based on the read information is supplied to the mirror body 64. Thereby, the reflection surface angle of the mirror device 56a is switched, and the reflected light can be guided to the output port of the switching destination (step B7).
- the setting of the reflection surface angle of the mirror device 56a corresponding to the movement of the reflected light to the shutter region as described above and the setting of the reflection surface angle by the overcharge or overdischarge described above are variously applied depending on combinations.
- 18 (a), 18 (b), 19 (a), and 19 (b) show an example in which correction control by overcharge is incorporated
- FIGS. 20 (a), 20 (b), and 21 are shown. Shows an example incorporating correction control by overdischarge.
- FIG. 18A is a diagram showing an example of the movement of light during switching control and the state of coupling to the optical fiber array when overcharging is performed.
- the optical axis of reflected light is once moved away from the fiber (shutter region S) to retract (S1), and light leaks to other ports. Try to prevent crowding. That is, the reflection surface angle is switched by the drive voltage signal from the FPGA 52 to the mirror device 56a so that the optical axis of the reflected light is shifted in the Y-axis direction different from the port arrangement direction (Z-axis direction).
- the reflecting surface is rotated so that the optical axis of the reflected light moves in the port switching direction (Z-axis direction). At this time, it moves to a position where the control voltage value is higher than the control voltage value corresponding to the port position of the switching destination in the port direction (Z-axis direction) rather than the position where it is coupled to the fiber (position corresponding to the excess amount Ev). (S2), and during the time Et, it is held in an overcharged state (S3). Thereafter, the position is returned to the position corresponding to the port position on the Z axis (S4), and the rotation control for coupling to the output port on the Y axis is performed (S5). Thereby, it is possible to shorten the time until the light output is stabilized.
- FIG. 18B is a diagram showing another example when overcharging is performed.
- the optical axis of the reflected light is moved to the shutter region S (S1) and moved to a position where the control voltage value becomes higher than the control voltage value corresponding to the port position of the switching destination in the port direction (Z-axis direction) (
- the point S2) is the same as in FIG.
- At the time of overcharging during the subsequent time Et it is rotated in the direction (Y axis direction) in which the optical axis of the reflected light coincides with the port arrangement axis in parallel with the overcharging (S3a).
- the position is returned to the position corresponding to the port position on the Z-axis (S4).
- S3 overcharge time retention
- the functions of the first and second mechanisms by the support body 63 and the mirror body 64 as the electrodes cooperate to mirror the drive electric signal to perform the port switching operation. While being supplied to the body 64, an electrical signal of an initial movement fluctuation amount at the time of the first switching is supplied at the time of switching the reflection surface angle for moving the optical axis in the Z-axis direction.
- FIG. 19A shows a collimator 2 as a switching destination output port when returning the optical axis of the reflected light in the direction along the port arrangement axis (Z axis) in FIG. 18B (see S4).
- the intensity of light output from the collimator 2 as an output port to the external optical fiber is variably attenuated (S4a).
- a state in which the light output exceeds the desired attenuation may occur due to the route moving to the attenuation position.
- the center lower position in the range where light can be optically coupled by the collimator 2 in the small circle in the figure
- the optical axis position for obtaining the target attenuation amount, S4a when the optical axis is moved, the collimator 2 passes through the position where the optical coupling efficiency is substantially highest (the center of the small circle in the figure).
- the optical axis of the reflected light is moved to the port arrangement axis side (Y-axis direction) in parallel with overcharging (S3b-1).
- the optical axis movement in the Z-axis direction for obtaining the target attenuation is completed before entering the range where the collimator 2 can optically couple on the Y-axis (S3b-2).
- the movement of the optical axis in the Y-axis direction is completed (S3b-3). This makes it possible to prevent the light output from exceeding the target attenuation in the process of moving the optical axis for switching the route.
- FIGS. 20 (a) and 20 (b) are diagrams showing examples of control in the case where correction control by overdischarge following the overcharge shown in FIGS. 18 (a) and 18 (b) is incorporated. is there.
- the optical axis of the reflected light is moved to the shutter area S (S11), and the control voltage is higher than the control voltage value corresponding to the switch destination port position in the port direction (Z-axis direction).
- the overcharge state is maintained (S13), the position is returned to the position corresponding to the port position on the Z axis (S14), and the rotation control for coupling to the output port on the Y axis is performed. (S15). Thereby, it is possible to shorten the time until the light output is stabilized.
- FIG. 20 (b) is different from the case of FIG. 20 (a).
- the time of over-discharging during the time Et in parallel with the over-discharging, it is rotated in the direction in which the optical axis of the reflected light coincides with the port arrangement axis (Y-axis direction) (S13a), and then on the Z-axis The position is returned to the position corresponding to the port position (S14).
- S13a the time loss due to the over-discharging time retention (S13) in the case of FIG.
- the collimator as the output port of the switching destination Adjust the optical coupling efficiency to 2.
- the intensity of light output from the collimator 2 as an output port to the external optical fiber is variably attenuated (S14a).
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Abstract
入力光を反射させるミラー体と静電力により該ミラー体の反射面角度を可変しうる回動機構と、をそなえたミラーデバイス(56a)が複数個配列されたミラーアレイ(56)をそなえるとともに、各ミラーデバイス(56a)の反射面角度を設定する静電力を生じさせる電気信号を該回動機構に供給する制御部(52,53)と、をそなえ、制御部(52,53)は、各ミラーデバイス(56a)の反射面角度の切り替え初動時に、設定すべき反射面角度に対応する電気信号への変動量を超える初動変動量の電気信号を供給するミラー装置であり、安定した反射面角度の設定および高速応答性を実現する。
Description
本件は、光通信システムにおいて用いて好適の、ミラー装置,光スイッチ,光ノード装置およびミラーデバイスの制御方法に関するものである。
小型ミラーアレイは、MEMS(Micro Electric Mechanical System)技術を適用して反射面角度を可変できるミラーをアレイ状に配置したデバイスである。この小型ミラーアレイを用いることにより、入力ポートからの光の出力先とする出力ポートを切り替える光スイッチを構成することができる。又、入力光としてWDM(Wavelength Division Multiplexing)光を適用する場合においては、波長毎に出力方路を切り替えることが可能な波長選択型の光スイッチを構成することも可能である。
小型ミラーアレイを用いて上述したような光スイッチを構成する場合には、小型ミラーアレイをなす各ミラーを傾斜させる角度を予め測定して内部メモリに格納し、外部からの切替コマンドに応じて内部メモリに格納された傾斜角データで切替を行なう。この場合において、小型ミラーアレイをなす各ミラーは、印加する電気信号(電圧信号)により生じる静電気力により傾斜される。そして、印加する電気信号の値に応じてミラーを傾斜させる静電気力が変動するようになっているので、各ミラーは、印加する電気信号により所望の角度に可変設定することができる。
しかしながら、静電気力を発生させるための電圧信号は、ミラーの傾斜角度を大きくしようとするときに200V程度の高電圧を必要とする場合もある。このように傾斜角度を大きくしようとする場合、デバイス内におけるミラーの電位と接地点と間で放電現象が起こり一時的な電圧降下が発生しやすくなる。これによりミラーの反射面角度の制御が不安定になり、安定した光出力を得るにあたっての支障となる。ミラーアレイに絶縁コーティングを施して上述のごとき放電を抑制することも考えられるが、その際においてもより安定的なミラーの反射面角度の制御の実現が求められる。
電極間の絶縁膜に蓄積する電荷を放電させるために、光反射領域を有する板状部材に作用する電界の向きを任意の周期で反転させる技術があるが、一定周期で光の偏光動作の運用を停止させなければならず、定常的な運用を前提とするシステムには適用することはできない。
特開2005-17799号公報
そこで、本件の目的は、安定した反射面角度の設定および高速応答性を実現することにある。
なお、上記目的に限らず、後述する発明を実施するための最良の形態に示す各構成により導かれる効果であって、従来の技術によっては得られない効果を奏することも他の目的として位置づけることができる。
なお、上記目的に限らず、後述する発明を実施するための最良の形態に示す各構成により導かれる効果であって、従来の技術によっては得られない効果を奏することも他の目的として位置づけることができる。
(1)このため、このミラー装置は、入力光を反射させるミラー体と静電力により該ミラー体の反射面角度を可変しうる回動機構と、をそなえたミラーデバイスが複数個配列されたミラーアレイをそなえるとともに、該各ミラーデバイスの反射面角度を設定する静電力を生じさせる電気信号を該回動機構に供給する制御部と、をそなえ、該制御部は、該各ミラーデバイスの反射面角度の切り替え初動時に、設定すべき反射面角度に対応する電気信号への変動量を超える初動変動量の電気信号を供給することを要件とする。
(2)また、この光スイッチは、光の入出力のための複数のポートをそなえ、前記光の入力および出力のためのポート間における光結合の組み合わせを切り替える光スイッチであって、入力光を反射させるミラー体と静電力により該ミラー体の反射面角度を可変しうる回動機構と、をそなえたミラーデバイスが複数個配列されたミラーアレイをそなえるとともに、該複数のポートからの光を分光する分光部と、該分光部で分光された各波長光を対応する一のミラー体への前記入力光として導く集光部と、該各ミラー体の反射面角度を設定する静電力を生じさせる電気信号を該回動機構に供給することにより、前記入力光についての反射光が該集光レンズおよび該分光部を通じて導かれる出力先の前記ポートを設定する制御部と、をそなえ、該制御部は、前記ポートの切り替えのための該各ミラー体の反射面角度の切り替え動作の初動時に、前記切り替え動作開始時の電気信号値から設定すべき反射面角度に対応する電気信号値までの変動量を超過量だけ超える初動変動量を有する電気信号を該回動機構に供給することを要件としている。
(3)さらに、この光ノード装置は、上記(2)の光スイッチをそなえたことを要件としている。
(4)また、このミラー体の制御方法は、入力光を反射させるミラー体の反射面角度を静電力により可変制御する方法であって、前記反射面角度を切り替える動作の初動時に、前記切り替えにより設定すべき目標反射面角度に対応する静電力を発生させる電気信号量への変動量を超える変動量の電気信号を該ミラー体に供給してから、該ミラー体に供給する電気信号量を、前記目標反射面角度に対応する電気信号量に収束させることを要件としている。
(4)また、このミラー体の制御方法は、入力光を反射させるミラー体の反射面角度を静電力により可変制御する方法であって、前記反射面角度を切り替える動作の初動時に、前記切り替えにより設定すべき目標反射面角度に対応する静電力を発生させる電気信号量への変動量を超える変動量の電気信号を該ミラー体に供給してから、該ミラー体に供給する電気信号量を、前記目標反射面角度に対応する電気信号量に収束させることを要件としている。
(5)更に、このミラー装置は、入力光を反射させるミラー体と、静電力により該ミラー体の反射面角度を可変しうる回動機構と、該ミラー体の反射面角度を設定する電気信号を該回動機構に供給する制御部と、をそなえ、該制御部は、該ミラー体の反射面角度の切り替え初動時に、設定すべき反射面角度に対応する電気信号量への変動量を超える変動量の電気信号を供給することを要件としている。
制御部は、各ミラーデバイスの反射面角度の切り替え初動時に、設定すべき反射面角度に対応する電気信号への変動量を超える初動変動量の電気信号を供給することができるので、安定した反射面角度の設定および高速応答性を実現できる利点がある。
1 光スイッチ
2 コリメータ
3 分光素子
4 集光レンズ
5 ミラー装置
51 光ファブリック
52 FPGA
53 RAM
54 DPRAM
55 光アイソレータ
56 ミラーアレイ
56a ミラーデバイス
61 基板
62 フレーム
62C 角部
63 支持体
64 ミラー体
65,66 絶縁層
70 OADMノード
71,77 光増幅器
72 分岐部
73~76 光スイッチ
2 コリメータ
3 分光素子
4 集光レンズ
5 ミラー装置
51 光ファブリック
52 FPGA
53 RAM
54 DPRAM
55 光アイソレータ
56 ミラーアレイ
56a ミラーデバイス
61 基板
62 フレーム
62C 角部
63 支持体
64 ミラー体
65,66 絶縁層
70 OADMノード
71,77 光増幅器
72 分岐部
73~76 光スイッチ
以下、図面を参照することにより、実施の形態について説明する。
ただし、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図は無い。即ち、本実施形態は、その趣旨に逸脱しない範囲において種々変形して実施することができる。
〔A〕一実施形態の説明
〔A1〕概略構成
図1,図2は本実施形態にかかる光スイッチ1を示す図であり、図1は光スイッチ1示す上視図で、図2は光スイッチ1を示す側視図である。この図1,図2に示す光スイッチ1は、外部光ファイバからの光を導入する入力ポートおよび外部光ファイバへ光を導く出力ポートとして機能しうる複数のコリメータ2をそなえるとともに、これら入力ポートおよび出力ポート間における光結合の組み合わせを波長単位に切り替える。このため、光スイッチ1は、上述の複数のコリメータ2とともに、分光素子3、集光レンズ4およびミラー装置5をそなえて構成されている。
ただし、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図は無い。即ち、本実施形態は、その趣旨に逸脱しない範囲において種々変形して実施することができる。
〔A〕一実施形態の説明
〔A1〕概略構成
図1,図2は本実施形態にかかる光スイッチ1を示す図であり、図1は光スイッチ1示す上視図で、図2は光スイッチ1を示す側視図である。この図1,図2に示す光スイッチ1は、外部光ファイバからの光を導入する入力ポートおよび外部光ファイバへ光を導く出力ポートとして機能しうる複数のコリメータ2をそなえるとともに、これら入力ポートおよび出力ポート間における光結合の組み合わせを波長単位に切り替える。このため、光スイッチ1は、上述の複数のコリメータ2とともに、分光素子3、集光レンズ4およびミラー装置5をそなえて構成されている。
ここで、入力ポートとして機能するコリメータ2は、光ファイバから入力される光について平行光の空間ビームを形成して分光素子3に導く。又、出力ポートとして機能するコリメータ2は、分光素子3からの(ミラー装置5での)反射光について光ファイバに導く。尚、複数個(図中は3個)そなえられるコリメータ2は、図1,図2に示すようにZ方向に配置され、入力ポートとして機能するコリメータ2をm個、出力ポートとして機能するコリメータ2をn個とすることで(m,nは自然数)、m入力n出力の光スイッチ1を構成することができる。
分光素子(分光部)3は、入力ポートとしてのコリメータ2から入力される光を分光するものである。即ち、コリメータ2からの光について、図中Y方向に波長毎に異なる出射角度で出力するようになっている。集光レンズ(集光部)4は、分光素子3で分光された各波長光を、後述するミラーアレイ56における対応する一のミラーデバイス56aへの入力光として導くものである。尚、図1中においては、波長λ1~λ5にそれぞれ対応した5つのミラーデバイス56aについて図示している。
ミラー装置5は、集光レンズ4からの波長毎の光について反射させて、当該集光レンズ4および分光素子3を通じて結合先の出力ポートとなるコリメータ2を切り替えるものえあって、図3に示すように、光ファブリック(Optical Fabric)51,FPGA(Field Programmable Gate Array)52,RAM(Random Access Memory)53およびDPRAM(Dual Port RAM)54をそなえている。
光ファブリック51は、図3に示すように、集光レンズ4を通じて入力される各光ビームを導入するアイソレータ55とともに、アイソレータ55からの光について反射させるミラーデバイス56aをそなえたミラーアレイ56をそなえる。尚、図3中においては、図2に示す側視方向の光ファブリック51の構成を示すものであり、入力ポートとして図中9個のコリメータ2が配列されていること示している。
換言すれば、アイソレータ55は、図3中ZY軸に沿う二次元方向に配列されるようになっており、Z軸上の配列数は入力ポートとしてのコリメータ2の個数に相当させ、Y軸上の配列数については分光素子3で分光可能な波長数に相当させることができる。換言すれば、同じコリメータ2から入力される波長の異なる光は、実質的にY軸に沿って配列されるミラーデバイス56aでそれぞれ反射されるようになっている。
ここで、ミラーアレイ56は、図4に示すようなミラーデバイス56aを複数配置されて、分光素子3で分光された各光がそれぞれ一つのミラーデバイス56aで反射されるようになっている。ここで、各ミラーデバイス56aは、図4および図5に示すような構成をそなえている。図4はY軸方向から見たミラーデバイス56aの断面図であり、図5はZ軸方向から見たミラーデバイス56aの断面図である。
これらの図4,図5に示すように、ミラーデバイス56aは、基板61上に絶縁層65を介して形成されたフレーム62をそなえるとともに、フレーム62に支持体63を介して回動可能に支持されて入力光を反射させるミラー体64をそなえる。そして、ミラー体64を電極として例えば正の電圧信号を印加するとともに、基板61側を接地することにより、ミラー体64と基板61との間に静電気力が発生して、支持体63を通じてミラーデバイス56aの反射面角度を可変することができるようになっている。従って、上述の支持体63および電極としてのミラー体64は、静電力によりミラーデバイス56aの反射面角度を可変しうる回動機構を構成する。
ここで、この図4,図5に示すように、図1~図3に示す各ミラーデバイス56aのミラー体64についてもY軸について回動するように構成することで、入出力ポートとしてのコリメータ2間の結合を切り替えることができるようになる。
図3に示すものにおいては、後述のFPGA52からの制御を受けて、該当波長を反射するミラーデバイス56aの反射面角度がY軸について回動制御され、これにより、ポート♯1~ポート♯9を通じて入力される光について、いずれか一のポート♯1~♯9からの光のみをcomポート(出力ポート)をなすコリメータ2に導くことが可能であることを示している。
図3に示すものにおいては、後述のFPGA52からの制御を受けて、該当波長を反射するミラーデバイス56aの反射面角度がY軸について回動制御され、これにより、ポート♯1~ポート♯9を通じて入力される光について、いずれか一のポート♯1~♯9からの光のみをcomポート(出力ポート)をなすコリメータ2に導くことが可能であることを示している。
なお、ミラーデバイス56aの回動機構をなす支持体63においては、図4中Y軸を回動軸として回動させる構成に着目した構成を示しているが、ミラーデバイス56aとしては、Y軸とともに、Y軸に直交するZ軸を回動軸として回動する構成をもそなえることとしてもよい。このようにすれば、図6に示すように、Z軸の回動状態により、ミラー体64の反射光を、いずれかのポート♯1~♯9,comポートに光学的に結合されうる反射面角度とするオン状態と、いずれのポート♯1~♯9,comポートにも光学的な結合が遮断されるシャッター領域Sに導くオフ状態と、を切り替えることができるようになる。
すなわち、ミラーデバイス56aをなす支持体63および電極としてのミラー体64は、Y軸を回動軸として、各ミラーデバイス56aの反射面角度について、前記反射光の光軸を、ポートの配列方向(Z軸方向)に対応する方向に切り替えるための第1機構とともに、Z軸を回動軸として、出力先のポートへの光結合のオンオフを切り替えるための方向(Y軸方向)に可変しうる第2機構としての機能を有することができる。
FPGA52は、複数のミラーデバイス56aをなす電極としてのミラー体64に対して、反射面角度設定のための電気信号、即ち駆動用の電圧信号を生成制御し供給する。又、RAM53は、FPGA52が各ミラーデバイス56aにおける設定反射面角度に対応する駆動用の電圧信号値情報等について記憶しておくものである。即ち、例えばミラー体64を電極として発生させる電圧信号により反射面角度を切り替え設定するための静電気力を生じさせることができるので、RAM53においては、ミラー体64の反射面角度の設定に対応づけた供給すべき電圧信号の値について記憶しておくことができる。
そして、FPGA52においては、上述のRAM53の内容を参照することにより、外部からの受けるコマント等に従って設定すべきポート間を入力ポートおよび出力ポートとして光学的に結合させるべく、該当ミラー体64についての反射面角度を設定すべく、上述した電圧信号を生成制御し供給する。
また、DPRAM54は、外部からのポート切り替え設定(即ち入出力ポートとして光学的に結合させるポートの組み合わせ設定)のコマンド情報を受けて、当該コマンド情報をFPGA52に受け渡すために保持するものである。
また、DPRAM54は、外部からのポート切り替え設定(即ち入出力ポートとして光学的に結合させるポートの組み合わせ設定)のコマンド情報を受けて、当該コマンド情報をFPGA52に受け渡すために保持するものである。
このように構成された光スイッチ1では、入力ポートをなすコリメータ2から入力された光は、分光素子3で分光されて、集光レンズ4を通じて波長対応に配列されるミラーデバイス56aのミラー体64で反射される。このとき、FPGA52が各ミラーデバイス56aをなすミラー体64に与える電気信号により、ミラー体64の反射面角度が切り替わるので、入出力ポートをなすコリメータ間の反射光路についても切り替えることができる。このように切り替わった反射光路に対応して、集光レンズ4および分光素子3を通じて反射光が導かれるコリメータ2について切り替えられる。
すなわち、FPGA52およびRAM53においては、支持体63およびミラー体64における上述の第1機構および該第2機構としての機能を協働させることにより、切り替え動作を行なうべく電気信号をミラー体64に供給する一方、第1機構による反射面角度の切り替えのために、切り替え初動時における初動変動量の電気信号を供給する。
なお、図7は上述のごとく構成された光スイッチを複数個適宜接続してなるOADM(Optical Add-Drop Multiplexer)ノード(光ノード装置)70の構成例を示すものである。この図7において、71,77は光増幅器、72はドロップ用の光とスルー用の光とを分岐する分岐部、73,74はドロップ用の光を波長単位で選択し出力しうる光スイッチ、75はアド用の光を波長単位に選択する光スイッチ、76は分岐部72からのスルー用の光と光スイッチ75からのアド用の光とを受けて伝送路へ送出すべき光を波長単位に選択して出力する光スイッチである。この図7に示すような構成のノード装置70は、運用波長数に応じたチャンネル増設、ポート接続作業の低減、複数チャネルの柔軟な方路変更など、運用波長数に応じた柔軟な拡張性を有する点で有利であり、今後の波長多重光伝送システムにおけるノード構成の主流の一つとなると想定できる。
なお、図7は上述のごとく構成された光スイッチを複数個適宜接続してなるOADM(Optical Add-Drop Multiplexer)ノード(光ノード装置)70の構成例を示すものである。この図7において、71,77は光増幅器、72はドロップ用の光とスルー用の光とを分岐する分岐部、73,74はドロップ用の光を波長単位で選択し出力しうる光スイッチ、75はアド用の光を波長単位に選択する光スイッチ、76は分岐部72からのスルー用の光と光スイッチ75からのアド用の光とを受けて伝送路へ送出すべき光を波長単位に選択して出力する光スイッチである。この図7に示すような構成のノード装置70は、運用波長数に応じたチャンネル増設、ポート接続作業の低減、複数チャネルの柔軟な方路変更など、運用波長数に応じた柔軟な拡張性を有する点で有利であり、今後の波長多重光伝送システムにおけるノード構成の主流の一つとなると想定できる。
〔A2〕放電現象およびチャージング現象の発生の説明
ところで、上述のミラー装置5をなすミラーデバイス56aにおいては、図4に示すように、電極としてのミラー体(正電極)64および基板(接地電極)61に、誘電体による絶縁層66がコーティングされており、これにより、図8(b)に示すように、ミラー体64と基板61間で高電位差が与えられたときに放電現象の発生を起こりにくくしている。
ところで、上述のミラー装置5をなすミラーデバイス56aにおいては、図4に示すように、電極としてのミラー体(正電極)64および基板(接地電極)61に、誘電体による絶縁層66がコーティングされており、これにより、図8(b)に示すように、ミラー体64と基板61間で高電位差が与えられたときに放電現象の発生を起こりにくくしている。
なお、絶縁層66がコーティングされない場合には、図8(a)に示すように、特に絶縁層65を介して基板61の領域に近接するフレーム62の角部62Cにおいて電荷が集中するために、放電現象が発生しやすい。このような放電現象が発生すると、ミラー体64に与えられる静電気力にも変動をきたし、反射面角度についての制御の不安定を招く。これに対し、上述の絶縁層66の形成により、反射面角度についての制御も安定化を進めることができる。
しかし、上述の図4に示すように、誘電体による絶縁層66をコーティングする場合、その絶縁層66の内部に電荷が蓄積される現象(チャージング)が発生する。ミラー体64に比較的高電圧の電気信号が印加されると、絶縁層66が実質的にコンデンサとして機能することとなり、絶縁層66内に電荷が蓄積されることになる(チャージング)。
このようなチャージングにより蓄積される電荷による静電気力は、設定した印加電圧で期待される静電気力の変動の要因となる。即ち、絶縁層66に蓄積される電荷の蓄積量により、ミラー体64を駆動させる静電気力に影響をおよぼし、ミラー体64の角度の正確な制御における支障となりうる。チャージングによるミラー体64の変位量は、絶縁層66の誘電率や体積(面積、膜厚)、ミラー体64としての電極に印加される電圧に関係している。
このようなチャージングにより蓄積される電荷による静電気力は、設定した印加電圧で期待される静電気力の変動の要因となる。即ち、絶縁層66に蓄積される電荷の蓄積量により、ミラー体64を駆動させる静電気力に影響をおよぼし、ミラー体64の角度の正確な制御における支障となりうる。チャージングによるミラー体64の変位量は、絶縁層66の誘電率や体積(面積、膜厚)、ミラー体64としての電極に印加される電圧に関係している。
上述のごときチャージングにより影響を受けるミラー体64を回動するための静電気力の大きさFを図8(c)に示す簡略平行平板モデルによって導出すると、式(1)のようになる。尚、図8(c)のモデルは、ミラー体64と接地された基板61とにより互いに対向する平行平板が形成され、ミラー体64に面積Aで膜厚dinsの絶縁層66が形成されているものである。又、式(1)において、Vはミラー体64に印加する電圧信号の値、Voffsetは、絶縁層66へのチャージによって生じる実効電圧の変動量、Aはコンデンサとしての実質的機能を有する絶縁層66の面積、dinsは絶縁層66をなす誘電体膜厚、εinsは誘電率、Qtrappedは絶縁層66をなす誘電体に溜まったチャージを示す。
図9は、上述のごときチャージングの影響による印加電圧切り替え時の光出力変動を説明する図である。この図9に示すように、ミラー体64の反射面角度の切り替えを行なう際には電極としてのミラー体64に供給する電気信号値の切り替えを行なうが、このとき、ミラー体64への供給電圧を、切り替え前の反射面角度に対応する電圧信号値から、切り替え後の反射面角度に対応する電圧信号値ににより増大させると、ミラー体64の反射面角度を切り替える場合において、印加電圧の切り替わり時点t1から、切り替わった反射面角度(光出力レベルに相当する)が安定化するには相当の切り替え時間T1を要する。印加電圧を増大させると、絶縁層66に電荷が蓄積されている間は緩やかに静電力が変化するため、反射面角度の変化も緩やかになるからである。
また、印加している電圧信号を減少させる場合において、絶縁層66に蓄積されている電荷は放電(ディスチャージング)されることになるが、このディスチャージングにおいても、図10に示すように、前述のチャージングの場合と同様に、静電気力の変化がミラー体64の角度(光出力レベルに相当する)に影響を与え、正確なミラー体64の反射面角度の制御における支障となりうる。印加電圧を減少させると、絶縁層66の電荷が放電されている間(図10の印加電圧切り替え時点t2からの時間T2参照)は、緩やかに静電力が変化するため、反射面角度の変化も緩やかになるからである。
上述の図9および図10に示すように、絶縁層66への電荷の蓄積・放電は通常時定数が長く、安定するまでに相当の時間(図9のT1、図10のT2参照)を要し、高速かつ正確なスイッチングに対する支障ともなりうる。
〔A3〕ミラー装置をなすミラーの駆動態様の説明
そこで、本実施形態においては、制御部としてのFPGA52およびRAM53が協働することにより、ミラーデバイス56aの反射面角度の切り替え初動時に、設定すべき反射面角度に対応する電気信号への変動量を超える初動変動量の電気信号を供給するようになっている。
〔A3〕ミラー装置をなすミラーの駆動態様の説明
そこで、本実施形態においては、制御部としてのFPGA52およびRAM53が協働することにより、ミラーデバイス56aの反射面角度の切り替え初動時に、設定すべき反射面角度に対応する電気信号への変動量を超える初動変動量の電気信号を供給するようになっている。
このため、記憶部としてのRAM53では、複数のポートのうちで分光素子3へ光を導く入力ポートおよび反射光が導かれる出力ポートの組み合わせに応じた、各ミラー体64の反射面角度を迅速に形成できるようにするための電気信号値に関する情報を記憶する。具体的には、RAM53において予め上述のごとき絶縁層66によるチャージング又はディスチャージングにより受けうる静電気力特性の影響を少なくするための制御情報を蓄積しておく。そして、FPGA52においては、このような制御情報が蓄積されたRAM53の内容に基づきミラーデバイス56aへ駆動電気信号を供給することで、絶縁層66が及ぼす静電気力の影響を抑制できるようにしている。
すなわち、FPGA52から供給される駆動電気信号としては、上述のRAM53を参照することにより値が定められる。切り替え動作の初動時においては、切り替え動作開始時の電気信号値から設定すべき反射面角度に対応する電気信号値までの変動量を超過量Evだけ超える初動変動量を有する値とする。一方、その後は設定すべき反射面角度に対応する値としている。
換言すれば、ミラー体64の反射面角度を静電気力により切り替える動作の初動時に、切り替えにより設定すべき目標反射面角度に対応する静電力を発生させる電気信号量への変動量を超える変動量の電気信号をミラー体64に供給する。そして、ミラー体64に供給する電気信号量を、目標反射面角度に対応する電気信号量に収束させる。
ここで、初動変動量を有する値をミラー体64に供給することを通じて、絶縁層66における電荷の蓄積量・放電量に応じて、印加電圧を通じた過蓄積(オーバーチャージ)、又は過放電(オーバーディスチャージ)の制御を行なう。これにより、高速かつ安定した制御を実現する。図11はオーバーチャージによる安定領域に到達するまでの時間を早める補正制御例であり、図12はオーバーディスチャージによる安定領域に到達するまでの時間を早める補正制御例である。
ここで、初動変動量を有する値をミラー体64に供給することを通じて、絶縁層66における電荷の蓄積量・放電量に応じて、印加電圧を通じた過蓄積(オーバーチャージ)、又は過放電(オーバーディスチャージ)の制御を行なう。これにより、高速かつ安定した制御を実現する。図11はオーバーチャージによる安定領域に到達するまでの時間を早める補正制御例であり、図12はオーバーディスチャージによる安定領域に到達するまでの時間を早める補正制御例である。
この図11に示すように、FPGA52においては、ポート切り替え指示をDPRAM54を介して受け取るとRAM53を参照する。そして、切り替え動作開始時の電気信号値から設定すべき反射面角度に対応する電気信号値までの変動量に応じた時間Et1について、切り替え初動時における初動変動量を有して変動された値の電気信号を供給する。
過放電の制御を行なう場合においては、図12に示すように、FPGA52においては、ポート切り替え指示を、DPRAM54を介して受け取るとRAM53を参照する。そして、切り替え動作開始時の電気信号値から設定すべき反射面角度に対応する電気信号値までの変動量に応じた時間Et2について、切り替え初動時における初動変動量を有する値の電圧信号を供給する。これにより、供給される電圧信号は目標の反射面角度に対応する電圧信号値よりも減少されて、絶縁層66に蓄積されていた電荷の放電を促進させることができる。
過放電の制御を行なう場合においては、図12に示すように、FPGA52においては、ポート切り替え指示を、DPRAM54を介して受け取るとRAM53を参照する。そして、切り替え動作開始時の電気信号値から設定すべき反射面角度に対応する電気信号値までの変動量に応じた時間Et2について、切り替え初動時における初動変動量を有する値の電圧信号を供給する。これにより、供給される電圧信号は目標の反射面角度に対応する電圧信号値よりも減少されて、絶縁層66に蓄積されていた電荷の放電を促進させることができる。
ここで、初動変動量とは、反射光の光軸が切り替え先のポート位置に対応するようなミラー体64への電気信号値と、切り替え前のポート位置に対応するミラー体64への電気信号値と、の差に、超過量Evを加えた量として表すことができる。尚、ここでは、上述の電気信号値の差およびEvの値がともに正の場合は、オーバーチャージ(図11参照)の制御を行なう場合に該当し、電気信号値の差およびEvの値がともに負の場合は、オーバーディスチャージの制御を行なう場合に該当する。尚、このときの超過量Evについては、切り替え動作開始時の電気信号値から設定すべき反射面角度に対応する電気信号値までの変動量に応じた超過量とすることができる。
チャージングの変動量は、誘電体の誘電率や体積、印加電圧によりあらかじめ予測可能である。このため、方路切り替え動作の開始時から安定領域に入るまでの一定時間をオーバーチャージ又はオーバーディスチャージのための時間として設定する。これにより、図11,図12に示すように、方路切り替えの初動時から反射面角度が安定するまでの時間を短縮化することができる。又、方路切り替えのための印加電圧の変動量に応じて、オーバーチャージ又はオーバーディスチャージさせる電圧値自体も設定しておくことで、方路切り替えによる反射面角度の安定化を効率的に図ることができるようになる。
ここで、RAM53は例えば図13に示すようなメモリマップをそなえている。この図13に示すものにおいては、入力ポートおよびチャンネル(分光素子3で分光される各波長に対応)によって特定されるミラーデバイス56aごとに、反射光が出力ポートとしてのcomポート(図3参照)へ導かれる反射面角度を与える最適点電圧に関する情報を記憶する。
RAM53においては、comポート以外の他のポートを出力ポートとする場合の、該当ミラーデバイス56aにおける反射面角度を与える最適点電圧に関する情報についても、同様に記憶しておくこともできる。換言すれば、RAM53においては、分光素子3で分光された各光を反射させるミラーデバイス56aごとに、反射光が導かれる出力ポート位置に応じて、出力先のポートへ結合される反射光のパワーが所定レベルに調整される反射面角度に対応する電気信号値に関する情報を記憶する。尚、ミラーデバイス56aを、図1,図2中のY,Z方向に回動自在に構成している場合には、この図13に示すように、それぞれの回動方向への最適点電圧に関する情報を記憶しておくことができる。
また、RAM53においては、切り替え動作により設定すべき反射面角度に対応する電気信号値への変動量の大きさに応じた値の超過量Evを記憶しておくとともに、切り替え初動時において前記超過量を有する電気信号を供給する時間情報Etについても記憶しておく。このとき、超過量Evとしては、切り替えにより電圧信号を増大させる場合には当該増大量に超過して更に増大させるための量(オーバーチャージ)を示し、切り替えにより電圧信号おを減少させる場合には当該減少量に超過して更に減少させるための量(オーバーディスチャージ)を示す。
すなわち、comポートへの切り替え前において出力ポートとして設定していたポート位置に応じて、上述の最適点電圧への変動量も異なるので、上述の絶縁層66におけるチャージ又はディスチャージにより反射面角度の安定化に要する時間も異なる。そこで、アレイ状に配列されるミラーデバイス56aごとに、切り替え前におけるポート位置に応じて、オーバーチャージ又はオーバーディスチャージする電圧量および時間の情報を記憶しておくのである(図13の「切り替え前Port別チャージ電圧」,「切り替え前Port別チャージ時間」参照)。
換言すれば、切り替え前の該当ミラーデバイス56aへの制御電圧信号の値をE0、切り替え後の最適制御電圧信号の値をE1とすると、超過量を与えるときの初動変動量は、(E1-E0)+Evとなる。オーバーチャージを行なう場合には、(E1-E0)およびEvの値は正の値となる一方、オーバーディスチャージを行なう場合には、(E1-E0)およびEvの値は負の値となる。
これにより、制御信号供給部としてのFPGA52においては、RAM53に記憶される、設定すべき反射面角度に対応する電気信号値および超過量Evおよび超過量を与える時間情報Etに基づいて、前記切り替え動作のための駆動電気信号を電極としてのミラー体64に供給する。尚、FPGA52から供給される駆動電気信号は、上述の切り替え動作の初動時においては切り替え動作開始時の電気信号値から設定すべき反射面角度に対応する電気信号値(最適点電圧)までの変動量を超える超過量を有する値とする一方、その後は設定すべき反射面角度に対応する値とする。
また、RAM53においては、分光素子3で分光された各光を反射させるミラーデバイス56aごとに、反射光が導かれる出力ポートの設定に応じて、出力先のポートへ結合される反射光のパワーが所定レベルに調整される反射面角度に対応する電気信号値に関する情報を記憶しておくこともできる。即ち、RAM53においては、出力先の光ファイバへ導かれる際の光パワーとして求められる複数のレベルに対応して、ミラー体64へ供給すべき駆動電気信号の値についても情報として保持しておくことができるのである。
図14は上述のミラーデバイス56aにおけるミラー体64への印加電圧とチャージングとの関係を示す図である。この図14に示すように、印加電圧の増大に実質的に比例して、チャージングも早く発生し、又、反射面角度も安定領域に早く到達する。従って、図9又は図10に示すように、最適点電圧への切り替えのみによっては安定領域に到達するまで相当時間T1,T2を要するのに対して、図11又は図12に示すように、切り替え初動時に超過量Evを与えることにより、早期に反射面角度の安定化を実現することが可能となる。
図15は、上述のオーバーチャージを行なう場合(a)と行なわない場合(b)とで、ポート切り替え時の光出力の変動(反射面角度に相当)を比較する図である。ポート切り替えのための制御電圧信号が供給されるとき(時点t2)、上述のオーバーチャージを行なうと(a)、オーバーチャージを行なわない場合に比べて(b)、光出力を早期に安定化させることが可能になり、又、事実上チャージングによる変動をほとんど無くすことも可能である。
図16は、上述の図13に示すようなRAM53におけるメモリマップの構築手法を説明するためのフローチャートである。RAM53におけるメモリマップとしては、ミラーアレイ56が適用される光スイッチ1の構成に応じて、各ミラーデバイス56aへの駆動電気信号の値は、方路切り替えに最適に適合するよう、運用開始に先立って構築しておく必要がある。
まず、FPGA52においては、初期値としての入出力ポートの対応関係に応じた各ミラーデバイス56aの駆動電圧信号の情報を最適点電圧としてRAM53に記憶させる(ステップA1)。ついで、FPGA52においては、各ミラーデバイス56aにおいて光学的結合を予定する入出力ポートの組の切り替え前後での組み合わせに応じた、絶縁層66での帯電量の変化を測定することにより、チャージング又はディスチャージング量の変化特性を測定する(ステップA2)。
そして、FPGA52において、上述のごとく測定されたチャージング又はディスチャージング量の変化特性に応じて、初動変動量の電気信号を供給するための超過量Evおよび時間Etを演算処理により導出する(ステップA3)。そして、導出結果としてのEvおよびEtに関する情報を、各ミラーデバイス56aにおいて切り替えが想定されるポートの組み合わせに対応して記憶していく(ステップA4)。
このようにして、RAM53ではオーバーチャージおよびオーバーディスチャージのための制御量を記憶しておくことができるようになる。
〔A4〕ポート切り替えの具体的態様の説明
図17は上述のごとく構成されたミラー装置5が適用された光スイッチ1において、切り替えコマンドに応じたミラーデバイス56aの駆動制御態様の一例を説明するためのフローチャートである。この図17に示すように、DPRAM54を通じて切り替えコマンドを受けると(ステップB1)、FPGA52ではRAM53の内容を読み込むことにより、切り替え対象の入力ポートを通じて入力される光を反射させるミラーデバイス56aを、反射光がシャッター領域S(図6参照)に導かれる反射面角度とするための制御電圧信号に関する情報を取得し(ステップB2)、取得した制御電圧信号に従って、反射光をシャッター領域に導く(ステップB3)。
〔A4〕ポート切り替えの具体的態様の説明
図17は上述のごとく構成されたミラー装置5が適用された光スイッチ1において、切り替えコマンドに応じたミラーデバイス56aの駆動制御態様の一例を説明するためのフローチャートである。この図17に示すように、DPRAM54を通じて切り替えコマンドを受けると(ステップB1)、FPGA52ではRAM53の内容を読み込むことにより、切り替え対象の入力ポートを通じて入力される光を反射させるミラーデバイス56aを、反射光がシャッター領域S(図6参照)に導かれる反射面角度とするための制御電圧信号に関する情報を取得し(ステップB2)、取得した制御電圧信号に従って、反射光をシャッター領域に導く(ステップB3)。
これにより、入力ポートを通じて入力される光の反射光が他のポートに漏れ出さないようにするために、反射光のコリメータ2近傍で結合する光軸が、いずれのコリメータ2への光学的結合が遮断されるように、該当ミラーデバイス56aの反射面角度が切り替えられる(図15の時間Ts参照)。
上述のシャッター領域Sへ反射光が導かれるような反射面角度の制御に続いて、FPGA52では、RAM53から、切り替え先の出力ポートへ導くにあたっての初動変動量に関する情報を読み出す(ステップB4)。これにより、前述のオーバーチャージ又はオーバーディスチャージのための超過量Evおよび時間Etに関する情報を取得する。FPGA52では、読み出した超過量Evおよび時間Etに関する情報とともに、切り替え先の出力ポートに反射光を光学的に結合させるための反射面角度を設定するための最適点電圧に関する情報を取得して、これらの情報をもとに、オーバーチャージまたはオーバーディスチャージのための電圧信号を電極としてのミラー体64に供給する。これにより、ミラーデバイス56aの反射面角度をオーバーチャージ又はオーバーディスチャージ位置に対応する角度に向けて移動させることができる(ステップB5)。
上述のシャッター領域Sへ反射光が導かれるような反射面角度の制御に続いて、FPGA52では、RAM53から、切り替え先の出力ポートへ導くにあたっての初動変動量に関する情報を読み出す(ステップB4)。これにより、前述のオーバーチャージ又はオーバーディスチャージのための超過量Evおよび時間Etに関する情報を取得する。FPGA52では、読み出した超過量Evおよび時間Etに関する情報とともに、切り替え先の出力ポートに反射光を光学的に結合させるための反射面角度を設定するための最適点電圧に関する情報を取得して、これらの情報をもとに、オーバーチャージまたはオーバーディスチャージのための電圧信号を電極としてのミラー体64に供給する。これにより、ミラーデバイス56aの反射面角度をオーバーチャージ又はオーバーディスチャージ位置に対応する角度に向けて移動させることができる(ステップB5)。
その後、FPGA52では、オーバーチャージ又はオーバーディスチャージのための時間Etが経過すると、切り替え先の出力ポートに反射光を光学的に結合させるための反射面角度を設定するための最適点電圧に関する情報をRAM53から読み出し(ステップB6)、読み出した情報をもとにした制御電圧信号をミラー体64に供給する。これにより、ミラーデバイス56aの反射面角度が切り替えられて、反射光を切り替え先の出力ポートへ導くことができるようになる(ステップB7)。
ところで、上述のごとき反射光のシャッター領域への移動に対応するミラーデバイス56aの反射面角度の設定、および、上述のオーバーチャージ又はオーバーディスチャージによる反射面角度の設定については、組み合わせにより適用態様として種々のものを想定することができる。図18(a),図18(b),図19(a)および図19(b)はオーバーチャージによる補正制御を組み込んだ例を示し、図20(a),図20(b)および図21はオーバーディスチャージによる補正制御を組み込んだ例を示す。
図18(a)は、オーバーチャージを行なう場合においてスイッチング制御時の光の動きと光ファイバアレイへの結合状態の一例を示す図である。例えばこの図18(a)に示すように、ポートスイッチングを行なう場合、一度ファイバから離れる位置(シャッター領域S)に反射光の光軸を動かし退避させて(S1)、他ポートへの光の漏れ込みを防ぐようにする。即ち、FPGA52からミラーデバイス56aへの駆動電圧信号により、ポート配列方向(Z軸方向)とは異なるY軸方向に反射光の光軸がシフトするように反射面角度を切り替える。
つぎに、ポート切り替え方向(Z軸方向)に反射光の光軸が移動するように反射面を回動させる。このとき、ファイバに結合する位置よりも、ポート方向(Z軸方向)において切り替え先のポート位置に対応する制御電圧値よりも制御電圧値が高くなる位置(超過量Evに相当する位置)まで移動し(S2)、時間Etの間はオーバーチャージング状態で保持させる(S3)。その後、Z軸上においてポート位置に対応する位置に戻し(S4)、Y軸上において出力ポートへ結合させる回動制御を行なう(S5)。これにより、光出力が安定するまでの時間を短縮することが可能である。
また、図18(b)は、オーバーチャージを行なう場合の他の例を示す図である。シャッター領域Sに反射光の光軸を移動させ(S1)、ポート方向(Z軸方向)において切り替え先のポート位置に対応する制御電圧値よりも制御電圧値が電圧が高くなる位置まで移動させる(S2)点は図18(a)と同様である。その後の時間Etの間のオーバーチャージング時においては、当該オーバーチャージングに並行してポート配列軸に反射光の光軸が合致させる方向(Y軸方向)に回動させ(S3a)、その後にZ軸上においてポート位置に対応する位置に戻している(S4)。これにより、図18(a)の場合におけるオーバーチャージングの時間保持(S3)によるタイムロスを無くすことが可能となる。
したがって、制御部としてのFPGA52およびRAM53においては、支持体63および電極としてのミラー体64による第1,第2機構としての機能を協働させることにより、ポート切り替え動作を行なうべく駆動電気信号をミラー体64に供給する一方、Z軸方向を光軸移動させる反射面角度の切り替えの際に、切り替え初動時における初動変動量の電気信号を供給する。
このとき、FPGA52においては、図18(b)に示すように、第1機構に対する初動変動量の電気信号の供給とともに、第2機構に対する、切り替え先のポートへの結合をオフ状態からオン状態とするための電気信号の供給を同時に行なうことができる。
また、図19(a)は、図18(b)におけるポート配列軸(Z軸)に沿った方向に反射光の光軸を戻す際に(S4参照)、切り替え先の出力ポートとしてのコリメータ2への光結合効率を調整することにより、出力ポートとしてのコリメータ2から外部の光ファイバに出力される光の強度を可変減衰させるものである(S4a)。
また、図19(a)は、図18(b)におけるポート配列軸(Z軸)に沿った方向に反射光の光軸を戻す際に(S4参照)、切り替え先の出力ポートとしてのコリメータ2への光結合効率を調整することにより、出力ポートとしてのコリメータ2から外部の光ファイバに出力される光の強度を可変減衰させるものである(S4a)。
スイッチングと同時に所望の減衰量を得る場合、減衰位置に移動するルートによって、光出力が所望の減衰量を上回ってしまう状態が発生しうる。例えば、図19(a)に示すように、コリメータ2により光結合可能な範囲(図中の小円内)における中央下部位置が、目標減衰量を得る光軸位置となる場合には、S4aでの光軸を移動させる際に、コリメータ2により光結合効率が実質的に最も高い位置(図中の小円中央)を通過することになる。これは、高速での方路スイッチングを行なう場合、目標レベルよりも過大な光が切り替えの過程で伝搬されることになり、良好な通信システム性能を維持する際の支障となりうる。
この場合においては、例えば図19(b)に示すように、オーバーチャージングに並行してポート配列軸側(Y軸方向)に反射光の光軸を移動させる(S3b-1)。その途中、Y軸上においてコリメータ2による光結合可能な範囲に入る前に、目標減衰量を得るためのZ軸方向への光軸移動を完了させておく(S3b-2)。その後、Y軸方向について光軸の移動を完了させる(S3b-3)。これにより、方路切り替えのための光軸移動の過程において、光出力が目標減衰量を上回ることを防止させることができるようになる。
図20(a),図20(b)はそれぞれ、図18(a),図18(b)に示すオーバーチャージの場合に倣ったオーバーディスチャージによる補正制御を組み込んだ場合の制御例を示す図である。
図20(a)に示す場合においては、シャッター領域Sに反射光の光軸を移動させ(S11)、ポート方向(Z軸方向)において切り替え先のポート位置に対応する制御電圧値よりも制御電圧値が低くなる位置まで移動させる(S12)。その後の時間Etの間はオーバーチャージング状態で保持させてから(S13)、Z軸上においてポート位置に対応する位置に戻し(S14)、Y軸上において出力ポートへ結合させる回動制御を行なう(S15)。これにより、光出力が安定するまでの時間を短縮することが可能である。
図20(a)に示す場合においては、シャッター領域Sに反射光の光軸を移動させ(S11)、ポート方向(Z軸方向)において切り替え先のポート位置に対応する制御電圧値よりも制御電圧値が低くなる位置まで移動させる(S12)。その後の時間Etの間はオーバーチャージング状態で保持させてから(S13)、Z軸上においてポート位置に対応する位置に戻し(S14)、Y軸上において出力ポートへ結合させる回動制御を行なう(S15)。これにより、光出力が安定するまでの時間を短縮することが可能である。
また、図20(b)に示す場合においては、図20(a)の場合と異なる。時間Etの間のオーバーディスチャージング時において、当該オーバーディスチャージングに並行してポート配列軸に反射光の光軸が合致させる方向(Y軸方向)に回動させ(S13a)、その後にZ軸上においてポート位置に対応する位置に戻している(S14)。これにより、図18(a)の場合におけるオーバーディスチャージングの時間保持(S13)によるタイムロスを無くすことが可能となる。
さらに、図21に示す場合においては、図20(b)におけるポート配列軸(Z軸)に沿った方向に反射光の光軸を戻す際に(S14参照)、切り替え先の出力ポートとしてのコリメータ2への光結合効率を調整する。これにより、出力ポートとしてのコリメータ2から外部の光ファイバに出力される光の強度を可変減衰させるものである(S14a)。
〔A5〕
このように、本実施形態によれば、制御部としてのFPGA52,RAM53は、各ミラーデバイス56aの反射面角度の切り替え初動時に、設定すべき反射面角度に対応する電気信号への変動量を超える初動変動量の電気信号を供給することができる。従って、安定した反射面角度の設定および高速応答性を実現できるという利点がある。
〔A5〕
このように、本実施形態によれば、制御部としてのFPGA52,RAM53は、各ミラーデバイス56aの反射面角度の切り替え初動時に、設定すべき反射面角度に対応する電気信号への変動量を超える初動変動量の電気信号を供給することができる。従って、安定した反射面角度の設定および高速応答性を実現できるという利点がある。
〔B〕その他
上述した実施形態にかかわらず、種々変形して実施することが可能である。
上述の本実施形態においては、波長および入力ポートごとに対応して複数のミラーデバイス56aが配列されたミラーアレイ56として構成した場合について詳述している。しかし、本発明によれば、単一のミラーデバイス56aをそなえる装置において、上述のごとき初動変動量の電気信号を供給することとしてもよい。このようにしても上述の場合と同様、安定した反射面角度の設定および高速応答性を実現することができる。
上述した実施形態にかかわらず、種々変形して実施することが可能である。
上述の本実施形態においては、波長および入力ポートごとに対応して複数のミラーデバイス56aが配列されたミラーアレイ56として構成した場合について詳述している。しかし、本発明によれば、単一のミラーデバイス56aをそなえる装置において、上述のごとき初動変動量の電気信号を供給することとしてもよい。このようにしても上述の場合と同様、安定した反射面角度の設定および高速応答性を実現することができる。
Claims (17)
- 入力光を反射させるミラー体と静電力により該ミラー体の反射面角度を可変しうる回動機構と、をそなえたミラーデバイスが複数個配列されたミラーアレイをそなえるとともに、
該各ミラーデバイスの反射面角度を設定する静電力を生じさせる電気信号を該回動機構に供給する制御部と、をそなえ、
該制御部は、該各ミラーデバイスの反射面角度の切り替え初動時に、設定すべき反射面角度に対応する電気信号への変動量を超える初動変動量の電気信号を供給することを特徴とする、ミラー装置。 - 光の入出力のための複数のポートをそなえ、前記光の入力および出力のためのポート間における光結合の組み合わせを切り替える光スイッチであって、
入力光を反射させるミラー体と静電力により該ミラー体の反射面角度を可変しうる回動機構と、をそなえたミラーデバイスが複数個配列されたミラーアレイをそなえるとともに、
該複数のポートからの光を分光する分光部と、
該分光部で分光された各波長光を対応する一のミラー体への前記入力光として導く集光部と、
該各ミラー体の反射面角度を設定する静電力を生じさせる電気信号を該回動機構に供給することにより、前記入力光についての反射光が該集光レンズおよび該分光部を通じて導かれる出力先の前記ポートを設定する制御部と、をそなえ、
該制御部は、前記ポートの切り替えのための該各ミラー体の反射面角度の切り替え動作の初動時に、前記切り替え動作開始時の電気信号値から設定すべき反射面角度に対応する電気信号値までの変動量を超過量だけ超える初動変動量を有する電気信号を該回動機構に供給することを特徴とする、光スイッチ。 - 前記切り替え動作開始時の電気信号値から設定すべき反射面角度に対応する電気信号値までの変動量に応じた時間について、前記切り替え初動時における前記超過量を有する値の電気信号を供給することを特徴とする、請求項2記載の光スイッチ。
- 前記切り替え動作開始時の電気信号値から設定すべき反射面角度に対応する電気信号値までの変動量に応じて、前記切り替え初動時において供給される電気信号にかかる前記超過量が設定されたことを特徴とする、請求項2記載の光スイッチ。
- 該制御部は、
該複数のポートのうちで該分光部への光を導く入力ポートおよび前記反射光が導かれる出力ポートの組み合わせに応じた、該各ミラー体の反射面角度を形成するための電気信号値に関する情報を記憶する記憶部と、
該記憶部の内容を参照することにより、前記切り替え動作のための駆動電気信号を該回動機構へ供給する制御信号供給部と、をそなえたことを特徴とする、請求項2記載の光スイッチ。 - 該記憶部は、前記切り替え動作により設定すべき反射面角度に対応する電気信号値への変動量の大きさに応じた値の前記超過量を記憶しておき、
該制御信号供給部は、該記憶部に記憶される、設定すべき反射面角度に対応する電気信号値および前記超過量に基づいて、前記切り替え動作のための駆動電気信号を該回動機構に供給することを特徴とする、請求項5記載の光スイッチ。 - 該制御信号供給部から供給される駆動電気信号は、前記切り替え動作の初動時においては前記切り替え動作開始時の電気信号値から設定すべき反射面角度に対応する電気信号値までの変動量を超過量だけ超える初動変動量とする一方、その後は設定すべき反射面角度に対応する値とすることを特徴とする、請求項5記載の光スイッチ。
- 該記憶部は、該切り替え初動時において前記超過量を有する電気信号を供給する時間情報についても記憶しておき、
該制御信号供給部は、前記切り替え動作の初動時においては、該記憶部に記憶される前記時間情報に応じて前記超過量を有する駆動電気信号を該回動機構に供給することを特徴とする、請求項5記載の光スイッチ。 - 該記憶部は、該分光部で分光された各光を反射させる該ミラーデバイスごとに、前記反射光が導かれる出力ポートに応じて、前記出力先の前記ポートへ結合される反射光のパワーが所定レベルに調整される反射面角度に対応する電気信号値に関する情報を記憶することを特徴とする、請求項5記載の光スイッチ。
- 該制御部は、前記ポートの切り替えのための該各ミラー体の反射面角度の切り替え動作の際に、該回動機構に供給する電気信号を増大させる場合には、前記切り替え動作の初動時に、前記切り替え動作開始時の電気信号値から設定すべき反射面角度に対応する電気信号値までの変動量を超過量だけ超える値まで前記電気信号を増大させることを特徴とする、請求項2記載の光スイッチ。
- 該制御部は、前記ポートの切り替えのための該各ミラー体の反射面角度の切り替え動作の際に、該回動機構に供給する電気信号を減少させる場合には、前記切り替え動作の初動時に、前記切り替え動作開始時の電気信号値から設定すべき反射面角度に対応する電気信号値までの変動量を超過量だけ超える値まで前記電気信号を減少させることを特徴とする、請求項2記載の光スイッチ。
- 該回動機構は、該各ミラー体の反射面角度について、前記反射光の光軸を、前記ポートの配列方向に対応する方向に切り替えるための第1機構とともに、出力先の前記ポートへの結合のオンオフを切り替えるための第2方向に可変しうる第2機構をそなえ、
該制御部は、該第1機構および該第2機構を協働させることにより前記切り替え動作を行なうべく前記電気信号を該第1機構および該第2機構に供給する一方、該第1機構による反射面角度の切り替えのために、前記切り替え初動時における前記初動変動量の電気信号を供給することを特徴とする、請求項2記載の光スイッチ。 - 該制御部は、前記第1機構に対する前記初動変動量の電気信号の供給とともに、該第2機構に対する、切り替え先の前記ポートへの結合をオフ状態からオン状態とするための電気信号の供給を同時に行なうことを特徴とする、請求項12記載の光スイッチ。
- 該各ミラー体は、誘電体による絶縁膜を有することを特徴とする、請求項2記載の光スイッチ。
- 請求項2記載の光スイッチをそなえたことを特徴とする、光ノード装置。
- 入力光を反射させるミラーデバイスの反射面角度を静電力により可変制御する方法であって、
前記反射面角度を切り替える動作の初動時に、前記切り替えにより設定すべき目標反射面角度に対応する静電力を発生させる電気信号量への変動量を超える変動量の電気信号を該ミラーデバイスに供給してから、
該ミラーデバイスに供給する電気信号量を、前記目標反射面角度に対応する電気信号量に収束させることを特徴とする、ミラーデバイスの制御方法。 - 入力光を反射させるミラー体と、
静電力により該ミラー体の反射面角度を可変しうる回動機構と、
該ミラー体の反射面角度を設定する電気信号を該回動機構に供給する制御部と、をそなえ、
該制御部は、該ミラー体の反射面角度の切り替え初動時に、設定すべき反射面角度に対応する電気信号量への変動量を超える変動量の電気信号を供給することを特徴とする、ミラー装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/056379 WO2009122516A1 (ja) | 2008-03-31 | 2008-03-31 | ミラー装置,光スイッチ,光ノード装置およびミラーデバイスの制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/056379 WO2009122516A1 (ja) | 2008-03-31 | 2008-03-31 | ミラー装置,光スイッチ,光ノード装置およびミラーデバイスの制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009122516A1 true WO2009122516A1 (ja) | 2009-10-08 |
Family
ID=41134937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/056379 WO2009122516A1 (ja) | 2008-03-31 | 2008-03-31 | ミラー装置,光スイッチ,光ノード装置およびミラーデバイスの制御方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2009122516A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011197400A (ja) * | 2010-03-19 | 2011-10-06 | Olympus Corp | 波長選択スイッチ |
WO2013118700A1 (ja) * | 2012-02-10 | 2013-08-15 | 日本電信電話株式会社 | 波長選択スイッチシステム及び波長選択スイッチの制御方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11126050A (ja) * | 1997-10-23 | 1999-05-11 | Canon Inc | 液晶表示パネル駆動装置と駆動方法 |
JP2002169109A (ja) * | 2000-11-29 | 2002-06-14 | Hitachi Metals Ltd | 光路切替装置 |
JP2005017799A (ja) * | 2003-06-27 | 2005-01-20 | Ricoh Co Ltd | 光偏向装置の駆動方法、光偏向装置、光偏向アレー、画像形成装置および画像投影表示装置 |
JP2006065063A (ja) * | 2004-08-27 | 2006-03-09 | Asahi Kasei Microsystems Kk | 発光素子駆動回路 |
JP2006184472A (ja) * | 2004-12-27 | 2006-07-13 | Fujitsu Ltd | 光スイッチ並びに光スイッチの制御装置及び制御方法 |
-
2008
- 2008-03-31 WO PCT/JP2008/056379 patent/WO2009122516A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11126050A (ja) * | 1997-10-23 | 1999-05-11 | Canon Inc | 液晶表示パネル駆動装置と駆動方法 |
JP2002169109A (ja) * | 2000-11-29 | 2002-06-14 | Hitachi Metals Ltd | 光路切替装置 |
JP2005017799A (ja) * | 2003-06-27 | 2005-01-20 | Ricoh Co Ltd | 光偏向装置の駆動方法、光偏向装置、光偏向アレー、画像形成装置および画像投影表示装置 |
JP2006065063A (ja) * | 2004-08-27 | 2006-03-09 | Asahi Kasei Microsystems Kk | 発光素子駆動回路 |
JP2006184472A (ja) * | 2004-12-27 | 2006-07-13 | Fujitsu Ltd | 光スイッチ並びに光スイッチの制御装置及び制御方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011197400A (ja) * | 2010-03-19 | 2011-10-06 | Olympus Corp | 波長選択スイッチ |
WO2013118700A1 (ja) * | 2012-02-10 | 2013-08-15 | 日本電信電話株式会社 | 波長選択スイッチシステム及び波長選択スイッチの制御方法 |
JP2013165386A (ja) * | 2012-02-10 | 2013-08-22 | Nippon Telegr & Teleph Corp <Ntt> | 波長選択スイッチシステム及び波長選択スイッチの制御方法 |
CN104254986A (zh) * | 2012-02-10 | 2014-12-31 | 日本电信电话株式会社 | 波长选择开关系统和波长选择开关的控制方法 |
US9294826B2 (en) | 2012-02-10 | 2016-03-22 | Nippon Telegraph And Telephone Corporation | Wavelength selection switch system and method for controlling wavelength selection switch |
CN104254986B (zh) * | 2012-02-10 | 2016-09-07 | 日本电信电话株式会社 | 波长选择开关系统和波长选择开关的控制方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1969406B1 (en) | Reduction of mems mirror edge diffraction in a wavelength selective switch using servo-based rotation about multiple non-orthogonal axes | |
CN101156098B (zh) | 具有基于mems的衰减或功率管理的优化的可重构光分插复用器结构 | |
US7305188B2 (en) | Wavelength demultiplexing unit | |
US9225458B2 (en) | Wavelength-selective cross-connect device having a variable number of common ports | |
US20020186449A1 (en) | Micromirror array having adjustable mirror angles | |
JP2024014947A (ja) | ファイバ走査プロジェクタのための方法およびシステム | |
US7756368B2 (en) | Flex spectrum WSS | |
US6707594B2 (en) | Method and device for switching wavelength division multiplexed optical signals using two-dimensional micro-electromechanical mirrors | |
JPH02293809A (ja) | 光走査装置 | |
EP1271203B1 (en) | Imaging system for use with optical MEMS devices | |
US20140268305A1 (en) | Wavelength selective switch | |
CN115443421B (zh) | 固态电动可变焦距透镜 | |
JP2006526808A (ja) | プリズム結合したsoiベースの光学系で波長感受性を下げるための構成 | |
WO2009122516A1 (ja) | ミラー装置,光スイッチ,光ノード装置およびミラーデバイスの制御方法 | |
JP2002169107A (ja) | ティルトミラーを用いた光スイッチ | |
US8958693B2 (en) | Wavelength selective switch | |
KR102146677B1 (ko) | 카메라 모듈 | |
US20040208584A1 (en) | Reconfigurable optical add-drop multiplexer using an analog mirror device | |
JP2010217781A (ja) | 光スイッチおよび光スイッチの制御方法 | |
US6765644B1 (en) | Broadband optical beam steering system and method | |
JP4719193B2 (ja) | 光スイッチ | |
US7336907B2 (en) | Optical assembly having cylindrical lenses and related method of modulating optical signals | |
JP2008242281A (ja) | 光波長選択スイッチおよび光波長選択スイッチの調節方法 | |
US7106924B2 (en) | Optical switching device and optical transmission system | |
US11506884B2 (en) | MEMS optical circuit switch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08739492 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08739492 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |