WO2009119653A1 - 側材およびその製造方法並びに熱交換器用クラッド材の製造方法 - Google Patents

側材およびその製造方法並びに熱交換器用クラッド材の製造方法 Download PDF

Info

Publication number
WO2009119653A1
WO2009119653A1 PCT/JP2009/055932 JP2009055932W WO2009119653A1 WO 2009119653 A1 WO2009119653 A1 WO 2009119653A1 JP 2009055932 W JP2009055932 W JP 2009055932W WO 2009119653 A1 WO2009119653 A1 WO 2009119653A1
Authority
WO
WIPO (PCT)
Prior art keywords
side material
clad
heat exchanger
ingot
producing
Prior art date
Application number
PCT/JP2009/055932
Other languages
English (en)
French (fr)
Inventor
植田 利樹
徳田 健二
靖展 西岡
實人 四方
弘 國井
英明 薄谷
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US12/922,799 priority Critical patent/US8404360B2/en
Priority to EP09723711.9A priority patent/EP2259002B1/en
Priority to CA2717372A priority patent/CA2717372C/en
Priority to AU2009229974A priority patent/AU2009229974B2/en
Priority to KR1020107021518A priority patent/KR101270924B1/ko
Priority to CN200980106249.8A priority patent/CN101952681B/zh
Priority to MX2010010617A priority patent/MX2010010617A/es
Publication of WO2009119653A1 publication Critical patent/WO2009119653A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/003Aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • B23K35/288Al as the principal constituent with Sn or Zn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12993Surface feature [e.g., rough, mirror]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]

Definitions

  • the present invention relates to a side material used for a clad material (brazing sheet) for a heat exchanger used in a heat exchanger such as an automobile, a method for producing the side material, and a method for producing a clad material for a heat exchanger.
  • Patent Document 1 describes a conventional method for producing a conventional clad material for a heat exchanger as follows. First, an aluminum alloy for a core material and an aluminum alloy for a side material (in the case of Patent Document 1, a sacrificial anode material and a brazing material) are melted and cast by continuous casting, and homogenized heat treatment is performed as necessary (surface) (Sometimes smoothing heat treatment).
  • the ingots of the aluminum alloy for the side material are each hot-rolled to a predetermined thickness (see S11a and S11b in FIG. 7, melting is a melting process, casting is a casting process, surface smoothing is a chamfering process, homogeneous
  • the chemical heat treatment is described as a soaking process, and the hot rolling is described as a hot rolling process).
  • Patent Document 2 describes that a side material having a predetermined thickness sliced from an ingot is used as a side material used for a clad material for a heat exchanger, and a surface smoothing treatment is further performed on the side material. Has been. Japanese Patent Laying-Open No. 2005-232507 (paragraphs 0037, 0039, 0040) JP 2007-260769 A (paragraphs 0027 to 0040)
  • the side material used for such a conventional clad material, the manufacturing method thereof, or the clad material manufacturing method has the following problems. (1) When a hot-rolled sheet is used as the side material, there are many manufacturing processes of the clad material, and the number of hot rolling operations increases, resulting in a problem of reduced productivity.
  • the core material ingot is often chamfered by a milling machine or the like, and its surface is a chamfered surface.
  • the hot rolled sheet for side material is a roll processed surface on which a rolling line generated along the rolling direction is formed. Therefore, the ingot for the core material and the hot-rolled sheet for the side material have different surface states, and when the two are overlapped and clad hot rolled, the adhesion between the core material and the side material is likely to occur. There's a problem. And in order to improve the adhesiveness of a core material and a side material, the multipass rolling under a light pressure is needed in a clad hot rolling, and the productivity in a clad hot rolling will fall.
  • the present invention has been made in view of the above problems, and the purpose thereof is to control the surface state and flatness, and in the production of a clad material for heat exchanger, it is difficult to cause poor adhesion, and is excellent in productivity and corrosion resistance.
  • An object of the present invention is to provide a side material capable of producing a clad material for heat exchanger, a method for producing the side material, and a method for producing a clad material for heat exchanger using the side material.
  • the side material according to claim 1 is the side material used for a clad material for a heat exchanger comprising a core material and one or more side materials superimposed on one or both sides thereof.
  • a plurality of fine groove periodic forms having an arc shape toward one direction of the side material are formed on the surface of the side material, and the fine groove periodic form has an outer peripheral edge of the side material with a radius of curvature of 800 to 1500 mm.
  • the side material has a period of 1 to 8 mm in the direction, and the side material has a surface roughness in the direction of 1 to 15 ⁇ m in ten-point average roughness (Rz).
  • the core material and each side material are used at the time of crimping with the core material in the manufacture of the clad material for heat exchangers.
  • the air existing between (when there are a plurality of side members) is efficiently discharged through the fine groove periodic form, and the adhesion is improved.
  • the surface roughness of the side material within a predetermined range, it is difficult to form a gap between the core material and each side material, and adhesion is improved.
  • the crimping property (referred to here as ease of crimping by rolling) is improved, and the number of crimping passes (the number of hot rolling) is reduced.
  • the side material according to claim 2 has a flatness per 1 m in the direction of 1 mm or less. According to such a side material, by controlling the flatness to a predetermined value or less, the flatness is further improved, and the adhesion to the core material and each side material is further improved. In addition, the crimping performance is further improved, and the number of crimping passes is reduced.
  • the side material of claim 3 has a thickness of 10 to 250 mm. According to such a side material, the clad rate of the clad material for heat exchanger is appropriately adjusted by defining the thickness within a predetermined range.
  • the method for producing a side material according to claim 4 is the method for producing a side material according to any one of claims 1 to 3, wherein a metal for a side material having a component composition different from that of the core material is dissolved.
  • a surface smoothing process step of performing a surface smoothing process is performed in this order on the surface of the sliced slice material having a predetermined thickness.
  • the side material is manufactured by slicing and smoothing the surface, the surface state and flatness of the side material can be easily controlled, the thickness of the oxide film is reduced, and the surface has a predetermined shape.
  • the fine groove periodic form is formed, and the surface roughness is defined within a predetermined range.
  • the air which exists between a core material and each side material is discharged
  • the crimping performance is improved and the number of crimping passes is reduced.
  • the sliced side material is used as the side material member in the production of the heat exchanger clad material, it is necessary to reduce the thickness of the side material member by hot rolling as in the case of the conventional heat exchanger clad material. Disappears. Thereby, compared with the past, the number of hot rolling (the number of crimping passes) is reduced, and the work process is omitted.
  • the method for manufacturing a side material according to claim 5 is characterized in that, in the slicing step, the ingot for side material is sliced in parallel to the installation surface of the ingot for side material installed horizontally. .
  • the influence of the weight of the cut lump (slice lump) generated during slicing and displacement due to the shape is minimized, and the sliced side
  • the flatness of the material is improved, and the adhesion with the core material and each side material is improved.
  • the crimping performance is improved and the number of crimping passes is reduced.
  • the method for manufacturing a side material according to claim 6 includes a homogenization heat treatment step of further performing a homogenization heat treatment on the cast side material ingot after the casting step and before the slicing step. It is characterized by. According to such a manufacturing method, the internal stress of the side material ingot is removed, the flatness of the sliced side material is improved, and the adhesion to the core material and each side material is improved. In addition, the crimping performance is improved and the number of crimping passes is reduced.
  • the method for producing a side material according to claim 7 is characterized in that the surface smoothing treatment is performed by one or more methods selected from a cutting method, a grinding method, and a polishing method. According to such a manufacturing method, the surface state and flatness of the side material are improved, and the adhesion to the core material and each side material is improved. In addition, the crimping performance is improved and the number of crimping passes is reduced.
  • the method for producing a clad material for a heat exchanger according to claim 8 is a method for producing a clad material for a heat exchanger comprising a core material and one or more side materials laminated on one side or both sides thereof. At least 1 layer is the side material as described in any one of Claim 1 thru
  • the preparation process which prepares the said side material and the core material for superimposing this side material The said core A superposition process in which a material and the side material are superposed in a predetermined arrangement to form a superposition material, a homogenization heat treatment process for subjecting the superposition material to a homogenization heat treatment, and hot rolling after the homogenization heat treatment process It includes a hot rolling step and a cold rolling step in which cold rolling is performed after the hot rolling step.
  • the side material whose surface state and flatness are controlled is used as the side material member, when the side material is overlaid on the core material, the side material is separated from the core material and each side material.
  • air is present between the core material and each side material during the pressure bonding with the core material, and the air is efficiently discharged through the fine groove periodic form, thereby improving the adhesion.
  • the number of crimping passes can be reduced, and the yield and productivity are improved. These improve the productivity and corrosion resistance of the clad material for heat exchangers.
  • the side material according to claim 1 of the present invention since the surface state and flatness of the side material are controlled, in the production of the clad material for heat exchanger, it is difficult to cause poor adhesion and reduce defects such as blisters. Can be made. Moreover, since the crimping property is improved, the number of crimping passes can be reduced. By these, the clad material for heat exchangers excellent in productivity and corrosion resistance can be manufactured.
  • the side material according to claim 2 it is difficult to form a gap between the core material and each side material, and adhesion and pressure-bonding properties are further improved.
  • the side material of the third aspect since the thickness of the side material is specified, a clad material for a heat exchanger having an appropriate cladding rate can be manufactured.
  • the surface state and flatness of the side material can be easily controlled, the oxide film thickness is reduced, and the surface state of the side material is prescribed. Can do. For this reason, in the production of the clad material for heat exchangers, poor adhesion hardly occurs, and defects such as blisters can be reduced. Moreover, since the crimping property is improved, the number of crimping passes can be reduced. Further, since it is not manufactured by hot rolling, it is not necessary to reduce the thickness of the side member by hot rolling, and in the manufacture of the clad material for heat exchanger, it is manufactured by conventional hot rolling. Compared with the case of using the side material, the number of hot rolling operations is reduced, and the work process can be omitted. By these, the clad material for heat exchangers excellent in productivity and corrosion resistance can be manufactured.
  • a side material with improved flatness can be obtained, and adhesion and pressure-bonding properties with the core material are further improved.
  • the flatness of the sliced side material is further improved by performing the homogenization heat treatment on the ingot for side material, so that poor adhesion is less likely to occur.
  • the surface state of the side material is obtained by performing the surface smoothing treatment of the side material by one or more methods selected from a cutting method, a grinding method, and a polishing method.
  • the flatness is improved and adhesion failure is less likely to occur.
  • the side material produced by the above method is used as the side material member, the surface state and flatness of the side material member are controlled, It is possible to produce a clad material for heat exchanger that is less likely to cause poor adhesion and has excellent corrosion resistance. Moreover, the cladding material for heat exchangers with low manufacturing cost can be manufactured.
  • (A)-(f) is sectional drawing which shows the structure of the clad material for heat exchangers which concerns on this invention. It is a schematic diagram for demonstrating the surface state of the side material which concerns on this invention, (a), (b) is a schematic diagram for demonstrating the shape of a fine groove periodic form, (c) is (a). It is a schematic diagram which shows a part of cross section in the XX line of (b). (A), (b) is a figure which shows the flow of the manufacturing method of the clad material for heat exchangers which concerns on this invention. It is a schematic diagram which shows the outline of a side material casting process or a core material casting process.
  • (A), (b) is a schematic diagram which shows the outline of the slice method of a side material.
  • (A) is a schematic diagram which shows the structure of a laminated material
  • (b) is a schematic diagram which shows the outline of a hot rolling process. It is a figure which shows the flow of the manufacturing method of the conventional cladding material for heat exchangers.
  • the side material is used for a clad material for a heat exchanger composed of a core material and one or more side materials superimposed on one or both sides thereof.
  • a clad material for heat exchanger composed of a core material and one or more side materials superimposed on one or both sides thereof.
  • the number of layers of the side material of the clad material for heat exchanger is not limited at all. For example, as shown in FIG. 1A, a two-layer clad material 1a for a heat exchanger in which one brazing material 3 is clad on one side of the core material 2, and as shown in FIG.
  • FIG. 1 (e) a three-layer clad material for a heat exchanger in which an intermediate material 5 and a brazing material 3 are clad on one surface of a core material 2 and a sacrificial material 4 is clad on the other surface of the core material 2.
  • a five-layer clad material 1f for a heat exchanger in which an intermediate material 5 and a brazing material 3 are clad on both surfaces of the core material 2 are listed.
  • I can make it.
  • the present invention can also be suitably applied to a cladding material for heat exchangers of six layers or more in which the number of side members (brazing material, sacrificial material, intermediate material) is further increased. Absent.
  • the side material A (A1, A2) has a fine groove periodic configuration on the surface thereof that has an arc shape in the longitudinal direction of the side material A. ) A plurality of B are formed.
  • the fine groove periodic form B extends to the outer peripheral edge F of the side member A with a radius of curvature R of 800 to 1500 mm, and has a period D of 1 to 8 mm in the longitudinal direction of the side member A.
  • the side material A has a surface roughness in the longitudinal direction of 1 to 15 ⁇ m in ten-point average roughness (Rz).
  • the surface state of the side material A is controlled by appropriately adjusting the rotational speed and feed speed of the disk of the disk device in the surface smoothing process.
  • the fine groove periodic form B means a form of a period D including the form of one fine groove C portion as shown in FIG. That is, the portion of the period D is a fine groove periodic form B having one period. Further, the form of the fine groove C part includes one in which a plurality of fine grooves are formed in the fine groove C part (not shown). Further, the shape of the portion of the fine groove C is like a cutting trace, a grinding trace, a polishing trace, etc. during the surface smoothing process.
  • FIG. 2C is a schematic diagram in which the vertical direction is enlarged for convenience.
  • the fine groove periodic form B does not cause a defect in the clad material.
  • the longitudinal direction is a rolling direction when the side material A is overlapped with the core material and hot-rolled in the production of the clad material for heat exchanger described later.
  • “being arc-shaped toward the longitudinal direction of the side material A” means that all the fine groove periodic forms B are arc-shaped in the same direction toward either one of the longitudinal directions of the side material A.
  • the longitudinal direction is undetermined.
  • the rolling direction is determined as shown in FIG.
  • the curvature radius R and the period D of the fine groove periodic form B By defining the curvature radius R and the period D of the fine groove periodic form B to predetermined values, air existing between the core material and each side material at the time of pressure bonding with the core material in the manufacture of the clad material for heat exchangers , It is efficiently discharged through the fine groove periodic form B. Further, by defining the surface roughness to a predetermined value, it becomes difficult to form a gap between the core material and each side material. For this reason, the adhesion can be improved and defects such as blisters can be reduced, the crimping ability can be improved, and the number of crimping passes can be reduced.
  • the fine groove periodic form B is necessary to provide the fine groove periodic form B on at least the surface of the side material that is clad with the core material. Although it is not necessary for the non-clad surface (that is, the outermost surface at the time of pressure rolling), there is no particularly bad effect even if the fine groove periodic form B is provided on the surface. Even in the case of a four-layer material or an intermediate layer of a five-layer material, it is necessary to provide the fine groove periodic form B at least on the surface clad with the core material, and it is not necessary on the surface opposite to the core material. Even if the fine groove periodic form B is provided on the surface opposite to the core material, there is no particularly bad effect.
  • ⁇ Curved radius of fine groove periodic form 800-1500 mm> If the radius of curvature R of the fine groove periodic form B is less than 800 mm, the residual air in the hot rolling process in the production of the clad material for heat exchanger described later is localized, and the effect of improving the adhesion and pressure-bonding properties is insufficient. It becomes. On the other hand, if it exceeds 1500 mm, the distance to which air is discharged becomes too long, and the effect of improving the adhesion and pressure-bonding properties becomes insufficient. Accordingly, the curvature radius R of the fine groove periodic form B is set to 800 to 1500 mm. The thickness is preferably 900 to 1300 mm.
  • the fine groove periodic form B extends to the outer peripheral edge F of the side material A. That is, it is continuously formed without tearing toward the outer peripheral edge F of the side member A.
  • the direction of the rolling (longitudinal direction) is set as described above, and the groove extends in a direction substantially perpendicular to the rolling direction. Become a shape. In that case, the force of exhausting air along the grooves (extruded by the rolling of the rolling roll) becomes difficult to work.
  • the upper limit value of the curvature radius R is provided from such a viewpoint.
  • the curvature radius R can be measured, for example, by taking a photograph of a fine periodic form and measuring the curvature of a corresponding arc on a photograph or a monitor capable of processing a photograph image in consideration of the magnification.
  • the period D of the fine groove period form B is 1 to 8 mm.
  • the period D in the longitudinal direction is a substantially constant value at any point in the period D of the fine groove period form B, and the numerical value is 1 It means a range of ⁇ 8 mm. If the period D of the fine groove period form B is less than 1 mm, an air discharge passage cannot be secured and air cannot be discharged sufficiently. On the other hand, when it exceeds 8 mm, the number of fine groove periodic forms B decreases, the air remaining between the core material and each side material increases, and the occurrence of blistering increases. Therefore, the period D of the fine groove periodic form B is set to 1 to 8 mm.
  • the thickness is preferably 2 to 7 mm.
  • the arc shape of the fine groove periodic form B may be such that the center of the arc is located at the center in the width direction of the side material A as shown in FIG. 2 (a). As shown, the center of the arc may be located at a position shifted to either side from the center of the side material A in the width direction.
  • the period is measured, for example, by creating a replica in which the arc shape of the surface of the side material having a fine periodic structure is transferred onto the resin, and the surface roughness is measured in the same manner as the ten-point average roughness measurement method described later. This can be done by measuring the thickness.
  • the shape of such fine groove periodic form B can be controlled by the surface smoothing process of the slice material described later.
  • a cutting method, a grinding method, a polishing method or the like as a surface smoothing method
  • the method is performed in combination with a rotating disk device, and at that time, a smoothing process is performed so that it is horizontal in the longitudinal direction of the ingot (slicing material) and the center of the rotating disk device is the center of the ingot width direction. Further, in order to obtain the shape as shown in FIG.
  • the center of the rotary disk device when performing the surface smoothing process as described above, is centered in the ingot width direction and horizontally in the longitudinal direction of the ingot.
  • the surface is smoothed by shifting to either side.
  • both ends of the side material A are cut off at the edges in the longitudinal direction by the dimension of the side material A, but the fine groove periodic form B at both ends also faces the longitudinal direction. It can be said that it is formed in an arc shape.
  • the side material A has a surface roughness in the longitudinal direction of 1 to 15 ⁇ m in ten-point mean roughness (Rz).
  • the ten-point average roughness (Rz) is less than 1 ⁇ m, a sufficient air discharge passage is not ensured.
  • the thickness exceeds 15 ⁇ m, adhesion failure is likely to occur in the heat exchanger clad material. Therefore, the surface roughness is 1 to 15 ⁇ m in ten-point average roughness (Rz).
  • the thickness is preferably 3 to 14 ⁇ m.
  • the shape including the fine groove C is reflected. That is, the fine groove C mainly contributes to the surface roughness referred to here.
  • the 10-point average roughness is measured based on, for example, “JIS Standard B0601 Surface Roughness”, a surface roughness measuring instrument (SURFCORDER SE-30D) manufactured by Kosaka Laboratory Ltd. Can be performed by measuring at a reference length of 25 mm. Moreover, it measures including the length for at least 2 periods or more of the location where the fine groove periodic form B of the surface of the side material A was formed. That is, measurement is performed including the fine groove C.
  • Such regulation of the surface roughness can be controlled by the surface smoothing process of the slice material described later.
  • the flatness per 1 m in the longitudinal direction of the side material A is preferably 1 mm or less, and the thickness of the side material A (thickness of one side material layer) is preferably 10 to 250 mm. ⁇ Flatness: 1 mm or less> If the flatness exceeds 1 mm, adhesion failure is likely to occur in the heat exchanger clad material. Accordingly, the flatness is preferably 1 mm or less, and more preferably 0.5 mm or less. The flatness can be measured, for example, by applying a 1 m metal rule so that the longitudinal direction of the side material is 1 m, and measuring the generated gap using a clearance gauge.
  • ⁇ Thickness 10 to 250 mm>
  • the thickness is less than 10 mm, when the side material and the core material are crimped, the side material is too thin, causing uneven deformation such as undulation in the side material itself, and the cladding thickness is likely to fluctuate. As a result, the change in the cladding ratio increases.
  • the thickness exceeds 250 mm, the load that presses the side material with the rolling rolls during pressure bonding does not sufficiently reach the pressure bonding interface between the side material and the core material.
  • the crimped state becomes non-uniform, and the elongation during rolling of the side material portion changes corresponding to the non-uniformity of the crimped state, which causes a fluctuation in the cladding ratio. Therefore, when the thickness is out of the above range, the clad rate of the clad material for heat exchanger tends to be inappropriate. In addition, poor adhesion may occur. Therefore, the thickness is preferably 10 to 250 mm, more preferably 20 to 200 mm.
  • the other material to be pressure-bonded (a core material or another side material if an intermediate layer is required) Even if the surface state is not specified, the effect of improving the adhesion and pressure-bonding properties is exhibited.
  • the mating material (core material, or another side material if an intermediate layer is required) to be crimped has the same surface state as the side material A of the present invention, The discharge effect is further increased, and the effect of improving the adhesion and pressure-bonding properties is obtained, and the effect of reducing the swelling is obtained. Therefore, when the material on the other side to be crimped is a side material for the intermediate layer, it is preferable that the surface state is the same as that of the side material of the present invention by the surface smoothing treatment. Moreover, when the material of the other party crimped
  • the direction of hot rolling at the time of pressure bonding is the rolling direction shown in FIGS. 2 (a) and 2 (b).
  • the side material manufacturing method is to manufacture the side material by a side material manufacturing step S1a.
  • This side material manufacturing process S1a includes a melting process, a casting process, a slicing process, and a surface smoothing process (described as a chamfering process in FIG. 3).
  • a homogenization heat treatment step (referred to as a soaking step in FIG. 3) may be provided after the casting step and before the slicing step.
  • the melting step is a step of melting a side metal having a different component composition from the core material.
  • a 4000 series Al—Si based aluminum alloy can be used for the brazing material.
  • the Al—Si based alloy includes an alloy containing Zn in addition to Si.
  • Al—Si based alloy for example, Al-7 to 13 mass% Si based alloy or Al-7 to 13 mass% Si-2 to 7 mass% Zn based alloy can be used.
  • any alloy that can be used as a brazing material can be applied.
  • a 3000 series Al—Mn aluminum alloy or a 7000 series Al—Zn— is used as a sacrificial material.
  • An Mg-based aluminum alloy can be used, and an Al—Zn-based alloy can be used.
  • the Al—Zn-based alloy includes an alloy containing Mn and Si in addition to Zn.
  • Examples of Al-Zn alloys include Al-1 to 7 mass% Zn alloys, Al-0.5 to 1.2 mass% Mn-0.5 to 1.2 mass% Si-2 to 6 mass%.
  • a Zn-based alloy and Al-0.8 to 1.2 mass% Si-2 to 6 mass% Zn-based alloy can be used. All can be applied.
  • the clad material for heat exchanger is provided with an intermediate material as a side material metal (see 1d to 1f in FIG. 1)
  • an intermediate material 1000 series pure aluminum or 7000 series Al—Zn—Mg based aluminum alloy is used as an intermediate material.
  • an Al—Mn alloy can be used.
  • the Al—Mn alloy includes alloys containing Cu, Si, and Ti in addition to Mn.
  • Al-Mn alloy examples include Al-0.5 to 1.2 mass% Mn-0.5 to 1.2 mass% Cu-0.5 to 1.2 mass% Si-based alloy, Al-0 Although 0.5 to 1.2 mass% Mn-0.5 to 1.2 mass% Cu-0.5 to 1.2 mass% Si-0.05 to 0.3 mass% Ti-based alloy can be used, However, the present invention is not limited to these, and any alloy that can be used as an intermediate material can be applied. The adjustment of the component composition of the metal can be appropriately determined according to the use of the clad material for heat exchanger to be used.
  • the casting process is a process for producing the ingot for side material by casting the metal for side material melted in the melting process.
  • a semi-continuous casting method can be used.
  • a molten metal M here, a metal for a side material
  • a metal water-cooled mold 11 having an open bottom.
  • the metal solidifies from the bottom of the water-cooled mold 11 is continuously taken out to thereby obtain a ingot for side material 17 having a predetermined thickness T 1.
  • the molten metal M is supplied from the trough 12 to the water-cooled mold 11 through the nozzle 13, the float 14 and the glass screen 15.
  • the molten metal M supplied to the water-cooled mold 11 is solidified by being in contact with the inner wall surface of the water-cooled mold 11 cooled by the cooling water W to become a solidified shell 16. Further, the cooling water W is directly sprayed from the lower part of the water-cooled mold 11 onto the surface of the solidified shell 16 to continuously produce the side material ingot 17.
  • the thickness T 1 of the ingot for side material 17 is preferably 200 to 700 mm.
  • the width and length of the side material ingot 17 are not particularly limited, but considering the productivity, the width is preferably 1000 to 2500 mm and the length is preferably 3000 to 10,000 mm.
  • the semi-continuous casting method may be performed either vertically or horizontally.
  • the slicing step is a step of slicing the side material ingot to a predetermined thickness.
  • a slab slicing method can be used as the slicing method.
  • the side material ingot 17 manufactured by the semi-continuous casting method is sliced by a band saw cutter or the like (not shown), so that the predetermined thickness T 2 is obtained.
  • Side material 35 (slicing material) is manufactured.
  • the thickness T 2 of the side member 35 after the surface smoothing treatment, preferably a thickness comprised between 10 ⁇ 250 mm, and more preferably a thickness which is a 20 ⁇ 200 mm.
  • the installation surface 35a is a surface in contact with the installation table of the slicing device for the side material ingot 17.
  • the surface smoothing process is a process of performing a surface smoothing process on the surface of a sliced side material (slice material) having a predetermined thickness.
  • the sliced side material 35 (sliced material) having a predetermined thickness is used to control the surface state and flatness of the side material before it is overlapped with the core material, and the crystallized product and oxide formed on the surface.
  • a surface smoothing process is performed to remove water.
  • a cutting method such as end mill cutting or diamond bite cutting, a grinding method in which the surface is ground with a grindstone, a polishing method such as buffing, or the like can be used, but it is not limited thereto. .
  • the surface state of the side material of the present invention can be obtained.
  • the surface state which has the desired fine groove period form B is obtained by controlling the rotational speed of a disk, and the feed speed of the disk on a slice material.
  • the surface thereof has an arc shape in the longitudinal direction of the side material, and has a radius of curvature of 800 to 1500 mm, preferably 900 to 1300 mm.
  • a side member 35 having a fine groove periodic form B formed by extending to the outer peripheral edge of the side member and having a period of 1 to 8 mm, preferably 2 to 7 mm in the longitudinal direction can be obtained.
  • the surface roughness in the longitudinal direction is 1 to 15 ⁇ m, preferably 3 to 14 ⁇ m in terms of 10-point average roughness (Rz), and in the evaluation of flatness, the flatness per 1 m in the longitudinal direction is 1 mm or less, preferably 0 A side member 35 of 5 mm or less can be obtained.
  • the CASS test salt spray test: JIS Z 2371
  • the immersion test Na + : 118 ppm, Cl ⁇ : 58 ppm is used as an internal surface corrosion resistance test.
  • SO 4 2 ⁇ : 60 ppm, Cu 2+ : 1 ppm, Fe 3+ : 30 ppm at 80 ° C. for 2000 hours, and then the clad material for heat exchanger having a corrosion depth of 60 ⁇ m or less after the test.
  • the homogenization heat treatment step is a step of further performing the homogenization heat treatment on the cast side material ingot.
  • the side material ingot 17 cast by the casting method is appropriately subjected to a homogenization heat treatment step before slicing the side material ingot 17 as necessary.
  • Homogenization heat treatment for removing stress may be performed.
  • the temperature and time of the homogenization heat treatment are not particularly limited, but the treatment temperature is preferably 350 to 600 ° C. and the treatment time is preferably 1 to 10 hours.
  • the treatment temperature of the homogenization heat treatment is less than 350 ° C.
  • the amount of internal stress removed is small, and the solute element segregated during casting becomes insufficiently homogenized, so that the effect of the heat treatment is small.
  • the processing temperature exceeds 600 ° C.
  • a phenomenon called burning in which a part of the ingot surface is melted is likely to cause surface defects in the clad material for heat exchanger.
  • the treatment time is less than 1 hour, the effect of removing internal stress is small and homogenization tends to be insufficient.
  • the processing time is preferably 10 hours or less in consideration of productivity.
  • the method for producing a heat exchanger clad material is a method for producing a heat exchanger clad material comprising a core material and one or more side materials superposed on one or both sides thereof, as shown in FIGS. ), A preparatory process including a side material manufacturing process S1a and a core material manufacturing process S1b, a superposition process, a homogenization heat treatment process S3 (referred to as a soaking process in FIG. 3), and a hot rolling process. S4 and cold rolling process S5 are included.
  • the preparation step is a step of preparing a side material and a core material for overlapping the side material.
  • a side material and a core material are manufactured by the side material manufacturing process S1a and the core material manufacturing process S1b.
  • the side material manufacturing step S1a Since the side material manufacturing step S1a is as described above, the description thereof is omitted here.
  • the clad material for heat exchangers at least 1 layer of a side material may be manufactured by the said manufacturing method (side material manufacturing process S1a), and the other layer may be manufactured by the conventional manufacturing method.
  • the core material manufacturing process S1b includes a melting process and a casting process. If necessary, at least one of a surface smoothing process (described as a chamfering process in FIG. 3) and a homogenization heat treatment process (described as a soaking process in FIG. 3) may be provided.
  • a surface smoothing process described as a chamfering process in FIG. 3
  • a homogenization heat treatment process described as a soaking process in FIG. 3
  • the melting step is a step of melting the core metal having a different component composition from the side material.
  • the metal for the core material 2000 series Al-Cu series aluminum alloy, 3000 series Al-Mn series aluminum alloy, 5000 series Al-Mg series aluminum alloy, etc. can be used, but are not limited to these. However, any alloy that can be used as a core material can be applied.
  • the adjustment of the component composition of the metal can be appropriately determined according to the use of the clad material for heat exchanger to be used.
  • the casting process is a process for producing a core ingot by casting the core metal melted in the melting process.
  • the semi-continuous casting method described above can be used.
  • the thickness T 1 (see FIG. 4) of the core material ingot 25 is preferably 200 to 700 mm.
  • the width and length of the core material ingot 25 are not particularly limited, but considering the productivity, the width is preferably 1000 to 2500 mm and the length is preferably 3000 to 10000 mm.
  • the surface smoothing process is a process of performing a surface smoothing process on the surface of the ingot for core material manufactured in the casting process.
  • the surface roughness in the longitudinal direction is 1 to 15 ⁇ m, preferably 3 to 14 ⁇ m in ten-point average roughness (Rz).
  • Rz ten-point average roughness
  • a core material having a flatness per 1 m in the direction of 1 mm or less, preferably 0.8 mm or less can be obtained. If the surface roughness is less than the above range, wrinkles are likely to occur, and processing tends to be difficult. When the surface roughness exceeds the above range, adhesion failure is likely to occur in the heat exchanger clad material.
  • the core material can also have the same surface state as the side material of the present invention.
  • the homogenization heat treatment step is a step of performing a homogenization heat treatment on the core material ingot cast in the casting step.
  • the temperature and time of the homogenization heat treatment are not particularly limited, but the treatment temperature is preferably 350 to 600 ° C. and the treatment time is preferably 1 to 10 hours.
  • the treatment temperature of the homogenization heat treatment is less than 350 ° C., the amount of internal stress removed is small, and the solute element segregated during casting becomes insufficiently homogenized, so that the effect of the heat treatment is small.
  • the processing temperature exceeds 600 ° C.
  • a phenomenon called burning in which a part of the ingot surface is melted is likely to cause surface defects in the clad material for heat exchanger.
  • the processing time is preferably 10 hours or less in consideration of productivity.
  • the superimposing step S2 is a step of superposing the core material and the side material prepared in the preparing step in a predetermined arrangement to obtain the overlapping material 40.
  • the core material ingot 25 (see FIG. 4) manufactured in the above-described step is cut to have a predetermined length by cutting the front and rear ends.
  • One side member 35 or a plurality of side members (not shown) are superposed in a predetermined arrangement on one side or both sides (not shown) to form a laminated material 40.
  • the predetermined arrangement is a clad material for a heat exchanger as a product, for example, a core material 2, a brazing material 3, a sacrificial material in the clad materials 1 a to 1 f for a heat exchanger as shown in FIGS.
  • a conventionally known method for example, a method of banding both ends of the core material 26 and the side material 35 is used. There is no problem even if a method such as welding is used in addition to the banding method.
  • each gap when overlapped is preferably within 10 mm at maximum, and preferably within 5 mm.
  • the homogenization heat treatment step S3 is a step of performing the homogenization heat treatment on the overlapping material manufactured in the overlapping step S2.
  • the overlapping material 40 manufactured in the overlapping step S2 is subjected to homogenization heat treatment in order to make the internal structure uniform and to make it soft so that hot rolling can be easily performed.
  • the hot rolling step S4 is a step of performing hot rolling after the homogenization heat treatment step S3.
  • the hot rolling step S4 as shown in FIG. 6B, the band of the overlapping material 40 is cut, and the overlapping material 40 is hot-rolled to produce the hot rolled material 1A.
  • the hot rolling method is performed by a conventionally known rolling method.
  • the rolling mill to be used the four-stage rolling mill 50 is described in FIG. 6B, but a two-stage rolling mill or a rolling mill having four or more stages (not shown) may be used.
  • FIG. 6 (b) the four-stage rolling mill 50 provided with one row of roll stands is described. However, using a rolling mill provided with a plurality of rows of roll stands (not shown), heat of a predetermined thickness is used. The hot rolling may be repeated until the cold rolled material 1A is obtained.
  • the cold rolling step S5 is a step of performing cold rolling after the hot rolling step S4.
  • the hot rolled material 1A manufactured in the hot rolling step S4 is then subjected to a cold rolling process.
  • the cold rolling treatment can be performed at a rolling reduction of 30 to 99%.
  • heat treatment annealing treatment
  • distortion correction treatment age hardening treatment
  • age hardening treatment etc.
  • a conventional method it may be cut into sizes.
  • annealing treatment rough annealing performed before cold rolling, intermediate annealing performed during cold rolling, and final annealing performed after final cold rolling in a continuous furnace or a batch furnace at 200 to 500 ° C. for 0 to 10 hours.
  • the present invention is not limited to these, and it goes without saying that the conditions can be appropriately changed as long as the effects (mechanical characteristics) obtained by these treatments are exhibited.
  • the clad material for heat exchangers according to the present invention is produced by each step of the method for producing the clad material for heat exchangers described above.
  • the following effects can be obtained.
  • the surface state and flatness are controlled, the flatness and smoothness of the side material are improved, and the oxide film thickness is further reduced.
  • air existing between the core material and each side material is efficiently discharged through the fine groove periodic form, and there is a gap between the core material and each side material. Is difficult to form and the adhesion is improved, so that the corrosion resistance of the clad material for heat exchanger can be improved.
  • the crimping property is improved, the number of crimping passes can be reduced, and the yield and productivity can be improved.
  • an aluminum alloy for core material made of JIS3003 alloy is melted and cast by continuous casting, homogenized heat treatment, face milling (surface smoothing treatment), and ingot for core material (core material (core material member)) Got.
  • an aluminum alloy for brazing material made of JIS 4045 alloy and an aluminum alloy for sacrificial material made of JIS 7072 alloy are melted and cast by continuous casting, subjected to homogenization heat treatment, sliced into predetermined thicknesses, and then subjected to face grinding. (Surface smoothing treatment) to obtain a brazing material (a brazing material member) and a sacrificial material (a sacrificial material member).
  • the brazing material and part of the sacrificial material were not subjected to homogenization heat treatment. Further, all of the core material and the side material (the brazing material and the sacrificial material) had a length of 6000 mm and a width of 1000 mm.
  • the curvature radius was measured by the method using the above-mentioned photographic image, and the period was measured by the method using the above-mentioned resin replica.
  • Ten-point average roughness (Rz) was measured at a reference length of 25 mm using a surface roughness measuring instrument (Surfcoder SE-30D) manufactured by Kosaka Laboratory based on “JIS standard B0601 surface roughness”. .
  • the flatness was measured using a flatness measuring machine (Zygo mess manufactured by Zygo).
  • a brazing material was overlapped on one side of the core material and a sacrificial material was banded on the other side, banded, subjected to homogenization heat treatment, and then pressed by hot rolling to form a three-layer plate. Subsequent cold rolling was not performed, and the material after pressure bonding by this hot rolling was used as a test material. And about the test material produced in this way, the adhesiveness of a brazing material and a sacrificial material was evaluated.
  • ⁇ Adhesion evaluation> The adhesion was evaluated by visually observing the brazing material side surface and the sacrificial material side surface, respectively, and the number of swellings (the number of swellings).
  • a bulge refers to a state in which the longest diameter (length or width) of a convexly bulged portion generated on the surface of the brazing material and the sacrificial material is 50 mm or more after the crimping rolling. If there is no blister, the adhesion is very good ( ⁇ ), the number of blisters is 1 to 3, good ( ⁇ ), and the blister number is 4 or more is judged as bad (x). did.
  • Table 1 those not satisfying the configuration of the present invention and those not satisfying the preferable configuration of the present invention are indicated by underlining the numerical values.
  • both the brazing material and the sacrificial material had very good or good adhesion.
  • the adhesiveness of the brazing material was good, but it was not very good.
  • the thickness of the brazing material is less than the preferred lower limit, and in Example 11, since the thickness of the brazing material exceeds the preferred upper limit, the adhesiveness of the brazing material is good, It was not very good. These tend to have an inappropriate cladding rate.
  • Example 14 since the flatness of the sacrificial material exceeded the preferable upper limit value, the adhesiveness of the sacrificial material was good, but it was not very good.
  • the thickness of the sacrificial material is less than the preferred lower limit, and in Example 13, the thickness of the sacrificial material exceeds the preferred upper limit, so the adhesion of the sacrificial material is good, It was not very good. These tend to have an inappropriate cladding rate.
  • Comparative Examples 1 to 12 did not satisfy the configuration of the present invention, and therefore had a large number of blisters and poor adhesion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Metal Rolling (AREA)

Abstract

 本発明は、表面状態および平坦度が制御され、熱交換器用クラッド材の製造において、密着不良が生じにくく、生産性、耐食性に優れた熱交換器用クラッド材を製造することができる側材およびその製造方法、並びに、この側材を用いた熱交換器用クラッド材の製造方法を提供する。芯材とその片面または両面に重ね合わされた1層以上の側材Aとからなる熱交換器用クラッド材に使用される側材Aであって、側材Aの表面に、側材Aの一方向に向かって円弧形状となる微細溝周期形態Bが複数形成され、微細溝周期形態Bは、800~1500mmの曲率半径Rで側材Aの外周縁まで延びると共に、側材Aの前記方向に1~8mmの周期Dを有し、かつ、側材Aの前記方向の表面粗さが、十点平均粗さ(Rz)において1~15μmである。

Description

側材およびその製造方法並びに熱交換器用クラッド材の製造方法
本発明は、自動車等の熱交換器に用いられる熱交換器用クラッド材(ブレージングシート)に使用される側材(side material)およびその製造方法並びに熱交換器用クラッド材の製造方法に関する。
一般に、自動車用のインタークーラー、オイルクーラー、ラジエーター、コンデンサー、エバポレーター、ヒーターコア等に用いられる熱交換器用クラッド材は、側材が圧延、または、鋳塊からスライスされて使用されている。
例えば、特許文献1には、従来の一般的な熱交換器用クラッド材の製造方法が以下のように記載されている。まず、芯材用アルミニウム合金、側材(特許文献1では、犠牲陽極材およびろう材)用アルミニウム合金を連続鋳造により溶解、鋳造し、必要に応じて均質化熱処理(homogenized heat treatment)する(表面平滑化処理(surface smoothing heat treatment)を行う場合もある)。また、側材用アルミニウム合金の鋳塊については、それぞれ所定厚さまで熱間圧延する(図7のS11a、S11b参照、溶解は溶解工程、鋳造は鋳造工程、表面平滑化処理は面削工程、均質化熱処理は均熱工程、熱間圧延は熱間圧延工程と記載する)。
ついで、芯材用アルミニウム合金鋳塊(芯材)と、側材用熱間圧延板(側材)を重ね合わせて、常法に従って熱間圧延(クラッド熱延)によりクラッド材とする(図7のS12、S13参照、重ね合わせは重ね合わせ工程、熱間圧延は熱間圧延工程と記載する)。また、特許文献2には、熱交換器用クラッド材に用いる側材として、鋳塊からスライスされた所定の厚さの側材を用い、さらに、この側材に表面平滑化処理を行うことが記載されている。
特開2005-232507号公報(段落0037、0039、0040) 特開2007-260769号公報(段落0027~0040)
しかし、このような従来のクラッド材に用いる側材、または、その製造方法、あるいはクラッド材の製造方法においては、以下に示す問題がある。
(1)側材として熱間圧延板を使用すると、クラッド材の製造工程が多く、また、熱間圧延の回数が多くなり、生産性が低下するという問題がある。
(2)芯材用鋳塊はフライス盤等により面削処理されることが多く、その表面は面削加工面である。一方、側材用熱間圧延板は、圧延方向に沿って生じる圧延目が形成されたロール加工面である。したがって、芯材用鋳塊と、側材用熱間圧延板とでは、その表面状態が異なり、両者を重ね合わせてクラッド熱延した際に、芯材と側材との密着不良が生じやすいという問題がある。そして、芯材と側材の密着性を向上させるためには、クラッド熱延において軽圧下での多パス圧延が必要となり、クラッド熱延での生産性が低下することとなる。
(3)側材として熱間圧延板を使用すると、圧延板の表面状態および平坦度(特に長手方向の平坦度)の制御は圧延ロールのみで行うことになり、また、熱間圧延により圧延板表面に厚い酸化皮膜が形成されるため、表面状態および平坦度の制御が困難であり、芯材と側材との密着不良が防止できないという問題がある。
(4)側材として、鋳塊からスライスしたスライス板を使用する場合、平坦度や、酸化皮膜厚の制御等により表面状態を制御した場合でも、スライスや表面平滑化処理による表面の微細な溝の形状や表面粗さ等の規定による表面状態(表面形態)の制御が不十分であると、依然として部分的な密着不良が残るという問題がある。
(5)芯材と側材との密着不良が生じると、クラッド材の生産性の低下の問題と共に、所定のクラッド率が得られないという問題、フクレ(bulge)等の品質異常が発生するという品質低下の問題、さらには、密着不良によって耐食性が低下するという問題も発生する。
本発明は、前記課題に鑑みてなされたものであり、その目的は、表面状態および平坦度が制御され、熱交換器用クラッド材の製造において、密着不良が生じにくく、生産性、耐食性に優れた熱交換器用クラッド材を製造することができる側材およびその製造方法、並びに、この側材を用いた熱交換器用クラッド材の製造方法を提供することにある。
前記課題を解決するため、請求項1の側材は、芯材とその片面または両面に重ね合わされた1層以上の側材とからなる熱交換器用クラッド材に使用される前記側材であって、前記側材の表面に、前記側材の一方向に向かって円弧形状となる微細溝周期形態が複数形成され、前記微細溝周期形態は、800~1500mmの曲率半径で前記側材の外周縁まで延びると共に、前記側材の前記方向に1~8mmの周期を有し、かつ、前記側材の前記方向の表面粗さが、十点平均粗さ(Rz)において1~15μmであることを特徴とする。
このような側材によれば、側材の表面に所定形状の微細溝周期形態が複数形成されているため、熱交換器用クラッド材の製造における芯材との圧着時に、芯材や各側材(側材が複数ある場合)との間に存在する空気が微細溝周期形態を介して効率よく排出され、密着性が向上する。また、側材の表面粗さを所定の範囲に規定することで、芯材や各側材との間に隙間が形成されにくく、密着性が向上する。また、これらにより、圧着性(ここでは、圧延による圧着のしやすさをいう)が向上し、圧着パス数(熱間圧延の回数)が減少する。
 請求項2の側材は、前記方向1m当たりの平坦度が1mm以下であることを特徴とする。
このような側材によれば、平坦度を所定値以下に制御することで、平坦性がより向上し、芯材や各側材との密着性がより向上する。また、圧着性がより向上し、圧着パス数が減少する。
請求項3の側材は、厚さが10~250mmであることを特徴とする。
このような側材によれば、厚さを所定の範囲に規定することで、熱交換器用クラッド材のクラッド率が適切に調整される。
請求項4の側材の製造方法は、請求項1ないし請求項3のいずれか一項に記載の側材の製造方法であって、前記芯材とは成分組成の異なる側材用金属を溶解する溶解工程と、前記溶解工程で溶解された側材用金属を鋳造して側材用鋳塊を製造する鋳造工程と、前記側材用鋳塊を所定厚さにスライスするスライス工程と、前記スライスされた所定厚さのスライス材の表面に、表面平滑化処理を行う表面平滑化処理工程とをこの順に行うことを特徴とする。
このような製造方法によれば、側材をスライスおよび表面平滑化処理して製造するため、側材の表面状態および平坦度を容易に制御でき、酸化皮膜厚が減少すると共に、表面に所定形状の微細溝周期形態が形成され、かつ表面粗さが所定の範囲に規定される。また、熱交換器用クラッド材の製造における芯材との圧着時に、芯材や各側材との間に存在する空気が効率よく排出され、密着性が向上する。また、圧着性が向上し、圧着パス数が減少する。さらに、熱交換器用クラッド材の製造において、側材用部材としてスライスした側材を使用するため、従来の熱交換器用クラッド材のように熱間圧延によって側材用部材の厚さを減少させる必要がなくなる。これにより、従来に比べて熱間圧延の回数(圧着パス数)が減少し、作業工程が省略化される。
請求項5の側材の製造方法は、前記スライス工程において、前記側材用鋳塊を、水平に設置されている前記側材用鋳塊の設置面に対し平行にスライスすることを特徴とする。
このような製造方法によれば、スライスの際に生じる切断塊(スライス塊)の自重、形状による変位(例えば、切断塊が倒れようとする力等)の影響が極小化され、スライスされた側材の平坦性が向上し、芯材や各側材との密着性が向上する。また、圧着性が向上し、圧着パス数が減少する。
請求項6の側材の製造方法は、前記鋳造工程の後で、かつ、前記スライス工程の前に、鋳造された側材用鋳塊に、さらに均質化熱処理を行う均質化熱処理工程を含むことを特徴とする。
このような製造方法によれば、側材用鋳塊の内部応力が除去され、スライスされた側材の平坦性が向上し、芯材や各側材との密着性が向上する。また、圧着性が向上し、圧着パス数が減少する。
請求項7の側材の製造方法は、前記表面平滑化処理を、切削法、研削法および研磨法から選択された1種以上の方法で行うことを特徴とする。
このような製造方法によれば、側材の表面状態および平坦性が向上し、芯材や各側材との密着性が向上する。また、圧着性が向上し、圧着パス数が減少する。
請求項8の熱交換器用クラッド材の製造方法は、芯材とその片面または両面に重ね合わされた1層以上の側材とからなる熱交換器用クラッド材の製造方法であって、前記側材の少なくとも1層が、請求項1ないし請求項3のいずれか一項に記載の側材であり、前記側材と、この側材を重ね合わせるための芯材とを準備する準備工程と、前記芯材および前記側材を所定配置に重ね合わせて重ね合わせ材とする重ね合わせ工程と、前記重ね合わせ材に均質化熱処理を行う均質化熱処理工程と、前記均質化熱処理工程の後に熱間圧延を行う熱間圧延工程と、前記熱間圧延工程の後に冷間圧延を行う冷間圧延工程とを含むことを特徴とする。
このような製造方法によれば、側材用部材として、表面状態および平坦度が制御された側材を用いるため、芯材に側材を重ね合わせる際に、芯材や各側材との間に隙間が形成されにくく、また、芯材との圧着時に、芯材や各側材との間に存在する空気が微細溝周期形態を介して効率よく排出され、密着性が向上する。また、熱間圧延工程において、圧着パス数を減らすことができ、歩留り、生産性が向上する。これらにより、熱交換器用クラッド材の生産性、耐食性が向上する。
本発明の請求項1に係る側材によれば、側材の表面状態および平坦度が制御されているため、熱交換器用クラッド材の製造において、密着不良が生じにくく、フクレ等の不良を低減させることができる。また、圧着性が向上するため、圧着パス数を減少させることができる。これらにより、生産性、耐食性に優れた熱交換器用クラッド材が製造できる。
請求項2に係る側材によれば、芯材や各側材との間に隙間が形成されにくく、密着性および圧着性がさらに向上する。請求項3に係る側材によれば、側材の厚さを規定したので、適切なクラッド率を有する熱交換器用クラッド材が製造できる。
本発明の請求項4に係る側材の製造方法によれば、側材の表面状態および平坦度を容易に制御でき、酸化皮膜厚を減少させると共に、側材の表面状態を所定に規定することができる。そのため、熱交換器用クラッド材の製造において、密着不良が生じにくく、フクレ等の不良を低減させることができる。また、圧着性が向上するため、圧着パス数を減少させることができる。さらに、熱間圧延によって製造したものではないため、熱間圧延によって側材用部材の厚さを減少させる必要がなく、また、熱交換器用クラッド材の製造において、従来の熱間圧延によって製造した側材を使用する場合に比べて熱間圧延の回数が減少し、作業工程の省略化を図ることができる。これらにより、生産性、耐食性に優れた熱交換器用クラッド材が製造できる。
請求項5に係る側材の製造方法によれば、平坦性がより向上した側材を得ることができ、芯材との密着性および圧着性がより向上するため、密着不良がより一層生じにくい。請求項6に係る側材の製造方法によれば、側材用鋳塊に均質化熱処理を行うことで、スライスされた側材の平坦性がより向上するため、密着不良がより一層生じにくい。
請求項7に係る側材の製造方法によれば、側材の表面平滑化処理を、切削法、研削法および研磨法から選択された1種以上の方法で行うことで、側材の表面状態および平坦性が向上し、密着不良がより一層生じにくい。
請求項8に係る熱交換器用クラッド材の製造方法では、側材用部材として、前記の方法により製造した側材を使用するので、側材用部材の表面状態および平坦度が制御されており、密着不良が生じにくく、耐食性に優れた熱交換器用クラッド材が製造できる。また、製造コストの低い熱交換器用クラッド材を製造することができる。
(a)~(f)は、本発明に係る熱交換器用クラッド材の構成を示す断面図である。 本発明に係る側材の表面状態を説明するための模式図であり、(a)、(b)は、微細溝周期形態の形状を説明するための模式図、(c)は、(a)、(b)のXX線における断面の一部を示す模式図である。 (a)、(b)は、本発明に係る熱交換器用クラッド材の製造方法のフローを示す図である。 側材鋳造工程または芯材鋳造工程の概略を示す模式図である。 (a)、(b)は、側材のスライス方法の概略を示す模式図である。 (a)は、重ね合わせ材の構成を示す模式図、(b)は、熱間圧延工程の概略を示す模式図である。 従来の熱交換器用クラッド材の製造方法のフローを示す図である。
符号の説明
S1a 側材製造工程
S1b 芯材製造工程
S2 重ね合わせ工程
S3 均質化熱処理工程
S4 熱間圧延工程
S5 冷間圧延工程
1a、1b、1c、1d、1e、1f 熱交換器用クラッド材
2 芯材
3 ろう材
4 犠牲材
5 中間材
17 側材用鋳塊
25 芯材用鋳塊
26 芯材
35 側材
35a 設置面
40 重ね合わせ材
A 側材
B 微細溝周期形態
C 微細溝
D 周期
F 外周縁
次に、図面を参照して本発明に係る側材およびその製造方法並びに熱交換器用クラッド材の製造方法について詳細に説明する。
≪側材≫
側材は、芯材(core material)とその片面または両面に重ね合わされた1層以上の側材(side material)とからなる熱交換器用クラッド材に使用されるものである。まず、側材を用いた熱交換器用クラッド材の構成について説明する。
<熱交換器用クラッド材の構成>
熱交換器用クラッド材の側材の層数は何ら限定されることはない。例えば、図1(a)に示すように、芯材2の片面に1つのろう材3をクラッドした2層の熱交換器用クラッド材1a、図1(b)に示すように、芯材2の両面にろう材3を1つずつクラッドした3層の熱交換器用クラッド材1b、図1(c)に示すように、芯材2の片面にろう材3と、芯材2の他面に犠牲材4を1つずつクラッドした3層の熱交換器用クラッド材1c、図1(d)に示すように、芯材2の片面に中間材5、ろう材3をクラッドした3層の熱交換器用クラッド材1d、図1(e)に示すように、芯材2の片面に中間材5、ろう材3と、芯材2の他面に犠牲材4をクラッドした4層の熱交換器用クラッド材1e、図1(f)に示すように、芯材2の両面に中間材5、ろう材3をクラッドした5層の熱交換器用クラッド材1f等を挙げることができる。
しかしながら、図示しないが、さらに側材(ろう材、犠牲材、中間材)の層数を増やした6層以上の熱交換器用クラッド材にも好適に適用することが可能であることはいうまでもない。
次に、側材の表面状態について説明する。
図2(a)~(c)に示すように、側材A(A1、A2)は、その表面に、側材Aの長手方向に向かって円弧形状となる微細溝周期形態(fine groove periodic configuration)Bが複数形成されている。そして、この微細溝周期形態Bは、800~1500mmの曲率半径Rで側材Aの外周縁Fまで延びると共に、側材Aの長手方向に1~8mmの周期Dを有している。さらに、側材Aは、その長手方向の表面粗さが、十点平均粗さ(Rz)において1~15μmである。なお、側材Aの表面状態は、後記するように、表面平滑化処理において、円盤装置の円盤の回転速度や送り速度等を適宜調整することにより制御する。
なお、微細溝周期形態Bとは、図2(c)に示すように、1箇所の微細溝Cの部分の形態を含む周期Dの形態のことをいう。すなわち、周期Dの部分が1周期の微細溝周期形態Bということになる。また、微細溝Cの部分の形態としては、微細溝Cの部分に、細かい溝が複数形成されたようなものも含むものである(図示省略)。また、微細溝Cの部分の形態は、表面平滑化処理の際の切削痕、研削痕、研磨痕等のようなものである。なお、図2(c)は、便宜上、縦方向が拡大されている模式図である。
なお、クラッドの初期圧着段階で、空気が微細溝周期形態Bから排出された後、熱間圧延によって微細溝周期形態Bが自体もつぶれながら、側材と芯材が一体となる。そのため、微細溝周期形態Bにより、クラッド材に不具合が生じることはない。
また、長手方向とは、後記する熱交換器用クラッド材の製造において、側材Aが芯材と重ね合わされて熱間圧延される際の圧延方向である。さらに、「側材Aの長手方向に向かって円弧形状となる」とは、すべての微細溝周期形態Bが、側材Aの長手方向のどちらか一方に向かって、同一の方向に円弧形状となっていることを意味する。このように、側材Aが芯材と重ね合わされて熱間圧延される前の、側材Aが単独で存在する時には、長手方向は未定である。微細溝周期形態Bの方向に応じて、図2に示されるように圧延方向を決めることになる。
微細溝周期形態Bの曲率半径Rおよび周期Dを所定値に規定することで、熱交換器用クラッド材の製造おける芯材との圧着時に、芯材や各側材との間に存在する空気が、微細溝周期形態Bを介して効率よく排出される。また、表面粗さを所定値に規定することで、芯材や各側材との間に隙間が形成されにくくなる。そのため、密着性が向上し、フクレ等の不良を低減させることができると共に、圧着性が向上し、圧着パス数を減少させることができる。
微細溝周期形態Bを設ける必要があるのは、側材の両面のうち、少なくとも芯材とクラッドされる側の面である。クラッドされない側の面(すなわち圧着圧延時の一番外側表面)には不要であるが、その面に微細溝周期形態Bが設けられていても特に悪い作用は無い。4層材や、5層材の中間層の場合でも、少なくとも芯材とクラッドされる側の面に微細溝周期形態Bを設ける必要があり、芯材と反対側の面には不要である。芯材と反対側の面に微細溝周期形態Bが設けられていても特に悪い作用は無い。
<微細溝周期形態の曲率半径:800~1500mm>
微細溝周期形態Bの曲率半径Rが800mm未満であると、後記する熱交換器用クラッド材の製造における熱間圧延工程での空気の残存が局所化し、密着性、圧着性の向上効果が不十分となる。一方、1500mmを超えると、空気の排出される距離が長くなりすぎ、密着性、圧着性の向上効果が不十分となる。
したがって、微細溝周期形態Bの曲率半径Rは、800~1500mmとする。
なお、好ましくは900~1300mmである。なお、微細溝周期形態Bは、側材Aの外周縁Fまで延びるものである。すなわち、側材Aの外周縁Fにむけて、断裂することなく連続して形成されている。
微細溝周期形態Bの曲率半径が非常に大きく、溝が直線状に近くなった場合、前述のように圧延時の方向(長手方向)を設定すると、溝は圧延方向と略直角方向延びるような形になる。その場合、溝に沿って空気を排出する(圧延ロールの圧下によって押し出される)力が働き難くなる。曲率半径Rの上限値は、このような観点で設けられている。
曲率半径Rの測定は、例えば、微細周期形態を写真撮影し、写真上または写真画像が処理可能なモニター上で相当する円弧の曲率を、倍率を考慮して測定することができる。
<微細溝周期形態の周期:1~8mm>
ここでの微細溝周期形態Bの周期Dが1~8mmとは、微細溝周期形態Bの周期Dにおいて、どの箇所においても、長手方向の周期Dが略一定値であり、その数値が、1~8mmの範囲であることをいう。
微細溝周期形態Bの周期Dが1mm未満であると、空気の排出通路が確保できなくなり、空気を十分に排出できない。一方、8mmを超えると、微細溝周期形態Bの数が少なくなり、芯材や各側材との間に残存する空気が増大し、フクレの発生が増える。
したがって、微細溝周期形態Bの周期Dは、1~8mmとする。なお、好ましくは、2~7mmである。
また、微細溝周期形態Bの円弧形状は、図2(a)に示すように、円弧の中心が、側材Aの幅方向中心の位置にくるようにしてもよく、図2(b)に示すように、円弧の中心が、側材Aの幅方向中心からどちらかの側にずれた位置にくるようにしてもよい。
周期の測定は、例えば、微細周期構造を有する側材の表面の円弧形状を樹脂上に転写させたレプリカを作成し、該樹脂を後記の十点平均粗さの測定方法と同様にして表面粗さを測定することにより行うことができる。
このような微細溝周期形態Bの形状は、後記するスライス材の表面平滑化処理により制御することができる。
微細溝周期形態Bを、図2(a)のような形状とするには、後記するように、例えば、表面平滑化処理方法として切削法、研削法、研磨法等を用いる際に、これらの方法を回転する円盤装置と組み合わせて行い、その際、鋳塊(スライス材)の長手方向に水平に、かつ、回転円盤装置の中心が鋳塊幅方向中心となるように平滑化処理を行う。また、図2(b)のような形状とするには、前記のように表面平滑化処理を行う際、鋳塊の長手方向に水平に、かつ、回転円盤装置の中心を鋳塊幅方向中心から、どちらかの側にずらして表面平滑化処理を行う。なお、この場合、側材Aの両端部は、側材Aの寸法により、微細溝周期形態Bが長手方向の縁で途切れるが、この両端部の微細溝周期形態Bにおいても、長手方向に向かって円弧形状に形成されているといえる。
<十点平均粗さ(Rz):1~15μm>
側材Aは、その長手方向の表面粗さが、十点平均粗さ(ten points mean roughness; Rz)において1~15μmである。十点平均粗さ(Rz)が1μm未満であると、空気の排出通路が十分確保されない。一方、15μmを超えると、熱交換器用クラッド材に密着不良が発生しやすくなる。したがって、表面粗さは、十点平均粗さ(Rz)において1~15μmとする。なお、好ましくは、3~14μmである。ここで規定している十点平均粗さ(Rz)においては、微細溝Cも含めた形状が反映される。すなわち、ここで言う表面粗さにおいては、微細溝Cが主として寄与することになる。
なお、十点平均粗さの測定は、例えば、「JIS規格 B0601表面粗さ」に基づき、小坂研究所(Kosaka Laboratory Ltd.)製の表面粗さ測定器(サーフコーダ(SURFCORDER) SE-30D)を使用して、基準長さ25mmで測定することにより行うことができる。また、側材Aの表面の微細溝周期形態Bが形成された箇所の少なくとも2周期以上分の長さを含んで測定する。すなわち、微細溝Cも含んで測定するものである。
このような表面粗さの規定は、後記するスライス材の表面平滑化処理により制御することができる。
さらに、側材Aの長手方向1m当たりの平坦度は、1mm以下が好ましく、側材Aの厚さ(側材1層の厚さ)は、10~250mmが好ましい。
<平坦度:1mm以下>
平坦度が1mmを超えると、熱交換器用クラッド材に密着不良が発生しやすくなる。
したがって、平坦度は、1mm以下が好ましく、0.5mm以下がより好ましい。
平坦度の測定は、例えば、1mの金尺を側材の長手方向が1mとなるように当て、生じた隙間をすきまゲージを用いて測定することができる。
<厚さ:10~250mm>
 厚さが10mm未満の場合、側材と芯材を圧着する際に、側材が薄すぎることにより、側材自体に波打ちのような不均一な変形が発生し、クラッド厚さが変動しやすくなり、クラッド率の変化が増大してしまう。一方、厚さが250mmを超える場合には、圧着する際に圧延ロールで側材を押す荷重が、側材と芯材の圧着界面に十分到達しなくなる。その結果、圧着状態が不均一となるため、側材部の圧延時の伸びが圧着状態の不均一に対応して変化し、クラッド率の変動が増大する要因となる。
 そのため、厚さが前記範囲外であると、熱交換器用クラッド材のクラッド率が不適切なものとなりやすい。さらに、密着不良を生じる場合もある。
したがって、厚さは、10~250mmが好ましく、20~200mmがより好ましい。
なお、熱交換器用クラッド材の製造の際、側材Aを熱間圧延工程で圧着する場合に、圧着される相手側の材料(芯材、または、中間層が必要な場合は別の側材)の表面状態は特に規定しなくとも、密着性、圧着性の向上効果が発揮される。
また、圧着される相手側の材料(芯材、または、中間層が必要な場合は別の側材)が本発明の側材Aと同様の表面状態を有する場合には、圧着時の空気の排出効果がより増大し、さらに密着性、圧着性の向上効果が得られ、フクレの低減の効果が得られる。よって、圧着される相手側の材料が、中間層用の側材の場合、表面平滑化処理により本発明の側材と同様の表面状態とすることが好ましい。また、圧着される相手側の材料が芯材の場合、本発明の側材と同様に表面平滑化処理を行うことにより、本発明の側材と同様の表面状態とすることが好ましい。
なお、熱交換器用クラッド材の製造の際、側材Aを熱間圧延工程で圧着する場合に、圧着時の熱間圧延の方向を図2(a)、(b)に示す圧延方向となるように熱間圧延することにより、最も密着性、圧着性の向上効果が得られる。
≪側材の製造方法(側材製造工程)≫
側材の製造方法は、図3(a)、(b)に示すように、側材製造工程S1aにより、前記側材を製造するものである。
この側材製造工程S1aは、溶解工程と、鋳造工程と、スライス工程と、表面平滑化処理工程(図3では面削工程と記載する)と、を備えるものである。
なお、必要に応じて、鋳造工程の後で、かつ、前記スライス工程の前に、均質化熱処理工程(図3では均熱工程と記載する)を備えてもよい。
(溶解工程)
溶解工程は、芯材とは成分組成の異なる側材用金属を溶解する工程である。
側材用金属として、熱交換器用クラッド材がろう材を備えるときに(図1の1a~1f参照)、ろう材用として、4000系のAl-Si系アルミニウム合金を用いることができる。ここで、Al-Si系合金とは、Siの他に、Znを含有した合金も含むものである。Al-Si系合金としては、例えば、Al-7~13質量%Si系合金、またはAl-7~13質量%Si-2~7質量%Zn系合金等を用いることができるが、これらに限定されるものではなく、ろう材として用いられる合金であれば、全て適用することができる。
側材用金属として、熱交換器用クラッド材が犠牲材を備えるときに(図1の1c、1e参照)、犠牲材用として、3000系のAl-Mn系アルミニウム合金または7000系のAl-Zn-Mg系アルミニウム合金を用いることができ、さらに、Al-Zn系合金を用いることができる。ここで、Al-Zn系合金とは、Znの他に、Mn、Siを含有した合金も含むものである。Al-Zn系合金としては、例えば、Al-1~7質量%Zn系合金、Al-0.5~1.2質量%Mn-0.5~1.2質量%Si-2~6質量%Zn系合金、Al-0.8~1.2質量%Si-2~6質量%Zn系合金を用いることができるが、これらに限定されるものではなく、犠牲材として用いられる合金であれば、全て適用することができる。
側材用金属として、熱交換器用クラッド材が中間材を備えるときに(図1の1d~1f参照)、中間材用として、1000系の純アルミニウムまたは7000系のAl-Zn-Mg系アルミニウム合金等を用いることができ、さらに、Al-Mn系合金を用いることができる。ここで、Al-Mn系合金とは、Mnの他に、Cu、Si、Tiを含有した合金も含むものである。Al-Mn系合金としては、例えば、Al-0.5~1.2質量%Mn-0.5~1.2質量%Cu-0.5~1.2質量%Si系合金、Al-0.5~1.2質量%Mn-0.5~1.2質量%Cu-0.5~1.2質量%Si-0.05~0.3質量%Ti系合金を用いることができるが、これらに限定されるものではなく、中間材として用いられる合金であれば、全て適用することができる。
前記した金属の成分組成の調整は、用いる熱交換器用クラッド材の用途等に応じて適宜決めることができる。
(鋳造工程)
鋳造工程は、溶解工程で溶解された側材用金属を鋳造して側材用鋳塊を製造する工程である。
鋳造方法としては、半連続鋳造法を用いることができる。
半連続鋳造法は、図4に示すような鋳造装置10が用いられ、底部が開放された金属製の水冷鋳型11に、上方より金属(ここでは側材用金属)の溶湯Mを注入し、水冷鋳型11の底部より凝固した金属を連続的に取り出し、所定厚さT1の側材用鋳塊17を得るものである。このとき、溶湯Mは、桶12から、ノズル13、フロート14およびグラススクリーン15を介して、水冷鋳型11に供給される。水冷鋳型11に供給された溶湯Mは、冷却水Wで冷却された水冷鋳型11の内壁面に接することにより凝固し凝固殻16となる。さらに、水冷鋳型11の下部から冷却水Wが、直接、凝固殻16の表面に噴射され、連続的に側材用鋳塊17が製造される。
ここで、側材用鋳塊17の厚さT1は、200~700mmが好ましい。また、側材用鋳塊17の幅、長さは特に限定されるものではないが、生産性を考慮すると、幅1000~2500mm、長さは3000~10000mmが好ましい。
なお、半連続鋳造法は、縦向き、横向きのどちらで行ってもよい。
(スライス工程)
スライス工程は、側材用鋳塊を所定厚さにスライスする工程である。
スライス方法としては、スラブスライス法を用いることができる。
スラブスライス法は、図5(a)に示すように、前記した半連続鋳造法で製造した側材用鋳塊17を、図示しない帯鋸切断機等によってスライスすることによって、所定厚さTの側材35(スライス材)が製造される。ここで、側材35の厚さTは、表面平滑化処理後に、10~250mmとなる厚さが好ましく、20~200mmとなる厚さがより好ましい。厚さTが前記範囲外であると、熱交換器用クラッド材のクラッド率が不適切なものとなりやすい。また、図5(b)に示すように、側材用鋳塊17を、水平に設置されている側材用鋳塊の設置面35aに対し、平行にスライスするのが好ましい。
ここで、設置面35aとは、側材用鋳塊17のスライス装置の設置台に接する面のことである。
このようにすることにより、スライスの際に生じる切断塊(スライス塊)の自重、形状による変位(例えば、切断塊が倒れようとする力等)の影響が極小化され、スライスされた側材35の平坦性がより向上する。
スライスの方法としては、丸鋸切断機により切断してもよく、また、レーザーや水圧等により切断してもよい。
(表面平滑化処理工程)
表面平滑化処理工程は、スライスされた所定厚さの側材(スライス材)の表面に、表面平滑化処理を行う工程である。
前記スライスした所定厚さの側材35(スライス材)は、芯材と重ね合わせる前に、側材の表面状態や平坦度を制御するため、また、表面に形成された晶出物や酸化物を除去するための表面平滑化処理を行う。
表面平滑化処理法としては、エンドミル切削やダイヤモンドバイト切削等の切削法、表面を砥石等で削る研削法、バフ研磨等の研磨法等を用いることができるが、これらに限定されるものではない。
なお、表面平滑化処理において、例えば、これらのエンドミル切削やダイヤモンドバイトによる切削法、砥石等で削る研削法、バフ研磨等の研磨法等を用いる際に、回転する円盤状の装置と組み合わせて、切削、研削、研磨等を行うことで、本発明の側材の表面状態を得ることができる。その際、円盤の回転速度、および、スライス材上での円盤の送り速度を制御することで、所望の微細溝周期形態Bを有する表面状態が得られる。
このように、側材用鋳塊17のスライス後に表面平滑化処理を施すことにより、その表面に、側材の長手方向に向かって円弧形状となり、800~1500mm、好ましくは900~1300mmの曲率半径で側材の外周縁まで延びると共に、長手方向に1~8mm、好ましくは、2~7mmの周期を有して複数形成された微細溝周期形態Bを有する側材35を得ることができる。さらに、長手方向の表面粗さが、十点平均粗さ(Rz)において1~15μm、好ましくは、3~14μm、平坦性の評価において、長手方向1m当たりの平坦度を1mm以下、好ましくは0.5mm以下とする側材35を得ることができる。
また、このような側材35を用いることにより、外面耐食性の試験としてCASS試験(塩水噴霧試験:JIS Z 2371)を1500時間、内面耐食性の試験として浸漬試験(Na :118ppm、Cl-:58ppm、SO 2- :60ppm、Cu2+ :1ppm、Fe3+ :30ppm)を80℃で2000時間行った後、試験後の腐食深さが60μm以下となる熱交換器用クラッド材となる。
(均質化熱処理工程)
均質化熱処理工程は、鋳造された側材用鋳塊に、さらに均質化熱処理を行う工程である。
図3(b)に示すように、前記鋳造方法で鋳造された側材用鋳塊17に、適宜必要に応じて、側材用鋳塊17をスライスする前に、均質化熱処理工程により、内部応力の除去のための均質化熱処理を行ってもよい。均質化熱処理を行うことにより、側材用鋳塊17の内部応力が除去され、スライスされた側材35の平坦性がより向上する。ここで均質化熱処理の温度、時間は特に限定されるものではないが、処理温度は、350~600℃、処理時間は1~10時間とするのが好ましい。
均質化熱処理の処理温度が350℃未満であると、内部応力の除去量が小さく、鋳造中に偏析した溶質元素の均質化も不十分となり、敢えて熱処理を施した効果は小さい。一方、処理温度が600℃を超えると、鋳塊表面の一部が溶解するバーニングと呼ばれる現象が生じ、熱交換器用クラッド材の表面欠陥の原因になりやすい。また、処理時間が1時間未満であると、内部応力の除去効果が小さく、また均質化が不十分となりやすい。なお、処理時間は、生産性を考慮すると10時間以下が好ましい。
≪熱交換器用クラッド材の製造方法(熱交換器用クラッド材製造工程)≫
熱交換器用クラッド材の製造方法は、芯材とその片面または両面に重ね合わされた1層以上の側材とからなる熱交換器用クラッド材の製造方法であって、図3(a)、(b)に示すように、側材製造工程S1aおよび芯材製造工程S1bからなる準備工程と、重ね合わせ工程と、均質化熱処理工程S3(図3では均熱工程と記載する)と、熱間圧延工程S4と、冷間圧延工程S5と、を含むものである。
<準備工程>
準備工程は、側材と、この側材を重ね合わせるための芯材とを準備する工程である。
この準備工程では、側材製造工程S1aおよび芯材製造工程S1bにより、側材および芯材が製造される。
[側材製造工程]
側材製造工程S1aは、前記したとおりであるので、ここでは説明を省略する。
なお、熱交換器用クラッド材は、側材の少なくとも1層が、前記製造方法(側材製造工程S1a)により製造され、他の層は、従来の製造方法により製造されていてもよい。
[芯材製造工程]
図3(a)に示すように、芯材製造工程S1bは、溶解工程と、鋳造工程とを備えることとした。
なお、必要に応じて、表面平滑化処理工程(図3では面削工程と記載する)および均質化熱処理工程(図3では均熱工程と記載する)の少なくとも1つを備えてもよい。
(溶解工程)
溶解工程は、側材とは成分組成の異なる芯材用金属を溶解する工程である。
芯材用金属としては、2000系のAl-Cu系アルミニウム合金、3000系のAl-Mn系アルミニウム合金、5000系のAl-Mg系アルミニウム合金等を用いることができるが、これらに限定されるものではなく、芯材として用いられる合金であれば、全て適用することができる。前記した金属の成分組成の調整は、用いる熱交換器用クラッド材の用途等に応じて適宜決めることができる。
(鋳造工程)
鋳造工程は、溶解工程で溶解された芯材用金属を鋳造して芯材用鋳塊を製造する工程である。
鋳造方法としては、前記に説明した半連続鋳造法を用いることができる。
ここで、芯材用鋳塊25の厚さT1(図4参照)は、200~700mmが好ましい。厚さT1が前記範囲外であると、熱交換器用クラッド材のクラッド率が不適切なものとなりやすい。また、芯材用鋳塊25の幅、長さは特に限定されるものではないが、生産性を考慮すると、幅1000~2500mm、長さは3000~10000mmが好ましい。
前記鋳造方法で鋳造された芯材用鋳塊25に、適宜必要に応じて、前記した側材35と重ね合わせる前に表面に形成された晶出物や酸化物を除去するための表面平滑化処理および内部応力の除去のための均質化熱処理の少なくとも1つを行ってもよい。
(表面平滑化処理工程)
表面平滑化処理工程は、鋳造工程で製造された芯材用鋳塊の表面に、表面平滑化処理を行う工程である。
表面平滑化処理工程で表面平滑化処理を行うことにより、長手方向の表面粗さが、十点平均粗さ(Rz)において1~15μm、好ましくは、3~14μm、平坦性の評価において、長手方向1m当たりの平坦度を1mm以下、好ましくは0.8mm以下とする芯材を得ることができる。表面粗さが前記範囲未満であると、疵の発生を招きやすく、また、加工が困難となりやすい。表面粗度が前記範囲を超えると、熱交換器用クラッド材に密着不良が発生しやすくなる。平坦度が前記範囲を超えると、熱交換器用クラッド材に密着不良が発生しやすくなる。
なお、前記したように、本発明の側材と同様に表面平滑化処理を行うことにより、芯材においても、本発明の側材と同様の表面状態とすることができる。
(均質化熱処理工程)
均質化熱処理工程は、鋳造工程で鋳造された芯材用鋳塊に、均質化熱処理を行う工程である。均質化熱処理工程で均質化熱処理を行うことにより、芯材用鋳塊25の内部応力が除去され、芯材の平坦性がより向上する。ここで均質化熱処理の温度、時間は特に限定されるものではないが、処理温度は、350~600℃、処理時間は1~10時間とするのが好ましい。均質化熱処理の処理温度が350℃未満であると、内部応力の除去量が小さく、鋳造中に偏析した溶質元素の均質化も不十分となり、敢えて熱処理を施した効果は小さい。一方、処理温度が600℃を超えると、鋳塊表面の一部が溶解するバーニングと呼ばれる現象が生じ、熱交換器用クラッド材の表面欠陥の原因になりやすい。また、処理時間が1時間未満であると、内部応力の除去効果が小さく、また均質化も不十分となりやすい。なお、処理時間は、生産性を考慮すると10時間以下が好ましい。
<重ね合わせ工程>
重ね合わせ工程S2は、準備工程で準備された芯材および側材を所定配置に重ね合わせて重ね合わせ材40とする工程である。
重ね合わせ工程S2では、図6(a)に示すように、前記工程で製造された芯材用鋳塊25(図4参照)の先端および後端を切断して所定長さとした芯材26の片面または両面(図示省略)に1つの側材35、または、複数の側材(図示省略)を所定配置に重ね合わせて重ね合わせ材40とする。ここで、所定配置とは、製品としての熱交換器用クラッド材、例えば、図1(a)~(f)に示すような熱交換器用クラッド材1a~1fにおける芯材2、ろう材3、犠牲材4、中間材5の配置に対応することを意味する。また、重ね合わせ方法は、従来公知の、例えば、芯材26および側材35の両端部をバンド掛けする方法が用いられる。バンド掛けする方法以外に溶接止めする等の方法を用いても問題ない。
なお、重ね合わせたときの各隙間は、最大で10mm以内、好ましくは、5mm以内とするのが好ましい。
<均質化熱処理工程>
均質化熱処理工程S3は、重ね合わせ工程S2で製造された重ね合わせ材に均質化熱処理を行う工程である。
重ね合わせ工程S2で製造した重ね合わせ材40は、内部組織を均一化するため、および、熱間圧延を行い易いように柔らかくするために均質化熱処理を施す。
<熱間圧延工程>
熱間圧延工程S4は、均質化熱処理工程S3の後に熱間圧延を行う工程である。
熱間圧延工程S4では、図6(b)に示すように、前記重ね合わせ材40のバンドを切断し、重ね合わせ材40を熱間圧延して熱間圧延材1Aを製造する。ここで、熱間圧延方法は、従来公知の圧延法で行う。そして使用する圧延機は、図6(b)では4段式圧延機50を記載したが、図示しない、2段圧延機または4段以上の圧延機を使用してもよい。また、図6(b)では1列のロールスタンドを備えた4段式圧延機50を記載したが、図示しない、複数列のロールスタンドを備えた圧延機を使用して、所定厚さの熱間圧延材1Aが得られるまで、熱間圧延を繰り返し行ってもよい。
<冷間圧延工程>
冷間圧延工程S5は、熱間圧延工程S4の後に冷間圧延を行う工程である。
熱間圧延工程S4で製造された熱間圧延材1Aは、その後、冷間圧延処理を行う。冷間圧延処理としては、一例として、30~99%の圧下率で行うことができる。
また、必要に応じて所望の機械的特性等を付与するために、常法により、熱処理(焼鈍処理)、歪み矯正処理、時効硬化処理等を行ったり、所定の形状に加工し、または所定の大きさに裁断等したりしてもよい。一例として、焼鈍処理として、冷間圧延前に行う荒焼鈍、冷間圧延間に行う中間焼鈍、最終冷間圧延後に行う最終焼鈍を連続炉またはバッチ炉で200~500℃×0~10時間で行うことを挙げることができるが、これらに限定されるものではなく、これらの処理によって得られる効果(機械的特性)を奏する限りにおいて、その条件を適宜変更できることはいうまでもない。
本発明に係る熱交換器用クラッド材は、前記説明した熱交換器用クラッド材の製造方法の各工程により、製造される。
以上のように、本発明に係る側材およびその製造方法並びに熱交換器用クラッド材の製造方法によれば、以下の効果を得ることができる。
本発明の側材は、表面状態および平坦度が制御され、側材の平坦性、平滑性が向上し、さらに酸化皮膜厚が減少する。
また、熱交換器用クラッド材の製造において、芯材や各側材との間に存在する空気が微細溝周期形態を介して効率よく排出され、また、芯材や各側材との間に隙間が形成されにくく、密着性が向上するため、熱交換器用クラッド材の耐食性を向上させることができる。また、圧着性が向上するため、圧着パス数を減らすことができ、歩留まり、生産性を向上させることができる。
 以上、本発明を実施するための最良の形態について述べてきたが、以下に、本発明の効果を確認した実施例について説明する。
≪供試材作製≫
 まず、JIS3003合金からなる芯材用アルミニウム合金を連続鋳造により溶解、鋳造し、均質化熱処理、面削(表面平滑化処理)して、芯材用鋳塊(芯材(芯材用部材))を得た。また、JIS4045合金からなるろう材用アルミニウム合金、および、JIS7072合金からなる犠牲材用アルミニウム合金を連続鋳造により溶解、鋳造し、均質化熱処理を施した後、それぞれ所定厚さにスライスし、面削(表面平滑化処理)して、ろう材(ろう材用部材)、犠牲材(犠牲材用部材)を得た。なお、ろう材、犠牲材の一部については、均質化熱処理は行なわなかった。また、これら芯材および側材(ろう材および犠牲材)は、すべて、長さ6000mm、幅1000mmとした。
 表面平滑化処理は、所望の平坦度および微細溝周期形態を有する表面状態が得られるように、表面平滑化処理方法との組み合わせを考慮し、装置の円盤の回転速度、送り速度を適宜調整することで行った。なお、後記する比較例13は、引用文献2に記載の発明に基づき、従来行われている通常の面削を行ったものであり、本発明の範囲の表面状態にするための調整を特に行なわなかったものである。そして、このようにして作製した側材について、表面の微細溝周期形態(曲率半径、周期)、表面粗さ(十点平均粗さ(Rz))、長手方向1mあたりの平坦度、板厚を測定した。その結果を表1に示す。
 なお、曲率半径については前述の写真画像を用いる方法により測定し、周期については前述の樹脂レプリカを用いる方法により測定した。十点平均粗さ(Rz)は、「JIS規格 B0601表面粗さ」に基づき、小坂研究所製の表面粗さ測定器(サーフコーダ SE-30D)を使用して、基準長さ25mmで測定した。なお、側材の表面の微細溝周期形態が形成された箇所の少なくとも2周期以上分の長さを含んで測定、すなわち、微細溝も含んで測定した。平坦度は、平坦度測定機(Zygo社製 Zygo mes)を使用して測定した。
 次に、芯材の一面側にろう材、他面側に犠牲材を重ね合わせてバンド掛けし、均質化熱処理をした後、熱間圧延により圧着して3層の板材とした。その後の冷間圧延は行わず、この熱間圧延による圧着後の材を供試材として使用した。そして、このようにして作製した供試材について、ろう材および犠牲材の密着性について評価した。
<密着性評価>
 密着性は、ろう材側表面、犠牲材側表面をそれぞれ目視観察し、フクレ発生の個数(フクレ個数)により評価した。なお、フクレとは、圧着圧延後状態で、ろう材、犠牲材の表面に生じた凸に膨らんだ部分の最長径(長さまたは幅)が50mm以上のものを指す。そして、フクレがないものを、密着性が非常に良好(◎)、フクレ個数が1~3個のものを、良好(○)、フクレ個数が4個以上のものを、不良(×)と判断した。この結果を表1に示す。なお、表1において、本発明の構成を満たさないもの、および、本発明の好ましい構成を満たさないものについては、数値に下線を引いて示す。
 表1に示すように、実施例1~14は、本発明の構成を満たしているため、ろう材、犠牲材ともに、密着性が非常に良好または良好であった。
 なお、実施例9は、ろう材の平坦度が好ましい上限値を超えるため、ろう材の密着性が、良好であるものの、非常に良好とはならなかった。また、実施例10は、ろう材の厚さが好ましい下限値未満であり、実施例11は、ろう材の厚さが好ましい上限値を超えるため、ろう材の密着性が、良好であるものの、非常に良好とはならなかった。なお、これらは、クラッド率が不適切なものとなりやすいものである。
 実施例14は、犠牲材の平坦度が好ましい上限値を超えるため、犠牲材の密着性が、良好であるものの、非常に良好とはならなかった。また、実施例12は、犠牲材の厚さが好ましい下限値未満であり、実施例13は、犠牲材の厚さが好ましい上限値を超えるため、犠牲材の密着性が、良好であるものの、非常に良好とはならなかった。なお、これらは、クラッド率が不適切なものとなりやすいものである。
 一方、比較例1~12は、本発明の構成を満たさないため、フクレ個数が多く、密着性に劣った。比較例13,14は、ろう材、犠材に微細周期構造を有しないため、それぞれろう材、犠材側のフクレ個数が多く、密着性が劣った。なお、密着性が悪いと、製品板厚においても欠陥が残存し、腐食環境化で塩素等の腐食促進イオンを含有する水溶液が、ろう材や、犠牲材の欠陥を経路として芯材に到達しやすくなる。これにより、耐食性に劣ることとなる。
Figure JPOXMLDOC01-appb-T000001
以上、本発明に係る側材およびその製造方法並びに熱交換器用クラッド材の製造方法について説明してきたが、本発明の趣旨はこれらの記載に限定されるものではなく、本願の特許請求の範囲の記載に基づいて広く解釈しなければならない。また、本発明の技術的範囲は、本発明の趣旨を逸脱しない範囲において広く変更、改変することができることはいうまでもない。

Claims (8)

  1. 芯材とその片面または両面に重ね合わされた1層以上の側材とからなる熱交換器用クラッド材に使用される前記側材であって、
    前記側材の少なくとも片面の表面に、前記側材の一方向に向かって円弧形状となる微細溝周期形態が複数形成され、前記微細溝周期形態は、800~1500mmの曲率半径で前記側材の外周縁まで延びると共に、前記側材の前記方向に1~8mmの周期を有し、かつ、
    前記側材の前記方向の表面粗さが、十点平均粗さ(Rz)において1~15μmであることを特徴とする側材。
  2. 前記側材の前記方向1m当たりの平坦度が1mm以下であることを特徴とする請求項1に記載の側材。
  3. 前記側材の厚さが10~250mmであることを特徴とする請求項1に記載の側材。
  4. 請求項1ないし請求項3のいずれか一項に記載の側材の製造方法であって、
    前記芯材とは成分組成の異なる側材用金属を溶解する溶解工程と、
    前記溶解工程で溶解された側材用金属を鋳造して側材用鋳塊を製造する鋳造工程と、
    前記側材用鋳塊を所定厚さにスライスするスライス工程と、
    前記スライスされた所定厚さのスライス材の表面に、表面平滑化処理を行う表面平滑化処理工程とをこの順に行うことを特徴とする側材の製造方法。
  5. 前記スライス工程において、前記側材用鋳塊を、水平に設置されている前記側材用鋳塊の設置面に対し平行にスライスすることを特徴とする請求項4に記載の側材の製造方法。
  6. 前記鋳造工程の後で、かつ、前記スライス工程の前に、鋳造された側材用鋳塊に、さらに均質化熱処理を行う均質化熱処理工程を含むことを特徴とする請求項4に記載の側材の製造方法。
  7. 前記表面平滑化処理を、切削法、研削法および研磨法から選択された1種以上の方法で行うことを特徴とする請求項4に記載の側材の製造方法。
  8. 芯材とその片面または両面に重ね合わされた1層以上の側材とからなる熱交換器用クラッド材の製造方法であって、
    前記側材の少なくとも1層が、請求項1ないし請求項3のいずれか一項に記載の側材であり、
    前記側材と、この側材を重ね合わせるための芯材とを準備する準備工程と、
    前記芯材および前記側材を所定配置に重ね合わせて重ね合わせ材とする重ね合わせ工程と、
    前記重ね合わせ材に均質化熱処理を行う均質化熱処理工程と、
    前記均質化熱処理工程の後に熱間圧延を行う熱間圧延工程と、
    前記熱間圧延工程の後に冷間圧延を行う冷間圧延工程とを含むことを特徴とする熱交換器用クラッド材の製造方法。
PCT/JP2009/055932 2008-03-28 2009-03-25 側材およびその製造方法並びに熱交換器用クラッド材の製造方法 WO2009119653A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US12/922,799 US8404360B2 (en) 2008-03-28 2009-03-25 Side material and method for producing the same and method for producing clad member for heat exchanger
EP09723711.9A EP2259002B1 (en) 2008-03-28 2009-03-25 Side member and method for producing the same and method for producing clad member for heat exchanger
CA2717372A CA2717372C (en) 2008-03-28 2009-03-25 Side material and method for producing the same and method for producing clad member for heat exchanger
AU2009229974A AU2009229974B2 (en) 2008-03-28 2009-03-25 Side material and method for producing the same and method for producing clad member for heat exchanger
KR1020107021518A KR101270924B1 (ko) 2008-03-28 2009-03-25 측재 및 그 제조 방법 및 열교환기용 클래드재의 제조 방법
CN200980106249.8A CN101952681B (zh) 2008-03-28 2009-03-25 侧材及其制造方法、以及热交换器用包层材料的制造方法
MX2010010617A MX2010010617A (es) 2008-03-28 2009-03-25 Material lateral y metodo para producir el mismo y metodo para producir un miembro revestido para intercambiador de calor.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-088505 2008-03-28
JP2008088505 2008-03-28

Publications (1)

Publication Number Publication Date
WO2009119653A1 true WO2009119653A1 (ja) 2009-10-01

Family

ID=41113845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055932 WO2009119653A1 (ja) 2008-03-28 2009-03-25 側材およびその製造方法並びに熱交換器用クラッド材の製造方法

Country Status (10)

Country Link
US (1) US8404360B2 (ja)
EP (1) EP2259002B1 (ja)
JP (1) JP5222197B2 (ja)
KR (1) KR101270924B1 (ja)
CN (1) CN101952681B (ja)
AU (1) AU2009229974B2 (ja)
CA (2) CA2856597C (ja)
MX (1) MX2010010617A (ja)
RU (1) RU2456526C2 (ja)
WO (1) WO2009119653A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066115A1 (fr) * 2010-11-19 2012-05-24 Valeo Systemes Thermiques Composant brasable et échangeur de chaleur le comportant

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013102821A1 (de) 2013-03-19 2014-09-25 Hydro Aluminium Rolled Products Gmbh Verfahren zur Herstellung eines walzplattierten Aluminiumwerkstücks, walzplattiertes Aluminiumwerkstück und Verwendung dafür
WO2016045973A1 (en) * 2014-09-25 2016-03-31 Aleris Rolled Products Germany Gmbh Multi-layered aluminium brazing sheet material
JP6491870B2 (ja) * 2014-12-16 2019-03-27 株式会社Uacj アルミニウムクラッド材の製造方法
US11225051B2 (en) 2016-02-09 2022-01-18 Aleris Rolled Products Germany Gmbh Aluminium multi-layered brazing sheet product and fluxless brazing method
ES2664614B2 (es) * 2016-10-20 2018-10-19 Alucoil, S.A. Procedimiento para la obtención de un panel sandwich con espuma de aluminio en el nucleo, instalación y producto obtenido
FR3105933B1 (fr) * 2020-01-07 2023-01-13 Constellium Neuf Brisach Procédé de fabrication d’une bande ou tôle multicouche en alliage d’aluminium pour la fabrication d’échangeurs de chaleur brasés
WO2022183958A1 (zh) 2021-03-05 2022-09-09 江苏康瑞新材料科技股份有限公司 一种手机边框及制造方法
WO2022183736A1 (zh) * 2021-03-05 2022-09-09 江苏康瑞新材料科技股份有限公司 一种手机边框及制造方法
US12083567B2 (en) 2021-03-05 2024-09-10 Jiangsu Kangrui New Material Technology Co., Ltd. Method for making a metal material composite
EP4302991A1 (en) 2021-03-05 2024-01-10 Jiangsu Kangrui New Material Technology Co., Ltd. Mobile phone frame and manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130281A (ja) * 1986-11-21 1988-06-02 Japan Steel Works Ltd:The チタンクラツド鋼及びその製造方法
JPH04182122A (ja) * 1990-11-16 1992-06-29 Kawasaki Steel Corp クラッド金属板およびその製造方法
JPH05245655A (ja) * 1992-03-10 1993-09-24 Kobe Steel Ltd 金属部材の接合方法
JP2007260770A (ja) * 2006-02-28 2007-10-11 Kobe Steel Ltd 側材の製造方法、熱交換器用クラッド材の製造方法および熱交換器用クラッド材

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4077850B2 (ja) * 2006-02-28 2008-04-23 株式会社神戸製鋼所 側材の製造方法および熱交換器用クラッド材の製造方法
JPS5752584A (en) * 1980-09-17 1982-03-29 Sumitomo Metal Ind Ltd Production of metal clad steel material
JPS606285A (ja) * 1983-06-25 1985-01-12 Nippon Steel Corp クラツド板の圧延法
JPS62114785A (ja) * 1985-11-14 1987-05-26 Sumitomo Metal Ind Ltd TiまたはTi合金クラツド鋼の製法
SU1479241A1 (ru) * 1986-07-03 1989-05-15 Московский вечерний металлургический институт Способ изготовлени плакированных листов из алюминиевых сплавов
RU1252U1 (ru) * 1994-02-16 1995-12-16 Акционерное общество закрытого типа "Бимет-Нытва" Заготовка для биметаллических лент
JPH09300085A (ja) * 1996-05-15 1997-11-25 Daido Steel Co Ltd 接合界面が平坦なクラッド材の製造方法
CN1738687A (zh) * 2003-01-20 2006-02-22 新日本制铁株式会社 金属箔管及其制造方法与制造装置
RU2234385C1 (ru) * 2003-08-01 2004-08-20 Общество с ограниченной ответственностью "Интермет-Инжиниринг" Способ изготовления прокаткой стального слоистого материала
JP4220411B2 (ja) 2004-02-18 2009-02-04 住友軽金属工業株式会社 熱交換器用アルミニウム合金クラッド材
CN100429330C (zh) * 2005-08-19 2008-10-29 株式会社神户制钢所 铝合金材的成形方法
HUE026137T2 (en) * 2005-12-09 2016-05-30 Kobe Steel Ltd Crust material for clad material containing at least one molding structure
JP4182122B2 (ja) * 2006-06-06 2008-11-19 キヤノン株式会社 インクジェット記録装置、およびインクジェット記録方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130281A (ja) * 1986-11-21 1988-06-02 Japan Steel Works Ltd:The チタンクラツド鋼及びその製造方法
JPH04182122A (ja) * 1990-11-16 1992-06-29 Kawasaki Steel Corp クラッド金属板およびその製造方法
JPH05245655A (ja) * 1992-03-10 1993-09-24 Kobe Steel Ltd 金属部材の接合方法
JP2007260770A (ja) * 2006-02-28 2007-10-11 Kobe Steel Ltd 側材の製造方法、熱交換器用クラッド材の製造方法および熱交換器用クラッド材

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066115A1 (fr) * 2010-11-19 2012-05-24 Valeo Systemes Thermiques Composant brasable et échangeur de chaleur le comportant
FR2967765A1 (fr) * 2010-11-19 2012-05-25 Valeo Systemes Thermiques Composant brasable et echangeur de chaleur le comportant
CN103384810A (zh) * 2010-11-19 2013-11-06 法雷奥热系统公司 可钎焊部件和包括其的热交换器

Also Published As

Publication number Publication date
AU2009229974A1 (en) 2009-10-01
CA2856597A1 (en) 2009-10-01
RU2456526C2 (ru) 2012-07-20
CA2717372A1 (en) 2009-10-01
JP5222197B2 (ja) 2013-06-26
KR20100132510A (ko) 2010-12-17
EP2259002B1 (en) 2013-08-14
CN101952681A (zh) 2011-01-19
MX2010010617A (es) 2011-04-07
RU2010144072A (ru) 2012-05-10
AU2009229974B2 (en) 2012-07-19
CA2856597C (en) 2015-07-14
US8404360B2 (en) 2013-03-26
KR101270924B1 (ko) 2013-06-03
CA2717372C (en) 2015-06-23
US20110011573A1 (en) 2011-01-20
JP2009255171A (ja) 2009-11-05
EP2259002A1 (en) 2010-12-08
EP2259002A4 (en) 2013-01-09
CN101952681B (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
JP5222197B2 (ja) 側材およびその製造方法並びに熱交換器用クラッド材の製造方法
US8210237B2 (en) Method for manufacturing clad material and equipment for manufacturing the same
JP4077853B2 (ja) 側材の製造方法、熱交換器用クラッド材の製造方法および熱交換器用クラッド材
JP4077851B2 (ja) クラッド材用側材
JP4077850B2 (ja) 側材の製造方法および熱交換器用クラッド材の製造方法
JP4077852B2 (ja) 側材の製造方法、熱交換器用クラッド材の製造方法および熱交換器用クラッド材
JP4023751B2 (ja) クラッド材の製造方法
RU2388583C2 (ru) Способ изготовления плакированного материала и устройство для его изготовления
JP4017174B2 (ja) 側材製造設備
AU2011203571B2 (en) Method for manufacturing clad material and equipment for manufacturing the same
AU2011203567A1 (en) Method for manufacturing clad material and equipment for manufacturing the same
AU2011203568A1 (en) Method for manufacturing clad material and equipment for manufacturing the same
AU2011203570A1 (en) Method for manufacturing clad material and equipment for manufacturing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980106249.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09723711

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009229974

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2717372

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12922799

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2009229974

Country of ref document: AU

Date of ref document: 20090325

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009723711

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107021518

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/010617

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 6103/CHENP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010144072

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0907777

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100830