WO2009119253A1 - Silanol-group-containing curable cage-type silsesquioxane compound, cage-structure-containing curable silicone copolymer, processes for producing these, and curable resin composition - Google Patents

Silanol-group-containing curable cage-type silsesquioxane compound, cage-structure-containing curable silicone copolymer, processes for producing these, and curable resin composition Download PDF

Info

Publication number
WO2009119253A1
WO2009119253A1 PCT/JP2009/053751 JP2009053751W WO2009119253A1 WO 2009119253 A1 WO2009119253 A1 WO 2009119253A1 JP 2009053751 W JP2009053751 W JP 2009053751W WO 2009119253 A1 WO2009119253 A1 WO 2009119253A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
meth
oxirane ring
vinyl
Prior art date
Application number
PCT/JP2009/053751
Other languages
French (fr)
Japanese (ja)
Inventor
充洋 小池
憲 齋藤
Original Assignee
新日鐵化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵化学株式会社 filed Critical 新日鐵化学株式会社
Priority to JP2010505478A priority Critical patent/JPWO2009119253A1/en
Publication of WO2009119253A1 publication Critical patent/WO2009119253A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/44Block-or graft-polymers containing polysiloxane sequences containing only polysiloxane sequences

Definitions

  • the present invention relates to a novel curable cage-type silsesquioxane compound, a copolymer obtained using the curable cage-type silsesquioxane compound, a method for producing these, and a curable resin composition.
  • the present invention relates to a copolymer and a production method thereof, and further relates to a curable resin composition containing the cage-type structure-containing curable silicone copolymer.
  • Non-Patent Document 1 discloses a silsesquioxane having an incompletely condensed structure (a structure that is not a complete octahedral structure but is cleaved in at least one place and is not closed) with a siloxane bond.
  • a method for producing a linked copolymer is disclosed.
  • Non-Patent Document 2 discloses a method for producing a copolymer obtained by reacting a silanol group possessed by an incomplete cage-type silsesquioxane with aminosilane or the like.
  • Non-Patent Document 3 shows an example composed of a vinyl group-containing silsesquioxane and a hydrosilyl group-containing silsesquioxane. However, all of these resins are rigid and very brittle materials.
  • the conventional silsesquioxane copolymer has an unclear structure and lacks stability, and when graft-type silsesquioxane is graft-polymerized to the main chain, it becomes a crosslinking point and gels. It is difficult to obtain a structure satisfying the characteristics. Therefore, a copolymer having excellent moldability, in which a cage silsesquioxane having excellent heat resistance, weather resistance, optical properties and the like is used as the main chain and the position of the bond is clearly limited is desired.
  • Patent Documents 1 and 2 below have Si-ONa as a reactive group by hydrolyzing a silane compound having a trifunctional hydrolyzable group in an organic solvent in the presence of a monovalent alkali metal hydroxide. After synthesis of incomplete cage-type silsesquioxane, by reacting this incomplete cage-type silsesquioxane with a chlorosilane having a functional group according to the purpose, by copolymerization with various compounds A method for obtaining a copolymer has been reported. However, as far as the present inventor knows, no other examples have been reported, and the above method is limited in the side chain of the cage silsesquioxane skeleton and is not curable, so that it is heat resistant. There is concern about inferiority.
  • an optical material including a substrate for a liquid crystal display device, an optical lens, and a light emitting diode sealing material
  • a material having a low birefringence, a low photoelastic coefficient, and a high optical transparency is used.
  • the materials used in the manufacturing process must have high heat resistance.
  • glass or the like has been used as a material that satisfies these requirements.
  • optical lenses are used on curved surfaces, and substrates for liquid crystal display devices are required to be thin, and conventionally used glass has a property of being brittle in strength. The range of use has become limited.
  • a polymer material can be considered as a tough material, but in general, a polymer material has low heat resistance.
  • an acrylate resin may be colored by heat because of its low heat resistance. Therefore, the introduction of an aromatic skeleton as a means of developing high heat resistance has been studied, but on the other hand, since the birefringence increases and the photoelastic coefficient increases, high heat resistance and optical performance are achieved. It is difficult to achieve both.
  • an object of the present invention is to provide a curable cage-type silsesquioxane compound containing a silanol group and a copolymer incorporating the same in the main chain.
  • each of the curable cage-type silsesquioxane compound containing a silanol group, and the copolymer which incorporated this in the principal chain is provided. Furthermore, it is providing the curable resin composition which can obtain the molded object which was excellent in heat resistance, an optical characteristic, and dimensional stability, and also had toughness.
  • the present inventors have found that a curable cage-type silsesquioxane compound containing a silanol group under specific reaction conditions and a co-polymer incorporating this in the main chain.
  • the inventors found that a coalescence can be obtained, and further found that a curable resin composition containing such a copolymer gives a cured product having excellent heat resistance, optical properties, and dimensional stability, and completed the present invention. It came to do.
  • the present invention provides the following general formula (1) [R 1 SiO 3/2 ] n (1) (However, R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule.
  • At least one of R 1 is a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, and n represents a number of 6 to 14.)
  • the silsesquioxane compound is cleaved by one or more siloxane bonds in an organic solvent containing one or both of a nonpolar solvent and a polar solvent to cleave the counter cation derived from the basic compound.
  • the compound represented by the following general formula (2) is characterized in that it can be converted to a hydroxyl group by treating with an acid after binding to the moiety.
  • R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group, or an oxirane ring, and they may be the same or different from each other. At least one of R 1 contained is any one of a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n is a number of 6 to 14, and m is a number of 1 to 4.
  • a silanol group-containing curable caged silsesquioxane compound represented by:
  • R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule.
  • At least one of R 1 is a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, and n represents a number of 6 to 14.
  • R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule. And at least one of R 1 is a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n is a number of 6 to 14, and m is a number of 1 to 4. .) Is a method for producing a silanol group-containing curable caged silsesquioxane compound.
  • R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule.
  • At least one of R 1 is any one of a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n represents a number of 6 to 14, and l represents a number of 1 to 2000.
  • Z represents the following general formula (4)
  • R 2 is a hydrogen atom, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, which may be the same or different from each other
  • R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule.
  • R 1 is a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring
  • n is a number of 6 to 14
  • m is a number of 1 to 4.
  • R 3 is a group having hydrogen, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, and may be the same or different from each other).
  • a monovalent group. The cocoon structure containing curable silicone copolymer characterized by having the structural unit represented by these.
  • the present invention provides the following general formula (2) [R 1 SiO 3/2 ] n [HO 1/2 ] m (2)
  • R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule.
  • at least one of R 1 is a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring
  • n is a number of 6 to 14
  • m is a number of 1 to 4.
  • R 2 is a hydrogen atom, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, which may be the same or different from each other, Is a hydrogen atom, a halogen atom or an alkoxyl group, which may be the same or different from each other, and b represents a number of 0 to 30), or a condensation reaction with a compound represented by The following general formula (8) (Wherein R 3 is a hydrogen atom, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, and may be the same or different from each other).
  • R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule.
  • At least one of R 1 is any one of a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n represents a number of 6 to 14, and l represents a number of 1 to 2000.
  • Z represents the following general formula (4)
  • R 2 is a hydrogen atom, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, which may be the same or different from each other
  • R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule.
  • R 1 is a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring
  • n is a number of 6 to 14
  • m is a number of 1 to 4.
  • R 3 is a group having hydrogen, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other). It is a monovalent group.
  • a cocoon structure-containing curable silicone copolymer having a structural unit represented by the following formula:
  • the present invention provides the following general formula (3) Y- [Z- (R 1 SiO 3/2 ) n ] l -ZY (3) (The explanation in the formula is the same as described above)
  • a curable resin composition obtained by blending either or both of a hydrosilylatable compound having a hydrogen atom on at least one silicon atom and a compound having an unsaturated group in the molecule.
  • the present invention is a cured product (molded product) obtained by molding and curing the curable resin composition, and specifically obtained by hydrosilylation and radical polymerization of the curable resin composition. Cured product (molded product).
  • silanol group-containing curable caged silsesquioxane compound represented by the general formula (2) are shown in the following structural formulas (9) to (15), respectively.
  • the structural unit represented by the general formula (2) is not limited to those represented by the structural formulas (9) to (15).
  • R 1 is the same as in General Formula (2).
  • a curable cage-type silsesquioxane compound represented by the general formula (1) is polarized with a nonpolar solvent in the presence of a basic compound.
  • a curable cage-type silsesquioxane compound represented by the general formula (1) is polarized with a nonpolar solvent in the presence of a basic compound.
  • Examples of the basic compound used for synthesizing the silanol group-containing curable silsesquioxane compound represented by the general formula (2) include, for example, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutyl hydroxide.
  • Examples thereof include ammonium hydroxide salts such as ammonium, benzyltrimethylammonium hydroxide, and benzyltriethylammonium hydroxide, and monovalent alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide.
  • an ammonium hydroxide salt is preferable because it is effective in serving as a counter cation.
  • An example of a preferred ammonium hydroxide salt is tetramethylammonium hydroxide.
  • the amount of the basic compound used is preferably in the range of 0.5 to 3 mol, more preferably 1.5 to 2.5 mol, relative to 1 mol of the structural unit represented by the general formula (1). It is good to be. When the amount of the basic compound used is less than 0.5 mol during this reaction, the reaction does not proceed. On the other hand, when it exceeds 3 mol, the cleavage reaction of the cocoon structure is excessively promoted and decomposes.
  • the basic compound is usually used as an alcohol solution. Examples of the alcohol solution to be used include methanol, ethanol, propanol, and isopropanol. Among these, methanol is preferable.
  • the organic solvent used in the synthesis of the silanol group-containing curable silsesquioxane compound represented by the general formula (2) is a solvent obtained by combining one or both of a nonpolar solvent and a polar solvent.
  • nonpolar solvents include hydrocarbon solvents such as hexane, toluene, xylene, and benzene.
  • polar solvents include ether solvents such as diethyl ether and tetrahydrofuran, ester solvents such as ethyl acetate, alcohol solvents such as methanol, ethanol and isopropanol, and ketone solvents such as acetone and methyl ethyl ketone. it can.
  • a polar solvent is preferable from the viewpoint of structure control contribution due to the solvation effect, and tetrahydrofuran is more preferable among them.
  • the amount of the organic solvent used is preferably in the range of 0.01 to 10 M molar concentration (mol / l: M) relative to 1 mol of the structural unit represented by the general formula (1), more preferably 0.01 to 1M is preferable.
  • About the addition amount of the nonpolar solvent and / or polar solvent with respect to an organic solvent it is good for a nonpolar solvent to be small with respect to a polar solvent.
  • a preferable blending ratio is 1 for the nonpolar solvent with respect to the polar solvent 10 to 100, and more preferably 1 for the nonpolar solvent with respect to the polar solvent 50 to 100.
  • the reaction temperature is preferably 0 to 60 ° C, more preferably 20 to 40 ° C.
  • the reaction rate becomes slow and remains in the state of uncleaved completely caged silsesquioxane, resulting in a long reaction time.
  • the temperature is higher than 60 ° C., the reaction rate is too high, so that a complex condensation reaction proceeds, and as a result, a high molecular weight is promoted.
  • the reaction time varies depending on the substituent R 1 having the structure represented by the general formula (1), but is usually from several minutes to several hours, preferably from 1 to 3 hours.
  • water or water-containing reaction solvent is separated. Separation of the water or the water-containing reaction solvent can employ means such as washing the solution with a saline solution to sufficiently remove moisture and other impurities, and then drying with a drying agent such as anhydrous magnesium sulfate.
  • a polar solvent means such as evaporation under reduced pressure can be employed.
  • a nonpolar solvent is added to dissolve the polycondensate, followed by washing and drying in the same manner as described above.
  • the weakly acidic solution sulfuric acid diluted solution, hydrochloric acid diluted solution, citric acid diluted solution, acetic acid, ammonium chloride aqueous solution, malic acid solution, oxalic acid solution and the like are used. If the nonpolar solvent is separated by means such as evaporation, the reaction product can be recovered. However, if the nonpolar solvent can be used as the nonpolar solvent used in the next reaction, it is not necessary to separate it.
  • the silanol group-containing curable cage-type silsesquioxane compound obtained above can be represented by the following general formula (2). [R 1 SiO 3/2 ] n [HO 1/2 ] m (2) (However, R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group, or an oxirane ring, and they may be the same or different from each other.
  • At least one of R 1 contained has a curable functional group of any one of a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n is a number of 6 to 14, and m is 1 to 4 Indicates the number of
  • silanol group-containing curable caged silsesquioxane compound represented by the general formula (2) is not considered to have a partly silanol group at the terminal and does not form a completely closed space. It is a fully condensed silsesquioxane.
  • the silanol group-containing curable caged silsesquioxane compound represented by the general formula (2) and the following general formula (7) (Wherein R 2 is a hydrogen atom, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, and may be the same or different from each other.
  • R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but at least the general formula (3 ) -1 has one curable functional group of vinyl group, (meth) acryloyl group, allyl group or group having oxirane ring, and n is a number from 6 to 14.
  • And 1 represents a number of 1 to 2000.
  • a cocoon structure-containing curable silicone copolymer having a structural unit represented by the following formula can be obtained.
  • Z is the following general formula (4) (Wherein R 2 is hydrogen, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, and may be the same or different from each other.
  • a divalent group represented by the number of 30 is the following general formula (4) (Wherein R 2 is hydrogen, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, and may be the same or different from each other.
  • Y 1 represents the following general formula (5 ′) HO 1/2- (5 ') Or the following general formula (5) -[R 1 SiO 3/2 ] n [HO 1/2 ] m-1 (5)
  • R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule.
  • at least one of R 1 is a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring
  • n is a number of 6 to 14
  • m is a number of 1 to 4.
  • cocoon structure-containing curable silicone copolymer obtained by condensation reaction of silanol group-containing curable cage-type silsesquioxane compound represented by general formula (2) and compound represented by formula (7)
  • the production method varies depending on the type of the substituent X of the compound represented by the general formula (7).
  • R 2 is a hydrogen atom, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group, or a group having an oxirane ring, and may be the same or different from each other.
  • Silanol group-containing curable caged silsesquioxane compound is added to a mixed solution in which triethylamine is added or dissolved in an amine solvent as a solvent and base, and one or both of a nonpolar solvent and an ether solvent are used.
  • the solution dissolved in the combined solvent is dropped at room temperature under an inert gas atmosphere such as nitrogen, and then stirred at room temperature for 2 hours or more. Good. At this time, if the reaction time is short, the reaction may not be completed.
  • dichlorosilane in which b is 0 in the general formula (16) include allyldichlorosilane, allylhexyldichlorosilane, allylmethyldichlorosilane, allylphenyldichlorosilane, methyldichlorosilane, dimethyldichlorosilane, ethyldisilane.
  • Chlorosilane methylvinyldichlorosilane, ethylmethyldichlorosilane, ethoxymethyldichlorosilane, divinyldichlorosilane, diethyldichlorosilane, methylpropyldichlorosilane, diethoxydichlorosilane, butylmethyldichlorosilane, phenyldichlorosilane, diallyldichlorosilane, methylpentyl Dichlorosilane, methylphenyldichlorosilane, cyclohexylmethyldichlorosilane, hexylmethyldichlorosilane, phenylvinyldichlorosilane, 6- Methyldichlorosilyl-2-norbornene, 2-methyldichlorosilylnorbornene, 3-methacryloxypropyldichloromethylsilane, hept
  • ⁇ , ⁇ -dichlorosiloxane in which b is 1 to 30 are as follows: 1,1,3,3-tetramethyl-1,3-dichlorosiloxane, 1,1 , 3,3-tetracyclopentyl-1,3-dichlorosiloxane, 1,1,3,3, -tetraisopropyl-1,3-dichlorosiloxane, 1,1,3,3,5,5-hexamethyl-1, Examples include 5-dichlorotrisiloxane, 1,1,3,3,5,5,7,7-octamethyl-1,7-dichlorotetrasiloxane.
  • the organic solvent used when X in the compound represented by the general formula (7) is chlorine can be arbitrarily selected as long as it is inert to dichlorosilane or ⁇ , ⁇ -dichlorosiloxane.
  • the nonpolar solvent include hydrocarbon solvents such as hexane, toluene, xylene, and benzene.
  • the ether solvent include diethyl ether and tetrahydrofuran. Among these, ether solvents are preferable from the viewpoint of contribution to structure control due to the solvation effect, and tetrahydrofuran is more preferable among them.
  • amine solvent examples include pyridine, triethylamine, aniline, N, N-diisopropylamine.
  • a base such as triethylamine is added.
  • a preferable amount of the solvent used is in the range of 0.01 to 10M with respect to 1 mol of the silanol group-containing curable caged silsesquioxane structural unit represented by the general formula (2), preferably 0.01 to 1M is preferable.
  • X of the compound represented by the general formula (7) is an alkoxyl group, that is, the following general formula (17) (However, R 2 is hydrogen, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group, an alkoxyl group, or a group having an oxirane ring, and may be the same or different from each other.
  • ⁇ 4 is a methyl group, an ethyl group, or a propyl group, which may be the same or different from each other (b represents a number of 0 to 30), and a silanol group represented by the general formula (2) Dialkoxysilane represented by the above general formula (17) in the range of 0.5 to 10 mol, preferably 0.5 to 3.0 mol, relative to 1 mol of the curable cage-type silsesquioxane compound, or By reacting ⁇ , ⁇ -dialkoxysiloxane in the presence of a catalyst in a solvent including one or both of a nonpolar solvent and an ether solvent, the structural unit represented by the general formula (3) -1 can be obtained. Containing curable silicone copolymer with cocoon structure It is possible to obtain.
  • silanol group-containing curable caged silsesquioxane compound represented by general formula (2) and dialkoxysilane or ⁇ , ⁇ -dialkoxysiloxane represented by general formula (17)
  • a silanol group-containing curable silsesquioxane compound represented by the general formula (2), dialkoxysilane, or ⁇ , ⁇ -dialkoxysiloxane and a catalyst selected from a nonpolar solvent and an ether solvent When dissolved in one or both solvents, the concentration is preferably 0.1 to 2.0 M with respect to the silanol group-containing curable caged silsesquioxane compound.
  • the reaction temperature is preferably 0 to 130 ° C, more preferably 80 to 110 ° C.
  • the reaction rate becomes slow, resulting in a long reaction time.
  • the temperature is higher than 130 ° C., a cleavage reaction of the cocoon structure occurs, and as a result of a complicated condensation reaction, a gel-like solid is formed.
  • the reaction time is preferably 2 hours or more. At this time, if the reaction time is short, the reaction may not be completed.
  • the reaction solution is made neutral or acidic, and then water or a water-containing reaction solvent is separated. Separation of the water or the water-containing reaction solvent can employ means such as washing the solution with a saline solution to sufficiently remove moisture and other impurities, and then drying with a drying agent such as anhydrous magnesium sulfate.
  • a drying agent such as anhydrous magnesium sulfate.
  • an ether solvent means such as evaporation under reduced pressure can be employed.
  • a nonpolar solvent is added to dissolve the polycondensate, and washing and drying are performed in the same manner as described above.
  • dialkoxysilane in which b is represented by 0 for general formula (17) include dimethoxydimethylsilane, diethoxymethylsilane, diethoxyvinylsilane, diethoxydiethylsilane, dimethyldipropoxysilane, dimethoxymethylphenylsilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, diethoxymethylphenylsilane, 3-methacryloxypropylmethyldiethoxysilane, dimethoxydiphenylsilane, Examples include diethoxydodecylmethylsilane.
  • ⁇ , ⁇ -dialkoxysiloxane in which b is represented by 1 to 30 in the general formula (17) include 1,3-dimethoxytetramethyldisiloxane, 1,3-diethoxytetramethyldisiloxane, 1 1,5-dimethoxyhexamethyltrisiloxane, 1,7-dimethoxyoctamethyltetrasiloxane, 1,5-diethoxyhexamethyltrisiloxane, 1,7-diethoxyoctamethyltetrasiloxane, and the like.
  • the organic solvent used when X of the compound represented by the general formula (7) is an alkoxyl group can be arbitrarily selected as long as it is inert with respect to alkoxysilane or ⁇ , ⁇ -dialkoxysiloxane, Of these, specific examples of nonpolar solvents include hydrocarbon solvents such as hexane, toluene, xylene, and benzene. Specific examples of the ether solvent include diethyl ether and tetrahydrofuran. Among these, it is preferable to use toluene as a solvent. Further, a mixed system of an ether solvent and a nonpolar solvent may be used. The amount of the organic solvent used is preferably in the range of 0.01 to 10M, preferably 0.1 to 1M, with respect to 1 mol of the structural unit represented by the general formula (2). .
  • the catalyst used when X of the compound represented by the general formula (7) is an alkoxyl group includes potassium hydroxide, sodium hydroxide, alkali metal hydroxides such as cesium hydroxide, tetramethylammonium hydroxide, and the like.
  • X of the compound represented by the general formula (7) is a hydrogen atom, that is, the following general formula (18) (However, R 2 is a hydrogen atom, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group, an alkoxyl group, or a group having an oxirane ring, and may be the same or different from each other.
  • b represents a number from 0 to 30)), 0.5 to 10 mol, preferably 0 to 1 mol of the silanol group-containing curable silsesquioxane compound represented by the general formula (2)
  • the cage structure containing curable silicone copolymer which has a structural unit represented by General formula (3) -1 can be obtained.
  • a silanol group-containing curable silsesquioxane compound represented by the general formula (2) and dihydrogensilane, or ⁇ , ⁇ -dihydrogensiloxane and a catalyst are mixed with a nonpolar solvent and an ether.
  • the concentration is 0.1 to 2 with respect to the silanol group-containing curable silsesquioxane compound represented by the general formula (2).
  • the reaction temperature is preferably 0-100 ° C, more preferably 20-80 ° C.
  • the reaction time is preferably 2 hours or more. At this time, if the reaction time is short, the reaction may not be completed.
  • the reaction solution is made neutral or acidic, and then water or a water-containing reaction solvent is separated.
  • those whose terminal groups are not silanol groups are converted into silanol groups by hydrolysis.
  • Separation of the water or the water-containing reaction solvent can employ means such as washing the solution with a saline solution to sufficiently remove moisture and other impurities, and then drying with a drying agent such as anhydrous magnesium sulfate.
  • a drying agent such as anhydrous magnesium sulfate.
  • an ether solvent means such as evaporation under reduced pressure can be employed.
  • a nonpolar solvent is added to dissolve the polycondensate, and washing and drying are performed in the same manner as described above.
  • dihydrogensilane in which b is 0 are diethylsilane, diphenylsilane and the like.
  • ⁇ , ⁇ -dihydrogensiloxane in which b is represented by 1 to 30 in the general formula (18) are 1,1,3,3-tetramethyldisiloxane, 1,1,3, 3-tetracyclopentyldisiloxane, 1,1,3,3-tetraisopropyldisiloxane, 1,1,3,3,5,5-hexamethyltrisiloxane, 1,1,3,3,5,5,7 , 7-octamethyltetrasiloxane and the like.
  • the organic solvent used when X of the compound represented by the general formula (7) is a hydrogen atom is arbitrary as long as it is inert to dihydrogensilane or ⁇ , ⁇ -dihydrogensiloxane.
  • hydrocarbon solvents such as hexane, toluene, xylene, and benzene can be mentioned as specific examples of nonpolar solvents.
  • Specific examples of the ether solvent include diethyl ether and tetrahydrofuran. Among these, it is preferable to use toluene as a solvent.
  • a mixed system of a polar solvent and an ether solvent may be used.
  • the amount of the organic solvent used is preferably in the range of 0.01 to 10M, preferably 0.1 to 1M, with respect to 1 mol of the structural unit represented by the general formula (2). .
  • X in the compound represented by the general formula (7) is a hydrogen atom, tetraethoxytitanium, tetrabutoxytitanium, hydroxylamine, N-methylhydroxylamine, N, N-dimethylhydroxylamine
  • examples thereof include hydroxylamine compounds such as N-ethylhydroxylamine, N, N-diethylhydroxylamine and the like. Among these, it is preferable to use N, N-diethylhydroxylamine.
  • cocoon structure-containing curable silicone copolymer represented by the general formula (3) -1 is converted into the following general formula (8): (However, R 3 is a group having hydrogen, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, and may be the same or different from each other).
  • R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group, or an oxirane ring, and they may be the same or different from each other.
  • At least one of R 1 contained is any one of a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n represents a number of 6 to 14, and l represents a number of 1 to 2000.
  • Z represents the following general formula (4) (However, R 2 is a hydrogen atom, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, which may be the same or different from each other, and a is 0 Y 2 is a divalent group represented by the following general formula (5 ′): HO 1/2- (5 ') Or the following general formula (6) (Wherein R 3 is a hydrogen atom, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, and may be the same or different from each other). Is a monovalent group. ) -Containing curable silicone copolymer having a structural unit represented by:
  • the chlorosilane represented by the general formula (8) in the range of 2 to 100 moles per mole of the cocoon structure-containing curable silicone copolymer having the structural unit represented by the general formula (3) -1 Is reacted in a solvent that combines one or both of a nonpolar solvent and a polar solvent under basic conditions, and has a cocoon structure-containing curable silicone having a structural unit represented by general formula (3) -2 A copolymer can be obtained.
  • the preferred amount of chlorosilane to be used is 2 to 30 moles per mole of the cocoon structure-containing curable silicone copolymer having the structural unit represented by the general formula (3) -1.
  • chlorosilane is nonpolar.
  • a silanol group is dissolved in a solvent in which one or both of a solvent and a polar solvent are combined and one equivalent or more of triethylamine is added to chlorosilane, or a solvent in which chlorosilane is dissolved in pyridine as a base.
  • a solution prepared by dissolving the curable cocoon-type silsesquioxane compound in a solvent containing one or both of a nonpolar solvent and a polar solvent is added dropwise at room temperature under an inert gas atmosphere such as nitrogen, and then at room temperature. Stirring should be performed for 2 hours or more. At this time, if the reaction time is short, the reaction may not be completed. After completion of the reaction, toluene and water are added, and the soot structure-containing curable silicone copolymer having the structural unit represented by the general formula (3) -2 is dissolved in toluene, and excess chlorosilanes, by-product hydrochloric acid, And the hydrochloride is dissolved and removed in the aqueous layer.
  • the organic layer was dried using a desiccant such as magnesium sulfate, the used base and solvent were removed by concentration under reduced pressure, and a cocoon structure-containing curable silicone copolymer represented by the general formula (3) -2 was obtained. obtain.
  • the chlorosilane represented by the general formula (8) is used as a nonpolar solvent. Dissolve in one or both of polar solvents and mix with 1 or more equivalents of triethylamine to chlorosilane, or chlorosilane represented by general formula (7) as solvent and base into pyridine Use a dissolved mixture.
  • dichlorosilane is added dropwise to the silanol group-containing curable cage-type silsesquioxane compound and stirred for 2 hours or more, then the chlorosilane solution prepared above is added dropwise, and again stirred at room temperature for 2 hours or more. At this time, if the reaction time is short, the reaction may not be completed.
  • toluene and water are added, and the cocoon structure-containing curable silicone copolymer having the structural unit represented by the general formula (3) -2 is dissolved in toluene, and excess chlorosilanes, by-product hydrochloric acid, And the hydrochloride is dissolved and removed in the aqueous layer.
  • the organic layer is dried using a desiccant such as magnesium sulfate, and the base and solvent used are removed by concentration under reduced pressure to obtain a cocoon structure-containing curable silicone copolymer represented by the general formula (3) -2.
  • chlorosilane represented by the general formula (8) include trimethylchlorosilane, allyldimethylchlorosilane, dimethylpropylchlorosilane, dimethylisopropylchlorosilane, t-butyldimethylchlorosilane, triethylchlorosilane, dimethylphenylchlorosilane, benzyldimethylchlorosilane, Examples include propylchlorosilane, tributylchlorosilane, diphenylvinylchlorosilane, and triphenylchlorosilane.
  • the cage structure-containing curable silicone copolymer having the structural unit represented by the general formula (3) is blended with either or both of a hydrosilylation catalyst and a radical initiator,
  • a curable resin composition is obtained by blending either or both of a hydrosilylatable compound having a hydrogen atom on at least one silicon atom and a compound having an unsaturated group in the molecule. Also good.
  • cured material can be obtained by thermosetting or photocuring this curable resin composition and carrying out hydrosilylation or radical polymerization.
  • a curable resin composition is obtained by blending a photopolymerization initiator, a photoinitiator assistant, a sensitizer and the like.
  • the compound having a hydrogen atom on the silicon atom used together with the cocoon structure-containing curable silicone copolymer represented by the general formula (3) can be hydrosilylated in at least one molecule.
  • Oligomers and monomers having hydrogen atoms on silicon atoms include polyhydrogensiloxanes, polydimethylhydroxysiloxanes and copolymers thereof, and siloxanes whose ends are modified with dimethylhydrosiloxy. .
  • Examples of monomers having a hydrogen atom on a silicon atom include cyclic siloxanes such as tetramethylcyclotetrasiloxane and pentamethylcyclopenta, dihydrodisiloxanes, trihydromonosilanes, dihydromonosilanes, and monohydromonosilanes. And dimethylsiloxysiloxanes, and two or more of these may be mixed.
  • the compound having an unsaturated group used together with the cocoon structure-containing curable silicone copolymer represented by the general formula (3) is a heavy polymer having a repeating unit of about 2 to 20 structural units. It is roughly divided into a reactive oligomer that is a coalescence and a low-molecular-weight and low-viscosity reactive monomer. Moreover, it divides roughly into the monofunctional unsaturated compound which has one unsaturated group, and the polyfunctional unsaturated compound which has two or more.
  • reactive oligomers include polyvinylsiloxanes, polydimethylvinylsiloxysiloxanes and copolymers thereof, siloxanes modified with dimethylvinylsiloxy at the ends, epoxy acrylates, epoxidized oil acrylates, urethane acrylates, Examples thereof include saturated polyester, polyester acrylate, polyether acrylate, vinyl acrylate, polyene / thiol, silicone acrylate, polybutadiene, and polystyrylethyl methacrylate. These include monofunctional unsaturated compounds and polyfunctional unsaturated compounds.
  • reactive monofunctional monomers examples include vinyl-substituted silicon compounds such as triethylvinylsilane and triphenylvinylsilane, cyclic olefins such as cyclohexene, styrene, vinyl acetate, N-vinylpyrrolidone, butyl acrylate, 2-ethylhexyl acrylate, n- Examples include hexyl acrylate, cyclohexyl acrylate, n-decyl acrylate, isobornyl acrylate, dicyclopentenyloxyethyl acrylate, phenoxyethyl acrylate, trifluoroethyl methacrylate, and the like.
  • vinyl-substituted silicon compounds such as triethylvinylsilane and triphenylvinylsilane
  • cyclic olefins such as cyclohexene, styrene,
  • reactive polyfunctional monomers examples include vinyl-substituted silicon compounds such as tetravinylsilane and divinyltetramethyldisiloxane, vinyl-substituted cyclic silicon compounds such as tetramethyltetravinylcyclotetrasiloxane and pentamethylpentavinylcyclopentasiloxane, and bis (trimethylsilyl).
  • Acetylene derivatives such as acetylene and diphenylacetylene, cyclic polyenes such as norbornadiene, dicyclopentadiene and cyclooctadiene, vinyl-substituted cyclic olefins such as vinylcyclohexene, divinylbenzenes, diethynylbenzenes, trimethylolpropane diallyl ether, penta Erythritol triallyl ether, tripropylene glycol diacrylate, 1,6-hexanediol diacrylate, bisphenol A diglycidyl ether diacrylate, tetraethylene glycol diacrylate, neopentyl glycol diacrylate hydroxypivalate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate,
  • the compound having a hydrogen atom on the silicon atom and the compound having an unsaturated group in the molecule used in the present invention may be used alone or in combination of two or more.
  • the curable resin composition of the present invention contains a hydrosilylation catalyst, a radical initiator, or a hydrogen atom on a silicon atom and a silyl structure-containing curable silicone copolymer represented by the general formula (3). And a compound having an unsaturated group.
  • the cured product (molded product) of the present invention is obtained by molding and curing this curable resin composition. That is, a cured product (molded article) can be obtained by hydrosilylation curing and radical polymerization of the curable resin composition.
  • the addition amount is in the range of 1 to 1000 ppm, more preferably 20 to 500 ppm as a metal atom with respect to the weight of the soot structure-containing curable silicone copolymer represented by the general formula (3). It is good. Further, when a photopolymerization initiator or a thermal polymerization initiator is blended as a radical initiator, the amount added is 0.1 to 100 parts by weight with respect to 100 parts by weight of the cocoon structure-containing curable silicone copolymer represented by the general formula (3). The range is preferably 10 parts by weight, and more preferably 0.1 to 5 parts by weight.
  • this addition amount is less than 0.1 parts by weight, curing will be insufficient, and the strength and rigidity of the resulting molded product will be reduced. On the other hand, when it exceeds 10 parts by weight, there is a possibility that problems such as coloring of the molded product may occur. Further, the hydrosilylation catalyst and the radical initiator may be used alone or in combination of two or more.
  • Hydrosilylation catalysts include platinum chloride, chloroplatinic acid, chloroplatinic acid and alcohol, aldehyde, ketone complexes, chloroplatinic acid and olefin complexes, platinum and vinylsiloxane complexes, and dicarbonyldichloroplatinum.
  • platinum group metal catalysts such as palladium catalysts and rhodium catalysts.
  • chloroplatinic acid, a complex of chloroplatinic acid and olefins, and a complex of platinum and vinylsiloxane are preferable. Moreover, these may be used independently and may be used together 2 or more types.
  • the photopolymerization initiator used when the curable resin composition is a photocurable resin composition
  • a compound such as an acetophenone-based, benzoin-based, benzophenone-based, thioxanthone-based, or acylphosphine oxide-based compound is preferably used. Can do.
  • the photoinitiator adjuvant and sensitizer which show an effect in combination with a photoinitiator can also be used together.
  • thermal polymerization initiators used for the above purpose various types such as ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxydicarbonates, peroxyesters, etc.
  • the organic peroxide can be suitably used. Specifically, cyclohexanone peroxide, 1,1-bis (t-hexaperoxy) cyclohexanone, cumene hydroperoxide, dicumyl peroxide, benzoyl peroxide, diisopropyl peroxide, t-butyl peroxide-2-ethyl Although hexanoate etc. can be illustrated, it is not restrict
  • These thermal polymerization initiators may be used alone or in combination of two or more.
  • additives can be added to the curable resin composition without departing from the object of the present invention.
  • Various additives include organic / inorganic fillers, plasticizers, flame retardants, heat stabilizers, antioxidants, light stabilizers, UV absorbers, lubricants, antistatic agents, mold release agents, foaming agents, nucleating agents, colorants, Crosslinking agents, dispersion aids, resin components and the like can be exemplified.
  • the molded body composed of a cocoon structure-containing curable silicone copolymer represented by the general formula (3) of the present invention is obtained by heating a curable resin composition containing either a hydrosilylation catalyst or a radical polymerization initiator, or both of them. Or it can manufacture by making it harden
  • the molding temperature can be selected from a wide range from room temperature to around 200 ° C., depending on the selection of the thermal polymerization initiator and the accelerator.
  • a cured product (molded product) having a desired shape can be obtained by polymerization and curing in a mold or on a steel belt. More specifically, all of general molding methods such as injection molding, extrusion molding, compression molding, transfer molding, calendar molding, and cast (casting) molding are applicable.
  • a molded product in the case of producing a cured product (molded product) by light irradiation, a molded product can be obtained by irradiating ultraviolet rays having a wavelength of 100 to 400 nm or visible light having a wavelength of 400 to 700 nm.
  • the wavelength of light to be used is not particularly limited, but near ultraviolet light having a wavelength of 200 to 400 nm is particularly preferably used.
  • the lamps used as ultraviolet light sources are low-pressure mercury lamps (output: 0.4 to 4 W / cm), high-pressure mercury lamps (40 to 160 W / cm), ultra-high pressure mercury lamps (173 to 435 W / cm), metal halide lamps (80 ⁇ 160 W / cm), pulse xenon lamp (80 to 120 W / cm), electrodeless discharge lamp (80 to 120 W / cm), and the like.
  • Each of these ultraviolet lamps is characterized by its spectral distribution, and is therefore selected according to the type of photoinitiator used.
  • a method of obtaining a cured product (molded body) by light irradiation for example, it is injected into a mold having an arbitrary cavity shape and made of a transparent material such as quartz glass, and irradiated with ultraviolet rays by the above-described ultraviolet lamp.
  • the present invention has been made in order to develop the opposite physical properties of low thermal expansion and high toughness, and has a reactive functional group on the side chain of a siloxane skeleton having a strong polyhedral structure (a cage structure) in the molecular structure. It is possible to provide a copolymer obtained by incorporating a curable resin having the above formula into a silicone main chain and to provide a production method thereof. That is, by using the cage-containing curable silicone copolymer represented by the general formula (3) of the present invention, in addition to the characteristics of silicone excellent in heat resistance and transparency, there is a conflict between low thermal expansion and high toughness. It becomes possible to create a molded body having both physical properties. For this reason, it is possible to obtain an optically transparent material having heat resistance and high dimensional stability that are impossible with plastic properties that are mainly composed of hydrocarbons and imparting toughness that is difficult to achieve with glass.
  • a cured product having excellent heat resistance, optical properties, and dimensional stability can be obtained.
  • the obtained cured product can be used for various applications such as window materials for various transport machines and houses, including optical applications such as touch panel substrates, flat panel display substrates, lenses, optical disks, and optical fibers. It can also be used as a light-weight transparent member, and its application range is wide as an alternative material for glass that has been used so far, and its industrial utility value is extremely high.
  • the above characteristics can be obtained by using a silanol group-containing cage-type silsesquioxane compound represented by the general formula (2) having a highly reactive silanol group as a starting material.
  • a silanol group-containing cage-type silsesquioxane compound represented by the general formula (2) having a highly reactive silanol group as a starting material.
  • FIG. 1 is a GPC chart of silanol group-containing cage-type silsesquioxane compound [R 1 SiO 3/2 ] n [HO 1/2 ] m obtained in Example 1.
  • 2 is an NMR chart of the silanol group-containing cage silsesquioxane compound [R 1 SiO 3/2 ] n [HO 1/2 ] m obtained in Example 1.
  • FIG. 3, obtained in Example 5 curable cage-type silicone copolymer Y 1 - [Z- (R 1 SiO 3/2) n] l -Z-Y 1 of the GPC chart
  • FIG. 4 shows an NMR chart of the cocoon structure-containing curable silicone copolymer Y 2- [Z— (R 1 SiO 3/2 ) n ] l —ZY 2 obtained in Example 5.
  • TMAH methanol tetramethylammonium hydroxide
  • the structure of the colorless viscous liquid obtained was determined to be a silanol group-containing curable silsesquioxane compound (R 1 is a vinyl group) represented by the general formula (2).
  • Example 5 A reaction vessel equipped with a stirrer and a dropping funnel was charged with 1.99 g of dimethyldichlorosilane and 15.38 ml of pyridine, and the atmosphere was replaced with nitrogen.
  • n of the compound having the soot structure represented by the general formula (2) estimated above is 8, the ratio of dimethylsiloxane corresponding thereto is 1.48.
  • Mw 451,620 obtained by GPC by a molecular structure of 757.5 where n is 8 cage structure and dimethylsiloxane 1.48 is 1 unit. It is suggested.
  • the structure of the colorless viscous solid obtained has the following general formula (3) -1 Y 1- [Z- (R 1 SiO 3/2 ) n ] l -ZY 1 (3) -1 ⁇ structure-containing curable silicone copolymer having a structural unit represented by the following formula: [R 1 is vinyl group, n is 8, l is 596, and Z is the following general formula (4) (R 2 is a methyl group, a is 0.48), and Y 1 is the following general formula (5 ′) HO 1/2- (5 ') It is. It was judged.
  • Example 6 A reaction vessel equipped with a stirrer and a dropping funnel was charged with 1.19 g of dimethyldichlorosilane, 2.14 ml of triethylamine, and 9.3 ml of tetrahydrofuran, and purged with nitrogen.
  • the structure of the colorless viscous liquid obtained was a cocoon structure-containing curable silicone copolymer having a structural unit represented by the general formula (3) -1 [R 1 is Vinyl group, n is 8, l is 5, Z is the above general formula (4) (R 2 is methyl group, a is 0.4), Y 1 is the following general formula (5 ′) HO 1/2- (5 ') It is. It was judged.
  • reaction solution was returned to room temperature and neutralized by adding 30 ml of 10% aqueous citric acid solution. After extraction of the organic layer, this was washed 3 times with distilled water and twice with saturated brine, and dehydrated over anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered off and concentrated to obtain 5.03 g of colorless viscous liquid (recovery rate: 91%).
  • Example 9 In a reaction vessel equipped with a stirrer and a cooling tube, 5.0 g of cocoon structure-containing curable silicone copolymer having a structural unit represented by the general formula (3) -1 obtained in Example 7 and 30 ml of pyridine was replaced with nitrogen. To the dropping funnel, 5.0 g of trimethylchlorosilane and 20 ml of pyridine were added dropwise over 30 minutes at room temperature and stirred for 2 hours. After stirring for 2 hours, 30 mL of toluene and 30 mL of distilled water were added, and the organic layer and the aqueous layer were separated.
  • the structure of the colorless viscous liquid obtained has the following general formula (3) -2 Y 2- [Z- (R 1 SiO 3/2 ) n ] l -ZY 2 (3) -2 ⁇ structure-containing curable silicone copolymer having a structural unit represented by the following formula: [R 1 is vinyl group, n is 8, l is 16, Z is the above general formula (4) (R 2 is methyl group, a is 0.64), and Y 2 is the following general formula (6) (R 3 is a methyl group). It was judged.
  • Example 10 A reaction vessel equipped with a stirrer and a dropping funnel was charged with 1.99 g of dimethyldichlorosilane and 15.38 ml of pyridine, and the atmosphere was replaced with nitrogen.
  • Curable silicone copolymer [R 1 is vinyl group, n is 8, l is 165, Z is the above general formula (4) (R 2 is methyl group, a is 0.76), Y 2 is The above general formula (6) (R 3 is a methyl group). It was judged.
  • Example 11 A reaction vessel equipped with a stirrer and a dropping funnel was charged with 0.94 g of 1,1,3,3-tetramethyl-1,3-dichlorosiloxane and 9.23 ml of pyridine and purged with nitrogen.
  • the structure of the colorless viscous liquid obtained was a cocoon structure-containing curable silicone copolymer having a structural unit represented by the general formula (3) -1 [R 1 is Vinyl group, n is 8, l is 104, Z is the above general formula (4) (R 2 is methyl group, a is 1.32), Y 1 is the following general formula (5 ′) HO 1/2- (5 ') It is. It was judged.
  • 3.0 g, 0.9 g of 1,3-dimethoxydimethyldisiloxane, 0.084 g of TMAH solution and 46.2 ml of toluene were weighed in and stirred at 90 ° C.
  • reaction solution was returned to room temperature and neutralized by adding 20 ml of 10% aqueous citric acid solution. After extraction of the organic layer, this was washed 3 times with distilled water and twice with saturated brine, and dehydrated over anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered off and concentrated to obtain 3.1 g of colorless viscous liquid (recovery rate: 84%).
  • the structure of the colorless viscous liquid obtained was a cocoon structure-containing curable silicone copolymer having a structural unit represented by the general formula (3) -1 [R 1 is Vinyl group, n is 8, l is 18, Z is the above general formula (4) (R 2 is methyl group, a is 1.4), Y 1 is the following general formula (5 ′) HO 1/2- (5 ') It is. It was judged.
  • the structure of the colorless viscous liquid obtained was a cocoon structure-containing curable silicone copolymer having a structural unit represented by the general formula (3) -1 [R 1 is Vinyl group, n is 8, l is 20, Z is the above general formula (4) (R 2 is methyl group, a is 1.12), Y 1 is the following general formula (5 ′) HO 1/2- (5 ') It is. It was judged.
  • Example 14 The same operation as in Example 9 was performed on 3.0 g of the cocoon structure-containing curable silicone copolymer having the structural unit represented by the general formula (3) -1 obtained in Example 12, and 3.0 g of trimethylchlorosilane was obtained. The reaction was performed to obtain 2.89 g of colorless viscous liquid (recovery rate 96%).
  • Curable silicone copolymer [R 1 is vinyl group, n is 8, l is 18, Z is the above general formula (4) (R 2 is methyl group, a is 1.4), Y 2 is The above general formula (6) (R 3 is a methyl group). It was judged.
  • Example 15 A similar experiment was conducted by changing 1.99 g of dimethyldichlorosilane used in Example 10 to 1.57 g of 1,1,3,3-tetramethyl-1,3-dichlorosiloxane. 12 g (recovery rate 85%) was obtained.
  • Curable silicone copolymer [R 1 is vinyl group, n is 8, l is 142, Z is the above general formula (4) (R 2 is methyl group, a is 1.36), Y 2 is The above general formula (6) (R 3 is a methyl group). It was judged.
  • Example 16 A reaction vessel equipped with a stirrer and a dropping funnel was charged with 0.89 g of dimethyldichlorosilane and 15.38 ml of pyridine and purged with nitrogen.
  • Example 17 Into a reaction vessel equipped with a stirrer and a cooling tube, 5.0 g of the cocoon structure-containing curable silicone copolymer represented by the general formula (3) -1 obtained in Example 5 and 30 ml of pyridine are weighed. Replaced with nitrogen. To the dropping funnel, 5.0 g of trimethylchlorosilane and 20 ml of pyridine were added dropwise over 30 minutes at room temperature and stirred for 2 hours. After stirring for 2 hours, 30 mL of toluene and 30 mL of distilled water were added, and the organic layer and the aqueous layer were separated.
  • Example 18 100 parts by weight of cocoon structure-containing curable silicone copolymer represented by the general formula (3) -1 obtained by the same synthesis method as in Example 5 above, 1,3,5,7-tetramethyl-1, A transparent curable resin composition comprising 30 parts by weight of 3,5,7-tetravinylcyclotetrasiloxane and 5 parts by weight of di-t-butyl peroxide (Perbutyl D manufactured by NOF Corporation) as a thermal polymerization initiator.
  • Perbutyl D di-t-butyl peroxide
  • Example 18 having a predetermined thickness, a thermosetting program was executed by heating, further increasing the temperature from 160 ° C. to 200 ° C. at 1 ° C./min, and then decreasing the temperature to 50 ° C. at 1.5 ° C./min. Such a cage structure-containing curable silicone resin molding was obtained.
  • Example 19 100 parts by weight of a cocoon structure-containing curable silicone copolymer represented by the general formula (3) -2 obtained by the same synthesis method as in Example 16 above, 1,3,5,7-tetramethyl-1, A transparent curable resin composition comprising 30 parts by weight of 3,5,7-tetravinylcyclotetrasiloxane and 5 parts by weight of di-t-butyl peroxide (Perbutyl D manufactured by NOF Corporation) as a thermal polymerization initiator.
  • Perbutyl D di-t-butyl peroxide
  • Example 19 having a predetermined thickness, a thermosetting program was executed by heating, further increasing the temperature from 160 ° C. to 200 ° C. at 1 ° C./min, and then decreasing the temperature to 50 ° C. at 1.5 ° C./min. Such a cage structure-containing curable silicone resin molding was obtained.
  • Example 20 100 parts by weight of a cocoon structure-containing curable silicone copolymer represented by the general formula (3) -3 obtained by the same synthesis method as in Example 17, 1,3,5,7-tetramethyl-1, A transparent curable resin composition comprising 30 parts by weight of 3,5,7-tetravinylcyclotetrasiloxane and 5 parts by weight of di-t-butyl peroxide (Perbutyl D manufactured by NOF Corporation) as a thermal polymerization initiator.
  • Perbutyl D di-t-butyl peroxide
  • Example 20 having a predetermined thickness, a thermosetting program was executed by heating, further increasing the temperature from 160 ° C. to 200 ° C. at 1 ° C./min, and then decreasing the temperature to 50 ° C. at 1.5 ° C./min.
  • a cage structure-containing curable silicone resin molding was obtained.
  • Example 21 100 parts by weight of a cocoon structure-containing curable silicone copolymer represented by the general formula (3) -3 obtained by the same synthesis method as in Example 17, 1,3,5,7-tetramethyl-1, 30 parts by weight of 3,5,7-tetravinylcyclotetrasiloxane, 2.5 parts by weight of di-t-butyl peroxide (Perbutyl D manufactured by NOF Corporation) as a thermal polymerization initiator, and 2-hydroxy- as a photoinitiator 2.5 parts by weight of 2-methyl-1-phenyl-propan-1-one (Darocur 1173 manufactured by Ciba Specialty Chemicals Co., Ltd.) was mixed to obtain a transparent curable resin composition.
  • a cocoon structure-containing curable silicone copolymer represented by the general formula (3) -3 obtained by the same synthesis method as in Example 17, 1,3,5,7-tetramethyl-1, 30 parts by weight of 3,5,7-tetravinylcyclotetrasiloxane, 2.5 parts by weight of
  • the curable resin composition obtained above was cast (flow cast) to a thickness of 0.5 mm, and using a 30 W / cm high-pressure mercury lamp, 2000 mJ / cm 2. Then, the temperature is increased from 100 ° C. to 160 ° C. at a rate of 0.5 ° C./min, and further increased from 160 ° C. to 200 ° C. at a rate of 1 ° C./min.
  • a thermosetting program for lowering the temperature to 0 ° C. was executed to obtain a ridge structure-containing curable silicone resin molding according to Example 21 having a predetermined thickness.
  • Example 22 100 parts by weight of a cocoon structure-containing curable silicone copolymer represented by the general formula (3) -3 obtained by the same synthesis method as in Example 17, 1,3,5,7-tetramethyl-1, A transparent curable resin composition was obtained by mixing 30 parts by weight of 3,5,7-tetravinylcyclotetrasiloxane and 0.5 parts by weight of a platinum-vinylsiloxane complex (SIP6830.3, manufactured by Azumax Co., Ltd.).
  • SIP6830.3, manufactured by Azumax Co., Ltd. platinum-vinylsiloxane complex
  • the curable resin composition obtained above was cast (flow cast) so as to have a thickness of 0.5 mm, and was 100 ° C. for 1 hour, 140 ° C. for 1 hour, and 180 ° Each of them was heated at 0 ° C. for 1 hour to obtain a ridge structure-containing curable silicone resin molding according to Example 22 having a predetermined thickness.
  • the curable resin composition obtained above was cast (flow cast) to a thickness of 0.5 mm, and the temperature was increased from 100 ° C. to 160 ° C. at 0.5 ° C./min.
  • a thermosetting program was executed by heating, further increasing the temperature from 160 ° C. to 200 ° C. at 1 ° C./min, and then decreasing the temperature to 50 ° C. at 1.5 ° C./min. Such a cage structure-containing curable silicone resin molding was obtained.
  • the curable resin composition obtained above was cast (cast) to a thickness of 0.5 mm using a roll coater, and 2000 mJ / cm 2 using a 30 W / cm high-pressure mercury lamp.
  • the sheet-like molded body according to Comparative Example 2 having a predetermined thickness was cured with the accumulated exposure amount.
  • the physical properties of the molded body were evaluated by the following methods.
  • (1) Heat resistance test (a) Linear expansion coefficient: Measured based on a thermomechanical analysis method at a heating rate of 5 ° C / min.
  • (2) Formability test After making a 10 cm square test piece having a thickness of 0.5 mm, it was determined that there was no crack after being produced, and that there was no x.
  • the cocoon-containing curable silicone copolymer of the present invention it is possible to obtain a cured product having both low thermal expansion properties and high toughness, in addition to the properties of silicone excellent in heat resistance and transparency.
  • a transparent material that has heat resistance and high dimensional stability that cannot be achieved with conventional plastics mainly composed of hydrocarbons and that has been provided with toughness that is difficult to achieve with glass. Therefore, the obtained cured product can be used for various applications such as optical materials such as touch panel substrates, flat panel display substrates, lenses, optical disks, and optical fibers, as well as various transport machines and window materials for houses, etc. Since it can also be used as a lightweight transparent member, it can be used as an alternative material for glass that has been used so far.

Abstract

A curable cage-type silsesquioxane compound containing a silanol group; a copolymer containing the compound introduced into the main chain; processes for producing the compound and copolymer; and a curable resin composition containing the copolymer. The curable compound is a compound represented by the general formula [R1SiO3/2]n[HO1/2]m which is obtained by cleaving one or more of the siloxane bonds of a curable cage-type silsesquioxane compound represented by the general formula [R1SiO3/2]n in the presence of a basic compound in an organic solvent comprising one or both of a nonpolar solvent and a polar solvent, bonding a counter cation derived from the basic compound to each cleaved part, and then treating the resultant compound with an acid to convert the cleaved part into a hydroxy group. This compound is condensed with a compound represented by general formula (7) to obtain a copolymer. The curable resin composition contains this copolymer.

Description

シラノール基含有硬化性籠型シルセスキオキサン化合物、籠型構造含有硬化性シリコーン共重合体、及びこれらの製造方法、並びに硬化性樹脂組成物Silanol group-containing curable cage-type silsesquioxane compound, cage-type structure-containing curable silicone copolymer, production method thereof, and curable resin composition
 本発明は、新規な硬化性籠型シルセスキオキサン化合物、この硬化性籠型シルセスキオキサン化合物を用いて得られる共重合体、及びこれらの製造方法、並びに硬化性樹脂組成物に関し、詳しくは、硬化性官能基を複数有していることから電子材料、光学材料、電子光学材料等として利用するのに適した籠型シルセスキオキサン化合物、これを用いた籠型構造含有硬化性シリコーン共重合体、及びこれらの製造方法に関し、更には上記籠型構造含有硬化性シリコーン共重合体を含んだ硬化性樹脂組成物に関する。 The present invention relates to a novel curable cage-type silsesquioxane compound, a copolymer obtained using the curable cage-type silsesquioxane compound, a method for producing these, and a curable resin composition. Has a cocoon-type silsesquioxane compound suitable for use as an electronic material, an optical material, an electro-optic material, and the like, and a cocoon-type structure-containing curable silicone using the same The present invention relates to a copolymer and a production method thereof, and further relates to a curable resin composition containing the cage-type structure-containing curable silicone copolymer.
 これまでに籠構造を有するシルセスキオキサン又はその誘導体を用いた重合体に関する研究が数多く行われている。この重合体は、耐熱性、耐候性、光学特性、寸法安定性などに優位性をもつことを期待されている。例えば、非特許文献1には、不完全縮合構造のシルセスキオキサン(完全な8面体構造ではなく、少なくとも一箇所以上が開裂しており、空間が閉じていない構造)のものをシロキサン結合で連結させた共重合体の製造方法が開示されている。この製造方法は、不完全な籠型シルセスキオキサンに有機金属化合物を介してアミン等を導入した後、芳香族イミド化合物やフェニルエーテルなどで架橋する方法である。また、非特許文献2には、不完全な籠型シルセスキオキサンが有しているシラノール基とアミノシラン等と反応させた共重合体の製造方法が開示されている。更には、非特許文献3には、ビニル基含有シルセスキオキサンとヒドロシリル基含有シルセスキオキサンから構成される例が示されている。しかしながら、これらの樹脂はいずれも剛直で非常に脆い材料である。 So far, many studies have been conducted on polymers using silsesquioxane having a cage structure or derivatives thereof. This polymer is expected to have superiority in heat resistance, weather resistance, optical properties, dimensional stability, and the like. For example, Non-Patent Document 1 discloses a silsesquioxane having an incompletely condensed structure (a structure that is not a complete octahedral structure but is cleaved in at least one place and is not closed) with a siloxane bond. A method for producing a linked copolymer is disclosed. This production method is a method in which an amine or the like is introduced into an incomplete cage silsesquioxane via an organometallic compound and then crosslinked with an aromatic imide compound or phenyl ether. Non-Patent Document 2 discloses a method for producing a copolymer obtained by reacting a silanol group possessed by an incomplete cage-type silsesquioxane with aminosilane or the like. Further, Non-Patent Document 3 shows an example composed of a vinyl group-containing silsesquioxane and a hydrosilyl group-containing silsesquioxane. However, all of these resins are rigid and very brittle materials.
 特に電子材料や光学材料などにおいては耐熱性、耐久性、成形性のほか、用いられる部位によっては透明性、耐候性等の更なる改善が求められている。しかしながら、従来のシルセスキオキサン共重合体では、構造が不明瞭で安定性に欠ける、また籠型シルセスキオキサンを主鎖にグラフト重合させる場合、それが架橋点となりゲル化するためこれらの特性を満たした構造体を得ることが困難である。そのために優れた耐熱性、耐候性、光学特性等を有する籠型シルセスキオキサンを主鎖とし、かつ結合の位置が明確に限定された、成形性に優れた共重合体が望まれているが、主鎖に籠型シルセスキオキサンを組み込んだ共重合体の例は少ない。下記特許文献1及び2には、3官能の加水分解基を有するシラン化合物を1価のアルカリ金属水酸化物の存在下、有機溶媒中で加水分解することでSi-ONaを反応活性基として有する不完全な籠型シルセスキオキサンを合成した後、この不完全な籠型シルセスキオキサンに対し目的に応じて官能基を有したクロロシランを反応させることで、種々の化合物との共重合による共重合体を得る方法が報告されている。ところが、本発明者が知る限りではこれ以外の方法について報告された例はなく、また、上記の方法は籠型シルセスキオキサン骨格が有する側鎖が限定され、硬化性でないために耐熱性に劣ることが懸念される。 Especially in electronic materials and optical materials, in addition to heat resistance, durability and moldability, further improvements in transparency and weather resistance are required depending on the part used. However, the conventional silsesquioxane copolymer has an unclear structure and lacks stability, and when graft-type silsesquioxane is graft-polymerized to the main chain, it becomes a crosslinking point and gels. It is difficult to obtain a structure satisfying the characteristics. Therefore, a copolymer having excellent moldability, in which a cage silsesquioxane having excellent heat resistance, weather resistance, optical properties and the like is used as the main chain and the position of the bond is clearly limited is desired. However, there are few examples of copolymers in which a cage silsesquioxane is incorporated in the main chain. Patent Documents 1 and 2 below have Si-ONa as a reactive group by hydrolyzing a silane compound having a trifunctional hydrolyzable group in an organic solvent in the presence of a monovalent alkali metal hydroxide. After synthesis of incomplete cage-type silsesquioxane, by reacting this incomplete cage-type silsesquioxane with a chlorosilane having a functional group according to the purpose, by copolymerization with various compounds A method for obtaining a copolymer has been reported. However, as far as the present inventor knows, no other examples have been reported, and the above method is limited in the side chain of the cage silsesquioxane skeleton and is not curable, so that it is heat resistant. There is concern about inferiority.
 ところで、液晶表示装置用の基板、光学レンズ、発光ダイオードの封止材等をはじめとする光学材料としては、複屈折率が低く、光弾性係数が小さく、光学的透明性の高い材料が使用される。また、液晶表示装置用の基板や光学レンズ等の材料の場合には、製造プロセス上使用する材料には高い耐熱性が必要である。こういった要求を満足する材料として、従来よりガラス等が使用されている。しかしながら、近年では、例えば光学レンズは曲面で使用され、また、液晶表示装置用の基板では薄型化が要求されており、従来使用されてきたガラスは強度的に脆い性質を有しているため、使用範囲に限界が生じてきている。強靭性のある材料としては高分子材料が考えられるが、一般に高分子材料は耐熱性が低い。例えばアクリレート樹脂は、耐熱性が低いため熱によって着色することがある。そのため、高い耐熱性を発現させる手段として、芳香族骨格を導入することが検討されているが、一方で、複屈折率が高くなり光弾性係数が大きくなるため、高い耐熱性と光学的性能の両立が困難である。
特開2006-265243号公報 WO2003/024870パンフレット Chem. Mater. 2003, 15, 264-268 Macromolecules. 1993, 26, 2141-2142 J. Am. Chem. Soc. 1998, 120, 8380-8391
By the way, as an optical material including a substrate for a liquid crystal display device, an optical lens, and a light emitting diode sealing material, a material having a low birefringence, a low photoelastic coefficient, and a high optical transparency is used. The In the case of materials such as substrates for liquid crystal display devices and optical lenses, the materials used in the manufacturing process must have high heat resistance. Conventionally, glass or the like has been used as a material that satisfies these requirements. However, in recent years, for example, optical lenses are used on curved surfaces, and substrates for liquid crystal display devices are required to be thin, and conventionally used glass has a property of being brittle in strength. The range of use has become limited. A polymer material can be considered as a tough material, but in general, a polymer material has low heat resistance. For example, an acrylate resin may be colored by heat because of its low heat resistance. Therefore, the introduction of an aromatic skeleton as a means of developing high heat resistance has been studied, but on the other hand, since the birefringence increases and the photoelastic coefficient increases, high heat resistance and optical performance are achieved. It is difficult to achieve both.
JP 2006-265243 A WO2003 / 024870 Brochure Chem. Mater. 2003, 15, 264-268 Macromolecules. 1993, 26, 2141-2142 J. Am. Chem. Soc. 1998, 120, 8380-8391
 上記で説明したように任意に分子量を制御でき、目的に応じた材料設計が可能になれば、電子材料や光学材料の成形の自由度がさらに増すはずであるが、籠構造を主鎖に取り込む共重合体の合成について例は少なく、そのような共重合体の具体的な特性は十分に明らかにされていない。そこで、本発明の目的は、シラノール基を含有した硬化性籠型シルセスキオキサン化合物、及びこれを主鎖に取り込んだ共重合体を提供することにある。また、シラノール基を含有した硬化性籠型シルセスキオキサン化合物、及びこれを主鎖に取り込んだ共重合体のそれぞれの製造方法を提供することにある。更には、耐熱性、光学特性、寸法安定性に優れ、尚且つ強靭性を有した成形体を得ることができる硬化型樹脂組成物を提供することにある。 If the molecular weight can be controlled arbitrarily as described above, and the material design according to the purpose becomes possible, the degree of freedom of molding of electronic materials and optical materials should be further increased, but the cage structure is incorporated into the main chain. There are few examples of the synthesis of copolymers, and the specific properties of such copolymers have not been fully elucidated. Accordingly, an object of the present invention is to provide a curable cage-type silsesquioxane compound containing a silanol group and a copolymer incorporating the same in the main chain. Moreover, it is providing the manufacturing method of each of the curable cage-type silsesquioxane compound containing a silanol group, and the copolymer which incorporated this in the principal chain. Furthermore, it is providing the curable resin composition which can obtain the molded object which was excellent in heat resistance, an optical characteristic, and dimensional stability, and also had toughness.
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、特定の反応条件によりシラノール基を含有した硬化性籠型シルセスキオキサン化合物、及びこれを主鎖に取り込んだ共重合体を得ることができることを見出し、更にはこのような共重合体を含んだ硬化性樹脂組成物が、耐熱性、光学特性、寸法安定性に優れる硬化物を与えることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that a curable cage-type silsesquioxane compound containing a silanol group under specific reaction conditions and a co-polymer incorporating this in the main chain. The inventors found that a coalescence can be obtained, and further found that a curable resin composition containing such a copolymer gives a cured product having excellent heat resistance, optical properties, and dimensional stability, and completed the present invention. It came to do.
 すなわち、本発明は、下記一般式(1)
   [RSiO3/2]   (1)
(但し、Rはビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、1分子中に含まれるRの少なくとも1つはビニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基のいずれかであり、nは6~14の数を示す。)で表される硬化性籠型シルセスキオキサン化合物を塩基性化合物存在下、非極性溶媒と極性溶媒のうち1つもしくは両方を合わせた有機溶媒中でシロキサン結合を1つもしくは複数開裂させ、塩基性化合物由来のカウンターカチオンを開裂部と結合せしめた後、酸で処理し、開裂部を水酸基に変換し得られることを特徴とする下記一般式(2)
   [RSiO3/2][HO1/2]   (2)
(但し、Rはビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基、又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、1分子中に含まれるRの少なくとも1つはビニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基のいずれかであり、また、nは6~14の数、mは1~4の数を示す。)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物である。
That is, the present invention provides the following general formula (1)
[R 1 SiO 3/2 ] n (1)
(However, R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule. At least one of R 1 is a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, and n represents a number of 6 to 14.) In the presence of a basic compound, the silsesquioxane compound is cleaved by one or more siloxane bonds in an organic solvent containing one or both of a nonpolar solvent and a polar solvent to cleave the counter cation derived from the basic compound. The compound represented by the following general formula (2) is characterized in that it can be converted to a hydroxyl group by treating with an acid after binding to the moiety.
[R 1 SiO 3/2 ] n [HO 1/2 ] m (2)
(However, R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group, or an oxirane ring, and they may be the same or different from each other. At least one of R 1 contained is any one of a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n is a number of 6 to 14, and m is a number of 1 to 4. A silanol group-containing curable caged silsesquioxane compound represented by:
 また、本発明は、下記一般式(1)
   [RSiO3/2]   (1)
(但し、Rはビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、1分子中に含まれるRの少なくとも1つはビニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基のいずれかであり、また、nは6~14の数を示す。)で表される硬化性籠型シルセスキオキサン化合物を塩基性化合物存在下、非極性溶媒と極性溶媒のうち1つもしくは両方を合わせた有機溶媒中でシロキサン結合を1つもしくは複数開裂させ、塩基性化合物由来のカウンターカチオンを開裂部と結合せしめた後、酸で処理し、開裂部を水酸基に変換し得られることを特徴とする下記一般式(2)
   [RSiO3/2][HO1/2]   (2)
(但し、Rはビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、1分子中に含まれるRの少なくとも1つはビニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基のいずれかであり、また、nは6~14の数、mは1~4の数を示す。)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物の製造方法である。
Further, the present invention provides the following general formula (1)
[R 1 SiO 3/2 ] n (1)
(However, R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule. At least one of R 1 is a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, and n represents a number of 6 to 14. A counter cation derived from a basic compound by cleaving one or more siloxane bonds in an organic solvent containing a non-polar solvent and one or both polar solvents in the presence of a basic compound in the presence of a basic silsesquioxane compound. Is bonded to the cleavage portion and then treated with an acid to convert the cleavage portion to a hydroxyl group.
[R 1 SiO 3/2 ] n [HO 1/2 ] m (2)
(However, R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule. And at least one of R 1 is a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n is a number of 6 to 14, and m is a number of 1 to 4. .) Is a method for producing a silanol group-containing curable caged silsesquioxane compound.
 また、本発明は、下記一般式(3)
   Y-[Z-(RSiO3/2)]l-Z-Y   (3)
〔但し、Rはビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、1分子中に含まれるRの少なくとも1つはビニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基のいずれかであり、また、nは6~14の数を示し、lは1~2000の数を示し、Zは下記一般式(4)
Figure JPOXMLDOC01-appb-I000009
(但し、Rは水素原子、ビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよく、また、aは0~30の数を示す。)で表される2価の基であり、Yは、下記一般式(5’)
   HO1/2-  (5’)
又は下記一般式(5)
   -[RSiO3/2][HO1/2]m-1  (5)
(但し、Rはビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、1分子中に含まれるRの少なくとも1つはビニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基のいずれかであり、また、nは6~14の数、mは1~4の数を示す。)
又は下記一般式(6)
Figure JPOXMLDOC01-appb-I000010
(但し、Rは水素、ビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよい。)で表される1価の基である。〕で表される構成単位を有することを特徴とする籠構造含有硬化性シリコーン共重合体である。
Further, the present invention provides the following general formula (3)
Y- [Z- (R 1 SiO 3/2 ) n ] l -ZY (3)
[However, R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule. At least one of R 1 is any one of a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n represents a number of 6 to 14, and l represents a number of 1 to 2000. Z represents the following general formula (4)
Figure JPOXMLDOC01-appb-I000009
(However, R 2 is a hydrogen atom, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, which may be the same or different from each other, Is a divalent group represented by the following formula (5 ′):
HO 1/2- (5 ')
Or the following general formula (5)
-[R 1 SiO 3/2 ] n [HO 1/2 ] m-1 (5)
(However, R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule. And at least one of R 1 is a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n is a number of 6 to 14, and m is a number of 1 to 4. .)
Or the following general formula (6)
Figure JPOXMLDOC01-appb-I000010
(However, R 3 is a group having hydrogen, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, and may be the same or different from each other). A monovalent group. ] The cocoon structure containing curable silicone copolymer characterized by having the structural unit represented by these.
 また、本発明は、下記一般式(2)
   [RSiO3/2][HO1/2]   (2)
(但し、Rはビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、1分子中に含まれるRの少なくとも1つはビニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基のいずれかであり、また、nは6~14の数、mは1~4の数を示す。)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物と下記一般式(7)
Figure JPOXMLDOC01-appb-I000011
(但し、R2は水素原子、ビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよく、また、Xは水素原子、ハロゲン原子又はアルコキシル基であって、互いに同じか異なるものであってもよく、更にbは0~30の数を示す。)で表される化合物とを縮合反応させ、又は、更に下記一般式(8)
Figure JPOXMLDOC01-appb-I000012
(但し、R3は水素原子、ビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよい。)で表される化合物を縮合させることにより、下記一般式(3)
   Y-[Z-(RSiO3/2)]l-Z-Y   (3)
〔但し、Rはビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、1分子中に含まれるRの少なくとも1つはビニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基のいずれかであり、また、nは6~14の数を示し、lは1~2000の数を示し、Zは下記一般式(4)
Figure JPOXMLDOC01-appb-I000013
(但し、Rは水素原子、ビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよく、また、aは0~30の数を示す。)で表される2価の基であり、Yは下記一般式(5’)
   HO1/2-  (5’)
又は下記一般式(5)
   -[RSiO3/2][HO1/2]m-1  (5)
(但し、Rはビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、1分子中に含まれるRの少なくとも1つはビニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基のいずれかであり、また、nは6~14の数、mは1~4の数を示す)、又は下記一般式(6)
Figure JPOXMLDOC01-appb-I000014
(但し、Rは水素、ビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよい)で表される1価の基である。〕で表される構成単位を有した籠構造含有硬化性シリコーン共重合体を得ることを特徴とする籠構造含有硬化性シリコーン共重合体の製造方法である。
Further, the present invention provides the following general formula (2)
[R 1 SiO 3/2 ] n [HO 1/2 ] m (2)
(However, R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule. And at least one of R 1 is a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n is a number of 6 to 14, and m is a number of 1 to 4. ) -Containing curable caged silsesquioxane compound represented by the following general formula (7)
Figure JPOXMLDOC01-appb-I000011
(Wherein R 2 is a hydrogen atom, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, which may be the same or different from each other, Is a hydrogen atom, a halogen atom or an alkoxyl group, which may be the same or different from each other, and b represents a number of 0 to 30), or a condensation reaction with a compound represented by The following general formula (8)
Figure JPOXMLDOC01-appb-I000012
(Wherein R 3 is a hydrogen atom, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, and may be the same or different from each other). The following general formula (3)
Y- [Z- (R 1 SiO 3/2 ) n ] l -ZY (3)
[However, R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule. At least one of R 1 is any one of a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n represents a number of 6 to 14, and l represents a number of 1 to 2000. Z represents the following general formula (4)
Figure JPOXMLDOC01-appb-I000013
(However, R 2 is a hydrogen atom, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, which may be the same or different from each other, Is a divalent group represented by the following formula (5 ′):
HO 1/2- (5 ')
Or the following general formula (5)
-[R 1 SiO 3/2 ] n [HO 1/2 ] m-1 (5)
(However, R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule. And at least one of R 1 is a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n is a number of 6 to 14, and m is a number of 1 to 4. ) Or the following general formula (6)
Figure JPOXMLDOC01-appb-I000014
(Wherein R 3 is a group having hydrogen, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other). It is a monovalent group. ] A cocoon structure-containing curable silicone copolymer having a structural unit represented by the following formula:
 更に、本発明は、下記一般式(3)
   Y-[Z-(RSiO3/2)]l-Z-Y   (3)
(式中の説明は上記と同様)で表される構成単位を有する籠構造含有硬化性シリコーン共重合体に、ヒドロシリル化触媒とラジカル開始剤とのうちいずれか一方又は両者を配合し、かつ、少なくとも1つのケイ素原子上に水素原子を有するヒドロシリル化可能な化合物と分子中に不飽和基を有する化合物とのうちいずれか一方又は両者を配合してなる硬化性樹脂組成物である。
Furthermore, the present invention provides the following general formula (3)
Y- [Z- (R 1 SiO 3/2 ) n ] l -ZY (3)
(The explanation in the formula is the same as described above) In the cocoon structure-containing curable silicone copolymer having a structural unit represented by any one or both of a hydrosilylation catalyst and a radical initiator, and It is a curable resin composition obtained by blending either or both of a hydrosilylatable compound having a hydrogen atom on at least one silicon atom and a compound having an unsaturated group in the molecule.
 更にまた、本発明は、上記硬化性樹脂組成物を成形硬化して得られた硬化物(成形体)であり、具体的には上記硬化性樹脂組成物をヒドロシリル化及びラジカル重合させて得られた硬化物(成形体)である。 Furthermore, the present invention is a cured product (molded product) obtained by molding and curing the curable resin composition, and specifically obtained by hydrosilylation and radical polymerization of the curable resin composition. Cured product (molded product).
 一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物の具体例を、下記構造式(9)~(15)にそれぞれ示す。構造式(9)はn=6,m=2であり、(10)はn=7,m=3であり、(11)-1及び(11)-2はn=8,m=2であり、(12)はn=9,m=1であり、(13)はn=10,m=2であり、(14)はn=12,m=2であり、(15)はn=14,m=2である。但し、一般式(2)で表される構造単位は、構造式(9)~(15)に示すものに限らない。また、構造式(9)~(15)において、Rは一般式(2)と同じである。
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
Specific examples of the silanol group-containing curable caged silsesquioxane compound represented by the general formula (2) are shown in the following structural formulas (9) to (15), respectively. Structural formula (9) is n = 6, m = 2, (10) is n = 7, m = 3, (11) -1 and (11) -2 are n = 8, m = 2 Yes, (12) is n = 9, m = 1, (13) is n = 10, m = 2, (14) is n = 12, m = 2, (15) is n = 14, m = 2. However, the structural unit represented by the general formula (2) is not limited to those represented by the structural formulas (9) to (15). In Structural Formulas (9) to (15), R 1 is the same as in General Formula (2).
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
 本発明における籠構造含有硬化性シリコーン共重合体の製造方法では、まず、一般式(1)で表される硬化性籠型シルセスキオキサン化合物を、塩基性化合物存在下、非極性溶媒と極性溶媒のうち1つもしくは両方を合わせた有機溶媒中でシロキサン結合を1つもしくは複数開裂させ、塩基性化合物由来のカウンターカチオンで開裂部を保持した後、中和し水酸基へと変換させることで、上記一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物を得る。 In the method for producing a cocoon structure-containing curable silicone copolymer in the present invention, first, a curable cage-type silsesquioxane compound represented by the general formula (1) is polarized with a nonpolar solvent in the presence of a basic compound. By cleaving one or more siloxane bonds in an organic solvent combining one or both of the solvents, holding the cleavage portion with a counter cation derived from a basic compound, neutralizing and converting to a hydroxyl group, A silanol group-containing curable caged silsesquioxane compound represented by the general formula (2) is obtained.
 一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物を合成する際に用いる塩基性化合物については、例えば、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム、水酸化ベンジルトリメチルアンモニウム、水酸化ベンジルトリエチルアンモニウムヒ等の水酸化アンモニウム塩、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等の一価のアルカリ金属水酸化物が挙げられる。これらの中でも、カウンターカチオンとしての役割を果たすのに有効であることから、水酸化アンモニウム塩が好ましい。好ましい水酸化アンモニウム塩の例は、水酸化テトラメチルアンモニウムである。塩基性化合物の好ましい使用量は、一般式(1)で表される構造単位1モルに対して0.5~3モルの範囲であるのがよく、より好ましくは1.5~2.5モルであるのがよい。この反応の際に塩基性化合物の使用量が0.5モルより少ないと反応が進行しない。一方、3モルよりも多いと籠構造の開裂反応が過剰に促進され分解してしまう。また、塩基性化合物は、通常アルコール溶液として用いられる。用いるアルコール溶液としては、例えば、メタノール、エタノール、プロパノール、イソプロパノールが挙げられる。この中でも、メタノールが好ましい。 Examples of the basic compound used for synthesizing the silanol group-containing curable silsesquioxane compound represented by the general formula (2) include, for example, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutyl hydroxide. Examples thereof include ammonium hydroxide salts such as ammonium, benzyltrimethylammonium hydroxide, and benzyltriethylammonium hydroxide, and monovalent alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide. Among these, an ammonium hydroxide salt is preferable because it is effective in serving as a counter cation. An example of a preferred ammonium hydroxide salt is tetramethylammonium hydroxide. The amount of the basic compound used is preferably in the range of 0.5 to 3 mol, more preferably 1.5 to 2.5 mol, relative to 1 mol of the structural unit represented by the general formula (1). It is good to be. When the amount of the basic compound used is less than 0.5 mol during this reaction, the reaction does not proceed. On the other hand, when it exceeds 3 mol, the cleavage reaction of the cocoon structure is excessively promoted and decomposes. The basic compound is usually used as an alcohol solution. Examples of the alcohol solution to be used include methanol, ethanol, propanol, and isopropanol. Among these, methanol is preferable.
 一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物の合成で用いる有機溶媒については、非極性溶媒と極性溶媒のうち1つもしくは両方を合わせた溶媒である。このうち、非極性溶媒について具体例を示すと、ヘキサン、トルエン、キシレン、ベンゼンなどの炭化水素系溶媒が挙げられる。極性溶媒について具体例を示すと、ジエチルエーテル、テトラヒドロフランなどのエーテル系溶媒、酢酸エチルなどのエステル系溶媒、メタノール、エタノール、イソプロパノールなどのアルコール系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒を挙げることができる。これらの中でも、溶媒和効果による構造制御寄与の観点から極性溶媒が好ましく、その中でもテトラヒドロフランがより好ましい。有機溶媒の好ましい使用量は、一般式(1)で表される構造単位1モルに対してモル濃度(mol/l:M)0.01~10Mの範囲であるのがよく、より好ましくは、0.01~1Mであるのがよい。有機溶媒に対する非極性溶媒及び/又は極性溶媒の添加量については、極性溶媒に対して非極性溶媒が少量であるのがよい。好ましい配合比は、極性溶媒10~100に対して非極性溶媒が1であり、より好ましくは極性溶媒50~100に対して非極性溶媒が1である。 The organic solvent used in the synthesis of the silanol group-containing curable silsesquioxane compound represented by the general formula (2) is a solvent obtained by combining one or both of a nonpolar solvent and a polar solvent. Of these, specific examples of nonpolar solvents include hydrocarbon solvents such as hexane, toluene, xylene, and benzene. Specific examples of polar solvents include ether solvents such as diethyl ether and tetrahydrofuran, ester solvents such as ethyl acetate, alcohol solvents such as methanol, ethanol and isopropanol, and ketone solvents such as acetone and methyl ethyl ketone. it can. Among these, a polar solvent is preferable from the viewpoint of structure control contribution due to the solvation effect, and tetrahydrofuran is more preferable among them. The amount of the organic solvent used is preferably in the range of 0.01 to 10 M molar concentration (mol / l: M) relative to 1 mol of the structural unit represented by the general formula (1), more preferably 0.01 to 1M is preferable. About the addition amount of the nonpolar solvent and / or polar solvent with respect to an organic solvent, it is good for a nonpolar solvent to be small with respect to a polar solvent. A preferable blending ratio is 1 for the nonpolar solvent with respect to the polar solvent 10 to 100, and more preferably 1 for the nonpolar solvent with respect to the polar solvent 50 to 100.
 一般式(1)で表される硬化性籠型シルセスキオキサン化合物を塩基性化合物存在下、非極性溶媒と極性溶媒のうち1つもしくは両方を合わせた有機溶媒中で反応させる反応条件について、反応温度は0~60℃が好ましく、20~40℃がより好ましい。反応温度が0℃より低いと、反応速度が遅くなり未開裂の完全籠型シルセスキオキサンの状態で残存してしまい、反応時間を多く費やす結果となる。一方、60℃より高いと反応速度が速すぎる為に複雑な縮合反応が進行してしまい、結果として高分子量化が促進される。反応時間については、上記一般式(1)で表される構造の置換基R1によっても異なるが、通常は数分から数時間であり、好ましくは1~3時間であるのがよい。 Regarding the reaction conditions for reacting the curable cage-type silsesquioxane compound represented by the general formula (1) in the presence of a basic compound in an organic solvent combining one or both of a nonpolar solvent and a polar solvent, The reaction temperature is preferably 0 to 60 ° C, more preferably 20 to 40 ° C. When the reaction temperature is lower than 0 ° C., the reaction rate becomes slow and remains in the state of uncleaved completely caged silsesquioxane, resulting in a long reaction time. On the other hand, when the temperature is higher than 60 ° C., the reaction rate is too high, so that a complex condensation reaction proceeds, and as a result, a high molecular weight is promoted. The reaction time varies depending on the substituent R 1 having the structure represented by the general formula (1), but is usually from several minutes to several hours, preferably from 1 to 3 hours.
 反応終了後は、反応溶液を弱酸性溶液で中和する。中性もしくは酸性よりにした後、水または水含有反応溶媒を分離する。水又は水含有反応溶媒の分離は、この溶液を食塩水等で洗浄し水分やその他の不純物を十分に除去し、その後無水硫酸マグネシウム等の乾燥剤で乾燥させる等の手段が採用できる。極性溶媒を使用した場合は、減圧蒸発等の手段が採用でき、極性溶媒を除去した後、非極性溶媒を添加して重縮合物を溶解させて上記同様に洗浄、乾燥を行う。弱酸性溶液については、硫酸希釈溶液、塩酸希釈溶液、クエン酸希釈溶液、酢酸、塩化アンモニウム水溶液、りんご酸溶液、シュウ酸溶液などが用いられる。非極性溶媒は、蒸発等の手段で分離すれば、反応生成物を回収できるが、非極性溶媒が次の反応で使用する非極性溶媒として使用可能であれば、これを分離する必要はない。 After completion of the reaction, neutralize the reaction solution with a weakly acidic solution. After neutralization or acidification, water or water-containing reaction solvent is separated. Separation of the water or the water-containing reaction solvent can employ means such as washing the solution with a saline solution to sufficiently remove moisture and other impurities, and then drying with a drying agent such as anhydrous magnesium sulfate. When a polar solvent is used, means such as evaporation under reduced pressure can be employed. After removing the polar solvent, a nonpolar solvent is added to dissolve the polycondensate, followed by washing and drying in the same manner as described above. As the weakly acidic solution, sulfuric acid diluted solution, hydrochloric acid diluted solution, citric acid diluted solution, acetic acid, ammonium chloride aqueous solution, malic acid solution, oxalic acid solution and the like are used. If the nonpolar solvent is separated by means such as evaporation, the reaction product can be recovered. However, if the nonpolar solvent can be used as the nonpolar solvent used in the next reaction, it is not necessary to separate it.
 上記で得られたシラノール基含有硬化性籠型シルセスキオキサン化合物は、次の一般式(2)で表すことができる。
   [RSiO3/2][HO1/2]   (2)
(但し、Rはビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基、又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、1分子中に含まれるRの少なくとも1つはビニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基のいずれかの硬化性官能基を有する。nは6~14の数、mは1~4の数を示す。)
The silanol group-containing curable cage-type silsesquioxane compound obtained above can be represented by the following general formula (2).
[R 1 SiO 3/2 ] n [HO 1/2 ] m (2)
(However, R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group, or an oxirane ring, and they may be the same or different from each other. At least one of R 1 contained has a curable functional group of any one of a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n is a number of 6 to 14, and m is 1 to 4 Indicates the number of
 一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物は、末端に一部シラノール基を有して完全には閉じた空間を形成していないと考えられることから不完全縮合型のシルセスキオキサンである。 The silanol group-containing curable caged silsesquioxane compound represented by the general formula (2) is not considered to have a partly silanol group at the terminal and does not form a completely closed space. It is a fully condensed silsesquioxane.
 次いで、一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物と下記一般式(7)
Figure JPOXMLDOC01-appb-I000017
(但し、R2は水素原子、ビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよい。Xは水素原子、ハロゲン原子または、アルコキシル基であって互いに同じか異なるものであってもよい。bは0~30の数を示す。)で表される化合物とを縮合反応させることで、下記一般式(3)-1
   Y1-[Z-(RSiO3/2)]l-Z-Y1  (3)-1
(但し、Rはビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、少なくとも一般式(3)-1の1分子中にはビニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基のいずれかの硬化性官能基を有するものである。また、nは6~14の数を示し、lは1~2000の数を示す。)で表される構成単位を有する籠構造含有硬化性シリコーン共重合体を得ることが出来る。ここで、Zは下記一般式(4)
Figure JPOXMLDOC01-appb-I000018
(但し、Rは水素、ビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよい。aは0~30の数を示す。)で表される2価の基である。また、Y1は下記一般式(5’)
   HO1/2-  (5’)
又は下記一般式(5)
   -[RSiO3/2][HO1/2]m-1  (5)
(但し、Rはビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、1分子中に含まれるRの少なくとも1つはビニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基のいずれかであり、また、nは6~14の数、mは1~4の数を示す)で表される。
Next, the silanol group-containing curable caged silsesquioxane compound represented by the general formula (2) and the following general formula (7)
Figure JPOXMLDOC01-appb-I000017
(Wherein R 2 is a hydrogen atom, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, and may be the same or different from each other. An atom, a halogen atom, or an alkoxyl group, which may be the same or different from each other, b represents a number of 0 to 30, and a compound represented by the following general formula ( 3) -1
Y 1- [Z- (R 1 SiO 3/2 ) n ] l -ZY 1 (3) -1
(However, R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but at least the general formula (3 ) -1 has one curable functional group of vinyl group, (meth) acryloyl group, allyl group or group having oxirane ring, and n is a number from 6 to 14. And 1 represents a number of 1 to 2000.) A cocoon structure-containing curable silicone copolymer having a structural unit represented by the following formula can be obtained. Here, Z is the following general formula (4)
Figure JPOXMLDOC01-appb-I000018
(Wherein R 2 is hydrogen, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, and may be the same or different from each other. A divalent group represented by the number of 30). Y 1 represents the following general formula (5 ′)
HO 1/2- (5 ')
Or the following general formula (5)
-[R 1 SiO 3/2 ] n [HO 1/2 ] m-1 (5)
(However, R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule. And at least one of R 1 is a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n is a number of 6 to 14, and m is a number of 1 to 4. ).
 一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物と一般式(7)で表される化合物との縮合反応により得られる籠構造含有硬化性シリコーン共重合体の製造方法においては、以下で説明するように、一般式(7)で表される化合物の置換基Xの種類により製造方法が異なる。 Production of cocoon structure-containing curable silicone copolymer obtained by condensation reaction of silanol group-containing curable cage-type silsesquioxane compound represented by general formula (2) and compound represented by formula (7) In the method, as described below, the production method varies depending on the type of the substituent X of the compound represented by the general formula (7).
 一般式(7)で表される化合物のXが塩素の場合、すなわち下記一般式(16)
Figure JPOXMLDOC01-appb-I000019
(但し、Rは水素原子、ビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよい。bは0~30の数を示す)の場合、一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物1モルに対して0.5~10モル、好ましくは0.5~3.0モルの範囲で上記一般式(16)で表されるジクロロシラン、またはα、ω-ジクロロシロキサンを塩基性条件下、非極性溶媒とエーテル系溶媒のうち1つもしくは両方をあわせた溶媒中で反応させることで、一般式(3)-1で表される構成単位を有する籠構造含有硬化性シリコーン共重合体を得ることができる。
When X of the compound represented by the general formula (7) is chlorine, that is, the following general formula (16)
Figure JPOXMLDOC01-appb-I000019
(However, R 2 is a hydrogen atom, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group, or a group having an oxirane ring, and may be the same or different from each other. In the case of a number of ˜30), 0.5 to 10 mol, preferably 0.5 to 3 mol per mol of silanol group-containing curable silsesquioxane compound represented by the general formula (2) The dichlorosilane represented by the above general formula (16) or α, ω-dichlorosiloxane in a range of 0 mol in a solvent that combines one or both of a nonpolar solvent and an ether solvent under basic conditions In this way, a cage structure-containing curable silicone copolymer having a structural unit represented by the general formula (3) -1 can be obtained.
 一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物と一般式(16)で表されるジクロロシラン、またはα、ω-ジクロロシロキサンとの具体的な反応条件については、例えばジクロロシラン、またはα、ω-ジクロロシロキサンを非極性溶媒とエーテル系溶媒のうち1つもしくは両方をあわせた溶媒に溶解し、ジクロロシラン、またはα、ω-ジクロロシロキサンに対して1当量以上のトリエチルアミンを加えた混合液か、あるいは溶媒兼塩基としてアミン系溶媒に溶解した混合液にシラノール基含有硬化性籠型シルセスキオキサン化合物を非極性溶媒とエーテル系溶媒のうち1つもしくは両方をあわせた溶媒に溶解した溶液を窒素等の不活性ガス雰囲気下、室温で滴下し、その後、室温で2時間以上撹拌を行うようにするのがよい。この際、反応時間が短いと、反応が完結しない場合がある。反応終了後、トルエンと水を加え、一般式(3)-1で表される構成単位を有する籠構造含有硬化性シリコーン共重合体をトルエンに溶解し、過剰のクロロシラン類、副成する塩酸及び塩酸塩を水層に溶解し除去するようにする。また、有機層を硫酸マグネシウム等の乾燥剤を用いて乾燥し、使用した塩基及び溶媒を減圧濃縮によって除去するようにする。 For specific reaction conditions of the curable caged silsesquioxane compound containing a silanol group represented by the general formula (2) and the dichlorosilane or α, ω-dichlorosiloxane represented by the general formula (16) For example, dichlorosilane or α, ω-dichlorosiloxane is dissolved in one or both of a nonpolar solvent and an ether solvent, and 1 equivalent or more of dichlorosilane or α, ω-dichlorosiloxane is dissolved. Silanol group-containing curable caged silsesquioxane compound is added to a mixed solution in which triethylamine is added or dissolved in an amine solvent as a solvent and base, and one or both of a nonpolar solvent and an ether solvent are used. The solution dissolved in the combined solvent is dropped at room temperature under an inert gas atmosphere such as nitrogen, and then stirred at room temperature for 2 hours or more. Good. At this time, if the reaction time is short, the reaction may not be completed. After completion of the reaction, toluene and water are added, and the soot structure-containing curable silicone copolymer having the structural unit represented by the general formula (3) -1 is dissolved in toluene, and excess chlorosilanes, by-product hydrochloric acid and The hydrochloride is dissolved in the aqueous layer and removed. Further, the organic layer is dried using a desiccant such as magnesium sulfate, and the used base and solvent are removed by concentration under reduced pressure.
 一般式(16)についてbが0で表されるジクロロシランの具体例を挙げるとアリルジクロロシラン、アリルヘキシルジクロロシラン、アリルメチルジクロロシラン、アリルフェニルジクロロシラン、メチルジクロロシラン、ジメチルジクロロシラン、エチルジクロロシラン、メチルビニルジクロロシラン、エチルメチルジクロロシラン、エトキシメチルジクロロシラン、ジビニルジクロロシラン、ジエチルジクロロシラン、メチルプロピルジクロロシラン、ジエトキシジクロロシラン、ブチルメチルジクロロシラン、フェニルジクロロシラン、ジアリルジクロロシラン、メチルペンチルジクロロシラン、メチルフェニルジクロロシラン、シクロヘキシルメチルジクロロシラン、ヘキシルメチルジクロロシラン、フェニルビニルジクロロシラン、6-メチルジクロロシリルー2-ノルボルネン、2-メチルジクロロシリルノルボルネン、3-メタクリロキシプロピルジクロロメチルシラン、ヘプチルメチルジクロロシラン、ジブチルジクロロシラン、メチル-β-フェネチルジクロロシラン、メチルオクチルジクロロシラン、t-ブチルフェニルジクロロシラン、デシルメチルジクロロシラン、ジフェニルジクロロシラン、ジヘキシルジクロロシラン、ドデシルメチルジクロロシラン、メチルオクタデシルジクロロシラン等が挙げられる。 Specific examples of dichlorosilane in which b is 0 in the general formula (16) include allyldichlorosilane, allylhexyldichlorosilane, allylmethyldichlorosilane, allylphenyldichlorosilane, methyldichlorosilane, dimethyldichlorosilane, ethyldisilane. Chlorosilane, methylvinyldichlorosilane, ethylmethyldichlorosilane, ethoxymethyldichlorosilane, divinyldichlorosilane, diethyldichlorosilane, methylpropyldichlorosilane, diethoxydichlorosilane, butylmethyldichlorosilane, phenyldichlorosilane, diallyldichlorosilane, methylpentyl Dichlorosilane, methylphenyldichlorosilane, cyclohexylmethyldichlorosilane, hexylmethyldichlorosilane, phenylvinyldichlorosilane, 6- Methyldichlorosilyl-2-norbornene, 2-methyldichlorosilylnorbornene, 3-methacryloxypropyldichloromethylsilane, heptylmethyldichlorosilane, dibutyldichlorosilane, methyl-β-phenethyldichlorosilane, methyloctyldichlorosilane, t-butylphenyl Examples include dichlorosilane, decylmethyldichlorosilane, diphenyldichlorosilane, dihexyldichlorosilane, dodecylmethyldichlorosilane, and methyloctadecyldichlorosilane.
 一般式(16)について、bが1~30で表されるα、ω-ジクロロシロキサンの具体例を挙げると、1,1,3,3-テトラメチル-1,3-ジクロロシロキサン、1,1,3,3-テトラシクロペンチル-1,3-ジクロロシロキサン、1,1,3,3,-テトライソプロピル-1,3-ジクロロシロキサン、1,1,3,3,5,5-ヘキサメチル-1,5-ジクロロトリシロキサン、1,1,3,3,5,5,7,7-オクタメチル-1,7-ジクロロテトラシロキサン等が挙げられる。 With respect to the general formula (16), specific examples of α, ω-dichlorosiloxane in which b is 1 to 30 are as follows: 1,1,3,3-tetramethyl-1,3-dichlorosiloxane, 1,1 , 3,3-tetracyclopentyl-1,3-dichlorosiloxane, 1,1,3,3, -tetraisopropyl-1,3-dichlorosiloxane, 1,1,3,3,5,5-hexamethyl-1, Examples include 5-dichlorotrisiloxane, 1,1,3,3,5,5,7,7-octamethyl-1,7-dichlorotetrasiloxane.
 一般式(7)で表される化合物のXが塩素の場合に用いる有機溶媒については、ジクロロシラン、またはα、ω-ジクロロシロキサンに対して不活性なものであれば任意に選択でき、このうち、非極性溶媒について具体例を示すと、ヘキサン、トルエン、キシレン、ベンゼンなどの炭化水素系溶媒が挙げられる。エーテル系溶媒について具体例を示すと、ジエチルエーテル、テトラヒドロフランを挙げることができる。これらの中でも、溶媒和効果による構造制御寄与の観点からエーテル系溶媒が好ましく、その中でもテトラヒドロフランがより好ましい。また、溶媒兼塩基としてアミン系溶媒を単独、または混合溶液として用いてもよい。アミン系溶媒の具体例を示すと、ピリジン、トリエチルアミン、アニリン、N、N-ジイソプロピルアミンが挙げられる。アミン系溶媒を用いない場合には、トリエチルアミン等の塩基を加える。溶媒の好ましい使用量は、一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン構造単位1モルに対して0.01~10Mの範囲であるのがよく、好ましくは、0.01~1Mであるのがよい。 The organic solvent used when X in the compound represented by the general formula (7) is chlorine can be arbitrarily selected as long as it is inert to dichlorosilane or α, ω-dichlorosiloxane. Specific examples of the nonpolar solvent include hydrocarbon solvents such as hexane, toluene, xylene, and benzene. Specific examples of the ether solvent include diethyl ether and tetrahydrofuran. Among these, ether solvents are preferable from the viewpoint of contribution to structure control due to the solvation effect, and tetrahydrofuran is more preferable among them. Moreover, you may use an amine solvent as a solvent and a base individually or as a mixed solution. Specific examples of the amine solvent include pyridine, triethylamine, aniline, N, N-diisopropylamine. When an amine solvent is not used, a base such as triethylamine is added. A preferable amount of the solvent used is in the range of 0.01 to 10M with respect to 1 mol of the silanol group-containing curable caged silsesquioxane structural unit represented by the general formula (2), preferably 0.01 to 1M is preferable.
 一方、一般式(7)で表される化合物のXがアルコキシル基の場合、すなわち下記一般式(17)
Figure JPOXMLDOC01-appb-I000020
(但し、Rは水素、ビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基、アルコキシル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよい。Rは、メチル基、エチル基、プロピル基であって、互いに同じか異なるものであってもよい。bは0~30の数を示す)の場合、一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物1モルに対して0.5~10モル、好ましくは0.5~3.0モルの範囲で上記一般式(17)で表されるジアルコキシシラン、またはα、ω-ジアルコキシシロキサンを触媒存在下、非極性溶媒とエーテル系溶媒のうち1つもしくは両方をあわせた溶媒中で反応させることで、一般式(3)-1で表される構成単位を有する籠構造含有硬化性シリコーン共重合体を得ることができる。
On the other hand, when X of the compound represented by the general formula (7) is an alkoxyl group, that is, the following general formula (17)
Figure JPOXMLDOC01-appb-I000020
(However, R 2 is hydrogen, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group, an alkoxyl group, or a group having an oxirane ring, and may be the same or different from each other. 4 is a methyl group, an ethyl group, or a propyl group, which may be the same or different from each other (b represents a number of 0 to 30), and a silanol group represented by the general formula (2) Dialkoxysilane represented by the above general formula (17) in the range of 0.5 to 10 mol, preferably 0.5 to 3.0 mol, relative to 1 mol of the curable cage-type silsesquioxane compound, or By reacting α, ω-dialkoxysiloxane in the presence of a catalyst in a solvent including one or both of a nonpolar solvent and an ether solvent, the structural unit represented by the general formula (3) -1 can be obtained. Containing curable silicone copolymer with cocoon structure It is possible to obtain.
 一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物と一般式(17)で表されるジアルコキシシラン、またはα、ω-ジアルコキシシロキサンとの具体的な反応条件については、例えば一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物、ジアルコキシシラン、またはα、ω-ジアルコキシシロキサン及び触媒を非極性溶媒とエーテル系溶媒のうち1つもしくは両方をあわせた溶媒に溶解した場合、その濃度は、シラノール基含有硬化性籠型シルセスキオキサン化合物に対して0.1~2.0Mとするのがよい。反応温度は、0~130℃が好ましく、80~110℃がより好ましい。反応温度が0℃より低いと、反応速度が遅くなり反応時間を多く費やす結果となる。一方、130℃より高いと籠構造の開裂反応が起こり複雑な縮合反応の結果、ゲル状の固体物を形成してしまう。また、反応時間は2時間以上が好ましい。この際、反応時間が短いと、反応が完結しない場合がある。 Specific reaction conditions for the silanol group-containing curable caged silsesquioxane compound represented by general formula (2) and dialkoxysilane or α, ω-dialkoxysiloxane represented by general formula (17) For example, a silanol group-containing curable silsesquioxane compound represented by the general formula (2), dialkoxysilane, or α, ω-dialkoxysiloxane and a catalyst selected from a nonpolar solvent and an ether solvent When dissolved in one or both solvents, the concentration is preferably 0.1 to 2.0 M with respect to the silanol group-containing curable caged silsesquioxane compound. The reaction temperature is preferably 0 to 130 ° C, more preferably 80 to 110 ° C. When the reaction temperature is lower than 0 ° C., the reaction rate becomes slow, resulting in a long reaction time. On the other hand, when the temperature is higher than 130 ° C., a cleavage reaction of the cocoon structure occurs, and as a result of a complicated condensation reaction, a gel-like solid is formed. The reaction time is preferably 2 hours or more. At this time, if the reaction time is short, the reaction may not be completed.
 反応終了後は、反応溶液を中性もしくは酸性よりにした後、水または水含有反応溶媒を分離する。水又は水含有反応溶媒の分離は、この溶液を食塩水等で洗浄し水分やその他の不純物を十分に除去し、その後無水硫酸マグネシウム等の乾燥剤で乾燥させる等の手段が採用できる。エーテル系溶媒を使用した場合は、減圧蒸発等の手段が採用でき、エーテル系溶媒を除去した後非極性溶媒を添加して重縮合物を溶解させて上記同様に洗浄、乾燥を行う。 After completion of the reaction, the reaction solution is made neutral or acidic, and then water or a water-containing reaction solvent is separated. Separation of the water or the water-containing reaction solvent can employ means such as washing the solution with a saline solution to sufficiently remove moisture and other impurities, and then drying with a drying agent such as anhydrous magnesium sulfate. When an ether solvent is used, means such as evaporation under reduced pressure can be employed. After removing the ether solvent, a nonpolar solvent is added to dissolve the polycondensate, and washing and drying are performed in the same manner as described above.
 一般式(17)についてbが0で表されるジアルコキシシランの具体例を挙げるとジメトキシジメチルシラン、ジエトキシメチルシラン、ジエトキシビニルシラン、ジエトキシジエチルシラン、ジメチルジプロポキシシラン、ジメトキシメチルフェニルシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、ジエトキシメチルフェニルシラン、3-メタクリロキシプロピルメチルジエトキシシラン、ジメトキシジフェニルシラン、ジエトキシドデシルメチルシラン等が挙げられる。 Specific examples of dialkoxysilane in which b is represented by 0 for general formula (17) include dimethoxydimethylsilane, diethoxymethylsilane, diethoxyvinylsilane, diethoxydiethylsilane, dimethyldipropoxysilane, dimethoxymethylphenylsilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, diethoxymethylphenylsilane, 3-methacryloxypropylmethyldiethoxysilane, dimethoxydiphenylsilane, Examples include diethoxydodecylmethylsilane.
 一般式(17)についてbが1~30で表されるα,ω-ジアルコキシシロキサンの具体例を挙げると1,3-ジメトキシテトラメチルジシロキサン、1,3-ジエトキシテトラメチルジシロキサン、1,5-ジメトキシヘキサメチルトリシロキサン、1,7-ジメトキシオクタメチルテトラシロキサン、1,5-ジエトキシヘキサメチルトリシロキサン、1,7-ジエトキシオクタメチルテトラシロキサン等が挙げられる。 Specific examples of α, ω-dialkoxysiloxane in which b is represented by 1 to 30 in the general formula (17) include 1,3-dimethoxytetramethyldisiloxane, 1,3-diethoxytetramethyldisiloxane, 1 1,5-dimethoxyhexamethyltrisiloxane, 1,7-dimethoxyoctamethyltetrasiloxane, 1,5-diethoxyhexamethyltrisiloxane, 1,7-diethoxyoctamethyltetrasiloxane, and the like.
 一般式(7)で表される化合物のXがアルコキシル基の場合に用いる有機溶媒については、アルコキシシラン、またはα,ω-ジアルコキシシロキサンに対して不活性なものであれば任意に選択でき、このうち、非極性溶媒について具体例を示すと、ヘキサン、トルエン、キシレン、ベンゼンなどの炭化水素系溶媒が挙げられる。エーテル系溶媒について具体例を示すと、ジエチルエーテル、テトラヒドロフランを挙げることができる。その中でもトルエンを溶媒とすることが好ましい。また、エーテル系溶媒と非極性溶媒の混合系でもよい。有機溶媒の好ましい使用量は、一般式(2)で表される構造単位1モルに対して0.01~10Mの範囲であるのがよく、好ましくは、0.1~1Mであるのがよい。 The organic solvent used when X of the compound represented by the general formula (7) is an alkoxyl group can be arbitrarily selected as long as it is inert with respect to alkoxysilane or α, ω-dialkoxysiloxane, Of these, specific examples of nonpolar solvents include hydrocarbon solvents such as hexane, toluene, xylene, and benzene. Specific examples of the ether solvent include diethyl ether and tetrahydrofuran. Among these, it is preferable to use toluene as a solvent. Further, a mixed system of an ether solvent and a nonpolar solvent may be used. The amount of the organic solvent used is preferably in the range of 0.01 to 10M, preferably 0.1 to 1M, with respect to 1 mol of the structural unit represented by the general formula (2). .
 また、一般式(7)で表される化合物のXがアルコキシル基の場合に用いる触媒については、水酸化カリウム、水酸化ナトリウム及び、水酸化セシウムなどのアルカリ金属水酸化物、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム、水酸化ベンジルトリメチルアンモニウム及び、水酸化ベンジルトリエチルアンモニウムなどの水酸化アンモニウム塩、テトラエトキシチタン、テトラブトキシチタン、酸化スズ、ジブチル酸化スズ、酢酸亜鉛二水和物、酢酸鉛三水和物、酸化鉛、酢酸アルミニウム、酢酸マンガン四水和物、酢酸コバルト四水和物、酢酸カドミニウム、ジブチルスズラウレート、ジブチルスズマレエート、ジオクチルスズマーカプチド及びスタナスオクトエートオクテン酸鉛等の有機金属系触媒、トリエチレンジアミン、テトラメチルグアジニン、2-(ジメチルアミノメチル)フェノール、N,N,N’,N ’-テトラメチルヘキサン-1,6-ジアミン、1,8-ジアザビシクロ[5.4.0]ウンデセン-7、p-トルエンスルホン酸及び三フッ化酢酸等が挙げられる。これらの中でも、触媒活性が高い点から水酸化テトラメチルアンモニウムを用いることが好ましい。 The catalyst used when X of the compound represented by the general formula (7) is an alkoxyl group includes potassium hydroxide, sodium hydroxide, alkali metal hydroxides such as cesium hydroxide, tetramethylammonium hydroxide, and the like. , Tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, ammonium hydroxide salts such as benzyltriethylammonium hydroxide, tetraethoxytitanium, tetrabutoxytitanium, tin oxide, dibutyltin oxide, zinc acetate dihydrate Japanese, Lead acetate trihydrate, Lead oxide, Aluminum acetate, Manganese acetate tetrahydrate, Cobalt acetate tetrahydrate, Cadmium acetate, Dibutyltin laurate, Dibutyltin maleate, Dioctyltin marker peptide and Stanas octoate Octene Organometallic catalysts such as lead, triethylenediamine, tetramethylguanidine, 2- (dimethylaminomethyl) phenol, N, N, N ', N' -tetramethylhexane-1,6-diamine, 1,8-diazabicyclo [5.4.0] Undecene-7, p-toluenesulfonic acid, trifluoroacetic acid and the like. Among these, it is preferable to use tetramethylammonium hydroxide from the viewpoint of high catalytic activity.
 更には、一般式(7)で表される化合物のXが水素原子の場合、すなわち下記一般式(18)
Figure JPOXMLDOC01-appb-I000021
(但し、Rは水素原子、ビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基、アルコキシル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよい。bは0~30の数を示す。)の場合、一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物1モルに対して0.5~10モル、好ましくは0.5~3.0モルの範囲の上記一般式(17)で表されるジハイドロジェンシラン、またはα,ω-ジハイドロジェンシロキサンを触媒存在下、非極性溶媒とエーテル系溶媒のうち1つもしくは両方をあわせた溶媒中で反応させれば、一般式(3)-1で表される構成単位を有する籠構造含有硬化性シリコーン共重合体を得ることができる。
Furthermore, when X of the compound represented by the general formula (7) is a hydrogen atom, that is, the following general formula (18)
Figure JPOXMLDOC01-appb-I000021
(However, R 2 is a hydrogen atom, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group, an alkoxyl group, or a group having an oxirane ring, and may be the same or different from each other. b represents a number from 0 to 30)), 0.5 to 10 mol, preferably 0 to 1 mol of the silanol group-containing curable silsesquioxane compound represented by the general formula (2) One of a nonpolar solvent and an ether solvent in the presence of a catalyst of dihydrogensilane represented by the above general formula (17) or α, ω-dihydrogensiloxane in the range of 5 to 3.0 mol Or if it makes it react in the solvent which combined both, the cage structure containing curable silicone copolymer which has a structural unit represented by General formula (3) -1 can be obtained.
 一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物と一般式(17)で表されるジハイドロジェンシラン、またはα,ω-ジハイドロジェンシロキサンとの具体的な反応条件については、例えば一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物とジハイドロジェンシラン、またはα,ω-ジハイドロジェンシロキサン及び触媒を非極性溶媒とエーテル系溶媒のうち1つもしくは両方をあわせた溶媒に溶解した場合、その濃度は、一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物に対して0.1~2.0Mであるのがよい。反応温度は0~100℃が好ましく、20~80℃がより好ましい。反応温度が0℃より低いと、反応速度が遅くなり反応時間を多く費やす結果となる。一方、100℃よりも高いと反応速度が速すぎるために複雑な縮合反応が進行してしまいゲル状の固体物を形成してしまう。反応時間は2時間以上が好ましい。この際、反応時間が短いと、反応が完結しない場合がある。 Specific examples of a silanol group-containing curable silsesquioxane compound represented by the general formula (2) and a dihydrogensilane or α, ω-dihydrogensiloxane represented by the general formula (17) Regarding the reaction conditions, for example, a silanol group-containing curable silsesquioxane compound represented by the general formula (2) and dihydrogensilane, or α, ω-dihydrogensiloxane and a catalyst are mixed with a nonpolar solvent and an ether. When one or both of the system solvents are dissolved in the solvent, the concentration is 0.1 to 2 with respect to the silanol group-containing curable silsesquioxane compound represented by the general formula (2). .0M. The reaction temperature is preferably 0-100 ° C, more preferably 20-80 ° C. When the reaction temperature is lower than 0 ° C., the reaction rate becomes slow, resulting in a long reaction time. On the other hand, when the temperature is higher than 100 ° C., the reaction rate is too high, so that a complex condensation reaction proceeds and a gel-like solid is formed. The reaction time is preferably 2 hours or more. At this time, if the reaction time is short, the reaction may not be completed.
 反応終了後は、反応溶液を中性もしくは酸性よりにした後、水または水含有反応溶媒を分離する。この際、加水分解により、末端基がシラノール基でないものは、シラノール基へと変換される。水又は水含有反応溶媒の分離は、この溶液を食塩水等で洗浄し水分やその他の不純物を十分に除去し、その後無水硫酸マグネシウム等の乾燥剤で乾燥させる等の手段が採用できる。エーテル系溶媒を使用した場合は、減圧蒸発等の手段が採用でき、エーテル系溶媒を除去した後非極性溶媒を添加して重縮合物を溶解させて上記同様に洗浄、乾燥を行う。 After completion of the reaction, the reaction solution is made neutral or acidic, and then water or a water-containing reaction solvent is separated. At this time, those whose terminal groups are not silanol groups are converted into silanol groups by hydrolysis. Separation of the water or the water-containing reaction solvent can employ means such as washing the solution with a saline solution to sufficiently remove moisture and other impurities, and then drying with a drying agent such as anhydrous magnesium sulfate. When an ether solvent is used, means such as evaporation under reduced pressure can be employed. After removing the ether solvent, a nonpolar solvent is added to dissolve the polycondensate, and washing and drying are performed in the same manner as described above.
 一般式(18)について、bが0で表されるジハイドロジェンシランの具体例を挙げると、ジエチルシラン、ジフェニルシラン等が挙げられる。 Regarding the general formula (18), specific examples of dihydrogensilane in which b is 0 are diethylsilane, diphenylsilane and the like.
 一般式(18)について、bが1~30で表されるα,ω-ジハイドロジェンシロキサンの具体例を挙げると、1,1,3,3-テトラメチルジシロキサン、1,1,3,3-テトラシクロペンチルジシロキサン、1,1,3,3-テトライソプロピルジシロキサン、1,1,3,3,5,5-ヘキサメチルトリシロキサン、1,1,3,3,5,5,7,7-オクタメチルテトラシロキサン等が挙げられる。 Specific examples of α, ω-dihydrogensiloxane in which b is represented by 1 to 30 in the general formula (18) are 1,1,3,3-tetramethyldisiloxane, 1,1,3, 3-tetracyclopentyldisiloxane, 1,1,3,3-tetraisopropyldisiloxane, 1,1,3,3,5,5-hexamethyltrisiloxane, 1,1,3,3,5,5,7 , 7-octamethyltetrasiloxane and the like.
 一般式(7)で表される化合物のXが水素原子の場合に用いる有機溶媒については、ジハイドロジェンシラン、またはα,ω-ジハイドロジェンシロキサンに対して不活性なものであれば任意に選択でき、このうち、非極性溶媒について具体例を示すと、ヘキサン、トルエン、キシレン、ベンゼンなどの炭化水素系溶媒が挙げられる。エーテル系溶媒について具体例を示すと、ジエチルエーテル、テトラヒドロフランを挙げることができる。その中でもトルエンを溶媒とすることが好ましい。また、極性溶媒とエーテル系溶媒の混合系でもよい。有機溶媒の好ましい使用量は、一般式(2)で表される構造単位1モルに対して0.01~10Mの範囲であるのがよく、好ましくは、0.1~1Mであるのがよい。 The organic solvent used when X of the compound represented by the general formula (7) is a hydrogen atom is arbitrary as long as it is inert to dihydrogensilane or α, ω-dihydrogensiloxane. Of these, hydrocarbon solvents such as hexane, toluene, xylene, and benzene can be mentioned as specific examples of nonpolar solvents. Specific examples of the ether solvent include diethyl ether and tetrahydrofuran. Among these, it is preferable to use toluene as a solvent. Further, a mixed system of a polar solvent and an ether solvent may be used. The amount of the organic solvent used is preferably in the range of 0.01 to 10M, preferably 0.1 to 1M, with respect to 1 mol of the structural unit represented by the general formula (2). .
 また、一般式(7)で表される化合物のXが水素原子の場合に用いる触媒については、テトラエトキシチタン、テトラブトキシチタン、ヒドロキシルアミン、N-メチルヒドロキシルアミン、N、N-ジメチルヒドロキシルアミン、N-エチルヒドロキシルアミン、N、N-ジエチルヒドロキシルアミン等のヒドロキシルアミン化合物が挙げられる。これらの中でも、N、N-ジエチルヒドロキシルアミンを用いることが好ましい。 As for the catalyst used when X in the compound represented by the general formula (7) is a hydrogen atom, tetraethoxytitanium, tetrabutoxytitanium, hydroxylamine, N-methylhydroxylamine, N, N-dimethylhydroxylamine, Examples thereof include hydroxylamine compounds such as N-ethylhydroxylamine, N, N-diethylhydroxylamine and the like. Among these, it is preferable to use N, N-diethylhydroxylamine.
 さらに、一般式(3)-1で表される籠構造含有硬化性シリコーン共重合体を、下記一般式(8)
Figure JPOXMLDOC01-appb-I000022
(但し、Rは水素、ビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよい。)で表される化合物と縮合反応させることで、下記一般式(3)-2
   Y2-[Z-(RSiO3/2)]l-Z-Y2   (3)-2
(但し、Rはビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基、又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、1分子中に含まれるRの少なくとも1つはビニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基のいずれかであり、nは6~14の数を示し、lは1~2000の数を示す。また、Zは、下記一般式(4)
Figure JPOXMLDOC01-appb-I000023
(但し、Rは水素原子、ビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよく、aは0~30の数を示す。)で表される2価の基であり、Yは下記一般式(5’)
   HO1/2-  (5’)
又は下記一般式(6)
Figure JPOXMLDOC01-appb-I000024
(但し、Rは水素原子、ビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよい。)で表される1価の基である。)で表される構成単位を有する籠構造含有硬化性シリコーン共重合体とすることもできる。
Furthermore, the cocoon structure-containing curable silicone copolymer represented by the general formula (3) -1 is converted into the following general formula (8):
Figure JPOXMLDOC01-appb-I000022
(However, R 3 is a group having hydrogen, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, and may be the same or different from each other). The following general formula (3) -2
Y 2- [Z- (R 1 SiO 3/2 ) n ] l -ZY 2 (3) -2
(However, R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group, or an oxirane ring, and they may be the same or different from each other. At least one of R 1 contained is any one of a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n represents a number of 6 to 14, and l represents a number of 1 to 2000. Z represents the following general formula (4)
Figure JPOXMLDOC01-appb-I000023
(However, R 2 is a hydrogen atom, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, which may be the same or different from each other, and a is 0 Y 2 is a divalent group represented by the following general formula (5 ′):
HO 1/2- (5 ')
Or the following general formula (6)
Figure JPOXMLDOC01-appb-I000024
(Wherein R 3 is a hydrogen atom, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, and may be the same or different from each other). Is a monovalent group. ) -Containing curable silicone copolymer having a structural unit represented by:
 ここで、一般式(3)-1で表される構成単位を有する籠構造含有硬化性シリコーン共重合体1モルに対して2~100モルの範囲の上記一般式(8)で表されるクロロシランを塩基性条件下、非極性溶媒と極性溶媒のうち1つもしくは両方をあわせた溶媒中で反応させることで、一般式(3)-2で表される構成単位を有する籠構造含有硬化性シリコーン共重合体を得ることができる。クロロシランの好ましい使用量については、一般式(3)-1で表される構成単位を有する籠構造含有硬化性シリコーン共重合体1モルに対して、2~30モルであるのがよい。 Here, the chlorosilane represented by the general formula (8) in the range of 2 to 100 moles per mole of the cocoon structure-containing curable silicone copolymer having the structural unit represented by the general formula (3) -1 Is reacted in a solvent that combines one or both of a nonpolar solvent and a polar solvent under basic conditions, and has a cocoon structure-containing curable silicone having a structural unit represented by general formula (3) -2 A copolymer can be obtained. The preferred amount of chlorosilane to be used is 2 to 30 moles per mole of the cocoon structure-containing curable silicone copolymer having the structural unit represented by the general formula (3) -1.
 一般式(3)-1で表される構成単位を有する籠構造含有硬化性シリコーン共重合体と一般式(8)で表されるクロロシランとの具体的な反応条件については、例えばクロロシランを非極性溶媒と極性溶媒のうち1つもしくは両方をあわせた溶媒に溶解し、クロロシランに対して1当量以上のトリエチルアミンを加えた混合液か、あるいは溶媒兼塩基としてクロロシランをピリジンに溶解した混合液にシラノール基含有硬化性籠型シルセスキオキサン化合物を非極性溶媒と極性溶媒のうち1つもしくは両方をあわせた溶媒に溶解した溶液を窒素等の不活性ガス雰囲気下、室温で滴下し、その後、室温で2時間以上撹拌を行うようにするのがよい。この際、反応時間が短いと、反応が完結しない場合がある。反応終了後、トルエンと水を加え、一般式(3)-2で表される構成単位を有する籠構造含有硬化性シリコーン共重合体をトルエンに溶解し、過剰のクロロシラン類、副成する塩酸、及び塩酸塩を水層に溶解し除去するようにする。また、有機層を硫酸マグネシウム等の乾燥剤を用いて乾燥し、使用した塩基及び溶媒を減圧濃縮によって除去し、一般式(3)-2で表される籠構造含有硬化性シリコーン共重合体を得る。 Regarding specific reaction conditions of the cocoon structure-containing curable silicone copolymer having the structural unit represented by the general formula (3) -1 and the chlorosilane represented by the general formula (8), for example, chlorosilane is nonpolar. A silanol group is dissolved in a solvent in which one or both of a solvent and a polar solvent are combined and one equivalent or more of triethylamine is added to chlorosilane, or a solvent in which chlorosilane is dissolved in pyridine as a base. A solution prepared by dissolving the curable cocoon-type silsesquioxane compound in a solvent containing one or both of a nonpolar solvent and a polar solvent is added dropwise at room temperature under an inert gas atmosphere such as nitrogen, and then at room temperature. Stirring should be performed for 2 hours or more. At this time, if the reaction time is short, the reaction may not be completed. After completion of the reaction, toluene and water are added, and the soot structure-containing curable silicone copolymer having the structural unit represented by the general formula (3) -2 is dissolved in toluene, and excess chlorosilanes, by-product hydrochloric acid, And the hydrochloride is dissolved and removed in the aqueous layer. In addition, the organic layer was dried using a desiccant such as magnesium sulfate, the used base and solvent were removed by concentration under reduced pressure, and a cocoon structure-containing curable silicone copolymer represented by the general formula (3) -2 was obtained. obtain.
 一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物と一般式(16)で表されるジクロロシラン、またはα、ω-ジクロロシロキサンと反応させて一般式(3)-1を得る場合に限り、一般式(3)-1を取り出さずに反応系中に一般式(8)で表されるクロロシランを加え、反応させることで、一般式(3)-2で表される構成単位を有する籠構造含有硬化性シリコーン共重合体が得られる。 By reacting a curable caged silsesquioxane compound containing a silanol group represented by the general formula (2) with dichlorosilane or α, ω-dichlorosiloxane represented by the general formula (16), the general formula (3) Only when -1 is obtained, the chlorosilane represented by the general formula (8) is added to the reaction system without taking out the general formula (3) -1 and the reaction is performed. A cocoon structure-containing curable silicone copolymer having a structural unit is obtained.
 一般式(3)-2で表される構成単位を有する籠構造含有硬化性シリコーン共重合体を得る反応の具体的な条件については、一般式(8)で表されるクロロシランを非極性溶媒と極性溶媒のうち1つもしくは両方をあわせた溶媒に溶解し、クロロシランに対して1当量以上のトリエチルアミンを加えた混合液か、あるいは溶媒兼塩基として一般式(7)で表されるクロロシランをピリジンに溶解した混合液とする。シラノール基含有硬化性籠型シルセスキオキサン化合物にジクロロシランを滴下し、2時間以上撹拌した後、先に調整したクロロシラン溶液を滴下し、再び、室温で2時間以上撹拌を行うのがよい。この際、反応時間が短いと、反応が完結しない場合がある。反応終了後、トルエンと水を加え、一般式(3)-2で表される構成単位を有する籠構造含有硬化性シリコーン共重合体をトルエンに溶解し、過剰のクロロシラン類、副成する塩酸、及び塩酸塩を水層に溶解し除去する。有機層を硫酸マグネシウム等の乾燥剤を用いて乾燥し、使用した塩基及び溶媒を減圧濃縮によって除去し、一般式(3)-2で表される籠構造含有硬化性シリコーン共重合体を得る。 Regarding specific conditions for the reaction to obtain a cocoon structure-containing curable silicone copolymer having a structural unit represented by the general formula (3) -2, the chlorosilane represented by the general formula (8) is used as a nonpolar solvent. Dissolve in one or both of polar solvents and mix with 1 or more equivalents of triethylamine to chlorosilane, or chlorosilane represented by general formula (7) as solvent and base into pyridine Use a dissolved mixture. It is preferable that dichlorosilane is added dropwise to the silanol group-containing curable cage-type silsesquioxane compound and stirred for 2 hours or more, then the chlorosilane solution prepared above is added dropwise, and again stirred at room temperature for 2 hours or more. At this time, if the reaction time is short, the reaction may not be completed. After completion of the reaction, toluene and water are added, and the cocoon structure-containing curable silicone copolymer having the structural unit represented by the general formula (3) -2 is dissolved in toluene, and excess chlorosilanes, by-product hydrochloric acid, And the hydrochloride is dissolved and removed in the aqueous layer. The organic layer is dried using a desiccant such as magnesium sulfate, and the base and solvent used are removed by concentration under reduced pressure to obtain a cocoon structure-containing curable silicone copolymer represented by the general formula (3) -2.
 一般式(8)で表されるクロロシランの具体例を挙げると、トリメチルクロロシラン、アリルジメチルクロロシラン、ジメチルプロピルクロロシラン、ジメチルイソプロピルクロロシラン、t-ブチルジメチルクロロシラン、トリエチルクロロシラン、ジメチルフェニルクロロシラン、ベンジルジメチルクロロシラン、トリプロピルクロロシラン、トリブチルクロロシラン、ジフェニルビニルクロロシラン、トリフェニルクロロシラン等が挙げられる。 Specific examples of the chlorosilane represented by the general formula (8) include trimethylchlorosilane, allyldimethylchlorosilane, dimethylpropylchlorosilane, dimethylisopropylchlorosilane, t-butyldimethylchlorosilane, triethylchlorosilane, dimethylphenylchlorosilane, benzyldimethylchlorosilane, Examples include propylchlorosilane, tributylchlorosilane, diphenylvinylchlorosilane, and triphenylchlorosilane.
 また、本発明においては、一般式(3)で表される構成単位を有する籠構造含有硬化性シリコーン共重合体に、ヒドロシリル化触媒とラジカル開始剤とのうちいずれか一方又は両者を配合し、かつ、少なくとも1つのケイ素原子上に水素原子を有するヒドロシリル化可能な化合物と分子中に不飽和基を有する化合物とのうちいずれか一方又は両者を配合して硬化性樹脂組成物を得るようにしてもよい。そして、この硬化性樹脂組成物を熱硬化又は光硬化させて、ヒドロシリル化やラジカル重合することで、硬化物(成形体)を得ることができる。すなわち、硬化性樹脂を硬化させて成形体を得る目的や、得られる成形体の物性等を改良する目的から、反応を促進する添加剤としてヒドロシリル化触媒、熱重合開始剤、熱重合促進剤、光重合開始剤、光開始助剤、増感剤等を配合して硬化性樹脂組成物を得るようにする。 In the present invention, the cage structure-containing curable silicone copolymer having the structural unit represented by the general formula (3) is blended with either or both of a hydrosilylation catalyst and a radical initiator, In addition, a curable resin composition is obtained by blending either or both of a hydrosilylatable compound having a hydrogen atom on at least one silicon atom and a compound having an unsaturated group in the molecule. Also good. And a hardened | cured material (molded object) can be obtained by thermosetting or photocuring this curable resin composition and carrying out hydrosilylation or radical polymerization. That is, for the purpose of obtaining a molded body by curing a curable resin, and for the purpose of improving the physical properties of the obtained molded body, hydrosilylation catalyst, thermal polymerization initiator, thermal polymerization accelerator, A curable resin composition is obtained by blending a photopolymerization initiator, a photoinitiator assistant, a sensitizer and the like.
 硬化性樹脂組成物において、一般式(3)で表せる籠構造含有硬化性シリコーン共重合体と共に使用されるケイ素原子上に水素原子を有する化合物は、分子中に少なくとも1つ以上のヒドロシリル化可能なケイ素原子上に水素原子を有しているオリゴマー及びモノマーである。このうち、ケイ素原子上に水素原子を有しているオリゴマーとしては、ポリハイドロジェンシロキサン類、ポリジメチルヒロドシロキシシロキサン類及びその共重合体、末端がジメチルヒドロシロキシで修飾されたシロキサンが挙げられる。また、ケイ素原子上に水素原子を有しているモノマーとしては、テトラメチルシクロテトラシロキサン、ペンタメチルシクロペンタなどの環状シロキサン類、ジヒドロジシロキサン類、トリヒドロモノシラン類、ジヒドロモノシラン類、モノヒドロモノシラン類、ジメチルシロキシシロキサン類等を例示することができ、これらを2種類以上混合してもよい。 In the curable resin composition, the compound having a hydrogen atom on the silicon atom used together with the cocoon structure-containing curable silicone copolymer represented by the general formula (3) can be hydrosilylated in at least one molecule. Oligomers and monomers having hydrogen atoms on silicon atoms. Among these, examples of the oligomer having a hydrogen atom on a silicon atom include polyhydrogensiloxanes, polydimethylhydroxysiloxanes and copolymers thereof, and siloxanes whose ends are modified with dimethylhydrosiloxy. . Examples of monomers having a hydrogen atom on a silicon atom include cyclic siloxanes such as tetramethylcyclotetrasiloxane and pentamethylcyclopenta, dihydrodisiloxanes, trihydromonosilanes, dihydromonosilanes, and monohydromonosilanes. And dimethylsiloxysiloxanes, and two or more of these may be mixed.
 また、硬化性樹脂組成物において、一般式(3)で表せる籠構造含有硬化性シリコーン共重合体と共に使用される不飽和基を有する化合物については、構造単位の繰り返し数が2~20程度の重合体である反応性オリゴマーと、低分子量かつ低粘度の反応性モノマーとに大別される。また、不飽和基を1個有する単官能不飽和化合物と2個以上有する多官能不飽和化合物とに大別される。 In addition, in the curable resin composition, the compound having an unsaturated group used together with the cocoon structure-containing curable silicone copolymer represented by the general formula (3) is a heavy polymer having a repeating unit of about 2 to 20 structural units. It is roughly divided into a reactive oligomer that is a coalescence and a low-molecular-weight and low-viscosity reactive monomer. Moreover, it divides roughly into the monofunctional unsaturated compound which has one unsaturated group, and the polyfunctional unsaturated compound which has two or more.
 このうち、反応性オリゴマーとしては、ポリビニルシロキサン類、ポリジメチルビニルシロキシシロキサン類、及びその共重合体、末端がジメチルビニルシロキシで修飾されたシロキサン類、エポキシアクリレート、エポキシ化油アクリレート、ウレタンアクリレート、不飽和ポリエステル、ポリエステルアクリレート、ポリエーテルアクリレート、ビニルアクリレート、ポリエン/チオール、シリコーンアクリレート、ポリブタジエン、ポリスチリルエチルメタクリレート等を例示することができる。これらには、単官能不飽和化合物と多官能不飽和化合物がある。 Among these, reactive oligomers include polyvinylsiloxanes, polydimethylvinylsiloxysiloxanes and copolymers thereof, siloxanes modified with dimethylvinylsiloxy at the ends, epoxy acrylates, epoxidized oil acrylates, urethane acrylates, Examples thereof include saturated polyester, polyester acrylate, polyether acrylate, vinyl acrylate, polyene / thiol, silicone acrylate, polybutadiene, and polystyrylethyl methacrylate. These include monofunctional unsaturated compounds and polyfunctional unsaturated compounds.
 反応性の単官能モノマーとしては、トリエチルビニルシラン、トリフェニルビニルシランなどのビニル置換ケイ素化合物類、シクロヘキセンなどの環状オレフィン類、スチレン、酢酸ビニル、N-ビニルピロリドン、ブチルアクリレート、2-エチルヘキシルアクリレート、n-ヘキシルアクリレート、シクロヘキシルアクリレート、n-デシルアクリレート、イソボニルアクリレート、ジシクロペンテニロキシエチルアクリレート、フェノキシエチルアクリレート、トリフルオロエチルメタクリレート等を例示することができる。 Examples of reactive monofunctional monomers include vinyl-substituted silicon compounds such as triethylvinylsilane and triphenylvinylsilane, cyclic olefins such as cyclohexene, styrene, vinyl acetate, N-vinylpyrrolidone, butyl acrylate, 2-ethylhexyl acrylate, n- Examples include hexyl acrylate, cyclohexyl acrylate, n-decyl acrylate, isobornyl acrylate, dicyclopentenyloxyethyl acrylate, phenoxyethyl acrylate, trifluoroethyl methacrylate, and the like.
 反応性の多官能モノマーとしては、テトラビニルシラン、ジビニルテトラメチルジシロキサンなどのビニル置換ケイ素化合、テトラメチルテトラビニルシクロテトラシロキサン、ペンタメチルペンタビニルシクロペンタシロキサンなどのビニル置換環状ケイ素化合物、ビス(トリメチルシリル)アセチレン、ジフェニルアセチレンなどのアセチレン誘導体、ノルボルナジエン、ジシクロペンタジエン、シクロオクタジエンなどの環状ポリエン類、ビニルシクロヘキセンなどのビニル置換環状オレフィン、ジビニルベンゼン類、ジエチニルベンゼン類、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテル、トリプロピレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ビスフェノールAジグリシジルエーテルジアクリレート、テトラエチレングリコールジアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、ジメチロール-トリシクロデカンジアクリレート、1,3-ジメタクリロキシメチル-1,1,3,3-テトラメチルジシロキサン、1,3-ジ(3-メタクリロキシプロピル)-1,1,3,3-テトラメチルジシロキサン、1,3-ジアクリロキシメチル-1,1,3,3-テトラメチルジシロキサン、1,3-ジ(3-アクリロキシプロピル)-1,1,3,3-テトラメチルジシロキサン等のアクリレート類を例示することができる。 Examples of reactive polyfunctional monomers include vinyl-substituted silicon compounds such as tetravinylsilane and divinyltetramethyldisiloxane, vinyl-substituted cyclic silicon compounds such as tetramethyltetravinylcyclotetrasiloxane and pentamethylpentavinylcyclopentasiloxane, and bis (trimethylsilyl). ) Acetylene derivatives such as acetylene and diphenylacetylene, cyclic polyenes such as norbornadiene, dicyclopentadiene and cyclooctadiene, vinyl-substituted cyclic olefins such as vinylcyclohexene, divinylbenzenes, diethynylbenzenes, trimethylolpropane diallyl ether, penta Erythritol triallyl ether, tripropylene glycol diacrylate, 1,6-hexanediol diacrylate, bisphenol A diglycidyl ether diacrylate, tetraethylene glycol diacrylate, neopentyl glycol diacrylate hydroxypivalate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, dimethylol-tricyclodecandi Acrylate, 1,3-dimethacryloxymethyl-1,1,3,3-tetramethyldisiloxane, 1,3-di (3-methacryloxypropyl) -1,1,3,3-tetramethyldisiloxane, 1,3-Diacryloxymethyl-1,1,3,3-tetramethyldisiloxane, acrylates such as 1,3-di (3-acryloxypropyl) -1,1,3,3-tetramethyldisiloxane Can be exemplified.
 分子中に不飽和基を有する化合物としては、以上に例示したもの以外に、各種反応性オリゴマー、モノマーを用いることができる。また、これらの反応性オリゴマーやモノマーは、それぞれ単独で使用しても、2種類以上を混合して使用してもよい。 As the compound having an unsaturated group in the molecule, various reactive oligomers and monomers other than those exemplified above can be used. These reactive oligomers and monomers may be used alone or in combination of two or more.
 本発明で使用するケイ素原子上に水素原子を有する化合物と分子中に不飽和基を有する化合物は、それぞれ単独で使用しても、2種類以上混合して使用してもよい。 The compound having a hydrogen atom on the silicon atom and the compound having an unsaturated group in the molecule used in the present invention may be used alone or in combination of two or more.
 上述したように、本発明の硬化性樹脂組成物は、一般式(3)で表せる籠構造含有硬化性シリコーン共重合体にヒドロシリル化触媒、ラジカル開始剤又はこれらとケイ素原子上に水素原子を含有する化合物や不飽和基を有する化合物を配合させて得られる。本発明の硬化物(成形体)は、この硬化性樹脂組成物を成形硬化して得られる。すなわち、硬化性樹脂組成物をヒドロシリル化硬化及びラジカル重合することにより硬化物(成形体)を得ることができる。 As described above, the curable resin composition of the present invention contains a hydrosilylation catalyst, a radical initiator, or a hydrogen atom on a silicon atom and a silyl structure-containing curable silicone copolymer represented by the general formula (3). And a compound having an unsaturated group. The cured product (molded product) of the present invention is obtained by molding and curing this curable resin composition. That is, a cured product (molded article) can be obtained by hydrosilylation curing and radical polymerization of the curable resin composition.
 ヒドロシリル化触媒を配合する場合、その添加量は一般式(3)で表せる籠構造含有硬化性シリコーン共重合体の重量に対し金属原子として1~1000ppm、より好ましくは20~500ppmの範囲で添加するのがよい。また、ラジカル開始剤として光重合開始剤又は熱重合開始剤を配合する場合、その添加量は一般式(3)で表せる籠構造含有硬化性シリコーン共重合体100重量部に対して0.1~10重量部の範囲とするのがよく、0.1~5重量部の範囲とするのがより好ましい。この添加量が0.1重量部に満たないと硬化が不十分となり、得られる成形体の強度や剛性が低くなる。一方、10重量部を超えると成形体の着色等の問題が生じるおそれがある。またヒドロシリル化触媒とラジカル開始剤を単独で使用してもよく、2種類以上併用して用いることもできる。 When the hydrosilylation catalyst is blended, the addition amount is in the range of 1 to 1000 ppm, more preferably 20 to 500 ppm as a metal atom with respect to the weight of the soot structure-containing curable silicone copolymer represented by the general formula (3). It is good. Further, when a photopolymerization initiator or a thermal polymerization initiator is blended as a radical initiator, the amount added is 0.1 to 100 parts by weight with respect to 100 parts by weight of the cocoon structure-containing curable silicone copolymer represented by the general formula (3). The range is preferably 10 parts by weight, and more preferably 0.1 to 5 parts by weight. If this addition amount is less than 0.1 parts by weight, curing will be insufficient, and the strength and rigidity of the resulting molded product will be reduced. On the other hand, when it exceeds 10 parts by weight, there is a possibility that problems such as coloring of the molded product may occur. Further, the hydrosilylation catalyst and the radical initiator may be used alone or in combination of two or more.
 ヒドロシリル化触媒としては、塩化第2白金、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトンとの錯体、塩化白金酸とオレフィン類との錯体、白金とビニルシロキサンとの錯体、ジカルボニルジクロロ白金及びパラジウム系触媒、ロジウム系触媒等の白金族金属系触媒が挙げられる。これらの中で、触媒活性の点から、塩化白金酸、塩化白金酸とオレフィン類との錯体、白金とビニルシロキサンとの錯体が好ましい。また、これらを単独で使用してもよく、2種類以上併用してもよい。 Hydrosilylation catalysts include platinum chloride, chloroplatinic acid, chloroplatinic acid and alcohol, aldehyde, ketone complexes, chloroplatinic acid and olefin complexes, platinum and vinylsiloxane complexes, and dicarbonyldichloroplatinum. And platinum group metal catalysts such as palladium catalysts and rhodium catalysts. Among these, from the viewpoint of catalytic activity, chloroplatinic acid, a complex of chloroplatinic acid and olefins, and a complex of platinum and vinylsiloxane are preferable. Moreover, these may be used independently and may be used together 2 or more types.
 硬化性樹脂組成物を光硬化性樹脂組成物とする場合に用いられる光重合開始剤としては、アセトフェノン系、ベンゾイン系、ベンゾフェノン系、チオキサンソン系、アシルホスフィンオキサイド系等の化合物を好適に使用することができる。具体的には、トリクロロアセトフェノン、ジエトキシアセトフェノン、1-フェニル-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-メチルチオフェニル)-2-モルホリノプロパン-1-オン、ベンゾインメチルエーテル、ベンジルジメチルケタール、ベンゾフェノン、チオキサンソン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、メチルフェニルグリオキシレート、カンファーキノン、ベンジル、アンスラキノン、ミヒラーケトン等を例示することができる。また、光重合開始剤と組み合わせて効果を発揮する光開始助剤や増感剤を併用することもできる。 As the photopolymerization initiator used when the curable resin composition is a photocurable resin composition, a compound such as an acetophenone-based, benzoin-based, benzophenone-based, thioxanthone-based, or acylphosphine oxide-based compound is preferably used. Can do. Specifically, trichloroacetophenone, diethoxyacetophenone, 1-phenyl-2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4-methylthiophenyl) -2 -Morpholinopropan-1-one, benzoin methyl ether, benzyldimethyl ketal, benzophenone, thioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, methylphenylglyoxylate, camphorquinone, benzyl, anthraquinone, Michler's ketone, etc. can do. Moreover, the photoinitiator adjuvant and sensitizer which show an effect in combination with a photoinitiator can also be used together.
 上記目的で使用される熱重合開始剤としては、ケトンパーオキサイド系、パーオキシケタール系、ハイドロパーオキサイド系、ジアルキルパーオキサイド系、ジアシルパーオキサイド系、パーオキシジカーボネート系、パーオキシエステル系など各種の有機過酸化物を好適に使用することができる。具体的にはシクロヘキサノンパーオキサイド、1,1-ビス(t-ヘキサパーオキシ)シクロヘキシサノン、クメンハイドロパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、ジイソプロピルパーオキサイド、t-ブチルパオキシー2-エチルヘキサノエート等を例示する事ができるが、これに何ら制限されるものではない。また、これら熱重合開始剤は単独で使用しても、2種類以上を混合して使用してもよい。 As thermal polymerization initiators used for the above purpose, various types such as ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxydicarbonates, peroxyesters, etc. The organic peroxide can be suitably used. Specifically, cyclohexanone peroxide, 1,1-bis (t-hexaperoxy) cyclohexanone, cumene hydroperoxide, dicumyl peroxide, benzoyl peroxide, diisopropyl peroxide, t-butyl peroxide-2-ethyl Although hexanoate etc. can be illustrated, it is not restrict | limited at all to this. These thermal polymerization initiators may be used alone or in combination of two or more.
 硬化性樹脂組成物には、本発明の目的から外れない範囲で各種添加剤を添加することができる。各種添加剤として有機/無機フィラー、可塑剤、難燃剤、熱安定剤、酸化防止剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤、離型剤、発泡剤、核剤、着色剤、架橋剤、分散助剤、樹脂成分等を例示することができる。 Various additives can be added to the curable resin composition without departing from the object of the present invention. Various additives include organic / inorganic fillers, plasticizers, flame retardants, heat stabilizers, antioxidants, light stabilizers, UV absorbers, lubricants, antistatic agents, mold release agents, foaming agents, nucleating agents, colorants, Crosslinking agents, dispersion aids, resin components and the like can be exemplified.
 本発明の一般式(3)で表せる籠構造含有硬化性シリコーン共重合体からなる成形体は、ヒドロシリル化触媒又はラジカル重合開始剤のいずれか、あるいはこれらの両方を含む硬化性樹脂組成物を加熱又は光照射によって硬化させることで製造することができる。加熱によって硬化物(成形体)を製造する場合、その成形温度は、熱重合開始剤と促進剤の選択により、室温から200℃前後までの広い範囲から選択することができる。この場合、金型内やスチールベルト上で重合硬化させることで所望の形状の硬化物(成形体)を得ることができる。より具体的には、射出成形、押出成形、圧縮成形、トランスファー成形、カレンダー成形、キャスト(注型)成形といった一般的な成形加工方法の全てが適用可能である。 The molded body composed of a cocoon structure-containing curable silicone copolymer represented by the general formula (3) of the present invention is obtained by heating a curable resin composition containing either a hydrosilylation catalyst or a radical polymerization initiator, or both of them. Or it can manufacture by making it harden | cure by light irradiation. In the case of producing a cured product (molded product) by heating, the molding temperature can be selected from a wide range from room temperature to around 200 ° C., depending on the selection of the thermal polymerization initiator and the accelerator. In this case, a cured product (molded product) having a desired shape can be obtained by polymerization and curing in a mold or on a steel belt. More specifically, all of general molding methods such as injection molding, extrusion molding, compression molding, transfer molding, calendar molding, and cast (casting) molding are applicable.
 また、光照射によって硬化物(成形体)を製造する場合、波長100~400nmの紫外線や波長400~700nmの可視光線を照射することで、成形体を得ることができる。用いる光の波長は特に制限されるものではないが、特に波長200~400nmの近紫外線が好適に用いられる。紫外線発生源として用いられるランプとしては、低圧水銀ランプ(出力:0.4~4W/cm)、高圧水銀ランプ(40~160W/cm)、超高圧水銀ランプ(173~435W/cm)、メタルハライドランプ(80~160W/cm)、パルスキセノンランプ(80~120W/cm)、無電極放電ランプ(80~120W/cm)等を例示することができる。これらの紫外線ランプは、各々その分光分布に特徴があるため、使用する光開始剤の種類に応じて選定される。 In the case of producing a cured product (molded product) by light irradiation, a molded product can be obtained by irradiating ultraviolet rays having a wavelength of 100 to 400 nm or visible light having a wavelength of 400 to 700 nm. The wavelength of light to be used is not particularly limited, but near ultraviolet light having a wavelength of 200 to 400 nm is particularly preferably used. The lamps used as ultraviolet light sources are low-pressure mercury lamps (output: 0.4 to 4 W / cm), high-pressure mercury lamps (40 to 160 W / cm), ultra-high pressure mercury lamps (173 to 435 W / cm), metal halide lamps (80 ˜160 W / cm), pulse xenon lamp (80 to 120 W / cm), electrodeless discharge lamp (80 to 120 W / cm), and the like. Each of these ultraviolet lamps is characterized by its spectral distribution, and is therefore selected according to the type of photoinitiator used.
 光照射によって硬化物(成形体)を得る方法としては、例えば任意のキャビティ形状を有し、石英ガラス等の透明素材で構成された金型内に注入し、上記の紫外線ランプで紫外線を照射して重合硬化を行い、金型から脱型させることで所望の形状の成形体を製造する方法や、金型を用いない場合には、例えば移動するスチールベルト上にドクターブレードやロール状のコーターを用いて本発明の硬化性樹脂組成物を塗布し、上記の紫外線ランプで重合硬化させることで、シート状の成形体を製造する方法等を例示することができる。更に本発明では加熱と光照射による成型体を得る方法を組み合わせて用いてもよい。 As a method of obtaining a cured product (molded body) by light irradiation, for example, it is injected into a mold having an arbitrary cavity shape and made of a transparent material such as quartz glass, and irradiated with ultraviolet rays by the above-described ultraviolet lamp. A method of producing a molded body of a desired shape by performing polymerization and curing and removing from the mold, or when not using a mold, for example, a doctor blade or a roll-shaped coater on a moving steel belt Examples thereof include a method for producing a sheet-like molded article by applying the curable resin composition of the present invention and polymerizing and curing with the above-described ultraviolet lamp. Furthermore, in this invention, you may use combining the method of obtaining the molding by heating and light irradiation.
 本発明は、低熱膨張性と高靭性の相反する物性を発現させるべくなされたものであり、分子構造中に強固な多面体構造(籠型構造)を有したシロキサン骨格の側鎖に反応性官能基をもつ硬化性樹脂をシリコーン主鎖中に組み込みポリマー化した共重合体を提供することができ、また、これの製造方法を提供することができる。すなわち、本発明の一般式(3)で表される籠型含有硬化性シリコーン共重合体を用いることで、耐熱や透明性に優れたシリコーンの特性に加え、低熱膨張性と高靭性の相反する物性を両立した成型体を作成することが可能となる。そのため、炭化水素を主成分とし成形されたプラスチック特性では不可能な耐熱性や高寸法安定性を備え、また、ガラスでは達成困難な靭性が付与された光学透明材料を得ることが可能となる。 The present invention has been made in order to develop the opposite physical properties of low thermal expansion and high toughness, and has a reactive functional group on the side chain of a siloxane skeleton having a strong polyhedral structure (a cage structure) in the molecular structure. It is possible to provide a copolymer obtained by incorporating a curable resin having the above formula into a silicone main chain and to provide a production method thereof. That is, by using the cage-containing curable silicone copolymer represented by the general formula (3) of the present invention, in addition to the characteristics of silicone excellent in heat resistance and transparency, there is a conflict between low thermal expansion and high toughness. It becomes possible to create a molded body having both physical properties. For this reason, it is possible to obtain an optically transparent material having heat resistance and high dimensional stability that are impossible with plastic properties that are mainly composed of hydrocarbons and imparting toughness that is difficult to achieve with glass.
 詳しくは、本発明の硬化性樹脂組成物によれば、耐熱性、光学特性、寸法安定性に優れた硬化物を得ることが可能である。そして、得られた硬化物は、例えばタッチパネル基板、フラットパネルディスプレイ基板、レンズ、光ディスク、光ファイバー等の光学用途をはじめ、各種輸送機械や住宅等の窓材など様々な用途に用いることができ、また、軽量の透明部材としても利用することができて、これまで各種使用されていたガラスの代替材料としてもその利用範囲は広範であり、産業上の利用価値は極めて高い。 Specifically, according to the curable resin composition of the present invention, a cured product having excellent heat resistance, optical properties, and dimensional stability can be obtained. The obtained cured product can be used for various applications such as window materials for various transport machines and houses, including optical applications such as touch panel substrates, flat panel display substrates, lenses, optical disks, and optical fibers. It can also be used as a light-weight transparent member, and its application range is wide as an alternative material for glass that has been used so far, and its industrial utility value is extremely high.
 また、本発明の製造方法によれば、反応性に富むシラノール基を有した一般式(2)で表されるシラノール基含有籠型シルセスキオキサン化合物を出発原料とすることにより、上記特性を持つような有用な新規化合物をはじめとした、シリコーン鎖の主鎖に籠構造を導入する分子設計が容易となる。さらに目的に応じて選択した複数の官能基またはその他の基を籠構造及びシリコーン鎖主鎖に容易に導入することができる。 In addition, according to the production method of the present invention, the above characteristics can be obtained by using a silanol group-containing cage-type silsesquioxane compound represented by the general formula (2) having a highly reactive silanol group as a starting material. This makes it easy to design a molecule that introduces a cage structure into the main chain of the silicone chain, including useful new compounds. Furthermore, a plurality of functional groups or other groups selected according to the purpose can be easily introduced into the cage structure and the silicone chain main chain.
図1は、実施例1で得られたシラノール基含有籠型シルセスキオキサン化合物[RSiO3/2][HO1/2]のGPCチャートFIG. 1 is a GPC chart of silanol group-containing cage-type silsesquioxane compound [R 1 SiO 3/2 ] n [HO 1/2 ] m obtained in Example 1. 図2は、実施例1で得られたシラノール基含有籠型シルセスキオキサン化合物[RSiO3/2][HO1/2]のNMRチャート2 is an NMR chart of the silanol group-containing cage silsesquioxane compound [R 1 SiO 3/2 ] n [HO 1/2 ] m obtained in Example 1. FIG. 図3は、実施例5で得られた籠構造含有硬化性シリコーン共重合体Y1-[Z-(RSiO3/2)]l-Z-Y1のGPCチャート3, obtained in Example 5 curable cage-type silicone copolymer Y 1 - [Z- (R 1 SiO 3/2) n] l -Z-Y 1 of the GPC chart 図4は、実施例5で得られた籠構造含有硬化性シリコーン共重合体Y2-[Z-(RSiO3/2)]l-Z-Y2のNMRチャートFIG. 4 shows an NMR chart of the cocoon structure-containing curable silicone copolymer Y 2- [Z— (R 1 SiO 3/2 ) n ] l —ZY 2 obtained in Example 5.
 以下、実施例により本発明を更に具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
[参考例1]
 本合成例は特開2004-143449号公開に記載された方法に準じて構造式(C2H3SiO3/2)8を有する籠型オクタビニルシルセスキオキサンを製造した。撹拌機、滴下ロート、及び温度計を備えた反応容器に、溶媒として2-プロパノール(IPA)600mlと塩基性触媒として5%テトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)20gを装入した。滴下ロートにIPA 150mlとトリメトキシビニルシラン51gを入れ、反応容器を撹拌しながら、0℃でトリメトキシビニルシランのIPA溶液を1時間かけて滴下した。トリメトキシビニルシラン滴下終了後、徐々に室温に戻し加熱することなく6時間撹拌した。撹拌後、減圧下でIPAを除去し、トルエン1000mlで溶解した。次に撹拌機、ディーンスタック、冷却管を備えた反応溶媒に上記で得られたシルセスキオキサン25gとトルエン600mlと5%TMAH水溶液3.2gを入れ、120℃で水を留去しながらトルエンを還流加熱して再縮合反応を行った。トルエン還流後3時間撹拌した後、室温に戻し反応を終了とした。反応溶液を10%クエン酸38gで中和にした後、飽和食塩水で洗浄し無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで再縮合物を24.5g得た。得られた白色粉末の質量分析を行い籠型オクタビニルシルセスキオキサンであることを確認した。
[Reference Example 1]
In this synthesis example, a cage octavinylsilsesquioxane having the structural formula (C 2 H 3 SiO 3/2 ) 8 was produced according to the method described in JP-A-2004-143449. A reaction vessel equipped with a stirrer, a dropping funnel, and a thermometer was charged with 600 ml of 2-propanol (IPA) as a solvent and 20 g of a 5% tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution) as a basic catalyst. To the dropping funnel, 150 ml of IPA and 51 g of trimethoxyvinylsilane were added, and an IPA solution of trimethoxyvinylsilane was added dropwise at 0 ° C. over 1 hour while stirring the reaction vessel. After completion of the dropwise addition of trimethoxyvinylsilane, the mixture was gradually returned to room temperature and stirred for 6 hours without heating. After stirring, IPA was removed under reduced pressure and dissolved in 1000 ml of toluene. Next, 25 g of the silsesquioxane obtained above, 600 ml of toluene, and 3.2 g of 5% TMAH aqueous solution are placed in a reaction solvent equipped with a stirrer, a Dean stack, and a cooling tube. The mixture was heated to reflux for a recondensation reaction. After stirring for 3 hours after refluxing toluene, the reaction was terminated by returning to room temperature. The reaction solution was neutralized with 38 g of 10% citric acid, washed with saturated brine, and dehydrated over anhydrous magnesium sulfate. The anhydrous magnesium sulfate was filtered off and concentrated to obtain 24.5 g of a recondensate. The obtained white powder was subjected to mass spectrometry to confirm that it was a saddle type octavinylsilsesquioxane.
[実施例1]
 撹拌機を備えた反応容器に上記参考例1と同様の合成法で得られた下記一般式(1)
   [RSiO3/2]   (1)
で表される硬化性籠型シルセスキオキサン化合物(R1はビニル基であり、n=8である)を20g、テトラヒドロフラン520ml、25%水酸化テトラメチルアンモニウム(メタノール溶液)(以後、TMAHメタノール溶液)23.08gの順で加え、窒素雰囲気下室温で2時間撹拌した。2時間撹拌後、10%クエン酸水溶液100ml、トルエン200mlを加え中和した。有機層抽出後、これを蒸留水で3回、及び飽和食塩水で2回洗浄し、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで種々の有機溶媒に可溶な無色粘性液体19.92g(回収率97%)を得た。
[Example 1]
In a reaction vessel equipped with a stirrer, the following general formula (1) obtained by the same synthesis method as in Reference Example 1 above:
[R 1 SiO 3/2 ] n (1)
20 g of a curable caged silsesquioxane compound represented by the formula (R 1 is a vinyl group, n = 8), 520 ml of tetrahydrofuran, 25% tetramethylammonium hydroxide (methanol solution) (hereinafter referred to as TMAH methanol) Solution) in the order of 23.08 g and stirred at room temperature for 2 hours under a nitrogen atmosphere. After stirring for 2 hours, 100 ml of 10% aqueous citric acid solution and 200 ml of toluene were added for neutralization. After extraction of the organic layer, this was washed 3 times with distilled water and twice with saturated brine, and dehydrated over anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered off and concentrated to obtain 19.92 g of colorless viscous liquid soluble in various organic solvents (97% recovery rate).
 上記で得た無色粘性液体のGPCを測定した結果を図1に示す。図1から、Mw=1005、Mw/Mn=1.225であることが確認された。その中でも面積比70%を占めている低分子側のピークは、Mw=668、Mw/Mn=1.020であった。次に、H1NMRを測定した結果を図2に示す。5.8~6.2ppmのビニル基によるマルチプレットピークと1.6ppmのシラノール基によるピーク積分比は、ビニル基1に対してシラノール基0.174であった。従って、メインピークである低分子側Mw及び積分比から見積もられた化合物は、下記一般式(2)
   [RSiO3/2][HO1/2]   (2)
として仮定した場合、nが8、及びmが2であることが示唆された。
The result of measuring GPC of the colorless viscous liquid obtained above is shown in FIG. From FIG. 1, it was confirmed that Mw = 1005 and Mw / Mn = 1.225. Among them, the peaks on the low molecular side occupying 70% of the area ratio were Mw = 668 and Mw / Mn = 1.020. Next, the result of measuring H 1 NMR is shown in FIG. The integral ratio of the multiplet peak due to the vinyl group of 5.8 to 6.2 ppm and the peak due to the silanol group of 1.6 ppm was 0.174 with respect to 1 of the vinyl group. Therefore, the compound estimated from the low molecular side Mw which is the main peak and the integration ratio is represented by the following general formula (2).
[R 1 SiO 3/2 ] n [HO 1/2 ] m (2)
It was suggested that n is 8 and m is 2.
 上記で得た無色粘性液体のシラノール基の存在を確認するためにIRを測定した。その結果、3100~3400cm-1にシラノール基由来のブロードなピークを有していたことから、シラノール基の存在を確認した。以上の結果より、得られた無色粘性液体の構造は、上記一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物(R1はビニル基)と判断された。 In order to confirm the presence of silanol groups in the colorless viscous liquid obtained above, IR was measured. As a result, a broad peak derived from a silanol group was observed at 3100 to 3400 cm −1 , confirming the presence of the silanol group. From the above results, the structure of the colorless viscous liquid obtained was determined to be a silanol group-containing curable silsesquioxane compound (R 1 is a vinyl group) represented by the general formula (2).
 更に上記で得られた一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物(R1はビニル基)のエレクトロスプレーイオン化法質量分析(ESI-MS)を行った結果を表に示す。下記表1には、質量分析して検出された主なピークとm、nに当てはまる数値をまとめて示す。検出されるピークm/zは、一般式(2)の分子量に、アンモニウムイオン(Mw18)が付加した値である。この質量分析の結果からも籠構造を形成するシロキサン結合の一部が開裂し、末端部にシラノール基を有する構造となっていることが示される。 Further, the results of electrospray ionization mass spectrometry (ESI-MS) of the silanol group-containing curable silsesquioxane compound (R 1 is a vinyl group) represented by the general formula (2) obtained above. Is shown in the table. Table 1 below summarizes the main peaks detected by mass spectrometry and the numerical values applicable to m and n. The detected peak m / z is a value obtained by adding ammonium ion (Mw18) to the molecular weight of the general formula (2). From the result of mass spectrometry, it is shown that a part of the siloxane bond forming the cocoon structure is cleaved to have a structure having a silanol group at the terminal portion.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
[実施例2]
 参考例1と同様の合成法で得られた上記一般式(1)で表される硬化性籠型シルセスキオキサン化合物(R1はビニル基:エチル基=1:1。n=8)20gを用いた以外は、実施例1と同様して反応を行い、種々の有機溶媒に可溶な無色粘性液体19.79g(回収率97%)を得た。
[Example 2]
20 g of curable caged silsesquioxane compound represented by the above general formula (1) obtained by the same synthesis method as in Reference Example 1 (R 1 is vinyl group: ethyl group = 1: 1, n = 8) A reaction was carried out in the same manner as in Example 1 except that was used to obtain 19.79 g of colorless viscous liquid soluble in various organic solvents (recovery rate 97%).
 上記で得た無色粘性液体のGPCを測定した結果、Mw=1101、Mw/Mn=1.157であった。その中でも面積比73%を占めている低分子側のピークは、Mw=634、Mw/Mn=1.072であった。次に、H1NMRを測定した。5.8~6.2ppmのビニル基によるマルチプレットピークと1.6ppmのシラノール基によるピーク積分比は、ビニル基1に対してシラノール基0.541であった。従って、メインピークである低分子側Mw及び積分比から見積もられた化合物は、上記一般式(2)として仮定した場合にnが8、及びmが2であることが示唆された。 As a result of measuring GPC of the colorless viscous liquid obtained above, it was Mw = 1101 and Mw / Mn = 1.157. Among them, the peaks on the low molecular side occupying 73% of the area ratio were Mw = 634 and Mw / Mn = 1.072. Next, H 1 NMR was measured. The integral ratio of the multiplet peak due to the vinyl group of 5.8 to 6.2 ppm and the peak due to the silanol group of 1.6 ppm was 0.541 with respect to the vinyl group 1. Therefore, it was suggested that the compound estimated from the low molecular side Mw which is the main peak and the integration ratio had n of 8 and m of 2 when assumed as the general formula (2).
 上記で得た無色粘性液体について、シラノール基の存在を確認するためにIRを測定した。その結果3100~3400cm-1にシラノール基由来のブロードなピークを有していたことから、シラノール基の存在を確認した。以上の結果より、得られた無色粘性液体の構造は、一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物(R1はビニル基:エチル基=1:1)と判断された。 About the colorless viscous liquid obtained above, IR was measured in order to confirm presence of a silanol group. As a result, a broad peak derived from a silanol group was observed at 3100 to 3400 cm −1 , confirming the presence of the silanol group. From the above results, the structure of the colorless viscous liquid obtained is a silanol group-containing curable silsesquioxane compound represented by the general formula (2) (R 1 is vinyl group: ethyl group = 1: 1). It was judged.
[実施例3]
 参考例1と同様の合成法で得られた上記一般式(1)で表される硬化性籠型シルセスキオキサン化合物(R1はビニル基:メタクリル基=1:1。n=8)20gを用いた以外は、実施例1と同様して反応を行い、種々の有機溶媒に可溶な無色粘性液体19.91g(回収率98%)を得た。
[Example 3]
Curable silsesquioxane compound represented by the above general formula (1) obtained by the same synthesis method as in Reference Example 1 (R 1 is vinyl group: methacryl group = 1: 1, n = 8) 20 g A reaction was carried out in the same manner as in Example 1 except that was used to obtain 19.91 g of colorless viscous liquid soluble in various organic solvents (recovery rate 98%).
 上記で得た無色粘性液体のGPCを測定した結果、Mw=1355、Mw/Mn=1.201であった。その中でも面積比67%を占めている低分子側のピークは、Mw=994、Mw/Mn=1.054であった。次に、H1NMRを測定したところ、5.8~6.2ppmのビニル基によるマルチプレットピークと1.6ppmのシラノール基によるピーク積分比は、ビニル基1に対してシラノール基0.489であった。従って、メインピークである低分子側Mw及び積分比から見積もられた化合物は、上記一般式(2)として仮定した場合にnが8、及びmが2であることが示唆された。 As a result of measuring GPC of the colorless viscous liquid obtained above, it was Mw = 1355 and Mw / Mn = 1.201. Among them, the peaks on the low-molecular side occupying 67% of the area ratio were Mw = 994 and Mw / Mn = 1.504. Next, when H 1 NMR was measured, the integral ratio of the multiplet peak due to the vinyl group of 5.8 to 6.2 ppm and the peak due to the silanol group of 1.6 ppm was 0.489 with respect to the vinyl group 1. there were. Therefore, it was suggested that the compound estimated from the low molecular side Mw which is the main peak and the integration ratio had n of 8 and m of 2 when assumed as the general formula (2).
 上記で得た無色粘性液体のシラノール基の存在を確認するためにIRを測定した。その結果3100~3400cm-1にシラノール基由来のブロードなピークを有していたことから、シラノール基の存在を確認した。以上の結果より、得られた無色粘性液体の構造は、一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物(R1はビニル基:メタクリル基=1:1)と判断された。 In order to confirm the presence of silanol groups in the colorless viscous liquid obtained above, IR was measured. As a result, a broad peak derived from a silanol group was observed at 3100 to 3400 cm −1 , confirming the presence of the silanol group. From the above results, the structure of the colorless viscous liquid obtained is a silanol group-containing curable silsesquioxane compound represented by the general formula (2) (R 1 is vinyl group: methacryl group = 1: 1). It was judged.
[実施例4]
 参考例1と同様の合成法で得られた上記一般式(1)で表される硬化性籠型シルセスキオキサン化合物(R1はビニル基:グリシドキシプロピル基=1:1。n=8)20gを用いた以外は、実施例1と同様して反応を行い、種々の有機溶媒に可溶な無色粘性液体19.76g(回収率98%)を得た。
[Example 4]
A curable caged silsesquioxane compound represented by the above general formula (1) obtained by the same synthesis method as in Reference Example 1 (R 1 is vinyl group: glycidoxypropyl group = 1: 1, n = 8) A reaction was carried out in the same manner as in Example 1 except that 20 g was used to obtain 19.76 g of colorless viscous liquid soluble in various organic solvents (recovery rate 98%).
 上記で得た無色粘性液体のGPCを測定した結果、Mw=1355、Mw/Mn=1.201であった。その中でも面積比69%を占めている低分子側のピークは、Mw=954、Mw/Mn=1.043であった。次に、H1NMRを測定した。5.8~6.2ppmのビニル基によるマルチプレットピークと1.6ppmのシラノール基によるピーク積分比は、ビニル基1に対してシラノール基0.519であった。従って、メインピークである低分子側Mw及び積分比から見積もられた化合物は、上記一般式(2)として仮定した場合にnが8、mが2であることが示唆された。 As a result of measuring GPC of the colorless viscous liquid obtained above, it was Mw = 1355 and Mw / Mn = 1.201. Among them, the peaks on the low molecular side occupying 69% of the area ratio were Mw = 954 and Mw / Mn = 1.043. Next, H 1 NMR was measured. The integral ratio of the multiplet peak due to 5.8 to 6.2 ppm of vinyl groups and the peak due to 1.6 ppm of silanol groups was 0.519 silanol groups to 1 vinyl group. Therefore, it was suggested that the compound estimated from the low molecular side Mw that is the main peak and the integration ratio had n of 8 and m of 2 when assumed as the general formula (2).
 上記で得た無色粘性液体のシラノール基の存在を確認するためにIRを測定した。その結果3100~3400cm-1にシラノール基由来のブロードなピークを有していることから、シラノール基の存在を確認した。以上の結果より、得られた無色粘性液体の構造は、一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物(R1はビニル基:グリシドキシプロピル基=1:1)と判断された。 In order to confirm the presence of silanol groups in the colorless viscous liquid obtained above, IR was measured. As a result, a broad peak derived from a silanol group was observed at 3100 to 3400 cm −1 , confirming the presence of the silanol group. From the above results, the structure of the colorless viscous liquid obtained is a silanol group-containing curable silsesquioxane compound represented by the general formula (2) (R 1 is vinyl group: glycidoxypropyl group = 1) : 1)
[実施例5]
 撹拌機及び滴下ロートを備えた反応容器に、ジメチルジクロロシラン1.99g、ピリジン15.38mlをはかり込み窒素置換した。滴下ロートに実施例1と同様にして得られた一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物(R1はビニル基、n=8、m=2)5.0g、及びピリジン77mLを入れ、室温で1.5時間かけて滴下した。滴下終了後、室温で2時間撹拌した。2時間撹拌後、トルエン50mL及び蒸留水50mLを加え、有機層と水層を分離した。有機層抽出後、これを蒸留水で3回、及び飽和食塩水で2回洗浄し、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで無色粘性固体5.25g(回収率89%)得た。
[Example 5]
A reaction vessel equipped with a stirrer and a dropping funnel was charged with 1.99 g of dimethyldichlorosilane and 15.38 ml of pyridine, and the atmosphere was replaced with nitrogen. A silanol group-containing curable silsesquioxane compound represented by the general formula (2) obtained in the same manner as in Example 1 in the dropping funnel (R 1 is a vinyl group, n = 8, m = 2) 5 0.0 g and 77 mL of pyridine were added dropwise at room temperature over 1.5 hours. After completion of dropping, the mixture was stirred at room temperature for 2 hours. After stirring for 2 hours, 50 mL of toluene and 50 mL of distilled water were added, and the organic layer and the aqueous layer were separated. After extraction of the organic layer, this was washed 3 times with distilled water and twice with saturated brine, and dehydrated over anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered off and concentrated to obtain 5.25 g of colorless viscous solid (recovery rate 89%).
 上記で得た無色粘性固体のGPCを測定した結果を図3に示す。図3から、Mw=451,620、Mw/Mn=104.89であった。また、H1NMRを測定した結果を図4に示す。5.8~6.2ppmのビニル基によるマルチプレットピークと0.07~0.3ppmのメチル基によるマルチプレットピーク積分比は、ビニル基1に対してメチル基0.37であった。この値は、ビニル基3個のプロトンとメチル基6個のプロトンの比率を示す。従って、籠構造とシロキサン鎖の割合を比較するために、メチル基の積分値を3個分のプロトンを表す値にする必要がある。従って、ビニル基1に対して、メチル基のプロトン比は、0.185となる。続いて、上記で見積もられた一般式(2)で表される籠構造を有する化合物のnが8であことから、それに対応するジメチルシロキサンの割合は1.48となる。また、nが8の籠構造とジメチルシロキサン1.48を1ユニットとした分子量757.5により、GPCで得られたMw=451,620を割ることで、ユニット596個繰り返した構造であることが示唆される。従って、得られた無色粘性固体の構造は、下記一般式(3)-1
   Y1-[Z-(RSiO3/2)]l-Z-Y1  (3)-1
で表される構成単位を有する籠構造含有硬化性シリコーン共重合体〔R1はビニル基、nは8、lは596であって、Zは下記一般式(4)
Figure JPOXMLDOC01-appb-I000026
(Rはメチル基、aは0.48)であり、また、Y1は下記一般式(5’)
   HO1/2-  (5’)
である。〕と判断された。
The measurement result of GPC of the colorless viscous solid obtained above is shown in FIG. From FIG. 3, it was Mw = 451,620 and Mw / Mn = 104.89. Further, the results of measurement of the H 1 NMR in FIG. The integral ratio of the multiplet peak due to the vinyl group of 5.8 to 6.2 ppm and the multiplet peak due to the methyl group of 0.07 to 0.3 ppm was 0.37 methyl group to 1 vinyl group. This value indicates the ratio of 3 vinyl group protons to 6 methyl group protons. Therefore, in order to compare the ratio between the cocoon structure and the siloxane chain, the integral value of the methyl group needs to be a value representing three protons. Therefore, the proton ratio of methyl group to vinyl group 1 is 0.185. Subsequently, since n of the compound having the soot structure represented by the general formula (2) estimated above is 8, the ratio of dimethylsiloxane corresponding thereto is 1.48. In addition, it is a structure in which 596 units are repeated by dividing Mw = 451,620 obtained by GPC by a molecular structure of 757.5 where n is 8 cage structure and dimethylsiloxane 1.48 is 1 unit. It is suggested. Therefore, the structure of the colorless viscous solid obtained has the following general formula (3) -1
Y 1- [Z- (R 1 SiO 3/2 ) n ] l -ZY 1 (3) -1
籠 structure-containing curable silicone copolymer having a structural unit represented by the following formula: [R 1 is vinyl group, n is 8, l is 596, and Z is the following general formula (4)
Figure JPOXMLDOC01-appb-I000026
(R 2 is a methyl group, a is 0.48), and Y 1 is the following general formula (5 ′)
HO 1/2- (5 ')
It is. It was judged.
[実施例6]
 撹拌機及び滴下ロートを備えた反応容器に、ジメチルジクロロシラン1.19g、トリエチルアミン2.14ml、テトラヒドロフラン9.3mlをはかり込み窒素置換した。滴下ロートに実施例1と同様にして得られた一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物(R1はビニル基、n=8、m=2)3.0g、及びテトラヒドロフラン46.2mlを入れ、室温で30分かけて滴下した。滴下終了後、室温で2時間撹拌した。その後、更に一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物(R1はビニル基)1.5g、及びテトラヒドロフラン20mlを滴下し、滴下終了後、室温で2時間撹拌した。2時間撹拌後、10%クエン酸水溶液20ml、及びトルエン20mlを加え中和した。有機層抽出後、これを蒸留水で3回、及び飽和食塩水で2回洗浄し、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで無色粘性液体3.73g(回収率74%)を得た。
[Example 6]
A reaction vessel equipped with a stirrer and a dropping funnel was charged with 1.19 g of dimethyldichlorosilane, 2.14 ml of triethylamine, and 9.3 ml of tetrahydrofuran, and purged with nitrogen. A silanol group-containing curable silsesquioxane compound represented by the general formula (2) obtained in the same manner as in Example 1 in the dropping funnel (R 1 is a vinyl group, n = 8, m = 2) 3 0.04 g and 46.2 ml of tetrahydrofuran were added and added dropwise at room temperature over 30 minutes. After completion of dropping, the mixture was stirred at room temperature for 2 hours. Thereafter, 1.5 g of a silanol group-containing curable caged silsesquioxane compound (R 1 is a vinyl group) represented by the general formula (2) and 20 ml of tetrahydrofuran were further added dropwise, and after completion of the addition, 2 hours at room temperature. Stir. After stirring for 2 hours, the mixture was neutralized by adding 20 ml of a 10% citric acid aqueous solution and 20 ml of toluene. After extraction of the organic layer, this was washed 3 times with distilled water and twice with saturated brine, and dehydrated over anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered off and concentrated to obtain 3.73 g of colorless viscous liquid (recovery rate 74%).
 上記で得た無色粘性液体のGPCを測定した結果、Mw=3,910、Mw/Mn=2.891であった。また、H1NMRを測定した結果、5.8~6.2ppmのビニル基によるマルチプレットピークと0.07~0.3ppmのメチル基によるマルチプレットピーク積分比は、ビニル基1に対してメチル基0.35であった。実施例5と同様の解析行った結果、得られた無色粘性液体の構造は、上記一般式(3)-1で表される構成単位を有する籠構造含有硬化性シリコーン共重合体〔R1はビニル基、nは8、lは5であって、Zは上記一般式(4)(R2はメチル基、aは0.4)であり、Y1は下記一般式(5’)
   HO1/2-  (5’)
である。〕と判断された。
As a result of measuring GPC of the colorless viscous liquid obtained above, it was Mw = 3,910 and Mw / Mn = 2.891. As a result of H 1 NMR measurement, the integral ratio of the multiplet peak due to the vinyl group of 5.8 to 6.2 ppm and the multiplet peak due to the methyl group of 0.07 to 0.3 ppm The group was 0.35. As a result of the same analysis as in Example 5, the structure of the colorless viscous liquid obtained was a cocoon structure-containing curable silicone copolymer having a structural unit represented by the general formula (3) -1 [R 1 is Vinyl group, n is 8, l is 5, Z is the above general formula (4) (R 2 is methyl group, a is 0.4), Y 1 is the following general formula (5 ′)
HO 1/2- (5 ')
It is. It was judged.
[実施例7]
 撹拌機、及び冷却管を備えた反応容器に、実施例1と同様にして得られた一般式(2)で表されるシラノール基含有籠型シルセスキオキサン化合物(R1はビニル基、n=8、m=2)5.0g、ジメチルジエトキシシラン1.14g、TMAHメタノール溶液0.14g及びトルエン77mlをはかり込み、90℃で1時間撹拌した。その後、ディンスタークを反応容器に設置し、100℃に昇温してメタノール及びエタノールを除去しながら加熱撹拌した。2時間加熱撹拌操作の後、反応溶液を室温に戻して10%クエン酸水溶液30mlを加え中和した。有機層抽出後、これを蒸留水で3回、及び飽和食塩水で2回洗浄し、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで無色粘性液体5.03g(回収率91%)を得た。
[Example 7]
In a reaction vessel equipped with a stirrer and a cooling tube, a silanol group-containing cage silsesquioxane compound represented by the general formula (2) obtained in the same manner as in Example 1 (R 1 is a vinyl group, n = 8, m = 2) 5.0 g, 1.14 g of dimethyldiethoxysilane, 0.14 g of TMAH methanol solution and 77 ml of toluene were weighed and stirred at 90 ° C. for 1 hour. Thereafter, a Din Stark was placed in the reaction vessel, heated to 100 ° C., and stirred with heating while removing methanol and ethanol. After 2 hours of heating and stirring, the reaction solution was returned to room temperature and neutralized by adding 30 ml of 10% aqueous citric acid solution. After extraction of the organic layer, this was washed 3 times with distilled water and twice with saturated brine, and dehydrated over anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered off and concentrated to obtain 5.03 g of colorless viscous liquid (recovery rate: 91%).
 上記で得た無色粘性液体のGPCを測定した結果、Mw=12,485、Mw/Mn=5.567であった。また、H1NMRを測定した結果、5.8~6.2ppmのビニル基によるマルチプレットピークと0.07~0.3ppmのメチル基によるマルチプレットピーク積分比は、ビニル基1に対してメチル基0.44であった。実施例5と同様の解析行った結果、得られた無色粘性液体の構造は、上記一般式(3)-1で表される構成単位を有する籠構造含有硬化性シリコーン共重合体(R1はビニル基、nは8、lは16であって、Zは上記一般式(4)(R2はメチル基、aは0.76)であり、Y1は下記一般式(5’)
   HO1/2-  (5’)
である。〕と判断された。
As a result of measuring GPC of the colorless viscous liquid obtained above, they were Mw = 12,485 and Mw / Mn = 5.567. As a result of H 1 NMR measurement, the integral ratio of the multiplet peak due to the vinyl group of 5.8 to 6.2 ppm and the multiplet peak due to the methyl group of 0.07 to 0.3 ppm The group was 0.44. As a result of the same analysis as in Example 5, the structure of the colorless viscous liquid obtained was a cocoon-structure-containing curable silicone copolymer (R 1 having the structural unit represented by the general formula (3) -1). Vinyl group, n is 8, l is 16, Z is the above general formula (4) (R 2 is methyl group, a is 0.76), Y 1 is the following general formula (5 ′)
HO 1/2- (5 ')
It is. It was judged.
[実施例8]
 撹拌機、及び冷却管を備えた反応容器に、実施例1と同様にして得られた一般式(2)で表されるシラノール基含有籠型シルセスキオキサン化合物(R1は、ビニル基、n=8、m=2)5.0g、ジフェニルシラン1.42g、N,N-ジエチルヒドロキシアミン0.7g及びトルエン77mlをはかり込み、50℃で3時間撹拌した。3時間加熱撹拌の後、反応溶液を室温に戻して10%クエン酸水溶液30mlを加え中和した。有機層抽出後、これを蒸留水で3回、及び飽和食塩水で2回洗浄し、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで無色粘性液体5.32g(回収率93%)を得た。
[Example 8]
In a reaction vessel equipped with a stirrer and a condenser, a silanol group-containing caged silsesquioxane compound (R 1 is a vinyl group, represented by the general formula (2) obtained in the same manner as in Example 1. n = 8, m = 2) 5.0 g, 1.42 g of diphenylsilane, 0.7 g of N, N-diethylhydroxyamine and 77 ml of toluene were weighed and stirred at 50 ° C. for 3 hours. After stirring for 3 hours, the reaction solution was returned to room temperature and neutralized by adding 30 ml of 10% aqueous citric acid solution. After extraction of the organic layer, this was washed 3 times with distilled water and twice with saturated brine, and dehydrated over anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered off and concentrated to obtain 5.32 g of colorless viscous liquid (recovery rate: 93%).
 上記で得た無色粘性液体のGPCを測定した結果、Mw=18,354、Mw/Mn=4.995であった。また、H1NMRを測定した結果、5.8~6.2ppmのビニル基によるマルチプレットピークと7.3~7.8ppmのフェニル基によるマルチプレットピーク積分比は、ビニル基1に対してフェニル基0.56であった。実施例5と同様の解析行った結果、得られた無色粘性液体の構造は、上記一般式(3)-1で表される構成単位を有する籠構造含有硬化性シリコーン共重合体(R1はビニル基、nは8、lは20であって、Zは上記一般式(4)(R2はメチル基、aは0.35)であり、Y1は下記一般式(5’)
   HO1/2-  (5’)
である。〕と判断された。
As a result of measuring GPC of the colorless viscous liquid obtained above, it was Mw = 18,354 and Mw / Mn = 4.995. As a result of H 1 NMR measurement, the integration ratio of the multiplet peak due to the vinyl group of 5.8 to 6.2 ppm and the multiplet peak due to the phenyl group of 7.3 to 7.8 ppm is Group 0.56. As a result of the same analysis as in Example 5, the structure of the colorless viscous liquid obtained was a cocoon-structure-containing curable silicone copolymer (R 1 having the structural unit represented by the general formula (3) -1). Vinyl group, n is 8, l is 20, Z is the above general formula (4) (R 2 is methyl group, a is 0.35), Y 1 is the following general formula (5 ′)
HO 1/2- (5 ')
It is. It was judged.
[実施例9]
 撹拌機、及び冷却管を備えた反応容器に、実施例7で得られた一般式(3)-1で表される構成単位を有する籠構造含有硬化性シリコーン共重合体5.0gとピリジン30mlをはかり込み窒素置換した。滴下ロートにトリメチルクロロシラン5.0gとピリジン20mlを入れ、室温で30分かけて滴下し、2時間撹拌した。2時間撹拌後、トルエン30mL及び蒸留水30mLを加え、有機層と水層を分離した。有機層抽出後、これを蒸留水で3回、及び飽和食塩水で2回洗浄し、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで無色粘性液体4.82g(回収率96%)を得た。
[Example 9]
In a reaction vessel equipped with a stirrer and a cooling tube, 5.0 g of cocoon structure-containing curable silicone copolymer having a structural unit represented by the general formula (3) -1 obtained in Example 7 and 30 ml of pyridine Was replaced with nitrogen. To the dropping funnel, 5.0 g of trimethylchlorosilane and 20 ml of pyridine were added dropwise over 30 minutes at room temperature and stirred for 2 hours. After stirring for 2 hours, 30 mL of toluene and 30 mL of distilled water were added, and the organic layer and the aqueous layer were separated. After extraction of the organic layer, this was washed 3 times with distilled water and twice with saturated brine, and dehydrated over anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered off and concentrated to obtain 4.82 g of colorless viscous liquid (recovery rate 96%).
 上記で得た無色粘性液体のGPCを測定した結果、Mw=12,656、Mw/Mn=5.327であった。また、H1NMRを測定した結果、5.8~6.2ppmのビニル基によるマルチプレットピークと0.07~0.3ppmのメチル基によるマルチプレットピーク積分比は、ビニル基1に対してメチル基0.41であった。さらにシラノール基の消失を確認するためにIRを測定した。3100~3400cm-1のシラノール基由来のブロードなピークが消失していることから、得られた無色粘性液体の構造は、下記一般式(3)-2
   Y2-[Z-(RSiO3/2)]l-Z-Y2  (3)-2
で表される構成単位を有する籠構造含有硬化性シリコーン共重合体〔R1はビニル基、nは8、lは16であって、Zは上記一般式(4)(R2はメチル基、aは0.64)であり、Y2は、下記一般式(6)
Figure JPOXMLDOC01-appb-I000027
(R3はメチル基)である。〕と判断された。
As a result of measuring GPC of the colorless viscous liquid obtained above, they were Mw = 12,656 and Mw / Mn = 5.327. As a result of H 1 NMR measurement, the integral ratio of the multiplet peak due to the vinyl group of 5.8 to 6.2 ppm and the multiplet peak due to the methyl group of 0.07 to 0.3 ppm The base was 0.41. Furthermore, IR was measured in order to confirm the disappearance of the silanol group. Since the broad peak derived from the silanol group at 3100 to 3400 cm −1 disappears, the structure of the colorless viscous liquid obtained has the following general formula (3) -2
Y 2- [Z- (R 1 SiO 3/2 ) n ] l -ZY 2 (3) -2
籠 structure-containing curable silicone copolymer having a structural unit represented by the following formula: [R 1 is vinyl group, n is 8, l is 16, Z is the above general formula (4) (R 2 is methyl group, a is 0.64), and Y 2 is the following general formula (6)
Figure JPOXMLDOC01-appb-I000027
(R 3 is a methyl group). It was judged.
[実施例10]
 撹拌機及び滴下ロートを備えた反応容器に、ジメチルジクロロシラン1.99g、ピリジン15.38mlをはかり込み窒素置換した。滴下ロートに実施例1と同様にして得られた一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物(R1はビニル基、n=8、m=2)5.0g、及びピリジン77mLを入れ、室温で1.5時間かけて滴下した。滴下終了後、室温で2時間撹拌した。2時間撹拌後、これにトリメチルクロロシラン5.0g、及びピリジン20mlを加え、室温で2時間撹拌した。2時間撹拌後、トルエン50mL、及び蒸留水50mLを加え、有機層と水層を分離した。有機層抽出後、これを蒸留水で3回、及び飽和食塩水で2回洗浄し、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで無色粘性固体4.88g(回収率97%)を得た。
[Example 10]
A reaction vessel equipped with a stirrer and a dropping funnel was charged with 1.99 g of dimethyldichlorosilane and 15.38 ml of pyridine, and the atmosphere was replaced with nitrogen. A silanol group-containing curable silsesquioxane compound represented by the general formula (2) obtained in the same manner as in Example 1 in the dropping funnel (R 1 is a vinyl group, n = 8, m = 2) 5 0.0 g and 77 mL of pyridine were added dropwise at room temperature over 1.5 hours. After completion of dropping, the mixture was stirred at room temperature for 2 hours. After stirring for 2 hours, 5.0 g of trimethylchlorosilane and 20 ml of pyridine were added thereto and stirred at room temperature for 2 hours. After stirring for 2 hours, 50 mL of toluene and 50 mL of distilled water were added, and the organic layer and the aqueous layer were separated. After extraction of the organic layer, this was washed 3 times with distilled water and twice with saturated brine, and dehydrated over anhydrous magnesium sulfate. The anhydrous magnesium sulfate was filtered off and concentrated to obtain 4.88 g of colorless viscous solid (recovery rate 97%).
 上記で得た無色粘性液体のGPCを測定した結果、Mw=128,350、Mw/Mn=38.486であった。また、H1NMRを測定した結果、5.8~6.2ppmのビニル基によるマルチプレットピークと0.07~0.3ppmのメチル基によるマルチプレットピーク積分比は、ビニル基1に対してメチル基0.44であった。さらにシラノール基の消失を確認するためにIRを測定した。3100~3400cm-1のシラノール基由来のブロードなピークが消失していることから、得られた無色粘性固体の構造は、上記一般式(3)-2で表される構成単位を有する籠構造含有硬化性シリコーン共重合体〔R1はビニル基、nは8、lは165であって、Zは上記一般式(4)(R2はメチル基、aは0.76)であり、Y2は、上記一般式(6)(R3はメチル基)である。〕と判断された。 As a result of measuring GPC of the colorless viscous liquid obtained above, it was Mw = 128,350 and Mw / Mn = 38.486. As a result of H 1 NMR measurement, the integral ratio of the multiplet peak due to the vinyl group of 5.8 to 6.2 ppm and the multiplet peak due to the methyl group of 0.07 to 0.3 ppm The group was 0.44. Furthermore, IR was measured in order to confirm the disappearance of the silanol group. Since the broad peak derived from the silanol group at 3100 to 3400 cm −1 has disappeared, the structure of the colorless viscous solid obtained has a cage structure having the structural unit represented by the general formula (3) -2. Curable silicone copolymer [R 1 is vinyl group, n is 8, l is 165, Z is the above general formula (4) (R 2 is methyl group, a is 0.76), Y 2 is The above general formula (6) (R 3 is a methyl group). It was judged.
[実施例11]
 撹拌機及び滴下ロートを備えた反応容器に、1,1,3,3-テトラメチル-1,3-ジクロロシロキサン0.94g、及びピリジン9.23mlをはかり込み窒素置換した。滴下ロートに実施例1と同様にして得られた一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物(R1はビニル基、n=8、m=2)3.0g、及びピリジン46.2mLを入れ、室温で1.5時間かけて滴下した。滴下終了後、室温で2時間撹拌した。2時間撹拌後、トルエン30mL、及び蒸留水30mLを加え、有機層と水層を分離した。有機層抽出後、これを蒸留水で3回、及び飽和食塩水で2回洗浄し、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで無色粘性固体3.18g(回収率88%)を得た。
[Example 11]
A reaction vessel equipped with a stirrer and a dropping funnel was charged with 0.94 g of 1,1,3,3-tetramethyl-1,3-dichlorosiloxane and 9.23 ml of pyridine and purged with nitrogen. A silanol group-containing curable silsesquioxane compound represented by the general formula (2) obtained in the same manner as in Example 1 in the dropping funnel (R 1 is a vinyl group, n = 8, m = 2) 3 0.06 g and 46.2 mL of pyridine were added and added dropwise at room temperature over 1.5 hours. After completion of dropping, the mixture was stirred at room temperature for 2 hours. After stirring for 2 hours, 30 mL of toluene and 30 mL of distilled water were added, and the organic layer and the aqueous layer were separated. After extraction of the organic layer, this was washed 3 times with distilled water and twice with saturated brine, and dehydrated over anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered off and concentrated to obtain 3.18 g of colorless viscous solid (recovery rate 88%).
 上記で得た無色粘性固体のGPCを測定した結果、Mw=85,340、Mw/Mn=28.385であった。また、H1NMRを測定した結果、5.8~6.2ppmのビニル基によるマルチプレットピークと0.07~0.3ppmのメチル基によるマルチプレットピーク積分比は、ビニル基1に対してメチル基0.58であった。実施例5と同様の解析行った結果、得られた無色粘性液体の構造は、上記一般式(3)-1で表される構成単位を有する籠構造含有硬化性シリコーン共重合体〔R1はビニル基、nは8、lは104であって、Zは上記一般式(4)(R2はメチル基、aは1.32)であり、Y1は、下記一般式(5’)
   HO1/2-  (5’)
である。〕と判断された。
As a result of measuring GPC of the colorless viscous solid obtained above, they were Mw = 85,340 and Mw / Mn = 28.385. As a result of H 1 NMR measurement, the integral ratio of the multiplet peak due to the vinyl group of 5.8 to 6.2 ppm and the multiplet peak due to the methyl group of 0.07 to 0.3 ppm Group 0.58. As a result of the same analysis as in Example 5, the structure of the colorless viscous liquid obtained was a cocoon structure-containing curable silicone copolymer having a structural unit represented by the general formula (3) -1 [R 1 is Vinyl group, n is 8, l is 104, Z is the above general formula (4) (R 2 is methyl group, a is 1.32), Y 1 is the following general formula (5 ′)
HO 1/2- (5 ')
It is. It was judged.
[実施例12]
 撹拌機、及び冷却管を備えた反応容器に、実施例1と同様にして得られた一般式(2)で表されるシラノール基含有籠型シルセスキオキサン化合物(R1はビニル基、n=8、m=2)3.0g、1,3-ジメトキシジメチルジシロキサン0.9g、TMAH溶液0.084g及びトルエン46.2mlをはかり込み、90℃で1時間撹拌した。その後、ディンスタークを反応容器に設置し、100℃に昇温してメタノールを除去しながら加熱撹拌した。2時間加熱撹拌操作の後、反応溶液を室温に戻して10%クエン酸水溶液20mlを加え中和した。有機層抽出後、これを蒸留水で3回、及び飽和食塩水で2回洗浄し、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで無色粘性液体3.1g(回収率84%)を得た。
[Example 12]
In a reaction vessel equipped with a stirrer and a cooling tube, a silanol group-containing cage silsesquioxane compound represented by the general formula (2) obtained in the same manner as in Example 1 (R 1 is a vinyl group, n = 8, m = 2) 3.0 g, 0.9 g of 1,3-dimethoxydimethyldisiloxane, 0.084 g of TMAH solution and 46.2 ml of toluene were weighed in and stirred at 90 ° C. for 1 hour. Thereafter, a Dinsterk was placed in the reaction vessel, heated to 100 ° C., and stirred with heating while removing methanol. After heating and stirring for 2 hours, the reaction solution was returned to room temperature and neutralized by adding 20 ml of 10% aqueous citric acid solution. After extraction of the organic layer, this was washed 3 times with distilled water and twice with saturated brine, and dehydrated over anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered off and concentrated to obtain 3.1 g of colorless viscous liquid (recovery rate: 84%).
 上記で得た無色粘性固体のGPCを測定した結果、Mw=14,844、Mw/Mn=5.145であった。また、H1NMRを測定した結果、5.8~6.2ppmのビニル基によるマルチプレットピークと0.07~0.3ppmのメチル基によるマルチプレットピーク積分比は、ビニル基1に対してメチル基0.60であった。実施例5と同様の解析行った結果、得られた無色粘性液体の構造は、上記一般式(3)-1で表される構成単位を有する籠構造含有硬化性シリコーン共重合体〔R1はビニル基、nは8、lは18であって、Zは上記一般式(4)(R2はメチル基、aは1.4)であり、Y1は、下記一般式(5’)
   HO1/2-  (5’)
である。〕と判断された。
As a result of measuring GPC of the colorless viscous solid obtained above, they were Mw = 14,844 and Mw / Mn = 5.145. As a result of H 1 NMR measurement, the integral ratio of the multiplet peak due to the vinyl group of 5.8 to 6.2 ppm and the multiplet peak due to the methyl group of 0.07 to 0.3 ppm The group was 0.60. As a result of the same analysis as in Example 5, the structure of the colorless viscous liquid obtained was a cocoon structure-containing curable silicone copolymer having a structural unit represented by the general formula (3) -1 [R 1 is Vinyl group, n is 8, l is 18, Z is the above general formula (4) (R 2 is methyl group, a is 1.4), Y 1 is the following general formula (5 ′)
HO 1/2- (5 ')
It is. It was judged.
[実施例13]
 撹拌機、及び冷却管を備えた反応容器に、実施例1と同様にして得られた一般式(2)で表されるシラノール基含有籠型シルセスキオキサン化合物(R1はビニル基、n=8、m=2)3.0g、テトラメチルジシロキサン0.62g、N,N-ジエチルヒドロキシアミン0.3g及びトルエン45mlをはかり込み、50℃で3時間撹拌した。3時間加熱撹拌の後、反応溶液を室温に戻して10%クエン酸水溶液20mlを加え中和した。有機層抽出後、これを蒸留水で3回、飽和食塩水で2回洗浄し、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで無色粘性液体3.1g(回収率86%)を得た。
[Example 13]
In a reaction vessel equipped with a stirrer and a cooling tube, a silanol group-containing cage silsesquioxane compound represented by the general formula (2) obtained in the same manner as in Example 1 (R 1 is a vinyl group, n = 8, m = 2) 3.0 g, 0.62 g of tetramethyldisiloxane, 0.3 g of N, N-diethylhydroxyamine and 45 ml of toluene were weighed and stirred at 50 ° C. for 3 hours. After heating and stirring for 3 hours, the reaction solution was returned to room temperature and neutralized by adding 20 ml of 10% aqueous citric acid solution. After extraction of the organic layer, this was washed 3 times with distilled water and twice with saturated brine, and dehydrated over anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered off and concentrated to obtain 3.1 g of colorless viscous liquid (recovery rate 86%).
 上記で得た無色粘性固体のGPCを測定した結果、Mw=15,782、Mw/Mn=6.113であった。また、H1NMRを測定した結果、5.8~6.2ppmのビニル基によるマルチプレットピークと0.07~0.3ppmのメチル基によるマルチプレットピーク積分比は、ビニル基1に対してメチル基0.53であった。実施例5と同様の解析行った結果、得られた無色粘性液体の構造は、上記一般式(3)-1で表される構成単位を有する籠構造含有硬化性シリコーン共重合体〔R1はビニル基、nは8、lは20であって、Zは上記一般式(4)(R2はメチル基、aは1.12)であり、Y1は、下記一般式(5’)
   HO1/2-  (5’)
である。〕と判断された。
As a result of measuring GPC of the colorless viscous solid obtained above, it was Mw = 15,782, Mw / Mn = 6.113. As a result of H 1 NMR measurement, the integral ratio of the multiplet peak due to the vinyl group of 5.8 to 6.2 ppm and the multiplet peak due to the methyl group of 0.07 to 0.3 ppm The group was 0.53. As a result of the same analysis as in Example 5, the structure of the colorless viscous liquid obtained was a cocoon structure-containing curable silicone copolymer having a structural unit represented by the general formula (3) -1 [R 1 is Vinyl group, n is 8, l is 20, Z is the above general formula (4) (R 2 is methyl group, a is 1.12), Y 1 is the following general formula (5 ′)
HO 1/2- (5 ')
It is. It was judged.
[実施例14]
 実施例12で得られた一般式(3)-1で表される構成単位を有する籠構造含有硬化性シリコーン共重合体3.0gを実施例9と同様の操作を行いトリメチルクロロシラン3.0gと反応させ、無色粘性液体2.89g(回収率96%)を得た。
[Example 14]
The same operation as in Example 9 was performed on 3.0 g of the cocoon structure-containing curable silicone copolymer having the structural unit represented by the general formula (3) -1 obtained in Example 12, and 3.0 g of trimethylchlorosilane was obtained. The reaction was performed to obtain 2.89 g of colorless viscous liquid (recovery rate 96%).
 上記で得た無色粘性液体のGPCを測定した結果、Mw=14,973、Mw/Mn=5.345であった。また、H1NMRを測定した結果、5.8~6.2ppmのビニル基によるマルチプレットピークと0.1~0.4ppmのメチル基によるマルチプレットピーク積分比は、ビニル基1に対してメチル基0.61であった。さらにシラノール基の消失を確認するためにIRを測定した。3100~3400cm-1のシラノール基由来のブロードなピークが消失していることから、得られた無色粘性液体の構造は、上記一般式(3)-2で表される構成単位を有する籠構造含有硬化性シリコーン共重合体〔R1はビニル基、nは8、lは18であって、Zは上記一般式(4)(R2はメチル基、aは1.4)であり、Y2は、上記一般式(6)(R3はメチル基)である。〕と判断された。 As a result of measuring GPC of the colorless viscous liquid obtained above, it was Mw = 14,973 and Mw / Mn = 5.345. As a result of H 1 NMR measurement, the integral ratio of the multiplet peak due to the vinyl group of 5.8 to 6.2 ppm and the multiplet peak due to the methyl group of 0.1 to 0.4 ppm is methyl with respect to the vinyl group 1. The group was 0.61. Furthermore, IR was measured in order to confirm the disappearance of the silanol group. Since the broad peak derived from the silanol group at 3100 to 3400 cm −1 has disappeared, the structure of the colorless viscous liquid obtained has a cage structure having the structural unit represented by the general formula (3) -2. Curable silicone copolymer [R 1 is vinyl group, n is 8, l is 18, Z is the above general formula (4) (R 2 is methyl group, a is 1.4), Y 2 is The above general formula (6) (R 3 is a methyl group). It was judged.
[実施例15]
 実施例10で用いたジメチルジクロロシラン1.99gを1,1,3,3-テトラメチル-1,3-ジクロロシロキサン1.57gに変更し同様の実験を行った結果、無色粘性液体を5.12g(回収率85%)得た。
[Example 15]
A similar experiment was conducted by changing 1.99 g of dimethyldichlorosilane used in Example 10 to 1.57 g of 1,1,3,3-tetramethyl-1,3-dichlorosiloxane. 12 g (recovery rate 85%) was obtained.
 上記で得た無色粘性液体のGPCを測定した結果、Mw=116,598、Mw/Mn=45.496であった。また、H1NMRを測定した結果、5.8~6.2ppmのビニル基によるマルチプレットピークと0.07~0.3ppmのメチル基によるマルチプレットピーク積分比は、ビニル基1に対してメチル基0.59であった。さらにシラノール基の消失を確認するためにIRを測定した。3100~3400cm-1のシラノール基由来のブロードなピークが消失していることから、得られた無色粘性液体の構造は、上記一般式(3)-2で表される構成単位を有する籠構造含有硬化性シリコーン共重合体〔R1はビニル基、nは8、lは142であって、Zは上記一般式(4)(R2はメチル基、aは1.36)であり、Y2は、上記一般式(6)(R3はメチル基)である。〕と判断された。 As a result of measuring GPC of the colorless viscous liquid obtained above, they were Mw = 116,598 and Mw / Mn = 45.496. As a result of H 1 NMR measurement, the integral ratio of the multiplet peak due to the vinyl group of 5.8 to 6.2 ppm and the multiplet peak due to the methyl group of 0.07 to 0.3 ppm Group 0.59. Furthermore, IR was measured in order to confirm the disappearance of the silanol group. Since the broad peak derived from the silanol group at 3100 to 3400 cm −1 has disappeared, the structure of the colorless viscous liquid obtained has a cage structure having the structural unit represented by the general formula (3) -2. Curable silicone copolymer [R 1 is vinyl group, n is 8, l is 142, Z is the above general formula (4) (R 2 is methyl group, a is 1.36), Y 2 is The above general formula (6) (R 3 is a methyl group). It was judged.
[実施例16]
 撹拌機及び滴下ロートを備えた反応容器に、ジメチルジクロロシラン0.89g、及びピリジン15.38mlをはかり込み窒素置換した。滴下ロートに実施例1と同様にして得られた一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物(R1はビニル基、n=8、m=2)5.0g、及びピリジン77mLを入れ、室温で1.5時間かけて滴下した。滴下終了後、室温で2時間撹拌した。2時間撹拌後、トルエン50mL及び蒸留水50mLを加え、有機層と水層を分離した。有機層抽出後、これを蒸留水で3回、及び飽和食塩水で2回洗浄し、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで無色粘性固体5.07g(回収率94%)得た。得られた無色粘性固体のGPC、及びH1NMR測定結果から下記一般式(3)-2
   Y2-[Z-(RSiO3/2)]l-Z-Y2   (3)-2
で表される籠構造含有硬化性シリコーン共重合体〔R1はビニル基、nは8、lは235であって、Zは下記一般式(4)
Figure JPOXMLDOC01-appb-I000028
(R2はメチル基、aは0.33)であり、Y1は、下記一般式(5)
   -[RSiO3/2][HO1/2]m-1  (5)
(R1はビニル基、n=8、m=2)〕であると判断された。
[Example 16]
A reaction vessel equipped with a stirrer and a dropping funnel was charged with 0.89 g of dimethyldichlorosilane and 15.38 ml of pyridine and purged with nitrogen. A silanol group-containing curable silsesquioxane compound represented by the general formula (2) obtained in the same manner as in Example 1 in the dropping funnel (R 1 is a vinyl group, n = 8, m = 2) 5 0.0 g and 77 mL of pyridine were added dropwise at room temperature over 1.5 hours. After completion of dropping, the mixture was stirred at room temperature for 2 hours. After stirring for 2 hours, 50 mL of toluene and 50 mL of distilled water were added, and the organic layer and the aqueous layer were separated. After extraction of the organic layer, this was washed 3 times with distilled water and twice with saturated brine, and dehydrated over anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered off and concentrated to obtain 5.07 g of colorless viscous solid (recovery rate 94%). From the GPC and H 1 NMR measurement results of the obtained colorless viscous solid, the following general formula (3) -2
Y 2- [Z- (R 1 SiO 3/2 ) n ] l -ZY 2 (3) -2
籠 structure-containing curable silicone copolymer represented by: [wherein R 1 is a vinyl group, n is 8, l is 235, and Z is the following general formula (4)
Figure JPOXMLDOC01-appb-I000028
(R 2 is a methyl group, a is 0.33), and Y 1 is the following general formula (5)
-[R 1 SiO 3/2 ] n [HO 1/2 ] m-1 (5)
(R 1 is a vinyl group, n = 8, m = 2)].
[実施例17]
 撹拌機、及び冷却管を備えた反応容器に、上記実施例5で得られた一般式(3)-1で表される籠構造含有硬化性シリコーン共重合体5.0gとピリジン30mlをはかり込み窒素置換した。滴下ロートにトリメチルクロロシラン5.0gとピリジン20mlを入れ、室温で30分かけて滴下し、2時間撹拌した。2時間撹拌後、トルエン30mL及び蒸留水30mLを加え、有機層と水層を分離した。有機層抽出後、これを蒸留水で3回、及び飽和食塩水で2回洗浄し、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで無色粘性液体4.82g(回収率96%)を得た。得られた無色粘性液体の構造は、GPC、及びH1NMR測定結果から下記一般式(3)-3
   Y3-[Z-(RSiO3/2) ]l-Z-Y3   (3)-3
で表される構成単位を有する籠構造含有硬化性シリコーン共重合体〔R1はビニル基、nは8、lは596であって、Zは上記一般式(4)(R2はメチル基、aは0.48)であり、Yは、下記一般式(6)
Figure JPOXMLDOC01-appb-I000029
(R3はメチル基)である。〕と判断された。
[Example 17]
Into a reaction vessel equipped with a stirrer and a cooling tube, 5.0 g of the cocoon structure-containing curable silicone copolymer represented by the general formula (3) -1 obtained in Example 5 and 30 ml of pyridine are weighed. Replaced with nitrogen. To the dropping funnel, 5.0 g of trimethylchlorosilane and 20 ml of pyridine were added dropwise over 30 minutes at room temperature and stirred for 2 hours. After stirring for 2 hours, 30 mL of toluene and 30 mL of distilled water were added, and the organic layer and the aqueous layer were separated. After extraction of the organic layer, this was washed 3 times with distilled water and twice with saturated brine, and dehydrated over anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered off and concentrated to obtain 4.82 g of colorless viscous liquid (recovery rate 96%). The structure of the resulting colorless viscous liquid is represented by the following general formula (3) -3 from GPC and H 1 NMR measurement results.
Y 3- [Z- (R 1 SiO 3/2 ) n ] l -ZY 3 (3) -3
籠 structure-containing curable silicone copolymer having a structural unit represented by the following formula: [R 1 is a vinyl group, n is 8, 1 is 596, Z is the above general formula (4) (R 2 is a methyl group, a is 0.48), and Y 3 is the following general formula (6)
Figure JPOXMLDOC01-appb-I000029
(R 3 is a methyl group). It was judged.
[実施例18]
 上記実施例5と同様の合成法で得られた一般式(3)-1で表される籠構造含有硬化性シリコーン共重合体100重量部、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン30重量部、及び熱重合開始剤としてジt-ブチルパーオキサイド(日本油脂株式会社製パーブチルD)5重量部を混合し、透明な硬化性樹脂組成物を得た。
[Example 18]
100 parts by weight of cocoon structure-containing curable silicone copolymer represented by the general formula (3) -1 obtained by the same synthesis method as in Example 5 above, 1,3,5,7-tetramethyl-1, A transparent curable resin composition comprising 30 parts by weight of 3,5,7-tetravinylcyclotetrasiloxane and 5 parts by weight of di-t-butyl peroxide (Perbutyl D manufactured by NOF Corporation) as a thermal polymerization initiator. Got.
 次に、ロールコーターを用いて、上記で得られた硬化性樹脂組成物を厚さ0.5mmになるようにキャスト(延流)し、100℃から0.5℃/minで160℃まで昇温し、更に160℃から1℃/minで200℃まで昇温し、その後1.5℃/minで50℃まで降温する熱硬化プログラムを実行し、所定の厚みを有した、実施例18に係る籠構造含有硬化性シリコーン樹脂成形体を得た。 Next, using a roll coater, the curable resin composition obtained above was cast (flow cast) to a thickness of 0.5 mm, and the temperature was increased from 100 ° C. to 160 ° C. at 0.5 ° C./min. In Example 18 having a predetermined thickness, a thermosetting program was executed by heating, further increasing the temperature from 160 ° C. to 200 ° C. at 1 ° C./min, and then decreasing the temperature to 50 ° C. at 1.5 ° C./min. Such a cage structure-containing curable silicone resin molding was obtained.
[実施例19]
 上記実施例16と同様の合成法で得られた一般式(3)-2で表される籠構造含有硬化性シリコーン共重合体100重量部、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン30重量部、及び熱重合開始剤としてジt-ブチルパーオキサイド(日本油脂株式会社製パーブチルD)5重量部を混合し、透明な硬化性樹脂組成物を得た。
[Example 19]
100 parts by weight of a cocoon structure-containing curable silicone copolymer represented by the general formula (3) -2 obtained by the same synthesis method as in Example 16 above, 1,3,5,7-tetramethyl-1, A transparent curable resin composition comprising 30 parts by weight of 3,5,7-tetravinylcyclotetrasiloxane and 5 parts by weight of di-t-butyl peroxide (Perbutyl D manufactured by NOF Corporation) as a thermal polymerization initiator. Got.
 次に、ロールコーターを用いて、上記で得られた硬化性樹脂組成物を厚さ0.5mmになるようにキャスト(延流)し、100℃から0.5℃/minで160℃まで昇温し、更に160℃から1℃/minで200℃まで昇温し、その後1.5℃/minで50℃まで降温する熱硬化プログラムを実行し、所定の厚みを有した、実施例19に係る籠構造含有硬化性シリコーン樹脂成形体を得た。 Next, using a roll coater, the curable resin composition obtained above was cast (flow cast) to a thickness of 0.5 mm, and the temperature was increased from 100 ° C. to 160 ° C. at 0.5 ° C./min. In Example 19 having a predetermined thickness, a thermosetting program was executed by heating, further increasing the temperature from 160 ° C. to 200 ° C. at 1 ° C./min, and then decreasing the temperature to 50 ° C. at 1.5 ° C./min. Such a cage structure-containing curable silicone resin molding was obtained.
[実施例20]
 上記実施例17と同様の合成法で得られた一般式(3)-3で表される籠構造含有硬化性シリコーン共重合体100重量部、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン30重量部、及び熱重合開始剤としてジt-ブチルパーオキサイド(日本油脂株式会社製パーブチルD)5重量部を混合し、透明な硬化性樹脂組成物を得た。
[Example 20]
100 parts by weight of a cocoon structure-containing curable silicone copolymer represented by the general formula (3) -3 obtained by the same synthesis method as in Example 17, 1,3,5,7-tetramethyl-1, A transparent curable resin composition comprising 30 parts by weight of 3,5,7-tetravinylcyclotetrasiloxane and 5 parts by weight of di-t-butyl peroxide (Perbutyl D manufactured by NOF Corporation) as a thermal polymerization initiator. Got.
 次に、ロールコーターを用いて、上記で得られた硬化性樹脂組成物を厚さ0.5mmになるようにキャスト(延流)し、100℃から0.5℃/minで160℃まで昇温し、更に160℃から1℃/minで200℃まで昇温し、その後1.5℃/minで50℃まで降温する熱硬化プログラムを実行し、所定の厚みを有した、実施例20に係る籠構造含有硬化性シリコーン樹脂成形体を得た。 Next, using a roll coater, the curable resin composition obtained above was cast (flow cast) to a thickness of 0.5 mm, and the temperature was increased from 100 ° C. to 160 ° C. at 0.5 ° C./min. In Example 20 having a predetermined thickness, a thermosetting program was executed by heating, further increasing the temperature from 160 ° C. to 200 ° C. at 1 ° C./min, and then decreasing the temperature to 50 ° C. at 1.5 ° C./min. Such a cage structure-containing curable silicone resin molding was obtained.
[実施例21]
 上記実施例17と同様の合成法で得られた一般式(3)-3で表される籠構造含有硬化性シリコーン共重合体100重量部、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン30重量部、熱重合開始剤としてジt-ブチルパーオキサイド(日本油脂株式会社製パーブチルD)2.5重量部、及び光開始剤として2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(チバ・スペシャリティケミカルズ株式会社製ダロキュア1173)2.5重量部を混合し、透明な硬化性樹脂組成物を得た。
[Example 21]
100 parts by weight of a cocoon structure-containing curable silicone copolymer represented by the general formula (3) -3 obtained by the same synthesis method as in Example 17, 1,3,5,7-tetramethyl-1, 30 parts by weight of 3,5,7-tetravinylcyclotetrasiloxane, 2.5 parts by weight of di-t-butyl peroxide (Perbutyl D manufactured by NOF Corporation) as a thermal polymerization initiator, and 2-hydroxy- as a photoinitiator 2.5 parts by weight of 2-methyl-1-phenyl-propan-1-one (Darocur 1173 manufactured by Ciba Specialty Chemicals Co., Ltd.) was mixed to obtain a transparent curable resin composition.
 次に、ロールコーターを用いて、上記で得られた硬化性樹脂組成物を厚さ0.5mmになるようにキャスト(延流)し、30W/cmの高圧水銀ランプを用い、2000mJ/cmの積算露光量で硬化、次いで100℃から0.5℃/minで160℃まで昇温し、更に160℃から1℃/minで200℃まで昇温し、その後1.5℃/minで50℃まで降温する熱硬化プログラムを実行し、所定の厚みを有した、実施例21に係る籠構造含有硬化性シリコーン樹脂成形体を得た。 Next, using a roll coater, the curable resin composition obtained above was cast (flow cast) to a thickness of 0.5 mm, and using a 30 W / cm high-pressure mercury lamp, 2000 mJ / cm 2. Then, the temperature is increased from 100 ° C. to 160 ° C. at a rate of 0.5 ° C./min, and further increased from 160 ° C. to 200 ° C. at a rate of 1 ° C./min. A thermosetting program for lowering the temperature to 0 ° C. was executed to obtain a ridge structure-containing curable silicone resin molding according to Example 21 having a predetermined thickness.
[実施例22]
 上記実施例17と同様の合成法で得られた一般式(3)-3で表される籠構造含有硬化性シリコーン共重合体100重量部、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン30重量部、及び白金-ビニルシロキサン錯体(アズマックス株式会社製SIP6830.3)0.5重量部を混合し、透明な硬化性樹脂組成物を得た。
[Example 22]
100 parts by weight of a cocoon structure-containing curable silicone copolymer represented by the general formula (3) -3 obtained by the same synthesis method as in Example 17, 1,3,5,7-tetramethyl-1, A transparent curable resin composition was obtained by mixing 30 parts by weight of 3,5,7-tetravinylcyclotetrasiloxane and 0.5 parts by weight of a platinum-vinylsiloxane complex (SIP6830.3, manufactured by Azumax Co., Ltd.).
 次に、ロールコーターを用いて、上記で得られた硬化性樹脂組成物を厚さ0.5mmになるようにキャスト(延流)し、100℃で1時間、140℃で1時間、及び180℃で1時間それぞれ加熱し、所定の厚みを有した、実施例22に係る籠構造含有硬化性シリコーン樹脂成形体を得た。 Next, using a roll coater, the curable resin composition obtained above was cast (flow cast) so as to have a thickness of 0.5 mm, and was 100 ° C. for 1 hour, 140 ° C. for 1 hour, and 180 ° Each of them was heated at 0 ° C. for 1 hour to obtain a ridge structure-containing curable silicone resin molding according to Example 22 having a predetermined thickness.
[比較例1]
 1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン100重量部、及び熱重合開始剤としてジt-ブチルパーオキサイド(日本油脂株式会社製パーブチルD)5重量部を混合し、透明な硬化性樹脂組成物を得た。
[Comparative Example 1]
1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane 100 parts by weight and di-t-butyl peroxide (Perbutyl D, manufactured by NOF Corporation) 5 as a thermal polymerization initiator Part by weight was mixed to obtain a transparent curable resin composition.
 次に、ロールコーターを用いて、上記で得られた硬化性樹脂組成物を厚さ0.5mmになるようにキャスト(延流)し、100℃から0.5℃/minで160℃まで昇温し、更に160℃から1℃/minで200℃まで昇温し、その後1.5℃/minで50℃まで降温する熱硬化プログラムを実行し、所定の厚みを有した、比較例1に係る籠構造含有硬化性シリコーン樹脂成形体を得た。 Next, using a roll coater, the curable resin composition obtained above was cast (flow cast) to a thickness of 0.5 mm, and the temperature was increased from 100 ° C. to 160 ° C. at 0.5 ° C./min. In Comparative Example 1 having a predetermined thickness, a thermosetting program was executed by heating, further increasing the temperature from 160 ° C. to 200 ° C. at 1 ° C./min, and then decreasing the temperature to 50 ° C. at 1.5 ° C./min. Such a cage structure-containing curable silicone resin molding was obtained.
[比較例2]
 ジシクロペンタニルジアクリレート(共栄社化学(株)製ライトアクリレートDCP-A)100重量部、及び光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャリティケミカルズ株式会社製イルガキュア184)5重量部を混合し、透明な硬化性樹脂組成物を得た。
[Comparative Example 2]
100 parts by weight of dicyclopentanyl diacrylate (light acrylate DCP-A manufactured by Kyoeisha Chemical Co., Ltd.) and 5 parts by weight of 1-hydroxycyclohexyl phenyl ketone (Irgacure 184 manufactured by Ciba Specialty Chemicals Co., Ltd.) as a photopolymerization initiator By mixing, a transparent curable resin composition was obtained.
 次に、ロールコーターを用いて、上記で得られた硬化性樹脂組成物を厚さ0.5mmになるようにキャスト(流延)し、30W/cmの高圧水銀ランプを用い、2000mJ/cmの積算露光量で硬化させ、所定の厚みを有した、比較例2に係るシート状の成形体を得た。 Next, the curable resin composition obtained above was cast (cast) to a thickness of 0.5 mm using a roll coater, and 2000 mJ / cm 2 using a 30 W / cm high-pressure mercury lamp. The sheet-like molded body according to Comparative Example 2 having a predetermined thickness was cured with the accumulated exposure amount.
 上記実施例18~22及び比較例1~2で得られた成形体の物性値を評価した。得られた評価結果を表2に示す。ここで、CTEは50℃から150℃における線膨張係数を表す。 The physical property values of the molded bodies obtained in Examples 18 to 22 and Comparative Examples 1 and 2 were evaluated. The obtained evaluation results are shown in Table 2. Here, CTE represents a linear expansion coefficient from 50 ° C to 150 ° C.
 成形体の物性評価は以下の方法で行った。
(1)耐熱性試験
 (a)線膨張係数:熱機械分析法に基づき、昇温速度5℃/minの条件で測定した。
 (b)透過率:200℃で3時間加熱した後、日立製作所社製U4000を用いて、波長400nmの光の透過率を測定した。
(2)成形性試験
 10cm角、厚さ0.5mmの試験片作成後にクラックの発生が無いもの○、あるもの×として判定した。
The physical properties of the molded body were evaluated by the following methods.
(1) Heat resistance test (a) Linear expansion coefficient: Measured based on a thermomechanical analysis method at a heating rate of 5 ° C / min.
(b) Transmittance: After heating at 200 ° C. for 3 hours, the transmittance of light with a wavelength of 400 nm was measured using U4000 manufactured by Hitachi, Ltd.
(2) Formability test After making a 10 cm square test piece having a thickness of 0.5 mm, it was determined that there was no crack after being produced, and that there was no x.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 本発明の籠型含有硬化性シリコーン共重合体によれば、耐熱や透明性に優れたシリコーンの特性に加えて、低熱膨張性と高靭性の相反する物性を両立した硬化物を得ることができ、従来の炭化水素を主成分として成形されたプラスチックでは不可能な耐熱性や高寸法安定性を備えると共に、ガラスでは達成困難な靭性が付与された透明材料を得ることができる。そのため、得られた硬化物は、例えばタッチパネル基板、フラットパネルディスプレイ基板、レンズ、光ディスク、光ファイバー等の光学用途をはじめ、各種輸送機械や住宅等の窓材など様々な用途に用いることができ、また、軽量の透明部材としても利用することができることから、これまで各種使用されていたガラスの代替材料として利用可能である。 According to the cocoon-containing curable silicone copolymer of the present invention, it is possible to obtain a cured product having both low thermal expansion properties and high toughness, in addition to the properties of silicone excellent in heat resistance and transparency. In addition, it is possible to obtain a transparent material that has heat resistance and high dimensional stability that cannot be achieved with conventional plastics mainly composed of hydrocarbons and that has been provided with toughness that is difficult to achieve with glass. Therefore, the obtained cured product can be used for various applications such as optical materials such as touch panel substrates, flat panel display substrates, lenses, optical disks, and optical fibers, as well as various transport machines and window materials for houses, etc. Since it can also be used as a lightweight transparent member, it can be used as an alternative material for glass that has been used so far.

Claims (11)

  1.  下記一般式(1)
       [RSiO3/2]   (1)
    (但し、Rはビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、1分子中に含まれるRの少なくとも1つはビニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基のいずれかであり、nは6~14の数を示す。)で表される硬化性籠型シルセスキオキサン化合物を塩基性化合物存在下、非極性溶媒と極性溶媒のうち1つもしくは両方を合わせた有機溶媒中でシロキサン結合を1つもしくは複数開裂させ、塩基性化合物由来のカウンターカチオンを開裂部と結合せしめた後、酸で処理し、開裂部を水酸基に変換し得られることを特徴とする下記一般式(2)
       [RSiO3/2][HO1/2]   (2)
    (但し、Rはビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基、又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、1分子中に含まれるRの少なくとも1つはビニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基のいずれかであり、また、nは6~14の数、mは1~4の数を示す。)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物。
    The following general formula (1)
    [R 1 SiO 3/2 ] n (1)
    (However, R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule. At least one of R 1 is a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, and n represents a number of 6 to 14.) In the presence of a basic compound, the silsesquioxane compound is cleaved by one or more siloxane bonds in an organic solvent that combines one or both of a nonpolar solvent and a polar solvent, thereby cleaving the counter cation derived from the basic compound. The compound represented by the following general formula (2) is characterized in that it can be converted to a hydroxyl group by treating with an acid after binding to the moiety.
    [R 1 SiO 3/2 ] n [HO 1/2 ] m (2)
    (However, R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group, or an oxirane ring, and they may be the same or different from each other. At least one of R 1 contained is any one of a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n is a number of 6 to 14, and m is a number of 1 to 4. A silanol group-containing curable silsesquioxane compound represented by:
  2.  数平均分子量Mnが500~10000の範囲であり、分子量分散度〔Mw(重量平均分子量)/Mn〕が1.0~2.0の範囲である請求項1に記載の一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物。 The general formula (2) according to claim 1, wherein the number average molecular weight Mn is in the range of 500 to 10,000, and the molecular weight dispersity [Mw (weight average molecular weight) / Mn] is in the range of 1.0 to 2.0. A silanol group-containing curable cage-type silsesquioxane compound represented.
  3.  下記一般式(1)
       [RSiO3/2]   (1)
    (但し、Rはビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、1分子中に含まれるRの少なくとも1つはビニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基のいずれかであり、また、nは6~14の数を示す。)で表される硬化性籠型シルセスキオキサン化合物を塩基性化合物存在下、非極性溶媒と極性溶媒のうち1つもしくは両方を合わせた有機溶媒中でシロキサン結合を1つもしくは複数開裂させ、塩基性化合物由来のカウンターカチオンを開裂部と結合せしめた後、酸で処理し、開裂部を水酸基に変換し得られることを特徴とする下記一般式(2)
       [RSiO3/2][HO1/2]   (2)
    (但し、Rはビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、1分子中に含まれるRの少なくとも1つはビニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基のいずれかであり、また、nは6~14の数、mは1~4の数を示す。)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物の製造方法。
    The following general formula (1)
    [R 1 SiO 3/2 ] n (1)
    (However, R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule. At least one of R 1 is a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, and n represents a number of 6 to 14. A counter cation derived from a basic compound by cleaving one or more siloxane bonds in an organic solvent containing a non-polar solvent and one or both polar solvents in the presence of a basic compound in the presence of a basic silsesquioxane compound. Is bonded to the cleavage portion and then treated with an acid to convert the cleavage portion to a hydroxyl group.
    [R 1 SiO 3/2 ] n [HO 1/2 ] m (2)
    (However, R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule. And at least one of R 1 is a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n is a number of 6 to 14, and m is a number of 1 to 4. .) A method for producing a silanol group-containing curable caged silsesquioxane compound represented by:
  4.  一般式(1)で表される構造単位1モルに対して0.5~3モルの範囲の塩基性化合物を用いることを特徴とする請求項3に記載のシラノール基含有硬化性籠型シルセスキオキサン化合物の製造方法。 The silanol group-containing curable cage-type silsesquik according to claim 3, wherein the basic compound is used in an amount of 0.5 to 3 mol per mol of the structural unit represented by the general formula (1). A method for producing an oxan compound.
  5.  下記一般式(3)
       Y-[Z-(RSiO3/2)]l-Z-Y   (3)
    〔但し、Rはビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、1分子中に含まれるRの少なくとも1つはビニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基のいずれかであり、また、nは6~14の数を示し、lは1~2000の数を示し、Zは下記一般式(4)
    Figure JPOXMLDOC01-appb-I000001
    (但し、Rは水素原子、ビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよく、また、aは0~30の数を示す。)で表される2価の基であり、Yは、下記一般式(5’)
       HO1/2-  (5’)
    又は下記一般式(5)
       -[RSiO3/2][HO1/2]m-1  (5)
    (但し、Rはビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、1分子中に含まれるRの少なくとも1つはビニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基のいずれかであり、また、nは6~14の数、mは1~4の数を示す。)
    又は下記一般式(6)
    Figure JPOXMLDOC01-appb-I000002
    (但し、Rは水素、ビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよい。)で表される1価の基である。〕で表される構成単位を有することを特徴とする籠構造含有硬化性シリコーン共重合体。
    The following general formula (3)
    Y- [Z- (R 1 SiO 3/2 ) n ] l -ZY (3)
    [However, R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule. At least one of R 1 is any one of a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n represents a number of 6 to 14, and l represents a number of 1 to 2000. Z represents the following general formula (4)
    Figure JPOXMLDOC01-appb-I000001
    (However, R 2 is a hydrogen atom, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, which may be the same or different from each other, Is a divalent group represented by the following formula (5 ′):
    HO 1/2- (5 ')
    Or the following general formula (5)
    -[R 1 SiO 3/2 ] n [HO 1/2 ] m-1 (5)
    (However, R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule. And at least one of R 1 is a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n is a number of 6 to 14, and m is a number of 1 to 4. .)
    Or the following general formula (6)
    Figure JPOXMLDOC01-appb-I000002
    (However, R 3 is a group having hydrogen, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, and may be the same or different from each other). A monovalent group. ] The cocoon structure containing curable silicone copolymer characterized by having the structural unit represented by these.
  6.  下記一般式(2)
       [RSiO3/2][HO1/2]   (2)
    (但し、Rはビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、1分子中に含まれるRの少なくとも1つはビニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基のいずれかであり、また、nは6~14の数、mは1~4の数を示す。)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物と下記一般式(7)
    Figure JPOXMLDOC01-appb-I000003
    (但し、R2は水素原子、ビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよく、また、Xは水素原子、ハロゲン原子又はアルコキシル基であって、互いに同じか異なるものであってもよく、更にbは0~30の数を示す。)で表される化合物とを縮合反応させ、又は、更に下記一般式(8)
    Figure JPOXMLDOC01-appb-I000004
    (但し、R3は水素原子、ビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよい。)で表される化合物を縮合させることにより、下記一般式(3)
       Y-[Z-(RSiO3/2)]l-Z-Y   (3)
    〔但し、Rはビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、1分子中に含まれるRの少なくとも1つはビニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基のいずれかであり、また、nは6~14の数を示し、lは1~2000の数を示し、Zは下記一般式(4)
    Figure JPOXMLDOC01-appb-I000005
    (但し、Rは水素原子、ビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよく、また、aは0~30の数を示す。)で表される2価の基であり、Yは下記一般式(5’)
       HO1/2-  (5’)
    又は下記一般式(5)
       -[RSiO3/2][HO1/2]m-1  (5)
    (但し、Rはビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、1分子中に含まれるRの少なくとも1つはビニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基のいずれかであり、また、nは6~14の数、mは1~4の数を示す)、又は下記一般式(6)
    Figure JPOXMLDOC01-appb-I000006
    (但し、Rは水素、ビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよい)で表される1価の基である。〕で表される構成単位を有した籠構造含有硬化性シリコーン共重合体を得ることを特徴とする籠構造含有硬化性シリコーン共重合体の製造方法。
    The following general formula (2)
    [R 1 SiO 3/2 ] n [HO 1/2 ] m (2)
    (However, R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule. And at least one of R 1 is a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n is a number of 6 to 14, and m is a number of 1 to 4. ) -Containing curable caged silsesquioxane compound represented by the following general formula (7)
    Figure JPOXMLDOC01-appb-I000003
    (Wherein R 2 is a hydrogen atom, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, which may be the same or different from each other, Is a hydrogen atom, a halogen atom or an alkoxyl group, which may be the same or different from each other, and b represents a number of 0 to 30), or a condensation reaction with a compound represented by The following general formula (8)
    Figure JPOXMLDOC01-appb-I000004
    (Wherein R 3 is a hydrogen atom, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, and may be the same or different from each other). The following general formula (3)
    Y- [Z- (R 1 SiO 3/2 ) n ] l -ZY (3)
    [However, R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule. At least one of R 1 is any one of a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n represents a number of 6 to 14, and l represents a number of 1 to 2000. Z represents the following general formula (4)
    Figure JPOXMLDOC01-appb-I000005
    (However, R 2 is a hydrogen atom, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, which may be the same or different from each other, Is a divalent group represented by the following formula (5 ′):
    HO 1/2- (5 ')
    Or the following general formula (5)
    -[R 1 SiO 3/2 ] n [HO 1/2 ] m-1 (5)
    (However, R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other, but are included in one molecule. And at least one of R 1 is a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n is a number of 6 to 14, and m is a number of 1 to 4. ) Or the following general formula (6)
    Figure JPOXMLDOC01-appb-I000006
    (Wherein R 3 is a group having hydrogen, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, which may be the same or different from each other). It is a monovalent group. A cocoon structure-containing curable silicone copolymer having a structural unit represented by the following formula:
  7.  一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物1モルに対して0.5~10モルの範囲の一般式(7)で表される化合物を縮合反応させることを特徴とする請求項6に記載の籠構造含有硬化性シリコーン共重合体の製造方法。 A condensation reaction of a compound represented by the general formula (7) in a range of 0.5 to 10 mol with respect to 1 mol of the silanol group-containing curable silsesquioxane compound represented by the general formula (2). The method for producing a cocoon structure-containing curable silicone copolymer according to claim 6.
  8.  一般式(2)で表されるシラノール基含有硬化性籠型シルセスキオキサン化合物1モルに対して0.5~10モルの範囲の一般式(7)で表される化合物と2~100モルの範囲の一般式(8)で表される化合物とを縮合反応させることを特徴とする請求項6に記載の籠構造含有硬化性シリコーン共重合体の製造方法。 The compound represented by the general formula (7) in the range of 0.5 to 10 moles and 2 to 100 moles per mole of the silanol group-containing curable caged silsesquioxane compound represented by the general formula (2) The method for producing a cocoon structure-containing curable silicone copolymer according to claim 6, wherein a condensation reaction is performed with a compound represented by the general formula (8) in the range of:
  9.  下記一般式(3)
       Y-[Z-(RSiO3/2)]l-Z-Y   (3)
    〔但し、Rはビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、Rに関して1分子中に少なくとも1つはビニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基のいずれかを有し、また、nは6~14の数を示し、lは1~2000の数を示し、Zは下記一般式(4)
    Figure JPOXMLDOC01-appb-I000007
    (但し、Rは水素原子、ビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよく、また、aは0~30の数を示す。)で表される2価の基であり、Yは下記一般式(5’)
       HO1/2-  (5’)
    又は下記一般式(5)
       -[RSiO3/2][HO1/2]m-1  (5)
    (但し、Rはビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、Rに関して1分子中に少なくとも1つはビニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基のいずれかを有し、また、nは6~14の数、mは1~4の数を示す。)
    又は下記一般式(6)
    Figure JPOXMLDOC01-appb-I000008
    (但し、Rは水素、ビニル基、アルキル基、フェニル基、(メタ)アクリロイル基、アリル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよい。)で表される1価の基である。〕で表される構成単位を有する籠構造含有硬化性シリコーン共重合体に、ヒドロシリル化触媒とラジカル開始剤とのうちいずれか一方又は両者を配合し、かつ、少なくとも1つのケイ素原子上に水素原子を有するヒドロシリル化可能な化合物と分子中に不飽和基を有する化合物とのうちいずれか一方又は両者を配合してなる硬化性樹脂組成物。
    The following general formula (3)
    Y- [Z- (R 1 SiO 3/2 ) n ] l -ZY (3)
    [However, R 1 is a vinyl group, an alkyl group, a phenyl group, (meth) acryloyl group, a group having an allyl group, or an oxirane ring, may be different from the same or another, one molecule with respect to R 1 At least one of them has a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n represents a number of 6 to 14, and l represents a number of 1 to 2000. Z is the following general formula (4)
    Figure JPOXMLDOC01-appb-I000007
    (However, R 2 is a hydrogen atom, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, which may be the same or different from each other, Is a divalent group represented by the following formula (5 ′):
    HO 1/2- (5 ')
    Or the following general formula (5)
    -[R 1 SiO 3/2 ] n [HO 1/2 ] m-1 (5)
    (Wherein, R 1 is a vinyl group, an alkyl group, a phenyl group, (meth) acryloyl group, a group having an allyl group, or an oxirane ring, may be different from the same or another, one molecule with respect to R 1 At least one of them has any of a vinyl group, a (meth) acryloyl group, an allyl group or a group having an oxirane ring, n represents a number of 6 to 14, and m represents a number of 1 to 4. )
    Or the following general formula (6)
    Figure JPOXMLDOC01-appb-I000008
    (However, R 3 is a group having hydrogen, a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, and may be the same or different from each other). A monovalent group. ] One or both of a hydrosilylation catalyst and a radical initiator is blended with a cocoon structure-containing curable silicone copolymer having a structural unit represented by the formula: and a hydrogen atom on at least one silicon atom A curable resin composition comprising one or both of a hydrosilylatable compound having a compound and a compound having an unsaturated group in the molecule.
  10.  少なくとも1つのケイ素原子上に水素原子を有するヒドロシリル化可能な化合物が、シロキサン類又はシラン類である請求項9に記載の硬化性樹脂組成物。 The curable resin composition according to claim 9, wherein the hydrosilylatable compound having a hydrogen atom on at least one silicon atom is a siloxane or a silane.
  11.  請求項9又は10に記載の硬化性樹脂組成物を成形硬化して得られる成形体。 A molded product obtained by molding and curing the curable resin composition according to claim 9 or 10.
PCT/JP2009/053751 2008-03-28 2009-02-27 Silanol-group-containing curable cage-type silsesquioxane compound, cage-structure-containing curable silicone copolymer, processes for producing these, and curable resin composition WO2009119253A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010505478A JPWO2009119253A1 (en) 2008-03-28 2009-02-27 Silanol group-containing curable cage-type silsesquioxane compound, cage-type structure-containing curable silicone copolymer, production method thereof, and curable resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008086681 2008-03-28
JP2008-086681 2008-03-28

Publications (1)

Publication Number Publication Date
WO2009119253A1 true WO2009119253A1 (en) 2009-10-01

Family

ID=41113459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053751 WO2009119253A1 (en) 2008-03-28 2009-02-27 Silanol-group-containing curable cage-type silsesquioxane compound, cage-structure-containing curable silicone copolymer, processes for producing these, and curable resin composition

Country Status (3)

Country Link
JP (1) JPWO2009119253A1 (en)
TW (1) TW201000491A (en)
WO (1) WO2009119253A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010204586A (en) * 2009-03-05 2010-09-16 Nippon Steel Chem Co Ltd Phase difference film and method for manufacturing the same
WO2010140635A1 (en) * 2009-06-02 2010-12-09 チッソ株式会社 Organic silicon compound, thermosetting composition containing said organic silicon compound, and sealing material for optical semiconductor
WO2011145638A1 (en) * 2010-05-18 2011-11-24 Jnc株式会社 Novel organosilicon compound and thermosetting resin composition, cured resin, and semiconductor sealing material containing said organosilicon compound
CN102516542A (en) * 2011-11-18 2012-06-27 西南科技大学 Benzocyclobutene polysiloxane polymer monomer or resin and preparation method thereof
WO2012133080A1 (en) * 2011-03-31 2012-10-04 新日鐵化学株式会社 Curable silicone resin composition and cured silicone resin
WO2012133079A1 (en) * 2011-03-31 2012-10-04 新日鐵化学株式会社 Basket type silsesquioxane resin, basket type silsesquioxane copolymer and method for producing same
JP2012214564A (en) * 2011-03-31 2012-11-08 Nippon Steel Chem Co Ltd Basket type silsesquioxane resin, and method for producing the same
JP2012214565A (en) * 2011-03-31 2012-11-08 Nippon Steel Chem Co Ltd Basket type silsesquioxane copolymer, and method for producing the same
CN110408034A (en) * 2019-08-16 2019-11-05 湖北兴瑞硅材料有限公司 A kind of synthetic method of phenyl block silicone resin
JP2019203039A (en) * 2018-05-21 2019-11-28 株式会社ダイセル Silsesquioxane composition
JP2021050196A (en) * 2020-07-22 2021-04-01 フマキラー株式会社 Bactericidal agent

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI507497B (en) * 2012-10-25 2015-11-11 Central Glass Co Ltd Followed by the following method, followed by the later peeling method
JP6021605B2 (en) * 2012-11-19 2016-11-09 新日鉄住金化学株式会社 Cage type silsesquioxane compound, curable resin composition and resin cured product using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363414A (en) * 2001-06-12 2002-12-18 Asahi Kasei Corp Basket-like silsesquioxane-containing composition
JP2003510337A (en) * 1999-08-04 2003-03-18 ハイブリッド・プラスチックス Method for forming polyhedral oligomeric silsesquioxane
JP2004123936A (en) * 2002-10-03 2004-04-22 Nippon Steel Chem Co Ltd Silicone resin composition and silicone resin molded form
JP2004143449A (en) * 2002-09-30 2004-05-20 Nippon Steel Chem Co Ltd Cage-type silsesquioxan resin with functional group and method for producing the same
JP2005290352A (en) * 2004-03-12 2005-10-20 Asahi Kasei Corp Compound having basket-shaped silsesquioxane structure
WO2007119627A1 (en) * 2006-04-10 2007-10-25 Ube Industries, Ltd. Curable composition, cured silsesquioxanes, and process for production of both
JP2008266301A (en) * 2007-03-26 2008-11-06 Nippon Steel Chem Co Ltd New silicone compound, and raw material thereof and method for producing the silicone compound

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510337A (en) * 1999-08-04 2003-03-18 ハイブリッド・プラスチックス Method for forming polyhedral oligomeric silsesquioxane
JP2002363414A (en) * 2001-06-12 2002-12-18 Asahi Kasei Corp Basket-like silsesquioxane-containing composition
JP2004143449A (en) * 2002-09-30 2004-05-20 Nippon Steel Chem Co Ltd Cage-type silsesquioxan resin with functional group and method for producing the same
JP2004123936A (en) * 2002-10-03 2004-04-22 Nippon Steel Chem Co Ltd Silicone resin composition and silicone resin molded form
JP2005290352A (en) * 2004-03-12 2005-10-20 Asahi Kasei Corp Compound having basket-shaped silsesquioxane structure
WO2007119627A1 (en) * 2006-04-10 2007-10-25 Ube Industries, Ltd. Curable composition, cured silsesquioxanes, and process for production of both
JP2008266301A (en) * 2007-03-26 2008-11-06 Nippon Steel Chem Co Ltd New silicone compound, and raw material thereof and method for producing the silicone compound

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010204586A (en) * 2009-03-05 2010-09-16 Nippon Steel Chem Co Ltd Phase difference film and method for manufacturing the same
WO2010140635A1 (en) * 2009-06-02 2010-12-09 チッソ株式会社 Organic silicon compound, thermosetting composition containing said organic silicon compound, and sealing material for optical semiconductor
JP2010280766A (en) * 2009-06-02 2010-12-16 Chisso Corp Organosilicon compound, thermocurable composition containing the organosilicon compound, and sealing material for optical semiconductor
WO2011145638A1 (en) * 2010-05-18 2011-11-24 Jnc株式会社 Novel organosilicon compound and thermosetting resin composition, cured resin, and semiconductor sealing material containing said organosilicon compound
CN103459447A (en) * 2011-03-31 2013-12-18 新日铁住金化学株式会社 Curable silicone resin composition and cured silicone resin
JPWO2012133080A1 (en) * 2011-03-31 2014-07-28 新日鉄住金化学株式会社 Curable silicone resin composition and silicone resin cured product
WO2012133079A1 (en) * 2011-03-31 2012-10-04 新日鐵化学株式会社 Basket type silsesquioxane resin, basket type silsesquioxane copolymer and method for producing same
JP2012214564A (en) * 2011-03-31 2012-11-08 Nippon Steel Chem Co Ltd Basket type silsesquioxane resin, and method for producing the same
JP2012214565A (en) * 2011-03-31 2012-11-08 Nippon Steel Chem Co Ltd Basket type silsesquioxane copolymer, and method for producing the same
KR101861774B1 (en) 2011-03-31 2018-05-28 신닛테츠 수미킨 가가쿠 가부시키가이샤 Curable silicone resin composition and cured silicone resin
KR101831600B1 (en) 2011-03-31 2018-02-23 신닛테츠 수미킨 가가쿠 가부시키가이샤 Basket type silsesquioxane resin, basket type silsesquioxane copolymer and method for producing same
WO2012133080A1 (en) * 2011-03-31 2012-10-04 新日鐵化学株式会社 Curable silicone resin composition and cured silicone resin
JP5844796B2 (en) * 2011-03-31 2016-01-20 新日鉄住金化学株式会社 Curable silicone resin composition and silicone resin cured product
CN102516542A (en) * 2011-11-18 2012-06-27 西南科技大学 Benzocyclobutene polysiloxane polymer monomer or resin and preparation method thereof
CN102516542B (en) * 2011-11-18 2013-10-16 西南科技大学 Benzocyclobutene polysiloxane polymer monomer or resin and preparation method thereof
JP2019203039A (en) * 2018-05-21 2019-11-28 株式会社ダイセル Silsesquioxane composition
JP7094141B2 (en) 2018-05-21 2022-07-01 株式会社ダイセル Silsesquioxane composition
CN110408034A (en) * 2019-08-16 2019-11-05 湖北兴瑞硅材料有限公司 A kind of synthetic method of phenyl block silicone resin
CN110408034B (en) * 2019-08-16 2021-07-13 湖北兴瑞硅材料有限公司 Synthetic method of phenyl block silicone resin
JP2021050196A (en) * 2020-07-22 2021-04-01 フマキラー株式会社 Bactericidal agent

Also Published As

Publication number Publication date
JPWO2009119253A1 (en) 2011-07-21
TW201000491A (en) 2010-01-01

Similar Documents

Publication Publication Date Title
WO2009119253A1 (en) Silanol-group-containing curable cage-type silsesquioxane compound, cage-structure-containing curable silicone copolymer, processes for producing these, and curable resin composition
JP4381636B2 (en) Silicone resin composition and silicone resin molded article
JP5342795B2 (en) 籠 Structure-containing curable silicone copolymer, method for producing the same, curable resin composition using 籠 structure-containing curable silicone copolymer, and cured product thereof
TWI476232B (en) The silicone resin and the production method thereof are are the same as those of the hardened resin composition containing the silicone resin
JP4142385B2 (en) Silicone resin composition and silicone resin molded article
TWI577691B (en) Cage-like silsesquioxane compound, curable resin composition and resin cured article using the same
JPWO2007119627A1 (en) Curable composition, cured product of silsesquioxane, and production method thereof
KR20160127719A (en) Polymerizable composition containing reactive silsesquioxane compound
KR101504308B1 (en) Curable silicone copolymer containing cage structure and process for production thereof, and curable resin composition comprising curable silicone copolymer containing cage structure and cured product thereof
JP2009079163A (en) Curable composition, cured silsesquioxane, and method for producing cured silsesquioxane
JPWO2013031798A1 (en) Thermal shock-resistant cured product and method for producing the same
JP2009167325A (en) Curable cage-type silsesquioxane compound containing silanol group, copolymer using the same and method for producing them
JP5073738B2 (en) lens
TWI529202B (en) A hardened silicone resin composition and a silicone resin cured product
JP2012162666A (en) Polysiloxane-based composition of polyhedral structure
JP2010242043A (en) Silicone based curable composition containing silicone based polymer particle
JP5073450B2 (en) Manufacturing method of heat-resistant compound lens
TWI470004B (en) Curable resin composition and cured article
JP2011099035A (en) Manufacturing method for cured product excellent in transparency, and cured product
JP5336399B2 (en) Heat-resistant compound lens
JP2012082303A (en) Curable composition
JP5620086B2 (en) Modified polyhedral polysiloxane and composition containing the modified
JP5813357B2 (en) Curable composition
JP2009242558A (en) Siloxane prepolymer, silicone resin, and method for producing the same
TW202406993A (en) Silsesquioxane derivative and method of producing the same, curable composition, hard coating agent, cured product, hard coating, and base material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724241

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010505478

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09724241

Country of ref document: EP

Kind code of ref document: A1