WO2009119247A1 - Metal-coated resin molded article, and process for production thereof - Google Patents

Metal-coated resin molded article, and process for production thereof Download PDF

Info

Publication number
WO2009119247A1
WO2009119247A1 PCT/JP2009/053712 JP2009053712W WO2009119247A1 WO 2009119247 A1 WO2009119247 A1 WO 2009119247A1 JP 2009053712 W JP2009053712 W JP 2009053712W WO 2009119247 A1 WO2009119247 A1 WO 2009119247A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystalline
metal
crystalline polyester
substrate
mass
Prior art date
Application number
PCT/JP2009/053712
Other languages
French (fr)
Japanese (ja)
Inventor
直人 池川
敏 岡本
定信 岩瀬
Original Assignee
パナソニック電工株式会社
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社, 住友化学株式会社 filed Critical パナソニック電工株式会社
Publication of WO2009119247A1 publication Critical patent/WO2009119247A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0141Liquid crystal polymer [LCP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09118Moulded substrate

Definitions

  • the present invention relates to a metal-coated resin molded article using a substrate of a resin composition containing a liquid crystalline polyester, which is suitable for use in the electric and electronics industry, and a method for producing the same.
  • liquid crystalline polyester has been widely used as a material for electronic parts or machine parts.
  • a circuit board obtained by forming a metal film on the surface of a substrate molded with a resin composition containing a liquid crystalline polyester has good moldability, dimensional stability, high elastic modulus and strength. It is also attracting attention as a substrate (MID) material.
  • MID substrate
  • the resin substrate obtained by molding the liquid crystalline polyester resin composition also has a problem of adhesion with such a metal film.
  • the liquid crystalline polyester resin composition is molded to form a resin.
  • a metal film is deposited by sputtering, ion plating, or vacuum deposition while the resin substrate is heated in a vacuum chamber so that the surface temperature is 60 ° C. or higher after the substrate is produced (Japanese Patent Laid-Open No. Hei 3). -8388).
  • Japanese Patent Laid-Open No. Hei 3 Japanese Patent Laid-Open No. Hei 3
  • the effect of improving the adhesion cannot be sufficiently obtained by controlling only such a metal film deposition method.
  • the present applicant manufactured a substrate by molding a resin composition comprising a liquid crystalline polyester resin, an epoxy group-containing ethylene copolymer, and an inorganic filler, and a physical vapor deposition method was applied to the surface of the substrate. It has been found that a metal-coated resin molded product having a high degree of adhesion between the surface of the substrate and the metal film can be obtained by forming a metal film by (see JP-A-2005-290370).
  • the metal-coated resin molded product obtained by the invention of Patent Document 2 is a metal film formed with a high degree of adhesion, but a recent request to form a finer circuit with this metal film. In view of this, and from the viewpoint of further improving the manufacturing yield, further improvement of the adhesion of the metal film is required.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a metal-coated resin molded product capable of forming a metal film with higher adhesion and a method for producing the same.
  • the metal-coated resin molded product according to the present invention is: A: First liquid crystalline polyester having a deflection temperature under 200 ° C. or higher B: Second liquid crystalline polyester having a deflection temperature lower than the deflection temperature under load of the first liquid crystalline polyester C: Ethylene copolymer containing an epoxy group Compound (however, the epoxy group-containing ethylene copolymer contains 50 to 99.9% by mass of ethylene units in the molecule, 0.1 to 30% by mass of unsaturated carboxylic acid glycidyl ester units and / or unsaturated glycidyl ether units) % Included) A substrate obtained by molding a resin composition containing the above components A, B and C and having component C in the range of 0.1 to 25 parts by mass with respect to a total of 100 parts by mass of component A and component B And a metal film formed on the surface of the substrate.
  • the deflection temperature under load is defined as the deflection temperature under load determined by ASTM D648 (1988
  • the epoxy group-containing ethylene copolymer blended in the liquid crystalline polyester improves the toughness of the surface layer of the substrate, can improve the adhesion of the metal film to the substrate, and as the liquid crystalline polyester,
  • the first liquid crystalline polyester having a deflection temperature under load of 200 ° C. or more and the second liquid crystalline polyester having a deflection temperature under load that is lower than the deflection temperature under load of the first liquid crystalline polyester While maintaining heat resistance with the liquid crystalline polyester, the second liquid crystalline polymer can enhance the adhesion of the metal film to the substrate, and can form a metal film with higher adhesion. is there.
  • the present invention is characterized in that in the resin composition, the component B is 1 to 50% by mass with respect to the total amount of the component A and the component B.
  • the effect of increasing the adhesion of the metal film to the substrate by the component B (second liquid crystalline polymer) is obtained more effectively while maintaining the heat resistance by the component A (first liquid crystalline polyester). It is something that can be done.
  • the present invention is characterized in that the component B is 30% by mass or less with respect to the total amount of the component A and the component B.
  • the heat resistance by the component A can be kept high, and it can be used particularly useful in applications requiring heat resistance.
  • the second liquid crystalline polyester is a divalent aromatic group linked by an ester bond.
  • the divalent aromatic group includes a 1,2-phenylene group, 1,3, -It contains at least one kind of aromatic group selected from phenylene group and 2,3-naphthalene group, and the total amount of these aromatic groups is 10 to 45 mol% with respect to the total amount of divalent aromatic groups. It is characterized by this.
  • the 1,2-phenylene group, 1,3-phenylene group, and 2,3-naphthalene group having a bent molecular structure, which is contained as a divalent aromatic group can be used for the second liquid crystalline polyester.
  • the deflection temperature under load can be adjusted to be low.
  • the epoxy group-containing ethylene copolymer contains 80 to 98% by mass of ethylene units and 2 to 15% by mass of unsaturated carboxylic acid glycidyl ester units and / or unsaturated glycidyl ether units in the molecule. It is characterized by this.
  • the present invention is characterized in that the resin composition contains a fibrous inorganic filler having a diameter of 6 to 15 ⁇ m and an aspect ratio of 5 to 50 in addition to the components A to C.
  • the strength of the substrate can be increased with the fibrous inorganic filler while ensuring adhesion with the metal coating.
  • the method for producing a metal-coated resin molded article according to the present invention includes a molding step of molding the resin composition to obtain a substrate, and a coating step of forming a metal film on the surface of the substrate. Is.
  • the epoxy group-containing ethylene copolymer blended with the liquid crystalline polyester can form a substrate having improved surface layer toughness, thereby improving the adhesion of the metal coating to the substrate.
  • the first liquid crystalline polyester having a deflection temperature under load of 200 ° C. or higher and the second liquid crystalline polyester having a deflection temperature lower than the deflection temperature under load of the first liquid crystalline polyester.
  • the second liquid crystalline polymer can enhance the adhesion of the metal film to the substrate, with a higher degree of adhesion.
  • a metal film can be formed.
  • the present invention is characterized by including a step of performing plasma treatment on the surface of the substrate before the coating step.
  • the surface of the substrate can be activated by plasma treatment, and the adhesion of the metal coating to the substrate surface can be further improved.
  • this heat treatment can obtain the effect of lowering the dielectric loss tangent of the substrate in addition to the adhesion of the metal film, and can obtain a metal-coated resin molded product excellent in high-frequency characteristics and the like. It is.
  • the coating step is a step of forming a metal film on the surface of the substrate by a physical vapor deposition method.
  • a metal film can be formed with high adhesion on the surface of a substrate by a physical vapor deposition method of a dry method.
  • the present invention is characterized by including a step of forming a circuit pattern by applying laser patterning to the metal coating.
  • the present invention by patterning by laser irradiation, it is possible to form a circuit by removing the metal coating other than the circuit portion without reducing the adhesion of the metal coating to the substrate, and to form a fine pattern circuit. It can be done easily.
  • the epoxy group-containing ethylene copolymer blended with the liquid crystalline polyester improves the toughness of the surface layer of the substrate and improves the adhesion of the metal film to the substrate.
  • the first liquid crystalline polyester having a deflection temperature under load of 200 ° C. or higher and the second liquid crystalline polyester having a deflection temperature lower than the deflection temperature under load of the first liquid crystalline polyester.
  • the second liquid crystalline polymer can enhance the adhesion of the metal film to the substrate, with a higher degree of adhesion.
  • a metal film can be formed.
  • the metal-coated resin molded product can form a fine circuit pattern with a metal film having high adhesion, and can be used particularly effectively in the electric and electronic industries, particularly in fields where high frequency characteristics are required. Is.
  • (A) is a graph which shows the relationship between the content rate of 2nd liquid crystalline polyester, and peel strength
  • (b) is a graph which shows the relationship between the content rate of 2nd liquid crystalline polyester, and thermal deformation temperature.
  • the substrate used in the present invention is obtained by molding a resin composition containing the components A, B and C as essential components. First, the liquid crystalline polyester according to Component A and Component B will be described.
  • the liquid crystalline polyester is a polyester capable of forming a melt phase having optical anisotropy, and from the viewpoint of obtaining a substrate having high heat resistance, the polymer main chain is composed of an aromatic group, A polyester in which these aromatic groups are linked by an ester bond (—C (O) O— or —OC (O) —) is preferable.
  • the aromatic group includes a monocyclic aromatic group and a condensed ring aromatic group, a group in which a monocyclic aromatic group or a condensed ring aromatic group is connected by a direct bond, an oxygen atom, a sulfur atom, It is a concept including a group linked through a linking group selected from an alkylene group having 6 to 6 carbon atoms, a sulfonyl group, and a carbonyl group.
  • the first liquid crystalline polyester as component A has a deflection temperature under load of 200 ° C. or higher
  • the second liquid crystalline polyester as component B has a load lower than the deflection temperature under load of the first liquid crystalline polyester. It has a deflection temperature. That is, in the combination of the first liquid crystalline polyester and the second liquid crystalline polyester, the deflection temperature under load of the first liquid crystalline polyester is Tb1 (° C.), and the deflection temperature under load of the second liquid crystalline polyester is Tb 2 (° C. ) Is selected to satisfy the following formula.
  • the deflection temperature under load of the liquid crystalline polyester can be controlled by a method for controlling the molecular weight of the liquid crystalline polyester, a method for changing the combination of monomer units constituting the liquid crystalline polyester, and the like. It is possible to obtain a liquid crystalline polyester having a desired deflection temperature under load. Details regarding a method for producing such a liquid crystalline polyester with controlled deflection temperature under load will be described later.
  • the deflection temperature under load (Tb1) of the first liquid crystalline polyester is 200 ° C. or higher, more preferably 230 ° C. or higher, and further preferably 240 ° C. or higher.
  • the deflection temperature under load (Tb1) of the first liquid crystalline polyester is lower than 200 ° C., thermal deformation of the substrate obtained by molding the resin composition becomes large, and a metal-coated resin molded product having a desired size can be obtained. May be difficult.
  • the upper limit of the deflection temperature under load (Tb1) of the first liquid crystalline polyester is not particularly specified, but practically about 300 ° C. is the upper limit.
  • the deflection temperature under load (Tb2) of the second liquid crystalline polyester is lower than the deflection temperature under load (Tb1) of the first liquid crystalline polyester, and the deflection temperature under load (Tb2) is the first.
  • the deflection temperature under load (Tb2) is preferably 190 ° C. or less, and more preferably 150 ° C. or less. If the deflection temperature under load (Tb2) of the second liquid crystalline polyester exceeds 190 ° C., the effect of improving the adhesion of the metal film may not be sufficiently obtained.
  • the lower limit of the deflection temperature under load (Tb2) of the second liquid crystalline polyester is not particularly specified, but practically about 100 ° C. is the lower limit.
  • the first liquid crystal polyester having a high load deflection temperature (Tb1) is used in combination with the second liquid crystal polyester having a low load deflection temperature (Tb2).
  • the second liquid crystalline polyester having a low load deflection temperature (Tb2) while securing heat resistance can be molded with the liquid crystalline polyester, and the substrate having improved adhesion to the metal film can be formed.
  • the difference between the deflection temperatures under load between the liquid crystalline polyester and the second liquid crystalline polyester (Tb1 ⁇ Tb2) is preferably 50 ° C. or higher, and more preferably 80 ° C. or higher.
  • liquid crystalline polyesters for example, (1) Obtained by polymerizing a combination of monomers composed of an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid and an aromatic diol. (2) Using different types of aromatic hydroxycarboxylic acids as monomers, polymerizing them. What can be obtained (3) The thing obtained by superposing
  • the liquid crystalline polyester obtained by (1) is more preferable.
  • an acyl group of an acylated product obtained by acylating a phenolic hydroxyl group of an aromatic diol and an aromatic hydroxycarboxylic acid with a fatty acid anhydride, an aromatic dicarboxylic acid and an aromatic There is a method in which a carboxyl group of a hydroxycarboxylic acid acylated product is polymerized so as to cause a transesterification reaction, and more preferably, a first polyester that obtains a relatively low molecular weight polyester mainly by a transesterification reaction between monomers and a polycondensation reaction
  • a stage sometimes referred to as “first stage polymerization”
  • a second stage sometimes referred to as “second stage polymerization” in which the low molecular weight polyesters are bonded together to increase the molecular weight. It is a polymerization process in stages.
  • fatty acid anhydride examples include acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, pivalic anhydride, 2-ethylhexanoic anhydride, monochloroacetic anhydride, dichloroacetic anhydride, and trichloroanhydride.
  • acetic acid monobromoacetic anhydride, dibromoacetic anhydride, tribromoacetic anhydride, monofluoroacetic anhydride, difluoroacetic anhydride, trifluoroacetic anhydride, glutaric anhydride, maleic anhydride, succinic anhydride, ⁇ -bromopropionic anhydride Can do.
  • These may be used individually by 1 type, and may mix and use 2 or more types.
  • acetic anhydride, propionic anhydride, butyric anhydride, and isobutyric anhydride are preferable in terms of price and handleability, and acetic anhydride is more preferable.
  • an imidazole compound represented by the following formula (C1) is suitable for producing a liquid crystalline polyester, and has an advantage that the polymerization time is shortened and the resulting polyester is not significantly colored.
  • R 1 to R 4 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxymethyl group, a cyano group, a cyanoalkyl group having 1 to 4 carbon atoms, 4 represents a group selected from a cyanoalkoxy group, a carboxyl group, an amino group, an aminoalkyl group having 1 to 4 carbon atoms, an aminoalkoxy group having 1 to 4 carbon atoms, a phenyl group, a benzyl group, a phenylpropyl group, and a formyl group.
  • imidazole compound represented by the formula (C1) include, for example, imidazole, 1-methylimidazole, 2-methylimidazole, 4-methylimidazole, 1-ethylimidazole, 2-ethylimidazole, 4-ethyl.
  • Imidazole 1,2 dimethylimidazole, 1,4-dimethylimidazole, 2,4-dimethylimidazole, 1-methyl-2-ethylimidazole, 1-methyl-4-ethylimidazole, 1-ethyl-2-methylimidazole, 1 -Ethyl-2-ethylimidazole, 1-ethyl-2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1-benzyl-2-methyl Imidazole, 2-pheny 4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 4-cyanoethyl-2-ethyl-4-methylimidazole, 1-aminoethyl-2-methylimidazole, etc.
  • imidazole compounds are those in which R 1 is an alkyl group having 1 to 4 carbon atoms, and R 2 , R 3 and R 4 are all hydrogen atoms.
  • R 1 is an alkyl group having 1 to 4 carbon atoms
  • R 2 , R 3 and R 4 are all hydrogen atoms.
  • use of 1-methylimidazole and / or 2-methylimidazole is preferable from the viewpoint of availability.
  • the molecular weight of the resulting liquid crystalline polyester can be controlled by the equivalent ratio of the acyl group of the acylated product to the carboxyl group of the aromatic dicarboxylic acid and / or aromatic hydroxycarboxylic acid.
  • the acyl group equivalent number of the acylated product subjected to the polymerization reaction and the carboxyl group equivalent number of the aromatic dicarboxylic acid and / or aromatic hydroxycarboxylic acid are [ The ratio is preferably set to 0.8 to 1.2, expressed as [acyl group equivalent number] / [carboxyl group equivalent number].
  • the polymerization reaction of the liquid crystalline polyester is preferably carried out in two stages.
  • the polymerization temperature is 250 to 400 ° C., preferably 150 to 350. It is preferable to carry out in the range of ° C.
  • the temperature may be raised from the reaction temperature of the acylation reaction to the reaction temperature of the first stage polymerization.
  • the heating rate is preferably 0.5 to 50 ° C./min, more preferably 1 to 10 ° C./min.
  • an aromatic diol and / or aromatic hydroxycarboxylic acid that has been acylated in advance may be used as a starting material before polymerization.
  • an acylated product obtained by acylating the phenolic hydroxyl group of aromatic diol and aromatic hydroxycarboxylic acid with fatty acid anhydride in the same reactor as the polymerization reaction is preferred.
  • the amount of the fatty acid anhydride in obtaining the acylated product is preferably 1.0 to 1.2 equivalent times the total number of equivalents of the phenolic hydroxyl group of the aromatic diol and aromatic hydroxycarboxylic acid. 1.05-1.1 equivalent times is more preferable.
  • the amount of the fatty acid anhydride is less than 1.0 in terms of the number of equivalents of the phenolic hydroxyl group, the raw material may be sublimated during polymerization to a liquid crystalline polyester due to a shift in equilibrium during acylation, and the reaction system Is prone to obstruction.
  • the conditions for the acylation reaction to obtain an acylated product are 130 to 180 ° C. and 30 minutes to 20 hours, more preferably 140 to 160 ° C. and 1 to 5 hours.
  • the raw material components evaporated or sublimated can be returned to the reactor together with the refluxed fatty acid by condensation or reverse sublimation.
  • the second stage polymerization is performed.
  • the polymer having a relatively low molecular weight (hereinafter referred to as “prepolymer”) obtained by the first stage polymerization is cooled, preferably cooled to about room temperature to form a solid, and then the obtained solid is pulverized. Etc. to be processed into powder such as powder or flake.
  • “powder” means a powder having an average particle diameter of 1 mm or less, preferably a powder having an average particle diameter of 0.1 to 1 mm.
  • the prepolymer thus processed into a powder is polymerized at a polymerization temperature of 200 to 350 ° C.
  • the second stage polymerization may be carried out while raising the temperature stepwise.
  • the temperature is raised in about 0.5 to 2 hours to a temperature lower than the polymerization temperature in the first stage polymerization. Then, after raising the temperature to the final polymerization temperature (200 to 350 ° C.) over 1 to 10 hours, polymerization is carried out while maintaining the final polymerization temperature. If it does in this way, a prepolymer will become high molecular weight and liquid crystalline polyester will be formed.
  • the molecular weight of the obtained liquid crystalline polyester can be controlled by the polymerization conditions of the second stage polymerization, and a liquid crystalline polyester having a desired molecular weight can be produced by controlling the polymerization conditions.
  • the first stage polymerization is carried out by melt polymerization and the second stage polymerization is carried out by solid phase polymerization.
  • the higher the molecular weight of the liquid crystalline polyester the higher the deflection temperature under load tends to increase.
  • liquid crystallinity having a desired load deflection temperature depending on the polymerization conditions of the second stage polymerization which is solid phase polymerization. Polyester can be obtained.
  • the addition amount is the aromatic dicarboxylic acid, aromatic diol, and aromatic hydroxy which were used for polymerization reaction.
  • the total mass of the carboxylic acid is 100 parts by mass, it is preferably 0.005 to 1 part by mass.
  • the addition amount is more preferably 0.05 to 0.5 parts by mass.
  • the timing of addition of the imidazole compound is not a condition that the imidazole compound is present in the reaction system at the time of transesterification, and it may be charged simultaneously with various monomers constituting the liquid crystalline polyester and polymerized. It may be a method of charging in a stage, or a method of charging between the first stage polymerization and the second stage polymerization.
  • the imidazole compound is particularly useful as a catalyst, but other catalysts may be used as necessary.
  • Other catalysts include germanium compounds such as germanium oxide, stannous oxalate, stannous acetate, dialkyl tin oxide, tin compounds such as diaryl tin oxide, titanium dioxide, titanium alkoxide, alkoxy titanium silicates.
  • Titanium compounds such as antimony compounds such as antimony trioxide, metal salts of organic acids such as sodium acetate, potassium acetate, calcium acetate, zinc acetate, ferrous acetate, boron trifluoride and aluminum chloride
  • organic acids such as sodium acetate, potassium acetate, calcium acetate, zinc acetate, ferrous acetate, boron trifluoride and aluminum chloride
  • inorganic acids such as Lewis acids, amines, amides, hydrochloric acid, sulfuric acid and the like.
  • a catalyst containing a metal component is used as a catalyst for the polymerization method for obtaining a liquid crystalline polyester, the electrical properties of the resulting substrate may be impaired. It is preferable to determine the type and amount of use in consideration of the characteristics of the substrate.
  • the molecular weight of the obtained liquid crystalline polyester can be controlled, and the deflection temperature under load of the obtained liquid crystalline polyester can be appropriately adjusted.
  • the molecular weight is in the range of 10,000 to 50,000 in terms of weight average molecular weight. Is preferred.
  • the deflection unit temperature is controlled by optimizing various monomer units constituting the liquid crystalline polyester. It is also useful to do so.
  • each monomer of the above-mentioned aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid, and aromatic diol will be described.
  • aromatic diol examples include 4,4′-dihydroxybiphenyl, hydroquinone, resorcin, methylhydroquinone, chlorohydroquinone, acetoxyhydroquinone, nitrohydroquinone, catechol, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1, 6-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3 , 5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4 -Hydroxy-3- Lorophenyl) propane, bis- (4-hydroxyphenyl) methane, bis- (4-hydroxy-3,5-dimethylphenyl
  • aromatic diol selected from these may be used alone, or two or more kinds may be used in combination.
  • aromatic diol selected from these may be used alone, or two or more kinds may be used in combination.
  • the use of 4,4′-dihydroxybiphenyl, hydroquinone, resorcin, 2,6-dihydroxynaphthalene, 2,2-bis (4-hydroxyphenyl) propane, and bis- (4hydroxyphenyl) sulfone is available. It is preferable in terms of easiness.
  • aromatic hydroxycarboxylic acid examples include parahydroxybenzoic acid, metahydroxybenzoic acid, 2-hydroxy-6-naphthoic acid, 2-hydroxy-3-naphthoic acid, 1-hydroxy-4-naphthoic acid, 3-hydroxy Hydroxy-2-naphthoic acid, 4-hydroxy-4′-carboxydiphenyl ether, 2,6-dichloro-parahydroxybenzoic acid, 2-chloro-parahydroxybenzoic acid, 2,6-difluoro-parahydroxybenzoic acid, 4- Mention may be made of hydroxy-4'-biphenylcarboxylic acid. Aromatic hydroxycarboxylic acids selected from these may be used alone or in combination of two or more. Among these, the use of parahydroxybenzoic acid and 2-hydroxy-6-naphthoic acid is preferable from the viewpoint of easy availability.
  • a monomer unit represented by the following formula (2), derived from parahydroxybenzoic acid It is preferable to contain at least 30 mol% with respect to the total of monomer units constituting the liquid crystalline polyester.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, phthalic acid, 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and 4,4′-biphenyldicarboxylic acid.
  • Aromatic dicarboxylic acids selected from these may be used alone or in combination of two or more. Of these, use of terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid is preferable from the viewpoint of availability.
  • the monomers applied to the first liquid crystalline polyester of component A in the present invention include 4,4′-dihydroxybiphenyl, hydroquinone, resorcin, 2,6-dihydroxynaphthalene, 2,2-bis (4-hydroxyphenyl)
  • a combination using an aromatic dicarboxylic acid selected from 6-naphthalenedicarboxylic acid is preferable from the viewpoint of easy availability of raw materials.
  • the first liquid crystalline polyester includes 30 to 80 mol% of monomer units derived from aromatic hydroxycarboxylic acid and 10 to 35 mol of monomer units derived from aromatic diol based on the total of all monomer units. %, And those having 10 to 35 mol% of monomer units derived from aromatic dicarboxylic acid are preferred.
  • the first liquid crystalline polyester composed of such monomer units is likely to have a deflection temperature under load of 200 ° C. or higher as described above.
  • Such a first liquid crystalline polyester is prepared by blending each monomer in these proportions. Can be obtained by polymerization.
  • the first liquid crystalline polyester preferably has a flow start temperature of 270 ° C. or higher.
  • a substrate having good heat resistance can be obtained.
  • the upper limit of the flow start temperature is not particularly set, but practically about 350 ° C. is the upper limit.
  • This flow start temperature is obtained by the following method.
  • the following flow initiation temperature measurement method is an index representing the molecular weight of liquid crystalline polyesters well known in the art (for example, Naoyuki Koide, “Liquid Crystal Polymer—Synthesis / Molding / Application—”, pages 95 to 105). CMC, published June 5, 1987).
  • reducing the rigidity of the liquid crystalline polyester means introducing a monomer unit that imparts flexibility to the main chain of the liquid crystalline polyester (hereinafter referred to as “flexible monomer unit”).
  • the flexible monomer include a monomer unit having a 1,2-phenylene group skeleton, a monomer unit having a 1,3-phenylene group skeleton, and a monomer unit having a 2,3-naphthalene group skeleton.
  • Preferred monomer units having a 1,3-phenylene group skeleton are monomer units derived from resorcin or isophthalic acid, and preferred monomer units having a 1,2-phenylene group skeleton are monomers derived from catechol and phthalic acid.
  • Preferred monomer units having a 2,3-naphthalene group skeleton are 2,3-dihydroxynaphthalene, 2,3-naphthalenedicarboxylic acid, 2-hydroxy-3-naphthoic acid, and 3-hydroxy-2-naphthoic acid.
  • the flexible monomer unit is preferably an aromatic diol, an aromatic dicarboxylic acid, or an aromatic hydroxycarboxylic acid.
  • the first liquid crystal polyester has a tendency that, as the number of flexible monomer units in the monomer units constituting the liquid crystal polymer is smaller, a higher deflection temperature under load of 200 ° C. tends to be obtained.
  • the flexible monomer unit is preferably less than 10 mol%, more preferably 8 mol% or less, and particularly preferably 6 mol% or less with respect to the total of the monomer units constituting the flexible polyester.
  • the deflection temperature under load of the second liquid crystalline polyester is increased by making the content of the flexible monomer unit higher than that of the first liquid crystalline polyester.
  • the deflection temperature under load can be made lower.
  • the flexible monomer unit is preferably 10 mol% or more, more preferably 12.5 mol% or more, based on the total of the monomer units constituting the second liquid crystalline polyester. It is particularly preferably 15 mol% or more.
  • the flexible monomer unit is preferably 45 mol% or less with respect to the total of the monomer units constituting the second liquid crystalline polyester, 40 mol% or less is more preferable.
  • the first liquid crystalline polyester constituting the component A applied to the present invention and the second liquid crystalline polyester constituting the component B are monomer units constituting the molecular weight control of the liquid crystalline polyester and the liquid crystalline polyester. Can be obtained in various combinations.
  • the content ratio of the first liquid crystalline polyester of component A and the second liquid crystalline polyester of component B blended as liquid crystalline polyester is 100% of the total mass of component A and component B.
  • the component B is preferably 1 to 50 mass%.
  • component B is more preferably 1 It is in the range of ⁇ 30% by mass.
  • component B is preferably set in the range of 1 to 30% by mass.
  • the epoxy group-containing ethylene copolymer of Component C contains 50 to 99.9% by mass of ethylene units, 0.1 to 30% by mass of unsaturated carboxylic acid glycidyl ester units and / or unsaturated glycidyl ether units in the molecule. % Is included.
  • the epoxy group-containing ethylene copolymer contains ethylene units in the molecule. It is more preferable to contain 80 to 98% by mass of the unsaturated glycidyl ester unit and / or 2 to 15% by mass of the unsaturated glycidyl ether unit.
  • an ethylenically unsaturated ester unit may be included as necessary. In this case, the amount of the ethylenically unsaturated ester unit is preferably less than 50% by mass.
  • R is a hydrocarbon group having 2 to 13 carbon atoms having an ethylenically unsaturated bond.
  • examples of the compound represented by the formula (3) include glycidyl acrylate, glycidyl methacrylate, and itaconic acid glycidyl ester.
  • examples of the compound represented by the formula (4) include allyl glycidyl ether, 2-methylallyl. Examples thereof include glycidyl ether and styrene p-glycidyl ether.
  • Examples of the compound that derives the ethylenically unsaturated ester unit include vinyl acetate, vinyl propionate, methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, and butyl methacrylate.
  • Examples include carboxylic acid vinyl esters and ⁇ , ⁇ -unsaturated carboxylic acid alkyl esters.
  • an epoxy group-containing ethylene copolymer of component C a binary or ternary copolymer comprising ethylene, an unsaturated carboxylic acid glycidyl ester and / or an unsaturated glycidyl ether, or an ethylene-based unsaturated copolymer as an optional monomer.
  • a ternary or higher multicomponent copolymer obtained by copolymerization of a saturated ester can be used.
  • the epoxy group-containing ethylene copolymer is usually a compound that gives an ethylene unit, a compound that gives an unsaturated carboxylic acid glycidyl ester unit and / or an unsaturated glycidyl ether unit, and, if necessary, an ethylene-based unsaturated copolymer.
  • a compound that gives a saturated ester unit can be produced by a method of copolymerization in the presence of a radical generator under the conditions of 50.7 to 405.3 MPa (500 to 4000 atm) and 100 to 300 ° C. Such copolymerization reaction may be performed in the presence of a suitable solvent or chain transfer agent.
  • Preferred examples of the epoxy group-containing ethylene copolymer include a copolymer composed of units derived from ethylene units and glycidyl methacrylate, a unit derived from ethylene units and glycidyl methacrylate, and a unit derived from glycidyl methyl acrylate.
  • a copolymer comprising an ethylene unit and a unit derived from glycidyl methacrylate is preferred as the epoxy group-containing ethylene copolymer of Component C.
  • the epoxy group-containing ethylene copolymer preferably has a melt index (MFR: JIS K7210, measurement conditions: 190 ° C., 2.16 kg load) in the range of 0.5 to 100 g / 10 min, more preferably 2 to 50 g / 10 min.
  • MFR melt index
  • a substrate obtained from a resin composition containing an epoxy group-containing ethylene copolymer having a melt index within this range provides good mechanical properties, and also contains component A and component B liquid crystalline polyesters and an epoxy group. High compatibility with the ethylene copolymer is obtained.
  • the content of the epoxy group-containing ethylene copolymer of component C is 0.1 to 25 parts by mass when the total mass of liquid crystalline polyesters of component A and component B is 100 parts by mass.
  • the range of 10 to 20 parts by mass is more preferable. If the content of the epoxy group-containing ethylene copolymer is less than 0.1 parts by mass, the effect of improving the adhesion of the metal film to the substrate to be molded cannot be obtained. Moreover, when content exceeds 25 mass parts, while the heat resistance of a base
  • an inorganic filler may be added as necessary from the viewpoint of improving the mechanical strength of the obtained substrate.
  • the blending amount of the fibrous inorganic filler is 100 parts by mass of the total mass of component A and component B liquid crystalline polyester. Then, it is preferably set in the range of 5 to 500 parts by mass.
  • the mechanical strength of the substrate can be increased without reducing the adhesion between the substrate and the metal coating. Generation of cracks in the line region can be effectively prevented.
  • the fiber diameter is preferably in the range of 6 to 15 ⁇ m, and the aspect ratio is preferably in the range of 5 to 50.
  • the fiber diameter is less than 6 ⁇ m, the inorganic filler is easily damaged when the inorganic filler is dispersed in the resin composition or when the substrate is molded, and the inorganic filler is uniformly dispersed in the resin composition. It becomes difficult.
  • the fiber diameter exceeds 15 ⁇ m, the uneven distribution of the inorganic filler may cause a problem of variations in the mechanical properties of the substrate, and further impair the smoothness of the substrate.
  • This decrease in smoothness causes a decrease in the reliability of wire bonding when the metal-coated resin molded product of the present invention is used as a circuit board or the like. Moreover, the effect which prevents that a weld line produces a crack falls that the aspect-ratio of the said fibrous inorganic filler is less than 5. On the other hand, when the aspect ratio exceeds 50, the inorganic filler is easily damaged during the kneading of the resin composition, and the moldability of the substrate may be lowered.
  • whiskers may be mixed with the resin composition as an inorganic filler.
  • a substrate obtained from a resin composition containing a whisker can have a superior dimensional stability and an improved surface strength. Improving the surface strength of the substrate can improve the adhesion between the substrate and the metal coating, and when the metal-coated resin molded product of the present invention is used as a circuit board, it effectively contributes to improving the reliability of bump bonding.
  • the whisker include silicon carbide, silicon nitride, zinc oxide, alumina, calcium titanate, potassium titanate, barium titanate, aluminum borate, calcium silicate, magnesium borate, calcium carbonate, magnesium oxysulfate, and the like. A whisker can be used.
  • titanate whiskers or borate whiskers When titanate whiskers or borate whiskers are used, the effect of reducing the linear expansion coefficient of the substrate is extremely high. When titanate whiskers are used, the dielectric loss tangent of the substrate can be reduced in addition to improving the adhesion between the substrate and the metal film.
  • the fiber orientation can be suppressed when the substrate is formed, as compared with the case where the long fiber filler is used. Therefore, the obtained base has little anisotropy with respect to the linear expansion coefficient and shrinkage ratio. As a result, warpage and deformation of the substrate can be reduced, and a substrate having high dimensional accuracy can be obtained. Furthermore, the substrate has excellent flatness at the time of molding (initial flatness) and has an advantage that the flatness of the substrate can be reduced from fluctuating with temperature.
  • a plate-like inorganic filler such as talc, mica, glass flake, montmorillonite, smectite, etc. may be used.
  • the plate-like inorganic filler preferably has an average length of 1 to 80 ⁇ m, more preferably 1 to 50 ⁇ m, and an average aspect ratio (length / thickness) of 2 to 60, more preferably 10 to 40.
  • the amount of the plate-like inorganic filler is the liquid crystalline polyester of component A and component B. The amount is preferably 10 to 40 parts by mass with respect to 100 parts by mass.
  • the fibrous inorganic filler, whisker, and plate-like inorganic filler may be used alone or in combination of two or more.
  • a powdery or needle-like inorganic filler may be added to the resin composition. Further, carbon black or the like may be added as a colorant.
  • the metal-coated resin molded article of the present invention is obtained by molding a resin composition containing the liquid crystalline polyester of the above-described A component and B component, an epoxy group-containing ethylene copolymer, and, if necessary, an inorganic filler, etc. It is obtained by forming and then forming a metal film on the surface of the obtained substrate.
  • the metal material constituting the metal film is not limited, but for example, a metal selected from the group consisting of copper, nickel, gold, aluminum, titanium, molybdenum, chromium, tungsten, tin, lead, and zinc, or selected from these groups An alloy composed of two or more kinds of metals can be used.
  • the metal material which comprises a metal film may be partially oxidized with the oxygen which exists in an environment.
  • the molding process of the substrate produced from the resin composition of the present invention is not limited, in order to enhance the effect of improving the adhesion by heat treatment of the metal-coated resin molded article described later, the resin composition is made of the first liquid crystalline polyester. It is preferable to knead at a temperature higher than the flow start temperature.
  • a resin composition containing a first liquid crystalline polyester having a flow start temperature of 320 ° C. is kneaded at 340 ° C. by a twin-screw extruder to produce pellets.
  • the substrate can be formed by injection molding the obtained pellets into a desired shape.
  • the method of granulating once and obtaining a pellet has the tendency to improve adhesiveness compared with the case where it does not granulate irrespective of the presence or absence of the heat processing mentioned later.
  • the melt viscosity of the resin composition is preferably 100 to 200 poise at a shear rate of 1000 / s.
  • the heat treatment is preferably a heat treatment at a temperature lower than the flow start temperature of the first liquid crystalline polyester contained in the resin composition.
  • the flow start temperature of the first liquid crystalline polyester is Tm1 (° C.).
  • heat treatment in a temperature range of (Tm1-120) ° C. or higher and (Tm1-20) ° C. or lower is preferable.
  • the metal-coated resin molded product obtained by performing this heat treatment is suitably used as a circuit board having excellent high frequency characteristics and the like.
  • the heat treatment temperature is lower than (Tm1-120) ° C., the effect of improving the adhesion cannot be sufficiently obtained, and if the heat treatment temperature exceeds (Tm1-20) ° C., the substrate is warped. There is a risk of deformation.
  • the time for the heat treatment is preferably between 1 and 4 hours.
  • inert gas atmosphere such as nitrogen gas, from a viewpoint of suppressing the oxidative degradation of a base
  • the residual oxygen concentration is preferably 1% by volume or less, and more preferably 0.5% by volume or less.
  • the plasma treatment may be performed before or after the heat treatment, but is more preferably performed after the heat treatment. Since the epoxy group-containing ethylene copolymer in the resin composition has a highly reactive functional group, the surface of the substrate is effectively activated by applying a plasma treatment, and adhesion to the metal film is achieved. The effect of the plasma treatment on the property improvement is extremely high.
  • the plasma processing can be performed using an existing plasma processing apparatus.
  • a plasma processing apparatus including a pair of electrodes opposed to each other in the chamber and a high frequency unit for applying a high frequency electric field between the electrodes.
  • the substrate is placed on one electrode and the chamber is decompressed to about 10 ⁇ 4 Pa.
  • a plasma forming gas such as nitrogen gas or ammonia gas is introduced into the chamber so that the chamber internal pressure becomes 8 to 15 Pa.
  • 300 W high frequency power 13.56 MHz
  • the substrate surface can be activated.
  • the activation of the substrate surface means that a nitrogen polar group or an oxygen polar group that easily binds to a metal is formed on the substrate surface by collision with a cation during plasma treatment.
  • a nitrogen polar group or an oxygen polar group that easily binds to a metal is formed on the substrate surface by collision with a cation during plasma treatment.
  • the plasma treatment conditions can be arbitrarily set as long as the surface of the resin substrate is not excessively roughened by the plasma treatment.
  • the kind of plasma forming gas is not limited, it is preferable to use nitrogen.
  • nitrogen plasma is used, the elimination of carbon dioxide gas due to the cleavage of the ester bond of the liquid crystalline polyester constituting the substrate can be reduced compared to when oxygen plasma treatment is used. It is possible to avoid a decrease in strength of the surface, more specifically, the surface layer portion of the substrate.
  • the metal coating it is preferable to use a physical vapor deposition method such as sputtering, vacuum vapor deposition, or ion plating.
  • a physical vapor deposition method such as sputtering, vacuum vapor deposition, or ion plating.
  • the plasma treatment and the formation of the metal film are continuously performed without contacting the substrate with the atmosphere. It is preferable to carry out in a chamber.
  • the chamber in which the substrate is disposed is decompressed to 10 ⁇ 4 Pa or less, and then an inert gas such as argon is introduced into the chamber so that the internal pressure becomes about 0.1 Pa. To introduce. Next, by applying a DC voltage of 500 V and bombarding the copper target, a copper film having a thickness of 200 to 500 nm is formed on the surface of the substrate as a metal film to obtain a metal-coated resin molded product. it can.
  • the chamber in which the substrate is disposed is decompressed to 10 ⁇ 4 Pa or less, and an electron current of 400 to 800 mA is collided with copper in the crucible.
  • the copper is evaporated.
  • a metal film can be obtained by forming a copper film having a thickness of about 300 nm on the surface of the substrate as a metal film.
  • the chamber in which the substrate is arranged is decompressed to 10 ⁇ 4 Pa or less, and copper is evaporated in the same manner as in the case of vacuum deposition. Further, an inert gas such as argon is introduced between the substrate and the crucible so that the internal pressure becomes 0.05 to 0.1 Pa. Next, with a desired bias voltage applied to the electrode holding the substrate, 500 W of high frequency power (13.56 MHz) is applied to the induction antenna to generate plasma in the chamber. As a result, a metal-coated resin molded product in which a copper film having a thickness of 200 to 500 nm is formed on the surface of the substrate can be obtained.
  • the substrate is molded using the resin composition containing components A to C, and if necessary, heat treatment and plasma treatment are performed as pretreatment, and the surface of the substrate is obtained by physical vapor deposition such as sputtering.
  • a metal-coated resin molded product having a high degree of adhesion between the surface of the substrate and the metal film can be obtained by a series of methods for forming a metal film on the substrate.
  • the metal-coated resin molded product obtained by the present invention has a high degree of adhesion without the need to use an adhesive or a chemical between the metal coating and the surface of the substrate.
  • the metal-coated resin molded product of the present invention can be applied to various uses, but can be particularly suitably used as a circuit board. In this case, it is necessary to form a circuit pattern on the metal film of the metal-coated resin molded product.
  • a means for forming this circuit pattern for example, laser patterning may be employed from the viewpoint that an unnecessary metal film other than the circuit pattern can be efficiently removed without reducing the adhesion of the metal film.
  • MID three-dimensional circuit board
  • a metal layer such as copper is added to the formed circuit pattern by electrolytic plating to form a circuit so that the total thickness becomes, for example, 5 to 20 ⁇ m.
  • soft etching for reliably removing unnecessary metal film remaining on the substrate may be performed as necessary.
  • a nickel plating layer or a gold plating layer having a thickness of about several ⁇ m may be provided on the additional metal layer.
  • the deflection temperature under load was measured by the following method. That is, a test piece having a length of 127 mm, a width of 12.7 mm, and a thickness of 6.4 mm was formed using the polymer to be measured, and this test piece was measured by ASTM using a “heat distortion tester” manufactured by Yasuda Seiki Seisakusho. It measured by the load of 1.82 MPa (18.6 kg / cm ⁇ 2 >) by the method based on D648.
  • a first liquid crystalline polyester was obtained.
  • the flow start temperature of this first liquid crystalline polyester was measured using a flow tester (“CFT-500 type” manufactured by Shimadzu Corporation), and was 327 ° C.
  • a part of the first liquid crystalline polymer was pelletized by granulation, and processed into a test piece for measuring a deflection temperature under load by injection molding. It was 241 degreeC when the deflection temperature under load was measured using the obtained test piece.
  • Component B Synthesis of second liquid crystalline polyester
  • 0.19 g of 1-methylimidazole was weighed, and these were put into a reactor equipped with a stirrer, a torque meter, a nitrogen gas introduction tube, a thermometer and a reflux condenser, and the reactor was sufficiently filled with nitrogen gas. Replaced with. Subsequently, it heated up to 150 degreeC over 15 minutes under nitrogen gas stream, and also was made to recirculate
  • the temperature was raised to 320 ° C. over 2 hours and 50 minutes while distilling off by-product acetic acid and unreacted acetic anhydride, and the time when an increase in torque was recognized was regarded as the completion of the reaction, and the contents were taken out.
  • the solid content obtained from the contents was cooled to room temperature and pulverized with a coarse pulverizer, and then the obtained powder was heated from room temperature to 200 ° C. over 1 hour in a nitrogen atmosphere, and further from 200 ° C. to 298 ° C. The temperature was raised over 5 hours and held at 298 ° C. for 3 hours to allow the polymerization reaction to proceed in the solid phase.
  • the product number “BF-E” of “Bond First” (registered trademark) manufactured by Sumitomo Chemical Co., Ltd. was used as the ethylene copolymer of component C epoxy group.
  • the MFR (melt flow rate) is a value measured in accordance with JIS-K7210 under conditions of 190 ° C. and 2160 g load.
  • milled glass fiber (MGF: “EFH75-01” (fiber diameter: 10 ⁇ m, aspect ratio: 10) manufactured by Central Glass Co., Ltd.) was used as an inorganic filler.
  • Example 1 to 4 Comparative Examples 1 and 2
  • the first liquid crystalline polyester, the second liquid crystalline polyester, “bond first BF-E”, and milled glass fiber (MGF) “EFH75-01” are mixed in the blending amounts shown in Table 1 to obtain a resin composition.
  • a product was prepared.
  • resin compositions were prepared by changing the ratio of the first liquid crystalline polyester and the second liquid crystalline polyester.
  • pellets of this resin composition were prepared at 340 ° C. using a twin screw extruder (“PCM-30” manufactured by Ikekai Tekko Co., Ltd.).
  • PCM-30 twin screw extruder
  • the obtained pellets were injection molded under the conditions of a cylinder temperature of 350 ° C. and a mold temperature of 130 ° C. using an injection molding machine “PS40E5ASE” manufactured by Nissei Plastic Industry Co., Ltd. Got.
  • the substrate thus obtained was heat-treated under a nitrogen atmosphere at 280 ° C. for 3 hours, and the substrate was not subjected to the heat treatment. Thus, a metal film was formed.
  • the surface of the substrate was plasma-treated, and then a metal film was formed using a DC magnetron sputtering apparatus. That is, the substrate was placed in the chamber of the plasma processing apparatus, and the chamber was depressurized to about 10 ⁇ 4 Pa. Next, nitrogen gas was introduced into the chamber so that the gas pressure in the chamber became 10 Pa, and 300 W of high frequency (13.56 MHz) power was applied between the electrodes for 30 seconds to perform plasma treatment on the substrate.
  • high frequency 13.56 MHz
  • the pressure in the chamber was reduced to 10 ⁇ 4 Pa or less.
  • argon gas was introduced into the chamber to a gas pressure of 0.1 Pa, a copper target was bombarded by applying a DC voltage of 500 V, and a 400 nm film thickness was formed on the plasma-treated surface of the substrate.
  • a metal coating consisting of a copper coating was formed.
  • a pattern with a width of 5 mm is formed on the metal film by laser irradiation, and a copper pattern is plated on the metal film pattern by electrolytic plating to form a circuit pattern for a peel strength test having a thickness of 15 ⁇ m on the surface of the substrate.
  • a circuit forming substrate was obtained.
  • FIG. 1A shows the relationship between the ratio of the second liquid crystalline polyester to the total amount of the first liquid crystalline polyester and the second liquid crystalline polyester and the peel strength, and the relationship with the thermal deformation temperature (DTUL). Is shown in FIG.
  • the first liquid crystalline polyester having a deflection temperature under load of 200 ° C. or higher is subjected to a load deflection lower than the load deflection temperature of the first liquid crystalline polyester. It is confirmed that by using a second liquid crystalline polyester having a temperature in combination, the peel strength is improved and a metal film can be formed with higher adhesion. In this case, if the content of the second liquid crystalline polyester increases, the heat distortion temperature decreases and the heat resistance decreases as seen in FIG. 1B, so the content of the second liquid crystalline polyester is It is preferable that it is 50 mass% or less.
  • the content of the second liquid crystalline polyester exceeds 30% by mass, the thermal deformation temperature is greatly reduced as shown in FIG. 1B, and as shown in FIG. Even if the content of the liquid crystalline polyester exceeds 30% by mass, the effect of improving the peel strength is not so much observed. For this reason, it is more preferable that the content rate of 2nd liquid crystalline polyester is 30 mass% or less.
  • Example 2 the shrinkage rate of the substrate was measured.
  • the shrinkage rate is the shrinkage rate of the substrate size with respect to the mold size.
  • a flat plate is prepared under the molding conditions described above, and the substrate size in the MD (resin flow direction) and TD (perpendicular to the resin flow direction). And the shrinkage ratio with the mold dimensions was calculated. The results are shown in Table 2.
  • Examples 5 to 8, Comparative Examples 3 and 4 The first liquid crystalline polyester, the second liquid crystalline polyester, “bond first BF-E”, and milled glass fiber (MGF) “EFH75-01” are mixed in the blending amounts shown in Table 3 to obtain a resin composition.
  • a product was prepared.
  • resin compositions were prepared by changing the ratio of the first liquid crystalline polyester and the second liquid crystalline polyester and further changing the amount of “bond first BF-E”.
  • Example 6 has the same composition as Example 2 and Comparative Example 3 has the same composition as Comparative Example 1.
  • a substrate was molded, subjected to heat treatment, subjected to plasma treatment in the same manner as described above, and then a copper film was formed, followed by laser patterning to obtain a circuit forming substrate. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed is a metal-coated resin molded article comprising a base and a metal coating film formed on the surface of the base. The base is produced by molding a resin composition comprising the components A, B and C shown below, wherein the component C is contained in an amount of 0.1 to 25 parts by mass relative to the total amount (100 parts by mass) of the components A and B. A: a first liquid crystalline polyester having a heat deflection temperature of 200°C or higher. B: a second liquid crystalline polyester having a lower heat deflection temperature than that of the first liquid crystalline polyester. C: an ethylene copolymer having an epoxy group (provided that the ethylene copolymer has an ethylene unit and an unsaturated carboxylic acid glycidyl ester unit and/or an unsaturated glycidyl ether unit in amounts of 50 to 99.9 mass% and 0.1 to 30 mass%, respectively, in the molecule.

Description

金属被覆樹脂成形品及びその製造方法Metal-coated resin molded product and method for producing the same
 本発明は、電気電子産業での使用に好適な、液晶性ポリエステルを含有する樹脂組成物の基体を用いた金属被覆樹脂成形品及びその製造方法に関するものである。 The present invention relates to a metal-coated resin molded article using a substrate of a resin composition containing a liquid crystalline polyester, which is suitable for use in the electric and electronics industry, and a method for producing the same.
 近年、液晶性ポリエステルは、電子部品用又は機械部品用材料として広く利用されている。例えば、液晶性ポリエステルを含有する樹脂組成物を成形した基板の表面に金属被膜を形成して得られる回路基板は、良好な成形性、寸法安定性、高い弾性率及び強度を有するので、立体回路基板(MID)用材料としても注目されている。 In recent years, liquid crystalline polyester has been widely used as a material for electronic parts or machine parts. For example, a circuit board obtained by forming a metal film on the surface of a substrate molded with a resin composition containing a liquid crystalline polyester has good moldability, dimensional stability, high elastic modulus and strength. It is also attracting attention as a substrate (MID) material.
 しかし、樹脂基板と金属被膜との間には強固な化学的結合が存在しないので、樹脂基板-金属被膜間に高い密着性を得ることは一般に困難である。特に回路基板の場合は、回路基板が熱負荷を受けると、金属被膜の密着性が低下して樹脂基板との剥離が生じるといった問題があった。 However, since there is no strong chemical bond between the resin substrate and the metal coating, it is generally difficult to obtain high adhesion between the resin substrate and the metal coating. In particular, in the case of a circuit board, when the circuit board is subjected to a thermal load, there is a problem in that the adhesion of the metal film is lowered and peeling from the resin substrate occurs.
 液晶性ポリエステル樹脂組成物を成形して得た樹脂基板についても、このような金属被膜との密着性の問題があり、この問題を改善するために、液晶性ポリエステル樹脂組成物を成形して樹脂基板を作製した後、この樹脂基板を真空槽内で表面温度60℃以上となるように加熱しながらスパッタリング、イオンプレーティングあるいは真空蒸着により金属被膜を蒸着する方法が提案されている(特開平3-8388号公報参照)。しかしながら、このような金属被膜の蒸着方法のみを制御することによっては、密着性を改善する効果は十分に得ることができない。 The resin substrate obtained by molding the liquid crystalline polyester resin composition also has a problem of adhesion with such a metal film. In order to improve this problem, the liquid crystalline polyester resin composition is molded to form a resin. There has been proposed a method in which a metal film is deposited by sputtering, ion plating, or vacuum deposition while the resin substrate is heated in a vacuum chamber so that the surface temperature is 60 ° C. or higher after the substrate is produced (Japanese Patent Laid-Open No. Hei 3). -8388). However, the effect of improving the adhesion cannot be sufficiently obtained by controlling only such a metal film deposition method.
 かかる状況下、本出願人は、液晶性ポリエステル樹脂と、エポキシ基含有エチレン共重合体と、無機充填材とからなる樹脂組成物を成形して基板を作製し、この基板の表面に物理蒸着法により金属被膜を形成することによって、基板の表面と金属被膜との間に高度の密着性を有する金属被覆樹脂成形品が得られることを見出している(特開2005-290370号公報参照)。 Under such circumstances, the present applicant manufactured a substrate by molding a resin composition comprising a liquid crystalline polyester resin, an epoxy group-containing ethylene copolymer, and an inorganic filler, and a physical vapor deposition method was applied to the surface of the substrate. It has been found that a metal-coated resin molded product having a high degree of adhesion between the surface of the substrate and the metal film can be obtained by forming a metal film by (see JP-A-2005-290370).
 上記のように特許文献2の発明で得られる金属被覆樹脂成形品は、高度の密着性で金属被膜を形成したものであるが、この金属被膜によって、より微細な回路を形成するという近年の要望に応え、またより製造歩留まりを向上させるといった観点から、金属被膜の更なる密着性の改善が求められているのが現状である。 As described above, the metal-coated resin molded product obtained by the invention of Patent Document 2 is a metal film formed with a high degree of adhesion, but a recent request to form a finer circuit with this metal film. In view of this, and from the viewpoint of further improving the manufacturing yield, further improvement of the adhesion of the metal film is required.
 本発明は上記の点に鑑みてなされたものであり、より高度な密着性で金属被膜を形成することができる金属被覆樹脂成形品及びその製造方法を提供することを目的とするものである。 The present invention has been made in view of the above points, and an object of the present invention is to provide a metal-coated resin molded product capable of forming a metal film with higher adhesion and a method for producing the same.
 本発明に係る金属被覆樹脂成形品は、
 A:200℃以上の荷重たわみ温度を有する第1の液晶性ポリエステル
 B:第1の液晶性ポリエステルの荷重たわみ温度より低い荷重たわみ温度を有する第2の液晶性ポリエステル
 C:エポキシ基含有エチレン共重合体
(ただし、該エポキシ基含有エチレン共重合体は、分子中にエチレン単位を50~99.9質量%、不飽和カルボン酸グリシジルエステル単位及び/又は不飽和グリシジルエーテル単位を0.1~30質量%含む)
 上記の成分A、B及びCを含有し、成分Aと成分Bの合計100質量部に対して、成分Cが0.1~25質量部の範囲である樹脂組成物を成形して得られる基体と、この基体の表面上に形成される金属被膜とからなることを特徴とするものである。ここで、前記の荷重たわみ温度とは、ASTM D648(1988年)により求められる荷重たわみ温度として定義されるものである。
The metal-coated resin molded product according to the present invention is:
A: First liquid crystalline polyester having a deflection temperature under 200 ° C. or higher B: Second liquid crystalline polyester having a deflection temperature lower than the deflection temperature under load of the first liquid crystalline polyester C: Ethylene copolymer containing an epoxy group Compound (however, the epoxy group-containing ethylene copolymer contains 50 to 99.9% by mass of ethylene units in the molecule, 0.1 to 30% by mass of unsaturated carboxylic acid glycidyl ester units and / or unsaturated glycidyl ether units) % Included)
A substrate obtained by molding a resin composition containing the above components A, B and C and having component C in the range of 0.1 to 25 parts by mass with respect to a total of 100 parts by mass of component A and component B And a metal film formed on the surface of the substrate. Here, the deflection temperature under load is defined as the deflection temperature under load determined by ASTM D648 (1988).
 この発明によれば、液晶性ポリエステルに配合したエポキシ基含有エチレン共重合体によって、基体の表層の靭性が向上し、基体に対する金属被膜の密着性を向上することができると共に、液晶性ポリエステルとして、200℃以上の荷重たわみ温度を有する第1の液晶性ポリエステルと、第1の液晶性ポリエステルの荷重たわみ温度より低い荷重たわみ温度を有する第2の液晶性ポリエステルとを併用することによって、第1の液晶性ポリエステルによって耐熱性を保持しつつ、第2の液晶性ポリマーによって基体に対する金属被膜の密着性を高めることができるものであり、より高度な密着性で金属被膜を形成することができるものである。 According to the present invention, the epoxy group-containing ethylene copolymer blended in the liquid crystalline polyester improves the toughness of the surface layer of the substrate, can improve the adhesion of the metal film to the substrate, and as the liquid crystalline polyester, By using together the first liquid crystalline polyester having a deflection temperature under load of 200 ° C. or more and the second liquid crystalline polyester having a deflection temperature under load that is lower than the deflection temperature under load of the first liquid crystalline polyester, While maintaining heat resistance with the liquid crystalline polyester, the second liquid crystalline polymer can enhance the adhesion of the metal film to the substrate, and can form a metal film with higher adhesion. is there.
 また本発明は、前記樹脂組成物において、成分Aと成分Bの合計量に対して成分Bが1~50質量%であることを特徴とするものである。 Further, the present invention is characterized in that in the resin composition, the component B is 1 to 50% by mass with respect to the total amount of the component A and the component B.
 この発明によれば、成分A(第1の液晶性ポリエステル)によって耐熱性を保持しつつ、成分B(第2の液晶性ポリマー)によって基体に対する金属被膜の密着性を高める効果をより有効に得ることができるものである。 According to the present invention, the effect of increasing the adhesion of the metal film to the substrate by the component B (second liquid crystalline polymer) is obtained more effectively while maintaining the heat resistance by the component A (first liquid crystalline polyester). It is something that can be done.
 また本発明は、成分Aと成分Bの合計量に対して成分Bが30質量%以下であることを特徴とするものである。 In addition, the present invention is characterized in that the component B is 30% by mass or less with respect to the total amount of the component A and the component B.
 この発明によれば、成分A(第1の液晶性ポリエステル)による耐熱性を高く保持することができ、耐熱性を要求される用途において特に有用に用いることができるものである。 According to the present invention, the heat resistance by the component A (first liquid crystalline polyester) can be kept high, and it can be used particularly useful in applications requiring heat resistance.
 また本発明において、前記第2の液晶性ポリエステルは、2価の芳香族基がエステル結合で連結されたものであり、この2価の芳香族基は、1,2-フェニレン基、1,3-フェニレン基、2,3-ナフタレン基から選ばれる少なくとも一種の芳香族基を含むと共にこれらの芳香族基の合計量が、2価の芳香族基の全量に対して10~45モル%であることを特徴とするものである。 In the present invention, the second liquid crystalline polyester is a divalent aromatic group linked by an ester bond. The divalent aromatic group includes a 1,2-phenylene group, 1,3, -It contains at least one kind of aromatic group selected from phenylene group and 2,3-naphthalene group, and the total amount of these aromatic groups is 10 to 45 mol% with respect to the total amount of divalent aromatic groups. It is characterized by this.
 この発明によれば、2価の芳香族基として含有する、屈曲した分子構造の1,2-フェニレン基、1,3-フェニレン基、2,3-ナフタレン基によって、第2の液晶性ポリエステルの荷重たわみ温度が低くなるように調整することができるものである。 According to the present invention, the 1,2-phenylene group, 1,3-phenylene group, and 2,3-naphthalene group having a bent molecular structure, which is contained as a divalent aromatic group, can be used for the second liquid crystalline polyester. The deflection temperature under load can be adjusted to be low.
 また本発明において、前記エポキシ基含有エチレン共重合体は、分子中にエチレン単位を80~98質量%、不飽和カルボン酸グリシジルエステル単位及び/又は不飽和グリシジルエーテル単位を2~15質量%含むものであることを特徴とするものである。 In the present invention, the epoxy group-containing ethylene copolymer contains 80 to 98% by mass of ethylene units and 2 to 15% by mass of unsaturated carboxylic acid glycidyl ester units and / or unsaturated glycidyl ether units in the molecule. It is characterized by this.
 この発明によれば、エポキシ基含有エチレン共重合体の配合による基体の耐熱性低下を抑制し、耐熱性に優れた金属被覆成形品を得ることができるものである。 According to the present invention, it is possible to obtain a metal-coated molded article excellent in heat resistance by suppressing a decrease in heat resistance of the substrate due to the blending of the epoxy group-containing ethylene copolymer.
 また本発明は、前記樹脂組成物が、前記の成分A~Cに加え、直径6~15μm、アスペクト比5~50の繊維状無機フィラーを含有することを特徴とするものである。 Further, the present invention is characterized in that the resin composition contains a fibrous inorganic filler having a diameter of 6 to 15 μm and an aspect ratio of 5 to 50 in addition to the components A to C.
 この発明によれば、金属被膜との密着性を確保しつつ、繊維状無機フィラーで基体の強度を高めることができるものである。 According to the present invention, the strength of the substrate can be increased with the fibrous inorganic filler while ensuring adhesion with the metal coating.
 本発明に係る金属被覆樹脂成形品の製造方法は、前記の樹脂組成物を成形して基体を得る成形工程と、この基体の表面に金属被膜を形成する被覆工程とを含むことを特徴とするものである。 The method for producing a metal-coated resin molded article according to the present invention includes a molding step of molding the resin composition to obtain a substrate, and a coating step of forming a metal film on the surface of the substrate. Is.
 この発明によれば、樹脂組成物において、液晶性ポリエステルに配合したエポキシ基含有エチレン共重合体によって、表層の靭性が向上した基体を成形することができ、基体に対する金属被膜の密着性を向上することができると共に、液晶性ポリエステルとして、200℃以上の荷重たわみ温度を有する第1の液晶性ポリエステルと、第1の液晶性ポリエステルの荷重たわみ温度より低い荷重たわみ温度を有する第2の液晶性ポリエステルとを併用することによって、第1の液晶性ポリエステルによって耐熱性を保持しつつ、第2の液晶性ポリマーによって基体に対する金属被膜の密着性を高めることができるものであり、より高度な密着性で金属被膜を形成することができるものである。 According to this invention, in the resin composition, the epoxy group-containing ethylene copolymer blended with the liquid crystalline polyester can form a substrate having improved surface layer toughness, thereby improving the adhesion of the metal coating to the substrate. The first liquid crystalline polyester having a deflection temperature under load of 200 ° C. or higher and the second liquid crystalline polyester having a deflection temperature lower than the deflection temperature under load of the first liquid crystalline polyester. In combination with the first liquid crystalline polyester, while maintaining heat resistance by the first liquid crystalline polyester, the second liquid crystalline polymer can enhance the adhesion of the metal film to the substrate, with a higher degree of adhesion. A metal film can be formed.
 また本発明は、前記被覆工程の前に、前記基体の表面にプラズマ処理を施す工程を含むことを特徴とするものである。 Further, the present invention is characterized by including a step of performing plasma treatment on the surface of the substrate before the coating step.
 この発明によれば、プラズマ処理によって基体の表面を活性化することができ、基体表面への金属被膜の密着性をより高めることができるものである。 According to this invention, the surface of the substrate can be activated by plasma treatment, and the adhesion of the metal coating to the substrate surface can be further improved.
 また本発明は、前記被覆工程の前に、(Tm1-120)℃~(Tm1-20)℃[ただし、Tm1は前記第1の液晶性ポリエステルの流動開始温度(℃)を表す]の温度で、基体を熱処理する工程を含むことを特徴とするものである。 In the present invention, before the coating step, at a temperature of (Tm1-120) ° C. to (Tm1-20) ° C. [where Tm1 represents the flow start temperature (° C.) of the first liquid crystalline polyester]. And a step of heat-treating the substrate.
 この発明によれば、この熱処理によって、金属被膜の密着性の他に、基体の誘電正接を低下させる効果を得ることができ、高周波特性等に優れた金属被覆樹脂成形品を得ることができるものである。 According to the present invention, this heat treatment can obtain the effect of lowering the dielectric loss tangent of the substrate in addition to the adhesion of the metal film, and can obtain a metal-coated resin molded product excellent in high-frequency characteristics and the like. It is.
 また本発明において、前記被覆工程は、物理蒸着法により前記基体の表面に金属被膜を形成する工程であることを特徴とするものである。 In the present invention, the coating step is a step of forming a metal film on the surface of the substrate by a physical vapor deposition method.
 本発明によれば、乾式工法の物理蒸着法で、基体の表面に金属被膜を密着性高く形成することができるものである。 According to the present invention, a metal film can be formed with high adhesion on the surface of a substrate by a physical vapor deposition method of a dry method.
 また本発明は、前記金属被膜にレーザーパターンニングを施すことによって回路パターンを形成する工程を含むことを特徴とするものである。 Further, the present invention is characterized by including a step of forming a circuit pattern by applying laser patterning to the metal coating.
 この発明によれば、レーザ照射によるパターニングで、基体に対する金属被膜の密着性を低下させないで回路部以外の金属被膜を除去して回路形成をすることができるものであり、ファインパターンの回路形成を容易に行なうことができるものである。 According to the present invention, by patterning by laser irradiation, it is possible to form a circuit by removing the metal coating other than the circuit portion without reducing the adhesion of the metal coating to the substrate, and to form a fine pattern circuit. It can be done easily.
 上記のように本発明の金属被覆樹脂成形品によれば、液晶性ポリエステルに配合したエポキシ基含有エチレン共重合体によって、基体の表層の靭性が向上し、基体に対する金属被膜の密着性を向上することができると共に、液晶性ポリエステルとして、200℃以上の荷重たわみ温度を有する第1の液晶性ポリエステルと、第1の液晶性ポリエステルの荷重たわみ温度より低い荷重たわみ温度を有する第2の液晶性ポリエステルとを併用することによって、第1の液晶性ポリエステルによって耐熱性を保持しつつ、第2の液晶性ポリマーによって基体に対する金属被膜の密着性を高めることができるものであり、より高度な密着性で金属被膜を形成することができるものである。 As described above, according to the metal-coated resin molded product of the present invention, the epoxy group-containing ethylene copolymer blended with the liquid crystalline polyester improves the toughness of the surface layer of the substrate and improves the adhesion of the metal film to the substrate. The first liquid crystalline polyester having a deflection temperature under load of 200 ° C. or higher and the second liquid crystalline polyester having a deflection temperature lower than the deflection temperature under load of the first liquid crystalline polyester. In combination with the first liquid crystalline polyester, while maintaining heat resistance by the first liquid crystalline polyester, the second liquid crystalline polymer can enhance the adhesion of the metal film to the substrate, with a higher degree of adhesion. A metal film can be formed.
 そして金属被覆樹脂成形品には、密着性の高い金属被膜によって微細な回路パターンを形成できるものであり、電気・電子産業、特に高周波特性が必要とされる分野において特に有用に使用することができるものである。 The metal-coated resin molded product can form a fine circuit pattern with a metal film having high adhesion, and can be used particularly effectively in the electric and electronic industries, particularly in fields where high frequency characteristics are required. Is.
(a)は第2の液晶性ポリエステルの含有比率とピール強度との関係を示すグラフ、(b)は第2の液晶性ポリエステルの含有比率と熱変形温度との関係を示すグラフである。(A) is a graph which shows the relationship between the content rate of 2nd liquid crystalline polyester, and peel strength, (b) is a graph which shows the relationship between the content rate of 2nd liquid crystalline polyester, and thermal deformation temperature.
発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION
 以下、本発明を実施するための形態を説明する。 Hereinafter, modes for carrying out the present invention will be described.
 本発明において使用される基体は、前記の成分A、B及びCを必須成分として含有する樹脂組成物を成形して得られるものである。まず、成分A及び成分Bに係る液晶性ポリエステルについて説明する。 The substrate used in the present invention is obtained by molding a resin composition containing the components A, B and C as essential components. First, the liquid crystalline polyester according to Component A and Component B will be described.
 ここで、液晶性ポリエステルとは、光学的異方性を有する溶融相を形成しうるポリエステルであり、高度の耐熱性を有する基体を得る観点からは、高分子主鎖が芳香族基からなり、これらの芳香族基がエステル結合(-C(O)O-又は-OC(O)-)で連結されたポリエステルであることが好ましい。尚、この芳香族基とは、単環芳香族基、縮合環芳香族基に加え、単環芳香族基や縮合環芳香族基が直接結合で連結した基や、酸素原子、硫黄原子、1~6の炭素数を有するアルキレン基、スルホニル基及びカルボニル基から選ばれる連結基を介して連結された基も含む概念である。 Here, the liquid crystalline polyester is a polyester capable of forming a melt phase having optical anisotropy, and from the viewpoint of obtaining a substrate having high heat resistance, the polymer main chain is composed of an aromatic group, A polyester in which these aromatic groups are linked by an ester bond (—C (O) O— or —OC (O) —) is preferable. The aromatic group includes a monocyclic aromatic group and a condensed ring aromatic group, a group in which a monocyclic aromatic group or a condensed ring aromatic group is connected by a direct bond, an oxygen atom, a sulfur atom, It is a concept including a group linked through a linking group selected from an alkylene group having 6 to 6 carbon atoms, a sulfonyl group, and a carbonyl group.
 成分Aである第1の液晶性ポリエステルは、200℃以上の荷重たわみ温度を有するものであり、成分Bである第2の液晶性ポリエステルは、第1の液晶性ポリエステルの荷重たわみ温度より低い荷重たわみ温度を有するものである。すなわち、第1の液晶性ポリエステルと第2の液晶性ポリエステルの組合わせは、第1の液晶性ポリエステルの荷重たわみ温度をTb1(℃)、第2の液晶性ポリエステルの荷重たわみ温度をTb2(℃)としたとき、次の式を満足するものを選択するものである。 The first liquid crystalline polyester as component A has a deflection temperature under load of 200 ° C. or higher, and the second liquid crystalline polyester as component B has a load lower than the deflection temperature under load of the first liquid crystalline polyester. It has a deflection temperature. That is, in the combination of the first liquid crystalline polyester and the second liquid crystalline polyester, the deflection temperature under load of the first liquid crystalline polyester is Tb1 (° C.), and the deflection temperature under load of the second liquid crystalline polyester is Tb 2 (° C. ) Is selected to satisfy the following formula.
 Tb1≧200℃
 Tb1>Tb2
 尚、液晶性ポリエステルの荷重たわみ温度は、液晶性ポリエステルの分子量をコントロールする方法、液晶性ポリエステルを構成するモノマー単位の組合せを変更する方法などで制御することができるものであり、これらの方法により所望の荷重たわみ温度の液晶性ポリエステルを得ることが可能である。このような荷重たわみ温度を制御した液晶性ポリエステルの製造方法に関する詳細は後述する。
Tb1 ≧ 200 ° C
Tb1> Tb2
The deflection temperature under load of the liquid crystalline polyester can be controlled by a method for controlling the molecular weight of the liquid crystalline polyester, a method for changing the combination of monomer units constituting the liquid crystalline polyester, and the like. It is possible to obtain a liquid crystalline polyester having a desired deflection temperature under load. Details regarding a method for producing such a liquid crystalline polyester with controlled deflection temperature under load will be described later.
 第1の液晶性ポリエステルは、上記のように、その荷重たわみ温度(Tb1)が200℃以上であり、230℃以上であることがより好ましく、240℃以上であることがさらに好ましい。第1の液晶性ポリエステルの荷重たわみ温度(Tb1)が200℃を下回ると、樹脂組成物を成形して得られる基体の熱変形が大きくなり、所望の寸法の金属被覆樹脂成形品を得ることが難しくなるおそれがある。尚、第1の液晶性ポリエステルの荷重たわみ温度(Tb1)の上限は特に規定されないが、実用的には300℃程度が上限である。 As described above, the deflection temperature under load (Tb1) of the first liquid crystalline polyester is 200 ° C. or higher, more preferably 230 ° C. or higher, and further preferably 240 ° C. or higher. When the deflection temperature under load (Tb1) of the first liquid crystalline polyester is lower than 200 ° C., thermal deformation of the substrate obtained by molding the resin composition becomes large, and a metal-coated resin molded product having a desired size can be obtained. May be difficult. The upper limit of the deflection temperature under load (Tb1) of the first liquid crystalline polyester is not particularly specified, but practically about 300 ° C. is the upper limit.
 また第2の液晶性ポリエステルの荷重たわみ温度(Tb2)は、上記のように、第1の液晶性ポリエステルの荷重たわみ温度(Tb1)より低いものであり、この荷重たわみ温度(Tb2)は第1の液晶性ポリエステルの荷重たわみ温度(Tb1)に応じて選定されるが、その荷重たわみ温度(Tb2)は190℃以下であることが好ましく、150℃以下であることがより好ましい。第2の液晶性ポリエステルの荷重たわみ温度(Tb2)が190℃を超えると、金属被膜の密着性を高める効果を十分に得ることができなくなるおそれがある。尚、第2の液晶性ポリエステルの荷重たわみ温度(Tb2)の下限は特に規定されないが、実用的には100℃程度が下限である。 Further, as described above, the deflection temperature under load (Tb2) of the second liquid crystalline polyester is lower than the deflection temperature under load (Tb1) of the first liquid crystalline polyester, and the deflection temperature under load (Tb2) is the first. Although it is selected according to the deflection temperature under load (Tb1) of the liquid crystalline polyester, the deflection temperature under load (Tb2) is preferably 190 ° C. or less, and more preferably 150 ° C. or less. If the deflection temperature under load (Tb2) of the second liquid crystalline polyester exceeds 190 ° C., the effect of improving the adhesion of the metal film may not be sufficiently obtained. The lower limit of the deflection temperature under load (Tb2) of the second liquid crystalline polyester is not particularly specified, but practically about 100 ° C. is the lower limit.
 上記のように荷重たわみ温度(Tb1)が高い第1の液晶性ポリエステルに、荷重たわみ温度(Tb2)が低い第2の液晶性ポリエステルを併用することによって、荷重たわみ温度(Tb1)が高い第1の液晶性ポリエステルで耐熱性を確保しつつ、荷重たわみ温度(Tb2)が低い第2の液晶性ポリエステルで金属被膜との密着性を高めた基体を成形することができるものであり、第1の液晶性ポリエステルと第2の液晶性ポリエステルの荷重たわみ温度の差分(Tb1-Tb2)は、50℃以上であることが好ましく、80℃以上であることがより好ましい。 As described above, the first liquid crystal polyester having a high load deflection temperature (Tb1) is used in combination with the second liquid crystal polyester having a low load deflection temperature (Tb2). The second liquid crystalline polyester having a low load deflection temperature (Tb2) while securing heat resistance can be molded with the liquid crystalline polyester, and the substrate having improved adhesion to the metal film can be formed. The difference between the deflection temperatures under load between the liquid crystalline polyester and the second liquid crystalline polyester (Tb1−Tb2) is preferably 50 ° C. or higher, and more preferably 80 ° C. or higher.
 次に、第1の液晶性ポリエステルや第2の液晶性ポリエステルとして好適なものについて説明する。これらの液晶性ポリエステルとしては、例えば、
(1)芳香族ヒドロキシカルボン酸と芳香族ジカルボン酸と芳香族ジオールからなる各モノマーを組み合わせて重合して得られるもの
(2)異種の芳香族ヒドロキシカルボン酸をモノマーとして用い、これらを重合して得られるもの
(3)芳香族ジカルボン酸と芳香族ジオールからなるモノマーを組み合わせて重合して得られるもの
等を挙げることができる。
Next, what is suitable as 1st liquid crystalline polyester and 2nd liquid crystalline polyester is demonstrated. As these liquid crystalline polyesters, for example,
(1) Obtained by polymerizing a combination of monomers composed of an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid and an aromatic diol. (2) Using different types of aromatic hydroxycarboxylic acids as monomers, polymerizing them. What can be obtained (3) The thing obtained by superposing | polymerizing combining the monomer which consists of aromatic dicarboxylic acid and aromatic diol can be mentioned.
 尚、上記の芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオールの代わりに、これらのエステル形成性誘導体を使用することにより、液晶性ポリエステルを製造することも可能であり、このようなエステル形成性誘導体を用いると液晶性ポリエステルの製造がより容易となるため好ましい。 In addition, it is also possible to produce a liquid crystalline polyester by using these ester-forming derivatives instead of the above aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid and aromatic diol. It is preferable to use a formable derivative because the liquid crystalline polyester can be more easily produced.
 上記の(1)~(3)のなかでも、より好ましいのは(1)によって得られる液晶性ポリエステルである。かかる液晶性ポリエステルを製造する手段としては、芳香族ジオール及び芳香族ヒドロキシカルボン酸のフェノール性水酸基を脂肪酸無水物でアシル化することにより得られるアシル化物のアシル基と、芳香族ジカルボン酸及び芳香族ヒドロキシカルボン酸アシル化物のカルボキシル基とがエステル交換反応を生じるようにして重合させる方法があり、さらに好ましくは、主としてモノマー同士のエステル交換反応および重縮合反応によって比較的低分子量のポリエステルを得る第1段階(「第1段階重合」と呼ぶことがある)と、この低分子量のポリエステル同士が結合して高分子量化する第2段階(「第2段階重合」と呼ぶことがある)との、2段階による重合方法である。このような重合方法は、得られる液晶性ポリエステルの分子量のコントロールが、容易であるという利点がある。 Among the above (1) to (3), the liquid crystalline polyester obtained by (1) is more preferable. As a means for producing such a liquid crystalline polyester, an acyl group of an acylated product obtained by acylating a phenolic hydroxyl group of an aromatic diol and an aromatic hydroxycarboxylic acid with a fatty acid anhydride, an aromatic dicarboxylic acid and an aromatic There is a method in which a carboxyl group of a hydroxycarboxylic acid acylated product is polymerized so as to cause a transesterification reaction, and more preferably, a first polyester that obtains a relatively low molecular weight polyester mainly by a transesterification reaction between monomers and a polycondensation reaction A stage (sometimes referred to as “first stage polymerization”) and a second stage (sometimes referred to as “second stage polymerization”) in which the low molecular weight polyesters are bonded together to increase the molecular weight. It is a polymerization process in stages. Such a polymerization method has an advantage that it is easy to control the molecular weight of the obtained liquid crystalline polyester.
 ここで上記の脂肪酸無水物としては、例えば、無水酢酸、無水プロピオン酸、無水酪酸、無水イソ酪酸、無水吉草酸、無水ピバル酸、無水2エチルヘキサン酸、無水モノクロル酢酸、無水ジクロル酢酸、無水トリクロル酢酸、無水モノブロモ酢酸、無水ジブロモ酢酸、無水トリブロモ酢酸、無水モノフルオロ酢酸、無水ジフルオロ酢酸、無水トリフルオロ酢酸、無水グルタル酸、無水マレイン酸、無水コハク酸、無水β-ブロモプロピオン酸を使用することができる。これらは1種を単独で使用してもよく、2種以上を混合して用いても良い。これらの中でも、価格と取り扱い性の点で、無水酢酸、無水プロピオン酸、無水酪酸、無水イソ酪酸が好ましく、より好ましいのは無水酢酸である。 Examples of the fatty acid anhydride include acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, pivalic anhydride, 2-ethylhexanoic anhydride, monochloroacetic anhydride, dichloroacetic anhydride, and trichloroanhydride. Use acetic acid, monobromoacetic anhydride, dibromoacetic anhydride, tribromoacetic anhydride, monofluoroacetic anhydride, difluoroacetic anhydride, trifluoroacetic anhydride, glutaric anhydride, maleic anhydride, succinic anhydride, β-bromopropionic anhydride Can do. These may be used individually by 1 type, and may mix and use 2 or more types. Among these, acetic anhydride, propionic anhydride, butyric anhydride, and isobutyric anhydride are preferable in terms of price and handleability, and acetic anhydride is more preferable.
 また、液晶性ポリエステルの重合反応において、下記式(C1)で表されるイミダゾール化合物を触媒として用いることが好ましい。かかるイミダゾール化合物を共存させた重合反応は、液晶性ポリエステルを製造する際に好適であり、重合時間の短縮や、得られるポリエステルが著しく着色されないという利点がある。 In the polymerization reaction of liquid crystalline polyester, it is preferable to use an imidazole compound represented by the following formula (C1) as a catalyst. Such a polymerization reaction in the presence of an imidazole compound is suitable for producing a liquid crystalline polyester, and has an advantage that the polymerization time is shortened and the resulting polyester is not significantly colored.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式(C1)中、R1~R4はそれぞれ独立に、水素原子、炭素数1~4のアルキル基、ヒドロキシメチル基、シアノ基、炭素数1~4のシアノアルキル基、炭素数1~4のシアノアルコキシ基、カルボキシル基、アミノ基、炭素数1~4のアミノアルキル基、炭素数1~4のアミノアルコキシ基、フェニル基、ベンジル基、フェニルプロピル基及びフォルミル基から選ばれる基を表す。)
 前記式(C1)で表されるイミダゾール化合物を具体的に例示すると、例えば、イミダゾール、1-メチルイミダゾール、2-メチルイミダゾール、4-メチルイミダゾール、1-エチルイミダゾール、2-エチルイミダゾール、4-エチルイミダゾール、1,2ジメチルイミダゾール、1,4-ジメチルイミダゾール、2,4-ジメチルイミダゾール、1-メチル-2-エチルイミダゾール、1-メチル-4-エチルイミダゾール、1-エチル-2-メチルイミダゾール、1-エチル-2-エチルイミダゾール、1-エチル-2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、4-シアノエチル-2-エチル-4-メチルイミダゾール、1-アミノエチル-2-メチルイミダゾールなどであり、これらは1種を単独で使用する他、2種以上を併用することもできる。なかでも好ましいイミダゾール化合物は、R1が炭素数1~4のアルキル基であり、R2、R3及びR4がいずれも水素原子のものである。特に、入手の容易性の点で、1-メチルイミダゾール及び/又は2-メチルイミダゾールの使用が好ましい。
(In the formula (C1), R 1 to R 4 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxymethyl group, a cyano group, a cyanoalkyl group having 1 to 4 carbon atoms, 4 represents a group selected from a cyanoalkoxy group, a carboxyl group, an amino group, an aminoalkyl group having 1 to 4 carbon atoms, an aminoalkoxy group having 1 to 4 carbon atoms, a phenyl group, a benzyl group, a phenylpropyl group, and a formyl group. .)
Specific examples of the imidazole compound represented by the formula (C1) include, for example, imidazole, 1-methylimidazole, 2-methylimidazole, 4-methylimidazole, 1-ethylimidazole, 2-ethylimidazole, 4-ethyl. Imidazole, 1,2 dimethylimidazole, 1,4-dimethylimidazole, 2,4-dimethylimidazole, 1-methyl-2-ethylimidazole, 1-methyl-4-ethylimidazole, 1-ethyl-2-methylimidazole, 1 -Ethyl-2-ethylimidazole, 1-ethyl-2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1-benzyl-2-methyl Imidazole, 2-pheny 4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 4-cyanoethyl-2-ethyl-4-methylimidazole, 1-aminoethyl-2-methylimidazole, etc. These can be used alone or in combination of two or more. Particularly preferred imidazole compounds are those in which R 1 is an alkyl group having 1 to 4 carbon atoms, and R 2 , R 3 and R 4 are all hydrogen atoms. In particular, use of 1-methylimidazole and / or 2-methylimidazole is preferable from the viewpoint of availability.
 上記のエステル交換/重縮合反応において、アシル化物のアシル基と、芳香族ジカルボン酸及び/又は芳香族ヒドロキシカルボン酸のカルボキシル基の当量比によって、得られる液晶性ポリエステルの分子量をコントロールすることができるものであり、実用的な分子量の液晶性ポリエステルを得るには、重合反応に供するアシル化物のアシル基当量数と、芳香族ジカルボン酸及び/又は芳香族ヒドロキシカルボン酸のカルボキシル基当量数が、[アシル基当量数]/[カルボキシル基当量数]で表して、0.8~1.2となるように設定するのが好ましい。 In the transesterification / polycondensation reaction, the molecular weight of the resulting liquid crystalline polyester can be controlled by the equivalent ratio of the acyl group of the acylated product to the carboxyl group of the aromatic dicarboxylic acid and / or aromatic hydroxycarboxylic acid. In order to obtain a liquid crystalline polyester having a practical molecular weight, the acyl group equivalent number of the acylated product subjected to the polymerization reaction and the carboxyl group equivalent number of the aromatic dicarboxylic acid and / or aromatic hydroxycarboxylic acid are [ The ratio is preferably set to 0.8 to 1.2, expressed as [acyl group equivalent number] / [carboxyl group equivalent number].
 尚、前記のとおり液晶性ポリエステルの重合反応は2段階で行うことが好ましく、第1段階重合(主としてエステル交換反応が進行する段階)においては、重合温度が250~400℃、好ましくは150~350℃の範囲で行うことが好ましい。なお、前記アシル化反応と第1段階重合を同一の反応器で行う場合は、アシル化反応の反応温度から第1段階重合の反応温度まで昇温するようにすればよい。昇温速度は0.5~50℃/分が好ましく、1~10℃/分がより好ましい。 As mentioned above, the polymerization reaction of the liquid crystalline polyester is preferably carried out in two stages. In the first stage polymerization (mainly the stage in which the transesterification proceeds), the polymerization temperature is 250 to 400 ° C., preferably 150 to 350. It is preferable to carry out in the range of ° C. When the acylation reaction and the first stage polymerization are carried out in the same reactor, the temperature may be raised from the reaction temperature of the acylation reaction to the reaction temperature of the first stage polymerization. The heating rate is preferably 0.5 to 50 ° C./min, more preferably 1 to 10 ° C./min.
 アシル化物としては、重合する前の出発原料として、予めアシル化された芳香族ジオール及び/又は芳香族ヒドロキシカルボン酸を用いてもよい。ただし、原料の入手性といった観点からは、重合反応と同一の反応器内で芳香族ジオール及び芳香族ヒドロキシカルボン酸のフェノール性水酸基を脂肪酸無水物でアシル化することによって得られるアシル化物を用いることが好ましい。 As the acylated product, an aromatic diol and / or aromatic hydroxycarboxylic acid that has been acylated in advance may be used as a starting material before polymerization. However, from the viewpoint of availability of raw materials, use an acylated product obtained by acylating the phenolic hydroxyl group of aromatic diol and aromatic hydroxycarboxylic acid with fatty acid anhydride in the same reactor as the polymerization reaction. Is preferred.
 この場合には、アシル化物を得る際の脂肪酸無水物の量は、芳香族ジオール及び芳香族ヒドロキシカルボン酸のフェノール性水酸基の当量数合計に対して、1.0~1.2当量倍が好ましく、1.05~1.1当量倍がさらに好ましい。脂肪酸無水物の量が、フェノール性水酸基の当量数で1.0未満の場合には、アシル化時の平衡のずれによって液晶性ポリエステルへの重合時に原料の昇華を生じる恐れがあり、また反応系が閉塞されやすい。一方、脂肪酸無水物の量が、フェノール性水酸基の当量数で1.2倍を超える場合は、得られる液晶性ポリエステルの着色が問題になる恐れがある。アシル化物を得るアシル化反応の条件は、130~180℃、30分~20時間であり、より好ましくは140~160℃、1~5時間である。 In this case, the amount of the fatty acid anhydride in obtaining the acylated product is preferably 1.0 to 1.2 equivalent times the total number of equivalents of the phenolic hydroxyl group of the aromatic diol and aromatic hydroxycarboxylic acid. 1.05-1.1 equivalent times is more preferable. When the amount of the fatty acid anhydride is less than 1.0 in terms of the number of equivalents of the phenolic hydroxyl group, the raw material may be sublimated during polymerization to a liquid crystalline polyester due to a shift in equilibrium during acylation, and the reaction system Is prone to obstruction. On the other hand, when the amount of the fatty acid anhydride exceeds 1.2 times in terms of the number of equivalents of the phenolic hydroxyl group, coloring of the obtained liquid crystalline polyester may be a problem. The conditions for the acylation reaction to obtain an acylated product are 130 to 180 ° C. and 30 minutes to 20 hours, more preferably 140 to 160 ° C. and 1 to 5 hours.
 尚、平衡のずれを利用してアシル基とカルボキシル基のエステル交換反応を促進するために、副生する脂肪酸と未反応の脂肪酸無水物を蒸発させて反応系から除去することが好ましい。また、留出する脂肪酸の一部を反応器に還流させる場合は、蒸発または昇華した原料成分を、凝縮または逆昇華現象により、還流する脂肪酸といっしょに反応器に戻すことができる。 In order to accelerate the transesterification reaction between the acyl group and the carboxyl group by utilizing the deviation of equilibrium, it is preferable to evaporate and remove the by-product fatty acid and the unreacted fatty acid anhydride from the reaction system. When part of the distilled fatty acid is refluxed to the reactor, the raw material components evaporated or sublimated can be returned to the reactor together with the refluxed fatty acid by condensation or reverse sublimation.
 前記の第1段階重合に次いで第2段階重合を行う。第1段階重合で得られた比較的分子量の低いポリマー(以下、「プレポリマー」と呼ぶ)を冷却し、好ましくは室温程度まで冷却して固形物とした後、得られた固形物を粉砕する等して、パウダー状、フレーク状等の粉末状に加工する。ここで、「粉末状」とは平均粒径が1mm以下の粉末であることを意味し、好ましくは平均粒径0.1~1mmの粉末である。第2段階重合は、このようにして粉末状に加工されたプレポリマーを、重合温度200~350℃で重合させるものである。尚、この第2段階重合は段階的に昇温させながら行ってもよく、具体的には、第1段階重合での重合温度よりも低い温度まで、0.5~2時間程度で昇温し、次いで最終重合温度(200~350℃)まで1~10時間かけて昇温させた後、最終重合温度を保持したまま重合を行う。このようにすると、プレポリマーが高分子量化して液晶性ポリエステルが形成されるものである。第2段階重合の重合条件によって、得られる液晶性ポリエステルの分子量をコントロールすることができるものであり、重合条件の制御で所望の分子量を有する液晶性ポリエステルを製造することができるものである。 Next to the first stage polymerization, the second stage polymerization is performed. The polymer having a relatively low molecular weight (hereinafter referred to as “prepolymer”) obtained by the first stage polymerization is cooled, preferably cooled to about room temperature to form a solid, and then the obtained solid is pulverized. Etc. to be processed into powder such as powder or flake. Here, “powder” means a powder having an average particle diameter of 1 mm or less, preferably a powder having an average particle diameter of 0.1 to 1 mm. In the second stage polymerization, the prepolymer thus processed into a powder is polymerized at a polymerization temperature of 200 to 350 ° C. The second stage polymerization may be carried out while raising the temperature stepwise. Specifically, the temperature is raised in about 0.5 to 2 hours to a temperature lower than the polymerization temperature in the first stage polymerization. Then, after raising the temperature to the final polymerization temperature (200 to 350 ° C.) over 1 to 10 hours, polymerization is carried out while maintaining the final polymerization temperature. If it does in this way, a prepolymer will become high molecular weight and liquid crystalline polyester will be formed. The molecular weight of the obtained liquid crystalline polyester can be controlled by the polymerization conditions of the second stage polymerization, and a liquid crystalline polyester having a desired molecular weight can be produced by controlling the polymerization conditions.
 上記のように第1段階重合は溶融重合で、第2段階重合は固相重合で行なわれるものであり、一般に液晶性ポリエステルは、高分子量であるほど、荷重たわみ温度が高くなる傾向があるので、本発明に適用する第1の液晶性ポリエステル及び第2の液晶性ポリエステルを製造する際には、固相重合である第2段階重合の重合条件によって、それぞれ所望の荷重たわみ温度を有する液晶性ポリエステルを得ることができる。 As described above, the first stage polymerization is carried out by melt polymerization and the second stage polymerization is carried out by solid phase polymerization. In general, the higher the molecular weight of the liquid crystalline polyester, the higher the deflection temperature under load tends to increase. When the first liquid crystalline polyester and the second liquid crystalline polyester to be applied to the present invention are produced, liquid crystallinity having a desired load deflection temperature depending on the polymerization conditions of the second stage polymerization which is solid phase polymerization. Polyester can be obtained.
 また、前記重合反応において、好適な触媒として記した式(C1)で表されるイミダゾール化合物を添加する場合、その添加量は、重合反応に供した芳香族ジカルボン酸、芳香族ジオール及び芳香族ヒドロキシカルボン酸の合計質量を100質量部としたとき、0.005~1質量部であることが好ましい。得られる液晶性ポリエステルの色調および生産性の点から、その添加量は0.05~0.5質量部であることがさらに好ましい。添加量が、この範囲であると、液晶性ポリエステルの重合反応がより容易になることに加え、後述する金属被膜樹脂成形品を得る際に、より基体の表面と金属被膜との密着性を向上することができる。このような密着性の向上効果が発現される理由は必ずしも明らかではなく、本発明者等の独自の知見に基づくものである。なお、イミダゾール化合物の添加タイミングは、エステル交換時にイミダゾール化合物が反応系に存在することを条件とするものではなく、液晶性ポリエステルを構成する各種モノマーと同時に仕込んで重合させてもよく、重合の途中段階に仕込む方法でもよく、前記第1段階重合と前記第2段階重合の間に仕込む方法でもよい。 Moreover, in the said polymerization reaction, when adding the imidazole compound represented by Formula (C1) described as a suitable catalyst, the addition amount is the aromatic dicarboxylic acid, aromatic diol, and aromatic hydroxy which were used for polymerization reaction. When the total mass of the carboxylic acid is 100 parts by mass, it is preferably 0.005 to 1 part by mass. From the viewpoint of color tone and productivity of the obtained liquid crystalline polyester, the addition amount is more preferably 0.05 to 0.5 parts by mass. When the addition amount is within this range, the polymerization reaction of the liquid crystalline polyester becomes easier, and the adhesion between the surface of the substrate and the metal film is further improved when obtaining a metal film resin molded product to be described later. can do. The reason why such an effect of improving adhesion is manifested is not necessarily clear, but is based on the inventors' original knowledge. The timing of addition of the imidazole compound is not a condition that the imidazole compound is present in the reaction system at the time of transesterification, and it may be charged simultaneously with various monomers constituting the liquid crystalline polyester and polymerized. It may be a method of charging in a stage, or a method of charging between the first stage polymerization and the second stage polymerization.
 上記のように液晶性ポリエステルを得る重合反応において、前記イミダゾール化合物が触媒として特に有用であるが、必要に応じて、他の触媒を使用してもよい。この他の触媒としては、酸化ゲルマニウムのようなゲルマニウム化合物、蓚酸第一スズ、酢酸第一スズ、ジアルキルスズ酸化物、ジアリールスズ酸化物のようなスズ化合物、二酸化チタン、チタンアルコキシド、アルコキシチタンケイ酸類のようなチタン化合物、三酸化アンチモンのようなアンチモン化合物、酢酸ナトリウム、酢酸カリウム、酢酸カルシウム、酢酸亜鉛、酢酸第一鉄のような有機酸の金属塩、トリフッ化ホウ素や、塩化アルミニウムのようなルイス酸類、アミン類、アミド類、塩酸、硫酸等の無機酸が挙げられる。ただし、液晶性ポリエステルを得る重合方法に係る触媒として、金属分を含むものを用いると、得られる基体の電気特性を損なうこともあるので、金属分を含む触媒を使用する場合には、得られる基体の特性等を勘案して、その種類、使用量を決定することが好ましい。 In the polymerization reaction for obtaining a liquid crystalline polyester as described above, the imidazole compound is particularly useful as a catalyst, but other catalysts may be used as necessary. Other catalysts include germanium compounds such as germanium oxide, stannous oxalate, stannous acetate, dialkyl tin oxide, tin compounds such as diaryl tin oxide, titanium dioxide, titanium alkoxide, alkoxy titanium silicates. Titanium compounds such as antimony compounds such as antimony trioxide, metal salts of organic acids such as sodium acetate, potassium acetate, calcium acetate, zinc acetate, ferrous acetate, boron trifluoride and aluminum chloride Examples include inorganic acids such as Lewis acids, amines, amides, hydrochloric acid, sulfuric acid and the like. However, if a catalyst containing a metal component is used as a catalyst for the polymerization method for obtaining a liquid crystalline polyester, the electrical properties of the resulting substrate may be impaired. It is preferable to determine the type and amount of use in consideration of the characteristics of the substrate.
 上述したように、液晶性ポリエステルの製造方法において、アシル化物のアシル基と、芳香族ジカルボン酸及び/又は芳香族ヒドロキシカルボン酸のカルボキシル基の当量比の調整、重合条件の調整、触媒の添加等により、得られる液晶性ポリエステルの分子量をコントロールすることが可能であり、得られる液晶性ポリエステルの荷重たわみ温度を適宜調整することができる。なお、液晶性ポリエステルの分子量をコントロールして、所望の荷重たわみ温度を得る場合、得られる基体の耐熱性の観点からは、分子量は重量平均分子量で表して、10000~50000の範囲内であることが好ましい。 As described above, in the method for producing a liquid crystalline polyester, adjustment of the equivalent ratio of the acyl group of the acylated product and the carboxyl group of the aromatic dicarboxylic acid and / or aromatic hydroxycarboxylic acid, adjustment of the polymerization conditions, addition of a catalyst, etc. Thus, the molecular weight of the obtained liquid crystalline polyester can be controlled, and the deflection temperature under load of the obtained liquid crystalline polyester can be appropriately adjusted. In the case of obtaining a desired load deflection temperature by controlling the molecular weight of the liquid crystalline polyester, from the viewpoint of the heat resistance of the obtained substrate, the molecular weight is in the range of 10,000 to 50,000 in terms of weight average molecular weight. Is preferred.
 本発明の液晶性ポリエステルにおいて、荷重たわみ温度をコントロールする手段としては、上記のような分子量の調整に加えて、液晶性ポリエステルを構成するモノマー単位を種々最適化することによって、荷重たわみ温度をコントロールする方法も有用である。以下、上記した芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオールの各モノマーについて説明する。 In the liquid crystalline polyester of the present invention, as a means of controlling the deflection temperature under load, in addition to the adjustment of the molecular weight as described above, the deflection unit temperature is controlled by optimizing various monomer units constituting the liquid crystalline polyester. It is also useful to do so. Hereinafter, each monomer of the above-mentioned aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid, and aromatic diol will be described.
 芳香族ジオールとしては、例えば、4,4’-ジヒドロキシビフェニル、ハイドロキノン、レゾルシン、メチルハイドロキノン、クロロハイドロキノン、アセトキシハイドロキノン、ニトロハイドロキノン、カテコール、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-クロロフェニル)プロパン、ビス-(4-ヒドロキシフェニル)メタン、ビス-(4-ヒドロキシ-3,5-ジメチルフェニル)メタン、ビス(4-ヒドロキシ-3,5-ジクロロフェニル)メタン、ビス-(4-ヒドロキシ-3,5-ジブロモフェニル)メタン、ビス-(4-ヒドロキシ-3-メチルフェニル)メタン、ビス-(4-ヒドロキシ-3-クロロフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、ビス-(4-ヒドロキシフェニル)ケトン、ビス-(4ヒドロキシ-3,5-ジメチルフェニル)ケトン、ビス-(4-ヒドロキシ-3,5-ジクロロフェニル)ケトン、ビス-(4-ヒドロキシフェニル)スルフィド、ビス-(4ヒドロキシフェニル)スルホンを挙げることができる。これらから選ばれる芳香族ジオールを単独で使用してもよく、2種以上を組み合わせて使用してもよい。そしてこれらの中でも、4,4’-ジヒドロキシビフェニル、ハイドロキノン、レゾルシン、2,6-ジヒドロキシナフタレン、2,2-ビス(4-ヒドロキシフェニル)プロパン、ビス-(4ヒドロキシフェニル)スルホンの使用が、入手の容易性の点で好ましい。 Examples of the aromatic diol include 4,4′-dihydroxybiphenyl, hydroquinone, resorcin, methylhydroquinone, chlorohydroquinone, acetoxyhydroquinone, nitrohydroquinone, catechol, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1, 6-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3 , 5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4 -Hydroxy-3- Lorophenyl) propane, bis- (4-hydroxyphenyl) methane, bis- (4-hydroxy-3,5-dimethylphenyl) methane, bis (4-hydroxy-3,5-dichlorophenyl) methane, bis- (4-hydroxy) -3,5-dibromophenyl) methane, bis- (4-hydroxy-3-methylphenyl) methane, bis- (4-hydroxy-3-chlorophenyl) methane, 1,1-bis (4-hydroxyphenyl) cyclohexane, Bis- (4-hydroxyphenyl) ketone, bis- (4hydroxy-3,5-dimethylphenyl) ketone, bis- (4-hydroxy-3,5-dichlorophenyl) ketone, bis- (4-hydroxyphenyl) sulfide, Mention may be made of bis- (4hydroxyphenyl) sulfone. An aromatic diol selected from these may be used alone, or two or more kinds may be used in combination. Among these, the use of 4,4′-dihydroxybiphenyl, hydroquinone, resorcin, 2,6-dihydroxynaphthalene, 2,2-bis (4-hydroxyphenyl) propane, and bis- (4hydroxyphenyl) sulfone is available. It is preferable in terms of easiness.
 また芳香族ヒドロキシカルボン酸としては、例えば、パラヒドロキシ安息香酸、メタヒドロキシ安息香酸、2-ヒドロキシ-6-ナフトエ酸、2-ヒドロキシ-3-ナフトエ酸、1-ヒドロキシ-4-ナフトエ酸、3-ヒドロキシ-2-ナフトエ酸、4-ヒドロキシ-4’-カルボキシジフェニルエーテル、2,6-ジクロロ-パラヒドロキシ安息香酸、2-クロロ-パラヒドロキシ安息香酸、2,6-ジフルオロ-パラヒドロキシ安息香酸、4-ヒドロキシ-4’-ビフェニルカルボン酸を挙げることができる。これらから選ばれる芳香族ヒドロキシカルボン酸を単独で使用してもよく、2種以上を組み合わせて使用してもよい。そしてこれらの中でも、パラヒドロキシ安息香酸、2-ヒドロキシ-6-ナフ
トエ酸の使用が入手の容易性の点で好ましい。
Examples of the aromatic hydroxycarboxylic acid include parahydroxybenzoic acid, metahydroxybenzoic acid, 2-hydroxy-6-naphthoic acid, 2-hydroxy-3-naphthoic acid, 1-hydroxy-4-naphthoic acid, 3-hydroxy Hydroxy-2-naphthoic acid, 4-hydroxy-4′-carboxydiphenyl ether, 2,6-dichloro-parahydroxybenzoic acid, 2-chloro-parahydroxybenzoic acid, 2,6-difluoro-parahydroxybenzoic acid, 4- Mention may be made of hydroxy-4'-biphenylcarboxylic acid. Aromatic hydroxycarboxylic acids selected from these may be used alone or in combination of two or more. Among these, the use of parahydroxybenzoic acid and 2-hydroxy-6-naphthoic acid is preferable from the viewpoint of easy availability.
 なお、第1の液晶性ポリエステル及び第2の液晶性ポリエステルにおいて、実用的な液晶性を得る観点からは、下記式(2)で表される、パラヒドロキシ安息香酸から誘導されるモノマー単位を、液晶性ポリエステルを構成するモノマー単位の合計に対して少なくとも30モル%含むことが好ましい。 In the first liquid crystalline polyester and the second liquid crystalline polyester, from the viewpoint of obtaining practical liquid crystallinity, a monomer unit represented by the following formula (2), derived from parahydroxybenzoic acid, It is preferable to contain at least 30 mol% with respect to the total of monomer units constituting the liquid crystalline polyester.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 さらに芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、フタル酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸、メチルテレフタル酸、メチルイソフタル酸、ジフェニルエーテル-4,4’-ジカルボン酸、ジフェニルスルホン-4,4’-ジカルボン酸、ジフェニルケトン-4,4’-ジカルボン酸、2,2’-ジフェニルプロパン-4,4’-ジカルボン酸を挙げることができる。これらから選ばれる芳香族ジカルボン酸を単独で使用してもよく、2種以上を組み合わせて使用してもよい。そしてこれらの中でも、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸の使用が入手の容易性の点で好ましい。 Further, examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, phthalic acid, 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and 4,4′-biphenyldicarboxylic acid. Acid, methyl terephthalic acid, methyl isophthalic acid, diphenyl ether-4,4'-dicarboxylic acid, diphenyl sulfone-4,4'-dicarboxylic acid, diphenyl ketone-4,4'-dicarboxylic acid, 2,2'-diphenylpropane- Mention may be made of 4,4′-dicarboxylic acid. Aromatic dicarboxylic acids selected from these may be used alone or in combination of two or more. Of these, use of terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid is preferable from the viewpoint of availability.
 そして本発明における成分Aの第1の液晶性ポリエステルに適用するモノマーとしては、4,4’-ジヒドロキシビフェニル、ハイドロキノン、レゾルシン、2,6-ジヒドロキシナフタレン、2,2-ビス(4-ヒドロキシフェニル)プロパン、ビス-(4-ヒドロキシフェニル)スルホンから選ばれる芳香族ジオールと、パラヒドロキシ安息香酸、2-ヒドロキシ-6-ナフトエ酸から選ばれる芳香族ヒドロキシカルボン酸と、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸から選ばれる芳香族ジカルボン酸を用いる組み合わせが、原料の入手の容易性の点で好ましい。 The monomers applied to the first liquid crystalline polyester of component A in the present invention include 4,4′-dihydroxybiphenyl, hydroquinone, resorcin, 2,6-dihydroxynaphthalene, 2,2-bis (4-hydroxyphenyl) An aromatic diol selected from propane and bis- (4-hydroxyphenyl) sulfone, an aromatic hydroxycarboxylic acid selected from parahydroxybenzoic acid and 2-hydroxy-6-naphthoic acid, terephthalic acid, isophthalic acid, 2, A combination using an aromatic dicarboxylic acid selected from 6-naphthalenedicarboxylic acid is preferable from the viewpoint of easy availability of raw materials.
 特に、第1の液晶性ポリエステルとしては、全モノマー単位の合計に対して、芳香族ヒドロキシカルボン酸に由来するモノマー単位を30~80モル%、芳香族ジオールに由来するモノマー単位を10~35モル%、芳香族ジカルボン酸に由来するモノマー単位を10~35モル%有するものが好ましい。かかるモノマー単位からなる第1の液晶性ポリエステルは、荷重たわみ温度が上述した200℃以上の範囲となり易いものであり、このような第1の液晶性ポリエステルは、各モノマーをこれらの割合で配合して重合させることにより得ることができる。 In particular, the first liquid crystalline polyester includes 30 to 80 mol% of monomer units derived from aromatic hydroxycarboxylic acid and 10 to 35 mol of monomer units derived from aromatic diol based on the total of all monomer units. %, And those having 10 to 35 mol% of monomer units derived from aromatic dicarboxylic acid are preferred. The first liquid crystalline polyester composed of such monomer units is likely to have a deflection temperature under load of 200 ° C. or higher as described above. Such a first liquid crystalline polyester is prepared by blending each monomer in these proportions. Can be obtained by polymerization.
 また、第1の液晶性ポリエステルは流動開始温度が270℃以上であることが好ましい。第1の液晶性ポリエステルの流動開始温度が270℃以上であることによって、耐熱性が良好な基体を得ることができるものである。流動開始温度の上限は特に設定されないが、実用的には350℃程度が上限である。 The first liquid crystalline polyester preferably has a flow start temperature of 270 ° C. or higher. When the flow start temperature of the first liquid crystalline polyester is 270 ° C. or higher, a substrate having good heat resistance can be obtained. The upper limit of the flow start temperature is not particularly set, but practically about 350 ° C. is the upper limit.
 この流動開始温度は下記の方法で求められたものである。なお、下記の流動開始温度測定法は、当該分野で周知の液晶性ポリエステルの分子量を表す指標である(例えば、小出直之編、「液晶ポリマー-合成・成形・応用-」、95~105頁、シーエムシー、1987年6月5日発行を参照)。 This flow start temperature is obtained by the following method. The following flow initiation temperature measurement method is an index representing the molecular weight of liquid crystalline polyesters well known in the art (for example, Naoyuki Koide, “Liquid Crystal Polymer—Synthesis / Molding / Application—”, pages 95 to 105). CMC, published June 5, 1987).
 (流動開始温度測定法)
 内径1mm、長さ10mmのノズルをもつ毛細管レオメータを用い、980N/cm2(100kgf/cm2)の荷重下において、4℃/分の昇温速度で加熱溶融体をノズルから押し出す時に、溶融粘度が48000ポイズを示す温度を測定し、これを流動開始温度とする。JISにおける関連規格は、JIS K6719(1977)である。
(Flow start temperature measurement method)
Using a capillary rheometer having a nozzle with an inner diameter of 1 mm and a length of 10 mm, the melt viscosity is increased when the heated melt is extruded from the nozzle at a heating rate of 4 ° C./min under a load of 980 N / cm 2 (100 kgf / cm 2 ). Is measured at 48000 poise, and this is taken as the flow start temperature. A related standard in JIS is JIS K6719 (1977).
 そして液晶性ポリエステルの荷重たわみ温度を低減させるためには、液晶性ポリエステルの剛直性を低下させるモノマー単位を導入する方法が有効である。ここで、液晶性ポリエステルの剛直性を低下させるとは、液晶性ポリエステルの主鎖に屈曲性を与えるモノマー単位(以下、「屈曲性モノマー単位」と呼ぶ)を導入することであり、液晶性ポリエステルの主鎖に屈曲性を与えることによって、荷重たわみ温度を低減させることができるものである。この屈曲性モノマーとしては具体的には、1,2-フェニレン基骨格を有するモノマー単位、1,3-フェニレン基骨格を有するモノマー単位、2,3-ナフタレン基骨格を有するモノマー単位が挙げられる。好ましい1,3-フェニレン基骨格を有するモノマー単位は、レゾルシン又はイソフタル酸から誘導されるモノマー単位であり、好ましい1,2-フェニレン基骨格を有するモノマー単位は、カテコール、フタル酸から誘導されるモノマー単位であり、好ましい2,3-ナフタレン基骨格を有するモノマー単位は、2,3-ジヒドロキシナフタレン、2,3-ナフタレンジカルボン酸、2-ヒドロキシ-3-ナフトエ酸、3-ヒドロキシ-2-ナフトエ酸から誘導されるモノマー単位であり、このように屈曲性モノマー単位としては、芳香族ジオール又は芳香族ジカルボン酸、芳香族ヒドロキシカルボン酸が好ましい。 In order to reduce the deflection temperature under load of the liquid crystalline polyester, it is effective to introduce a monomer unit that reduces the rigidity of the liquid crystalline polyester. Here, reducing the rigidity of the liquid crystalline polyester means introducing a monomer unit that imparts flexibility to the main chain of the liquid crystalline polyester (hereinafter referred to as “flexible monomer unit”). By imparting flexibility to the main chain, the deflection temperature under load can be reduced. Specific examples of the flexible monomer include a monomer unit having a 1,2-phenylene group skeleton, a monomer unit having a 1,3-phenylene group skeleton, and a monomer unit having a 2,3-naphthalene group skeleton. Preferred monomer units having a 1,3-phenylene group skeleton are monomer units derived from resorcin or isophthalic acid, and preferred monomer units having a 1,2-phenylene group skeleton are monomers derived from catechol and phthalic acid. Preferred monomer units having a 2,3-naphthalene group skeleton are 2,3-dihydroxynaphthalene, 2,3-naphthalenedicarboxylic acid, 2-hydroxy-3-naphthoic acid, and 3-hydroxy-2-naphthoic acid. Thus, the flexible monomer unit is preferably an aromatic diol, an aromatic dicarboxylic acid, or an aromatic hydroxycarboxylic acid.
 このとき、第1の液晶性ポリエステルについては、液晶性ポリマーを構成するモノマー単位において、屈曲性モノマー単位が少ないほど、200℃以上の高い荷重たわみ温度が得られる傾向があるので、第1の液晶性ポリエステルを構成するモノマー単位の合計に対して、屈曲性モノマー単位は10モル%未満が好ましく、8モル%以下がより好ましく、6モル%以下が特に好ましい。 At this time, the first liquid crystal polyester has a tendency that, as the number of flexible monomer units in the monomer units constituting the liquid crystal polymer is smaller, a higher deflection temperature under load of 200 ° C. tends to be obtained. The flexible monomer unit is preferably less than 10 mol%, more preferably 8 mol% or less, and particularly preferably 6 mol% or less with respect to the total of the monomer units constituting the flexible polyester.
 一方、第2の液晶性ポリエステルについては、屈曲性モノマー単位の含有量を、第1の液晶性ポリエステルよりも多くすることによって、第2の液晶性ポリエステルの荷重たわみ温度を第1の液晶性ポリエステルの荷重たわみ温度より低くすることができる。具体的には、第2の液晶性ポリエステルを構成するモノマー単位の合計に対して、屈曲性モノマー単位が10モル%以上であることが好ましく、12.5モル%以上であることがより好ましく、15モル%以上であることが特に好ましい。ただし、第2の液晶性ポリエステルの実用的な耐熱性を確保する観点からは、第2の液晶性ポリエステルを構成するモノマー単位の合計に対して、屈曲性モノマー単位は45モル%以下が好ましく、40モル%以下がより好ましい。 On the other hand, with respect to the second liquid crystalline polyester, the deflection temperature under load of the second liquid crystalline polyester is increased by making the content of the flexible monomer unit higher than that of the first liquid crystalline polyester. The deflection temperature under load can be made lower. Specifically, the flexible monomer unit is preferably 10 mol% or more, more preferably 12.5 mol% or more, based on the total of the monomer units constituting the second liquid crystalline polyester. It is particularly preferably 15 mol% or more. However, from the viewpoint of ensuring the practical heat resistance of the second liquid crystalline polyester, the flexible monomer unit is preferably 45 mol% or less with respect to the total of the monomer units constituting the second liquid crystalline polyester, 40 mol% or less is more preferable.
 上述のように、本発明に適用する成分Aを構成する第1の液晶性ポリエステル及び成分Bを構成する第2の液晶性ポリエステルは、液晶性ポリエステルの分子量コントロールや液晶性ポリエステルを構成するモノマー単位を変更することによって、種々の組合せで得ることができるものである。 As described above, the first liquid crystalline polyester constituting the component A applied to the present invention and the second liquid crystalline polyester constituting the component B are monomer units constituting the molecular weight control of the liquid crystalline polyester and the liquid crystalline polyester. Can be obtained in various combinations.
 本発明で用いる樹脂組成物において、液晶性ポリエステルとして配合される成分Aの第1の液晶性ポリエステルと成分Bの第2の液晶性ポリエステルの含有率は、成分Aと成分Bの合計質量を100質量%としたとき、成分Bが1~50質量%であることが好ましい。また本発明の樹脂組成物から得られる基体や、基体に金属被膜を被覆した金属被覆樹脂成形品に関して、より高水準の機械的強度、耐熱性を維持する観点から、より好ましくは成分Bが1~30質量%の範囲である。例えば250℃のリフローに耐える基体を成形する場合には、成分Bを1~30質量%の範囲に設定するのが好ましい。 In the resin composition used in the present invention, the content ratio of the first liquid crystalline polyester of component A and the second liquid crystalline polyester of component B blended as liquid crystalline polyester is 100% of the total mass of component A and component B. When the content is mass%, the component B is preferably 1 to 50 mass%. In addition, with respect to a base obtained from the resin composition of the present invention and a metal-coated resin molded article obtained by coating a base with a metal coating, from the viewpoint of maintaining a higher level of mechanical strength and heat resistance, component B is more preferably 1 It is in the range of ˜30% by mass. For example, when molding a substrate that can withstand 250 ° C. reflow, component B is preferably set in the range of 1 to 30% by mass.
 次に、本発明で用いる樹脂組成物の成分Cであるエポキシ基含有エチレン共重合体について説明する。 Next, the epoxy group-containing ethylene copolymer which is component C of the resin composition used in the present invention will be described.
 成分Cのエポキシ基含有エチレン共重合体は、その分子中に、エチレン単位を50~99.9質量%、不飽和カルボン酸グリシジルエステル単位及び/又は不飽和グリシジルエーテル単位を0.1~30質量%含むものである。特に、樹脂組成物から得られる基体の優れた耐熱性および靭性を得るとともに、金属被膜との密着性をさらに高度にするためには、エポキシ基含有エチレン共重合体は、分子中に、エチレン単位を80~98質量%、不飽和カルボン酸グリシジルエステル単位及び/又は不飽和グリシジルエーテル単位を2~15質量%含むことがより好ましい。またこれらの単位の他に、必要に応じて、エチレン系不飽和エステル単位を含んでもよい。この場合は、エチレン系不飽和エステル単位の量は、50質量%未満であることが好ましい。 The epoxy group-containing ethylene copolymer of Component C contains 50 to 99.9% by mass of ethylene units, 0.1 to 30% by mass of unsaturated carboxylic acid glycidyl ester units and / or unsaturated glycidyl ether units in the molecule. % Is included. In particular, in order to obtain excellent heat resistance and toughness of the substrate obtained from the resin composition, and to further enhance the adhesion to the metal film, the epoxy group-containing ethylene copolymer contains ethylene units in the molecule. It is more preferable to contain 80 to 98% by mass of the unsaturated glycidyl ester unit and / or 2 to 15% by mass of the unsaturated glycidyl ether unit. In addition to these units, an ethylenically unsaturated ester unit may be included as necessary. In this case, the amount of the ethylenically unsaturated ester unit is preferably less than 50% by mass.
 上記の不飽和カルボン酸グリシジルエステル単位あるいは不飽和グリシジルエーテル単位を与える化合物としては、それぞれ下記の式(3)、式(4)で表されるものを用いることができる。 As the compound giving the unsaturated carboxylic acid glycidyl ester unit or the unsaturated glycidyl ether unit, those represented by the following formulas (3) and (4) can be used.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(3)中、Rは、エチレン系不飽和結合を有する炭素数2~13の炭化水素基である。) (In the formula (3), R is a hydrocarbon group having 2 to 13 carbon atoms having an ethylenically unsaturated bond.)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(4)中、Rは前記式(3)と同義であり、Xは以下のいずれかである。) (In the formula (4), R has the same meaning as the formula (3), and X is any of the following.)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 具体的に、式(3)で表される化合物としては、グリシジルアクリレート、グリシジルメタクリレート又はイタコン酸グリシジルエステルが挙げられ、式(4)で表される化合物としては、アリルグリシジルエーテル、2-メチルアリルグリシジルエーテル、スチレンp-グリシジルエーテルが挙げられる。 Specifically, examples of the compound represented by the formula (3) include glycidyl acrylate, glycidyl methacrylate, and itaconic acid glycidyl ester. Examples of the compound represented by the formula (4) include allyl glycidyl ether, 2-methylallyl. Examples thereof include glycidyl ether and styrene p-glycidyl ether.
 また上記のエチレン系不飽和エステル単位を誘導する化合物としては、例えば、酢酸ビニル、プロピオン酸ビニル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル等のカルボン酸ビニルエステルやα、β-不飽和カルボン酸アルキルエステルが挙げられる。エチレン系不飽和エステル単位をエポキシ基含有エチレン系共重合体に導入する場合、これらの例示の中でも、酢酸ビニル、アクリル酸メチル、アクリル酸エチルが、とりわけ好ましい。 Examples of the compound that derives the ethylenically unsaturated ester unit include vinyl acetate, vinyl propionate, methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, and butyl methacrylate. Examples include carboxylic acid vinyl esters and α, β-unsaturated carboxylic acid alkyl esters. When introducing an ethylenically unsaturated ester unit into an epoxy group-containing ethylene copolymer, among these examples, vinyl acetate, methyl acrylate, and ethyl acrylate are particularly preferable.
 また、C成分のエポキシ基含有エチレン共重合体として、エチレン、不飽和カルボン酸グリシジルエステル及び/又は不飽和グリシジルエーテルからなる二元系又は三元系共重合体や、任意のモノマーとしてエチレン系不飽和エステルが共重合されてなる三元系もしくはそれ以上の多元系共重合体を使用することができる。 In addition, as an epoxy group-containing ethylene copolymer of component C, a binary or ternary copolymer comprising ethylene, an unsaturated carboxylic acid glycidyl ester and / or an unsaturated glycidyl ether, or an ethylene-based unsaturated copolymer as an optional monomer. A ternary or higher multicomponent copolymer obtained by copolymerization of a saturated ester can be used.
 そしてエポキシ基含有エチレン共重合体は、通常、エチレン単位を与える化合物であるエチレンと、不飽和カルボン酸グリシジルエステル単位及び/又は不飽和グリシジルエーテル単位を与える化合物と、及び必要に応じてエチレン系不飽和エステル単位を与える化合物とを、ラジカル発生剤の存在下、50.7~405.3MPa(500~4000気圧)、100~300℃の条件で、共重合させる方法により製造することができる。かかる共重合反応は、適当な溶媒や連鎖移動剤の存在下で行ってもよい。 The epoxy group-containing ethylene copolymer is usually a compound that gives an ethylene unit, a compound that gives an unsaturated carboxylic acid glycidyl ester unit and / or an unsaturated glycidyl ether unit, and, if necessary, an ethylene-based unsaturated copolymer. A compound that gives a saturated ester unit can be produced by a method of copolymerization in the presence of a radical generator under the conditions of 50.7 to 405.3 MPa (500 to 4000 atm) and 100 to 300 ° C. Such copolymerization reaction may be performed in the presence of a suitable solvent or chain transfer agent.
 好ましいエポキシ基含有エチレン共重合体としては、例えば、エチレン単位とグリシジルメタクリレートから誘導される単位からなる共重合体、エチレン単位とグリシジルメタクリレートから誘導される単位及びグリシジルメチルアクリレートから誘導される単位からなる共重合体、エチレン単位とグリシジルメタクリレートから誘導される単位及びグリシジルエチルアクリレートから誘導される単位からなる共重合体、あるいはエチレン単位とグリシジルメタクリレートから誘導される単位及び酢酸ビニルから誘導される単位からなる共重合体である。特に、エチレン単位とグリシジルメタクリレートから誘導される単位からなる共重合体が成分Cのエポキシ基含有エチレン共重合体として好ましい。 Preferred examples of the epoxy group-containing ethylene copolymer include a copolymer composed of units derived from ethylene units and glycidyl methacrylate, a unit derived from ethylene units and glycidyl methacrylate, and a unit derived from glycidyl methyl acrylate. Copolymer, copolymer consisting of units derived from ethylene units and glycidyl methacrylate and units derived from glycidyl ethyl acrylate, or unit derived from ethylene units and glycidyl methacrylate and units derived from vinyl acetate It is a copolymer. In particular, a copolymer comprising an ethylene unit and a unit derived from glycidyl methacrylate is preferred as the epoxy group-containing ethylene copolymer of Component C.
 また、エポキシ基含有エチレン共重合体は、メルトインデックス(MFR:JIS K7210、測定条件:190℃、2.16kg荷重)が0.5~100g/10分の範囲であることが好ましく、より好ましくは2~50g/10分である。メルトインデックスがこの範囲であるエポキシ基含有エチレン共重合体を含む樹脂組成物から得られる基体は、良好な機械物性が得られるものであり、また成分A及び成分Bの液晶性ポリエステルとエポキシ基含有エチレン共重合体との相溶性が高度に得られるものである。 The epoxy group-containing ethylene copolymer preferably has a melt index (MFR: JIS K7210, measurement conditions: 190 ° C., 2.16 kg load) in the range of 0.5 to 100 g / 10 min, more preferably 2 to 50 g / 10 min. A substrate obtained from a resin composition containing an epoxy group-containing ethylene copolymer having a melt index within this range provides good mechanical properties, and also contains component A and component B liquid crystalline polyesters and an epoxy group. High compatibility with the ethylene copolymer is obtained.
 本発明で用いる樹脂組成物において、成分Cのエポキシ基含有エチレン共重合体の含有量は、成分Aと成分Bの液晶性ポリエステルを合計質量100質量部としたとき、0.1~25質量部の範囲が好ましく、10~20質量部の範囲がより好ましい。エポキシ基含有エチレン共重合体の含有量が0.1質量部未満であると、成形される基体に対する金属被膜の密着性を高める効果が得られない。また含有量が25質量部を超えると、基体の耐熱性が劣化するとともに、樹脂組成物の成形性が顕著に低下する。 In the resin composition used in the present invention, the content of the epoxy group-containing ethylene copolymer of component C is 0.1 to 25 parts by mass when the total mass of liquid crystalline polyesters of component A and component B is 100 parts by mass. The range of 10 to 20 parts by mass is more preferable. If the content of the epoxy group-containing ethylene copolymer is less than 0.1 parts by mass, the effect of improving the adhesion of the metal film to the substrate to be molded cannot be obtained. Moreover, when content exceeds 25 mass parts, while the heat resistance of a base | substrate will deteriorate, the moldability of a resin composition will fall remarkably.
 また、本発明に適用する樹脂組成物においては、得られる基体の機械強度を向上させる観点から、必要に応じて無機フィラーを添加してもよい。例えば、ガラス繊維、炭素繊維のような繊維状無機フィラーを樹脂組成物に添加する場合は、繊維状無機フィラーの配合量は、成分Aと成分Bの液晶性ポリエステルの合計質量を100質量部としたとき、5~500質量部の範囲に設定することが好ましい。繊維状無機フィラーの配合量がこの範囲であると、基体-金属被膜間の密着性を低下させることなく、基体の機械強度を高めることができるものであり、また基体を成形する際に、ウェルドライン領域におけるクラックの発生を効果的に防ぐことができるものである。 In the resin composition applied to the present invention, an inorganic filler may be added as necessary from the viewpoint of improving the mechanical strength of the obtained substrate. For example, when a fibrous inorganic filler such as glass fiber or carbon fiber is added to the resin composition, the blending amount of the fibrous inorganic filler is 100 parts by mass of the total mass of component A and component B liquid crystalline polyester. Then, it is preferably set in the range of 5 to 500 parts by mass. When the blending amount of the fibrous inorganic filler is within this range, the mechanical strength of the substrate can be increased without reducing the adhesion between the substrate and the metal coating. Generation of cracks in the line region can be effectively prevented.
 前記繊維状無機フィラーの形状については、繊維径は6~15μmの範囲内で、アスペクト比は5~50の範囲内であることが好ましい。繊維径が6μm未満であると、樹脂組成物中に無機フィラーを分散させる際や、基体を成形する際に無機フィラーの破損が生じ易く、また樹脂組成物に無機フィラーを均一に分散させることが難しくなる。一方、繊維径が15μmを超えると、無機フィラーの不均一分布のため、基体の機械的特性のバラツキが問題になる恐れがあり、さらに基体の平滑性を損なうことにもなる。この平滑性の低下は、本発明の金属被覆樹脂成形品を回路基板などとして用いる場合に、ワイヤボンディングの信頼性低下の原因になる。また前記繊維状無機フィラーのアスペクト比が5未満であると、ウェルドラインにクラックが生じることを防ぐ効果が低下する。一方、アスペクト比が50を超えると、樹脂組成物の混練時に無機フィラーの損傷が生じ易く、また基体の成形加工性の低下を招く恐れがある。 Regarding the shape of the fibrous inorganic filler, the fiber diameter is preferably in the range of 6 to 15 μm, and the aspect ratio is preferably in the range of 5 to 50. When the fiber diameter is less than 6 μm, the inorganic filler is easily damaged when the inorganic filler is dispersed in the resin composition or when the substrate is molded, and the inorganic filler is uniformly dispersed in the resin composition. It becomes difficult. On the other hand, if the fiber diameter exceeds 15 μm, the uneven distribution of the inorganic filler may cause a problem of variations in the mechanical properties of the substrate, and further impair the smoothness of the substrate. This decrease in smoothness causes a decrease in the reliability of wire bonding when the metal-coated resin molded product of the present invention is used as a circuit board or the like. Moreover, the effect which prevents that a weld line produces a crack falls that the aspect-ratio of the said fibrous inorganic filler is less than 5. On the other hand, when the aspect ratio exceeds 50, the inorganic filler is easily damaged during the kneading of the resin composition, and the moldability of the substrate may be lowered.
 また、基体の線膨脹率を低減するため、無機フィラーとして、ウィスカを樹脂組成物に混合してもよい。ウィスカを含む樹脂組成物から得られる基体は、寸法安定性に優れるとともに、表面強度が改善されたものを得ることができる。基体の表面強度を向上させると、基体-金属被膜間の密着性向上を図れるとともに、本発明の金属被覆樹脂成形品を回路基板として使用した場合において、バンプ接合の信頼性向上に有効的に寄与する。このウィスカとしては、例えば、炭化ケイ素、窒化ケイ素、酸化亜鉛、アルミナ、チタン酸カルシウム、チタン酸カリウム、チタン酸バリウム、ホウ酸アルミニウム、ケイ酸カルシウム、ホウ酸マグネシウム、炭酸カルシウム、マグネシウムオキシサルフェート等からなるウィスカを用いることができる。チタン酸塩ウィスカやホウ酸塩ウィスカを用いる場合は、基体の線膨脹率を低減する効果が極めて高い。また、チタン酸塩ウィスカを用いた場合は、基体-金属被膜間の密着性向上に加えて、基体の誘電正接を低減することができる。 Further, in order to reduce the linear expansion coefficient of the substrate, whiskers may be mixed with the resin composition as an inorganic filler. A substrate obtained from a resin composition containing a whisker can have a superior dimensional stability and an improved surface strength. Improving the surface strength of the substrate can improve the adhesion between the substrate and the metal coating, and when the metal-coated resin molded product of the present invention is used as a circuit board, it effectively contributes to improving the reliability of bump bonding. To do. Examples of the whisker include silicon carbide, silicon nitride, zinc oxide, alumina, calcium titanate, potassium titanate, barium titanate, aluminum borate, calcium silicate, magnesium borate, calcium carbonate, magnesium oxysulfate, and the like. A whisker can be used. When titanate whiskers or borate whiskers are used, the effect of reducing the linear expansion coefficient of the substrate is extremely high. When titanate whiskers are used, the dielectric loss tangent of the substrate can be reduced in addition to improving the adhesion between the substrate and the metal film.
 無機フィラーとして、上記のウィスカのような短繊維状フィラーを用いる場合は、長繊維状フィラーを用いる場合に比べ、基体を成形する際に繊維の配向を抑制することができる。従って、得られる基体は、線膨張率や収縮率に関して異方性が小さい。その結果、基体の反りや変形を低減でき、高い寸法精度を有するものを得ることができる。さらに、この基体は成形時の平面度(初期平面度)に優れると共に、基体の平面度が温度によって変動することを低減できるといった利点もある。 When the short fiber filler such as the above whisker is used as the inorganic filler, the fiber orientation can be suppressed when the substrate is formed, as compared with the case where the long fiber filler is used. Therefore, the obtained base has little anisotropy with respect to the linear expansion coefficient and shrinkage ratio. As a result, warpage and deformation of the substrate can be reduced, and a substrate having high dimensional accuracy can be obtained. Furthermore, the substrate has excellent flatness at the time of molding (initial flatness) and has an advantage that the flatness of the substrate can be reduced from fluctuating with temperature.
 また、基体のより良好な寸法安定性と高強度を得る観点から、タルク、マイカ、ガラスフレーク、モンモリロナイト、スメクタイトなどの板状無機フィラーを使用してもよい。板状無機フィラーは1~80μm、より好ましくは1~50μm平均長さを有するとともに、2~60、より好ましくは10~40の平均アスペクト比(長さ/厚み)を有することが好ましい。また、金属被膜の密着性を低下させることなく、基体の異方性を抑制し、基体の寸法安定性を高める観点から、板状無機フィラーの配合量は、成分Aと成分Bの液晶性ポリエステル100質量部に対して10~40質量部であることが好ましい。 Further, from the viewpoint of obtaining better dimensional stability and high strength of the substrate, a plate-like inorganic filler such as talc, mica, glass flake, montmorillonite, smectite, etc. may be used. The plate-like inorganic filler preferably has an average length of 1 to 80 μm, more preferably 1 to 50 μm, and an average aspect ratio (length / thickness) of 2 to 60, more preferably 10 to 40. Further, from the viewpoint of suppressing the anisotropy of the substrate and improving the dimensional stability of the substrate without reducing the adhesion of the metal coating, the amount of the plate-like inorganic filler is the liquid crystalline polyester of component A and component B. The amount is preferably 10 to 40 parts by mass with respect to 100 parts by mass.
 前記の繊維状無機フィラー、ウィスカ、板状無機フィラーは、それぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、粉末状や針状の無機フィラーを樹脂組成物に添加してもよい。さらに着色剤として、カーボンブラックなどを添加してもよい。 The fibrous inorganic filler, whisker, and plate-like inorganic filler may be used alone or in combination of two or more. A powdery or needle-like inorganic filler may be added to the resin composition. Further, carbon black or the like may be added as a colorant.
 本発明の金属被覆樹脂成形品は、上記したA成分及びB成分の液晶性ポリエステル、エポキシ基含有エチレン共重合体、および必要に応じて無機フィラー等を含有する樹脂組成物を成形して基体を作製し、次いで得られた基体の表面に金属被膜を形成することにより得られる。金属被膜を構成する金属材料は限定されないが、例えば、銅、ニッケル、金、アルミニウム、チタン、モリブデン、クロム、タングステン、スズ、鉛、及び亜鉛からなる群から選ばれる金属、又はこれらの群から選ばれる2種以上の金属からなる合金を使用することができる。また金属被膜を構成する金属材料は、環境に存在する酸素によって部分的に酸化されていてもよい。 The metal-coated resin molded article of the present invention is obtained by molding a resin composition containing the liquid crystalline polyester of the above-described A component and B component, an epoxy group-containing ethylene copolymer, and, if necessary, an inorganic filler, etc. It is obtained by forming and then forming a metal film on the surface of the obtained substrate. The metal material constituting the metal film is not limited, but for example, a metal selected from the group consisting of copper, nickel, gold, aluminum, titanium, molybdenum, chromium, tungsten, tin, lead, and zinc, or selected from these groups An alloy composed of two or more kinds of metals can be used. Moreover, the metal material which comprises a metal film may be partially oxidized with the oxygen which exists in an environment.
 本発明の樹脂組成物から作製される基体の成形プロセスは限定されないが、後述する金属被覆樹脂成形品の熱処理による密着性向上の効果を高めるため、樹脂組成物を、第1の液晶性ポリエステルの流動開始温度より高い温度で混錬することが好ましい。典型的な基体の成形方法としては、例えば、流動開始温度が320℃の第1の液晶性ポリエステルを含む樹脂組成物を、2軸押出機によって340℃で混錬してペレットを作製し、得られたペレットを所望の形状に射出成形することで基体を成形できる。このように一旦造粒してペレットを得る方法は、造粒しない場合に比べ、後述する熱処理の有無にかかわらず、密着性をさらに高める傾向を有する。射出成形により基体を形成する場合、樹脂組成物の溶融粘度はせん断速度1000/sにおいて100~200ポイズであることが好ましい。 Although the molding process of the substrate produced from the resin composition of the present invention is not limited, in order to enhance the effect of improving the adhesion by heat treatment of the metal-coated resin molded article described later, the resin composition is made of the first liquid crystalline polyester. It is preferable to knead at a temperature higher than the flow start temperature. As a typical substrate molding method, for example, a resin composition containing a first liquid crystalline polyester having a flow start temperature of 320 ° C. is kneaded at 340 ° C. by a twin-screw extruder to produce pellets. The substrate can be formed by injection molding the obtained pellets into a desired shape. Thus, the method of granulating once and obtaining a pellet has the tendency to improve adhesiveness compared with the case where it does not granulate irrespective of the presence or absence of the heat processing mentioned later. When the substrate is formed by injection molding, the melt viscosity of the resin composition is preferably 100 to 200 poise at a shear rate of 1000 / s.
 上記のようにして基体を作製した後、金属被膜を形成する際の前処理として、この基体に対して熱処理を施すことが好ましい。この熱処理としては、樹脂組成物に含まれる第1の液晶性ポリエステルの流動開始温度より低い温度による熱処理が好ましく、具体的には、第1の液晶性ポリエステルの流動開始温度をTm1(℃)としたとき、(Tm1-120)℃以上、(Tm1-20)℃以下の温度範囲での熱処理が好ましい。このような熱処理を施すことによって、基体の表面と金属被膜との密着性を一層高めることができるとともに、基体の熱膨張率をさらに低減化することができ、また基体自身の誘電正接を低下させることに対しても効果的である。この熱処理を施して得られる金属被覆樹脂成形品は、高周波特性等に優れた回路基板として好適に使用される。上記の熱処理において、熱処理温度が(Tm1-120)℃を下回ると、密着性の向上効果を十分に得ることができず、また熱処理温度が(Tm1-20)℃を上回ると、基体に反りや変形を生じる恐れがある。なお、熱処理に係る時間は1~4時間の間であることが好ましい。また、このような熱処理を行う場合、基体の酸化劣化を抑制する観点から、窒素ガスなど不活性ガス雰囲気中で行なうのが好ましい。なお、不活性ガス雰囲気において、残留酸素濃度が1体積%以下であることが好ましく、0.5体積%以下であることがより好ましい。 After the substrate is produced as described above, it is preferable to heat-treat the substrate as a pretreatment when forming the metal film. The heat treatment is preferably a heat treatment at a temperature lower than the flow start temperature of the first liquid crystalline polyester contained in the resin composition. Specifically, the flow start temperature of the first liquid crystalline polyester is Tm1 (° C.). In this case, heat treatment in a temperature range of (Tm1-120) ° C. or higher and (Tm1-20) ° C. or lower is preferable. By performing such heat treatment, the adhesion between the surface of the substrate and the metal coating can be further increased, the coefficient of thermal expansion of the substrate can be further reduced, and the dielectric loss tangent of the substrate itself can be reduced. It is also effective against this. The metal-coated resin molded product obtained by performing this heat treatment is suitably used as a circuit board having excellent high frequency characteristics and the like. In the above heat treatment, if the heat treatment temperature is lower than (Tm1-120) ° C., the effect of improving the adhesion cannot be sufficiently obtained, and if the heat treatment temperature exceeds (Tm1-20) ° C., the substrate is warped. There is a risk of deformation. The time for the heat treatment is preferably between 1 and 4 hours. Moreover, when performing such heat processing, it is preferable to carry out in inert gas atmosphere, such as nitrogen gas, from a viewpoint of suppressing the oxidative degradation of a base | substrate. In the inert gas atmosphere, the residual oxygen concentration is preferably 1% by volume or less, and more preferably 0.5% by volume or less.
 また、基体の表面に金属被膜を形成するのに先立って、基体の表面にプラズマ処理を施しておくことが好ましい。なお、上記の熱処理を行う場合は、プラズマ処理は熱処理を施す前でも後でもよいが、熱処理の後に実施するのがより好ましい。樹脂組成物中のエポキシ基含有エチレン共重合体は、反応性の高い官能基を有するので、プラズマ処理を施すことによって基体の表面が効果的に活性化されるものであり、金属被膜との密着性改善に及ぼすプラズマ処理の効果は極めて高いものである。 In addition, it is preferable to perform plasma treatment on the surface of the substrate prior to forming the metal film on the surface of the substrate. In the case of performing the above heat treatment, the plasma treatment may be performed before or after the heat treatment, but is more preferably performed after the heat treatment. Since the epoxy group-containing ethylene copolymer in the resin composition has a highly reactive functional group, the surface of the substrate is effectively activated by applying a plasma treatment, and adhesion to the metal film is achieved. The effect of the plasma treatment on the property improvement is extremely high.
 プラズマ処理は、既存のプラズマ処理装置を用いて行なうことができる。例えば、チャンバー内に対向配置された一対の電極と、電極間に高周波電界を印加するための高周波ユニットを備えたプラズマ処理装置を使用することができる。この場合は、基体を一方の電極上に配置し、チャンバーを10-4Pa程度に減圧する。次いで、チャンバー内に窒素ガスやアンモニアガス等のプラズマ形成ガスをチャンバー内圧が8~15Paになるように導入する。次に、高周波ユニットを用いて電極間に300Wの高周波パワー(13.56MHz)を10~100秒間印加して電極間にプラズマを発生させ、これにより生成したプラズマ中の陽イオンやラジカルが基体表面に衝突して、基体表面を活性化することができる。ここで、基体表面の活性化とは、プラズマ処理中、陽イオンとの衝突によって、金属と結合し易い窒素極性基や酸素極性基が基体表面に形成されることを意味するものであり、後述のように金属被膜を形成するときに、その密着性がさらに向上するものである。 The plasma processing can be performed using an existing plasma processing apparatus. For example, it is possible to use a plasma processing apparatus including a pair of electrodes opposed to each other in the chamber and a high frequency unit for applying a high frequency electric field between the electrodes. In this case, the substrate is placed on one electrode and the chamber is decompressed to about 10 −4 Pa. Next, a plasma forming gas such as nitrogen gas or ammonia gas is introduced into the chamber so that the chamber internal pressure becomes 8 to 15 Pa. Next, using a high frequency unit, 300 W high frequency power (13.56 MHz) is applied between the electrodes for 10 to 100 seconds to generate plasma between the electrodes, and the cations and radicals in the generated plasma are transferred to the substrate surface. The substrate surface can be activated. Here, the activation of the substrate surface means that a nitrogen polar group or an oxygen polar group that easily binds to a metal is formed on the substrate surface by collision with a cation during plasma treatment. Thus, when a metal film is formed, the adhesion is further improved.
 プラズマ処理条件は、樹脂基板の表面がプラズマ処理によって過度に粗面化されない範囲で、任意に設定できる。また、プラズマ形成ガスの種類も限定されないが、窒素を用いるのが好ましい。窒素プラズマを使用する場合は、酸素プラズマ処理を使用する場合に比べ、基体を構成している液晶性ポリエステルのエステル結合の切断による炭酸ガスの脱離を少なくできるものであり、これにより、基体の表面、より具体的には基体の表層部の強度低下を回避することができるものである。 The plasma treatment conditions can be arbitrarily set as long as the surface of the resin substrate is not excessively roughened by the plasma treatment. Moreover, although the kind of plasma forming gas is not limited, it is preferable to use nitrogen. When nitrogen plasma is used, the elimination of carbon dioxide gas due to the cleavage of the ester bond of the liquid crystalline polyester constituting the substrate can be reduced compared to when oxygen plasma treatment is used. It is possible to avoid a decrease in strength of the surface, more specifically, the surface layer portion of the substrate.
 次に、基体の表面に金属被膜を形成する方法について説明する。 Next, a method for forming a metal film on the surface of the substrate will be described.
 金属被膜の形成には、スパッタリング、真空蒸着、イオンプレーティングのような物理蒸着法を用いることが好ましい。なお、金属被膜を形成する前の前処理として、上記のように基体にプラズマ処理を施す場合は、この基体を大気に接触させることなく、プラズマ処理と金属被膜の形成を連続して、同一のチャンバー内で実施することが好ましい。 For the formation of the metal coating, it is preferable to use a physical vapor deposition method such as sputtering, vacuum vapor deposition, or ion plating. As a pretreatment before forming the metal film, when the substrate is subjected to the plasma treatment as described above, the plasma treatment and the formation of the metal film are continuously performed without contacting the substrate with the atmosphere. It is preferable to carry out in a chamber.
 スパッタリングとしてDCスパッタリング法を採用する場合は、例えば、基体を内部に配したチャンバーを10-4Pa以下に減圧し、次いで内圧が0.1Pa程度になるようにアルゴン等の不活性ガスをチャンバー内に導入する。次に、500Vの直流電圧を印加して銅ターゲットをボンバードすることにより、金属被膜として200~500nmの膜厚の銅被膜を、基体の表面上に形成させて金属被覆樹脂成形品を得ることができる。 When the DC sputtering method is employed as sputtering, for example, the chamber in which the substrate is disposed is decompressed to 10 −4 Pa or less, and then an inert gas such as argon is introduced into the chamber so that the internal pressure becomes about 0.1 Pa. To introduce. Next, by applying a DC voltage of 500 V and bombarding the copper target, a copper film having a thickness of 200 to 500 nm is formed on the surface of the substrate as a metal film to obtain a metal-coated resin molded product. it can.
 真空蒸着として電子線加熱真空蒸着法を採用する場合は、例えば、内部に基体を配したチャンバーを10-4Pa以下に減圧し、400~800mAの電子流をるつぼの中の銅に衝突させて銅を蒸発させる。これにより、300nm程度の膜厚の銅被膜を金属被膜として、基体の表面に形成させて金属被覆樹脂成形品を得ることができる。 When the electron beam heating vacuum deposition method is employed as the vacuum deposition, for example, the chamber in which the substrate is disposed is decompressed to 10 −4 Pa or less, and an electron current of 400 to 800 mA is collided with copper in the crucible. The copper is evaporated. As a result, a metal film can be obtained by forming a copper film having a thickness of about 300 nm on the surface of the substrate as a metal film.
 イオンプレーティングを採用する場合は、例えば、内部に基体を配したチャンバーを10-4Pa以下に減圧し、真空蒸着の場合と同様にして銅を蒸発させる。さらに、基体とるつぼの間にアルゴン等の不活性ガスを内圧が0.05~0.1Paになるように導入する。次に、基体を保持している電極に所望のバイアス電圧を印加した状態で、500Wの高周波パワー(13.56MHz)を誘導アンテナに印加してチャンバー内にプラズマを発生させる。これにより、200~500nmの膜厚の銅被膜を基体の表面上に形成した金属被覆樹脂成形品を得ることができる。 In the case of employing ion plating, for example, the chamber in which the substrate is arranged is decompressed to 10 −4 Pa or less, and copper is evaporated in the same manner as in the case of vacuum deposition. Further, an inert gas such as argon is introduced between the substrate and the crucible so that the internal pressure becomes 0.05 to 0.1 Pa. Next, with a desired bias voltage applied to the electrode holding the substrate, 500 W of high frequency power (13.56 MHz) is applied to the induction antenna to generate plasma in the chamber. As a result, a metal-coated resin molded product in which a copper film having a thickness of 200 to 500 nm is formed on the surface of the substrate can be obtained.
 上記のように、成分A~Cを含有する樹脂組成物を用いて基体を成形し、必要に応じて熱処理およびプラズマ処理を前処理として実施し、スパッタリングのような物理蒸着法により、基体の表面に金属被膜を形成する一連の方法により、基体の表面と金属被膜との間に高度の密着性を有する金属被覆樹脂成形品を得ることができるものである。特に本発明により得られる金属被覆樹脂成形品は、金属被膜と基体の表面との間に接着剤や薬品などを使用する必要なく、高度の密着性を有するものとなる。また、特許文献1に記載されている従来の金属被覆樹脂成形品では、基体の表層部の機械的強度や靭性の劣化が生じると、基体表面と金属被膜との密着性が低下するといった問題があったが、本発明においては、特定の樹脂組成物、すなわち異なる荷重たわみ温度を有する2種類の液晶性ポリエステルとエポキシ基含有エチレン共重合体とが有効に作用することで、基体の表層部の引き裂き抵抗が大幅に改善されるため、結果として基体の表層部の強度や靭性の劣化を防ぐことができるものである。 As described above, the substrate is molded using the resin composition containing components A to C, and if necessary, heat treatment and plasma treatment are performed as pretreatment, and the surface of the substrate is obtained by physical vapor deposition such as sputtering. A metal-coated resin molded product having a high degree of adhesion between the surface of the substrate and the metal film can be obtained by a series of methods for forming a metal film on the substrate. In particular, the metal-coated resin molded product obtained by the present invention has a high degree of adhesion without the need to use an adhesive or a chemical between the metal coating and the surface of the substrate. In addition, in the conventional metal-coated resin molded product described in Patent Document 1, when the mechanical strength and toughness of the surface layer portion of the substrate are deteriorated, the adhesion between the substrate surface and the metal film is reduced. However, in the present invention, a specific resin composition, that is, two kinds of liquid crystalline polyesters having different deflection temperatures under load and an epoxy group-containing ethylene copolymer effectively act, so that Since the tear resistance is greatly improved, the strength and toughness of the surface layer portion of the substrate can be prevented from being deteriorated as a result.
 本発明の金属被覆樹脂成形品は種々の用途に適用することができるが、とりわけ回路基板として好適に使用することができる。この場合、金属被覆樹脂成形品の金属被膜に回路パターンを形成する必要がある。この回路パターンの形成手段としては、例えば、金属被膜の密着性を低下させることなく、回路パターン以外の不必要な金属被膜を効率よく除去することができる観点から、レーザーパターンニングを採用することが推奨される。本発明の金属被覆樹脂成形品は、金属被膜との密着性を改善するために基体の表面の粗面化処理を行なう必要がないので、これに伴なう回路パターンニングの精度を低下させることなくレーザーパターンニングによって高精度で微細な回路パターンを形成することができるものである。従って、本発明の金属被覆樹脂成形品は、立体回路基板(MID)にも適している。 The metal-coated resin molded product of the present invention can be applied to various uses, but can be particularly suitably used as a circuit board. In this case, it is necessary to form a circuit pattern on the metal film of the metal-coated resin molded product. As a means for forming this circuit pattern, for example, laser patterning may be employed from the viewpoint that an unnecessary metal film other than the circuit pattern can be efficiently removed without reducing the adhesion of the metal film. Recommended. Since the metal-coated resin molded product of the present invention does not need to be roughened on the surface of the substrate in order to improve the adhesion to the metal film, the accuracy of circuit patterning associated therewith is reduced. In addition, it is possible to form a fine circuit pattern with high accuracy by laser patterning. Therefore, the metal-coated resin molded product of the present invention is also suitable for a three-dimensional circuit board (MID).
 また、金属被膜にレーザーパターンニングを施した後、形成された回路パターン上に電解メッキにより銅などの金属層を追加して、トータル厚みが例えば5~20μmになるように回路を形成するようにしてもよい、また回路パターンの形成後、必要に応じて、基体上に残留する不要な金属被膜を確実に除去するためのソフトエッチングを実施するようにしてもよい。さらに、追加金属層上に数μm程度の厚みのニッケルメッキ層や金メッキ層を設けてもよい。このように、本発明の金属被覆樹脂成形品を使用することにより、所望の回路パターンを有する成形回路基板を得ることができるものである。 In addition, after applying laser patterning to the metal coating, a metal layer such as copper is added to the formed circuit pattern by electrolytic plating to form a circuit so that the total thickness becomes, for example, 5 to 20 μm. Alternatively, after the circuit pattern is formed, soft etching for reliably removing unnecessary metal film remaining on the substrate may be performed as necessary. Further, a nickel plating layer or a gold plating layer having a thickness of about several μm may be provided on the additional metal layer. Thus, the molded circuit board which has a desired circuit pattern can be obtained by using the metal-coated resin molded product of this invention.
 次に、本発明を実施例によって具体的に説明する。 Next, the present invention will be specifically described with reference to examples.
 尚、荷重たわみ温度は下記の方法で測定した。すなわち、測定対象のポリマーを用いて長さ127mm、幅12.7mm、厚さ6.4mmの試験片を形成し、この試験片について、安田精機製作所社製「ヒートデストーションテスター」を用いてASTM D648に準拠する方法により、1.82MPa(18.6kg/cm2)の荷重で測定した。 The deflection temperature under load was measured by the following method. That is, a test piece having a length of 127 mm, a width of 12.7 mm, and a thickness of 6.4 mm was formed using the polymer to be measured, and this test piece was measured by ASTM using a “heat distortion tester” manufactured by Yasuda Seiki Seisakusho. It measured by the load of 1.82 MPa (18.6 kg / cm < 2 >) by the method based on D648.
 (成分A:第1の液晶性ポリエステルの合成)
 p-ヒドロキシ安息香酸を911g(6.6モル)、4,4’-ジヒドロキシビフェニルを409g(2.2モル)、テレフタル酸を274g(1.65モル)、イソフタル酸を91g(0.55モル)及び無水酢酸を1235g(12.1モル)、さらに1-メチルイミダゾールを0.17g秤量し、攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器にこれらを投入し、反応器内を十分に窒素ガスで置換した。次いで、窒素ガス気流下で15分かけて150℃まで昇温し、さらに150℃で1時間還流させた。
(Component A: Synthesis of first liquid crystalline polyester)
911 g (6.6 mol) of p-hydroxybenzoic acid, 409 g (2.2 mol) of 4,4′-dihydroxybiphenyl, 274 g (1.65 mol) of terephthalic acid, and 91 g (0.55 mol) of isophthalic acid ) And acetic anhydride (1235 g, 12.1 mol) and 1-methylimidazole (0.17 g) are weighed and placed in a reactor equipped with a stirrer, torque meter, nitrogen gas inlet tube, thermometer and reflux condenser. Then, the inside of the reactor was sufficiently replaced with nitrogen gas. Subsequently, it heated up to 150 degreeC over 15 minutes under nitrogen gas stream, and also was made to recirculate | reflux at 150 degreeC for 1 hour.
 次に、さらに1-メチルイミダゾール1.7gを加え、副生酢酸および未反応の無水酢酸を留去しながら2時間50分かけて320℃まで昇温し、トルクの上昇が認められる時点を反応終了とみなし、内容物を取り出した。内容物から得られた固形分を室温まで冷却し、粗粉砕機で粉砕後、得られた粉末を窒素雰囲気下、室温から250℃まで1時間かけて昇温し、さらに250℃から285℃まで5時間かけて昇温し、また285℃で3時間保持し、固相で重合反応を進行させた。 Next, 1.7 g of 1-methylimidazole was further added, and the temperature was raised to 320 ° C. over 2 hours and 50 minutes while distilling off by-product acetic acid and unreacted acetic anhydride. The content was taken out as deemed complete. The solid content obtained from the contents was cooled to room temperature, pulverized with a coarse pulverizer, and the resulting powder was heated from room temperature to 250 ° C. over 1 hour in a nitrogen atmosphere, and further from 250 ° C. to 285 ° C. The temperature was raised over 5 hours and held at 285 ° C. for 3 hours to proceed the polymerization reaction in a solid phase.
 このようにして、第1の液晶性ポリエステルを得た。この第1の液晶性ポリエステルについて流動開始温度を、フローテスター(島津製作所社製「CFT-500型」)を用いて測定したところ、327℃であった。 Thus, a first liquid crystalline polyester was obtained. The flow start temperature of this first liquid crystalline polyester was measured using a flow tester (“CFT-500 type” manufactured by Shimadzu Corporation), and was 327 ° C.
 またこの第1の液晶性ポリマーの一部を造粒によりペレットとし、射出成形により荷重たわみ温度測定用の試験片に加工した。得られた試験片を用いて荷重たわみ温度を測定したところ、241℃であった。 Further, a part of the first liquid crystalline polymer was pelletized by granulation, and processed into a test piece for measuring a deflection temperature under load by injection molding. It was 241 degreeC when the deflection temperature under load was measured using the obtained test piece.
 (成分B:第2の液晶性ポリエステルの合成)
 p-ヒドロキシ安息香酸を879g(6.0モル)、4,4’-ジヒドロキシビフェニルを559g(3.0モル)、イソフタル酸を498g(3.0モル)及び無水酢酸を1348g(13.2モル)、さらに1-メチルイミダゾールを0.19g秤量し、攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器にこれらを投入し、反応器内を十分に窒素ガスで置換した。次いで、窒素ガス気流下で15分かけて150℃まで昇温し、さらに150℃で1時間還流させた。
(Component B: Synthesis of second liquid crystalline polyester)
879 g (6.0 mol) of p-hydroxybenzoic acid, 559 g (3.0 mol) of 4,4′-dihydroxybiphenyl, 498 g (3.0 mol) of isophthalic acid, and 1348 g (13.2 mol) of acetic anhydride Further, 0.19 g of 1-methylimidazole was weighed, and these were put into a reactor equipped with a stirrer, a torque meter, a nitrogen gas introduction tube, a thermometer and a reflux condenser, and the reactor was sufficiently filled with nitrogen gas. Replaced with. Subsequently, it heated up to 150 degreeC over 15 minutes under nitrogen gas stream, and also was made to recirculate | reflux at 150 degreeC for 1 hour.
 次に、副生酢酸および未反応の無水酢酸を留去しながら2時間50分かけて320℃まで昇温し、トルクの上昇が認められる時点を反応終了とみなし、内容物を取り出した。内容物から得られた固形分を室温まで冷却し、粗粉砕機で粉砕後、得られた粉末を窒素雰囲気下、室温から200℃まで1時間かけて昇温し、さらに200℃から298℃まで5時間かけて昇温し、また298℃で3時間保持し、固相で重合反応を進行させた。 Next, the temperature was raised to 320 ° C. over 2 hours and 50 minutes while distilling off by-product acetic acid and unreacted acetic anhydride, and the time when an increase in torque was recognized was regarded as the completion of the reaction, and the contents were taken out. The solid content obtained from the contents was cooled to room temperature and pulverized with a coarse pulverizer, and then the obtained powder was heated from room temperature to 200 ° C. over 1 hour in a nitrogen atmosphere, and further from 200 ° C. to 298 ° C. The temperature was raised over 5 hours and held at 298 ° C. for 3 hours to allow the polymerization reaction to proceed in the solid phase.
 このようにして、第2の液晶性ポリエステルを得た。この第2の液晶性ポリエステルについて上記と同様に流動開始温度を測定したところ、318℃であった。またこの第2の液晶性ポリエステルについて上記と同様に荷重たわみ温度を測定したところ、133℃であった。 Thus, a second liquid crystalline polyester was obtained. The flow initiation temperature of this second liquid crystalline polyester was measured in the same manner as described above, and it was 318 ° C. Further, the deflection temperature under load of this second liquid crystalline polyester was measured in the same manner as described above, and it was 133 ° C.
 一方、C成分のエポキシ基含有エチレン共重合体として、住友化学株式会社製の「ボンドファースト」(登録商標)の品番「BF-E」を使用した。この「ボンドファーストBF-E」は、エチレン-グリシジルメタクリレート共重合体(グリシジルメタクリレート含有量12質量%、MFR=3g/10分)である。なお、MFR(メルトフローレート)は、JIS-K7210に準拠し、190℃、2160g荷重の条件下で測定した値である。 On the other hand, the product number “BF-E” of “Bond First” (registered trademark) manufactured by Sumitomo Chemical Co., Ltd. was used as the ethylene copolymer of component C epoxy group. This “bond first BF-E” is an ethylene-glycidyl methacrylate copolymer (glycidyl methacrylate content 12 mass%, MFR = 3 g / 10 min). The MFR (melt flow rate) is a value measured in accordance with JIS-K7210 under conditions of 190 ° C. and 2160 g load.
 さらに無機フィラーとして、ミルドガラス繊維(MGF:セントラルガラス(株)製「EFH75-01」(繊維径10μm、アスペクト比10))を使用した。 Furthermore, milled glass fiber (MGF: “EFH75-01” (fiber diameter: 10 μm, aspect ratio: 10) manufactured by Central Glass Co., Ltd.) was used as an inorganic filler.
 (実施例1~4、比較例1,2)
 上記の第1の液晶性ポリエステル、第2の液晶性ポリエステル、「ボンドファーストBF-E」、ミルドガラス繊維(MGF)「EFH75-01」を、表1に示す配合量で混合して、樹脂組成物を調製した。尚、実施例1~4は、第1の液晶性ポリエステルと第2の液晶性ポリエステルの比率を変化させて樹脂組成物を調製したものである。
(Examples 1 to 4, Comparative Examples 1 and 2)
The first liquid crystalline polyester, the second liquid crystalline polyester, “bond first BF-E”, and milled glass fiber (MGF) “EFH75-01” are mixed in the blending amounts shown in Table 1 to obtain a resin composition. A product was prepared. In Examples 1 to 4, resin compositions were prepared by changing the ratio of the first liquid crystalline polyester and the second liquid crystalline polyester.
 次に、2軸押出機(池貝鉄工(株)製「PCM-30」)を用いて340℃でこの樹脂組成物のペレットを調製した。そして得られたペレットを、日精樹脂工業(株)製射出成形機「PS40E5ASE」を用いて、シリンダー温度350℃、金型温度130℃の条件で射出成形し、40mm×30mm×厚さ1mmの基体を得た。 Next, pellets of this resin composition were prepared at 340 ° C. using a twin screw extruder (“PCM-30” manufactured by Ikekai Tekko Co., Ltd.). The obtained pellets were injection molded under the conditions of a cylinder temperature of 350 ° C. and a mold temperature of 130 ° C. using an injection molding machine “PS40E5ASE” manufactured by Nissei Plastic Industry Co., Ltd. Got.
 次に、このようにして得られた基体に、窒素雰囲気下、280℃、3時間の条件で熱処理を行なったものと、この熱処理を行なわなかったものの、2種類の基体の表面に、次のようにして金属被膜を形成した。 Next, the substrate thus obtained was heat-treated under a nitrogen atmosphere at 280 ° C. for 3 hours, and the substrate was not subjected to the heat treatment. Thus, a metal film was formed.
 まず基体の表面をプラズマ処理した後、DCマグネトロンスパッタリング装置を使って金属被膜を形成した。すなわち、基体をプラズマ処理装置のチャンバー内に配置し、チャンバーを10-4Pa程度に減圧した。次にチャンバー内に窒素ガスをチャンバー内のガス圧が10Paになるように導入し、電極間に300Wの高周波(13.56MHz)パワーを30秒間印加することによって、プラズマ処理を基体に施した。 First, the surface of the substrate was plasma-treated, and then a metal film was formed using a DC magnetron sputtering apparatus. That is, the substrate was placed in the chamber of the plasma processing apparatus, and the chamber was depressurized to about 10 −4 Pa. Next, nitrogen gas was introduced into the chamber so that the gas pressure in the chamber became 10 Pa, and 300 W of high frequency (13.56 MHz) power was applied between the electrodes for 30 seconds to perform plasma treatment on the substrate.
 プラズマ処理後、チャンバーを10-4Pa以下になるまで減圧した。この状態で、チャンバー内にアルゴンガスを0.1Paのガス圧になるように導入し、500Vの直流電圧を印加することで銅ターゲットをボンバードし、基体のプラズマ処理した表面に400nmの膜厚の銅被膜からなる金属被膜を形成した。 After the plasma treatment, the pressure in the chamber was reduced to 10 −4 Pa or less. In this state, argon gas was introduced into the chamber to a gas pressure of 0.1 Pa, a copper target was bombarded by applying a DC voltage of 500 V, and a 400 nm film thickness was formed on the plasma-treated surface of the substrate. A metal coating consisting of a copper coating was formed.
 この後、レーザ照射により金属被膜に幅5mmのパターンを形成し、この金属被膜のパターン上に電解メッキで銅をメッキすることによって、厚み15μmの剥離強度試験用の回路パターンを基体の表面に形成した回路形成基板を得た。 Thereafter, a pattern with a width of 5 mm is formed on the metal film by laser irradiation, and a copper pattern is plated on the metal film pattern by electrolytic plating to form a circuit pattern for a peel strength test having a thickness of 15 μm on the surface of the substrate. A circuit forming substrate was obtained.
 上記のようにして実施例1~4、比較例1,2で得た回路形成基板について、回路パターンのピール強度と基体の熱変形温度(DTUL:荷重たわみ温度)を測定した。尚、ピール強度の測定は、万能試験機(島津製作所製「EG Test」)を用いて、成形時の樹脂流れに対して垂直方向での90度ピール強度について行なった。結果を表1に示す。また第1の液晶性ポリエステルと第2の液晶性ポリエステルの合計量に対する第2の液晶性ポリエステルの比率と、ピール強度との関係を図1(a)に、熱変形温度(DTUL)との関係を図1(b)に示す。 For the circuit-formed substrates obtained in Examples 1 to 4 and Comparative Examples 1 and 2 as described above, the peel strength of the circuit pattern and the thermal deformation temperature (DTUL: deflection temperature under load) of the substrate were measured. The peel strength was measured using a universal testing machine (“EG Test” manufactured by Shimadzu Corporation) with respect to a 90-degree peel strength in a direction perpendicular to the resin flow during molding. The results are shown in Table 1. FIG. 1A shows the relationship between the ratio of the second liquid crystalline polyester to the total amount of the first liquid crystalline polyester and the second liquid crystalline polyester and the peel strength, and the relationship with the thermal deformation temperature (DTUL). Is shown in FIG.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1や図1(a)にみられるように、液晶性ポリエステルとして、200℃以上の荷重たわみ温度を有する第1の液晶性ポリエステルに、第1の液晶性ポリエステルの荷重たわみ温度より低い荷重たわみ温度を有する第2の液晶性ポリエステルを併用することによって、ピール強度が向上し、より高度な密着性で金属被膜を形成できることが確認される。この場合、第2の液晶性ポリエステルの含有率が多くなると、図1(b)にみられるように熱変形温度が低くなって耐熱性が低下するので、第2の液晶性ポリエステルの含有率は50質量%以下であることが好ましい。特に第2の液晶性ポリエステルの含有率が30質量%を超えると、図1(b)にみられるように熱変形温度が大きく低下し、しかも図1(a)にみられるように、第2の液晶性ポリエステルの含有率が30質量%を超えてもピール強度の向上の効果はあまりみられない。このため、第2の液晶性ポリエステルの含有率は30質量%以下であることがより好ましい。 As seen in Table 1 and FIG. 1 (a), as the liquid crystalline polyester, the first liquid crystalline polyester having a deflection temperature under load of 200 ° C. or higher is subjected to a load deflection lower than the load deflection temperature of the first liquid crystalline polyester. It is confirmed that by using a second liquid crystalline polyester having a temperature in combination, the peel strength is improved and a metal film can be formed with higher adhesion. In this case, if the content of the second liquid crystalline polyester increases, the heat distortion temperature decreases and the heat resistance decreases as seen in FIG. 1B, so the content of the second liquid crystalline polyester is It is preferable that it is 50 mass% or less. In particular, when the content of the second liquid crystalline polyester exceeds 30% by mass, the thermal deformation temperature is greatly reduced as shown in FIG. 1B, and as shown in FIG. Even if the content of the liquid crystalline polyester exceeds 30% by mass, the effect of improving the peel strength is not so much observed. For this reason, it is more preferable that the content rate of 2nd liquid crystalline polyester is 30 mass% or less.
 また表1や図1(a)にみられるように、基体を熱処理することによって、ピール強度がより高くなっており、密着性の向上の効果を高く得ることができることが確認される。 Also, as shown in Table 1 and FIG. 1 (a), it is confirmed that the peel strength is increased by heat-treating the substrate, and the effect of improving the adhesion can be obtained.
 また、上記の実施例2と比較例1において(熱処理有り)、基体の収縮率を測定した。収縮率は、金型寸法に対する、基体の寸法の収縮率であり、上記した成形条件で平板を作成し、MD(樹脂流れ方向)、とTD(樹脂流れ方向に対し垂直方向)の基体の寸法を測定し、金型寸法との収縮率を計算したものである。結果を表2に示す。 Also, in Example 2 and Comparative Example 1 (with heat treatment), the shrinkage rate of the substrate was measured. The shrinkage rate is the shrinkage rate of the substrate size with respect to the mold size. A flat plate is prepared under the molding conditions described above, and the substrate size in the MD (resin flow direction) and TD (perpendicular to the resin flow direction). And the shrinkage ratio with the mold dimensions was calculated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表2にみられるように、実施例2のように第1の液晶性ポリエステルに第2の液晶性ポリエステルを併用することによって、MD(樹脂流れ方向)、とTD(樹脂流れ方向に対し垂直方向)の成形収縮率差が小さくなるものであり、成形反りを低減すると共に基体の寸法を高精度化することができ、またリフロー等による熱変形を抑制することができるものである。 As seen in Table 2, by using the second liquid crystalline polyester in combination with the first liquid crystalline polyester as in Example 2, MD (resin flow direction) and TD (perpendicular to the resin flow direction) ) Is reduced, the molding warpage can be reduced, the dimensions of the substrate can be increased, and thermal deformation due to reflow or the like can be suppressed.
 (実施例5~8、比較例3,4)
 上記の第1の液晶性ポリエステル、第2の液晶性ポリエステル、「ボンドファーストBF-E」、ミルドガラス繊維(MGF)「EFH75-01」を、表3に示す配合量で混合して、樹脂組成物を調製した。尚、実施例5~8は、第1の液晶性ポリエステルと第2の液晶性ポリエステルの比率を変化させ、さらに「ボンドファーストBF-E」の配合量を変化させて樹脂組成物を調製したものであり、実施例6は上記の実施例2と、比較例3は上記の比較例1と同じ配合である。
(Examples 5 to 8, Comparative Examples 3 and 4)
The first liquid crystalline polyester, the second liquid crystalline polyester, “bond first BF-E”, and milled glass fiber (MGF) “EFH75-01” are mixed in the blending amounts shown in Table 3 to obtain a resin composition. A product was prepared. In Examples 5 to 8, resin compositions were prepared by changing the ratio of the first liquid crystalline polyester and the second liquid crystalline polyester and further changing the amount of “bond first BF-E”. Example 6 has the same composition as Example 2 and Comparative Example 3 has the same composition as Comparative Example 1.
 そしてこの樹脂組成物を用い、上記と同様にして、基体を成形し、熱処理を施し、プラズマ処理を施した後に、銅被膜を形成し、さらにレーザパターニングを行なうことによって、回路形成基板を得た。 Using this resin composition, a substrate was molded, subjected to heat treatment, subjected to plasma treatment in the same manner as described above, and then a copper film was formed, followed by laser patterning to obtain a circuit forming substrate. .
 この回路形成基板について、回路パターンのピール強度を測定し、結果を表3に示す。 For this circuit-formed substrate, the peel strength of the circuit pattern was measured, and the results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表3にみられるように、第1の液晶性ポリエステルに第2の液晶性ポリエステルを併用した各実施例のものは、第1の液晶性ポリエステルを単独で用いる比較例3よりもピール強度が向上するものであり、また「ボンドファーストBF-E」を増量することによって、ピール強度が向上する傾向を示すものであった。 As can be seen in Table 3, the peel strength of each of the examples in which the second liquid crystalline polyester was used in combination with the first liquid crystalline polyester was higher than that of Comparative Example 3 in which the first liquid crystalline polyester was used alone. In addition, increasing the amount of “Bond First BF-E” showed a tendency to improve the peel strength.

Claims (13)

  1.  A:200℃以上の荷重たわみ温度を有する第1の液晶性ポリエステル
     B:第1の液晶性ポリエステルの荷重たわみ温度より低い荷重たわみ温度を有する第2の液晶性ポリエステル
     C:エポキシ基含有エチレン共重合体
    (ただし、該エポキシ基含有エチレン共重合体は、分子中にエチレン単位を50~99.9質量%、不飽和カルボン酸グリシジルエステル単位及び/又は不飽和グリシジルエーテル単位を0.1~30質量%含む)
     上記の成分A、B及びCを含有し、成分Aと成分Bの合計100質量部に対して、成分Cが0.1~25質量部の範囲である樹脂組成物を成形して得られる基体と、この基体の表面上に形成される金属被膜とからなることを特徴とする金属被覆樹脂成形品。
    A: First liquid crystalline polyester having a deflection temperature under 200 ° C. or higher B: Second liquid crystalline polyester having a deflection temperature lower than the deflection temperature under load of the first liquid crystalline polyester C: Ethylene copolymer containing an epoxy group Compound (however, the epoxy group-containing ethylene copolymer contains 50 to 99.9% by mass of ethylene units in the molecule, 0.1 to 30% by mass of unsaturated carboxylic acid glycidyl ester units and / or unsaturated glycidyl ether units) % Included)
    A substrate obtained by molding a resin composition containing the above components A, B and C and having component C in the range of 0.1 to 25 parts by mass with respect to a total of 100 parts by mass of component A and component B And a metal coating formed on the surface of the substrate.
  2.  前記樹脂組成物において、成分Aと成分Bの合計量に対して成分Bが1~50質量%であることを特徴とする請求項1に記載の金属被覆樹脂成形品。 2. The metal-coated resin molded product according to claim 1, wherein in the resin composition, the component B is 1 to 50% by mass with respect to the total amount of the component A and the component B.
  3.  成分Aと成分Bの合計量に対して成分Bが30質量%以下であることを特徴とする請求項2に記載の金属被覆樹脂成形品。 The metal-coated resin molded product according to claim 2, wherein component B is 30% by mass or less based on the total amount of component A and component B.
  4.  前記第2の液晶性ポリエステルは、2価の芳香族基がエステル結合で連結されたものであり、この2価の芳香族基は、1,2-フェニレン基、1,3-フェニレン基、2,3-ナフタレン基から選ばれる少なくとも一種の芳香族基を含むと共にこれらの芳香族基の合計量が、2価の芳香族基の全量に対して10~45モル%であることを特徴とする請求項1~3のいずれか1項に記載の金属被覆樹脂成形品。 In the second liquid crystalline polyester, divalent aromatic groups are linked by an ester bond, and the divalent aromatic groups are 1,2-phenylene group, 1,3-phenylene group, 2 And at least one aromatic group selected from 3-naphthalene groups, and the total amount of these aromatic groups is 10 to 45 mol% based on the total amount of divalent aromatic groups The metal-coated resin molded product according to any one of claims 1 to 3.
  5.  前記エポキシ基含有エチレン共重合体は、分子中にエチレン単位を80~98質量%、不飽和カルボン酸グリシジルエステル単位及び/又は不飽和グリシジルエーテル単位を2~15質量%含むものであることを特徴とする請求項1~4のいずれか1項に記載の金属被覆樹脂成形品。 The epoxy group-containing ethylene copolymer contains 80 to 98% by mass of ethylene units and 2 to 15% by mass of unsaturated carboxylic acid glycidyl ester units and / or unsaturated glycidyl ether units in the molecule. The metal-coated resin molded product according to any one of claims 1 to 4.
  6.  D:直径6~15μm、アスペクト比5~50の繊維状無機フィラー
     前記樹脂組成物が、前記の成分A~Cに加え、上記の成分Dを含有することを特徴とする請求項1~5のいずれか1項に記載の金属被覆樹脂成形品。
    D: A fibrous inorganic filler having a diameter of 6 to 15 μm and an aspect ratio of 5 to 50. The resin composition contains the component D in addition to the components A to C. The metal-coated resin molded product according to any one of the above items.
  7.  前記金属被膜が、銅、ニッケル、金、アルミニウム、チタン、モリブデン、クロム、タングステン、スズ、鉛、及び亜鉛から選ばれる金属、又はこれらから選ばれる2種以上の金属の合金からなるものであることを特徴とする請求項1~6のいずれか1項に記載の金属被覆樹脂成形品。 The metal coating is made of a metal selected from copper, nickel, gold, aluminum, titanium, molybdenum, chromium, tungsten, tin, lead, and zinc, or an alloy of two or more metals selected from these metals. The metal-coated resin molded product according to any one of claims 1 to 6, wherein:
  8.  前記金属被膜によって、回路パターンが形成されてなることを特徴とする請求項1~7のいずれか1項に記載の金属被覆樹脂成形品。 The metal-coated resin molded product according to any one of claims 1 to 7, wherein a circuit pattern is formed by the metal coating.
  9.  前記請求項1~8のいずれかに記載の樹脂組成物を成形して基体を得る成形工程と、この基体の表面に金属被膜を形成する被覆工程とを含むことを特徴とする金属被覆樹脂成形品の製造方法。 A metal-coated resin molding comprising: a molding step of molding the resin composition according to any one of claims 1 to 8 to obtain a substrate; and a coating step of forming a metal film on the surface of the substrate. Product manufacturing method.
  10.  前記被覆工程の前に、前記基体の表面にプラズマ処理を施す工程を含むことを特徴とする請求項9に記載の金属被覆樹脂成形品の製造方法。 10. The method for producing a metal-coated resin molded product according to claim 9, further comprising a step of performing a plasma treatment on the surface of the substrate before the coating step.
  11.  前記被覆工程の前に、(Tm1-120)℃~(Tm1-20)℃[ただし、Tm1は前記第1の液晶性ポリエステルの流動開始温度(℃)を表す]の温度で、基体を熱処理する工程を含むことを特徴とする請求項9又は10に記載の金属被覆樹脂成形品の製造方法。 Prior to the coating step, the substrate is heat-treated at a temperature of (Tm1-120) ° C. to (Tm1-20) ° C. [where Tm1 represents the flow start temperature (° C.) of the first liquid crystalline polyester]. The method for producing a metal-coated resin molded article according to claim 9 or 10, comprising a step.
  12.  前記被覆工程は、物理蒸着法により前記基体の表面に金属被膜を形成する工程であることを特徴とする請求項9~11のいずれか1項に記載の金属被覆樹脂成形品の製造方法。 The method for producing a metal-coated resin molded article according to any one of claims 9 to 11, wherein the coating step is a step of forming a metal film on the surface of the substrate by physical vapor deposition.
  13.  前記金属被膜にレーザーパターンニングを施すことによって回路パターンを形成する工程を含むことを特徴とする請求項9~12のいずれか1項に記載の金属被覆樹脂成形品の製造方法。 The method for producing a metal-coated resin molded product according to any one of claims 9 to 12, further comprising a step of forming a circuit pattern by performing laser patterning on the metal coating.
PCT/JP2009/053712 2008-03-25 2009-02-27 Metal-coated resin molded article, and process for production thereof WO2009119247A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-078442 2008-03-25
JP2008078442A JP5005593B2 (en) 2008-03-25 2008-03-25 Metal-coated resin molded product and method for producing the same

Publications (1)

Publication Number Publication Date
WO2009119247A1 true WO2009119247A1 (en) 2009-10-01

Family

ID=41113453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053712 WO2009119247A1 (en) 2008-03-25 2009-02-27 Metal-coated resin molded article, and process for production thereof

Country Status (3)

Country Link
JP (1) JP5005593B2 (en)
TW (1) TW200944562A (en)
WO (1) WO2009119247A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102338614B1 (en) * 2014-06-30 2021-12-13 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Aromatic polyester-containing curable resin composition, cured product, electric and electronic component, and circuit board
WO2022181374A1 (en) * 2021-02-24 2022-09-01 富士フイルム株式会社 Polymer film and laminate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294039A (en) * 2001-03-28 2002-10-09 Toray Ind Inc Liquid crystal resin composition
JP2002294040A (en) * 2001-03-28 2002-10-09 Toray Ind Inc Liquid crystal resin composition for composite and its composite
JP2005290370A (en) * 2004-03-10 2005-10-20 Matsushita Electric Works Ltd Metal-coated resin molded product and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI991006A (en) * 1999-05-03 2000-11-04 Optatech Oy New liquid crystalline polymers
JP4302467B2 (en) * 2002-12-27 2009-07-29 ポリプラスチックス株式会社 Amorphous wholly aromatic polyesteramide composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294039A (en) * 2001-03-28 2002-10-09 Toray Ind Inc Liquid crystal resin composition
JP2002294040A (en) * 2001-03-28 2002-10-09 Toray Ind Inc Liquid crystal resin composition for composite and its composite
JP2005290370A (en) * 2004-03-10 2005-10-20 Matsushita Electric Works Ltd Metal-coated resin molded product and method for producing the same

Also Published As

Publication number Publication date
JP5005593B2 (en) 2012-08-22
TW200944562A (en) 2009-11-01
JP2009227935A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
KR100764045B1 (en) Metal-coated resin molded article and production method therefor
EP1730234B1 (en) Resin molded article with reduced dielectric loss tangent and production method therefor
JP5155769B2 (en) Totally aromatic polyester and polyester resin composition
JP4608342B2 (en) Resin molded product having low dielectric loss tangent and method for producing the same
JP6474261B2 (en) Laminate
JP2003246923A (en) Liquid crystalline polyester resin composition for connector
JP4783038B2 (en) Metal-coated resin molded product and method for producing the same
TW200808860A (en) Liquid crystalling polymer composition and use thereof
JP4639756B2 (en) Aromatic liquid crystal polyester and film thereof and use thereof
JP4625304B2 (en) Liquid crystalline polyester resin composition, molded body, molded circuit board
JP2013166848A (en) Liquid crystal polyester composition and molded product
JP6316733B2 (en) Laminate
JP5005593B2 (en) Metal-coated resin molded product and method for producing the same
JP7203667B2 (en) connector
JPWO2018199038A1 (en) Polyarylate resin and polyarylate resin composition
JP6705537B2 (en) Liquid crystal polyester resin for laminate, liquid crystal polyester resin composition, laminate and liquid crystal polyester resin film
JP7446916B2 (en) Fully aromatic polyester resins, resin compositions containing them, and molded products
JPH0395258A (en) Aromatic polyester resin composition
JP2002294039A (en) Liquid crystal resin composition
JPH1036492A (en) Production of wholly aromatic polyester
JP2002294040A (en) Liquid crystal resin composition for composite and its composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09724500

Country of ref document: EP

Kind code of ref document: A1