WO2009118787A1 - 膜分離装置および膜カセット - Google Patents

膜分離装置および膜カセット Download PDF

Info

Publication number
WO2009118787A1
WO2009118787A1 PCT/JP2008/000755 JP2008000755W WO2009118787A1 WO 2009118787 A1 WO2009118787 A1 WO 2009118787A1 JP 2008000755 W JP2008000755 W JP 2008000755W WO 2009118787 A1 WO2009118787 A1 WO 2009118787A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
water collection
water
case
membrane separation
Prior art date
Application number
PCT/JP2008/000755
Other languages
English (en)
French (fr)
Inventor
桝谷英俊
岡島康信
北野智一
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to US12/736,236 priority Critical patent/US8741141B2/en
Priority to PCT/JP2008/000755 priority patent/WO2009118787A1/ja
Priority to CN200880128341.XA priority patent/CN101980765B/zh
Priority to JP2010505031A priority patent/JP5283689B2/ja
Priority to EP08720634.8A priority patent/EP2260928B1/en
Publication of WO2009118787A1 publication Critical patent/WO2009118787A1/ja
Priority to HRP20161700TT priority patent/HRP20161700T1/hr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/082Flat membrane modules comprising a stack of flat membranes
    • B01D63/0821Membrane plate arrangements for submerged operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/082Flat membrane modules comprising a stack of flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/20Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/12Specific discharge elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/21Specific headers, end caps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • the present invention relates to a membrane separation device and a membrane cassette used for filtration or concentration in general water treatment such as clean water and wastewater, and relates to the water collection case structure.
  • an immersion type membrane device in which a plurality of membrane elements are arranged in parallel at appropriate intervals is known.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 11-33370
  • two flat films are laminated via a spacer, and both end portions are welded or bonded to both sides of the two flat films.
  • a filtration membrane body is formed, and a filtrate collecting part provided on a side portion of the filtration membrane body communicates with the inside of the filtration membrane body.
  • the separator unit is fitted with a filtration membrane on both sides of a water-permeable material having a water-permeable function, and the membrane end of the filtration membrane is passed through a joining member. It joins to a water material, forms the hollow part in a joining member, and the suction pipe provided in the hollow part of the joining member is connected to the flow path of the water-permeable material.
  • a plurality of membrane elements 1 are arranged in parallel, and a flow path 2 is formed between the membrane elements 1 along the flow direction of the liquid to be treated.
  • the membrane element 1 has a filtration membrane disposed on the surface of a membrane support, and has a permeate channel between the membrane support and the filtration membrane.
  • Each water collecting case 3 arranged on both sides of the membrane element 1 has an opening communicating with the internal water collecting space 4, and the side portion of the membrane element 1 inserted into the opening is held watertight with a sealing material.
  • the permeate flow path of the membrane element 1 communicates with the water collection space 4 of the water collection case 3.
  • the membrane separation apparatus forms a module only by the membrane element 1 and the water collection case 3, and does not require any other structural member. For this reason, there are the following problems.
  • the module is constituted only by the membrane element 1 and the water collection case 3, the lower membrane separation device receives the load of the membrane separation device arranged in the upper stage in the water collection case 3. For this reason, the load applied to the water collection case 3 increases as the position is lower, and the water collection case 3 is required to have a strength that can withstand the load.
  • the water collection case 3 is filled with the permeate and the weight of the permeate inside is added in addition to its own weight.
  • a suction pressure as a driving pressure acts inside the water collecting case 3, and the internal pressure becomes lower than the external pressure.
  • the chemical solution is supplied from the water collection case 3 to the inside of the membrane element 1, so that the supply pressure acts inside the water collection case 3, and the internal pressure is higher than the external pressure. Become. Therefore, depending on the pressure during use, the water collecting case 3 may be deformed or damaged.
  • the water collection case 3 is composed only of a thin plate-like wall body that forms the outer wall, and the load, internal pressure, and external pressure are received only by the outer wall body, so that the load resistance as the water collection case 3 is structurally reduced. .
  • the rib 5 when the rib 5 is disposed and reinforced inside the water collection case 3, the rib 5 becomes a factor that inhibits the flow of the permeate in the water collection space 4 of the water collection case 3. Further, when the rib 5 is disposed outside the water collection case 3, it becomes a factor that hinders the flow of the liquid to be treated in the treatment tank, and the outer dimension of the membrane separation device becomes large.
  • the permeate flows into the water collection space 4 of the water collection case 3 simultaneously from each membrane element 1. Since the permeate in the water collection case 3 flows out through the water collection port 6, the permeate flowing from each membrane element 1 joins as the water collection port 6 is approached. In other words, for the permeate flowing from the membrane element 1 far from the water collection port 6 toward the water collection port 6, the permeate flowing into the water collection space 4 from the membrane element 1 near the water collection port 6 becomes a flow path resistance.
  • the flow resistance increases as the membrane element 1 is farther from the water collection port 6, and becomes a factor that inhibits the permeate from flowing from the membrane element 1 into the water collection space 4. For this reason, the flow rate of the permeate flowing through the membrane element 1 varies between the membrane elements 1.
  • the present invention solves the above-described problems, and provides a membrane separation device and a membrane cassette that can ensure sufficient strength in a water collection case and that allows permeate to flow smoothly in the water collection space.
  • the purpose is to do.
  • a membrane separation apparatus includes a plurality of membrane elements that are arranged in parallel to form a liquid flow path to be processed, and side portions of the membrane elements along the liquid flow path to be processed
  • the water collecting case has a water collecting space that has a water collecting space inside, and a permeate flow path of the membrane element communicates with the water collecting space, and the water collecting case surrounds the water collecting space.
  • at least the wall facing the side of the membrane element is formed with a convex portion protruding outward and a concave portion recessed inward.
  • the water collecting case forms a convex portion in which the wall body facing the side portion of the membrane element protrudes outward, forms an extended region in the water collecting space, and It has a water collecting port that faces and opens.
  • the water collection case has a rib on the outside of the wall body surrounding the water collection space, and the rib has a shape that fits within the overall length of the device along the direction between the water collection cases. It is characterized by.
  • the membrane separation cassette of the present invention uses the membrane separation device described above, and is characterized in that a plurality of membrane separation devices are stacked in multiple stages in the vertical direction along the flow direction of the liquid to be treated.
  • the membrane separation cassette of the present invention is characterized in that the upper and lower membrane separation devices communicate with each other through a water collection port that forms a connecting portion formed on the opposite wall surfaces of both water collection cases.
  • the wall facing the side of the membrane element forms a protrusion protruding outward and a recess recessed inward.
  • the buckling load of a wall body becomes large by forming. Therefore, in this invention, when providing the water collection space of the same volume as the water collection case in the conventional structure, the water collection case which raised intensity
  • the wall body facing the side portion of the membrane element forms a convex portion protruding outward, forms an expansion region in the water collection space, and has a water collection port that opens toward the expansion region.
  • the flow path around is widened. For this reason, even if the permeate flowing in from each membrane element flows toward the water collection port while joining, the increase in flow resistance near the water collection port can be suppressed, and the flow rate of the permeate flowing through each membrane element is equalized. Can contribute.
  • the outer dimensions of the membrane separation device will not increase and will not hinder the flow of the liquid to be treated.
  • the strength of the water collecting case can be increased.
  • the perspective view which shows the membrane cassette in embodiment of this invention Sectional drawing which shows the principal part in the membrane module of the membrane cassette
  • the perspective view which shows the membrane element in embodiment of this invention Front view showing the membrane element Plan view of the membrane module in the same embodiment Front view of the membrane module in the same embodiment
  • the top view of the membrane module in other embodiment of this invention The side view of the membrane module in other embodiment of this invention
  • the top view of the membrane module in other embodiment of this invention The top view of the membrane module in other embodiment of this invention
  • the front view of the membrane module in other embodiment of this invention The top view of the membrane module in other embodiment of this invention
  • the front view of the membrane module in other embodiment of this invention The top view of the water collection case in other embodiments of the present invention
  • the top view of the water collection case in other embodiments of the present invention The top view of the water collection case in other embodiments of the present invention
  • the top view of the water collection case in other embodiments of the present invention The top view of the water collection case in other embodiments of the present invention
  • a membrane cassette 11 constituting a membrane separation apparatus is composed of a plurality of membrane modules 12 stacked one above the other, and is immersed in a liquid to be treated in a treatment tank (not shown).
  • the membrane cassette 11 is provided with an air diffuser 11 a at a position below the lower membrane module 12.
  • the membrane separation apparatus can also be constituted by only one stage of membrane module 12.
  • the membrane module 12 has a plurality of membrane elements 13 arranged in parallel at predetermined intervals, a flow path of the water to be treated is formed between the membrane elements 13 in the vertical direction, and each membrane element 13 along the flow of the water to be treated is formed. Both sides of the water are sealed in a water collecting case 14 respectively.
  • Each water collecting case 14 is hollow and has a water collecting space inside. However, the water collecting case 14 can be provided only on one side of the membrane element 13. In this case, the other side portion of the membrane element 13 is sealed with a resin or the like to be described later.
  • the membrane element 13 is arranged in the vertical direction.
  • the arrangement direction of the membrane element 13 is not limited to the vertical direction, and any arrangement is possible as long as it is arranged along the flow direction of the liquid to be treated, and it can be arranged in the horizontal direction or arranged obliquely. It is also possible.
  • the membrane module 12 has an upper connecting portion 23 provided on the upper end surface of the water collecting case 14 and a lower connecting portion 24 provided on the lower end surface.
  • the upper connecting portion 23 and the lower connecting portion 24 form a water collecting port to collect water.
  • the water case 14 communicates with the water collection space 14a.
  • the lower connecting portion 24 of the upper membrane module 12 and the upper connecting portion 23 of the lower membrane module 12 are connected, and the upper connecting portion 23 of the water collecting case 14 in the upper membrane module 12 is collected via the tube 25. It communicates with the water pipe 26.
  • the lower connecting portion 24 of the lower membrane module 12 is closed by a plug (not shown), but it is also possible to use a lower membrane module 12 that does not have the lower connecting portion 24. is there.
  • the permeate may be taken out from at least one of the left and right upper connecting portions 23 in the upper membrane module 12 and the left and right lower connecting portions 24 in the lower membrane module 12.
  • each water collecting case 14 holds a plurality of membrane elements 13 in a watertight manner via a sealing material (resin or the like) 16 potted in the opening 15.
  • a sealing material 16 such as a resin is potted in the slit.
  • a sealing material such as rubber can be disposed around the membrane element 13. (Membrane element configuration) As shown in FIG. 3 and FIG.
  • the membrane element 13 is a filtration membrane comprising a resin filter plate 17 that forms a membrane support and a flat membrane (organic membrane) that is disposed so as to cover the front and back main surfaces of the filter plate 17. 18, and each membrane element 13 communicates with the water collection space 14 a of the water collection case 14 through a permeate passage formed between the front and back main surfaces of the filter plate 17 and the filtration membrane 18.
  • the resin filter plate 1 is exemplified as the membrane support, but a flexible material such as a nonwoven fabric or a net may be used as the membrane support.
  • the upper end side of the membrane element 13 is positioned downstream in the flow direction of the liquid to be processed, and the lower end side thereof is positioned upstream in the flow direction of the liquid to be processed.
  • the filtration membrane 18 includes a downstream inversion portion 20 that is folded back including the downstream end portion 19 of the filter plate 17 and an upstream inversion portion 29 that is folded back including the upstream end portion 27. End portions of the filter plates 17 overlap with each other on the main surface or the end surface of the filter plate 17, and one end portion located outside the filtration membrane 18 extends toward the downstream side. Bonding portions 30 are formed by bonding.
  • the joint portion 30 is formed by welding with ultrasonic waves or adhesion with an adhesive.
  • the membrane elements 13 having this structure are arranged in parallel at a predetermined interval, and a plurality of membrane elements 13 are constrained on the filter plate 17 by a sealing material (resin or the like) 16 arranged therebetween, and the water collecting case 14
  • the opening 15 is sealed with a sealing material 16 in a watertight manner.
  • the sealing material 16 only needs to secure water tightness with the filtration membrane 18, and it is not always necessary to strongly press the filtration membrane 18 against the filter plate 17.
  • the membrane element 13 has a structure in which the filter plate 17 and the filtration membrane 18 are not directly fixed and joined, and the filtration membrane 18 and the filter plate 17 are not directly fixed on the four sides of the filter plate 17 by adhesion or welding.
  • the structure is realized.
  • the membrane element 13 It is also possible to join the filtration membrane 18 directly.
  • the condition is that the joining does not disturb the permeate channel.
  • the sealing material 16 can be formed for each individual membrane element 13, and on each side of the filter plate 17 along the flow direction of the liquid to be treated for each membrane element 13.
  • the edge of the filter membrane 18 is restrained on the filter plate 17 by the sealing material 16.
  • the membrane elements 13 having this structure can be arranged in parallel at a predetermined interval, and a plurality of membrane elements 13 can be bound by a sealing material (resin or the like) 16 arranged between them. Furthermore, as described above, a sealing material such as a rubber material can be disposed on the filtration membrane 18 to join the filtration membrane 18 to the filter plate 17.
  • the loop-shaped filtration membrane 18 is formed by one membrane sheet.
  • the filtration membrane 18 can also be formed in a loop shape with a plurality of membrane sheets.
  • the filtration membrane 18 can be formed of a membrane sheet having a seamless loop shape.
  • the membrane sheet forms a loop shape, but it is also possible to join the filtration membrane 18 to the filter plate 17 at either or both of the upstream end and the downstream end of the membrane element 13. .
  • the inside of the membrane element 13 is not overpressured during chemical cleaning.
  • the water collection case 14 is a convex portion 41 a in which a wall body 41 facing at least a side portion of the membrane element 13 among the wall bodies 41 arranged surrounding the water collection space 14 a protrudes outward.
  • concave portions 41b that are recessed inward are formed on both sides following the convex portions 41a. It is preferable that the convex portion 41a and the concave portion 41b are formed with curved surfaces and have a continuous curved surface.
  • the buckling load of the wall body 41 is increased by forming the convex portion 41a protruding outward and the concave portion 41b recessed inward. Therefore, when the water collection space 14a in this Embodiment is made into the same volume as the water collection case in the conventional structure, for example, as shown in FIG. 5, the cross-sectional area and the width W of the water collection space 14a are equivalent to the conventional one. Even in this case, a water collecting case with increased strength can be realized, and the water collecting case 14 is not easily damaged even if the membrane modules 12 are stacked in multiple stages.
  • region 14b is formed in the water collection space 14a by forming the convex part 41a from which the wall 41 protrudes outside.
  • the water collection case 14 is composed only of the wall body 41. However, as shown in FIGS. 7 to 8, it is also possible to provide ribs 42 outside the wall body 41 surrounding the water collection space 14a. .
  • the rib 42 has vertical ribs 42a and horizontal ribs 42b arranged vertically and horizontally, and has a shape that fits within the overall length of the apparatus along the direction between the water collecting cases.
  • the rib 42 does not become a factor that obstructs the flow of the liquid to be treated, and the strength of the water collecting case 14 can be increased without increasing the outer dimensions of the membrane separation device.
  • the membrane module 12 of the present invention has the following effects. Normal operation Air is diffused as an aeration gas from the diffuser 11a arranged at the lower position of the lower membrane module 12, and an upward flow of gas-liquid mixed phase is generated inside the membrane cassette 11 by the air lift action of air bubbles. .
  • the liquid to be processed in the treatment tank (not shown) is supplied between the membrane elements 13 to form a flow of the liquid to be treated along the membrane surface of the membrane element 13 and permeate the filtration membrane 18.
  • the liquid to be treated is supplied in a cross flow with respect to the flow of permeate flowing in
  • the membrane element 13 is arranged in the vertical direction.
  • the membrane elements 13 can be arranged in a horizontal direction or an oblique direction.
  • the activated sludge mixed liquid in the tank is gravity filtered by each membrane element 13 using the water head in the tank as the driving pressure.
  • suction filtration is performed by applying a suction pressure as a driving pressure to each membrane module 12 of the membrane cassette 11 through the water collection pipe 26 and the tube 25 by a suction pump.
  • the permeate that has permeated the filtration membrane 18 of the membrane element 13 under the driving pressure flows into the water collection space 14 a of the water collection case 14 through the permeate flow path between the filtration membrane 18 and the filter plate 17.
  • the permeate flowing into the water collecting case 14 of the lower membrane module 12 passes through the upper connecting portion 23 and flows into the water collecting case 14 of the upper membrane module 12 from the lower connecting portion 24.
  • the permeate flowing into the water collecting case 14 of the upper membrane module 12 is led out of the tank as treated water from the upper connecting portion 23 through the tube 25 and the water collecting pipe 26.
  • the activated sludge mixed liquid is supplied by crossflow to the flow path between the membrane elements 13 by the upward flow, and the membrane surface of the membrane element 13 is aerated and washed by the upward flow.
  • aeration cleaning By this aeration cleaning, a decrease in the separation function due to fouling is suppressed, and the membrane separation apparatus is prevented from malfunctioning.
  • Aeration cleaning operation In the case of gravity filtration, a valve (not shown) provided in the water collecting pipe 26 is closed, and in the case of suction filtration, the suction pump is stopped to stop the filtration operation. If the diffuser 11a is operated in this state to perform aeration cleaning, an excellent cleaning effect can be obtained.
  • the filtration membrane 18 has the reversing part 20 folded including the downstream end 19 of the filter plate 17, the permeate pushed to the upper downstream side between the filter plate 17 and the filtration membrane 18 is the reversing part.
  • the filtration membrane 18 swells flexibly at the reversing unit 20 and allows the permeate to move.
  • the bulge of the reversing portion 20 is formed in the downstream region of the end portion 19 on the downstream side of the filter plate 17, the bulge of the reversing portion 20 does not become a resistance to the upward flow flowing along the filter plate 17, Vibrations and stresses do not occur in the filtration membrane 18 due to the 20 bulges.
  • the reversal part 20 swells flexibly to allow the permeate to move, and the bulge does not become a resistance against the upward flow, thereby suppressing the load acting on the filtration membrane 18 and breaking the filtration membrane 18.
  • Chemical liquid cleaning At the time of chemical liquid cleaning, the chemical liquid is supplied to each membrane module 12 of the membrane cassette 11 through the water collection pipe 26 and the tube 25, and the chemical liquid is supplied to the permeate flow path between the filter plate 17 and the filtration membrane 18 at a predetermined pressure. . At this time, the filtration membrane 18 receives the internal pressure and swells outward. In this state, the tensile stress along the membrane surface acts on the filtration membrane 18.
  • the filtration membrane 18 can be prevented from being broken, and a high internal pressure can be applied in the chemical cleaning.
  • the end portions of both the membrane sheets are arranged so as to overlap each other on the main surface of the filter plate 17, and the end portions of both the membrane sheets are joined to form the joint portion 30. Therefore, since the tensile force acting on the filtration membrane 18 acts as a shearing force at the joint 30, a large joint strength can be ensured. Further, at both sides of the membrane element 13 along the flow direction of the liquid to be treated, the sealing material 16 restrains the filtration membrane 18 on the filter plate 17 from the outside, so that the filtration membrane 18 receives the internal pressure and swells outside. Even in such a state, a large strength can be secured.
  • the water collecting case 14 is formed by continuously forming the convex portions 41a and the concave portions 41b in which the wall body 41 forms a curved surface, thereby increasing the buckling load of the wall body 41 and increasing the pressure resistance against internal and external pressures. Even under the supply pressure of the chemical solution or the driving pressure during the filtration operation, the product is not damaged. Furthermore, the pressure strength is increased by providing the ribs 42.
  • the water collecting case 14 may be formed with a plurality of convex portions 41a formed on the wall body 41, and the concave portions 41b are formed on both sides of each convex portion 41a.
  • the recess 41b can be formed only between the protrusions 41a.
  • the vertical ribs 42a and the horizontal ribs 42b of the ribs 42 provided on the outside of the wall body 41 can be formed shorter than the overall length of the apparatus along the direction between the water collecting cases. Also in this case, as shown in FIGS. 12 to 13, the convex portions 41a formed on the wall body 41 may be formed at a plurality of locations, and the concave portions 41b are formed on both sides of each convex portion 41a.
  • the water collection case 14 can also form the convex part 41a formed in the wall body 41 in a rectangular cross section, and the protruding corner of the convex part 41a and the entering corner of the concave part 41b are at right angles.
  • the shape is not limited to chamfering and curved surfaces.
  • the water collection case 14 can also form the convex part 41a formed in the wall body 41 in the cross-sectional triangle shape, and the protrusion corner of the convex part 41a and the entering corner of the concave part 41b are at right angles.
  • the shape is not limited to chamfering and curved surfaces.
  • the vertical ribs 42a and the horizontal ribs 42b of the ribs 42 can be formed outside the wall body 41, and the ribs 42 can be formed obliquely.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

 集水ケースの壁体が外側へ突出する凸部を形成するとともに、内側へ窪む凹部を形成する。

Description

膜分離装置および膜カセット
 本発明は、上水や廃水などの一般水処理においてろ過または濃縮に用いられる膜分離装置および膜カセットに関し、その集水ケース構造に係るものである。
 従来の膜分離装置としては、例えば、複数の膜エレメントを適当な間隔で平行に配置した浸漬型膜装置が知られている。
 例えば、日本国特許公報(特開平11-33370号)に記載するものでは、スペーサーを介して2枚の平膜を積層し、2枚の平膜の両側において双方の端部同士を溶着または接着してろ過膜体を形成しており、ろ過膜体の側部に設けたろ液集水部がろ過膜体の内部に連通している。
 また、日本国特許公報(特許第3815645号)に記載するものでは、分離体ユニットが、通水機能を有する通水材の両面にろ過膜を装着し、ろ過膜の膜端を接合部材で通水材に接合し、接合部材に中空部を形成してなり、接合部材の中空部に設けた吸引管が通水材の流路に連通している。
 このような膜分離装置の概念的モデルを図18~図19に示す。ここでは、複数の膜エレメント1を並列に配置し、膜エレメント1の相互間に被処理液の流れ方向に沿った流路2を形成している。膜エレメント1は膜支持体の表面にろ過膜を配置したものであり、膜支持体とろ過膜との間に透過液流路を有している。膜エレメント1の両側に配置した各集水ケース3が、内部の集水空間4に連通する開口部を有し、開口部に挿入した膜エレメント1の側部を封止材で水密に保持しており、膜エレメント1の透過液流路が集水ケース3の集水空間4に連通している。
 ところで、上述したような膜分離装置は、膜エレメント1と集水ケース3とだけでモジュールをなしており、他の構造部材を必要としていない。このため以下の問題がある。
 1.処理槽の被処理液中に膜分離装置を浸漬する場合に、膜エレメント1の充填数を増加させるには、複数のモジュールを多段に積層して配置する構成が有効である。
 しかしながら、膜エレメント1と集水ケース3とだけでモジュールを構成しているので、下段の膜分離装置は上段に配置した膜分離装置の荷重を集水ケース3において受け止める。このため、下段側であるほどに集水ケース3に加わる荷重は大きくなり、その荷重に耐える強度が集水ケース3に求められる。
 2.メンテナンス等において膜分離装置を処理槽の外へ引き上げる場合に、集水ケース3は内部に透過液が満ちた状態にあり、自重量以外に内部の透過液の重量が加わる。
 3.ろ過運転する際に、集水ケース3の内部には駆動圧力としての吸引圧が作用し、外部圧力に較べて内部圧力が低くなる。また、膜エレメント1の薬液洗浄時には、集水ケース3から膜エレメント1の内部へ薬液を供給するので、集水ケース3の内部には供給圧力が作用し、外部圧力に較べて内部圧力が高くなる。よって、使用時の圧力によっては、集水ケース3の変形、破損が起こることがある。
 しかし、集水ケース3は外壁を形成する薄い板状の壁体からのみなり、荷重、内圧、外圧を外周の壁体でのみ受け止めるので、集水ケース3としての耐荷重は構造的に小さくなる。
 図19に示すように、集水ケース3の内部にリブ5を配置して補強する場合には、リブ5が集水ケース3の集水空間4における透過液の流れを阻害する要因となる。また、集水ケース3の外部にリブ5を配置する場合には、処理槽の被処理液の流れを阻害する要因となり、かつ膜分離装置の外形寸法が大きくなる。
 次に、膜エレメント1に薬液を満たすためには、集水ケース3に薬液を満たすことが必要であり、集水ケース3の集水空間4を不必要に大きくすると、薬液洗浄時に必要な薬液量が増加する。
 次に、集水ケース3の集水空間4には、各膜エレメント1から同時に透過液が流入する。集水ケース3の透過液は集水口6を通して外部へ流れ出すので、集水口6へ近づくほどに各膜エレメント1から流入する透過液が合流する。言い換えると、集水口6から遠い膜エレメント1から集水口6へ向けて流れる透過液にとって、集水口6に近い膜エレメント1から集水空間4に流入する透過液は流路抵抗となる。
 この流路抵抗は、膜エレメント1が集水口6から遠いほどに大きくなり、透過液が膜エレメント1から集水空間4へ流入することを阻害する要因となる。このため、膜エレメント1を流れる透過液の流量が膜エレメント1の相互間でばらつくことになる。
 本発明は上記した課題を解決するものであり、集水ケースにおいて十分な強度を確保することができるとともに、集水空間において透過液が円滑に流れることを実現する膜分離装置および膜カセットを提供することを目的とする。
 上記課題を解決するために、本発明の膜分離装置は、並列配置して相互間に被処理液流路を形成する複数の膜エレメントと、被処理液流路に沿った膜エレメントの側部を水密に保持して内部に集水空間を有し、膜エレメントの透過液流路が集水空間に連通する集水ケースを備え、集水ケースは、集水空間を囲んで配置する壁体のうちで、少なくとも膜エレメントの側部に対向する壁体が外側へ突出する凸部と内側へ窪む凹部を形成することを特徴とする。
 また、本発明の膜分離装置において、集水ケースは、膜エレメントの側部に対向する壁体が外側へ突出する凸部を形成するとともに、集水空間に拡張領域を形成し、拡張領域に臨んで開口する集水口を有することを特徴とする。
 また、本発明の膜分離装置において、集水ケースは、集水空間を囲む壁体の外側にリブを有し、リブは集水ケース間方向に沿った装置全長寸法内に収まる形状をなすことを特徴とする。
 本発明の膜分離カセットは、上述した膜分離装置を用いるものであって、被処理液の流れ方向に沿って複数の膜分離装置を上下に多段に積層したことを特徴とする。
 また、本発明の膜分離カセットは、上下の膜分離装置が双方の集水ケースの相対向する壁面に形成した連結部をなす集水口を介して連通することを特徴とする。
 以上のように本発明は、集水空間を囲んで配置する壁体のうちで、少なくとも膜エレメントの側部に対向する壁体が外側へ突出する凸部を形成するとともに、内側へ窪む凹部を形成することで、壁体の座屈荷重が大きくなる。よって、本願発明においては、従来の構成における集水ケースと同容積の集水空間を設ける場合に、強度を高めた集水ケースを実現できる。
 また、膜エレメントの側部に対向する壁体が外側へ突出する凸部を形成するとともに、集水空間に拡張領域を形成し、拡張領域に臨んで開口する集水口を有することで、集水口の周囲の流路が広くなる。このため、各膜エレメントから流入する透過液が合流しながら集水口へ向けて流れても、集水口の付近における流路抵抗の増加を抑制でき、各膜エレメントを流れる透過液の流量の均等化に貢献できる。
 リブは壁体の外側に、かつ集水ケース間方向に沿った装置全長寸法内に配置することで、被処理液の流れを阻害する要因とならず、膜分離装置の外形寸法が大きくなることもなく、集水ケースの強度を増加させることができる。
本発明の実施の形態における膜カセットを示す斜視図 同膜カセットの膜モジュールにおける要部を示す断面図 本発明の実施の形態における膜エレメントを示す斜視図 同膜エレメントを示す正面図 同実施の形態における膜モジュールの平面図 同実施の形態における膜モジュールの正面図 本発明の他の実施の形態における膜モジュールの平面図 本発明の他の実施の形態における膜モジュールの側面図 本発明の他の実施の形態における膜モジュールの平面図 本発明の他の実施の形態における膜モジュールの平面図 本発明の他の実施の形態における膜モジュールの正面図 本発明の他の実施の形態における膜モジュールの平面図 本発明の他の実施の形態における膜モジュールの正面図 本発明の他の実施の形態における集水ケースの平面図 本発明の他の実施の形態における集水ケースの平面図 本発明の他の実施の形態における集水ケースの平面図 本発明の他の実施の形態における集水ケースの平面図 従来の膜モジュールを示す平面図 従来の膜モジュールを示す平面図
(実施の形態1)
 以下、本発明の実施の形態を図面に基づいて説明する。図1~図6において、膜分離装置をなす膜カセット11は上下に積み重ねた複数の膜モジュール12からなり、処理槽(図示省略)内の被処理液に浸漬して設置している。膜カセット11は下段の膜モジュール12の下方位置に散気装置11aが配置してある。膜分離装置は一段の膜モジュール12のみで構成することも可能である。
 膜モジュール12は複数の膜エレメント13を所定間隔で並列に配置し、膜エレメント13の相互間に縦方向に被処理水の流路を形成し、被処理水の流れに沿った各膜エレメント13の両側をそれぞれ集水ケース14に水密に封止している。各集水ケース14は中空状をなして内部に集水空間を有している。しかしながら、集水ケース14は膜エレメント13の一方の側部にのみ設けることも可能である。この場合に、膜エレメント13の他方の側部は後述する樹脂等によって封止する。
 本実施の形態では、膜エレメント13を上下方向に配置する構成を示している。しかしながら、膜エレメント13の配置方向は上下方向に限るものではなく、被処理液の流れ方向に沿って配置するものであれば良く、水平方向に配置することも可能であり、あるいは斜めに配置することも可能である。
 膜モジュール12は集水ケース14の上端面に設けた上部連結部23および下端面に設けた下部連結部24を有しており、上部連結部23および下部連結部24は集水口をなして集水ケース14の集水空間14aに連通している。
 上方の膜モジュール12の下部連結部24と下方の膜モジュール12の上部連結部23とが連結しており、上方の膜モジュール12における集水ケース14の上部連結部23がチューブ25を介して集水管26に連通している。
 本実施の形態では、下方の膜モジュール12の下部連結部24は栓(図示省略)によって閉栓しているが、下方の膜モジュール12として下部連結部24の存在しないものを使用することも可能である。
 また、透過液の取り出しは、上方の膜モジュール12における左右の上部連結部23、下方の膜モジュール12における左右の下部連結部24の少なくとも1箇所から行なえば良い。
 図2に示すように、各集水ケース14は開口部15にポッティングした封止材(樹脂等)16を介して複数の膜エレメント13を水密に保持している。しかしながら、図2に示した構成に限らず、集水ケース14に膜エレメント13を水密に接合する構造には種々のものがある。例えば、集水ケース14の開口部15を単一の開口とせずに、複数のスリットに形成し、各スリットに膜エレメント13を挿入し、スリットに樹脂等の封止材16をポッティングすることも可能である。あるいは、膜エレメント13の周囲にゴム等のシール材を配置することも可能である。
(膜エレメントの構成)
 図3および図4に示すように、膜エレメント13は膜支持体をなす樹脂製のろ板17と、ろ板17の表裏の主面を覆って配置する平膜(有機膜)からなるろ過膜18を有しており、各膜エレメント13はろ板17の表裏の主面とろ過膜18との間に形成した透過液流路が集水ケース14の集水空間14aに連通している。本実施の形態では、膜支持体として樹脂製のろ板1を例示するが、膜支持体としては不織布やネット等のフレキシブルな材質のものを使用する場合もある。
 膜エレメント13は、上端側が被処理液の流れ方向において下流側に位置し、下端側が被処理液の流れ方向において上流側に位置している。ろ過膜18はろ板17の下流側の端部19を含んで折り返した下流側反転部20と上流側の端部27を含んで折り返した上流側反転部29とを有しており、ろ過膜18の端部どうしがろ板17の主面上もしくは端面上において相互に重なり、ろ過膜18の外側に位置する一方の端部が下流側に向けて延在し、ろ過膜18の端部どうしを接合して接合部30を形成している。接合部30は超音波による溶着、もしくは接着剤による接着にて形成する。
 この構造の膜エレメント13を所定間隔で並列に配置し、複数の膜エレメント13をその相互間に配置する封止材(樹脂等)16でろ板17の上に拘束し、かつ集水ケース14の開口部15に封止材16で水密に封止する。封止材16はろ過膜18との水密性を確保できれば良く、ろ過膜18をろ板17に強く押し圧することは必ずしも必要ではない。
 この構成により、膜エレメント13はろ板17とろ過膜18とを直接に固定接合しない構造を有しており、ろ板17の四辺においてろ過膜18とろ板17とが接着や溶着によって直接に固定しない構造を実現している。しかしながら、膜エレメント13は、ろ過膜18の膜面が被処理液に接することがない領域、例えば封止材16に対応する領域や集水ケース14の内部に位置する領域では、ろ板17とろ過膜18とを直接に接合することも可能である。ただし、その接合が透過液流路を阻害しないことを条件とする。
 ところで、図4に示すように、封止材16は個々の膜エレメント13ごとに形成することも可能であり、各膜エレメント13ごとに被処理液の流れ方向に沿ったろ板17の両側部においてろ過膜18の縁辺部を封止材16でろ板17上に拘束する。
 その後に、この構造の膜エレメント13を所定間隔で並列に配置し、複数の膜エレメント13をその相互間に配置する封止材(樹脂等)16で結束することも可能である。さらに、上述したように、ろ過膜18の上にゴム材等のシール材を配置してろ過膜18をろ板17に接合することも可能である。
 上述した実施の形態では、1枚の膜シートによってループ状のろ過膜18を形成した。しかしながら、ろ過膜18は複数枚の膜シートでループ状に形成することも可能である。さらには、ろ過膜18はシームレスのループ状をなす膜シートで形成することも可能である。
 本実施の形態では、膜シートがループ状をなすが、膜エレメント13の上流側端部と下流側端部の何れかもしくは両方において、ろ過膜18をろ板17に接合することも可能である。ただし、薬液洗浄時に膜エレメント13の内部が過圧状態とならないことを前提とする。
(集水ケースの構成)
 図5に示すように、集水ケース14は、集水空間14aを囲んで配置する壁体41のうちで、少なくとも膜エレメント13の側部に対向する壁体41が外側へ突出する凸部41aを形成するとともに、凸部41aに続く両側に内側へ窪む凹部41bを形成している。凸部41aおよび凹部41bは曲面にて形成し、連続した曲面をなすことが好ましい。
 このように、壁体41が外側へ突出する凸部41aと内側へ窪む凹部41bとを形成することで、壁体41の座屈荷重が大きくなる。よって、本実施の形態における集水空間14aを従来の構成における集水ケースと同容積とする場合に、例えば図5に示すように、集水空間14aの断面積と幅Wとを従来と同等とする場合にあっても、強度を高めた集水ケースを実現でき、膜モジュール12を多段に積層しても集水ケース14が破損し難い。
 また、壁体41が外側へ突出する凸部41aを形成することで集水空間14aに拡張領域14bを形成する。この拡張領域14bに臨んで集水口をなす上部連結部23および下部連結部24が開口している。
 この構成により、集水口をなす上部連結部23および下部連結部24の周囲の流路が広くなる。このため、各膜エレメント13から流入する透過液が合流しながら上部連結部23(下部連結部24)へ向けて流れても、上部連結部23(下部連結部24)の付近における流路抵抗の増加を抑制でき、各膜エレメント13を流れる透過液の流量の均等化に貢献できる。
 本実施の形態では、集水ケース14は壁体41のみからなるが、図7~図8に示すように、集水空間14aを囲む壁体41の外側にリブ42を設けることも可能である。リブ42は縦リブ42aおよび横リブ42bを縦横に配置するが、集水ケース間方向に沿った装置全長寸法内に収まる形状をなす。
 この構成により、リブ42は被処理液の流れを阻害する要因とならず、膜分離装置の外形寸法が大きくなることもなく、集水ケース14の強度を増加させることができる。
 本発明の膜モジュール12においては、以下の作用効果を奏する。
通常運転
 下段の膜モジュール12の下方位置に配置した散気装置11aから曝気用気体として空気を散気し、空気の気泡のエアリフト作用により膜カセット11の内部に気液混相の上昇流を生じさせる。この上昇流により処理槽(図示省略)内の被処理液を膜エレメント13の相互間に供給し、膜エレメント13の膜面に沿った被処理液の流れを形成し、ろ過膜18を透過して流れる透過液の流れに対して被処理液をクロスフローで供給する。
 本実施の形態では、エアリフト作用による上昇流により被処理液をクロスフローで供給するので、膜エレメント13を上下方向に配置した。しかしながら、ポンプ等の動力手段により被処理液を膜エレメント13の相互間にクロスフローで供給する場合には、膜エレメント13は水平方向もしくは斜め方向に配置することも可能である。
 膜エレメント13に駆動圧力を与える方式には種々のものがある。ここでは、槽内の水頭を駆動圧力として各膜エレメント13により槽内の活性汚泥混合液を重力ろ過する。あるいは吸引ポンプにより集水管26およびチューブ25を通して膜カセット11の各膜モジュール12に駆動圧力として吸引圧力を与えて吸引ろ過する。
 駆動圧力を受けて膜エレメント13のろ過膜18を透過した透過液は、ろ過膜18とろ板17との間の透過液流路を通って集水ケース14の集水空間14aに流入する。
 このとき、各膜エレメント13から流入する透過液が合流しながら上部連結部23および下部連結部24へ向けて流れても、上部連結部23(下部連結部24)の付近における流路抵抗の増加を抑制でき、各膜エレメント13を流れる透過液の流量の均等化に貢献できる。
 下段の膜モジュール12の集水ケース14に流入した透過液は上部連結部23を通り、上段の膜モジュール12の集水ケース14へ下部連結部24から流入する。上段の膜モジュール12の集水ケース14に流入した透過液は上部連結部23からチューブ25および集水管26を通して処理水として槽外へ導き出す。
 この間に、上昇流によって膜エレメント13の相互間の流路にクロスフローで活性汚泥混合液を供給するとともに、上昇流によって膜エレメント13の膜面を曝気洗浄する。この曝気洗浄によって、ファウリングに起因する分離機能の低下を抑制し、膜分離装置が機能不全に至ることを防止する。
曝気洗浄運転
 重力ろ過の場合には、集水管26に設けたバルブ(図示省略)を閉栓し、吸引ろ過の場合には、吸引ポンプを止めてろ過運転を停止する。この状態で散気装置11aを運転して曝気洗浄を行うと、優れた洗浄効果を得ることができる。
 このとき、上昇流が各膜エレメント13の内部の透過液をろ板17とろ過膜18との間において上方の下流側に押す。
 そして、ろ過膜18はろ板17の下流側の端部19を含んで折り返した反転部20を有するので、ろ板17とろ過膜18との間において上方の下流側へ押される透過液は反転部20に集まり、ろ過膜18が反転部20で柔軟に膨らんで透過液の移動を許容する。
 さらに、反転部20の膨らみはろ板17の下流側の端部19の下流域に形成するので、ろ板17に沿って流れる上昇流に対して反転部20の膨らみが抵抗とならず、反転部20の膨らみを原因としてろ過膜18に振動および応力が生じることはない。
 よって、反転部20が柔軟に膨らんで透過液の移動を許容すること、および膨らみが上昇流に対して抵抗とならないことにより、ろ過膜18に作用する負荷を抑制してろ過膜18が破断することを防止する。
薬液洗浄
 薬液洗浄時には、集水管26およびチューブ25を通して膜カセット11の各膜モジュール12に薬液を供給し、ろ板17とろ過膜18との間の透過液流路に所定圧力で薬液を供給する。このとき、ろ過膜18は内圧を受けて外側に膨らんだ状態となる。この状態において、ろ過膜18には膜面に沿った引張応力が作用する。
 しかしながら、接合部30においてろ過膜18の端部どうしを接合してループ状のろ過膜18を形成することで、ろ過膜18とろ板17とを直接に固定する部位は存在しないので、たとえば、膜支持体とろ過膜とを溶着する場合に比べてろ過膜18の破断を抑制でき、薬液洗浄において高い内圧を与えること可能となる。
 つまり、本実施の形態では、双方の膜シートの端部どうしをろ板17の主面上において相互に重ねて配置し、双方の膜シートの端部どうしを接合して接合部30を形成しているので、ろ過膜18に作用する引張力が接合部30では剪断力として作用するので大きな接合強度を確保することができる。さらに、膜エレメント13の被処理液の流れ方向に沿った両側部では、封止材16が外側からろ過膜18をろ板17上に拘束するので、ろ過膜18が内圧を受けて外側に膨らんだ状態となっても、大きな強度を確保できる。
 よって、薬液洗浄においてろ過膜18の破断を抑制しつつ、高い圧力の下で短時間に薬液を移送し、高い内圧の下で薬液を内側から外側へ通液させる逆液洗浄が可能となる。
 また、集水ケース14は、壁体41が曲面をなす凸部41aと凹部41bを連続的に形成することで、壁体41の座屈荷重が大きくなるとともに、内外圧に対する耐圧強度が大きくなり、薬液の供給圧力下やろ過運転時の駆動圧力下においても破損することはない。さらに、リブ42を設けることで耐圧強度が大きくなる。
 図9に示すように、集水ケース14は、壁体41に形成する凸部41aを複数箇所に形成しても良く、各凸部41aの両側に凹部41bを形成する。しかしながら、凹部41bは凸部41aの相互間にのみ形成することも可能である。
 図10~図11に示すように、壁体41の外側に設けるリブ42の縦リブ42aおよび横リブ42bは、集水ケース間方向に沿った装置全長寸法より短く形成することも可能である。この場合にも、図12~図13に示すように、壁体41に形成する凸部41aを複数箇所に形成しても良く、各凸部41aの両側に凹部41bを形成する。
 図14に示すように、集水ケース14は、壁体41に形成する凸部41aを断面矩形状に形成することも可能であり、凸部41aの出隅および凹部41bの入り隅は直角に限らず、面取り形状や曲面形状に形成することも可能である。
 この場合にも、図15に示すように、壁体41の外側にリブ42の縦リブ42aおよび横リブ42bを形成することも可能である。
 図16に示すように、集水ケース14は、壁体41に形成する凸部41aを断面三角形状に形成することも可能であり、凸部41aの出隅および凹部41bの入り隅は直角に限らず、面取り形状や曲面形状に形成することも可能である。
 この場合にも、図17に示すように、壁体41の外側にリブ42の縦リブ42aおよび横リブ42bを形成することも可能であり、リブ42を斜めに形成することも可能である。

Claims (5)

  1.  並列配置して相互間に被処理液流路を形成する複数の膜エレメントと、被処理液流路に沿った膜エレメントの側部を水密に保持して内部に集水空間を有し、膜エレメントの透過液流路が集水空間に連通する集水ケースを備え、
     集水ケースは、集水空間を囲んで配置する壁体のうちで、少なくとも膜エレメントの側部に対向する壁体が外側へ突出する凸部と内側へ窪む凹部を形成することを特徴とする膜分離装置。
  2.  集水ケースは、膜エレメントの側部に対向する壁体が外側へ突出する凸部を形成するとともに、集水空間に拡張領域を形成し、拡張領域に臨んで開口する集水口を有することを特徴とする請求項1に記載の膜分離装置。
  3.  集水ケースは、集水空間を囲む壁体の外側にリブを有し、リブは集水ケース間方向に沿った装置全長寸法内に収まる形状をなすことを特徴とする請求項1または2に記載の膜分離装置。
  4.  請求項1~3の何れか1項に記載の膜分離装置を用いるものであって、被処理液の流れ方向に沿って複数の膜分離装置を上下に多段に積層したことを特徴とする膜カセット。
  5.  上下の膜分離装置が双方の集水ケースの相対向する壁面に形成した連結部をなす集水口を介して連通することを特徴とする請求項4に記載の膜カセット。
PCT/JP2008/000755 2008-03-27 2008-03-27 膜分離装置および膜カセット WO2009118787A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/736,236 US8741141B2 (en) 2008-03-27 2008-03-27 Membrane separator and membrane cassette
PCT/JP2008/000755 WO2009118787A1 (ja) 2008-03-27 2008-03-27 膜分離装置および膜カセット
CN200880128341.XA CN101980765B (zh) 2008-03-27 2008-03-27 膜分离装置及膜盒
JP2010505031A JP5283689B2 (ja) 2008-03-27 2008-03-27 膜分離装置および膜カセット
EP08720634.8A EP2260928B1 (en) 2008-03-27 2008-03-27 Membrane separator and membrane cassette
HRP20161700TT HRP20161700T1 (hr) 2008-03-27 2016-12-13 Membranski separator i membranska kaseta

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/000755 WO2009118787A1 (ja) 2008-03-27 2008-03-27 膜分離装置および膜カセット

Publications (1)

Publication Number Publication Date
WO2009118787A1 true WO2009118787A1 (ja) 2009-10-01

Family

ID=41113031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/000755 WO2009118787A1 (ja) 2008-03-27 2008-03-27 膜分離装置および膜カセット

Country Status (6)

Country Link
US (1) US8741141B2 (ja)
EP (1) EP2260928B1 (ja)
JP (1) JP5283689B2 (ja)
CN (1) CN101980765B (ja)
HR (1) HRP20161700T1 (ja)
WO (1) WO2009118787A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014054605A (ja) * 2012-09-13 2014-03-27 Hitachi Ltd 膜エレメント、膜モジュール及び膜分離システム
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
JP2019051463A (ja) * 2017-09-14 2019-04-04 株式会社明電舎 集水構造

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011100320A2 (en) * 2010-02-09 2011-08-18 Aquatech International Corporation Advanced filtration device for water and wastewater treatment
EP2767831A1 (de) * 2013-02-19 2014-08-20 DST Diagnostische Systeme & Technologien GmbH Neues PoC-Testsystem und Verfahren
JP2018507101A (ja) * 2015-01-06 2018-03-15 ナノストーン ウォーター インコーポレイテッド 膜アセンブリのための固定デバイスおよび関連する方法
USD764019S1 (en) * 2015-02-20 2016-08-16 Kubota Corporation Filter
CN109311703B (zh) * 2016-05-31 2020-02-11 株式会社明电舍 膜分离装置、用于布置膜元件的结构以及膜盒和膜单元
WO2019075054A2 (en) 2017-10-10 2019-04-18 Tangent Company Llc FILTRATION UNIT
CN114100371B (zh) * 2021-12-10 2024-04-09 雅安沃克林环保科技有限公司 一种陶瓷平板膜模块及膜堆

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394941U (ja) * 1976-12-29 1978-08-02
JPH0788338A (ja) * 1993-09-24 1995-04-04 Yuasa Corp 吸引式濾過モジュール
JPH09276669A (ja) * 1996-04-17 1997-10-28 Mitsubishi Rayon Co Ltd 中空糸膜モジュールユニット及び濾過装置
JP2000237551A (ja) * 1999-02-16 2000-09-05 Hitachi Plant Eng & Constr Co Ltd 浸漬型平膜分離装置およびその制御方法
US6325938B1 (en) 1998-08-12 2001-12-04 Mitsubishi Rayon Co., Ltd. Method of cleaning membrane assembly with detergent
JP2002248323A (ja) * 2001-02-23 2002-09-03 Katsumi Sugimoto 濾過装置
JP2002273178A (ja) 2001-03-14 2002-09-24 Mitsubishi Rayon Co Ltd 膜モジュール用ハウジング、これを用いた膜モジュールおよびその製造方法
US20040060442A1 (en) 2000-12-18 2004-04-01 Yoshihito Nakahara Hollow fiber membrane module, method of manufacturing the hollow fiber membrane module, and housing for hollow fiber membrane module
US20050161389A1 (en) 2002-09-27 2005-07-28 Mitsubishi Rayon Co., Ltd. Hollow fiber membrane module, hollow fiber membrane module unit, membrane filtration device using the same and method of operating the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394941A (en) 1977-01-28 1978-08-19 Ricoh Co Ltd Magnetic brush developing device
JP3250274B2 (ja) 1992-10-08 2002-01-28 東レ株式会社 濾過器
US7037426B2 (en) * 2000-05-04 2006-05-02 Zenon Environmental Inc. Immersed membrane apparatus
EP0931582B1 (en) * 1996-08-22 2006-10-11 Mitsubishi Rayon Co., Ltd. Process of manufacturing a hollow fiber membrane module, process of manufacturing a hollow fiber membrane module unit, and septic tank provided with a module unit thus obtained
JP3929194B2 (ja) * 1999-02-17 2007-06-13 株式会社荏原製作所 中空糸膜ユニット及び膜分離装置
US7294259B2 (en) * 2003-02-13 2007-11-13 Zenon Technology Partnership Membrane module for gas transfer
JP5394941B2 (ja) 2010-01-04 2014-01-22 新神戸電機株式会社 リチウムイオンキャパシタ用電極群、その製造方法及びリチウムイオンキャパシタ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394941U (ja) * 1976-12-29 1978-08-02
JPH0788338A (ja) * 1993-09-24 1995-04-04 Yuasa Corp 吸引式濾過モジュール
JPH09276669A (ja) * 1996-04-17 1997-10-28 Mitsubishi Rayon Co Ltd 中空糸膜モジュールユニット及び濾過装置
US6325938B1 (en) 1998-08-12 2001-12-04 Mitsubishi Rayon Co., Ltd. Method of cleaning membrane assembly with detergent
JP2000237551A (ja) * 1999-02-16 2000-09-05 Hitachi Plant Eng & Constr Co Ltd 浸漬型平膜分離装置およびその制御方法
JP3815645B2 (ja) 1999-02-16 2006-08-30 株式会社日立プラントテクノロジー 浸漬型平膜分離装置およびその制御方法
US20040060442A1 (en) 2000-12-18 2004-04-01 Yoshihito Nakahara Hollow fiber membrane module, method of manufacturing the hollow fiber membrane module, and housing for hollow fiber membrane module
JP2002248323A (ja) * 2001-02-23 2002-09-03 Katsumi Sugimoto 濾過装置
JP2002273178A (ja) 2001-03-14 2002-09-24 Mitsubishi Rayon Co Ltd 膜モジュール用ハウジング、これを用いた膜モジュールおよびその製造方法
US20050161389A1 (en) 2002-09-27 2005-07-28 Mitsubishi Rayon Co., Ltd. Hollow fiber membrane module, hollow fiber membrane module unit, membrane filtration device using the same and method of operating the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014054605A (ja) * 2012-09-13 2014-03-27 Hitachi Ltd 膜エレメント、膜モジュール及び膜分離システム
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
JP2019051463A (ja) * 2017-09-14 2019-04-04 株式会社明電舎 集水構造
JP7035398B2 (ja) 2017-09-14 2022-03-15 株式会社明電舎 集水構造

Also Published As

Publication number Publication date
CN101980765A (zh) 2011-02-23
EP2260928A4 (en) 2013-11-27
EP2260928A1 (en) 2010-12-15
HRP20161700T1 (hr) 2017-02-10
CN101980765B (zh) 2015-11-25
US8741141B2 (en) 2014-06-03
US20110005993A1 (en) 2011-01-13
EP2260928B1 (en) 2016-09-21
JPWO2009118787A1 (ja) 2011-07-21
JP5283689B2 (ja) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5283689B2 (ja) 膜分離装置および膜カセット
JP5441887B2 (ja) 膜エレメントおよび膜モジュール
JP5611032B2 (ja) 浸漬型膜分離装置
EP2666536B1 (en) Membrane separation device
JP5566031B2 (ja) 間隔保持部材および膜エレメントおよび浸漬型膜分離装置
JP2007268388A (ja) 膜カートリッジおよび浸漬型膜分離装置
WO2012095992A1 (ja) 濾過装置
JP3538902B2 (ja) 浸漬型膜分離装置の膜エレメント
JP4902684B2 (ja) 浸漬型膜分離装置における膜カートリッジ
US8764982B2 (en) Membrane separation device
JP5473193B2 (ja) 膜カートリッジ
JP5105787B2 (ja) 膜カートリッジ
JP5442073B2 (ja) 膜カートリッジ
JP5090414B2 (ja) 平膜エレメントの締結構造
JP2013202514A (ja) 浸漬型平膜エレメント
JPS6233503A (ja) 流体分離装置用膜セツト

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880128341.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08720634

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2008720634

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008720634

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12736236

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010505031

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4016/KOLNP/2010

Country of ref document: IN