WO2009117993A2 - Niederdruckpumpe - Google Patents

Niederdruckpumpe Download PDF

Info

Publication number
WO2009117993A2
WO2009117993A2 PCT/DE2009/000394 DE2009000394W WO2009117993A2 WO 2009117993 A2 WO2009117993 A2 WO 2009117993A2 DE 2009000394 W DE2009000394 W DE 2009000394W WO 2009117993 A2 WO2009117993 A2 WO 2009117993A2
Authority
WO
WIPO (PCT)
Prior art keywords
pump
power
parts
shut
rotary
Prior art date
Application number
PCT/DE2009/000394
Other languages
English (en)
French (fr)
Other versions
WO2009117993A3 (de
Inventor
Felix Arnold
Original Assignee
Cor Pumps + Compressors Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cor Pumps + Compressors Ag filed Critical Cor Pumps + Compressors Ag
Priority to JP2011501102A priority Critical patent/JP5101731B2/ja
Priority to BRPI0910111-0A priority patent/BRPI0910111B1/pt
Priority to US12/934,870 priority patent/US9022752B2/en
Priority to EP09725577.2A priority patent/EP2271839B1/de
Priority to CN200980111441.6A priority patent/CN101981320B/zh
Publication of WO2009117993A2 publication Critical patent/WO2009117993A2/de
Publication of WO2009117993A3 publication Critical patent/WO2009117993A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/48Rotary-piston pumps with non-parallel axes of movement of co-operating members
    • F04C18/54Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged otherwise than at an angle of 90 degrees
    • F04C18/56Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged otherwise than at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/565Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged otherwise than at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing the axes of cooperating members being on the same plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/102Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum

Definitions

  • the invention relates to a rotary pump for gaseous media according to the preamble of the main claim.
  • a known rotary lobe pump of the generic type (DE 42 41 320 C2) is an essential feature that "the teeth of each combing with the cycloidal part together acting part corresponding tooth combs which run along the planks of Zykloidenteils, the tooth combs a free
  • a high degree of tightness is achieved between the toothed ridges of the shut-off part and the flanks of the cycloid part, which is of considerable importance especially when used as a low-pressure pump or vacuum pump and to provide double shut-off in each case, is already present in this known pump and also the possibility to connect the two, however, the same size work spaces together.
  • the invention has the object to develop a rotary piston pump for gaseous media of the type mentioned, which has the advantages of the mentioned in the generic state of the art pump, but in addition, especially for large series, is low to produce, with a relatively large pressure range can be covered , In particular, to achieve a correspondingly lower pressure (vacuum), and this using two synchronized workspaces.
  • the description and the claims are based on an absolute pressure of 0, in contrast, the atmospheric pressure 1 bar with vacuum designation between absolute pressure 0 and atmospheric pressure about 1 bar corresponding to 1000 millibars.
  • the rotary lobe pump according to the invention with the characterizing features of the main claim has the advantage that it is a 2-stage Pum ⁇ e is, in which the first power section is driven by the rotating part of the electric motor, with which it is firmly connected, while the non-co-rotating part of the electric motor is anchored in the motor housing, and wherein the second power section is taken over a clutch from the first power section and co-rotated accordingly.
  • the two power units are rotatably mounted via radial bearings in a conventional manner in the housing and according to the invention, in particular in the motor housing of the electric motor.
  • the two power parts are pressed with their frontally arranged tooth combs on those of the corresponding Absperrteils, which, in particular by the rounding of the tooth combs, a desired form-fit arises, because of its tightness, especially when used for gaseous media of particular importance is.
  • the motor armature and magnet set of the electric motor receiving Motor housing on both ends by the respective Absperrteil and power unit receiving pump housing closed which also not only extremely cheap production and assembly allows, but above all, greatly simplified future service.
  • the pump outlet of the second pump is connected to the atmosphere and its inlet to the outlet of the first pump.
  • the outlet and inlet of the first and second pumps are connected to one another via the annular space formed in the electric motor between coil and armature.
  • the invention serves as a vacuum pump for a brake booster of a service brake system of a motor vehicle, wherein a line connection in the corresponding pump housing for a line to the brake booster is provided at the inlet of the first pump.
  • a line connection in the corresponding pump housing for a line to the brake booster is provided at the inlet of the first pump.
  • the executed by the driver's foot on the brake pedal force is amplified in a known manner, without causing a sensitive grading of the braking force is impaired.
  • an extra vacuum pump was used in diesel engines for actuating the brake booster, wherein the assist force is proportional to the driver's foot force. It is significant that very low pressures of about 100 millibars can be achieved by the invention.
  • FIG. 1 shows a longitudinal section through a rotary piston pump according to the invention.
  • Fig. 2 is a view of the rotary piston pump of FIG. 1 according to the arrow I in Fig. 1 and
  • Fig. 3 shows a known vacuum brake booster in longitudinal section but other scale, as a possible application of the invention. Description of the embodiment
  • a rotatable magnet set 3 is arranged in a cylindrically shaped motor housing 1, said magnet set is rotatably mounted to the motor housing 1 through ball bearings 4.
  • the housing 5 and 6 of individual pumps 9 and 10 close, with part-spherical interior spaces, said pump housing 5 and 6 screwed onto the end faces of the motor housing 1 and O-ring seals 7 outside the housing 1, 5, 6 are sealed.
  • the axes of the part-spherical interiors of the individual pumps fall into the axis of the electric motor.
  • To fasten the pump housing 5, 6 on the electric motor housing 1 serve screws 8, which allow a quick disassembly.
  • the two arranged in the pump housings 5 and 6 individual pumps 9 and 10 have a different volume performance, namely, the volume capacity of the first pump 9 is greater than that of the second pump 10.
  • Both pumps 9 and 10 have the same displacement system, as by The above-mentioned prior art is known. These are in each case a power unit 11, which is driven by the electric motor, of somewhat larger volume power and 12, on the other hand, of somewhat smaller volume power and in each case a shut-off part 13 of somewhat greater volume power and a somewhat smaller volume power.
  • the shut-off parts 13 and 14 are rotatably mounted on ball bearings 15 in the pump housings 5 and 6.
  • the power parts 11 and 12 are arranged coaxially with the electric motor, whereas the shut-off parts 13 and 14 are mounted at a certain angle to this axis of rotation to thereby to achieve the required volume change of the pump work spaces during rotation, namely an increase or decrease during rotation and wherein the axes of rotation of these shut-off parts intersect with the axis of the power parts or of the electric motor.
  • the basic function of this type of rotary engine is DE 42 41 320 C2 removable.
  • Fig. 1 of the present application for the sake of simplicity, the two associated pumps have been shown in a position in which that normally between the power unit and Absperrteil existing working space according to the section plane selected there is not recognizable.
  • the power unit 11 is rotationally connected to the motor armature 2 and has a rotary coupling not shown in detail to turn the power unit 12 of the pump 10.
  • This may be a rotary joint of various kinds - it is decisive that it allows axial mobility to the magnet set, so that over a arranged between the power parts 11 and 12 coil spring 16, the two power parts are charged to their associated shut-off parts 13, 14 out , This axial load an improved form fit between flanks and tooth combs of the frontally opposite teeth is achieved.
  • the larger volume capacity of the first pump 9 is achieved in that the pumping parts, namely power part 11 and shut-off part 13, in the spherical region have a larger diameter than the corresponding parts 12 and 14 in the second pump 10 of smaller volume.
  • the pumping power with respect to the first pump 9 is greater than that of the downstream one due to the larger volume capacity
  • 8th second pump 10 which in turn is connected to the outlet side with the atmosphere and the inlet side with the outlet of the pump.
  • this second pump 10 has an output port 17 to the atmosphere.
  • the first pump is, as indicated by dash-dotted lines, on the inlet side connected to a vacuum brake booster of a motor vehicle shown in Fig. 3.
  • the pump should produce at least 500 millibar for such a brake booster.
  • About such a vacuum brake booster foot power of the driver is reinforced.
  • the support force increases when the brake is applied proportional to the foot force up to the so-called control point. From here, the support force no longer increases.
  • a prospectus removed brake booster is constructed as follows.
  • a diaphragm 19 separates a vacuum chamber 20 (actually a low pressure chamber) into which the first pump line 18 flows from a working chamber 21.
  • a piston rod 22 transmits the applied foot force to a working piston 23 while the increased braking force is applied to the push rod 24 acts on the master cylinder, not shown.
  • the vacuum chamber 20 and the working chamber 21 are connected to one another via channels in the valve housing. Via the line 18 there is a low pressure in both chambers.
  • the piston rod 22 moves toward the vacuum chamber 20 and presses the cuff of a double valve 25 against the valve seat.
  • vacuum chamber 20 and working chamber 21 are again connected to each other, so that there is the same pressure in both chambers.
  • the text of this section has been taken from the brochure of a manufacturer of such brake booster and is only used to explain the necessity and use of vacuum pumps).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Es wird eine Niederdruckpumpe/Vakuumpumpe für gasförmige Medien vorgeschlagen, mit zwei zusammenwirkenden mit ihren Zähnen als Zykloidenteil ausgebildeten Kämmen und wobei diese doppelt vorhandenen Verdichterstufen miteinander verbunden sind, wobei ein Leistungsteil der Pumpen/Verdichter angetrieben und das Leistungsteil der anderen Pumpe/Verdichter achsgleich angeordnet über einen Drehschluss mit angetrieben wird.

Description

COR pumps + compressors AG. 70173 Stuttgart
Niederdruckpumpe
Stand der Technik
Die Erfindung geht aus von einer Drehkolbenpumpe für gasförmige Medien nach der Gattung des Hauptanspruchs. Bei einer bekannten Drehkolbenpumpe der gattungsgemäßen Art (DE 42 41 320 C2) ist ein wesentliches Merkmal, dass „die Zähne des jeweils mit dem Zykloidenteil kämmend zusammen wirkenden Teils entsprechende Zahnkämme aufweisen, welche an den Planken des Zykloidenteils entlang laufen, wobei die Zahnkämme einen frei gestaltbaren Radius aufweisen". Hierdurch wird bei deren Anwendung als Pumpe eine hohe Dichtheit zwischen den Zahnkämmen des Absperrteils und den Flanken des Zykloidenteils erzielt, was besonders beim Einsatz als Niederdruckpumpe oder Vakuumpumpe von erheblicher Bedeutung ist. Bei einer solchen ein Zykloidenteil aufweisenden Pumpe, das Leistungsteil und Absperrteil jeweils doppelt vorzusehen, ist bei dieser bekannten Pumpe bereits vorhanden und auch die Möglichkeit, die beiden dort allerdings gleichgroßen Arbeitsräume miteinander zu verbinden.
Bekanntlich entsteht durch ein solches Verbinden der Arbeitsräume eine entsprechende Vergrößerung der jeweiligen Leistung, also der Pumpleistung, als wenn die Arbeitsräume nur eines Leistungsteils genutzt würden. Zwar würde durch eine solche Parallelschaltung die Förderleistung entsprechend vergrößert werden. Der Druck jedenfalls bliebe gleich, es sei denn, er wird nicht extra gesteuert. Nicht zuletzt ist die Mitnahme des zweiten Leistungsteils bei dieser bekannten Pumpe über einen gemeinsamen als Arbeitsteil dienenden Ring nicht unproblematisch, ganz abgesehen davon, dass die Herstellung einer solchen Pumpe, insbesondere wenn sie über einen Elektromotor angetrieben werden soll, aufwendig ist.
Zugrundeliegende Aufgabe
Der Erfindung liegt die Aufgabe zugrunde eine Drehkolbenpumpe für gasförmige Medien der Eingangs genannten Art zu entwickeln, die die Vorteile der im gattungsgemäßen Stand der Technik erwähnten Pumpe aufweist, aber zusätzlich, insbesondere für Großserien, günstig herstellbar ist, mit der ein verhältnismäßig großer Druckbereich abdeckbar ist, insbesondere auch zur Erzielung eines entsprechend niedereren Druck (Vakuums), und dies unter Nutzung von zwei synchronisierten Arbeitsräumen. Die Beschreibung und die Ansprüche gehen von einem absoluten Druck 0 aus, demgegenüber der Atmosphärendruck 1 bar aufweist mit Vakuumbezeichnung zwischen absolutem Druck 0 und Atmosphärendruck ca. 1 bar entsprechend 1000 Millibar.
Die Erfindung und ihre Vorteile
Die erfindungsgemäße Drehkolbenpumpe mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, dass es sich um eine 2-Stufen-Pumρe handelt, bei der das erste Leistungsteil durch den rotierenden Teil des Elektromotors, mit dem er fest verbunden ist, angetrieben wird, während der nicht mitrotierende Teil des Elektromotors im Motorgehäuse verankert ist, und wobei das zweite Leistungsteil über eine Kupplung vom ersten Leistungsteil mitgenommen wird und entsprechend mitrotiert. Hierbei sind die beiden Leistungsteile über Radiallager in üblicher Weise im Gehäuse und erfindungsgemäß insbesondere im Motorgehäuse des Elektromotors drehgelagert.
Nach einer vorteilhaften Ausgestaltung der Erfindung sind zwischen den Leistungsteilen, diese in Richtung Absperrteile hin belastende elastische Mittel angeordnet, wobei als elastische Mittel insbesondere eine mit den Leistungsteilen achsgleich angeordnete Schraubenfeder dient. Durch diese mitrotierenden elastischen Mittel werden die beiden Leistungsteile mit ihren stirnseitig angeordneten Zahnkämmen auf jene des entsprechenden Absperrteils gedrückt, wodurch, insbesondere durch die Abrundung der Zahnkämme, ein gewünschter Formschluss entsteht, der, seiner Dichtheit wegen, besonders beim Einsatz für gasförmige Medien von besonderer Bedeutung ist.
Nach einer zusätzlichen vorteilhaften Ausgestaltung der Erfindung dient für einen Verdrehschluss zwischen den Leistungsteilen eine Steckkupplung, welche eine axiale Relativbewegung der Teile zulässt. Hierdurch bleibt einerseits die Wirkung der elastischen Mittel erhalten, es wird aber andererseits eine Kupplung ermöglicht mit geringem Herstell- und Montageaufwand.
Nach einer zusätzlichen Ausgestaltung der Erfindung ist das Motoranker und Magnetsatz des Elektromotors aufnehmende Motorgehäuse auf beiden Stirnseiten durch die jeweils Absperrteil und Leistungsteil aufnehmenden Pumpengehäuse verschließbar, was ebenfalls nicht nur eine äußerst günstige Herstellung und Montage ermöglicht, sondern vor allem auch einen zukünftigen Service stark vereinfacht.
Nach einer zu sätzlichen vorteilhaften Ausgestaltung der Erfindung weist die erste Pumpe mit ihrem ersten, vom Elektromotor unmittelbar angetriebene Leistungsteil, eine größere volumetrische Leistung auf, als die mit gleicher Drehzahl angetriebene zweite Pumpe mit deren zweiten Leistungsteil, wobei durch Hintereinanderschalten der Pumpen insgesamt eine 2-Stufen- Pumpe entsteht. Hierdurch ist beispielsweise bei der Verwendung als Pumpe niederen Drucks (Vakuumpumpe) der Pumpenauslass der zweiten Pumpe mit der Atmosphäre verbunden und deren Einlass mit dem Auslass der ersten Pumpe.
Nach einer zusätzlichen Ausgestaltung der Erfindung sind Auslass und Einlass der ersten und zweiten Pumpe über den im Elektromotor zwischen Spule und Anker gebildeten Ringraum miteinander verbunden.
Nach einer die Anwendung der erfindungsgemäßen Drehkolbenpumpe betreffenden Ausgestaltung der Erfindung dient sie als Vakuumpumpe für einen Bremskraftverstärker einer Betriebsbremsanlage eines Kraftfahrzeuges, wobei zum Einlass der ersten Pumpe ein Leitungsanschluss im entsprechenden Pumpengehäuse für eine Leitung zum Bremskraftverstärker hin vorhanden ist. Über einen solchen Bremskraftverstärker wird in bekannter Weise die vom Fuß des Fahrers auf das Bremspedal ausgeführte Kraft verstärkt, ohne dass dabei ein feinfühliges Abstufen der Bremskraft beeinträchtigt wird. Während früher bei Otto-Motoren hierfür meist der Saugrohrdruck verwendet wurde, wurde bei Dieselmotoren zur Betätigung des Bremskraftverstärkers eine extra Vakuumpumpe eingesetzt, wobei die Unterstützungskraft proportional zur Fußkraft des Fahrers steht. Bezeichnend ist, dass durch die Erfindung sehr niedere Drücke von ca. 100 Millibar erzielbar sind.
Weitere Vorteile und vorteilhafte Ausgestaltungen der Erfindung sind der nachfolgenden Beschreibung, der Zeichnung und den Ansprüchen entnehmbar.
Zeichnung
Ein Ausführungsbeispiel des Gegenstandes der Erfindung ist in der Zeichnung dargestellt und im folgenden näher beschrieben.
Es zeigen:
Fig. 1 einen Längsschnitt durch eine erfindungsgemäße Drehkolbenpumpe ;
Fig. 2 eine Ansicht der Drehkolbenpumpe aus Fig. 1 gemäß dem Pfeil I in Fig. 1 und
Fig. 3 einen bekannten Vakuumbremskraftverstärker im Längsschnitt aber anderem Maßstab, als mögliche Anwendung der Erfindung. Beschreibung des Ausführungsbeispiels
Bei der in Fig. 1 dargestellten erfindungsgemäßen Drehkolbenpumpe ist in einem zylindrisch ausgebildeten Motorgehäuse 1 ein rotierbarer Magnetsatz 3 angeordnet, wobei dieser Magnetsatz zum Motorgehäuse 1 hin über Kugellager 4 verdrehbar gelagert ist. An die Stirnseiten des Motorgehäuses 1 schließen sich die Gehäuse 5 und 6 von Einzelpumpen 9 und 10 an, mit teilsphärischen Innenräumen, wobei diese Pumpengehäuse 5 und 6 auf die Stirnseiten des Motorgehäuses 1 geschraubt und über O-Ring Dichtungen 7 nach außerhalb der Gehäuse 1, 5, 6 abgedichtet sind. Die Achsen der teilsphärischen Innenräume der Einzelpumpen fallen in die Achse des Elektromotors. Zur Befestigung der Pumpengehäuse 5, 6 am Elektromotorgehäuse 1 dienen Schrauben 8, die eine schnelle Demontage ermöglichen. Die beiden in den Pumpengehäusen 5 und 6 angeordneten Einzelpumpen 9 und 10 weisen eine unterschiedliche Volumenleistung auf, und zwar ist die Volumenleistung der ersten Pumpe 9 größer als die der zweiten Pumpe 10. Beide Pumpen 9 und 10 weisen das gleiche Verdrängungssystem auf, wie es durch den eingangs genannten Stand der Technik bekannt ist. Es handelt sich jeweils um ein durch den Elektromotor angetriebenes Leistungsteil 11 etwas größerer Volumenleistung und 12 demgegenüber etwas kleinerer Volumenleistung und jeweils einem Absperrteil 13 etwas größerer Volumenleistung und 14 etwas kleinerer Volumenleistung. Die Absperrteile 13 und 14 sind auf Kugellagern 15 in den Pumpengehäusen 5 und 6 drehbar gelagert.
Die Leistungsteile 11 und 12 sind achsgleich mit dem Elektromotor angeordnet, wohingegen die Absperrteile 13 und 14 unter einem bestimmten Winkel zu dieser Drehachse gelagert sind, um dadurch die erforderliche Volumenänderung der Pumpenarbeitsräume beim Rotieren zu erzielen, nämlich ein Zunehmen bzw. Abnehmen während des Rotierens und wobei sich die Drehachsen dieser Absperrteile mit der Achse der Leistungsteile bzw. des Elektromotors schneiden. Die grundsätzliche Funktion dieser Art von Drehkolbenmaschine ist der DE 42 41 320 C2 entnehmbar. In Fig. 1 der vorliegenden Anmeldung wurden der Einfachheithalber die beiden zugeordneten Pumpen in einer Stellung gezeigt, in der jener normalerweise zwischen Leistungsteil und Absperrteil vorhandene Arbeitsraum gemäß der dort gewählten Schnittebene nicht erkennbar ist. Jedenfalls ist das Leistungsteil 11 drehschlüssig mit dem Motoranker 2 verbunden und weist eine nicht näher dargestellte Drehkupplung auf, um das Leistungsteil 12 der Pumpe 10 mitzudrehen. Hierbei kann es sich um eine Drehkupplung unterschiedlichster Art handeln - maßgebend ist, dass sie eine axiale Beweglichkeit zum Magnetsatz zulässt, so dass über eine zwischen den Leistungsteilen 11 und 12 angeordnete Schraubenfeder 16 die beiden Leistungsteile zu den ihnen zugeordneten Absperrteilen 13, 14 hin belastet sind. Durch diese axiale Belastung wird ein verbesserter Formschluss zwischen Flanken und Zahnkämmen der stirnseitig einander gegenüberliegenden Zähne erreicht.
Die größere Volumenleistung der ersten Pumpe 9 wird dadurch erreicht, dass die pumpenden Teile, nämlich Leistungsteil 11 und Absperrteil 13, im sphärischen Bereich einen größeren Durchmesser aufweisen als die entsprechenden Teile 12 und 14 in der zweiten Pumpe 10 kleinerer Volumenleistung. Die Pumpleistung bezüglich der ersten Pumpe 9 ist aufgrund der größeren Volumenleistung größer als jene der nachgeschalteten
8 zweiten Pumpe 10, die wiederum auslassseitig mit der Atmosphäre verbunden ist und einlassseitig mit dem Auslass der Pumpe 9.
Wie in Fig. 2 dargestellt weist diese zweite Pumpe 10 einen Ausgangsanschluss 17 zur Atmosphäre auf. Die erste Pumpe ist, wie strichpunktiert angedeutet, einlassseitig mit einem in Fig. 3 dargestellten Vakuum-Bremskraftverstärker eines Kraftfahrzeugs verbunden. Die Pumpe sollte für einen solchen Bremskraftverstärker mindestens 500 Millibar erzeugen. Über einen solchen Vakuum-Bremskraftverstärker wird die Fußkraft des Fahrers verstärkt. Die Unterstützungskraft erhöht sich dabei beim Betätigen der Bremse proportional zur Fußkraft bis zum sogenannten Aussteuerpunkt. Von hier ab erhöht sich die Unterstützungskraft nicht mehr.
Der in Fig. 3 dargestellte einem Prospekt entnommenem Bremskraftverstärker ist wie folgt aufgebaut. Eine Membran 19 trennt eine Unterdruckkammer 20 (eigentlich eine Kammer niederem Drucks), in die die Leitung 18 der ersten Pumpe mündet, von einer Arbeitskammer 21. Eine Kolbenstange 22 überträgt die eingesteuerte Fußkraft auf einen Arbeitskolben 23, während die verstärkte Bremskraft auf die Druckstange 24 auf den nicht dargestellten Hauptbremszylinder wirkt. Bei nicht betätigter Bremse sind Unterdruckkammer 20 und Arbeitskammer 21 über Kanäle im Ventilgehäuse miteinander verbunden. Über die Leitung 18 herrscht ein niederer Druck in beiden Kammern. Sobald ein Bremsvorgang beginnt bewegt sich die Kolbenstange 22 zur Unterdruckkammer 20 hin und drückt die Manschette eines Doppelventils 25 gegen den Ventilsitz. Damit sind Unterdruckkammer 20 und Arbeitskammer 21 voneinander getrennt. Da bei weitergehender Bewegung der Kolbenstange 22 ein Reaktionskolben 26 von der Manschette des Doppelventils 25 abhebt, strömt atmosphärische Luft in die Arbeitskammer 21. Jetzt herrscht in der Arbeitskammer ein höherer Druck als in der Unterdruckkammer. Der Atmosphärendruck wirkt über die Membran 19 auf den Membranteller, an dem die Membran anliegt. Weil das Ventilgehäuse vom Membranteller in Richtung Unterdruckkammer 20 mitgeführt wird, führt dies zu einer Unterstützung der Fußkraft. Jetzt drücken Fußkraft und Unterstützungskraft den Membranteller gegen die Kraft der Druckfeder. Dadurch bewegt sich die Druckstange 24 und überträgt die Ausgangskraft zum Hauptbremszylinder. Nach Beendigung des Bremsvorgangs sind Unterdruckkammer 20 und Arbeitskammer 21 wieder miteinander verbunden, so dass in beiden Kammern der gleiche Druck herrscht. (Der Text dieses Abschnitts wurde dem Prospekt eines Herstellers solcher Bremskraftverstärker entnommen und dient lediglich zur Erläuterung der Notwendigkeit und dem Einsatz von Vakuumpumpen) .
Alle in der Beschreibung, den nachfolgenden Ansprüchen und der Zeichnung dargestellten Merkmale können sowohl einzeln als auch in beliebiger Kombination miteinander erfindungs wesentlich sein.
10 Bezugszahlenliste
1 Motorgehäuse
2 Motoranker
3 Magnetsatz
4 Kugellager
5 Pumpengehäuse
6 Pumpengehäuse
7 O-Ringe
8 Schrauben
9 Erste Pumpe (größerer Volumenleistung)
10 Zweite Pumpe (kleinerer Volumenleistung)
11 Leistungsteil von 9
12 Leistungsteil von 10
13 Absperrteil von 9
14 Absperrteil von 10
15 Lager von 13 und 14
16 Schraubenfeder
17 Ausgangsanschluss
18 Leitung
19 Membran
20 Unterdruckkammer
21 Arbeitskammer
22 Kolbenstange
23 Arbeitskolben
24 Druckstange
25 Doppelventil
26 Reaktionskolben
11

Claims

Ansprüche
1. Drehkolbenpumpe für gasförmige Medien
- mit einem axial sowie radial gelagerten, als Stirnzahnkugelsegment ausgebildeten und mit einer Antrieb s Vorrichtung (1, 2, 3) verbundenen Leistungsteil (11, 12),
- mit einem, ebenfalls als Stirnzahnkugelsegment ausgebildeten, vom Leistungsteil angetriebenen Absperrteil (13, 14) gleichen radialen Dichtungsdurchmessers,
- mit durch Kämmen der Zähne des Leistungsteils (11, 12) und jenen des Absperrteils (13, 14) gebildeten Arbeitsräumen zwischen den Teilen,
- wobei Leistungsteil (11, 12) und Absperrteil (13, 14) radial dichtend in einem Pumpengehäuse (5, 6) geführt sind und insbesondere zur Erzielung einer Pumpwirkung bzw. zur Erzeugung eines niedrigen Drucks (Vakuums) auf ihrer miteinander zusammenwirkenden Stirnseite eine jeweils unterschiedliche Anzahl von einem Zahn aufweisen,
- mit einem linienförmigen, arbeitsraumgrenzenden Formschluss zwischen Flanken und Zahnkämmen der einander gegenüberliegenden zusammenwirkenden Zähne,
- wobei die Zähne eines der zusammenwirkenden Teile, Leistungsteil (11, 12) oder Absperrteil (13, 14), als Zykloidenteil eine zykloidische Abwicklung ihrer Lauffläche aufweisen,
- wobei die Zähne des jeweils mit dem Zykloidenteil kämmend zusammenwirkenden anderen Teils entsprechende und im Radius frei gestaltbare Zahnkämme aufweisen, welche an den Flanken des Zykloidenteils entlanglaufen und
12 - wobei diese aus Leistungsteil (11, 12) und Absperrteil (13, 14) gebildete Pumpe (9, 10) jeweils doppelt vorhanden ist, diese Pumpen (9, 10) gemeinsam angetrieben werden und ihre Arbeitsräume miteinander verbindbar sind, dadurch gekennzeichnet,
- dass die doppelt vorhandenen Leistungsteile (11, 12) antriebsseitig achsgleich angeordnet sind,
- dass ein erstes Leistungsteil (11) von einem antriebsseitig ebenfalls achsgleich in einem Motorgehäuse (1) angeordneten Elektromotor (2, 3) (Spaltmotor) angetrieben wird und
- dass das zweite Leistungsteil (12) drehschlüssig von dem ersten Leistungsteil (11) mitgedreht wird.
2. Drehkolbenpumpe nach Anspruch 1 , dadurch gekennzeichnet, dass zwischen den Leistungsteilen (11, 12) diese in Richtung Absperrteile (13, 14) hin belastende elastische Mittel (16) angeordnet sind und dass als elastische Mittel insbesondere eine, mit den Leistungsteilen (11, 12) achsgleich angeordnete, Schaubenfeder (16) dient.
3. Drehkolbenpumpe nach Anspruch 2, dadurch gekennzeichnet, dass für einen Verdrehschluss zwischen den Leistungsteilen eine Steckkupplung dient, welche eine axiale Relativbewegung der Teile (11, 12) zulässt.
4. Drehkolbenpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
13 dass das Motoranker (2) und Magnetsatz (3) des Elektromotors aufnehmende Motorgehäuse (1) weitgehend zylindrisch ausgebildet ist, wobei deren Stirnseiten durch die beiden Pumpengehäuse (5, 6) verschließbar sind.
5. Drehkolbenpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die rotierenden Teile (2, 11, 12, 13, 14) in Drehlagern (4,
15) in den Gehäusen angeordnet sind.
6. Drehkolbenpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste Pumpe (9) jeweils mit deren Absperrteil (13) und ersten Leistungsteil (11) eine größere volumetrische Leistung aufweist, als das die mit gleicher Drehzahl angetriebene zweite Pumpe (10) mit dem zweiten Leistungsteil (12).
7. Drehkolbenpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Verbindung zur jeweils anderen Pumpe (9, 10) bzw. dem Auslass der ersten und dem Einlass der zweiten Pumpe der im Elektromotor (1, 2, 3) zwischen Magnetsatz (3) und
Motoranker (2) bzw. Motorgehäuse (1) gebildete Ringraum dient.
8. Drehkolbenpumpe nach einem der vorhergehenden Ansprüche,
14 gekennzeichnet durch deren Anwendung als Vakuumpumpe für einen Bremskraftverstärker eines Kraftfahrzeuges.
9. Drehkolbenpumpe nach Anspruch 8, dadurch gekennzeichnet, dass vom Einlass der ersten Pumpe (9) ein Anschluss (18) im entsprechenden Pumpengehäuse (5) für eine Leitung zum Bremskraftverstärker vorhanden ist und vom Einlass der zweiten Pumpe (10) ein Anschluss (17) zur Atmosphäre hin besteht.
15
PCT/DE2009/000394 2008-03-28 2009-03-27 Niederdruckpumpe WO2009117993A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011501102A JP5101731B2 (ja) 2008-03-28 2009-03-27 低圧ポンプ
BRPI0910111-0A BRPI0910111B1 (pt) 2008-03-28 2009-03-27 bomba de baixa pressão
US12/934,870 US9022752B2 (en) 2008-03-28 2009-03-27 Low-pressure pump
EP09725577.2A EP2271839B1 (de) 2008-03-28 2009-03-27 Niederdruckpumpe
CN200980111441.6A CN101981320B (zh) 2008-03-28 2009-03-27 低压泵

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008016293.0 2008-03-28
DE102008016293A DE102008016293A1 (de) 2008-03-28 2008-03-28 Niederdruckpumpe

Publications (2)

Publication Number Publication Date
WO2009117993A2 true WO2009117993A2 (de) 2009-10-01
WO2009117993A3 WO2009117993A3 (de) 2010-04-01

Family

ID=41011163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2009/000394 WO2009117993A2 (de) 2008-03-28 2009-03-27 Niederdruckpumpe

Country Status (7)

Country Link
US (1) US9022752B2 (de)
EP (1) EP2271839B1 (de)
JP (1) JP5101731B2 (de)
CN (1) CN101981320B (de)
BR (1) BRPI0910111B1 (de)
DE (1) DE102008016293A1 (de)
WO (1) WO2009117993A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011087606A1 (de) * 2011-12-01 2013-06-06 Robert Bosch Gmbh Kraftfahrzeugsystemeinrichtung sowie Verfahren zum Betreiben einer Kraftfahrzeugsystemeinrichtung
DE102014209140A1 (de) * 2013-05-23 2014-11-27 Robert Bosch Gmbh Förderaggregat

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3817666A (en) 1973-02-12 1974-06-18 E Wildhaber Rotary positive displacement unit
WO2007128303A1 (de) 2006-05-10 2007-11-15 Cor Pumps + Compressors Ag Drehkolbenmaschine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2674952A (en) * 1951-07-02 1954-04-13 Jacobsen Jacob Rotary pump or engine
CH449428A (de) 1966-02-21 1967-12-31 Wildhaber Ernest Verdrängungsmaschine
JP3853355B2 (ja) * 1991-12-09 2006-12-06 アーノルト・フェリックス 回転ピストン機械
US6171076B1 (en) * 1998-06-10 2001-01-09 Tecumseh Products Company Hermetic compressor assembly having a suction chamber and twin axially disposed discharge chambers
US7044717B2 (en) * 2002-06-11 2006-05-16 Tecumseh Products Company Lubrication of a hermetic carbon dioxide compressor
US20040202557A1 (en) * 2003-02-09 2004-10-14 Shigeru Suzuki Electric pump
US20050254970A1 (en) * 2004-05-17 2005-11-17 James Mayer Quick connect pump to pump mount and drive arrangement
DE102006012481A1 (de) * 2005-03-16 2006-09-21 Cor Pumps + Compressors Ag Drehkolbenmaschine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3817666A (en) 1973-02-12 1974-06-18 E Wildhaber Rotary positive displacement unit
WO2007128303A1 (de) 2006-05-10 2007-11-15 Cor Pumps + Compressors Ag Drehkolbenmaschine

Also Published As

Publication number Publication date
DE102008016293A1 (de) 2009-10-01
EP2271839B1 (de) 2015-10-28
BRPI0910111B1 (pt) 2019-10-29
JP5101731B2 (ja) 2012-12-19
US20110052438A1 (en) 2011-03-03
WO2009117993A3 (de) 2010-04-01
EP2271839A2 (de) 2011-01-12
US9022752B2 (en) 2015-05-05
JP2011515617A (ja) 2011-05-19
CN101981320B (zh) 2014-01-22
BRPI0910111A2 (pt) 2015-12-29
CN101981320A (zh) 2011-02-23

Similar Documents

Publication Publication Date Title
DE4229069A1 (de) Taumelscheiben-kaeltemittelkompressor fuer ein kuehlsystem
DE3800324A1 (de) Fluegelzellenverdichter
WO2003010436A1 (de) Mehrstufiger verdichter zur komprimierung von gasen
DE112016004472T5 (de) Abdichtungsstruktur für luftdichten behälter und mit der struktur versehener fahrzeug-klimakompressor
EP2271839B1 (de) Niederdruckpumpe
EP1527256A1 (de) Drehkolbenmaschinen mit verschiebbarem innengeh use
EP2357115B1 (de) Druckluftkompressor und Verfahren zum Betrieb eines Druckluftkompressors
WO2018197182A1 (de) Verdichter, druckluftversorgungsanlage zum betreiben einer pneumatikanlage und verfahren zum betreiben einer druckluftversorgungsanlage
DE19714143C2 (de) Taumelscheibenverdichter
EP1963677B1 (de) Kompressoreinheit
WO2004005712A1 (de) Hubkolbenmaschine
EP2742240A2 (de) Drehkolbenmaschine, die als pumpe, verdichter oder motor arbeitet
EP2625387A2 (de) Pumpe, verdichter oder motor mehrstufig oder mehrflutig
WO2012084289A2 (de) Pumpe, verdichter oder motor
WO2015091169A1 (de) Kompressorsystem mit einer kolbenhubeinstellvorrichtung
WO2002095229A1 (de) Verdichter
DE102013020534A1 (de) Verdichter
EP2655802A2 (de) Zahnradmaschine mit kleinem durchmesser-längenverhältnis
WO2016045841A1 (de) Pumpvorrichtung, insbesondere axialkolbenpumpe, für eine abwärmenutzungseinrichtung eines kraftfahrzeugs
DE202021102758U1 (de) Rotationspumpe zum Fördern eines Fluids
DE102020128159A1 (de) Mehrzylinderrollkolbenverdichter
DE102015220130B4 (de) Verdichtereinrichtung für einen Verbrennungsmotor, Antriebsvorrichtung, Kraftfahrzeug
WO2002002942A1 (de) Sicherheitseinrichtung für klimakompressor
DE102013000811A1 (de) Verstellbare hydrostatische Axialkolbenmaschine
DE102019214734A1 (de) Kraftstofffördereinrichtung für kryogene Kraftstoffe

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111441.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09725577

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2011501102

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009725577

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12934870

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0910111

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100927