WO2009116578A1 - 太陽電池 - Google Patents

太陽電池 Download PDF

Info

Publication number
WO2009116578A1
WO2009116578A1 PCT/JP2009/055310 JP2009055310W WO2009116578A1 WO 2009116578 A1 WO2009116578 A1 WO 2009116578A1 JP 2009055310 W JP2009055310 W JP 2009055310W WO 2009116578 A1 WO2009116578 A1 WO 2009116578A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photoelectric conversion
refractive index
conversion unit
solar cell
Prior art date
Application number
PCT/JP2009/055310
Other languages
English (en)
French (fr)
Inventor
茂郎 矢田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN2009801099810A priority Critical patent/CN101978512B/zh
Priority to US12/598,226 priority patent/US20120138126A1/en
Publication of WO2009116578A1 publication Critical patent/WO2009116578A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a solar cell including a reflective layer that reflects a part of incident light.
  • Solar cells are expected as a new energy source because they can directly convert light from the sun, which is a clean and inexhaustible energy source, into electricity.
  • a solar cell absorbs light incident on a solar cell between a transparent electrode layer provided on the light incident side and a back electrode layer provided on the opposite side of the light incident side, and generates a photogenerated carrier.
  • a photoelectric conversion unit to be generated is provided.
  • a method in which a reflective layer that reflects a part of incident light is provided between a photoelectric conversion portion and a back electrode layer. According to this method, part of the light transmitted through the photoelectric conversion unit is reflected to the photoelectric conversion unit side by the reflective layer, so that the amount of light absorbed in the photoelectric conversion unit can be increased. As a result, the number of photogenerated carriers generated in the photoelectric conversion unit increases, so that the photoelectric conversion efficiency of the solar cell can be improved.
  • zinc oxide which is a light-transmitting conductive material
  • Michio Kondo et al. “Four terminal terminal cell analysis, amorphous layer / microcrystalline layer Si tandem cell”.
  • the present invention has been made in view of the above situation, and an object thereof is to provide a solar cell capable of improving photoelectric conversion efficiency.
  • the solar cell 10 includes a light-receiving surface electrode layer 2 having conductivity and translucency, a back electrode layer 4 having conductivity, the light-receiving surface electrode layer 2 and the back electrode layer 4.
  • the laminate 3 is provided between the first photoelectric conversion unit 31 that generates a photogenerated carrier by the incidence of light, and the light transmitted through the first photoelectric conversion unit 31.
  • a reflective layer 32 that partially reflects to the first photoelectric conversion unit 31 side, and the reflective layer 32 includes a low refractive index layer 32b including a refractive index adjusting material, the low refractive index layer 32b, and the first refractive index layer 32b.
  • a contact layer 32a interposed between the photoelectric conversion unit 31 and the refractive index of the material constituting the refractive index adjusting material is lower than the refractive index of the material constituting the contact layer 32a,
  • the refractive index of the low refractive index layer 32b is greater than the refractive index of the contact layer 32a.
  • the reflective layer 32 since the reflective layer 32 includes the low refractive index layer 32b including the refractive index adjusting material, the reflective layer is more reflective than the conventional reflective layer mainly composed of ZnO or the like. The reflectance of 32 can be increased.
  • the contact layer 32a is interposed between the low refractive index layer 32b and the first photoelectric conversion unit 31, the low refractive index layer 32b and the first photoelectric conversion unit 31 are in direct contact with each other. The increase in the series resistance (series resistance) value in the entire solar cell 10 can be suppressed. Therefore, the photoelectric conversion efficiency of the solar cell 10 can be improved.
  • the photoelectric conversion unit 33 has a configuration in which the light receiving surface electrode layer 2 is sequentially stacked, and the reflection layer 32 is interposed between the low refractive index layer 32 b and the second photoelectric conversion unit 33.
  • the refractive index of the material constituting the refractive index adjusting material is lower than the refractive index of the material constituting the other contact layer 32c, and the refractive index of the low refractive index layer 32b is further included.
  • the gist is that the rate is lower than the refractive index of the other contact layer 32c.
  • the contact layer 32a has a contact resistance value between the first photoelectric conversion unit 31 and the low refractive index layer 32b.
  • the gist of the invention is that it is made of a material smaller than the contact resistance value with the conversion unit 31.
  • the contact resistance value between the second contact layer 32c and the second photoelectric conversion unit 33 is the same as that of the low-refractive index layer 32b.
  • the gist is that the two photoelectric conversion portions 33 are made of a material smaller than the contact resistance value.
  • One feature of the present invention relates to the above-described feature of the present invention, and is summarized in that at least one of the contact layer 32a or the other contact layer 32c contains zinc oxide or indium oxide.
  • a solar cell 10 is a solar cell 10 having a first solar cell element 10a and a second solar cell element 10a on a substrate 1 having insulating properties and translucency.
  • Each of the 1 solar cell element 10a and the second solar cell element 10a includes a light receiving surface electrode layer 2 having conductivity and translucency, a back electrode layer 4 having conductivity, the light receiving surface electrode 2 layer, A laminated body 3 provided between the back electrode layer 4 and the laminated body 3.
  • the laminated body 3 includes a first photoelectric conversion unit 31 that generates photogenerated carriers upon incidence of light, and the first photoelectric conversion unit 31.
  • the first solar cell element 10a includes a reflective layer 32 that reflects part of the transmitted light to the first photoelectric conversion unit 31 side, and a second photoelectric conversion unit 33 that generates photogenerated carriers by the incidence of light.
  • the back electrode layer 4 of the second solar cell element The extending portion 4a extends toward the light receiving surface electrode layer 2 of 10a, and the extending portion 4a is formed along the side surface of the stacked body 3 included in the first solar cell element 10a.
  • the extending portion 4a is in contact with the reflective layer 32 exposed on the side surface of the stacked body 3 included in the first solar cell element 10a, and the reflective layer 32 includes a low refractive index adjusting material.
  • Lower refractive index layer than the refractive index of the material The refractive index of 2b is summarized in that less than the refractive index of the refractive index and the other contact layer 32c of the contact layer 32a.
  • FIG. 1 is a cross-sectional view of a solar cell 10 according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the solar cell 10 according to the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a solar cell 10 according to the third embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a solar cell 10 according to the fourth embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of the solar cell 20 according to Comparative Example 1 and Comparative Example 2 of the present invention.
  • FIG. 6 is a cross-sectional view of a solar cell 30 according to Comparative Example 3 of the present invention.
  • FIG. 1 is a cross-sectional view of a solar cell 10 according to the first embodiment of the present invention.
  • the solar cell 10 includes a substrate 1, a light-receiving surface electrode layer 2, a stacked body 3, and a back electrode layer 4.
  • the substrate 1 has translucency and is made of a translucent material such as glass or plastic.
  • the light-receiving surface electrode layer 2 is laminated on the substrate 1 and has conductivity and translucency.
  • a metal oxide such as tin oxide (SnO 2 ), zinc oxide (ZnO), indium oxide (In 2 O 3 ), or titanium oxide (TiO 2 ) can be used. These metal oxides may be doped with fluorine (F), tin (Sn), aluminum (Al), iron (Fe), gallium (Ga), niobium (Nb), or the like.
  • the laminate 3 is provided between the light-receiving surface electrode layer 2 and the back electrode layer 4.
  • the stacked body 3 includes a first photoelectric conversion unit 31 and a reflective layer 32.
  • the 1st photoelectric conversion part 31 and the reflection layer 32 are laminated
  • the first photoelectric conversion unit 31 generates photogenerated carriers by light incident from the light receiving surface electrode layer 2 side. In addition, the first photoelectric conversion unit 31 generates photogenerated carriers by the light reflected from the reflective layer 32.
  • the first photoelectric conversion unit 31 has a pin junction in which a p-type amorphous silicon semiconductor, an i-type amorphous silicon semiconductor, and an n-type amorphous silicon semiconductor are stacked from the substrate 1 side (not shown). .
  • the reflective layer 32 reflects a part of the light transmitted through the first photoelectric conversion unit 31 to the first photoelectric conversion unit 31 side.
  • the reflective layer 32 includes a first layer 32a and a second layer 32b.
  • the first layer 32a and the second layer 32b are sequentially stacked from the first photoelectric conversion unit 31 side. Therefore, the first layer 32 a is in contact with the first photoelectric conversion unit 31, and the second layer 32 b is not in contact with the first photoelectric conversion unit 31.
  • the second layer 32b includes a binder made of resin or the like, a translucent conductive material, and a refractive index adjusting material.
  • Silica or the like can be used as the binder.
  • the light-transmitting conductive material ZnO, ITO, or the like can be used.
  • the refractive index adjusting material a material having a refractive index lower than that of the first layer 32a is used.
  • the refractive index adjusting material it is possible to use air bubbles or fine particles composed of SiO 2 , Al 2 O 3 , MgO, CaF 2 , NaF, CaO, LiF, MgF 2 , SrO, B 2 O 3 or the like. it can.
  • the second layer 32b for example, a layer containing ITO particles and bubbles in a silica-based binder can be used.
  • the refractive index of the second layer 32b as a whole is lower than the refractive index of the first layer 32a.
  • the first layer 32a a material having a contact resistance value between the first photoelectric conversion unit 31 and a material constituting the second layer 32b and a contact resistance value between the first photoelectric conversion unit 31 is used. It is done.
  • the material constituting the first layer 32a is such that the contact resistance (contact resistance) value between the first photoelectric conversion unit 31 and the first layer 32a directly contacts the first photoelectric conversion unit 31 and the second layer 32b.
  • the contact resistance value is preferably selected to be less than the contact resistance value.
  • the first layer 32a for example, ZnO, ITO or the like can be used.
  • the first layer 32a corresponds to the “contact layer” of the present invention.
  • the second layer 32b corresponds to the “low refractive index layer” of the present invention.
  • the material constituting the first layer 32a is selected so that the resistance value at both ends of the stacked body 3 including the first layer 32a is smaller than the resistance value at both ends of the stacked body 3 not including the first layer 32a. It is preferred that
  • the back electrode layer 4 has conductivity.
  • the back electrode layer may have a configuration in which a layer containing ZnO and a layer containing Ag are stacked from the stacked body 3 side. Further, the back electrode layer 4 may have only a layer containing Ag.
  • the reflective layer 32 is based on the second layer 32b including the refractive index adjusting material, and the contact resistance value between the second layer 32b and the first photoelectric conversion unit 31.
  • the first layer 32a made of a material having a small contact resistance value with respect to the first photoelectric conversion unit 31.
  • the first layer 32a and the second layer 32b are sequentially stacked from the first photoelectric conversion unit 31 side.
  • the photoelectric conversion efficiency of the solar cell 10 can be improved. This effect will be described in detail below.
  • the second layer 32b included in the reflective layer 32 is composed of a material having a refractive index lower than that of ZnO that has been conventionally used as the main body of the reflective layer. Includes refractive index adjusting material.
  • the refractive index of the second layer 32b as a whole is lower than the refractive index of the layer made of ZnO. Therefore, by including such a second layer 32b in the reflective layer 32, the reflectance of the reflective layer 32 can be increased as compared with the conventional reflective layer mainly composed of ZnO.
  • the second layer containing the refractive index adjusting material. 32 b comes into direct contact with the first photoelectric conversion unit 31. Since the contact resistance value between the second layer 32b containing the refractive index adjusting material and the first photoelectric conversion unit 31 mainly composed of silicon is very high, the second layer 32b directly contacts the first photoelectric conversion unit 31. In the case of contact, the series resistance (series resistance) value in the entire solar cell 10 increases. Accordingly, the short-circuit current generated in the solar cell 10 increases as the reflectance of the reflective layer 32 is increased. On the other hand, the fill factor (FF) of the solar cell 10 decreases as the series resistance value increases. Therefore, it is not possible to sufficiently improve the photoelectric conversion efficiency of the solar cell 10.
  • FF fill factor
  • the first layer 32a and the second layer 32b are sequentially stacked from the first photoelectric conversion unit 31 side, whereby the second layer 32b including the refractive index adjusting material.
  • direct contact with the first photoelectric conversion unit 31 is avoided.
  • the photoelectric conversion efficiency of the solar cell 10 can be improved.
  • the stacked body 3 includes a first photoelectric conversion unit 31 and a reflective layer 32.
  • the laminated body 3 has the structure containing the 2nd photoelectric conversion part 33 in addition to the 1st photoelectric conversion part 31 and the reflection layer 32, and what is called a tandem structure.
  • FIG. 2 is a cross-sectional view of the solar cell 10 according to the second embodiment of the present invention.
  • the solar cell 10 includes a substrate 1, a light-receiving surface electrode layer 2, a stacked body 3, and a back electrode layer 4.
  • the laminate 3 is provided between the light-receiving surface electrode layer 2 and the back electrode layer 4.
  • the stacked body 3 includes a first photoelectric conversion unit 31, a reflective layer 32, and a second photoelectric conversion unit 33.
  • the first photoelectric conversion unit 31, the second photoelectric conversion unit 33, and the reflection layer 32 are sequentially stacked from the light receiving surface electrode layer 2 side.
  • the first photoelectric conversion unit 31 generates photogenerated carriers by light incident from the light receiving surface electrode layer 2 side.
  • the first photoelectric conversion unit 31 has a pin junction in which a p-type amorphous silicon semiconductor, an i-type amorphous silicon semiconductor, and an n-type amorphous silicon semiconductor are stacked from the substrate 1 side (not shown). .
  • the reflection layer 32 reflects a part of the light incident from the first photoelectric conversion unit 31 side to the first photoelectric conversion unit 31 side.
  • the reflective layer 32 includes a first layer 32a and a second layer 32b. The first layer 32a and the second layer 32b are sequentially stacked from the first photoelectric conversion unit 31 side. Accordingly, the first layer 32 a is in contact with the second photoelectric conversion unit 33, and the second layer 32 b is not in contact with the second photoelectric conversion unit 33.
  • the second photoelectric conversion unit 33 generates a photogenerated carrier by incident light.
  • the second photoelectric conversion unit 33 has a pin junction in which a p-type crystalline silicon semiconductor, an i-type crystalline silicon semiconductor, and an n-type crystalline silicon semiconductor are stacked from the substrate 1 side (not shown).
  • the first layer 32a and the second layer 32b included in the reflective layer 32 are sequentially stacked from the first photoelectric conversion unit 31 side.
  • the reflectance of the reflective layer 32 can be increased while suppressing an increase in the series resistance value in the entire solar cell 10. Therefore, the photoelectric conversion efficiency of the solar cell 10 can be improved.
  • the stacked body 3 includes a first photoelectric conversion unit 31 and a reflective layer 32.
  • the laminated body 3 has the structure containing the 2nd photoelectric conversion part 33 in addition to the 1st photoelectric conversion part 31 and the reflection layer 32, and what is called a tandem structure.
  • the reflective layer 32 includes a third layer 32c in addition to the first layer 32a and the second layer 32b.
  • FIG. 3 is a cross-sectional view of the solar cell 10 according to the third embodiment of the present invention.
  • the solar cell 10 includes a substrate 1, a light-receiving surface electrode layer 2, a stacked body 3, and a back electrode layer 4.
  • the laminate 3 is provided between the light-receiving surface electrode layer 2 and the back electrode layer 4.
  • the stacked body 3 includes a first photoelectric conversion unit 31, a reflective layer 32, and a second photoelectric conversion unit 33.
  • the first photoelectric conversion unit 31, the reflection layer 32, and the second photoelectric conversion unit 33 are sequentially stacked from the light receiving surface electrode layer 2 side.
  • the first photoelectric conversion unit 31 generates photogenerated carriers by light incident from the light receiving surface electrode layer 2 side. In addition, the first photoelectric conversion unit 31 generates photogenerated carriers by the light reflected from the reflective layer 32.
  • the first photoelectric conversion unit 31 has a pin junction in which a p-type amorphous silicon semiconductor, an i-type amorphous silicon semiconductor, and an n-type amorphous silicon semiconductor are stacked from the substrate 1 side (not shown). .
  • the reflective layer 32 reflects a part of the light transmitted through the first photoelectric conversion unit 31 to the first photoelectric conversion unit 31 side.
  • the reflective layer 32 includes a first layer 32a, a second layer 32b, and a third layer 32c.
  • the first layer 32a, the second layer 32b, and the third layer 32c are sequentially stacked from the first photoelectric conversion unit 31 side. Therefore, the first layer 32 a is in contact with the first photoelectric conversion unit 31, and the third layer 32 c is in contact with the second photoelectric conversion unit 33. The second layer 32 b is not in contact with either the first photoelectric conversion unit 31 or the second photoelectric conversion unit 33.
  • the second layer 32b includes a binder made of resin or the like, a translucent conductive material, and a refractive index adjusting material.
  • Silica or the like can be used as the binder.
  • the light-transmitting conductive material ZnO, ITO, or the like can be used.
  • the refractive index adjusting material a material having a refractive index lower than the refractive index of the first layer 32a and the refractive index of the third layer 32c is used.
  • the refractive index adjusting material it is possible to use air bubbles or fine particles composed of SiO 2 , Al 2 O 3 , MgO, CaF 2 , NaF, CaO, LiF, MgF 2 , SrO, B 2 O 3 or the like. it can. Therefore, as the second layer 32b, for example, a layer containing ITO particles and bubbles in a silica-based binder can be used.
  • the refractive index of the second layer 32b as a whole is lower than the refractive index of the first layer 32a and the refractive index of the third layer 32c.
  • the first layer 32a is mainly composed of a material having a contact resistance value between the first photoelectric conversion unit 31 and a contact resistance value between the material constituting the second layer 32b and the first photoelectric conversion unit 31.
  • a material having a contact resistance value between the second photoelectric conversion unit 33 and a contact resistance value between the material constituting the second layer 32b and the first photoelectric conversion unit 31 is smaller. Is used as the subject.
  • the material constituting the first layer 32a is a contact when the contact resistance value between the first photoelectric conversion unit 31 and the first layer 32a directly contacts the first photoelectric conversion unit 31 and the second layer 32b. It is preferable to select such that it is less than the resistance value.
  • the material constituting the third layer 32c is a contact resistance value between the third layer 32c and the second photoelectric conversion unit 33 when the second layer 32b and the second photoelectric conversion unit 33 are in direct contact with each other. It is preferable to select such that it is less than the resistance value.
  • the material constituting the first layer 32a and the material constituting the third layer 32c are such that the resistance values at both ends of the stacked body 3 including the first layer 32a and the third layer 32c are the first layer 32a and the third layer. It is preferably selected so as to be smaller than the resistance values at both ends of the laminate 3 not including 32c.
  • the first layer 32a or the third layer 32c for example, ZnO, ITO or the like can be used.
  • the material which comprises the 1st layer 32a, and the material which comprises the 3rd layer 32c may be the same, and may differ.
  • the third layer 32c corresponds to “another contact layer” of the present invention.
  • the second photoelectric conversion unit 33 generates a photogenerated carrier by incident light.
  • the second photoelectric conversion unit 33 has a pin junction in which a p-type crystalline silicon semiconductor, an i-type crystalline silicon semiconductor, and an n-type crystalline silicon semiconductor are stacked from the substrate 1 side (not shown).
  • the reflective layer 32 includes a second layer 32b including a refractive index adjusting material, and a contact resistance value between the second layer 32b and the first photoelectric conversion unit 31.
  • the first photoelectric conversion unit 31 has a lower contact resistance value between the first photoelectric conversion unit 31 and the second photoelectric conversion unit than the contact resistance value between the second layer 32b and the second photoelectric conversion unit 33.
  • a third layer 32a made of a material having a small contact resistance value between the first and second layers. The first layer 32a, the second layer 32b, and the third layer 32c are sequentially stacked from the first photoelectric conversion unit 31 side. Therefore, the second layer 32 b including the refractive index adjusting material is not in contact with either the first photoelectric conversion unit 31 or the second photoelectric conversion unit 33.
  • the reflective layer 32 including the second layer 32b including the refractive index adjusting material is less likely to absorb light in a long wavelength region (around 1000 nm) than a conventional reflective layer mainly composed of ZnO. Therefore, the amount of light absorbed by the second photoelectric conversion unit 33 can be increased. Therefore, the photoelectric conversion efficiency of the solar cell 10 can be improved.
  • the solar cell 10 includes the substrate 1, the light receiving surface electrode layer 2, the stacked body 3, and the back electrode layer 4.
  • the solar cell 10 is equipped with the several solar cell element 10a provided with the light-receiving surface electrode layer 2, the laminated body 3, and the back surface electrode layer 4 on the board
  • FIG. 4 is a cross-sectional view of a solar cell 10 according to the fourth embodiment of the present invention.
  • the solar cell 10 includes a substrate 1 and a plurality of solar cell elements 10a.
  • Each of the plurality of solar cell elements 10a is formed on the substrate 1.
  • the plurality of solar cell elements 10a each include a light-receiving surface electrode layer 2, a stacked body 3, and a back electrode layer 4.
  • the laminate 3 is provided between the light-receiving surface electrode layer 2 and the back electrode layer 4.
  • the stacked body 3 includes a first photoelectric conversion unit 31, a reflective layer 32, and a second photoelectric conversion unit 33.
  • the reflective layer 32 includes a first layer 32a, a second layer 32b, and a third layer 32c.
  • the first layer 32a, the second layer 32b, and the third layer 32c are sequentially stacked from the first photoelectric conversion unit 31 side. Therefore, the first layer 32 a is in contact with the first photoelectric conversion unit 31, and the third layer 32 c is in contact with the second photoelectric conversion unit 33.
  • the second layer 32 b is not in contact with either the first photoelectric conversion unit 31 or the second photoelectric conversion unit 33.
  • the thickness of the first layer 32a and the third layer 32c is preferably as small as possible.
  • the back electrode layer 4 has an extending portion 4a extending toward the light receiving surface electrode layer 2 of another solar cell element 10a adjacent to one solar cell element 10a included in the plurality of solar cell elements 10a.
  • the extended portion 4a is formed along the side surface of the stacked body 3 included in one solar cell element 10a.
  • the extending portion 4a is in contact with the reflective layer 32 exposed on the side surface of the stacked body 3 included in one solar cell element 10a.
  • ZnO which has been conventionally used as the main component of the reflective layer, has a sheet resistance value of about 1.0 ⁇ 10 2 to 5.0 ⁇ 10 2 ⁇ / ⁇ . Therefore, when a conventional reflective layer mainly composed of ZnO is used, a part of the current generated in the solar cell element 10a flows along the reflective layer to the extending portion 4a and a leak current is generated. When such a leakage current increases in each of the plurality of solar cell elements 10a, the fill factor (FF) of the solar cell 10 decreases.
  • the sheet resistance value of the second layer 32b including the refractive index adjusting material is 1.0 ⁇ 10 6 ⁇ / ⁇ or more. Therefore, in the solar cell 10 according to the fourth embodiment of the present invention, the second layer 32b including the refractive index adjusting material is included in the reflective layer 32, so that the sheet resistance value in the reflective layer 32 is mainly composed of ZnO.
  • the sheet resistance value of the reflective layer can be significantly higher. Therefore, in the solar cell 10 according to the fourth embodiment of the present invention, it is possible to suppress the current generated in the solar cell element 10a from reaching the extending portion 4a along the reflective layer 32.
  • the reflective layer 32 including the second layer 32b a decrease in the fill factor (FF) of the solar cell 10 can be suppressed as compared with the case where a conventional reflective layer mainly composed of ZnO is used. From the above, the photoelectric conversion efficiency of the solar cell 10 can be improved.
  • the first layer 32a reduces the contact resistance value between the second layer 32b (low refractive index layer) and the first photoelectric conversion unit 31, and the third layer 32c (other contact layer). Is to reduce the contact resistance value between the second layer 32b (low refractive index layer) and the second photoelectric conversion unit 33, so that the thickness of the first layer 32a and the third layer 32c is reduced. Can do.
  • the sheet resistance value of the first layer 32a can be increased.
  • the thickness of the third layer 32c is reduced, the sheet resistance value of the third layer 32c can be increased.
  • the contact resistance value between the second layer 32b (low refractive index layer) and the first photoelectric conversion unit 31 can be sufficiently reduced.
  • the contact resistance value between the second layer 32b (low refractive index layer) and the first photoelectric conversion unit 31 can be sufficiently reduced. Therefore, by reducing the thickness of the first layer 32a and the third layer 32c as much as possible, it is possible to reduce the leakage current flowing to the extending portion 4a along the first layer 32a and the third layer 32c.
  • the photoelectric conversion part contained in the laminated body 3 is one (1st photoelectric conversion part 31), and it is contained in the laminated body 3 in 2nd Embodiment and 3rd Embodiment.
  • the laminate 3 may include three or more photoelectric conversion units.
  • the reflective layer 32 can be provided between any two adjacent photoelectric conversion units.
  • the first photoelectric conversion unit 31 includes a p-type amorphous silicon semiconductor, an i-type amorphous silicon semiconductor, and an n-type amorphous silicon semiconductor stacked from the substrate 1 side.
  • the present invention is not limited to this.
  • the first photoelectric conversion unit 31 has a pin junction in which a p-type crystalline silicon semiconductor, an i-type crystalline silicon semiconductor, and an n-type crystalline silicon semiconductor are stacked from the substrate 1 side. May be.
  • crystalline silicon includes microcrystalline silicon and polycrystalline silicon.
  • the first photoelectric conversion unit 31 and the second photoelectric conversion unit 33 have pin junctions, but are not limited to this. Specifically, even if at least one of the first photoelectric conversion unit 31 and the second photoelectric conversion unit 33 has a pn junction in which a p-type silicon semiconductor and an n-type silicon semiconductor are stacked from the substrate 1 side. Good.
  • the solar cell 10 has a configuration in which the light-receiving surface electrode layer 2, the stacked body 3, and the back electrode layer 4 are sequentially stacked on the substrate 1.
  • the present invention is not limited to this.
  • the solar cell 10 may have a configuration in which the back electrode layer 4, the stacked body 3, and the light receiving surface electrode layer 2 are sequentially stacked on the substrate 1.
  • the solar cell according to the present invention will be specifically described with reference to examples.
  • the present invention is not limited to those shown in the following examples, and can be implemented with appropriate modifications within a range not changing the gist thereof.
  • the refractive index of a layer (hereinafter referred to as bubble-containing ITO layer) containing ITO particles (translucent conductive material) and bubbles (refractive index adjusting material) in a silica-based binder, and conventionally used as the main component of the reflective layer. Comparison was made with the refractive indexes of the ZnO layer and the ITO layer.
  • a bubble-containing ITO layer was first prepared by a spin coating method using a dispersion obtained by mixing ITO fine particles and a silica-based binder in an alcohol solvent. At this time, bubbles were included in the dispersion by mechanically stirring the dispersion just before being used in the spin coating method.
  • ITO fine particles ITO fine particles (SUFP) manufactured by Sumitomo Metal Mining with an average particle diameter of 20 to 40 nm were used.
  • the mixing ratio of the silica binder was 10 to 15% by volume with respect to the ITO fine particles.
  • Table 1 shows the measurement results of the refractive index of the bubble-containing ITO layer.
  • the refractive index of the ZnO layer and the ITO layer is about 2.0. Therefore, as shown in Table 1, it was confirmed that the refractive index of the bubble-containing ITO layer was lower than the refractive indexes of the ZnO layer and the ITO layer. Therefore, the reflectance of the reflective layer can be increased by including the bubble-containing ITO layer in the reflective layer.
  • Example 1 The solar cell 10 according to Example 1 was produced as follows. First, an SnO 2 layer (light-receiving surface electrode layer 2) was formed on a glass substrate (substrate 1) having a thickness of 4 mm.
  • a p-type amorphous silicon semiconductor, an i-type amorphous silicon semiconductor, and an n-type amorphous silicon semiconductor are formed on the SnO 2 layer (light-receiving surface electrode layer 2) using a plasma CVD method.
  • the first cell (first photoelectric conversion unit 31) was formed by stacking.
  • the thicknesses of the p-type amorphous silicon semiconductor, the i-type amorphous silicon semiconductor, and the n-type amorphous silicon semiconductor were 15 nm, 200 nm, and 30 nm, respectively.
  • an intermediate reflection layer was formed on the first cell (first photoelectric conversion unit 31) by using a sputtering method and a spin coating method. Specifically, a ZnO layer (first layer 32a) formed by sputtering, a bubble-containing ITO layer (second layer 32b) formed by spin coating, and a ZnO layer (third layer) formed by sputtering. 32c) were sequentially stacked on the first cell (first photoelectric conversion unit 31). As a result, an intermediate reflective layer (reflective layer 32) having a three-layer structure was formed. The thicknesses of the ZnO layer (first layer 32a), the bubble-containing ITO layer (second layer 32b), and the ZnO layer (third layer 32c) were 5 nm, 20 nm, and 5 nm, respectively.
  • a p-type microcrystalline silicon semiconductor, an i-type microcrystalline silicon semiconductor, and an n-type microcrystalline silicon semiconductor are stacked on the intermediate reflective layer (reflective layer 32) using a plasma CVD method.
  • a cell (second photoelectric conversion unit 33) was formed.
  • the thicknesses of the p-type microcrystalline silicon semiconductor, the i-type microcrystalline silicon semiconductor, and the n-type microcrystalline silicon semiconductor were 30 nm, 2000 nm, and 20 nm, respectively.
  • a ZnO layer and an Ag layer were formed on the second cell (second photoelectric conversion unit 33) by sputtering.
  • the thicknesses of the ZnO layer and the Ag layer (back electrode layer 4) were 90 nm and 200 nm, respectively.
  • Example 1 As described above, in Example 1, as shown in FIG. 3, the bubble-containing ITO layer (first photoelectric conversion unit 31) is interposed between the first cell (first photoelectric conversion unit 31) and the second cell (second photoelectric conversion unit 33).
  • a ZnO layer (first layer 32a) is interposed between the bubble-containing ITO layer (second layer 32b) and the first cell (first photoelectric conversion unit 31), and the bubble-containing ITO layer (second layer 32b).
  • a ZnO layer (third layer 32c) between the first cell and the second cell (second photoelectric conversion unit 33).
  • the solar cell 20 according to Comparative Example 1 was produced as follows. First, as in Example 1 above, a SnO 2 layer (light-receiving surface electrode layer 22) and a first cell (first photoelectric conversion unit 231) were sequentially formed on a glass substrate (substrate 21) having a thickness of 4 mm.
  • an intermediate reflective layer (reflective layer 232) was formed on the first cell (first photoelectric conversion unit 231) by sputtering.
  • first cell first photoelectric conversion unit 231
  • ZnO layer was used as the intermediate reflection layer (reflection layer 232).
  • the thickness of the ZnO layer (reflection layer 232) was 30 nm.
  • Example 2 the second cell (second photoelectric conversion unit 233), the ZnO layer, and the Ag layer (back electrode layer 24) were sequentially formed on the intermediate reflective layer (reflective layer 232).
  • the thicknesses of the first cell (first photoelectric conversion unit 231), the second cell (second photoelectric conversion unit 233), the ZnO layer, and the Ag layer (back electrode layer 24) are the same as in Example 1 above. did.
  • the ZnO layer is formed between the first cell (first photoelectric conversion unit 231) and the second cell (second photoelectric conversion unit 233).
  • a solar cell 20 having an intermediate reflective layer (reflective layer 232) was formed.
  • a solar cell 20 according to Comparative Example 2 was produced as follows. First, as in Example 1 above, a SnO 2 layer (light-receiving surface electrode layer 22) and a first cell (first photoelectric conversion unit 231) were sequentially formed on a glass substrate (substrate 21) having a thickness of 4 mm.
  • an intermediate reflective layer (reflective layer 232) was formed on the first cell (first photoelectric conversion unit 231) by sputtering.
  • first cell first photoelectric conversion unit 231
  • second photoelectric conversion unit 231 only the bubble-containing ITO layer was formed on the first cell (first photoelectric conversion unit 231), and the bubble-containing ITO layer was used as an intermediate reflection layer (reflection layer 232).
  • the thickness of the bubble-containing ITO layer (reflective layer 232) was 30 nm.
  • Example 2 the second cell (second photoelectric conversion unit 233), the ZnO layer, and the Ag layer (back electrode layer 24) were sequentially formed on the intermediate reflective layer (reflective layer 232).
  • the thicknesses of the first cell (first photoelectric conversion unit 231), the second cell (second photoelectric conversion unit 233), the ZnO layer, and the Ag layer (back electrode layer 24) are the same as in Example 1 above. did.
  • the bubble-containing ITO layer is formed between the first cell (first photoelectric conversion unit 231) and the second cell (second photoelectric conversion unit 233).
  • the solar cell 20 having the intermediate reflective layer (reflective layer 232) to be formed was formed.
  • Comparative Example 2 As shown in Table 2, it was confirmed that in Comparative Example 2, the short circuit current was slightly increased compared to Comparative Example 1, but the curve factor was lower than that of Comparative Example 1. In Comparative Example 2, it was confirmed that the photoelectric conversion efficiency was lower than that in Comparative Example 1 as a result.
  • the increase in the short-circuit current is considered to be because in the solar cell 20 according to Comparative Example 2, the intermediate reflective layer (reflective layer 232) is composed of the bubble-containing ITO layer having a refractive index lower than that of the ZnO layer. .
  • the bubble-containing ITO layer constituting the intermediate reflective layer (reflective layer 232) is the first cell (first photoelectric conversion unit 231) and the first. It is considered that the series resistance value in the solar cell 20 according to Comparative Example 2 increased because the two cells (second photoelectric conversion unit 233) were in direct contact. In Comparative Example 2, it is considered that the photoelectric conversion efficiency is lower than that of Comparative Example 1 because the degree of reduction of the fill factor is large.
  • Example 1 it was confirmed that the short-circuit current increased compared to Comparative Example 1 although the curve factor slightly decreased compared to Comparative Example 1. As a result, in Example 1, it was confirmed that the photoelectric conversion efficiency can be improved as compared with Comparative Example 1.
  • Example 2 The solar cell 10 according to Example 2 was produced as follows. First, an SnO 2 layer (light-receiving surface electrode layer 2) was formed on a glass substrate (substrate 1) having a thickness of 4 mm.
  • a p-type amorphous silicon semiconductor, an i-type amorphous silicon semiconductor, and an n-type amorphous silicon semiconductor are formed on the SnO 2 layer (light-receiving surface electrode layer 2) using a plasma CVD method.
  • the first cell (first photoelectric conversion unit 31) was formed by stacking.
  • the thicknesses of the p-type amorphous silicon semiconductor, i-type amorphous silicon semiconductor, and n-type amorphous silicon semiconductor were 15 nm, 360 nm, and 30 nm, respectively.
  • a p-type microcrystalline silicon semiconductor, an i-type microcrystalline silicon semiconductor, and an n-type microcrystalline silicon semiconductor are stacked on the first cell (first photoelectric conversion unit 31) using a plasma CVD method.
  • the 2nd cell (2nd photoelectric conversion part 33) was formed.
  • the thicknesses of the p-type microcrystalline silicon semiconductor, the i-type microcrystalline silicon semiconductor, and the n-type microcrystalline silicon semiconductor were 30 nm, 2000 nm, and 20 nm, respectively.
  • an intermediate reflective layer (reflective layer 32) was formed on the second cell (second photoelectric conversion unit 33) by using a sputtering method and a spin coat method.
  • an ITO layer (first layer 32a) formed by a sputtering method and a bubble-containing ITO layer (second layer 32b) formed by a spin coating method are formed in a second cell (second photoelectric conversion unit 33). Laminated sequentially on top. This formed the back surface reflection layer (reflection layer 32) which has a two-layer structure.
  • the thickness of the ITO layer (first layer 32a) and the bubble-containing ITO layer (second layer 32b) was 45 nm.
  • an Ag layer (back electrode layer 4) was formed on the back reflective layer (reflective layer 32) by sputtering.
  • the thickness of the Ag layer (back electrode layer 4) was 200 nm.
  • Example 1 As described above, in Example 1, as shown in FIG. 2, the bubble-containing ITO layer (second layer 32b) is interposed between the second cell (second photoelectric conversion unit 33) and the Ag layer (back electrode layer 4). ) Including the back surface reflection layer (reflection layer 32). Further, the ITO layer (first layer 32a) was interposed between the bubble-containing ITO layer (second layer 32b) and the second cell (second photoelectric conversion unit 33).
  • a solar cell 30 according to Comparative Example 3 was produced as follows. First, as in Example 2 above, a SnO 2 layer (light-receiving surface electrode layer 32), a first cell (first photoelectric conversion unit 331), a second cell (on a 4 mm thick glass substrate (substrate 31)) Second photoelectric conversion portions 333) were sequentially formed.
  • a back reflective layer (reflective layer 332) was formed on the second cell (second photoelectric conversion unit 333) by sputtering.
  • the ZnO layer was formed on the second cell (second photoelectric conversion unit 333), and the ZnO layer was used as the back surface reflection layer (reflection layer 332).
  • the thickness of the ZnO layer (reflective layer 332) was 90 nm.
  • an Ag layer (back electrode layer 34) was formed on the back reflection layer (reflection layer 332).
  • the thicknesses of the first cell (first photoelectric conversion unit 331), the second cell (second photoelectric conversion unit 333), and the Ag layer (back electrode layer 34) were the same as in Example 2 above.
  • the back surface reflection layer (ZnO layer) is formed between the second cell (second photoelectric conversion unit 333) and the Ag layer (back electrode layer 34).
  • a solar cell 10 having a reflective layer 332) was formed.
  • Example 2 As shown in Table 3, it was confirmed that in Example 2, the curve factor slightly decreased as compared with Comparative Example 1, but the short-circuit current increased compared with Comparative Example 3. As a result, in Example 2, it was confirmed that the photoelectric conversion efficiency can be improved as compared with Comparative Example 3.
  • a solar cell with improved photoelectric conversion efficiency can be provided, which is useful in the photovoltaic power generation field.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 太陽電池10は、受光面電極層2と、裏面電極層4と、受光面電極層2と裏面電極層4との間に設けられた積層体3とを備える。積層体3は、第1光電変換部31と、第1光電変換部31を透過した光の一部を第1光電変換部31側に反射する反射層32とを含む。反射層32は、屈折率調整材を含む低屈折率層32bと、低屈折率層32bと第1光電変換部31との間に介挿されたコンタクト層32aとを有する。屈折率調整材を構成する材料の屈折率は、コンタクト層32aを構成する材料の屈折率よりも低い。低屈折率層32bの屈折率は、コンタクト層32aの屈折率よりも低い。

Description

太陽電池
 本発明は、入射した光の一部を反射する反射層を備える太陽電池に関する。
 太陽電池は、クリーンで無尽蔵のエネルギー源である太陽からの光を直接電気に変換できることから、新しいエネルギー源として期待されている。
 一般的に、太陽電池は、光入射側に設けられる透明電極層と、光入射側の反対側に設けられる裏面電極層との間に、太陽電池に入射した光を吸収して光生成キャリアを生成する光電変換部を備えている。
 従来から、光電変換部と裏面電極層との間に、入射した光の一部を反射する反射層を設ける手法が知られている。この手法によれば、光電変換部を透過した光の一部が反射層によって光電変換部側に反射されるので、光電変換部において吸収される光の量を増加することができる。その結果、光電変換部において生成される光生成キャリアが増加するため、太陽電池の光電変換効率を向上することができる。
 このような反射層には、一般的に、透光性導電材料である酸化亜鉛(ZnO)が用いられる(Michio Kondo et al., “Four terminal cell analysis of amorphous / microcrystalline Si tandem cell”参照)。
 一方で、近年、太陽電池の光電変換効率のさらなる向上が求められている。
 ここで、光電変換効率をさらに向上させるには、反射層における光の反射率を高めることで、光電変換部において生成される光生成キャリアを増加することが有効である。
 そこで、本発明は、上記の状況に鑑みてなされたものであり、光電変換効率を向上可能な太陽電池を提供することを目的とする。
 本発明の一の特徴に係る太陽電池10は、導電性及び透光性を有する受光面電極層2と、導電性を有する裏面電極層4と、前記受光面電極層2と前記裏面電極層4との間に設けられた積層体3とを備え、前記積層体3は、光の入射により光生成キャリアを生成する第1光電変換部31と、前記第1光電変換部31を透過した光の一部を前記第1光電変換部31側に反射する反射層32とを含み、前記反射層32は、屈折率調整材を含む低屈折率層32bと、前記低屈折率層32bと前記第1光電変換部31との間に介挿されたコンタクト層32aとを有し、前記屈折率調整材を構成する材料の屈折率は、前記コンタクト層32aを構成する材料の屈折率よりも低く、前記低屈折率層32bの屈折率は、前記コンタクト層32aの屈折率よりも低いことを要旨とする。
 本発明の第1の特徴に係る太陽電池10によれば、反射層32が、屈折率調整材を含む低屈折率層32bを含むため、ZnOなどを主体とする従来の反射層よりも反射層32の反射率を高めることができる。また、コンタクト層32aが、低屈折率層32bと第1光電変換部31との間に介挿されているため、低屈折率層32bと第1光電変換部31とが直接接触することに起因する太陽電池10全体におけるシリーズ抵抗(直列抵抗)値の増大を抑制することができる。従って、太陽電池10の光電変換効率を向上させることができる。
 本発明の一の特徴は、本発明の上述した特徴に係り、前記積層体3は、前記第1光電変換部31と、前記反射層32と、光の入射により光生成キャリアを生成する第2光電変換部33とが前記受光面電極層2側から順に積層された構成を有し、前記反射層32は、前記低屈折率層32bと前記第2光電変換部33との間に介挿された他のコンタクト層32cをさらに有し、前記屈折率調整材を構成する材料の屈折率は、前記他のコンタクト層32cを構成する材料の屈折率よりも低く、前記低屈折率層32bの屈折率は、前記他のコンタクト層32cの屈折率よりも低いことを要旨とする。
 本発明の一の特徴は、本発明の上述した特徴に係り、前記コンタクト層32aは、前記第1光電変換部31との間のコンタクト抵抗値が、前記低屈折率層32bと前記第1光電変換部31との間のコンタクト抵抗値よりも小さい材料により構成されることを要旨とする。
 本発明の一の特徴は、本発明の上述した特徴に係り、前記他のコンタクト層32cは、前記第2光電変換部33との間のコンタクト抵抗値が、前記低屈折率層32bと前記第2光電変換部33との間のコンタクト抵抗値よりも小さい材料により構成されることを要旨とする。
 本発明の一の特徴は、本発明の上述した特徴に係り、前記コンタクト層32a又は前記他のコンタクト層32cの少なくとも一方は、酸化亜鉛又は酸化インジウムを含むことを要旨とする。
 本発明の一の特徴に係る太陽電池10は、絶縁性及び透光性を有する基板1上に、第1太陽電池素子10a及び第2太陽電池素子10aを有する太陽電池10であって、前記第1太陽電池素子10a及び前記第2太陽電池素子10aのそれぞれは、導電性及び透光性を有する受光面電極層2と、導電性を有する裏面電極層4と、前記受光面電極2層と前記裏面電極層4との間に設けられた積層体3とを備え、前記積層体3は、光の入射により光生成キャリアを生成する第1光電変換部31と、前記第1光電変換部31を透過した光の一部を前記第1光電変換部31側に反射する反射層32と、光の入射により光生成キャリアを生成する第2光電変換部33とを含み、前記第1太陽電池素子10aの前記裏面電極層4は、前記第2太陽電池素子10aの前記受光面電極層2に向かって延在する延在部4aを有し、前記延在部4aは、前記第1太陽電池素子10aに含まれる前記積層体3の側面に沿って形成され、前記延在部4aは、前記第1太陽電池素子10aに含まれる前記積層体3の前記側面に露出した前記反射層32に接しており、前記反射層32は、屈折率調整材を含む低屈折率層32bと、前記低屈折率層32bと前記第1光電変換部31との間に介挿されたコンタクト層32aと、前記低屈折率層32bと前記第2光電変換部33との間に介挿された他のコンタクト層32cとを有し、前記屈折率調整材を構成する材料の屈折率は、前記コンタクト層32aを構成する材料の屈折率及び前記他のコンタクト層32cを構成する材料の屈折率よりも低く、前記低屈折率層32bの屈折率は、前記コンタクト層32aの屈折率及び前記他のコンタクト層32cの屈折率よりも低いことを要旨とする。
図1は、本発明の第1実施形態に係る太陽電池10の断面図である。 図2は、本発明の第2実施形態に係る太陽電池10の断面図である。 図3は、本発明の第3実施形態に係る太陽電池10の断面図である。 図4は、本発明の第4実施形態に係る太陽電池10の断面図である。 図5は、本発明の比較例1及び比較例2に係る太陽電池20の断面図である。 図6は、本発明の比較例3に係る太陽電池30の断面図である。
 次に、図面を用いて、本発明の実施形態について説明する。以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることに留意すべきである。従って、具体的な寸法等は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 [第1実施形態]
 〈太陽電池の構成〉
 以下において、本発明の第1実施形態に係る太陽電池の構成について、図1を参照しながら説明する。図1は、本発明の第1実施形態に係る太陽電池10の断面図である。
 図1に示すように、太陽電池10は、基板1と、受光面電極層2と、積層体3と、裏面電極層4とを備える。
 基板1は、透光性を有し、ガラス、プラスチック等の透光性材料により構成される。
 受光面電極層2は、基板1上に積層されており、導電性及び透光性を有する。受光面電極層2としては、酸化錫(SnO)、酸化亜鉛(ZnO)、酸化インジウム(In)、又は酸化チタン(TiO)などの金属酸化物を用いることができる。尚、これらの金属酸化物に、フッ素(F)、錫(Sn)、アルミニウム(Al)、鉄(Fe)、ガリウム(Ga)、ニオブ(Nb)などがドープされていてもよい。
 積層体3は、受光面電極層2と裏面電極層4との間に設けられる。積層体3は、第1光電変換部31と、反射層32とを含む。第1光電変換部31及び反射層32は、受光面電極層2側から順に積層される。
 第1光電変換部31は、受光面電極層2側から入射する光により光生成キャリアを生成する。また、第1光電変換部31は、反射層32から反射される光により光生成キャリアを生成する。第1光電変換部31は、p型非晶質シリコン半導体と、i型非晶質シリコン半導体と、n型非晶質シリコン半導体とが基板1側から積層されたpin接合を有する(不図示)。
 反射層32は、第1光電変換部31を透過した光の一部を第1光電変換部31側に反射する。反射層32は、第1層32aと、第2層32bとを含む。
 第1層32aと第2層32bとは、第1光電変換部31側から順に積層される。従って、第1層32aは、第1光電変換部31に接触しており、第2層32bは、第1光電変換部31に接触していない。
 第2層32bは、樹脂などにより構成されるバインダーと、透光性導電材料と、屈折率調整材とを含む。バインダーとしては、シリカなどを用いることができる。また、透光性導電材料としては、ZnO、ITOなどを用いることができる。また、屈折率調整材としては、第1層32aよりも低い屈折率を有する材料が用いられる。例えば、屈折率調整材としては、気泡、あるいはSiO,Al,MgO,CaF,NaF,CaO,LiF,MgF,SrO,Bなどにより構成される微粒子を用いることができる。従って、第2層32bとしては、例えば、シリカ系バインダー中に、ITO粒子と気泡とを含む層を用いることができる。第2層32bに上記のような屈折率調整材が含まれることにより、第2層32b全体としての屈折率は、第1層32aの屈折率よりも低くなる。
 第1層32aとしては、第1光電変換部31との間のコンタクト抵抗値が、第2層32bを構成する材料と第1光電変換部31との間のコンタクト抵抗値よりも小さい材料が用いられる。
 即ち、第1層32aを構成する材料は、第1光電変換部31と第1層32aとのコンタクト抵抗(接触抵抗)値が、第1光電変換部31と第2層32bとを直接接触させた場合のコンタクト抵抗値未満となるように選択されることが好ましい。
 第1層32aとしては、例えば、ZnO、ITOなどを用いることができる。
 尚、本発明の第1実施形態にあっては、第1層32aが本発明の「コンタクト層」に相当する。また、第2層32bが、本発明の「低屈折率層」に相当する。
 また、第1層32aを構成する材料は、第1層32aを含む積層体3の両端の抵抗値が、第1層32aを含まない積層体3の両端の抵抗値よりも小さくなるように選択されることが好ましい。
 裏面電極層4は、導電性を有している。裏面電極層4としては、ZnO、銀(Ag)などを用いることができるが、これに限るものではない。裏面電極層は、ZnOを含む層と、Agを含む層とが、積層体3側から積層した構成を有していてもよい。また、裏面電極層4は、Agを含む層のみを有していてもよい。
 〈作用及び効果〉
 本発明の第1実施形態に係る太陽電池10において、反射層32は、屈折率調整材を含む第2層32bと、第2層32bと第1光電変換部31との間のコンタクト抵抗値よりも第1光電変換部31との間のコンタクト抵抗値が小さい材料からなる第1層32aとを含む。第1層32a及び第2層32bは、第1光電変換部31側から順に積層される。
 従って、第2層32bは、第1光電変換部31に直接接触していないので、太陽電池10の光電変換効率を向上させることができる。この効果について、以下に詳説する。
 本発明の第1実施形態に係る太陽電池10では、反射層32に含まれる第2層32bが、従来から反射層の主体として用いられていたZnOよりも低い屈折率を有する材料により構成される屈折率調整材を含む。このような第2層32b全体としての屈折率は、ZnOにより構成される層の屈折率よりも低くなる。そのため、このような第2層32bが反射層32に含まれることにより、ZnOを主体とする従来の反射層よりも、反射層32の反射率を高めることができる。
 ここで、反射層32が、第1層32aを有しない場合や、第1層32a及び第2層32bが裏面電極層4側から順に積層されている場合、屈折率調整材を含む第2層32bが、第1光電変換部31に直接接触することとなる。屈折率調整材を含む第2層32bと、シリコンを主体とする第1光電変換部31とのコンタクト抵抗値は非常に高い値であるため、第2層32bが第1光電変換部31に直接接触する場合、太陽電池10全体におけるシリーズ抵抗(直列抵抗)値が増大する。従って、太陽電池10において発生する短絡電流は、反射層32の反射率が高められることによって増加する。一方、太陽電池10の曲線因子(F.F.)は、シリーズ抵抗値の増大によって減少する。そのため、太陽電池10の光電変換効率の充分な向上を図ることができない。
 そこで、本発明の第1実施形態に係る太陽電池10では、第1層32a及び第2層32bを第1光電変換部31側から順に積層することで、屈折率調整材を含む第2層32bが、第1光電変換部31に直接接触することを回避している。このような構成によれば、太陽電池10全体におけるシリーズ抵抗値の増大により太陽電池10の曲線因子(F.F.)が低下することを抑制しつつ、反射層32の反射率を高めることができる。その結果、太陽電池10の光電変換効率を向上させることができる。
 [第2実施形態]
 以下において、本発明の第2実施形態について説明する。尚、以下においては、上述した第1実施形態と第2実施形態との差異について主として説明する。
 具体的には、上述した第1実施形態において、積層体3は、第1光電変換部31と、反射層32とを含む。これに対して、第2実施形態において、積層体3は、第1光電変換部31及び反射層32に加えて第2光電変換部33を含む構造、いわゆるタンデム構造を有している。
 〈太陽電池の構成〉
 以下において、本発明の第2実施形態に係る太陽電池の構成について、図2を参照しながら説明する。
 図2は、本発明の第2実施形態に係る太陽電池10の断面図である。
 図2に示すように、太陽電池10は、基板1と、受光面電極層2と、積層体3と、裏面電極層4とを備える。
 積層体3は、受光面電極層2と裏面電極層4との間に設けられる。積層体3は、第1光電変換部31と、反射層32と、第2光電変換部33とを含む。
 第1光電変換部31、第2光電変換部33、及び反射層32は、受光面電極層2側から順に積層される。
 第1光電変換部31は、受光面電極層2側から入射する光により光生成キャリアを生成する。第1光電変換部31は、p型非晶質シリコン半導体と、i型非晶質シリコン半導体と、n型非晶質シリコン半導体とが基板1側から積層されたpin接合を有する(不図示)。
 反射層32は、第1光電変換部31側から入射した光の一部を第1光電変換部31側に反射する。反射層32は、第1層32aと、第2層32bとを含む。第1層32aと第2層32bとは、第1光電変換部31側から順に積層される。従って、第1層32aは、第2光電変換部33に接触しており、第2層32bは、第2光電変換部33に接触していない。
 第2光電変換部33は、入射する光により光生成キャリアを生成する。第2光電変換部33は、p型結晶質シリコン半導体と、i型結晶質シリコン半導体と、n型結晶質シリコン半導体とが基板1側から積層されたpin接合を有する(不図示)。
 〈作用及び効果〉
 本発明の第2実施形態に係る太陽電池10によれば、反射層32に含まれる第1層32a及び第2層32bが、第1光電変換部31側から順に積層される。
 このような構成によれば、太陽電池10がタンデム構造を有していても、太陽電池10全体におけるシリーズ抵抗値の増大を抑制しつつ、反射層32の反射率を高めることができる。従って、太陽電池10の光電変換効率を向上させることができる。
 [第3実施形態]
 以下において、本発明の第3実施形態について説明する。尚、以下においては、上述した第1実施形態と第3実施形態との差異について主として説明する。
 具体的には、上述した第1実施形態において、積層体3は、第1光電変換部31と、反射層32とを含む。これに対して、第3実施形態において、積層体3は、第1光電変換部31及び反射層32に加えて第2光電変換部33を含む構造、いわゆる、タンデム構造を有している。さらに、第3実施形態において、反射層32は、第1層32a及び第2層32bに加えて第3層32cを含む。
 〈太陽電池の構成〉
 以下において、本発明の第3実施形態に係る太陽電池の構成について、図3を参照しながら説明する。
 図3は、本発明の第3実施形態に係る太陽電池10の断面図である。
 図3に示すように、太陽電池10は、基板1と、受光面電極層2と、積層体3と、裏面電極層4とを備える。
 積層体3は、受光面電極層2と裏面電極層4との間に設けられる。積層体3は、第1光電変換部31と、反射層32と、第2光電変換部33とを含む。
 第1光電変換部31、反射層32、及び第2光電変換部33は、受光面電極層2側から順に積層される。
 第1光電変換部31は、受光面電極層2側から入射する光により光生成キャリアを生成する。また、第1光電変換部31は、反射層32から反射される光により光生成キャリアを生成する。第1光電変換部31は、p型非晶質シリコン半導体と、i型非晶質シリコン半導体と、n型非晶質シリコン半導体とが基板1側から積層されたpin接合を有する(不図示)。
 反射層32は、第1光電変換部31を透過した光の一部を第1光電変換部31側に反射する。反射層32は、第1層32aと、第2層32bと、第3層32cとを含む。
 第1層32a、第2層32b及び第3層32cは、第1光電変換部31側から順に積層されている。従って、第1層32aは、第1光電変換部31に接触しており、第3層32cは、第2光電変換部33に接触している。第2層32bは、第1光電変換部31及び第2光電変換部33のいずれにも接触していない。
 第2層32bは、樹脂などにより構成されるバインダーと、透光性導電材料と、屈折率調整材とを含む。バインダーとしては、シリカなどを用いることができる。また、透光性導電材料としては、ZnO、ITOなどを用いることができる。また、屈折率調整材としては、第1層32aの屈折率及び第3層32cの屈折率よりも低い屈折率を有する材料が用いられる。例えば、屈折率調整材としては、気泡、あるいはSiO,Al,MgO,CaF,NaF,CaO,LiF,MgF,SrO,Bなどにより構成される微粒子を用いることができる。従って、第2層32bとしては、例えば、シリカ系バインダー中に、ITO粒子と気泡とを含む層を用いることができる。第2層32bに上記のような屈折率調整材が含まれることにより、第2層32b全体としての屈折率は、第1層32aの屈折率及び第3層32cの屈折率よりも低くなる。
 第1層32aとしては、第1光電変換部31との間のコンタクト抵抗値が、第2層32bを構成する材料と第1光電変換部31との間のコンタクト抵抗値よりも小さい材料が主体として用いられる。また、第3層32cとしては、第2光電変換部33との間のコンタクト抵抗値が、第2層32bを構成する材料と第1光電変換部31との間のコンタクト抵抗値よりも小さい材料が主体として用いられる。
 即ち、第1層32aを構成する材料は、第1光電変換部31と第1層32aとのコンタクト抵抗値が、第1光電変換部31と第2層32bとを直接接触させた場合のコンタクト抵抗値未満となるように選択されることが好ましい。また、第3層32cを構成する材料は、第3層32cと第2光電変換部33とのコンタクト抵抗値が、第2層32bと第2光電変換部33とを直接接触させた場合のコンタクト抵抗値未満となるように選択されることが好ましい。
 また、第1層32aを構成する材料及び第3層32cを構成する材料は、第1層32a及び第3層32cを含む積層体3の両端の抵抗値が、第1層32a及び第3層32cを含まない積層体3の両端の抵抗値よりも小さくなるように選択されることが好ましい。
 第1層32a又は第3層32cとしては、例えば、ZnO、ITOなどを用いることができる。尚、第1層32aを構成する材料と、第3層32cを構成する材料とは、同一であってもよく、異なっていてもよい。
 尚、本発明の第1実施形態にあっては、第3層32cが本発明の「他のコンタクト層」に相当する。
 第2光電変換部33は、入射する光により光生成キャリアを生成する。第2光電変換部33は、p型結晶質シリコン半導体と、i型結晶質シリコン半導体と、n型結晶質シリコン半導体とが基板1側から積層されたpin接合を有する(不図示)。
 〈作用及び効果〉
 本発明の第3実施形態に係る太陽電池10において、反射層32は、屈折率調整材を含む第2層32bと、第2層32bと第1光電変換部31との間のコンタクト抵抗値よりも第1光電変換部31との間のコンタクト抵抗値が小さい材料からなる第1層32aと、第2層32bと第2光電変換部33との間のコンタクト抵抗値よりも第2光電変換部との間のコンタクト抵抗値が小さい材料からなる第3層32aとを含む。第1層32a、第2層32b及び第3層32cは、第1光電変換部31側から順に積層される。従って、屈折率調整材を含む第2層32bは、第1光電変換部31及び第2光電変換部33のいずれにも接触していない。
 このような構成によれば、太陽電池10全体におけるシリーズ抵抗値の増大を抑制しつつ、反射層32の反射率を高めることができる。そのため、第1光電変換部31において吸収される光の量を増加させることができる。
 さらに、屈折率調整材を含む第2層32bを含む反射層32は、ZnOを主体とする従来の反射層よりも、長波長領域(1000nm付近)の光を吸収しにくい。そのため、第2光電変換部33において吸収される光の量を増加させることができる。従って、太陽電池10の光電変換効率を向上させることができる。
 [第4実施形態]
 以下において、本発明の第4実施形態について説明する。尚、以下においては、上述した第3実施形態と第4実施形態との差異について主として説明する。
 具体的には、上述した第3実施形態において、太陽電池10は、基板1と、受光面電極層2と、積層体3と、裏面電極層4とを備えている。これに対して、第4実施形態において、太陽電池10は、受光面電極層2、積層体3及び裏面電極層4をそれぞれ備える複数の太陽電池素子10aを、基板1上に備えている。
 〈太陽電池の構成〉
 以下において、本発明の第4実施形態に係る太陽電池の構成について、図4を参照しながら説明する。図4は、本発明の第4実施形態に係る太陽電池10の断面図である。
 図4に示すように、太陽電池10は、基板1と、複数の太陽電池素子10aとを備える。
 複数の太陽電池素子10aのそれぞれは、基板1上に形成される。複数の太陽電池素子10aは、受光面電極層2と、積層体3と、裏面電極層4とをそれぞれ備える。
 積層体3は、受光面電極層2と裏面電極層4との間に設けられる。積層体3は、第1光電変換部31と、反射層32と、第2光電変換部33とを含む。反射層32は、第1層32aと、第2層32bと、第3層32cとを含む。
 第1層32a、第2層32b及び第3層32cは、第1光電変換部31側から順に積層されている。従って、第1層32aは、第1光電変換部31に接触しており、第3層32cは、第2光電変換部33に接触している。第2層32bは、第1光電変換部31及び第2光電変換部33のいずれにも接触していない。第1層32a及び第3層32cの厚さは、極力小さいことが好ましい。
 裏面電極層4は、複数の太陽電池素子10aに含まれる一の太陽電池素子10aに隣接する他の太陽電池素子10aの受光面電極層2に向かって延在する延在部4aを有する。
 延在部4aは、一の太陽電池素子10aに含まれる積層体3の側面に沿って形成される。延在部4aは、一の太陽電池素子10aに含まれる積層体3の側面に露出した反射層32に接している。
 〈作用及び効果〉
 本発明の第4実施形態に係る太陽電池10によれば、反射層32の反射率を高めることに加え、太陽電池10の曲線因子(FF)の低下を抑制することができるので、太陽電池10の光電変換効率を向上させることができる。この効果について、以下に詳説する。
 従来から反射層の主体として用いられていたZnOは、そのシート抵抗値が1.0×10~5.0×10Ω/□程度である。そのため、ZnOを主体とする従来の反射層を用いた場合、太陽電池素子10aにおいて発生した電流の一部が、当該反射層に沿って延在部4aへと流れてリーク電流が発生する。このようなリーク電流が複数の太陽電池素子10aそれぞれにおいて大きくなると、太陽電池10の曲線因子(F.F.)が低下する。
 これに対し、屈折率調整材を含む第2層32bのシート抵抗値は、1.0×10Ω/□以上である。従って、本発明の第4実施形態に係る太陽電池10では、屈折率調整材を含む第2層32bを反射層32に含めることにより、反射層32におけるシート抵抗値を、ZnOを主体とする従来の反射層におけるシート抵抗値よりも大幅に高くすることができる。そのため、本発明の第4実施形態に係る太陽電池10では、太陽電池素子10aにおいて発生した電流が反射層32に沿って延在部4aに到達することを抑制することができる。従って、第2層32bを含む反射層32を用いることにより、ZnOを主体とする従来の反射層を用いた場合よりも、太陽電池10の曲線因子(FF)の低下を抑制することができる。以上より、太陽電池10の光電変換効率を向上させることができる。
 また、第1層32a(コンタクト層)は、第2層32b(低屈折率層)と第1光電変換部31との間のコンタクト抵抗値を低減し、第3層32c(他のコンタクト層)は、第2層32b(低屈折率層)と第2光電変換部33との間のコンタクト抵抗値を低減するものであるから、第1層32a及び第3層32cの厚さを小さくすることができる。
 第1層32aの厚さを小さくした場合、第1層32aのシート抵抗値を増大することができる。また、第3層32cの厚さを小さくした場合、第3層32cのシート抵抗値を増大することができる。ここで、第1層32aの厚さを小さくした場合であっても、第2層32b(低屈折率層)と第1光電変換部31との間のコンタクト抵抗値については充分に低減できる。また、第1層32aの厚さを小さくした場合であっても、第2層32b(低屈折率層)と第1光電変換部31との間のコンタクト抵抗値については充分に低減できる。そのため、第1層32a及び第3層32cの厚さを極力小さくすることにより、第1層32a及び第3層32cに沿って延在部4aへと流れるリーク電流を低減することができる。
 〈その他の実施形態〉
 本発明は上記の実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 例えば、上述した第1実施形態では、積層体3に含まれる光電変換部が1つ(第1光電変換部31)であり、第2実施形態及び第3実施形態では、積層体3に含まれる光電変換部が2つ(第1光電変換部31及び第2光電変換部33)であるが、これに限定されるものではない。具体的には、積層体3には、3つ以上の光電変換部が含まれていてもよい。このような場合、反射層32は、任意の隣接する2つの光電変換部の間に設けることができる。
 また、上述した第1実施形態では、第1光電変換部31は、p型非晶質シリコン半導体と、i型非晶質シリコン半導体と、n型非晶質シリコン半導体とが基板1側から積層されたpin接合を有するが、これに限定されるものではない。具体的には、第1光電変換部31は、p型結晶質シリコン半導体と、i型結晶質シリコン半導体と、n型結晶質シリコン半導体とが基板1側から積層されたpin接合を有していてもよい。尚、結晶質シリコンには、微結晶シリコンや多結晶シリコンが含まれるものとする。
 また、上述した第1実施形態~第4実施形態では、第1光電変換部31及び第2光電変換部33は、pin接合を有するが、これに限定されるものではない。具体的には、第1光電変換部31及び第2光電変換部33の少なくとも一方が、p型シリコン半導体と、n型シリコン半導体とが基板1側から積層されたpn接合を有していてもよい。
 また、上述した第1実施形態~第4実施形態では、太陽電池10は、基板1上に、受光面電極層2と、積層体3と、裏面電極層4とが順に積層された構成を有しているが、これに限定されるものではない。具体的には、太陽電池10は、基板1上に、裏面電極層4と、積層体3と、受光面電極層2とが順に積層された構成を有していてもよい。
 このように、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。従って、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
 以下、本発明に係る太陽電池について、実施例を挙げて具体的に説明する。但し、本発明は、下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において、適宜変更して実施することができるものである。
 [屈折率評価]
 まず、シリカ系バインダー中にITO粒子(透光性導電材料)と気泡(屈折率調整材)とを含む層(以下、気泡含有ITO層)の屈折率と、従来から反射層の主体として用いられているZnO層,ITO層の屈折率との比較を行った。
 具体的には、まず、アルコール系溶剤中にITO微粒子とシリカ系バインダーとを混合した分散液を用いて、スピンコート法により気泡含有ITO層を作製した。このとき、スピンコート法に用いる直前に分散液を機械攪拌することにより、分散液中に気泡を含ませた。尚、ITO微粒子としては、平均粒径20~40nmの住友金属鉱山製ITO微粒子(SUFP)を用いた。また、シリカ系バインダーの混合割合は、ITO微粒子に対して10~15体積%とした。
 次に、スピンコート後には、乾燥及び焼成のために、大気中150℃で1時間のアニールを行った。
 その後、作製された気泡含有ITO層の屈折率を測定した。気泡含有ITO層屈折率の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 一般的に、ZnO層及びITO層の屈折率は、約2.0である。従って、表1に示すように、気泡含有ITO層の屈折率は、ZnO層及びITO層の屈折率よりも低いことが確認された。従って、気泡含有ITO層を反射層に含めることによって、反射層の反射率を高めることができる。
 [光電変換効率評価]
 次に、以下のようにして実施例1、実施例2、比較例1、比較例2及び比較例3に係る太陽電池を作製し、光電変換効率の比較を行った。
 〈実施例1〉
 以下のようにして、実施例1に係る太陽電池10を作製した。まず、厚さ4mmのガラス基板(基板1)上に、SnO層(受光面電極層2)を形成した。
 次に、SnO層(受光面電極層2)上に、プラズマCVD法を用いて、p型非晶質シリコン半導体と、i型非晶質シリコン半導体と、n型非晶質シリコン半導体とを積層し、第1セル(第1光電変換部31)を形成した。p型非晶質シリコン半導体、i型非晶質シリコン半導体、及びn型非晶質シリコン半導体の厚さは、それぞれ15nm、200nm、30nmとした。
 次に、第1セル(第1光電変換部31)上に、スパッタ法及びスピンコート法を用いて、中間反射層(反射層32)を形成した。具体的には、スパッタ法により形成されるZnO層(第1層32a)、スピンコート法により形成される気泡含有ITO層(第2層32b)及びスパッタ法により形成されるZnO層(第3層32c)を第1セル(第1光電変換部31)上に順次積層した。これによって、3層構造を有する中間反射層(反射層32)を形成した。ZnO層(第1層32a)、気泡含有ITO層(第2層32b)、及びZnO層(第3層32c)の厚さは、それぞれ5nm、20nm、5nmとした。
 次に、中間反射層(反射層32)上に、プラズマCVD法を用いて、p型微結晶シリコン半導体と、i型微結晶シリコン半導体と、n型微結晶シリコン半導体とを積層し、第2セル(第2光電変換部33)を形成した。p型微結晶シリコン半導体、i型微結晶シリコン半導体、及びn型微結晶シリコン半導体の厚さは、それぞれ30nm、2000nm、20nmとした。
 次に、第2セル(第2光電変換部33)上に、スパッタ法を用いて、ZnO層及びAg層(裏面電極層4)を形成した。ZnO層及びAg層(裏面電極層4)の厚さは、それぞれ90nm、200nmとした。
 以上により、本実施例1では、図3に示すように、第1セル(第1光電変換部31)と第2セル(第2光電変換部33)との間に、気泡含有ITO層(第2層32b)を含む中間反射層(反射層32)を有する太陽電池10を形成した。また、気泡含有ITO層(第2層32b)と第1セル(第1光電変換部31)との間にZnO層(第1層32a)を介挿し、気泡含有ITO層(第2層32b)と第2セル(第2光電変換部33)との間のZnO層(第3層32c)を介挿した。
 〈比較例1〉
 以下のようにして、比較例1に係る太陽電池20を作製した。まず、上記実施例1と同様に、厚さ4mmのガラス基板(基板21)上に、SnO層(受光面電極層22)、第1セル(第1光電変換部231)を順次形成した。
 次に、第1セル(第1光電変換部231)上に、スパッタ法を用いて、中間反射層(反射層232)を形成した。本比較例1では、第1セル(第1光電変換部231)上にZnO層のみを形成し、当該ZnO層を中間反射層(反射層232)とした。ZnO層(反射層232)の厚さは、30nmとした。
 次に、上記実施例1と同様に、中間反射層(反射層232)上に、第2セル(第2光電変換部233)、ZnO層及びAg層(裏面電極層24)を順次形成した。尚、第1セル(第1光電変換部231)、第2セル(第2光電変換部233)、及びZnO層及びAg層(裏面電極層24)の厚さは、上記実施例1と同様とした。
 以上により、本比較例1では、図5に示すように、第1セル(第1光電変換部231)と第2セル(第2光電変換部233)との間に、ZnO層により構成される中間反射層(反射層232)を有する太陽電池20を形成した。
 〈比較例2〉
 以下のようにして、比較例2に係る太陽電池20を作製した。まず、上記実施例1と同様に、厚さ4mmのガラス基板(基板21)上に、SnO層(受光面電極層22)、第1セル(第1光電変換部231)を順次形成した。
 次に、第1セル(第1光電変換部231)上に、スパッタ法を用いて、中間反射層(反射層232)を形成した。本比較例2では、第1セル(第1光電変換部231)上に気泡含有ITO層のみを形成し、当該気泡含有ITO層を中間反射層(反射層232)とした。気泡含有ITO層(反射層232)の厚さは、30nmとした。
 次に、上記実施例1と同様に、中間反射層(反射層232)上に、第2セル(第2光電変換部233)、ZnO層及びAg層(裏面電極層24)を順次形成した。尚、第1セル(第1光電変換部231)、第2セル(第2光電変換部233)、及びZnO層及びAg層(裏面電極層24)の厚さは、上記実施例1と同様とした。
 以上により、本比較例2では、図5に示すように、第1セル(第1光電変換部231)と第2セル(第2光電変換部233)との間に、気泡含有ITO層により構成される中間反射層(反射層232)を有する太陽電池20を形成した。
 〈特性評価(その1)〉
 実施例1、比較例1及び比較例2に係る太陽電池について、開放電圧、短絡電流、曲線因子及び光電変換効率の各特性値の比較を行った。比較結果を表2に示す。尚、表2においては、比較例1における各特性値を1.00として規格化して表している。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、比較例2では、短絡電流については比較例1よりも若干増加しているが、曲線因子ついては比較例1よりも低下することが確認された。そして、比較例2では、結果として、光電変換効率が比較例1よりも低下することが確認された。
 短絡電流の増加については、比較例2に係る太陽電池20では、中間反射層(反射層232)が、ZnO層よりも屈折率の低い気泡含有ITO層によって構成されているためであると考えられる。一方で、曲線因子の低下については、比較例2に係る太陽電池20では、中間反射層(反射層232)を構成する気泡含有ITO層が、第1セル(第1光電変換部231)及び第2セル(第2光電変換部233)に直接接触しているために、比較例2に係る太陽電池20におけるシリーズ抵抗値が増大したためと考えられる。そして、比較例2では、曲線因子の低下の度合いが大きいために、光電変換効率が比較例1よりも低下したものと考えられる。
 これに対し、実施例1では、曲線因子については比較例1と比較して若干減少するものの、短絡電流については比較例1よりも増加することが確認された。その結果、実施例1では、比較例1よりも光電変換効率を向上させることができることが確認された。
 〈実施例2〉
 以下のようにして、実施例2に係る太陽電池10を作製した。まず、厚さ4mmのガラス基板(基板1)上に、SnO層(受光面電極層2)を形成した。
 次に、SnO層(受光面電極層2)上に、プラズマCVD法を用いて、p型非晶質シリコン半導体と、i型非晶質シリコン半導体と、n型非晶質シリコン半導体とを積層し、第1セル(第1光電変換部31)を形成した。p型非晶質シリコン半導体、i型非晶質シリコン半導体、及びn型非晶質シリコン半導体の厚さは、それぞれ15nm、360nm、30nmとした。
 次に、第1セル(第1光電変換部31)上に、プラズマCVD法を用いて、p型微結晶シリコン半導体と、i型微結晶シリコン半導体と、n型微結晶シリコン半導体とを積層し、第2セル(第2光電変換部33)を形成した。p型微結晶シリコン半導体、i型微結晶シリコン半導体、及びn型微結晶シリコン半導体の厚さは、それぞれ30nm、2000nm、20nmとした。
 次に、第2セル(第2光電変換部33)上に、スパッタ法及びスピンコート法を用いて、中間反射層(反射層32)を形成した。具体的には、スパッタ法により形成されるITO層(第1層32a)、及びスピンコート法により形成される気泡含有ITO層(第2層32b)を第2セル(第2光電変換部33)上に順次積層した。これによって、2層構造を有する裏面反射層(反射層32)を形成した。ITO層(第1層32a)及び気泡含有ITO層(第2層32b)の厚さは、それぞれ45nmとした。
 次に、裏面反射層(反射層32)上に、スパッタ法を用いて、Ag層(裏面電極層4)を形成した。Ag層(裏面電極層4)の厚さは200nmとした。
 以上により、本実施例1では、図2に示すように、第2セル(第2光電変換部33)とAg層(裏面電極層4)との間に、気泡含有ITO層(第2層32b)を含む裏面反射層(反射層32)を有する太陽電池10を形成した。また、気泡含有ITO層(第2層32b)と第2セル(第2光電変換部33)との間に、ITO層(第1層32a)を介挿した。
 〈比較例3〉
 以下のようにして、比較例3に係る太陽電池30を作製した。まず、上記実施例2と同様に、厚さ4mmのガラス基板(基板31)上に、SnO層(受光面電極層32)、第1セル(第1光電変換部331)、第2セル(第2光電変換部333)を順次形成した。
 次に、第2セル(第2光電変換部333)上に、スパッタ法を用いて、裏面反射層(反射層332)を形成した。本比較例3では、第2セル(第2光電変換部333)上にZnO層のみを形成し、当該ZnO層を裏面反射層(反射層332)とした。ZnO層(反射層332)の厚さは、90nmとした。
 次に、上記実施例1と同様に、裏面反射層(反射層332)上に、Ag層(裏面電極層34)を形成した。尚、第1セル(第1光電変換部331)、第2セル(第2光電変換部333)及び、Ag層(裏面電極層34)の厚さは、上記実施例2と同様とした。
 以上により、本比較例3では、図6に示すように、第2セル(第2光電変換部333)とAg層(裏面電極層34)の間に、ZnO層により構成される裏面反射層(反射層332)を有する太陽電池10を形成した。
 〈特性評価(その2)〉
 実施例2及び比較例3に係る太陽電池について、開放電圧、短絡電流、曲線因子及び光電変換効率の各特性値の比較を行った。比較結果を表3に示す。尚、表3においては、比較例3における各特性値を1.00として規格化して表している。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例2では、曲線因子については比較例1と比較して若干減少するものの、短絡電流については比較例3よりも増加することが確認された。その結果、実施例2では、比較例3よりも光電変換効率を向上させることができることが確認された。
 本発明によれば、光電変換効率を向上させた太陽電池を提供することができるので、太陽光発電分野において有用である。

Claims (6)

  1.  導電性及び透光性を有する受光面電極層と、
     導電性を有する裏面電極層と、
     前記受光面電極層と前記裏面電極層との間に設けられた積層体とを備え、
     前記積層体は、光の入射により光生成キャリアを生成する第1光電変換部と、前記第1光電変換部を透過した光の一部を前記第1光電変換部側に反射する反射層とを含んでおり、
     前記反射層は、屈折率調整材を含む低屈折率層と、前記低屈折率層と前記第1光電変換部との間に介挿されたコンタクト層とを有し、
     前記屈折率調整材を構成する材料の屈折率は、前記コンタクト層を構成する材料の屈折率よりも低く、
     前記低屈折率層の屈折率は、前記コンタクト層の屈折率よりも低い
    ことを特徴とする太陽電池。
  2.  前記積層体は、前記第1光電変換部と、前記反射層と、光の入射により光生成キャリアを生成する第2光電変換部とが前記受光面電極層側から順に積層された構成を有し、
     前記反射層は、前記低屈折率層と前記第2光電変換部との間に介挿された他のコンタクト層をさらに有し、
     前記屈折率調整材を構成する材料の屈折率は、前記他のコンタクト層を構成する材料の屈折率よりも低く、
     前記低屈折率層の屈折率は、前記他のコンタクト層の屈折率よりも低い
    ことを特徴とする請求項1に記載の太陽電池。
  3.  前記コンタクト層は、前記第1光電変換部との間のコンタクト抵抗値が、前記低屈折率層と前記第1光電変換部との間のコンタクト抵抗値よりも小さい材料により構成されることを特徴とする請求項1又は2に記載の太陽電池。
  4.  前記他のコンタクト層は、前記第2光電変換部との間のコンタクト抵抗値が、前記低屈折率層と前記第2光電変換部との間のコンタクト抵抗値よりも小さい材料により構成されることを特徴とする請求項2に記載の太陽電池。
  5.  前記コンタクト層又は前記他のコンタクト層の少なくとも一方は、酸化亜鉛又は酸化インジウムを含むことを特徴とする請求項3又は4に記載の太陽電池。
  6.  絶縁性及び透光性を有する基板上に、第1太陽電池素子及び第2太陽電池素子を有する太陽電池であって、
     前記第1太陽電池素子及び前記第2太陽電池素子のそれぞれは、
     導電性及び透光性を有する受光面電極層と、
     導電性を有する裏面電極層と、
     前記受光面電極層と前記裏面電極層との間に設けられた積層体とを備え、
     前記積層体は、光の入射により光生成キャリアを生成する第1光電変換部と、前記第1光電変換部を透過した光の一部を前記第1光電変換部側に反射する反射層と、光の入射により光生成キャリアを生成する第2光電変換部とを含み、
     前記第1太陽電池素子の前記裏面電極層は、前記第2太陽電池素子の前記受光面電極層に向かって延在する延在部を有し、
     前記延在部は、前記第1太陽電池素子に含まれる前記積層体の側面に露出した前記反射層に接しており、
     前記反射層は、屈折率調整材を含む低屈折率層と、前記低屈折率層と前記第1光電変換部との間に介挿されたコンタクト層と、前記低屈折率層と前記第2光電変換部との間に介挿された他のコンタクト層とを有し、
     前記屈折率調整材を構成する材料の屈折率は、前記コンタクト層を構成する材料の屈折率及び前記他のコンタクト層を構成する材料の屈折率よりも低く、
     前記低屈折率層の屈折率は、前記コンタクト層の屈折率及び前記他のコンタクト層の屈折率よりも低い
    ことを特徴とする太陽電池。
PCT/JP2009/055310 2008-03-21 2009-03-18 太陽電池 WO2009116578A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801099810A CN101978512B (zh) 2008-03-21 2009-03-18 太阳能电池
US12/598,226 US20120138126A1 (en) 2008-03-21 2009-03-18 Solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008074495A JP2009231505A (ja) 2008-03-21 2008-03-21 太陽電池
JP2008-074495 2008-03-21

Publications (1)

Publication Number Publication Date
WO2009116578A1 true WO2009116578A1 (ja) 2009-09-24

Family

ID=41090977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055310 WO2009116578A1 (ja) 2008-03-21 2009-03-18 太陽電池

Country Status (5)

Country Link
US (1) US20120138126A1 (ja)
JP (1) JP2009231505A (ja)
CN (1) CN101978512B (ja)
TW (1) TW200941748A (ja)
WO (1) WO2009116578A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2359411A2 (en) * 2008-12-19 2011-08-24 Applied Materials, Inc. Microcrystalline silicon alloys for thin film and wafer based solar applications
EP2738819A1 (en) * 2011-07-27 2014-06-04 Sanyo Electric Co., Ltd Solar cell
WO2014185356A1 (ja) * 2013-05-14 2014-11-20 三菱電機株式会社 光起電力素子及びその製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046388A2 (ko) 2009-10-15 2011-04-21 엘지이노텍주식회사 태양광 발전장치 및 이의 제조방법
JP5554409B2 (ja) 2010-06-21 2014-07-23 三菱電機株式会社 光電変換装置
TWI419343B (zh) * 2010-07-20 2013-12-11 Nexpower Technology Corp 串疊型太陽能電池
KR20120082542A (ko) * 2011-01-14 2012-07-24 엘지전자 주식회사 박막 태양전지 및 그 제조 방법
JP2012190856A (ja) * 2011-03-08 2012-10-04 Mitsubishi Materials Corp 太陽電池向け透明導電膜用組成物および透明導電膜
KR101186561B1 (ko) 2011-09-05 2012-10-08 포항공과대학교 산학협력단 태양전지 소자 및 이의 제조방법
NL2014040B1 (en) * 2014-12-23 2016-10-12 Stichting Energieonderzoek Centrum Nederland Method of making a curent collecting grid for solar cells.
WO2016157979A1 (ja) * 2015-03-31 2016-10-06 株式会社カネカ 光電変換装置および光電変換モジュール
CN107681020A (zh) * 2017-09-26 2018-02-09 南开大学 一种提高平面硅异质结太阳电池长波长光响应的方法
WO2019230469A1 (ja) * 2018-05-29 2019-12-05 京セラ株式会社 太陽電池素子

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04152679A (ja) * 1990-10-17 1992-05-26 Showa Shell Sekiyu Kk 集積型光起電力装置
US5230746A (en) * 1992-03-03 1993-07-27 Amoco Corporation Photovoltaic device having enhanced rear reflecting contact
US5296045A (en) * 1992-09-04 1994-03-22 United Solar Systems Corporation Composite back reflector for photovoltaic device
JPH06314804A (ja) * 1993-04-30 1994-11-08 Sanyo Electric Co Ltd 光起電力装置
WO1996011500A1 (en) * 1994-10-06 1996-04-18 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Thin film solar cell
JP2000150934A (ja) * 1998-11-16 2000-05-30 Sanyo Electric Co Ltd 光起電力素子及びその製造方法
JP2000261011A (ja) * 1999-03-05 2000-09-22 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置
JP2006120737A (ja) * 2004-10-19 2006-05-11 Mitsubishi Heavy Ind Ltd 光電変換素子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656098A (en) * 1992-03-03 1997-08-12 Canon Kabushiki Kaisha Photovoltaic conversion device and method for producing same
JP4152679B2 (ja) * 2002-06-27 2008-09-17 株式会社吉野工業所 詰替え液体収納容器
JP4959127B2 (ja) * 2004-10-29 2012-06-20 三菱重工業株式会社 光電変換装置及び光電変換装置用基板
JP4634129B2 (ja) * 2004-12-10 2011-02-16 三菱重工業株式会社 光散乱膜,及びそれを用いる光デバイス
JP2006310348A (ja) * 2005-04-26 2006-11-09 Sanyo Electric Co Ltd 積層型光起電力装置
JP2006310694A (ja) * 2005-05-02 2006-11-09 Kaneka Corp 集積化多接合薄膜光電変換装置
JP2006319068A (ja) * 2005-05-11 2006-11-24 Kaneka Corp 多接合型シリコン系薄膜光電変換装置、及びその製造方法
EP2133924A4 (en) * 2007-02-16 2011-04-27 Mitsubishi Heavy Ind Ltd PHOTOELECTRIC CONVERTER AND MANUFACTURING METHOD THEREFOR

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04152679A (ja) * 1990-10-17 1992-05-26 Showa Shell Sekiyu Kk 集積型光起電力装置
US5230746A (en) * 1992-03-03 1993-07-27 Amoco Corporation Photovoltaic device having enhanced rear reflecting contact
US5296045A (en) * 1992-09-04 1994-03-22 United Solar Systems Corporation Composite back reflector for photovoltaic device
JPH06314804A (ja) * 1993-04-30 1994-11-08 Sanyo Electric Co Ltd 光起電力装置
WO1996011500A1 (en) * 1994-10-06 1996-04-18 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Thin film solar cell
JP2000150934A (ja) * 1998-11-16 2000-05-30 Sanyo Electric Co Ltd 光起電力素子及びその製造方法
JP2000261011A (ja) * 1999-03-05 2000-09-22 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置
JP2006120737A (ja) * 2004-10-19 2006-05-11 Mitsubishi Heavy Ind Ltd 光電変換素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference", 3 January 2005, article JONES S.J. ET AL.: "Development of multilayer back reflectors for improved a-Si based solar cell performance", pages: 1432 - 1435, XP010823026 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2359411A2 (en) * 2008-12-19 2011-08-24 Applied Materials, Inc. Microcrystalline silicon alloys for thin film and wafer based solar applications
EP2359411A4 (en) * 2008-12-19 2013-07-10 Applied Materials Inc MICROCRYSTALLINE SILICON ALLOYS FOR SOLAR APPLICATIONS BASED ON THIN FILMS AND SLICES
EP2738819A1 (en) * 2011-07-27 2014-06-04 Sanyo Electric Co., Ltd Solar cell
EP2738819A4 (en) * 2011-07-27 2015-04-08 Sanyo Electric Co SOLAR CELL
WO2014185356A1 (ja) * 2013-05-14 2014-11-20 三菱電機株式会社 光起電力素子及びその製造方法
JP6072904B2 (ja) * 2013-05-14 2017-02-01 三菱電機株式会社 光起電力素子及びその製造方法

Also Published As

Publication number Publication date
US20120138126A1 (en) 2012-06-07
CN101978512B (zh) 2012-09-05
CN101978512A (zh) 2011-02-16
JP2009231505A (ja) 2009-10-08
TW200941748A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
WO2009116578A1 (ja) 太陽電池
JP4940309B2 (ja) 太陽電池
US20080223436A1 (en) Back reflector for use in photovoltaic device
US20080105293A1 (en) Front electrode for use in photovoltaic device and method of making same
US20080105298A1 (en) Front electrode for use in photovoltaic device and method of making same
JP2003142709A (ja) 積層型太陽電池およびその製造方法
TW201021229A (en) Solar cell having reflective structure
CN111916523A (zh) 异质结太阳能电池及其组件、制备方法
JP2008270562A (ja) 多接合型太陽電池
CN101764171A (zh) 具有反射结构的太阳能电池
WO2011105170A1 (ja) 太陽電池
KR101814821B1 (ko) 태양전지 모듈
CN103746015B (zh) 一种薄膜太阳能电池
TWI415278B (zh) 具有多層結構的薄膜太陽能電池
JP5468217B2 (ja) 薄膜太陽電池
EP4174914A1 (en) Laminated solar cell
WO2011105171A1 (ja) 太陽電池およびその製造方法
WO2013018287A1 (ja) 光起電力装置
JP2011187495A (ja) 太陽電池モジュール
CN118431307A (zh) 光伏电池及其制备方法、光伏组件、光伏系统
TWI565091B (zh) 光電元件
CN117117022A (zh) 一种太阳能电池及其制备方法、叠层电池和光伏组件
CN111916515A (zh) 一种超薄柔性太阳电池组件
JP2012038956A (ja) 薄膜太陽電池モジュール
WO2012099198A1 (ja) 太陽電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109981.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09722684

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12598226

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09722684

Country of ref document: EP

Kind code of ref document: A1