WO2009115715A1 - Procede de detection de defaillance d'une electrovanne d'injection a l'echappement de moteur a combustion - Google Patents

Procede de detection de defaillance d'une electrovanne d'injection a l'echappement de moteur a combustion Download PDF

Info

Publication number
WO2009115715A1
WO2009115715A1 PCT/FR2009/050245 FR2009050245W WO2009115715A1 WO 2009115715 A1 WO2009115715 A1 WO 2009115715A1 FR 2009050245 W FR2009050245 W FR 2009050245W WO 2009115715 A1 WO2009115715 A1 WO 2009115715A1
Authority
WO
WIPO (PCT)
Prior art keywords
injector
solenoid valve
fuel
exhaust pipe
exhaust
Prior art date
Application number
PCT/FR2009/050245
Other languages
English (en)
Inventor
Violaine Ploton
Original Assignee
Renault S.A.S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S filed Critical Renault S.A.S
Priority to EP09723479A priority Critical patent/EP2260189A1/fr
Publication of WO2009115715A1 publication Critical patent/WO2009115715A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/05Systems for adding substances into exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1493Purging the reducing agent out of the conduits or nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates generally to the field of fuel injection in an exhaust pipe of an engine comprising a particulate filter.
  • the invention relates to a method for detecting the failure of a solenoid valve of an internal combustion engine, this engine comprising a combustion chamber, a flue gas exhaust duct, a particulate filter disposed on said duct. exhaust system, a fuel injector disposed at the exhaust pipe, between the combustion chamber and said particle filter, the injector being adapted to selectively allow or prohibit the injection of fuel into the exhaust pipe , the engine further comprising a pressurized fuel generator connected to said injector via a connecting pipe on which said solenoid valve is arranged, this solenoid valve being adapted to control the supply of pressurized fuel to said exhaust injector.
  • the present invention aims to propose a method for detecting the failure of a solenoid valve.
  • the method of the invention is essentially characterized in that to identify a failure of said solenoid valve a closing command of the solenoid valve is generated. so that this solenoid valve prohibits the supply of fuel under pressure of the injector, then generates an opening control of the injector to allow the passage of fuel from a connecting pipe portion located between the solenoid valve and the injector towards the exhaust pipe, and then the temperature in the exhaust pipe downstream of said injector is measured with respect to the exhaust gas exhaust direction (in this case, this temperature is measured in a catalytic converter). oxidizing the particulate filter) and generating a failure information of the solenoid valve if it is found that this temperature passes a predetermined threshold.
  • the aforementioned opening control is preferably adapted to obtain a large injector opening time, that is to say that this control is between 11 and 20% of PWM, where the PWM designates a pulse modulation. in nozzle opening time.
  • the temperature measurement is preferably carried out at the oxidation catalyst of the particulate filter because it is at this point that the fuel passing through the injector towards the exhaust pipe reacts and generates an exotherm. Thanks to the invention, if it is found a rise in the temperature in the exhaust pipe beyond the predetermined threshold shortly after generating an opening command of the injector, it means that a large amount of fuel passes through the injector and the solenoid valve is in open configuration despite the solenoid valve closing command that had been addressed to it. Thus, a failure of the solenoid valve which has not reacted to the closing command is detected, which implies that the power failure function of the injector is unavailable. For safety reasons, a failure indication of the solenoid valve is issued. This information can be recorded and / or distributed to the user who can thus repair the solenoid valve and restore the power failure function.
  • the solenoid valve is controlled closing the injector to prohibit the passage of fuel via the injector to the exhaust pipe.
  • a progressive purge command is generated consisting of generating several alternating commands of openings and closures of the injector on a period of purge time to allow over this period of purge time the gradual passage of at least a portion of the fuel contained in said connecting pipe portion located between the solenoid valve and the injector towards the exhaust pipe.
  • This preferred embodiment allows a gradual and controlled flow (in flow and quantity) of the fuel contained in the connecting pipe, which makes it possible to limit the maximum flow of fuel passing through the exhaust pipe, thus limiting the exotherm during reactions in the oxidation catalyst and correlatively the risk of overheating / degradation of the particulate filter.
  • the purge is thus progressive. If the solenoid valve which is normally closed is functioning properly, the connection line is gradually drained. On the other hand, in the event of a malfunction of the solenoid valve which would then have remained open despite the closing command, the fuel flow rate remains controlled thanks to the alternating commands of openings and closures of the injector, which reduces the risk of overheating / degradation of the solenoid valve. particle filter.
  • the alternate commands of openings generated during the purge control are preferably adapted to obtain a relatively short injector opening time compared to the aforementioned important injector opening time.
  • these alternate commands openings are preferably between 5 and 9% of PWM (the PWM designating a pulse modulation in duration) while the aforementioned opening control is generally about 20 to 22% of PWM.
  • the amount of fuel flowing via the injector of said connecting pipe portion located between the solenoid valve and the injector towards the exhaust pipe and generating the opening control of the injector after the amount of fuel evaluated has passed a predetermined threshold quantity .
  • This embodiment allows the purge of a predetermined quantity of fuel before controlling the opening of the injector which limits (until the pressure equilibrium, that is to say until the moment the differential pressure between the injection circuit and the exhaust pipe no longer allows the flow of fuel to the exhaust) the amount of fuel remaining to flow from the connecting pipe to the exhaust pipe and correspondingly the risk damage to the particulate filter.
  • the predetermined threshold quantity of fuel is recorded in a mapped database and is selected according to operating parameters of the engine such as its current speed.
  • the predetermined temperature threshold for generating the failure information of the solenoid valve is greater than 500 ° C. and preferably equal to 550 ° C.
  • This threshold is generally between 400 and 500 ° C. and preferably between 500 and 550 ° C.
  • a step of closing the injector is generated so that the injector is kept closed at least until 'at the time generating the closing command of the solenoid valve.
  • any fuel injection operation in the exhaust pipe during which said solenoid valve and the injector are in open configurations allowing the passage of fuel via the solenoid valve and the injector to the exhaust pipe.
  • a fuel injection operation occurs for example during the regeneration of the particulate filter or during a purge of the connecting pipe.
  • the regeneration operation according to the present invention consists in injecting fuel into the exhaust pipe in order to raise the temperature at the level of the particle filter so that it degrades the particles that it contains.
  • Purge of the connecting pipe is carried out in order to avoid the risk of obstruction by accumulation of degraded fuel or any particles in the connecting pipe or in the injector.
  • the temperature upstream of the particulate filter is lower at a predetermined trigger threshold temperature.
  • a timer counting a minimum cooling time of the particle filter to flow before generating the opening command of the injector can be used.
  • FIG. 1 represents a motor on which is put in implement the method of the invention
  • FIG. 2 represents a logic diagram of the failure detection method of the solenoid valve according to the invention
  • FIGS. 3 and 4 show curves of evolution of the opening / closing commands of the solenoid valve and of the injector as well as an exhaust temperature curve
  • FIG. 3 illustrates the case of the implementation of the method on a motor whose solenoid valve works properly
  • Figure 4 illustrates the case of the implementation of the method on a motor whose solenoid valve is faulty.
  • the invention relates to a method for detecting the failure of a solenoid valve of a combustion engine.
  • This engine 1 comprises a combustion chamber connected to a burnt gas exhaust pipe 3 and a particulate filter 4.
  • An oxidation catalyst 9 is disposed on the exhaust pipe 3 immediately upstream of the particulate filter 4.
  • a turbine of turbocharger 8 is disposed on the exhaust pipe 3.
  • An exhaust fuel injection system is arranged to inject fuel upstream of the oxidation catalyst 9.
  • the injection system comprises a fuel injector 5 opening into the exhaust pipe, upstream of the oxidation catalyst.
  • the injection system also comprises a pressurized fuel generator 6 comprising an HP high pressure pump and a low pressure LP stage, the latter being connected to the injector 5 via a connecting pipe 7 on which a solenoid valve 1 is placed.
  • This solenoid valve 1 is adapted to selectively allow or prohibit the supply of the fuel injector 5 in pressurized fuel.
  • An upstream temperature sensor T1 is disposed on the burnt gas exhaust pipe, upstream of the turbine with respect to the flow direction of the flue gases.
  • a downstream temperature sensor T2 is disposed on the exhaust gas exhaust pipe, downstream of the oxidation catalyst 9 with respect to the flow direction of the flue gases. More precisely, this downstream sensor is arranged at the inlet of the particulate filter 4.
  • the engine also includes an electronic control unit UC connected to the sensors to collect information relating to the measured temperatures.
  • This control unit UC is also connected to the solenoid valve 1 in order to command it to open or close the fuel passage between the pressurized fuel generator 6 and the injector 5.
  • This control unit UC is also connected to the injector 5 in order to selectively control it opening or closing a fuel injection passage in the exhaust pipe 3.
  • the control unit manages the execution of the method according to the invention as shown in the flowchart of FIG. 2.
  • This method is intended to detect a failure of the solenoid valve 1 essentially when it remains open despite a signal commanding him to close and to prohibit the fuel supply of the injector under pressure.
  • This prohibition of supply of fuel to the injector is essential to avoid in case of accident that fuel flows in the exhaust pipe. Detecting the solenoid valve failure is therefore essential from a safety point of view.
  • the method of detecting the failure is implemented after fuel is injected into the exhaust duct 3, that is to say:
  • the method according to the invention comprises a step A of detecting a regeneration end.
  • the engine control controller that controls the regeneration transmits a regeneration end signal to the controller responsible for implementing the method of the invention.
  • the end of regeneration can, for example, be determined when the mass of particles estimated in the particulate filter passes below a given threshold.
  • the process of the invention also comprises a step B of detecting an end of purge of the injection system.
  • the purge control automaton which controls the purge transmits an end of purge signal to the automaton responsible for implementing the method of the invention.
  • a purge is considered complete when the estimated amount of elapsed fuel reaches a predetermined fuel mass.
  • the predetermined mass is 1 gram of fuel.
  • a waiting step A ' is started so as to leave a cooling time for the particulate filter 4.
  • This step A ' may consist of a count of elapsed time since the end of the regeneration or of the current temperature T2 upstream of the particulate filter.
  • step C the transition from step A 'to the next step (in this case step C) will take place either when the elapsed time exceeds a predetermined waiting time or when the temperature upstream of the filter T2 is ironed at a predetermined low temperature generally below 500 ° C.
  • stage D low fuel injections are carried out in stage E by alternately and rapidly controlling the closures and openings of the injector 5, which makes it possible to inject a little fuel present in line 7 with a low jerky flow rate that does not generate exotherm in the oxidation catalyst.
  • step F the amount of fuel actually injected is evaluated in step F to deduce the theoretical amount remaining in the connecting pipe 7 between the solenoid valve and the injector 5. This quantity is generally known since it depends the volume of the pipe 7 and the injector 5 and the quantity injected.
  • step H is implemented which consists in controlling the opening of the fuel. injector and is observed in step I the evolution of the temperature T2 upstream of the particulate filter. The observed temperature is compared in step J T2 to a threshold and if the temperature T2 increases significantly and passes this threshold is generally set at 550 0 C then it means that the solenoid valve is not closed and that it is therefore failing.
  • Failure information is then generated in step K.
  • no failure information is generated, only a no-fault signal L is generated.
  • the method thus makes it possible to detect a failure of the solenoid valve.
  • FIGS. 3 and 4 will now be described to illustrate respectively the operation of a motor whose solenoid valve 1 is functioning properly and the operation of the same motor when the solenoid valve is faulty.
  • the value Cl gives the status of the opening command and the closing of the solenoid valve 1.
  • Cl is at 0
  • Cl 1
  • the INJ curve is the time curve of the injector opening control signal expressed as a percentage of opening over the PWM time. When the INJ curve is at 0, this indicates an injector closure.
  • the curve T2 represents the inlet temperature of the particulate filter expressed in 0 C.
  • the value of Cl is 0 and the solenoid valve that works properly is closed, the injector INJ is closed, the fuel is not injected.
  • the T2 temperature at the inlet of the particulate filter is 315 ° C.
  • the opening rate of the injector is low enough that the fuel injected via this injector does not cause significant exotherm in the catalyst 9.
  • the evolution of the temperature T2 is therefore independent of the fuel injected and depends mainly on the operation of the engine.
  • the INJ injector opening command is given between 7 and 9%, the injector opens and the quantity of fuel injected increases gradually.
  • the purge step is therefore engaged.
  • the opening rate of the injector (between 6 and 9%) is adapted to allow the progressive purge without generating exotherm in the catalyst.
  • the opening of the injector is commanded to a level close to 22%, it is then observed that the temperature T2 increases until an alert threshold of 550 ° C. is reached. at 78 seconds.
  • This sudden increase in temperature means that fuel is always injected despite the closing order of the solenoid valve given at the same time. seconds.
  • the malfunction of the solenoid valve is detected.
  • the control unit UC then generates a closing command of the injector as well as a solenoid valve failure information.
  • the temperature T2 increases by inertia until reaching 565 ° C at the time 80 seconds then stabilizes until the time 90 seconds before decreasing progressively for lack of fuel since the injector is closed for the time 80 seconds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

Procédé de détection de défaillance d'une électrovanne (1) d'un moteur à combustion interne (2), cette électrovanne (1) étant adaptée à contrôler l'alimentation en carburant sous pression d'un injecteur d'échappement (5). Pour identifier une défaillance de ladite électrovanne (1) on génère une commande de fermeture de l' électrovanne (D), puis on génère une commande d'ouverture de l' injecteur (H), puis on mesure la température dans la conduite d'échappement (I) en aval du dit injecteur (5) par rapport au sens d'échappement de gaz brûlés et on génère une information de défaillance de l' électrovanne (K) si on constate que cette température, passe un seuil prédéterminé.

Description

PROCEDE DE DETECTION DE DEFAILLANCE D'UNE ELECTROVANNE D'INJECTION A L'ECHAPPEMENT DE MOTEUR A COMBUSTION
La présente invention concerne, de façon générale, le domaine de l'injection de carburant dans une conduite d'échappement d'un moteur comportant un filtre à particules .
Plus particulièrement, l'invention concerne un procédé de détection de défaillance d'une électrovanne d'un moteur à combustion interne, ce moteur comportant une chambre de combustion, une conduite d'échappement de gaz brûlés, un filtre à particules disposé sur ladite conduite d'échappement, un injecteur de carburant disposé au niveau de la conduite d'échappement, entre la chambre de combustion et ledit filtre à particules, l' injecteur étant adapté à sélectivement autoriser ou interdire l'injection de carburant dans la conduite d'échappement, le moteur comportant en outre un générateur de carburant sous pression relié au dit injecteur via une conduite de liaison sur laquelle est disposée ladite électrovanne, cette électrovanne étant adaptée à contrôler l'alimentation en carburant sous pression du dit injecteur d'échappement.
Pour des raisons de sécurité il est souhaitable de pouvoir interrompre l'alimentation en carburant de 1' injecteur, à cet effet on a implanté une électrovanne entre la source d'alimentation en carburant sous pression et l' injecteur. Pour s'assurer de la disponibilité de cette fonction de coupure d'alimentation de l' injecteur, il est donc souhaitable de détecter une défaillance de cette électrovanne. Dans ce contexte, la présente invention a pour but de proposer un procédé de détection de défaillance d'une électrovanne .
A cette fin, le procédé de l'invention, par ailleurs conforme à la définition générique qu'en donne le préambule défini précédemment, est essentiellement caractérisé en ce que pour identifier une défaillance de ladite électrovanne on génère une commande de fermeture de l' électrovanne afin que cette électrovanne interdise l'alimentation en carburant sous pression de l'injecteur, puis on génère une commande d'ouverture de l'injecteur afin d'autoriser le passage de carburant d'une portion de conduite de liaison située entre l' électrovanne et l'injecteur vers la conduite d'échappement, puis on mesure la température dans la conduite d'échappement en aval du dit injecteur par rapport au sens d'échappement de gaz brûlés (en l'occurrence cette température est mesurée dans un catalyseur d' oxydation du filtre à particules) et on génère une information de défaillance de l' électrovanne si on constate que cette température, passe un seuil prédéterminé.
La commande d' ouverture précitée est préférentiellement adaptée pour obtenir un temps d'ouverture d' injecteur important, c'est-à-dire que cette commande est comprise entre 11 et 20% de PWM, où le PWM désigne une modulation d'impulsions en durée d'ouverture d' injecteur .
La mesure de température est préférentiellement effectuée au niveau du catalyseur d'oxydation du filtre à particules car c'est à cet endroit que le carburant transitant via l'injecteur vers la conduite d'échappement réagit et génère un exotherme. Grâce à l'invention, si l'on constate une élévation de la température dans la conduite d'échappement au-delà du seuil prédéterminé peu après avoir généré une commande d'ouverture de l'injecteur, cela signifie qu'une forte quantité de carburant transite via l'injecteur et que 1' électrovanne se trouve en configuration ouverte malgré la commande de fermeture d' électrovanne qui lui avait été adressées. Ainsi on détecte une défaillance de 1' électrovanne qui n'a pas réagi à la commande de fermeture, ce qui implique que la fonction de coupure d'alimentation de l'injecteur est indisponible. Pour des raisons de sécurité on émet une information de défaillance de l' électrovanne . Cette information peut être enregistrée et/ou diffusée à l'utilisateur qui pourra ainsi réparer l' électrovanne et rétablir la fonction de coupure d'alimentation.
Préférentiellement si on constate une défaillance de l' électrovanne on commande la fermeture de l'injecteur afin d'interdire le passage de carburant via l'injecteur vers la conduite d'échappement.
Ce mode de réalisation permet de limiter l'impact de la défaillance sur l'état du système de posttraitement puisque l'on évite que du carburant ne pénètre dans la ligne d'échappement. Préférentiellement entre la génération de ladite commande de fermeture de l' électrovanne et la génération de la commande d'ouverture de l'injecteur, on génère une commande de purge progressive consistant à générer plusieurs commandes alternées d'ouvertures et fermetures de l'injecteur sur une période de temps de purge afin d'autoriser sur cette période de temps de purge le passage progressif d'au moins une partie du carburant contenu dans ladite portion de conduite de liaison située entre l' électrovanne et l'injecteur vers la conduite d' échappement .
Ce mode de réalisation préférentiel permet un écoulement progressif et contrôlé (en débit et quantité) du carburant contenu dans la conduite de liaison ce qui permet de limiter le débit maximum de carburant transitant vers la conduite d'échappement, limitant ainsi l'exotherme lors des réactions dans le catalyseur d'oxydation et corrélativement le risque de surchauffe/dégradation du filtre à particules.
La purge est ainsi progressive. En cas de bon fonctionnement de l' électrovanne qui est normalement fermée la conduite de liaison se purge progressivement. Par contre en cas de disfonctionnement de 1' électrovanne qui serait alors restée ouverte malgré la commande de fermeture, le débit de carburant reste contrôlé grâce aux commandes alternées d' ouvertures et fermetures de l'injecteur ce qui réduit le risque de surchauffe/dégradation du filtre à particules.
Il est à noter que les commandes alternées d'ouvertures générées à l'occasion de la commande de purge sont préférentiellement adaptées pour obtenir un temps d'ouverture d'injecteur relativement faible par rapport au temps d'ouverture d'injecteur important précité. En l'occurrence ces commandes alternées d'ouvertures sont préférentiellement comprises entre 5 et 9% de PWM (le PWM désignant une modulation d'impulsions en durée) alors que la commande d'ouverture précitée est généralement d'environ 20 à 22% de PWM.
Préférentiellement durant la période de temps de purge on évalue la quantité de carburant s' écoulant via l'injecteur de ladite portion de conduite de liaison située entre l' électrovanne et l'injecteur vers la conduite d'échappement et on génère la commande d'ouverture de l'injecteur après que la quantité de carburant évaluée ait passé une quantité seuil prédéterminée .
Ce mode de réalisation permet la purge d'une quantité prédéterminée de carburant avant de commander l'ouverture de l'injecteur ce qui limite (jusqu'à l'équilibre des pressions, c'est-à-dire jusqu'au moment où le différentiel de pression entre le circuit d'injection et le conduit d'échappement ne permet plus l'écoulement de carburant vers l'échappement) la quantité de carburant restant à écouler de la conduite de liaison vers la conduite d'échappement et corrélativement le risque d' endommagement du filtre à particules.
Préférentiellement la quantité seuil prédéterminée de carburant est enregistrée dans une base de données cartographiées et est sélectionnée en fonction de paramètres de fonctionnement du moteur tels que son régime courant .
Préférentiellement le seuil de température prédéterminé pour générer l'information de défaillance de 1' électrovanne est supérieur à 5000C et préférentiellement égal à 5500C.
Ce seuil est généralement compris entre 400 et 500°C et préférentiellement entre 500 et 5500C.
Préférentiellement on fait en sorte que préalablement à la génération des commandes de fermeture de l' électrovanne et d'ouverture de l'injecteur on génère une étape de fermeture de l'injecteur de manière à ce que l'injecteur soit maintenu fermé au moins jusqu'au moment de génération de la commande de fermeture de l' électrovanne .
Préférentiellement on fait en sorte de mettre en œuvre le procédé après toute opération d'injection de carburant dans la conduite d'échappement durant laquelle ladite électrovanne et l'injecteur sont dans des configurations ouvertes permettant le passage de carburant via l' électrovanne et l'injecteur vers la conduite d'échappement. Une telle opération d'injection de carburant se produit par exemple lors de la régénération du filtre à particules ou encore lors d'une purge de la conduite de liaison. L'opération de régénération selon la présente invention consiste à injecter du carburant dans la conduite d'échappement afin d'élever la température au niveau du filtre à particules pour qu' il dégrade les particules qu'il contient.
La purge de la conduite de liaison est réalisée afin d'éviter les risque d'obstruction par accumulation de carburant dégradé ou d'éventuelles particules dans la conduite de liaison ou dans l'injecteur.
Préférentiellement avant de générer ladite commande d'ouverture de l'injecteur (c'est-à-dire après la régénération et la purge qui ne génère pas ou peu d'exotherme) on attend que la température en amont du filtre à particules soit inférieure à une température seuil de déclenchement prédéterminée.
Pour mettre en œuvre ce mode de réalisation on peut utiliser une minuterie décomptant un temps minimum de refroidissement du filtre à particules devant s'écouler avant de générer la commande d'ouverture de l'injecteur. Alternativement, on peut mesurer la température du filtre et autoriser la commande d'ouverture de l'injecteur uniquement lorsque la température mesurée du filtre est inférieure à la température seuil prédéterminée.
D'autres caractéristiques et avantages de l'invention ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels: la figure 1 représente un moteur sur lequel est mis en œuvre le procédé de l'invention ; la figure 2 représente un logigramme du procédé de détection de défaillance de l' électrovanne selon 1' invention ; les figures 3 et 4 représentent des courbes d'évolution dans le temps des commandes d'ouverture / fermeture de l' électrovanne et de l'injecteur ainsi qu'une courbe de température à l'échappement, la figure 3 illustre le cas de la mise en œuvre du procédé sur un moteur dont l' électrovanne fonctionne correctement alors que la figure 4 illustre le cas de la mise en œuvre du procédé sur un moteur dont l' électrovanne est défaillante . Comme annoncé précédemment, l'invention concerne un procédé de détection de défaillance d'une électrovanne d'un moteur à combustion.
Ce moteur 1 comporte une chambre de combustion reliée à une conduite d'échappement de gaz brûlés 3 et un filtre à particules 4. Un catalyseur d'oxydation 9 est disposé sur la conduite d'échappement 3 immédiatement en amont du filtre à particules 4. Une turbine de turbocompresseur 8 est disposée sur la conduite d'échappement 3. Un système d'injection de carburant à l'échappement est disposé de manière à injecter du carburant en amont du catalyseur d'oxydation 9. Pour cela, le système d'injection comporte un injecteur de carburant 5 débouchant dans la conduite d'échappement, en amont du catalyseur d'oxydation. Le système d'injection comporte également un générateur de carburant sous pression 6 comportant une pompe haute pression HP et un étage basse pression BP, ce dernier est relié à l' injecteur 5 via une conduite de liaison 7 sur laquelle est placée une électrovanne 1. Cette électrovanne 1 est adaptée à sélectivement autoriser ou interdire l'alimentation de l' injecteur de carburant 5 en carburant sous pression.
Un capteur de température amont Tl est disposé sur la conduite d'échappement de gaz brûlés, en amont de la turbine par rapport au sens d'écoulement des gaz brûlés. Un capteur de température aval T2 est disposé sur la conduite d'échappement de gaz brûlés, en aval du catalyseur d'oxydation 9 par rapport au sens d'écoulement des gaz brûlés. Plus précisément, ce capteur aval est disposé en entrée du filtre à particules 4.
Le moteur comprend également une unité de commande électronique UC reliée aux capteurs pour en collecter des informations relatives aux températures mesurées.
Cette unité de commande UC est également reliée à l' électrovanne 1 afin de lui commander d'ouvrir ou de fermer le passage de carburant entre le générateur de carburant sous pression 6 et l' injecteur 5.
Cette unité de commande UC est également reliée à 1' injecteur 5 afin de lui commander sélectivement d'ouvrir ou de fermer un passage d'injection de carburant dans la conduite d'échappement 3.
L'unité de commande gère l'exécution du procédé selon l'invention tel que présenté sur l'organigramme de la figure 2. Ce procédé a pour but de détecter une défaillance de l' électrovanne 1 essentiellement lorsque celle-ci reste ouverte malgré un signal lui commandant de se fermer et d'interdire l'alimentation de l'injecteur en carburant sous pression. Cette interdiction d'alimentation en carburant de l'injecteur est essentielle pour éviter en cas d'accident que du carburant s'écoule dans la conduite d'échappement. La détection de la défaillance de l' électrovanne est donc essentielle d'un point de vu de sécurité. Le procédé de détection de la défaillance est mis en œuvre après que l'on injecte du carburant dans le conduit d'échappement 3, c'est-à-dire :
- après une régénération du filtre à particules avec apport de carburant via l'injecteur pour favoriser la montée en température en amont du filtre afin de détruire les particules qu' il contient ; après une purge du système d'injection pour remplacer le carburant contenu dans l'injecteur par du carburant non vieilli. Le procédé selon l'invention comporte une étape A de détection d'une fin de régénération. Généralement l'automate de contrôle moteur qui pilote la régénération transmet un signal de fin de régénération à l'automate chargé de la mise en œuvre du procédé de l'invention. La fin de régénération peut, par exemple, être déterminée lorsque la masse de particules estimée dans le filtre à particules passe en dessous d'un seuil donné. Le procédé de l'invention comporte également une étape B de détection d'une fin de purge du système d'injection. Généralement l'automate de contrôle de purge qui pilote la purge transmet un signal de fin de purge à l'automate chargé de la mise en œuvre du procédé de l'invention. Par exemple une purge est considérée comme achevée lorsque la quantité estimée de carburant écoulé atteint une masse de carburant prédéterminée. En l'occurrence dans l'exemple des figures 1 et 4, la masse prédéterminée est de 1 gramme de carburant .
Lorsque qu'une fin de régénération est détectée on enclenche une étape d'attente A' destinée à laisser un temps de refroidissement au filtre à particules 4.
Cette étape A' peut consister en un comptage de temps écoulé depuis la fin de la régénération ou encore en la mesure de la température courante T2 en amont du filtre à particules. Selon le cas le passage de l'étape A' à l'étape suivante (en l'occurrence l'étape C) se fera soit lorsque le temps écoulé dépasse un temps d'attente prédéterminé soit lorsque la température en amont du filtre T2 est repassée à une température basse prédéterminée généralement inférieure à 5000C.
Les étapes d' attente A' et de purge B sont suivies d'une étape C de commande de fermeture de l'injecteur 5. Après la fermeture de l'injecteur on réalise une étape D de commande de fermeture de l' électrovanne 1 ce qui permet si l' électrovanne fonctionne correctement de ne plus alimenter l'injecteur 5 en carburant sous pression. Une fois l'étape D réalisée on réalise à l'étape E de faibles injections de carburant en commandant de façon alternée et rapide des fermetures et ouvertures de l'injecteur 5 ce qui permet d'injecter un peu de carburant présent dans la conduite 7 avec un débit saccadé et faible qui ne génère pas d' exotherme dans le catalyseur d'oxydation.
Lors de cette injection on évalue à l'étape F la quantité de carburant effectivement injectée pour en déduire la quantité théorique restante dans la conduite de liaison 7, entre l' électrovanne et l'injecteur 5. Cette quantité est généralement connue puisqu'elle dépend du volume de la conduite 7 et de l'injecteur 5 et de la quantité injectée.
Il est à noter que le carburant ne s'écoule plus de l'injecteur vers la conduite d'échappement 3 lorsque la pression entre la conduite de liaison et la pression à l'échappement est équilibrée. A ce stade, on considère qu'il n'y a donc plus de risque qu'une quantité significative de carburant s'écoule dans le conduit d'échappement puisque l' électrovanne est théoriquement fermée .
Lorsque cette quantité évaluée est jugée suffisante, c'est-à-dire à l'étape G (en générale lorsqu'un gramme de carburant a été injecté) on met en œuvre l'étape H qui consiste à commander l'ouverture de l'injecteur et on observe à l'étape I l'évolution de la température T2 en amont du filtre à particules. On compare à l'étape J la température observée T2 à un seuil de déclenchement et si la température T2 augmente significativement et passe ce seuil qui est généralement fixé à 5500C alors cela signifie que l' électrovanne n'est pas fermée et qu'elle est donc en défaillance.
Une information de défaillance est alors générée à l'étape K. Dans le cas contraire aucune information de défaillance n'est générée, seul un signal d'absence de défaut L est alors généré.
Le procédé permet donc de détecter une défaillance de l' électrovanne .
Les figures 3 et 4 vont maintenant être décrites pour illustrer respectivement le fonctionnement d'un moteur dont l' électrovanne 1 fonctionne correctement et le fonctionnement de ce même moteur lorsque 1' électrovanne est défaillante.
La valeur Cl donne l'état de la commande d'ouverture et la fermeture de l' électrovanne 1. Lorsque Cl est à 0, cela signifie que l' électrovanne a reçu une commande de fermeture, dans ce cas, si l' électrovanne fonctionne correctement, elle devrait se fermer et l'injecteur ne devrait donc plus être alimenté en carburant sous pression. Lorsque Cl est à 1, cela signifie que l' électrovanne 1 a reçu une commande d'ouverture, dans ce cas, si l' électrovanne fonctionne correctement, elle devrait s'ouvrir et l'injecteur devrait alors être alimenté en carburant sous pression.
La courbe INJ est la courbe dans le temps du signal de commande d'ouverture de l'injecteur exprimée en pourcentage d' ouverture sur la durée PWM . Lorsque la courbe INJ est à 0, cela indique une fermeture d' injecteur .
Plus la valeur INJ est importante et plus le taux moyen d'ouverture de l'injecteur dans le temps est important . La courbe T2 représente la température en entrée du filtre à particules exprimée en 0C. Sur la figure 3 au temps 0 seconde la valeur de Cl est à 0 et l' électrovanne qui fonctionne correctement est fermée, l'injecteur INJ est fermé, le carburant n'est pas injecté . La température T2 en entrée du filtre à particules est de 315°C.
Environ au temps 5 secondes on commence l'étape de purge, on commande l'ouverture de l' électrovanne (Cl = 1) et de l'injecteur (INJ = 6%) . Le taux d'ouverture de l'injecteur est suffisamment faible pour que le carburant injecté via cet injecteur ne provoque pas d' exotherme important au niveau du catalyseur 9. A ce stade l'évolution de la température T2 est donc indépendante du carburant injecté et dépend principalement du fonctionnement du moteur.
Cette purge est progressive et on constate que la quantité de carburant injecté Q augmente progressivement passant de 0 gramme au temps 5 secondes à la valeur de 1 gramme au temps 65 secondes. Une fois ce seuil de 1 gramme de carburant injecté atteint l'étape de purge est considérée achevée et on commande la fermeture de 1' électrovanne (Cl=O au temps 65 secondes). Après un temps d'attente, on teste alors le bon fonctionnement de 1' électrovanne en augmentant le taux d'ouverture de l'injecteur à compter du temps 80 secondes. La courbe INJ atteignant pratiquement 12%. On constate que malgré cette augmentation du taux d'ouverture de l'injecteur, la température T2 n'a pas tendance à augmenter, ce qui implique que l' électrovanne est bien fermée conformément à la commande qui lui avait été transmise. L' électrovanne fonctionne donc correctement. Au contraire la figure 4 illustre le cas où 1' électrovanne ne répond pas à la commande de fermeture qui lui est transmise et reste ouverte, c'est le cas où l'on génère une information de défaillance. Au temps 0 seconde la température T2 est proche de 3300C, l' électrovanne est fermée et il en est de même pour l'injecteur.
Au temps 3 secondes on commande l'ouverture de 1' électrovanne (Cl=I), mais l'injecteur est toujours fermé donc la quantité de carburant injecté Q reste à 0 gramme .
Au temps 5 secondes la commande d' ouverture d'injecteur INJ est donnée entre 7 et 9%, l'injecteur s'ouvre et la quantité de carburant injecté augmente progressivement.
L'étape de purge est donc engagée. Comme décrit en référence à la figure 3, le taux d'ouverture de l'injecteur (entre 6 et 9%) est adapté pour permettre la purge progressive sans générer d' exotherme au niveau du catalyseur.
Au temps 48 secondes la quantité Q de carburant injecté atteint le seuil prédéterminé de 1 gramme et on commande alors la fermeture de l' électrovanne (Cl=O), c'est la fin de l'étape de purge. Après un temps d'attente, au temps 55 secondes, on commande l'ouverture de l'injecteur à un niveau proche de 22%, on constate alors que la température T2 augmente jusqu'à atteindre un seuil d'alerte de 5500C au temps 78 secondes . Cette augmentation subite de la température implique que du carburant est toujours injecté malgré l'ordre de fermeture de l' électrovanne donné au temps 48 secondes. Le disfonctionnement de l' électrovanne est donc détecté. L'unité de commande UC génère alors une commande de fermeture de l'injecteur ainsi qu'une information de défaillance d' électrovanne . La température T2 augmente par inertie jusqu'à atteindre 565°C au temps 80 secondes puis se stabilise jusqu'au temps 90 secondes avant de décroître progressivement faute de carburant puisque l'injecteur est fermé depuis le temps 80 secondes.

Claims

REVENDICATIONS
1. Procédé de détection de défaillance d'une électrovanne (1) d'un moteur à combustion interne (2), ce moteur (2) comportant une chambre de combustion, une conduite d'échappement de gaz brûlés (3), un filtre à particules (4) disposé sur ladite conduite d'échappement
(3), un injecteur de carburant (5) disposé au niveau de la conduite d'échappement (3), entre la chambre de combustion et ledit filtre à particules (4), l' injecteur (5) étant adapté à sélectivement autoriser ou interdire l'injection de carburant dans la conduite d'échappement (3), le moteur (2) comportant en outre un générateur de carburant sous pression (6) relié au dit injecteur (5) via une conduite de liaison (7) sur laquelle est disposée ladite électrovanne (1), cette électrovanne (1) étant adaptée à contrôler l'alimentation en carburant sous pression du dit injecteur d'échappement (5), caractérisé en ce que pour identifier une défaillance de ladite électrovanne (1) on génère une commande de fermeture de l' électrovanne (D) afin que cette électrovanne (1) interdise l'alimentation en carburant sous pression de 1' injecteur (5), puis on génère une commande d'ouverture de l' injecteur (H) afin d'autoriser le passage de carburant d'une portion de conduite de liaison (7) située entre l' électrovanne (1) et l' injecteur (5) vers la conduite d'échappement (3), puis on mesure la température dans la conduite d'échappement (I) en aval du dit injecteur (5) par rapport au sens d'échappement de gaz brûlés et on génère une information de défaillance de 1' électrovanne (K) si on constate que cette température, passe un seuil prédéterminé.
2. Procédé selon la revendication 1, caractérisé en ce que si on constate une défaillance de l' électrovanne on commande la fermeture de l'injecteur afin d'interdire le passage de carburant via l'injecteur (5) vers la conduite d'échappement (3).
3. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'entre la génération de ladite commande de fermeture de 1' électrovanne (D) et la génération de la commande d'ouverture de l'injecteur (H), on génère une commande de purge progressive (E) consistant à générer plusieurs commandes alternées d' ouvertures et fermetures de l'injecteur sur une période de temps de purge afin d'autoriser sur cette période de temps de purge le passage progressif d'au moins une partie du carburant contenu dans ladite portion de conduite de liaison (7) située entre l' électrovanne (1) et l'injecteur (5) vers la conduite d'échappement (3).
4. Procédé selon la revendication 3, caractérisé en ce que durant la période de temps de purge on évalue la quantité de carburant s' écoulant via l'injecteur (F) de ladite portion de conduite de liaison (7) située entre l' électrovanne (1) et l'injecteur (5) vers la conduite d'échappement (3) et on génère la commande d'ouverture de l'injecteur (H) après que la quantité de carburant évaluée (F) ait passé une quantité seuil prédéterminée (G) .
5. Procédé selon la revendication 4, caractérisé en ce que la quantité seuil prédéterminée de carburant (G) est enregistrée dans une base de données cartographiées et est sélectionnée en fonction de paramètres de fonctionnement du moteur tels que son régime courant.
6. Procédé selon la revendication 3, caractérisé en ce que la période de temps de purge est une période de temps prédéterminée.
7. Procédé selon l'une au moins des revendications précédentes, caractérisé en ce que le seuil de température prédéterminé pour générer l'information de défaillance de l' électrovanne (K) est supérieur à 500 0C et préférentiellement égal à 5500C.
8. Procédé selon l'une au moins des revendications précédentes, caractérisé en ce que préalablement aux commandes de fermeture de l' électrovanne (D) et d'ouverture de l'injecteur (H) on génère une étape de fermeture de l'injecteur (C) de manière à ce que l'injecteur (5) soit maintenu fermé au moins jusqu'au moment de génération de la commande de fermeture de 1' électrovanne (D).
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est mis en œuvre après toute opération d'injection de carburant dans la conduite d'échappement (3) durant laquelle ladite électrovanne (1) et l'injecteur (5) sont dans des configurations ouvertes permettant le passage de carburant vers la conduite d'échappement (3).
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'avant de générer ladite commande d'ouverture (H) de l'injecteur on attend que la température du filtre à particules (4) soit inférieure à une température seuil de déclenchement prédéterminée .
PCT/FR2009/050245 2008-03-20 2009-02-17 Procede de detection de defaillance d'une electrovanne d'injection a l'echappement de moteur a combustion WO2009115715A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09723479A EP2260189A1 (fr) 2008-03-20 2009-02-17 Procede de detection de defaillance d'une electrovanne d'injection a l'echappement de moteur a combustion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0851811 2008-03-20
FR0851811A FR2928969B1 (fr) 2008-03-20 2008-03-20 Procede de detection de defaillance d'une electrovanne d'injection a l'echappement de moteur a combustion

Publications (1)

Publication Number Publication Date
WO2009115715A1 true WO2009115715A1 (fr) 2009-09-24

Family

ID=39929738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/050245 WO2009115715A1 (fr) 2008-03-20 2009-02-17 Procede de detection de defaillance d'une electrovanne d'injection a l'echappement de moteur a combustion

Country Status (3)

Country Link
EP (1) EP2260189A1 (fr)
FR (1) FR2928969B1 (fr)
WO (1) WO2009115715A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067566A1 (fr) * 2010-11-17 2012-05-24 Scania Cv Ab Agencement et procédé pour un système de dosage pour la fourniture d'un agent réducteur dans le flux d'échappement d'un moteur à combustion
GB2517548A (en) * 2013-06-10 2015-02-25 Snecma Monitoring the fuel supply cutoff valve for an engine
EP2549068A4 (fr) * 2010-03-19 2017-01-18 Toyota Jidosha Kabushiki Kaisha Dispositif d'évacuation des gaz d'échappement pour moteur à combustion interne

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665690A (en) * 1985-01-14 1987-05-19 Mazda Motor Corporation Exhaust gas cleaning system for vehicle
EP1176292A1 (fr) * 2000-07-24 2002-01-30 Toyota Jidosha Kabushiki Kaisha Dispositif de purification de gaz d'échappement pour un moteur à combustion interne
EP1211396A2 (fr) * 2000-12-01 2002-06-05 Toyota Jidosha Kabushiki Kaisha Dispositif de purification de gaz d'échappement pour un moteur à combustion interne
WO2003072916A1 (fr) * 2002-02-26 2003-09-04 Denso Corporation Dispositif et procede de commande pour moteur a combustion interne
FR2902460A1 (fr) * 2006-06-19 2007-12-21 Toyota Motor Co Ltd Dispositif de diagnostic d'anomalie pour un moteur a combustion interne et procedes de diagnostic d'anomalie pour celui-ci

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665690A (en) * 1985-01-14 1987-05-19 Mazda Motor Corporation Exhaust gas cleaning system for vehicle
EP1176292A1 (fr) * 2000-07-24 2002-01-30 Toyota Jidosha Kabushiki Kaisha Dispositif de purification de gaz d'échappement pour un moteur à combustion interne
EP1211396A2 (fr) * 2000-12-01 2002-06-05 Toyota Jidosha Kabushiki Kaisha Dispositif de purification de gaz d'échappement pour un moteur à combustion interne
WO2003072916A1 (fr) * 2002-02-26 2003-09-04 Denso Corporation Dispositif et procede de commande pour moteur a combustion interne
FR2902460A1 (fr) * 2006-06-19 2007-12-21 Toyota Motor Co Ltd Dispositif de diagnostic d'anomalie pour un moteur a combustion interne et procedes de diagnostic d'anomalie pour celui-ci

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2549068A4 (fr) * 2010-03-19 2017-01-18 Toyota Jidosha Kabushiki Kaisha Dispositif d'évacuation des gaz d'échappement pour moteur à combustion interne
WO2012067566A1 (fr) * 2010-11-17 2012-05-24 Scania Cv Ab Agencement et procédé pour un système de dosage pour la fourniture d'un agent réducteur dans le flux d'échappement d'un moteur à combustion
GB2517548A (en) * 2013-06-10 2015-02-25 Snecma Monitoring the fuel supply cutoff valve for an engine
GB2517548B (en) * 2013-06-10 2020-04-01 Snecma Monitoring the fuel supply cutoff valve for an engine

Also Published As

Publication number Publication date
FR2928969B1 (fr) 2010-09-10
EP2260189A1 (fr) 2010-12-15
FR2928969A1 (fr) 2009-09-25

Similar Documents

Publication Publication Date Title
EP2330275B1 (fr) Procédé de détection d'une fuite de combustible liquide dans une turbine à gaz
FR2879657A1 (fr) Procede de gestion d'un moteur a combustion interne et dispositif pour la mise en oeuvre du procede
FR2988437A1 (fr) Procede et dispositif de surveillance de defaut dans un retour de gaz d'echappement d'un moteur thermique
FR2710105A1 (fr) Procédé pour surveiller le comportement au démarrage d'un système de catalyseur d'un véhicule automobile.
FR2963388A1 (fr) Procede de diagnostic d'un capteur de gaz d'echappement et dispositif pour la mise en oeuvre du procede
FR2878284A1 (fr) Procede de gestion d'un moteur a combustion interne et dispositif pour sa mise en oeuvre
FR2950107A1 (fr) Procede de chauffage d'une soupape de dosage d'un systeme de post-traitement des gaz d'echappement d'un moteur a combustion interne
FR2928691A1 (fr) Procede et dispositif pour surveiller un systeme d'alimentation en air d'un moteur a combustion interne
FR2935432A1 (fr) Procede et dispositif de commande d'une installation de dosage de carburant dans le canal des gaz d'echappement d'un moteur a combustion interne pour regenerer un filtre a particules
FR2910561A1 (fr) Systeme d'alimentation en carburant d'un moteur a combustion interne
WO2012127158A1 (fr) Procede de detection de la defaillance d'un refroidisseur d'air de suralimentation
WO2009115715A1 (fr) Procede de detection de defaillance d'une electrovanne d'injection a l'echappement de moteur a combustion
FR2976321A1 (fr) Procede et dispositif de diagnostic d'un filtre a particules de moteur a combustion interne
FR3013073A1 (fr) Procede permettant de determiner si un injecteur est dans un etat bloque
FR2946087A1 (fr) Procede et appareil de commande d'une operation de regeneration d'un filtre a particules de gaz d'echappement d'un moteur a combustion
EP1836380A1 (fr) Procede et dispositif de regeneration d'un filtre a particules integre dans une ligne d'echappement d'un moteur a combustion interne
FR2811370A1 (fr) Moteur a combustion interne, en particulier pour vehicules automobiles
EP1931863B1 (fr) Systeme et procede de regeneration d'un filtre a particules catalytique situe dans la ligne d'echappement d'un moteur diesel
EP1929136B1 (fr) Systeme de regeneration d'un filtre a particules catalytique situe dans la ligne d'echappement d'un moteur diesel
FR2817915A1 (fr) Procede et appareil de commande et de regulation pour la mise en oeuvre d'un moteur a combustion interne
FR2957972A1 (fr) Procede et dispositif de surveillance d'un capteur de gaz d'echappement
FR2929645A1 (fr) Procede de controle d'une ligne d'echappement d'un moteur.
WO1996004473A1 (fr) Procede de controle du bon fonctionnement de l'assistance en air d'un injecteur de carburant pour moteur a combustion interne et dispositif correspondant
FR2981987A1 (fr) Commande d'un moteur a combustion interne
JP5887755B2 (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09723479

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009723479

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE