WO2009115156A2 - Verfahren und vorrichtung zur herstellung eines dispersionsgehärteten gegenstandes der carbid-nanopartikel enthält - Google Patents

Verfahren und vorrichtung zur herstellung eines dispersionsgehärteten gegenstandes der carbid-nanopartikel enthält Download PDF

Info

Publication number
WO2009115156A2
WO2009115156A2 PCT/EP2009/000325 EP2009000325W WO2009115156A2 WO 2009115156 A2 WO2009115156 A2 WO 2009115156A2 EP 2009000325 W EP2009000325 W EP 2009000325W WO 2009115156 A2 WO2009115156 A2 WO 2009115156A2
Authority
WO
WIPO (PCT)
Prior art keywords
carbide
dispersion
carrier gas
nanoparticles
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2009/000325
Other languages
German (de)
English (en)
French (fr)
Other versions
WO2009115156A8 (de
WO2009115156A3 (de
Inventor
Michael Zinnabold
Marc-Manuel Matz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Federal Mogul Burscheid GmbH
Original Assignee
Federal Mogul Burscheid GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Federal Mogul Burscheid GmbH filed Critical Federal Mogul Burscheid GmbH
Priority to EP09721735.0A priority Critical patent/EP2252562B1/de
Priority to JP2011500056A priority patent/JP5552680B2/ja
Priority to US12/933,181 priority patent/US8484843B2/en
Priority to BRPI0909736-8A priority patent/BRPI0909736B1/pt
Priority to CN2009801086505A priority patent/CN101977874B/zh
Publication of WO2009115156A2 publication Critical patent/WO2009115156A2/de
Publication of WO2009115156A8 publication Critical patent/WO2009115156A8/de
Publication of WO2009115156A3 publication Critical patent/WO2009115156A3/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/949Tungsten or molybdenum carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/921Titanium carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49274Piston ring or piston packing making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles

Definitions

  • the present invention relates to a method and an apparatus for producing a dispersion-hardened article containing carbide nanoparticles. Furthermore, the present invention relates to a dispersion-hardened article which has been produced by the method according to the invention, such as a component for an internal combustion engine, preferably a piston ring.
  • molybdenum-based materials are nowadays preferably used by means of the plasma spraying process.
  • these have too high a wear rate on highly loaded engines.
  • High-speed flame spraying technology offers the opportunity to produce particles with low thermal impact and high kinetic energy To deposit a substrate that dense layers are produced with a high adhesive strength.
  • particles of metal carbides, such as WC or Cr 3 C 2 were used in recent times, which can not be sprayed by a plasma spraying process, since they are at very high plasma temperatures of up to 20,000 0 C decompose or very brittle phases, such as W 2 C form.
  • These particles actually provide higher wear resistance, but have disadvantages due to their different physical properties from the substrate, such as lower coefficient of thermal expansion and lower thermal conductivity, and different mechanical properties, such as lower ductility, ie higher brittleness and lower fracture toughness.
  • dispersion hardening In order to increase the strength of a material, among other things, a so-called dispersion hardening can be carried out.
  • the particles present form obstacles to dislocation movements within the material under mechanical stress. The dislocations arising from the stress and existing can not cut through the particles, rather they must bulge between the particles. Dislocation rings form, which in turn must be bypassed. When bypassing a higher energy input is necessary than when cutting. The yield stress for migration of the dislocation increases with decreasing particle spacing and decreasing particle size. As a result, the material strength also increases. Dispersion hardening would be possible by introducing carbides in the form of nanoparticles.
  • nanoparticles here refers to particles with a size of 1 to 200 nm.
  • nanocrystalline thermal spray coatings has hitherto only been carried out by means of agglomerated nanoparticles, Such agglomerates of nanoparticles can reach a diameter of 0.1 to 100 ⁇ m. Due to the fact that nanoparticles must absorb a minimum amount of energy due to the collision with the gas molecules for a directed transport in a gas stream and the maximum energy absorbed decreases with smaller particle size, The nanoparticles can only be transported to a minimum size, which could only be achieved by lower process pressures or by electrically charging the particles, especially particles with particle sizes below 800 nm and particles such as gas molecules Accordingly, a nanocrystalline HVOF layer can only be produced today if agglomerated nanocrystalline powders are available.
  • the resulting coating contains microparticles and agglomerates of nanoparticles, but no finely dispersed discrete nanoparticles.
  • Coatings containing agglomerates of nanoparticles are described, for example, in DE 10 2007 018 859 A1, DE 100 57 953 A1, US Pat. No. 5,939,146 A, US Pat. No. 6,723,387 B1 and US 2004/0131865 A1.
  • the object is to provide a method which enables the production of a dispersion-hardened article, in particular a piston ring, containing discrete carbide nanoparticles.
  • This object is achieved by a method which comprises producing an object by means of a thermal spraying method, wherein the gas stream behind the combustion chamber with the aid of a carrier gas at least one carbide nanoparticle precursor is supplied, which reacts in the gas stream to form a carbide.
  • a carrier gas is preferably a chemically inert gas.
  • Chemically inert gases include, for example, noble gases or nitrogen. Preferably, nitrogen is used.
  • a transition metal halide is preferably used as the carbide nanoparticle precursor.
  • a transition metal halide is particularly preferred.
  • the inexpensive transition metal chlorides such as WCl 6 .
  • elements such as Si, V, W or titanium, which evaporate in an external reactor and react in a C-containing atmosphere to give corresponding carbides.
  • thermal spray device e.g., a tube furnace
  • an external thermally stressed nanoparticle generator e.g., a tube furnace
  • HVOF high speed flame spraying
  • an external nanoparticle generator allows the production of nanoparticle-reinforced layer systems and thus components, such as a piston ring.
  • the carbide nanoparticle precursor may also be a chemical reaction of the carbide nanoparticle precursor with another gas.
  • This can be the fuel gas, or a gas which is added to the carrier gas.
  • the carbon source is a gaseous hydrocarbon, such as methane.
  • a reducing agent for example, hydrogen may be added.
  • An exemplary reaction is shown in Formula 1.
  • the present invention further relates to a dispersion-hardened article containing carbide nanoparticles and prepared by the process according to the invention.
  • the article is preferably a component for an internal combustion engine, more preferably a piston ring.
  • the present invention also relates to a device for carrying out the method according to the invention.
  • This is a thermal spraying device which, in addition to at least one line for supplying a thermal spraying powder, further comprises at least one line for supplying a carbide nanoparticle precursor or nanoparticles, which have been produced by means of an external reactor, by means of a carrier gas behind the combustion chamber ,
  • the line for supplying a carbide nanoparticle precursor by means of a carrier gas is preferably made of graphite, which can withstand the high temperatures of the thermal spray jet.
  • the device is preferably a device for high-speed flame spraying (HVOF).
  • Fig. 1 shows a schematic representation for the production of nanoparticle-reinforced
  • nanoparticle-reinforced coating systems by means of HVOF spraying is possible, for example, by the provision of nanoparticles in an external reactor (1) in which a material is evaporated in a controlled manner (see Fig. 1). The resulting nanoparticles are in a second oven (2) for the targeted adjustment of
  • Nanoparticles can be transported via a carrier gas, can be easily connected to the line in which the microparticles are transported, for example by means of a tee.
  • (3) denotes a powder conveyor.
  • the obtained substrate is denoted by (5).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
PCT/EP2009/000325 2008-03-18 2009-01-20 Verfahren und vorrichtung zur herstellung eines dispersionsgehärteten gegenstandes der carbid-nanopartikel enthält Ceased WO2009115156A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09721735.0A EP2252562B1 (de) 2008-03-18 2009-01-20 Verfahren und vorrichtung zur herstellung eines dispersionsgehärteten gegenstandes der carbid-nanopartikel enthält
JP2011500056A JP5552680B2 (ja) 2008-03-18 2009-01-20 炭化物ナノ粒子を含む分散硬化体を製造する方法及び装置
US12/933,181 US8484843B2 (en) 2008-03-18 2009-01-20 Method and device for producing a dispersion-hardened object that contains carbide nanoparticles
BRPI0909736-8A BRPI0909736B1 (pt) 2008-03-18 2009-01-20 Método, seu uso e dispositivo para produzir um objeto endurecido por dispersão que contém nanopartículas de carboneto
CN2009801086505A CN101977874B (zh) 2008-03-18 2009-01-20 用于生成包含碳化物纳米粒子的弥散硬化物的方法和设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008014800A DE102008014800B3 (de) 2008-03-18 2008-03-18 Verfahren und Vorrichtung zur Herstellung eines dispersionsgehärteten Gegenstandes, der Carbid-Nanopartikel enthält
DE102008014800.8 2008-03-18

Publications (3)

Publication Number Publication Date
WO2009115156A2 true WO2009115156A2 (de) 2009-09-24
WO2009115156A8 WO2009115156A8 (de) 2009-12-23
WO2009115156A3 WO2009115156A3 (de) 2010-02-18

Family

ID=40404028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/000325 Ceased WO2009115156A2 (de) 2008-03-18 2009-01-20 Verfahren und vorrichtung zur herstellung eines dispersionsgehärteten gegenstandes der carbid-nanopartikel enthält

Country Status (8)

Country Link
US (1) US8484843B2 (enExample)
EP (1) EP2252562B1 (enExample)
JP (1) JP5552680B2 (enExample)
CN (1) CN101977874B (enExample)
BR (1) BRPI0909736B1 (enExample)
DE (1) DE102008014800B3 (enExample)
PT (1) PT2252562T (enExample)
WO (1) WO2009115156A2 (enExample)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009038013A1 (de) * 2009-08-20 2011-02-24 Behr Gmbh & Co. Kg Verfahren zur Oberflächen-Beschichtung zumindest eines Teils eines Grundkörpers
CN103112854B (zh) * 2013-01-31 2015-04-08 黑龙江大学 一步法合成碳化物/多孔石墨碳纳米复合物的方法
GB2618132A (en) * 2022-04-28 2023-11-01 Airbus Operations Ltd Multi-material joint

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456986A (en) * 1993-06-30 1995-10-10 Carnegie Mellon University Magnetic metal or metal carbide nanoparticles and a process for forming same
US5939146A (en) * 1996-12-11 1999-08-17 The Regents Of The University Of California Method for thermal spraying of nanocrystalline coatings and materials for the same
DE19708402C1 (de) * 1997-03-01 1998-08-27 Daimler Benz Aerospace Ag Verschleißfeste Schicht für Leichtmetall-Bauteile einer Verbrennungskraftmaschine sowie Verfahren zu deren Herstellung
US6723387B1 (en) * 1999-08-16 2004-04-20 Rutgers University Multimodal structured hardcoatings made from micro-nanocomposite materials
JP2001172756A (ja) * 1999-12-10 2001-06-26 Daido Steel Co Ltd Fe系潤滑被覆層付き摺動部材、Fe系溶射層形成用素材及びFe系潤滑被覆層付き摺動部材の製造方法
JP2001181817A (ja) * 1999-12-22 2001-07-03 Ishikawajima Harima Heavy Ind Co Ltd 溶射方法及び溶射装置
DE10057953A1 (de) * 2000-11-22 2002-06-20 Eduard Kern Keramische Verbundschichten mit verbesserten Eigenschaften
JP4677667B2 (ja) * 2000-12-04 2011-04-27 株式会社Ihi 黒鉛化装置および黒鉛化方法
US7361386B2 (en) * 2002-07-22 2008-04-22 The Regents Of The University Of California Functional coatings for the reduction of oxygen permeation and stress and method of forming the same
KR100500551B1 (ko) * 2002-12-30 2005-07-12 한국기계연구원 저압 기상반응법에 의한 나노 wc계 분말의 제조방법
CN1600820A (zh) * 2003-09-25 2005-03-30 中国科学院金属研究所 一种纳米耐磨涂层用热喷涂粉体的制备及应用
EP1670970A1 (en) * 2003-09-29 2006-06-21 General Electric Company, (a New York Corporation) Nano-structured coating systems
US20050112399A1 (en) * 2003-11-21 2005-05-26 Gray Dennis M. Erosion resistant coatings and methods thereof
EP1711642B1 (de) * 2004-01-28 2010-07-07 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Durch thermisches spritzen aufgebrachte eisenhaltige schicht einer gleitfläche, insbesondere für zylinderlaufflächen von motorblöcken
AU2006200043B2 (en) * 2005-01-07 2011-11-17 Inframat Corporation Coated medical devices and methods of making and using
IL175045A0 (en) * 2006-04-20 2006-09-05 Joma Int As A coating formed by thermal spraying and methods for the formation thereof
US8465602B2 (en) * 2006-12-15 2013-06-18 Praxair S. T. Technology, Inc. Amorphous-nanocrystalline-microcrystalline coatings and methods of production thereof
CA2619331A1 (en) * 2007-01-31 2008-07-31 Scientific Valve And Seal, Lp Coatings, their production and use
US8057914B2 (en) * 2007-03-26 2011-11-15 Howmedica Osteonics Corp. Method for fabricating a medical component from a material having a high carbide phase and such medical component
DE102008014945B3 (de) * 2008-03-19 2009-08-20 Federal-Mogul Burscheid Gmbh Verschleissfestes Bauteil
US8206829B2 (en) * 2008-11-10 2012-06-26 Applied Materials, Inc. Plasma resistant coatings for plasma chamber components
US20120114922A1 (en) * 2010-10-19 2012-05-10 Ultramet Rhenium-metal carbide-graphite article and method

Also Published As

Publication number Publication date
JP5552680B2 (ja) 2014-07-16
US8484843B2 (en) 2013-07-16
JP2011521175A (ja) 2011-07-21
EP2252562A2 (de) 2010-11-24
WO2009115156A8 (de) 2009-12-23
US20110109048A1 (en) 2011-05-12
CN101977874A (zh) 2011-02-16
DE102008014800B3 (de) 2009-08-20
BRPI0909736B1 (pt) 2019-04-02
CN101977874B (zh) 2013-06-12
PT2252562T (pt) 2016-11-09
EP2252562B1 (de) 2016-09-14
BRPI0909736A2 (pt) 2015-10-06
WO2009115156A3 (de) 2010-02-18

Similar Documents

Publication Publication Date Title
Marple et al. Thermal spraying of nanostructured cermet coatings
DE60116407T2 (de) Amorphe oxidhaltige Kohlenstoffschicht
DE69216218T2 (de) Erosionsbeständiges und abrasionsbeständiges Mehrschichtenmaterial
DE102010021300B4 (de) Drahtförmiger Spritzwerkstoff, damit erzeugbare Funktionsschicht und Verfahren zum Beschichten eines Substrats mit einem Spritzwerkstoff
EP2300630B1 (de) Verfahren zur herstellung von thermisch gespritzten al2o3-schichten mit einem hohen korundgehalt ohne eigenschaftsmindernde zusätze
DE19958473A1 (de) Verfahren zur Herstellung von Kompositschichten mit einer Plasmastrahlquelle
EP1995344A1 (de) Spritzschichten mit Diffusionsnachbehandlung
DE10053432A1 (de) Selbstbindende MCrAlY-Pulver
WO2012168139A1 (de) Spritzpulver auf wolframkarbid basis, sowie ein substrat mit einer thermischen spritzschicht auf wolframkarbid basis
DE102013201103A1 (de) Thermisches Spritzpulver für stark beanspruchte Gleitsysteme
DE69523989T2 (de) Verfahren zur Herstellung einer Verbundbeschichtung auf der Basis von Carbid; Verbundbeschichtung so hergestellt und Körper mit thermisch gespritzten Schichten auf der Basis von Chromcarbid
EP2631025A1 (de) Plasmaspritzverfahren
DE102008014800B3 (de) Verfahren und Vorrichtung zur Herstellung eines dispersionsgehärteten Gegenstandes, der Carbid-Nanopartikel enthält
EP2145977B1 (de) Verfahren zur Abscheidung von Schichten auf einem Substrat
DE69905498T2 (de) VERFAHREN ZUR HERSTELLUNG EINES METALLEGIERUNGSPULVERS VOM TYP MCrAlY UND NACH DIESEM VERFAHREN ERHALTENE ÜBERZÜGE
Wang et al. Addition of molybdenum disulfide solid lubricant to WC-12Ni thermal spray cemented carbide powders through electroless Ni-MoS2 co-deposition
EP1427265A2 (de) Vorrichtung und Verfahren zum Beschichten eines Substrates und Beschichtung auf einem Substrat
EP1479788B1 (de) Hybrides Verfahren zum Beschichten eines Substrats durch ein thermisches Aufbringen der Beschichtung
EP1794342B1 (de) Herstellung einer gasdichten, kristallinen mullit schicht mit hilfe eines thermischen spritzverfahrens
EP1995345A1 (de) Verfahren zur Herstellung eines hochtemperaturbeständigen Werkstoffs
DE3728420C2 (enExample)
EP2066827B1 (de) Verfahren und vorrichtung zur abscheidung einer nichtmetallischen beschichtung mittels kaltgas-spritzen
DE102005062225B3 (de) Legierungsprodukt vom MCrAIX-Typ und Verfahren zur Herstellung einer Schicht aus diesem Legierungsprodukt
EP1522610B1 (de) Verfahren zur Herstellung einer Verschleissschutzschicht
DE102005017059A1 (de) Composit-Pulver und fressbeständige Beschichtung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108650.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721735

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2009721735

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009721735

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2647/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011500056

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12933181

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0909736

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100917