WO2009113709A1 - 粘着末端を有するdna断片の調製方法 - Google Patents

粘着末端を有するdna断片の調製方法 Download PDF

Info

Publication number
WO2009113709A1
WO2009113709A1 PCT/JP2009/054989 JP2009054989W WO2009113709A1 WO 2009113709 A1 WO2009113709 A1 WO 2009113709A1 JP 2009054989 W JP2009054989 W JP 2009054989W WO 2009113709 A1 WO2009113709 A1 WO 2009113709A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
group
dna
base
modified
Prior art date
Application number
PCT/JP2009/054989
Other languages
English (en)
French (fr)
Inventor
小宮山眞
葛谷明紀
田中啓太
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to US12/921,930 priority Critical patent/US20110009607A1/en
Priority to JP2010502911A priority patent/JP5397960B2/ja
Priority to EP09719525A priority patent/EP2270142A4/en
Publication of WO2009113709A1 publication Critical patent/WO2009113709A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/64General methods for preparing the vector, for introducing it into the cell or for selecting the vector-containing host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]

Definitions

  • the present invention relates to a method for preparing a desired double-stranded DNA fragment having a sticky end (protruding end) directly without being treated with a restriction enzyme or the like. Furthermore, the present invention relates to a gene recombination method using a DNA fragment obtained by the method. Background art
  • plasmid DNA is cleaved using a restriction enzyme, and this is used as a host DNA to construct a vector by ligating it with the desired gene fragment.
  • the above gene fragments are prepared from various sources (cage DNA) by PCR, and the blunt ends of PCR amplified products are treated with restriction enzymes to bind to plasmid DNA (host DNA).
  • host DNA to sticky ends (protruding ends) (Sambrook, J. et al., 2001, Molecular Cloning: A Laboratory Manual Edn. 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY).
  • the restriction enzyme recognition site is restricted to several palindromic sequences, making it difficult to find a suitable restriction enzyme to cleave DNA at (or near) the target site. That is often the case.
  • many of the available restriction enzymes recognize DNA sequences of 4 to 6 bases, but when large-size DNA is treated with restriction enzymes (there are many of the same recognition sites), desired This means that the gene can be cleaved at many sites other than the above site, so that accurate genetic recombination cannot be performed if the size of the host DNA is large.
  • a Ce 4+ / EDTA complex molecular scissors
  • a pair of pseudo-complementary peptide nucleic acids pcPNA
  • ARCUT Restriction DNA cutter
  • the problem to be solved by the present invention is to obtain a desired double-stranded DNA fragment having a sticky end directly and easily from an amplification product (amplified fragment) after PCR without a restriction enzyme treatment. It is to provide a method for preparing fragments. Furthermore, the present invention is to provide a gene recombination method using the DNA fragment obtained by the preparation method.
  • the present inventor has intensively studied to solve the above problems. As a result, the inventors have found that the above problems can be solved by using a PCR primer having a protective group having a specific function, and the present invention has been completed. That is, the present invention is as follows.
  • a primer for PCR which is ligated to a complementary DNA portion consisting of a base sequence that complementarily binds to a region to be amplified in a vertical DNA and the 5 ′ end of the complementary DNA portion.
  • a non-complementary DNA portion consisting of a base sequence that does not complementarily bind to the amplification target sequence, and at least the base corresponding to the 3 'end in the base sequence of the non-complementary DNA portion is the progress of DNA replication by DNA polymerase.
  • the primer is modified with a protecting group capable of stopping the reaction.
  • the protecting group may be, for example, a modified base by light irradiation treatment, alkali treatment, acid treatment, oxidation treatment, reduction treatment, desilylation treatment, heat treatment, esterase treatment or phosphatase treatment. And those that can be desorbed from.
  • examples of the protecting group that can be removed from the base to be modified by the light irradiation treatment include 2- (2-nitrophenyl) propyl group, 2- (2-nitrophenyl) propyloxymethyl group, 1- (2-2 Trophenyl) ethyl group and 6-diethyl piperonyloxymethyl group.
  • Examples of the protecting group that can be removed from the base to be modified by the alkali treatment include an isoptyryl group, a benzoyl group, and an acetoxymethyl group.
  • examples of the protecting group that can be removed from the base to be modified by the acid treatment include a trityl group or a methoxy derivative thereof.
  • Examples of the protecting group that can be removed from the base to be modified by the oxidation treatment include a aryloxymethyl group, a dimethoxybenzyloxymethyl group, and a trimethoxybenzyloxymethyl group.
  • Examples of the protecting group that can be removed from the base to be modified by the reduction treatment include a benzyloxymethyl group, or a benzyloxymethyl group substituted with an arbitrary substituent.
  • Examples of the protecting group that can be removed from the base to be modified by the desilylation treatment include a t-butyldimethoxysilyloxymethyl group and a t-butyldiphenylsilyloxymethyl group.
  • Examples of the protecting group that can be removed from the base to be modified by the heat treatment include an isocyanate group.
  • Examples of the protecting group that can be removed from the base to be modified by the esterase treatment include a acetomethyl group.
  • Examples of the protective group that can be removed from the base to be modified by the phosphatase treatment include a methyl phosphate group.
  • examples of the base corresponding to at least the 3 ′ end in the base sequence of the non-complementary DNA portion include thymine and guanine. Furthermore, the primer of the present invention includes a base of the non-complementary DNA portion. For example, the length is 1 to 100 bases.
  • the predetermined treatment includes, for example, light irradiation treatment, alkali treatment, acid treatment, oxidation treatment, reduction treatment, desilylation treatment, heat treatment, esterase treatment or phosphatase treatment.
  • a treatment that can be eliminated from the base is mentioned.
  • the sticky end for example, one having the same base sequence as the sticky end obtained by restriction enzyme treatment, or a base sequence different from the sticky end obtained by restriction enzyme treatment The thing which consists of is mentioned.
  • a gene recombination method comprising a step of binding a DNA fragment obtained by the preparation method of (2) above to a host DNA.
  • the DNA fragment and the host; DNA can be bound without using a DNA-binding enzyme, for example.
  • X represents Cl, I, Br, p-toluenesulfonic acid ester or sulfuric acid ester.
  • biomolecule of the present invention examples include those represented by the following formula (I):
  • examples of the biomolecule include a base and the like, specifically, thymine and Guanine is mentioned.
  • examples of the biomolecule include those represented by the following formulas (II) and (III).
  • FIG. 1 is a schematic diagram of a light-assisted-cohesive-ending PGR (LACE-PCR) method using caged TNPP, which is an embodiment of the present invention.
  • LACE-PCR light-assisted-cohesive-ending PGR
  • Figure 2 is an electrophoresis (20% denaturing PAGE) photograph showing the results of the elongation reaction with DNA polymerase.
  • Lane 1 is C2 only (control)
  • Lane 2 is C1 + C2 + Ex Taq (without UV irradiation)
  • Lane 3 is Cl + C2 + Ex Taq (with UV irradiation).
  • [dNTPs] 100 ⁇ M
  • [Ex Taq] 0.2 U / l, 37 ° C., 30 minutes.
  • FIG. 3 is a schematic diagram of the construction of a recombinant vector using the LACE-PCR method.
  • FIG. 4 shows the structure of the inserted DNA fragment prepared by the LACE-PCR method.
  • Fig. 5 is an electrophoretogram of the amplified product by the LACE-PCR method.
  • Figure 6 is an electrophoresis photograph showing the results of colony PCR.
  • FIG. 7 shows the results of base sequence analysis of the recombinant vector.
  • Fig. 8 is a graph showing the change over time of deprotection of the protecting group (NPP) by UV irradiation.
  • FIG. 9 shows the structure of the inserted DNA fragment prepared by the LACE-PCR method.
  • Figure 10 is an electrophoretogram of the amplification product by the LACE-PCR method before and after UV irradiation. Lane 1 is before UV irradiation and Lane 2 is after UV irradiation.
  • Figure 11 is an electrophoretogram showing the results of colony PCR.
  • Fig. 12 shows the results of base sequence analysis of the recombinant vector.
  • Fig. 13 shows the target cleavage site by ARCUT and the base sequence of pcPNA used.
  • a shows the base sequence around the target site cleaved by ARCUT, b is
  • Figure 14 shows the structure of the target fragment (vector) cleaved by a) ARCUT. b) Diagram showing the structure of the inserted DNA fragment (insert) prepared by the LACE-PCR method.
  • FIG. 15 shows restriction enzyme sites on the pBR322 vector.
  • Figure 16 shows the structure of the target fragment (vector 1) cleaved by a) ARCUT. b) Diagram showing the structure of the inserted DNA fragment (insert) prepared by the LACE-PCR method.
  • Fig. 17 is an agarose gel electrophoresis photograph of the pBR322 vector cleaved fragment by coRI or ARCUT. Lane 1 is cut with ⁇ oRI only, Lane 2 is cut with ⁇ oRI and then cut with ARCUT, and Lane M is a 1 kbp ladder marker.
  • FIG. 18 is an agarose gel electrophoresis photograph of each fragment used or obtained in this example.
  • Lane 1 is ARCUT fragment (2530 bp)
  • Lane 2 is amplified by LACE-PCR method (with UV irradiation)
  • Lane 3 is the recombinant vector only
  • Lane 4 is the recombinant vector cleaved with ⁇ RI is there.
  • FIG. 19 shows the results of base sequence analysis of the recombinant vector.
  • (A) is a recombinant vector combined with an ARCUT site
  • (b) is a recombinant vector combined with a W RI site.
  • FIG. 20 is a photograph showing the luminescence of GFP in the transformant of BL21-Gold (DE3).
  • Figure 21 is a schematic diagram of the construction of a vector containing DNA encoding a GFP-BFP fusion protein.
  • the left figure shows the pQBI T7-GFP vector containing the GFP gene, and the right figure shows the pQBI 67 vector containing the BFP gene.
  • Fig. 22 is an agarose gel electrophoresis photograph of the product obtained by amplifying a DNA fragment containing the BFP gene by LACE-PCR.
  • Fig. 23 is a photograph showing the luminescence of GFP-BFP fusion protein etc. in the transformant of BL21-Gold (DE3).
  • Fig. 24 is an agarose gel electrophoresis photograph of the recombinant vector recovered from the transformant of BL21-Gold (DE3).
  • FIG. 25 shows the fluorescence spectrum of the GFP-BFP fusion protein.
  • FIG. 26 is an electrophoresis photograph showing the results of SDS-PAGE analysis of the protein expressed in the BL21-Gold (DE3) transformant. BEST MODE FOR CARRYING OUT THE INVENTION
  • TNPP modified (protected) thymidine base by 2- (2-nitrophenyl) propyl group
  • 2- (2-diphenyl) propyl group which is a protecting group of TNPP
  • the (NPP group) can be removed by light irradiation, it can be easily used for gene recombination technology.
  • the present inventor will be able to freely design the 5 ′ protruding end (sticky end) on the insert side that can be used for gene recombination operations and the like.
  • the present invention was completed. Therefore, the present inventors synthesized various PCR primers in which some of the bases were modified as described above (see, for example, the C1 primer shown in Scheme 1 in Example 1 described later), and obtained PCR amplification. The product was then inserted into the vector as an insert fragment without any subsequent treatment with a restriction enzyme, thereby constructing a recombinant vector.
  • a DNA fragment having a desired protruding end can be prepared by using only a DNA polymerase as an enzyme, and since there are few restrictions on various conditions, various uses and applications are possible. It seems possible. 2. Preparation of DNA fragments with sticky ends
  • the method for preparing a DNA fragment having a sticky end according to the present invention includes the following steps (i) and (i i).
  • the predetermined PCR primer used in the step (i) includes a complementary DNA portion comprising a base sequence that complementarily binds to the amplification target region in the vertical DNA, which is a part of the vertical DNA. And a non-complementary DNA portion consisting of a base sequence that is linked to the 5 ′ end of the complementary DNA portion and does not bind complementarily to the amplification target sequence, and is included in the base sequence of the non-complementary DNA portion.
  • a primer characterized in that a base corresponding to at least the 3 ′ end of the DNA is modified with a protecting group capable of stopping the progress of DNA replication by DNA polymerase.
  • the “non-complementary DNA portion” in the primer may be a portion consisting of a base sequence that is not complementary to the region to be amplified by PCR in the vertical DNA. Therefore, the “non-complementary DNA portion” is a region other than the amplification target region in the vertical DNA (for example, a base sequence region of any length adjacent to the 5 ′ side or 3 ′ side of the amplification target region). It may be a portion consisting of a base sequence complementary to, and is not limited.
  • the non-complementary DNA portion is a portion that becomes a sticky end portion (single-stranded DNA portion) of the finally obtained DNA fragment.
  • the base length of the non-complementary DNA portion is not particularly limited, but is, for example, 1 to 100 bases, preferably 4 to 20 bases.
  • the base length of the sticky end of the DNA fragment to be obtained can be easily set to 5 bases or more which are not usually generated at the sticky end after the restriction enzyme treatment. Therefore, the sticky ends of the obtained DNA fragments are It may have the same base sequence as the sticky end obtained by treatment with a known restriction enzyme, but it has a different base sequence from the sticky end obtained by treatment with a known restriction enzyme. There may be no limitation.
  • the primer has a protecting group capable of stopping the progress of DNA replication by DNA polymerase at the above-mentioned predetermined base (a base corresponding to at least the 3 ′ end in the base sequence of the non-complementary DNA portion).
  • the type of the base is not limited, but thymine and guanine are preferable.
  • a complementary strand is also synthesized in the DNA synthesis process by DNA polymerase for non-complementary DNA in a primer, and DNA replication proceeds.
  • the base at the boundary between the complementary DNA portion and the non-complementary DNA portion in the primer is modified with the above protecting group.
  • the complementary strand is not synthesized. Therefore, the obtained DNA fragment has a sticky end corresponding to the non-complementary DNA portion.
  • the protecting group is not particularly limited as long as it can be removed from the DNA fragment obtained after PCR by a predetermined treatment, and Green et al. (Protective Groups in Organic Synthesis, John Wiley ana Sons,
  • photoirradiation treatment, alkali treatment, acid treatment, oxidation treatment, reduction treatment, desilylation Protecting groups that can be removed from the modified base by treatment with heat treatment, heat treatment, esterase treatment or phosphatase are preferred.
  • light irradiation treatment especially UV irradiation treatment is preferred
  • alkali treatment, oxidation treatment, reduction treatment, desilylation More preferred is a chemical treatment. Therefore, the various processes listed here can be exemplified as predetermined processes performed in the step (i i).
  • the light irradiation treatment (especially UV irradiation treatment is preferred), for example, it is preferably 5 to 60 minutes, more preferably 15 to 30 minutes, depending on the type of protecting group.
  • Examples of protecting groups that can be removed by light irradiation treatment are shown below.
  • a group surrounded by a broken line is a part of the protecting group.
  • the alkali treatment for example, concentrated ammonia water and concentrated ammonia water-methylamine mixed solution are preferably used as the treatment reagent, and more preferably concentrated ammonia water.
  • the alkali treatment is preferably carried out for 24 hours at room temperature or 8 hours at 55 ° C, more preferably 24 hours at room temperature, depending on the type of protecting group.
  • protecting groups that can be removed by alkali treatment are given below.
  • a group surrounded by a broken line is a part of the protecting group.
  • acid treatment for example, 2% to 50% trifluoroacetic acid aqueous solution, 10% to 80% acetic acid, dilute hydrochloric acid and the like are preferably used as the treatment reagent, and more preferably 2% trifluoroacetic acid aqueous solution. And 80% acetic acid.
  • the acid treatment depends on the kind of the protecting group, for example, it is preferable to stir at room temperature for 10 minutes to 1 hour, and more preferably at room temperature for 1 hour.
  • Preferred examples of the protecting group that can be removed by acid treatment include a trityl group and a methoxy derivative thereof.
  • 2,3-dichloro-5,6-dicyano-P-benzoquinone and iodine are preferably used as a treatment reagent, and more preferably 2,3-dichloro mouth- 5,6-Disiano-P-benzoquinone.
  • the oxidation treatment depends on the type of protecting group, it is preferable to add 2,3-dichloro-5,6-disyano-P-benzoquinone in an aqueous solution and stir at room temperature for 1 to several days, more preferably Stir for 10 hours.
  • the treatment reagent for example, a catalyst combined with hydrogen gas, and more preferably palladium carbon.
  • sodium borohydride and sodium cyanoborohydride are also preferably used alone.
  • the reduction treatment depends on the kind of protecting group, for example, after adding a catalyst and hydrogen gas, it is preferable to react at room temperature overnight to several days, more preferably overnight reaction.
  • Preferred examples of the protecting group that can be removed by reduction treatment include a benzyloxymethyl group, and a benzyloxymethyl group substituted with an arbitrary substituent.
  • the optional substituent include various known substituents contained in substituents such as an alkyl group, an alkenyl group, an aryl group, an aralkyl group, a cycloalkyl group, an acyl group, and a heterocyclic group.
  • 1 M tetrabutylammonium fluoride THF solution and triethylamine trihydrofluoride are preferably used as treatment reagents, and more preferably 1 M tetrabutylammonium.
  • the desilylation treatment is preferably performed overnight to several days at room temperature after adding 1 M tetraptylammonium fluoride THF solution to the sample solution, more preferably overnight reaction.
  • Examples of the protecting group that can be eliminated by desilylation treatment include the following, and a group surrounded by a broken line is a part of the protecting group.
  • the heat treatment is preferably performed at a temperature of 60-90 for 10 minutes to 360 minutes, more preferably at 60 ° C. for 10 minutes, depending on the type of protecting group.
  • Preferred examples of the protecting group that can be removed by heat treatment include an isocyanate group (see JP-A-2006-248931).
  • esterase treatment depends on the type of protecting group, for example, it is preferable to react with porcine liver esterase at 37 ° C for 1 hour or overnight, more preferably at 37 ° C for 1 hour. .
  • Examples of the protecting group that can be removed by esterase treatment include the following, and the group surrounded by a broken line is the part of the protecting group.
  • the phosphatase treatment depends on the type of protecting group, for example, it is preferable to react with alkaline phosphatase at 37 ° C for 1 hour or overnight, more preferably at 37 ° C for 1 hour. It is.
  • Examples of protecting groups that can be eliminated by phosphatase treatment include the following, and a group surrounded by a broken line is a part of the protecting group.
  • the method for preparing a primer for PCR having the above-described various protecting groups may be any known method and is not limited.
  • the protection of a desired base with the above-mentioned various protecting groups can be achieved by activating thymidine with the 5 'and 3' hydroxyl groups protected with a acetyl group with a tosyl compound and allowing the alcohol form of the protecting group to act, or 5 '
  • a thymidine whose 3 ′ hydroxyl group is protected with a acetyl group can be reacted with a protecting group activated as a chloromethyl compound.
  • PCR conditions other than those described above for example, reaction composition solution (type concentration, primer concentration, buffer type 'concentration, DNA polymerase type, enzyme amount, etc.) and reaction conditions (The heat denaturation, annealing, and elongation reaction times / temperatures, the total number of cycles, etc.) can be arbitrarily set according to known knowledge and common technical knowledge.
  • the predetermined treatment for deprotection can be performed based on known methods and conditions other than those described above.
  • the preparation method of the present invention may include other optional steps in addition to the steps (i) and (i i), and is not particularly limited.
  • a substituent introduction agent that is, a substituent introduction agent containing a compound that can serve as the substituent
  • a substituent introduction agent for introducing a substituent as the protecting group described above
  • a biomolecule having the substituent that is, a protected biomolecule
  • X is not limited, but Cl, I, Br, p-toluenesulfonic acid ester and sulfuric acid ester are preferred.
  • a compound in which X is CI ie, 2-[(2-nitrophenyl) -chloromethoxy] -propane (NPPOM-C1)) is more preferable.
  • NPPOM-C1 can be synthesized, for example, according to the method described in Example 3 described later (see Scheme 2), and the formation of substituents using NPPOM-C1 is also in accordance with the same scheme. Can be done.
  • the biomolecule of the present invention includes a biomolecule having a 2- (2-nitrophenyl) propyloxymethyl group (the above formula ( ⁇ )) (ie, a biomolecule substituted with the group). Specifically, the following formula (I):
  • R represents an arbitrary biological molecule.
  • the biomolecule (R) may be either a low molecule (base, amino acid, etc.) or a polymer (DNA, RNA, protein, etc.), or an artificially prepared biocompatible molecule (PNA, etc.).
  • a base is preferred.
  • the base is not limited, but preferred examples include thymine and guanine.
  • examples of the biomolecule of the present invention include the following formula (II): (That is, thymine substituted with 2- (2-nitrophenyl) propyloxymethyl group (protected)) or the following formula (III):
  • the gene recombination method of the present invention is a method comprising a step of binding a DNA fragment obtained by the above-described preparation method of the present invention and a host DNA.
  • the host DNA is not particularly limited, and any DNA such as various vectors (expression vector, virus vector, phage vector, etc.) or various biological genomic DNAs can be used.
  • the DNA fragment obtained by the preparation method of the present invention can be a sticky end having a long base length that cannot be produced by restriction enzyme treatment, if desired.
  • the bond between the DNA fragment and the host DNA is a bond between sticky ends having a long base length, it is not necessary to use a DNA-binding enzyme such as ligase.
  • the isomerism and the coupling efficiency are high, and it is possible to bond by simply mixing both. Therefore, the present invention can also provide a genetic recombination method excellent in convenience, economy, and practicality.
  • the genetic recombination method of the present invention may include other arbitrary steps in addition to the above-described binding step, and is not particularly limited.
  • the gene recombination method of the present invention can be suitably used for gene recombination of, for example, retroviruses and adenovirus vectors used for gene therapy and iPS cell-related. Since the adenovirus and the like have a large genomic DNA size, conventional methods require excessive labor and time for gene recombination. However, according to the gene recombination method of the present invention, the entire genome can be appropriately treated. Genetic recombination can be easily performed by dividing into sizes and individually amplifying each site by PCR and connecting them through the sticky ends prepared according to the present invention.
  • the present invention can also provide a gene recombination kit comprising a DNA fragment obtained by the preparation method of the present invention described above.
  • the kit may contain any other components, such as various vectors such as expression vectors, various buffers, sterilized water, preservatives, preservatives, various reaction containers, and use manuals. (Instruction manual).
  • various vectors such as expression vectors, various buffers, sterilized water, preservatives, preservatives, various reaction containers, and use manuals.
  • Instruction manual Instruction manual
  • the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
  • CI is a template (cage DNA) of C2 used as a PCR primer and has only one TNPP.
  • the method for synthesizing a primer having TNPP is as described above.
  • the 5 ′ end of C2 was labeled with FAM.
  • Fig. 2 C1 used light irradiation (UV irradiation) before the start of the reaction in lane 3, but it was found that the extension reaction progressed to 24 mer compared to lane 1. However, in lane 2, it was confirmed that the extension reaction did not proceed as much as in lane 3, and stopped at the target 20 mer.
  • the elongation reaction was stopped at the target site (inhibition is not shown). From these, two things were concluded. The first is that the elongation reaction by the polymerase can be stopped at the target T NPP, and the second is that the TNPP is protected by the caged protection (ie, protection from the DNA polymerase extension reaction by the NPP group (extension). Reaction inhibition)) was effectively removed by UV irradiation. In order to stop the extension reaction, It was also found that one TNPP was sufficient.
  • a DNA fragment having a desired 5 ′ protruding end can be prepared.
  • various inserted DNA fragments are prepared using desired synthetic primers and PCR.
  • the insert was inserted into the vector using a general method.
  • the outline of the method using a restriction enzyme (a vector cleaved with EcoR or ARCUT) is shown in Fig. 3.
  • ARCUT artificial restriction DNA force
  • the vector (PUC18) was cleaved with coRI, and the C3 and C4 PCR primers shown in Scheme 1 were synthesized in order to insert the prepared insert.
  • C3 and C4 can amplify the base sequence region (121 ⁇ : 1170 bp) containing both the GFP gene of pQBI T7-GFP (Qbiogene; 5115bp (SEQ ID NO: 9)) and the T7 promoter sequence, as amplification products
  • the resulting insert was designed to have a 5 'overhang complementary to the oRI cleavage fragment ( Figure 4).
  • Figure 4 In addition, in the sequence of the insert shown in FIG.
  • the nucleotide sequence of the portion indicated as T7-GFP (including the GFP gene and the T7 promoter sequence; total 1031 bp: 131st in the nucleotide sequence of SEQ ID NO: 9 (Consisting of the 1161st base) is shown in SEQ ID NO: 10 (the same applies to FIG. 9, FIG. 14b and FIG. 16b).
  • SEQ ID NO: 10 the same applies to FIG. 9, FIG. 14b and FIG. 16b.
  • two TNPPs were introduced to increase the inhibition efficiency.
  • the primer used for LACE-PCR was used as LACE-primer.
  • Insertion of LACE-PCR product into vector production of recombinant vector
  • the vector (pUC18) side was prepared by a known general method.
  • Fig. 6 the plasmid DNA of the positive colonies in lane 2 and lane 15 was extracted and the nucleotide sequence was read, confirming that the insert was inserted in the desired form (Fig. 7).
  • lane 2 has the insert inserted in the desired direction
  • lane 15 has the insert inserted in the reverse direction. I found out.
  • the ability to crush restriction enzyme sites is also a feature of this method, which is excellent in usefulness and practicality.
  • the probability of obtaining a PCR product with the target 5 ′ overhang was considered to be about 50 to 60%.
  • the insert prepared by LACE-PCR was successfully introduced into both the cleaved at one force site and the cleaved at two sites.
  • the biggest feature of this method is that it is possible to create a protruding end with a favorite sequence, so we thought that it would be possible to directly ligate a protruding end that does not exist in nature after ARCUT cleavage. . Therefore, an attempt was made to directly insert an insert into a system in which pBR322 (Yukara Bio Inc .; 4361 bp (SEQ ID NO: 7): GenBank Accession No. J01749) was cut with ARCUT. As shown in Fig.
  • the target cleavage site of ARCUT was around 1830 bp of pBR322.
  • the pcPNA pseudo-complementary peptide nucleic acid
  • ARCUT vector cleavage occurs at one of the arrows shown in Figure 13b, but this time the blue arrow (both strands are the second arrow from the right of the five arrows shown in Figure 13b).
  • the primers used in LACE-PCR will be correspondingly longer. At this time, the two primers will contain complementary sequences, making it easier to form primer dimers. Therefore, as in C5 and C6, the TNPP was intentionally introduced in the mutually complementary part, so that the interaction between the primers was inhibited and the primer dimer was not formed.
  • a fragment obtained by cutting the supercoiled pBR322 with ARCUT was gel-purified to obtain a linearized fragment. Furthermore, PNA was removed by adding excessive oligoDNA complementary to PNA, followed by phosphatase treatment and dephosphorylation.
  • Two fragments of 1830 bp and 2530 bp are obtained by cleaving pBR322 linearized by ARCUT around 1830 bp.
  • the 2530 bp fragment had a drug resistance gene (Amp) and an origin of replication (ori), and thus acted as a vector (Fig. 15). Therefore, using C3 and C6 synthesized so far as LACE-primers, a fragment with a protruding end as shown in Fig. 16b was prepared, and an insert was inserted into the ARCUT-cleaved fragment shown in Fig. 16a. It was.
  • FIG. 17 shows the result of electrophoresis after cleavage of pBR322 (lane 1: cleaved with ⁇ coRI alone, lane 2: cleaved with oRI and ARCUT).
  • C7 and C8 are primers that amplify the entire nucleotide sequence excluding the 314th to 328th bases in the pQBI T7-GFP vector. Since the GFP gene stop codon is included in this excluded region, when a DNA fragment containing a foreign protein gene is inserted, a fusion protein with GFP is translated (generated). 9 bases (C7) encoding glycine linker or 10 bases identical to the 315th to 324th bases of pQBI T7-GFP on the 5 'side of TNPP of the primer that becomes the sticky end by LACE-PCR ( Added C8). 2-2. BFP gene amplification primers
  • C9 and C10 are primers that amplify the base sequence region (701 bp; SEQ ID NO: 15) encoding the BFP body consisting of the 335th to 1035th bases of the pQBI 67 vector.
  • Figure 23 shows the fluorescence color of this E. coli.
  • the two letters “UT” are the fluorescence of the recombinant produced in this example, and the color of the fluorescence is either the letter “L” having only the GI gene or the letter “ACE” having only the BFP gene. Both were different.
  • the extracted plasmid was cleaved with a restriction enzyme to confirm that the length was correct.
  • the results of agarose gel electrophoresis are shown in FIG.
  • the extracted plasmid (lane 2) treated with Eco RI and linearized clearly has a slower mobility than the vector fragment (lane 1, 5125 bp) amplified by LACE-PCR, and correctly BFP fragment. It can be seen that is inserted. This is also expected in Lane 3, which was cut at two power stations of Nhe I in addition to Eco RI It was also confirmed by the clear observation of the 1862 bp and 3975 bp bands.
  • thymidine (2.93 g, 12.1 mmol) and DMAP (40 mg, 0.327 mmol) were dissolved in 60 mL of acetic anhydride, 30 mL of dry pyridine was added, and the mixture was stirred at room temperature. Pyridine and acetic anhydride were distilled off under reduced pressure, 100 mL of chloroform was added, and the organic layer was washed with 100 mL of water.
  • a method for preparing a DNA fragment wherein a desired double-stranded DNA fragment having a sticky end can be obtained directly and easily from an amplification product (amplified fragment) after PCR without a restriction enzyme treatment. can do.
  • a novel PCR primer that can be used in the preparation method can be provided.
  • a genetic recombination method using a DNA fragment obtained by the preparation method can be provided.
  • the preparation method of the present invention even a double-stranded DNA fragment having a sticky end, even a DNA fragment having a sticky end consisting of the same base sequence as the sticky end obtained by restriction enzyme treatment, can be obtained by restriction enzyme treatment. Any DNA fragment having a sticky end consisting of a base sequence different from the sticky end to be obtained can be easily obtained.
  • the base length of the sticky end portion (single-stranded DNA portion) can be set as desired by arbitrarily designing the base length of the portion that does not bind to the vertical DNA in the PCR primer. The length can be set and there is no particular limitation.
  • SEQ ID NO: 1 t is modified with a 2- (2-nitrophenyl) propyl group (NPP group) (location 4).
  • SEQ ID NO: 3 t is modified with a 2- (2-nitrophenyl) propyl group (NPP group) (location 3).
  • SEQ ID NO: 3 t is modified with a 2- (2-nitrophenyl) propyl group (NPP group) (location 4).
  • SEQ ID NO: 4 t is modified with a 2- (2-nitrophenyl) propyl group (NPP group) (location 3).
  • SEQ ID NO: 4 t is modified with a 2- (2-nitrophenyl) propyl group (NPP group) (location 4).
  • SEQ ID NO: 5: t is modified with a 2- (2-nitrophenyl) propyl group (NPP group) (location 9).
  • SEQ ID NO: 5: t is modified with a 2- (2-nitrophenyl) propyl group (NPP group) (location 16).
  • SEQ ID NO: 6 t is modified with a 2- (2-nitrophenyl) propyl group (NPP group) (location 8).
  • SEQ ID NO: 6 t is modified with 2- (2-nitrophenyl) propyl group (NPP group) group (Location 16).
  • SEQ ID NO: 7 cloning vector pBR322
  • SEQ ID NO: 8 cloning vector pBR322
  • SEQ ID NO: 10 One cloning vector pQBI T7-GFP
  • SEQ ID NO: 11 t is modified with a 2- (2-nitrophenyl) propyl group (NPP group) (location 10).
  • SEQ ID NO: 11 t is modified with a 2- (2-nitrophenyl) propyl group (NPP group) (location 10).
  • SEQ ID NO: 12: t is modified with a 2- (2-nitrophenyl) propyl group (NPP group) (location 11).
  • SEQ ID NO: 12: t is modified with a 2- (2-nitrophenyl) propyl group (NPP group) (location 11).
  • SEQ ID NO: 13: t is modified with a 2- (2-nitrophenyl) propyl group (NPP group) (location 11).
  • SEQ ID NO: 13: t is modified with a 2- (2-nitrophenyl) propyl group (NPP group) (location 11).
  • SEQ ID NO: 14: t is modified with a 2- (2-nitrophenyl) propyl group (NPP group) (location 10).
  • SEQ ID NO: 14: t is modified with a 2- (2-nitrophenyl) propyl group (NPP group) (location 10).
  • SEQ ID NO: 15 Cloning vector pQBI67 (BF gene)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 本発明は、粘着末端を有する所望の2本鎖DNA断片を、PCR後の増幅産物(増幅断片)から制限酵素処理を介さずに直接的かつ容易に得る、DNA断片の調製方法等を提供する。本発明の粘着末端を有するDNA断片の調製方法は、(i)鋳型DNAと、特定のプライマーとを用いてPCR反応を行うことにより増幅DNA断片を得る工程、及び(ii)前記増幅DNA断片に所定の処理を施すことにより当該断片中の保護基を脱離させる工程を含む方法である。ここで、前記特定のプライマーは、鋳型DNA中の増幅対象領域と相補的に結合する塩基配列からなる相補DNA部分と、当該相補DNA部分の5'末端に連結し且つ前記増幅対象配列と相補的に結合しない塩基配列からなる非相補DNA部分とから構成され、当該非相補DNA部分の塩基配列中の少なくとも3'末端に相当する塩基がDNAポリメラーゼによるDNA複製の進行を停止させ得る保護基で修飾されたものである。

Description

明 細 書 粘着末端を有する DNA断片の調製方法 技術分野
本発明は、 制限酵素等による処理を介さずに、 直接、 粘着末端 (突出末端) を 有する所望の 2本鎖 DNA断片を調製する方法に関する。 さらに、 当該方法によ り得られた DNA断片を用いた遺伝子組換え方法に関する。 背景技術
従来より、 分子生物学及びバイオテクノロジー分野においては、 制限酵素を用 いてプラスミド DNAを切断し、 これをホスト DNAとして、 リガーゼを用いて所 望の遺伝子断片と結合させることでベクターを構築している。 多くの場合、 上記 遺伝子断片は、 PCRにより様々な原料 (铸型 DNA) から調製され、 PCR増幅産 物の平滑末端は、 プラスミド DNA (ホスト DNA) と結合させるために、 制限酵 素で処理をして粘着末端 (突出末端) に変えられる (Sambrook, J. et al., 2001, Molecular Cloning: A Laboratory Manual Edn.3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) 。 この技術により所望のベクタ一 が得られる効率は比較的高いものであるが、 例えば以下のような 2つの問題があ る。 1つ目は、 制限酵素の認識部位がいくつかの回文配列に制限されているため、 目的の部位で (又はその近傍で) DNAを切断するのに適した制限酵素を見つけ るのが困難なことがよくある、 ということである。 2つ目は、 利用可能な制限酵 素の多くは 4〜 6塩基の DNA配列を認識するものであるが、 サイズの大きな DNAを制限酵素処理する場合 (同じ認識部位も多く存在する) 、 所望の部位以 外にも多くの部位で切断されてしまうため、 ホスト DNAのサイズが大きいと正 確な遺伝子組換え操作ができない、 ということである。
本発明者は、 このような問題の解決策として、 Ce4+/EDTA複合体 (分子ハサ ミ : molecular scissors) と一組の擬似相補性ペプチド核酸 (pcPNA) ( 2本鎖 DNAへの侵入と局所的 1本鎖部位の作成) とを組み合わせることにより、 人工 的制限 DNAカッター (ARCUT) を作製した。 これら pcPNAを 2本鎖 DNAに作 用させると、 pcPNAは 2本鎖 DNAを部分的に解離させ、 自身のターゲット配列 に結合する (2本鎖 DNAへの侵入) 。 ここで、 pcPNAのターゲット配列を数塩 基横にずらしておくと、 複合体形成時に pcPNAが結合した部分の反対側が局所 的に 1本鎖のまま残される。 この複合体に Ce4+/EDTAを作用させると、 Ce4+/EDTAは 2本鎖 DNAよりも 1本鎖 DNAを選択的に切断するため、 pcPNAに よって作られた 1本鎖部分が選択的切断される。 それぞれの DNA鎖の切断位置 が横方向にずれているため、 切断後には粘着末端が形成される。 ARCUTにより 形成された粘着末端は、 別途調製された他の断片 (例えば、 制限酵素処理断片) の末端と直接的には結合しないが、 これらの断片は、 互いのスペースを埋めるジ ョイントオリゴヌクレオチドを利用することにより、 見かけ上、 相補的な構造を 形成して、 結合され得る (Yamamoto, Y. et al., Chem. Bio. Chem., vol.7, p.673-677, 2006) 。 しかしな力 ^ら、 ARCUTを用いた方法では、 結合効率 (ライ ゲーシヨン効率) が低く、 また精製 Z分離工程がより困難なものとなるという問 題があった。 発明の開示
そこで、 本発明が解決しょうとする課題は、 粘着末端を有する所望の 2本鎖 DNA断片を、 PCR後の増幅産物 (増幅断片) から制限酵素処理を介さずに直接 的かつ容易に得る、 DNA断片の調製方法を提供することにある。 さらに、 本発 明は、 当該調製方法により得られた DNA断片を用いた、 遺伝子組換え方法等を 提供することにある。
本発明者は、 上記課題を解決するべく鋭意検討を行った。 その結果、 PCR用 プライマ一として、 特定の機能を有する保護基を有するものを使用すれば、 上記 課題を解決し得ることを見出し、 本発明を完成した。 すなわち、 本発明は以下の通りである。
( 1 ) PCR用のプライマ一であって、 铸型 DNA中の増幅対象領域と相補的に結 合する塩基配列からなる相補 DNA部分と、 当該相補 DNA部分の 5'末端に連結し 且つ前記増幅対象配列と相補的に結合しない塩基配列からなる非相補 DNA部分 とから構成され、 当該非相補 DNA部分の塩基配列中の少なくとも 3'末端に相当 する塩基が DNAポリメラーゼによる DNA複製の進行を停止させ得る保護基で修 飾されていることを特徴とする、 前記プライマー。
本発明のプライマ一において、 前記保護基としては、 例えば、 光照射処理、 ァ ルカリ処理、 酸処理、 酸化処理、 還元処理、 脱シリル化処理、 熱処理、 エステラ ーゼ処理又はホスファターゼ処理により被修飾塩基から脱離し得るものが挙げら れる。
ここで、 当該光照射処理により被修飾塩基から脱離し得る保護基としては、 例 えば、 2-(2-ニトロフエニル)プロピル基、 2-(2-ニトロフエニル)プロピルォキシメ チル基、 1-(2-二トロフエニル)ェチル基及び 6-二ト口ピぺロニルォキシメチル基 が挙げられる。 当該アルカリ処理により被修飾塩基から脱離し得る保護基として は、 例えば、 イソプチリル基、 ベンゾィル基及びァセトキシメチル基が挙げられ る。 当該酸処理により被修飾塩基から脱離し得る保護基としては、 例えば、 トリ チル基又はそのメトキシ誘導体が挙げられる。 当該酸化処理により被修飾塩基か ら脱離し得る保護基としては、 例えば、 ァリルォキシメチル基、 ジメトキシベン ジルォキシメチル基又はトリメトキシベンジルォキシメチル基が挙げられる。 当 該還元処理により被修飾塩基から脱離し得る保護基としては、 例えば、 ベンジル ォキシメチル基、 又は任意の置換基により置換されたべンジルォキシメチル基が 挙げられる。 当該脱シリル化処理により被修飾塩基から脱離し得る保護基として は、 例えば、 t-ブチルジメトキシシリルォキシメチル基又は t-ブチルジフエ二ル シリルォキシメチル基が挙げられる。 当該熱処理により被修飾塩基から脱離し得 る保護基としては、 例えば、 イソシァネート基が挙げられる。 当該エステラーゼ 処理により被修飾塩基から脱離し得る保護基としては、 例えば、 ァセトキシメチ ル基が挙げられる。 当該ホスファターゼ処理により被修飾塩基から脱離し得る保 護基としては、 例えば、 リン酸メチル基が挙げられる。
また、 本発明のプライマーにおいて、 前記の非相補 DNA部分の塩基配列中の 少なくとも 3'末端に相当する塩基としては、 例えば、 チミン及びグァニンが挙 げられる。 さらに、 本発明のプライマーとしては、 前記非相補 DNA部分の塩基 長が、 例えば 1〜 100塩基であるものが挙げられる。
( 2 ) ( i ) 鍀型 DNAと、 上記 (1)のプライマ一とを用いて: PCR反応を行うこと により増幅 DNA断片を得る工程、 及び ( i i ) 前記増幅 DNA断片に所定の処理 を施すことにより当該断片中の保護基を脱離させる工程を含む、 粘着末端を有す る DNA断片の調製方法。
本発明の調製方法において、 前記所定の処理としては、 例えば、 光照射処理、 アルカリ処理、 酸処理、 酸化処理、 還元処理、 脱シリル化処理、 熱処理、 エステ ラーゼ処理又はホスファタ一ゼ処理により被修飾塩基から脱離し得る処理が挙げ られる。
本発明の調製方法において、 前記粘着末端としては、 例えば、 制限酵素処理に より得られる粘着末端と同一の塩基配列からなるもの、 又は、 制限酵素処理によ り得られる粘着末端とは異なる塩基配列からなるものが挙げられる。
( 3 ) 上記 (2)の調製方法により得られた DNA断片と、 ホスト DNAとを結合させ る工程を含む、 遺伝子組換え方法。
本発明の遺伝子組換え方法において、 前記 DNA断片とホスト; DNAとの結合は、 例えば、 DNA結合酵素を用いずに行うことができる。
( 4 ) 下記式 (Γ) に示される化合物を含む置換基導入剤。
(1,)
Figure imgf000005_0001
〔式 (Γ) 中、 Xは Cl、 I、 Br、 p-トルエンスルホン酸エステル又は硫酸ェ ステルを表す。 〕
( 5 ) 2-(2-二卜口フエニル)プロピルォキシメチル基を有する生体分子。
本発明の生体分子としては、 例えば、 下記式 (I) に示されるものが挙げられ
Figure imgf000005_0002
〔式 (I) 中、 IIは生体分子を表す。 〕
ここで、 生体分子としては、 例えば塩基等が挙げられ、 具体的にはチミン及び グァニンが挙げられる。 生体分子がチミン及びグァニンの場合、 本発明の生体分 子としては、 下記式 (II) 及び (III)に示されるものが挙げられる。
Figure imgf000006_0001
図面の簡単な説明
図 1は、 本発明の一実施例である、 caged TNPPを用いた LACE-PCR (Light- assisted-cohesive-ending PGR) 法の該略図である。
図 2は、 DNAポリメラーゼによる伸長反応の結果を示す電気泳動 (20%変性 PAGE) 写真である。 レーン 1は C2のみ (コントロール) 、 レーン 2は C1 + C2 + Ex Taq (UV照射なし) 、 レーン 3は Cl + C2 + Ex Taq (UV照射あり) である。 反応条件は、 [C1]=[C2]=4 ^ M、 [dNTPs]=100 ^ M、 [Ex Taq]=0.2U/ l、 37°C、 30分である。
図 3は、 LACE-PCR法を用いた組換えべクタ一構築の該略図である。
図 4は、 LACE-PCR法により調製した挿入 DNA断片の構造を示す図である。 図 5は、 LACE-PCR法による増幅産物の電気泳動写真である。
図 6は、 コロニー PCRの結果を示す電気泳動写真である。
図 7は、 組換えベクターの塩基配列分析の結果を示す図である。 図 8は、 UV照射による保護基 (NPP) の脱保護化の経時変化を示すグラフで ある。
図 9は、 LACE-PCR法により調製した挿入 DNA断片の構造を示す図である。 図 1 0は、 UV照射前後における、 LACE-PCR法による増幅産物の電気泳動写 真である。 レーン 1は UV照射前、 レーン 2は UV照射後である。
図 1 1は、 コロニー PCRの結果を示す電気泳動写真である。
図 1 2は、 組換えベクターの塩基配列分析の結果を示す図である。 (a)は
RI siteを結合させた組換えべクタ一であり、 (b)は Hini/ III siteを結合させた組 換えべクタ一である。
図 1 3は、 ARCUTによる標的切断部位と使用する pcPNAの塩基配列を示す図 である。 aは、 ARCUTにより切断される標的部位周辺の塩基配列を示し、 bは、
ARCUTによる切断時の標的部位周辺の構造を示す。
図 1 4は、 a) ARCUTにより切断した標的フラグメント (ベクター) の構造を 示す図である。 b) LACE-PCR法により調製した挿入 DNA断片 (インサート) の 構造を示す図である。
図 1 5は、 pBR322ベクター上の制限酵素サイトを示す図である。
図 1 6は、 a) ARCUTにより切断した標的フラグメント (ベクタ一) の構造を 示す図である。 b) LACE-PCR法により調製した挿入 DNA断片 (インサート) の 構造を示す図である。
図 1 7は、 coRIや ARCUTによる pBR322ベクターの切断断片のァガロース ゲル電気泳動写真である。 レーン 1は ^oRIのみで切断、 レーン 2は ^oRIで切断 した後 ARCUTで切断、 レーン Mは 1 kbpラダーマーカ一である。
図 1 8は、 本実施例で使用した又は得られた各フラグメントのァガロースゲル 電気泳動写真である。 レーン 1は ARCUT切断断片 (2530 bp)、 レーン 2は LACE- PCR法による増幅産物 (UV照射あり)、 レーン 3は組換えべクタ一のみ、 レーン 4 は 《?RIで切断した組換えベクターである。
図 1 9は、 組換えベクターの塩基配列分析の結果を示す図である。 (a)は ARCUT siteを結合させた組換えベクターであり、 (b)は W RI siteを結合させた 組換えベクターである。 図 2 0は、 BL21-Gold (DE3)の形質転換体における GFPの発光を示す写真で ある。
図 2 1は、 GFP-BFP融合タンパク質をコードする DNAを含むベクター構築の 概略図である。 左図は GFP遺伝子を含む pQBI T7-GFPベクタ一であり、 右図は BFP遺伝子を含む pQBI 67ベクターである。
図 2 2は、 BFP遺伝子を含む DNA断片を LACE-PCRで増幅した産物のァガロ 一スゲル電気泳動写真である。
図 2 3は、 BL21-Gold (DE3)の形質転換体における GFP-BFP融合タンパク質 等の発光を示す写真である。
図 2 4は、 BL21-Gold (DE3)の形質転換体から回収した組換えべクタ一のァガ ロースゲル電気泳動写真である。
図 2 5は、 GFP-BFP融合タンパク質の蛍光スぺクトルを示す図である。
図 2 6は、 BL21-Gold (DE3)形質転換体で発現しているタンパク質の SDS- PAGE解析の結果を示す電気泳動写真である。 発明を実施するための最良の形態
以下、 本発明を詳細に説明する。 本発明の範囲はこれらの説明に拘束されるこ とはなく、 以下の例示以外についても、 本発明の趣旨を損なわない範囲で適宜変 更し実施し得る。 なお、 本明細書は、 本願優先権主張の基礎となる特願 2008 - 061678号 (2008年 3月 11日出願) の明細書等の全体を包含する。 また、 本明細 書において引用された全ての刊行物、 例えば先行技術文献、 及び公開公報、 特許 公報その他の特許文献は、 参照として本明細書に組み込まれる。
1 . 本発明の概要
図 1に示すように dNTPsと铸型 DNAとの塩基対形成を阻害するような修飾が 施されていると (TNPP; 2-(2-ニトロフエニル)プロピル基により修飾 (保護) さ れたチミジン塩基) 、 DNAポリメラ一ゼによる伸長反応が阻害されることにな り、 5'突出末端を有する DNA断片を容易に作製することができる。 得られた DNA断片は、 上記修飾 (保護) がされたままでは、 遺伝子組換え操作に応用す ることはできないが、 TNPPの保護基である 2-(2-二ト口フエニル)プロピル基
(NPP基) は、 光照射により外すことができるため、 容易に遺伝子組換え技術 等に利用可能なものとなる。 本発明者は、 この技術を、 PCRの技術と組み合わ せて応用することで、 遺伝子組換え操作等に用い得るィンサート側の 5'突出末端 (粘着末端) を自在に設計できる方法となることを見出し、 本発明を完成した。 そこで、 本発明者は、 一部の塩基に前記修飾を施した様々な PCRプライマー を合成し (例えば、 後述する実施例 1中のスキーム 1に示す C1のプライマーを 参照) 、 得られた PCR増幅産物を、 その後制限酵素によって処理することなく、 そのままィンサートの断片としてベクターに挿入することで、 組換えベクターの 構築を行った。 ところで、 ARCUT (人工的制限 DNAカッター; Yamamoto,Y. et al., Chem. Bio. Chem., vol.7, p.673-677, 2006 を参照) による DNAの切断断 片は、 その性質上、 切断部分の塩基配列が、 天然の制限酵素を用いた場合のよう な配列には決してならないことが知られている。 そこで、 AECUTによってべク ターを切断し、 その切断部分の塩基配列に合うように、 本発明の方法を用いてィ ンサートの DNA断片を調製して、 ベクターへの挿入を試みた。 従来は、 ARCUT を利用して遺伝子組換え操作を行う場合、 インサート断片とベクターとをつなげ る際に、 互いの隙間を埋めるための Oligojointと呼ばれる断片を別途使用する必 要があった。 しかし、 本発明の方法により調製したインサート断片を用いれば、 Oligojointを使用することなくベクタ一への挿入を極めて容易に行うことができ た。 これまでにも、 任意に所望の突出末端 (粘着末端) を有する DNA断片を作 製する方法は、 いくつか報告されているが、 それらはいずれも、 PCR後に特殊 な酵素処理が必要なものであった (Aslanidis, C. et al., (1990) Ligation- mdependent cloning of PCR products (LIC-PCR). Nucleic Acids Res" 18, 6069-6074.; Bitinaite, J. et al., (2007) USERTM friendly DNA engineering and cloning method by uracil excision. Nucleic Acids Res. , 35, 1992-2002.; Xin, W. et al., (2003) Construction of linear functional expression elements with DNA and RNA hybrid primers: a flexible method for proteomics., 25, 273-277.; Zhu, B. et al., (2007) In- Fusion™ assembly: seamless engineering of multidomain fusion proteins, modular vectors, and mutations. BioTechniques, 43, 354-359) 。 本発明の方法によれば、 酵素としては実質的に DNAポリメラーゼのみで所望の突出末端を有する DNA断片を作製することがで き、 種々の条件等の制限が少ないため、 様々な利用及び応用が可能と考えられる。 2 . 粘着末端を有する DNA断片の調製方法
本発明に係る粘着末端を有する DNA断片の調製方法は、 下記 ( i ) 及び ( i i ) の工程を含む方法である。
( i ) 铸型 DNAと、 所定の PCR用プライマーとを用いて; PCR反応を行うことに より増幅 DNA断片を得る工程
( i i ) 前記増幅 DNA断片に所定の処理を施すことにより当該断片中の保護基 を脱離させる工程
ここで、 上記 ( i ) の工程で用いる所定の PCR用プライマーは、 前記铸型 DNAの一部である当該铸型 DNA中の増幅対象領域と相補的に結合する塩基配列 からなる相補 DNA部分と、 当該相補 DNA部分の 5'末端に連結し且つ前記増幅対 象配列と相補的に結合しない塩基配列からなる非相補 DNA部分とから構成され るものであり、 当該非相補 DNA部分の塩基配列中の少なくとも 3'末端に相当す る塩基が DNAポリメラーゼによる DNA複製の進行を停止させ得る保護基で修飾 されていることを特徴とするプライマーである。 ここで、 当該プライマー中の 「 非相補 DNA部分」 とは、 あくまでも、 铸型 DNA中の PCRによる増幅対象領域に 対して相補的ではない塩基配列からなる部分であればよい。 よって、 当該 「非相 補 DNA部分」 は、 铸型 DNA中の増幅対象領域以外の領域 (例えば、 増幅対象領 域の 5'側又は 3'側に隣接する任意の長さの塩基配列領域) に対して相補的な塩 基配列からなる部分であってもよく、 限定はされない。
当該プライマ一中、 非相補 DNA部分は、 最終的に得られる DNA断片の粘着末 端の部分 (1本鎖 DNAの部分) となる部分である。 ここで、 当該非相補 DNA部 分の塩基長は、 特に限定はされないが、 例えば 1〜100塩基であり、 好ましくは 4 〜20塩基である。 特に、 本発明の調製方法によれば、 得られる DNA断片の粘着 末端の塩基長は、 通常、 制限酵素処理後の粘着末端では生成されない 5塩基以上 にすることも容易に可能である。 よって、 得られる DNA断片の粘着末端は、 公 知の制限酵素を用いた処理により得られる粘着末端と同一の塩基配列からなるも のであってもよいが、 公知の制限酵素を用いた処理により得られる粘着末端とは 異なる塩基配列からなるものであってもよく、 限定はされない。
当該プライマーは、 上述した所定の塩基 (非相補 DNA部分の塩基配列中の少 なくとも 3'末端に相当する塩基) に、 DNAポリメラーゼによる DNA複製の進行 を停止させ得る保護基を有する。 当該塩基の種類としては、 限定はされないが、 チミン及びグァニンであることが好ましい。 通常、 PCI こおいては、 プライマ 一中の非相補 DNA部分についても DNAポリメラーゼによる DNA合成過程におい て相補鎖が合成され DNA複製が進行する。 しかし、 本発明においては、 プライ マー中の相補 DNA部分と非相補 DNA部分との境目となる塩基が、 上記保護基で 修飾されているため、 PCRの DNA合成過程においては、 非相補 DNA部分に対す る相補鎖は合成されない。 よって、 得られた DNA断片は、 非相補 DNA部分に相 当する粘着末端を有するものとなる。
ここで、 上記保護基としては、 PCR後に得られた DNA断片から所定の処理に より脱離し得るものであればよく、 限定はされず、 グリーンら (Protective Groups in Organic Synthesis, John Wiley ana Sons、 第 2 fe、 1 9 9 1年) に記載の引用文献に従って保護する基が好ましく挙げられる力 本発明において は、 例えば、 光照射処理、 アルカリ処理、 酸処理、 酸化処理、 還元処理、 脱シリ ル化処理、 熱処理、 エステラーゼ処理又はホスファターゼ処理により被修飾塩基 から脱離し得る保護基が好ましく挙げられ、 中でも、 光照射処理 (特に UV照射 処理が好ましい) 、 アルカリ処理、 酸化処理、 還元処理、 脱シリル化処理等がよ り好ましい。 よって、 ここで列挙した各種処理が、 上記 (i i ) の工程で行う所 定の処理として例示できる。
前記光照射処理 (特に UV照射処理が好ましい) の場合は、 保護基の種類にも よるが、 例えば、 5〜60分照射することが好ましく、 より好ましくは 15〜30分で ある。
以下に、 光照射処理により脱離し得る保護基を例示する。 破線で囲まれた基が、 当該保護基の部分である。
Figure imgf000012_0001
2-(2-ニトロフ Iニル)プロピル基 1- (2 -ニトロフ Iニル)ェチル基 これらも可
Figure imgf000012_0002
6-二卜ロピぺロニル才キシメチル基 2 - (2-二卜口フエニル)プロピルォキシメチル基
Figure imgf000012_0003
dGについても上記の保護基がそれぞれ利用可能
(上記構造式は、グァニンに対し、保護基としての
2 - (2-ニトロフエニル)プロピル基が結合したもの)
前記アルカリ処理の場合は、 処理試薬として、 例えば、 濃アンモニア水及び濃 ァンモニァ水一メチルァミン混合溶液等が好ましく用いられ、 より好ましくは濃 アンモニア水である。 アルカリ処理は、 保護基の種類にもよる力 例えば室温で 24時間、 または 55°Cで 8時間行うことが好ましく、 より好ましくは室温で 24時間 である。
以下に、 アルカリ処理により脱離し得る保護基を例示する。 破線で囲まれた基 が、 当該保護基の部分である。
Figure imgf000013_0001
イソプチリル基 ペンゾィル基
Figure imgf000013_0002
ァセ卜キシメチル基 前記酸処理の場合は、 処理試薬として、 例えば 2%〜50%トリフルォロ酢酸水 溶液、 10%〜80%酢酸及び希塩酸等が好ましく用いられ、 より好ましくは 2%ト リフルォロ酢酸水溶液及び 80%酢酸である。 酸処理は、 保護基の種類にもよるが、 例えば室温で 10分間〜一晚撹拌することが好ましく、 より好ましくは室温で 1時 間である。
酸処理により脱離し得る保護基としては、 例えば、 トリチル基及びそのメトキ シ誘導体等が好ましく挙げられる。
前記酸化処理の場合は、 処理試薬として、 例えば、 2,3-ジクロロ- 5,6-ジシァ ノ -P-ベンゾキノン及びョゥ素等が好ましく用いられ、 より好ましくは 2,3-ジク口 口- 5,6-ジシァノ -P-ベンゾキノンである。 酸化処理は、 保護基の種類にもよるが、 例えば水溶液中で 2, 3-ジクロロ- 5,6-ジシァノ -P-ベンゾキノンを加えて室温で 1〜 数日間撹拌することが好ましく、 より好ましくは 10時間の撹拌である。
酸化処理により脱離し得る保護基としては、 例えば、 ァリルォキシメチル基、 が好ましく挙げられる。
前記還元処理の場合は、 処理試薬として、 例えば、 水素ガスと組み合わせる触 媒としてパラジウム炭素、 ラネー触媒、 アダムス触媒及びリンドラー触媒等が好 ましく用いられ、 より好ましくはパラジウム炭素である。 また、 水素化ホウ素ナ トリウム、 シァノ水素化ホウ素ナトリウムも単独で好ましく用いられる。 還元処 理は、 保護基の種類にもよるが、 例えば触媒と水素ガスを添加した後室温で一晩 から数日反応することが好ましく、 より好ましくは一晩の反応である。
還元処理により脱離し得る保護基としては、 例えば、 ベンジルォキシメチル基、 及び任意の置換基により置換されたベンジルォキシメチル基等が好ましく挙げら れる。 任意の置換基としては、 例えば、 アルキル基、 アルケニル基、 ァリール基、 ァラルキル基、 シクロアルキル基、 ァシル基及び複素環基等の置換基に含まれる 公知の各種置換基が挙げられる。
前記脱シリル化処理の場合は、 処理試薬として、 例えば、 1 Mテトラブチルァ ンモニゥムフルオリド THF溶液及びトリェチルアミン三フッ化水素酸塩等が好 ましく用いられ、 より好ましくは 1 Mテトラプチルアンモニゥムフルオリ ド THF溶液である。 脱シリル化処理は、 1 Mテトラプチルアンモニゥムフルオリ ド THF溶液を試料溶液に添加した後、 室温で一晩〜数日反応することが好まし く、 より好ましくは一晩の反応である。
脱シリル化処理により脱離し得る保護基としては、 例えば、 以下のものが挙げ られ、 破線で囲まれた基が、 当該保護基の部分である。
Figure imgf000014_0001
t-プチルジメトキシシリルォキシメチル基 t-プチルジフエ二ルシリルォキシメチル基 前記熱処理は、 保護基の種類にもよるが、 例えば、 60— 90 の温度で 10分一 360分加熱することが好ましく、 より好ましくは 60°Cで 10分間である。
熱処理により脱離し得る保護基としては、 例えば、 イソシァネート基 (特開 2006-248931参照) 等が好ましく挙げられる。
前記エステラーゼ処理は、 保護基の種類にもよるが、 例えば、 豚肝臓エステラ ーゼと 37°Cで 1時間または一晩反応することが好ましく、 より好ましくは 37°C で 1時間の反応である。
エステラーゼ処理により脱離し得る保護基としては、 例えば、 以下のものが挙 げられ、 破線で囲まれた基が、 当該保護基の部分である。
Figure imgf000015_0001
ァセトキシメチル基
前記ホスファターゼ処理は、 保護基の種類にもよるが、 例えば、 アル力リホス ファ夕ーゼと 37°Cで 1時間または一晩反応することが好ましく、 より好ましく は 37°Cで 1時間の反応である。
ホスファターゼ処理により脱離し得る保護基としては、 例えば、 以下のものが 挙げられ、 破線で囲まれた基が、 当該保護基の部分である。
Figure imgf000015_0002
リン酸メチル基 本発明において、 上述した各種保護基を有する PCR用プライマーの調製方法 は、 公知の方法'を用いればよく、 限定されない。 例えば、 上述した各種保護基に よる所望の塩基の保護化は、 5'及び 3'水酸基をァセチル基で保護したチミジンを トシル化合物で活性化し、 保護基のアルコール体を作用させる、 もしくは、 5'及 び 3'水酸基をァセチル基で保護したチミジンにクロロメチル体として活性化した 保護基を作用させて行うことができる。
上記 ( i ) の工程において、 前述した以外の PCRの条件、 例えば、 反応組成 液 (踌型濃度、 プライマー濃度、 バッファーの種類 '濃度、 DNAポリメラ一ゼ の種類 ·酵素量等) 並びに反応条件 (熱変性、 アニーリング及び伸長の各反応時 間 ·温度、 合計サイクル数等) については、 公知の知見及び技術常識により適宜 任意に設定することができる。 , 上記 ( i i ) の工程においても、 脱保護化のための所定の処理は、 前述した以 外、 公知の方法及び条件に基づいて行うことができる。
本発明の調製方法は、 上記 ( i ) 及び ( i i ) の工程以外に、 他の任意の工程 を含むものであってもよく、 特に限定はされない。
また、 本発明においては、 前述した保護基としての置換基を導入するための置 換基導入剤 (すなわち当該置換基となり得る化合物を含む置換基導入剤) を提供 することができ、 さらには、 当該置換基を有する生体分子 (すなわち保護化生体 分子) を提供することもできる。
具体的には、 本発明の置換基導入剤の一態様としては、 下記式 (Γ) : (1,)
Figure imgf000016_0001
に示される化合物を含むものが好ましく挙げられる。 ここで、 式 (Γ) 中、 Xは、 限定はされないが、 Cl、 I、 Br、 p-トルエンスルホン酸エステル及び硫酸エステ ルが好ましく 式:
Figure imgf000016_0002
に示される Xが CIである化合物 (すなわち、 2-[(2-ニトロフエニル) -クロロメトキ シ] -プロパン (NPPOM-C1) ) がより好ましい。 ここで、 NPPOM-C1は、 例え ば、 後述する実施例 3に記載の方法 (スキーム 2参照) に従って合成することが でき、 さらに NPPOM-C1を用いた置換基の形成についても同スキーム等に従つ て行うことができる。 また、 式 (Γ) 中の Xが C1以外の場合の化合物の合成及び 置換基の形成についても、 NPPOM-C1の場合を参照し、 当業者の技術常識等を 用いて実施することができる。 上記式 (Γ) の化合物により形成される置換基 ( 当該化合物由来の置換基) は、 例えば、 下記式のように表すことができる (具体 的には 2-(2-ニトロフエニル ロピルォキシメチル基である。 ) 。
Figure imgf000017_0001
また、 本発明の生体分子としては、 2-(2-ニトロフエニル)プロピルォキシメチ ル基 (上記式 (Γ) ) を有する生体分子 (すなわち、 当該基により置換された生 体分子) が挙げ れ、 具体的には、 下記式 (I) :
Figure imgf000017_0002
に示されるものが好ましく挙げられる。 ここで、 式 (I) 中、 Rは任意の生体分 子を表す。 生体分子 (R) としては、 低分子 (塩基、 アミノ酸等) 及び高分子 ( DNA、 RNA、 タンパク質等) のいずれであってもよく、 また人工的に調製され た生体適合分子 (PNA等) であってもよいが、 例えば、 塩基が好ましい。 塩基 としては、 限定はされないが、 例えばチミン及びグァニンが好ましく挙げられる。 生体分子 (R) がチミン又はグァニンの場合、 本発明の生体分子としては、 例え ば、 下記式 (II) :
Figure imgf000018_0001
に示されるもの (すなわち、 チミンが 2-(2-ニトロフエニル)プロピルォキシメチ ル基により置換された (保護化された) もの) 、 又は、 下記式 (III) :
Figure imgf000018_0002
に示されるもの (すなわち、 グァニンが 2-(2-二トロフエニル)プロピルォキシメ チル基により置換された (保護化された) もの) が好ましく挙げられる。 3 . 遺伝子組換え方法
本発明の遺伝子組換え方法は、 上述の本発明の調製方法により得られた DNA 断片と、 ホスト DNAとを結合させる工程を含む方法である。
ここで、 ホスト DNAとしては、 特に限定はされず、 各種ベクター (発現べク 夕一、 ウィルスベクター、 ファージベクター等) や各種生物ゲノム DNA等、 任 意の DNAを用いることができる。
前述したように、 本発明の調製方法により得られる DNA断片としては、 所望 により、 制限酵素処理では生成し得ない長い塩基長の粘着末端とすることができ る。 この場合、 当該 DNA断片とホスト DNAとの結合は、 長い塩基長の粘着末端 どうしの結合となるため、 リガーゼ等の DNA結合酵素を特に用いなくても、 特 異性及び結合効率が高く、 両者を混合するだけで結合させることが可能となる。 よって、 本発明は、 簡便性、 経済性、 実用性に優れた遺伝子組換え方法を提供す ることもできる。
本発明の遺伝子組換え方法は、 上述した結合工程以外に、 他の任意の工程を含 むものであってもよく、 特に限定はされない。
本発明の遺伝子組換え方法は、 例えば、 遺伝子治療や iPS細胞関連で利用され るレトロウィルス及びアデノウィルスベクター等の遺伝子組換えに好適に用いる ことができる。 当該アデノウイルス等は、 ゲノム DNAサイズが大きいため、 従 来の方法では遺伝子組換えに過剰の手間と時間を要していたが、 本発明の遺伝子 組換え方法によれば、 ゲノム全体を適当なサイズに区分けし、 それぞれの部位を 個別に PCRで増幅して本発明により作製した粘着末端を介してつなぎ合わせる ことで、 容易に遺伝子組換えを行うことができる。
また本発明は、 前述した本発明の調製方法により得られた DNA断片を備えた 遺伝子組換え用キットを提供することもできる。 当該キッ卜は、 任意の他の構成 要素を含むものであってもよく、 例えば、 発現ベクター等の各種ベクターや、 各 種バッファー、 滅菌水、 保存液、 防腐剤、 各種反応用容器、 使用マニュアル (使 用説明書) などが挙げられる。 以下に、 実施例を挙げて本発明をより具体的に説明するが、 本発明はこれらに 限定されるものではない。
〔実施例 1〕
<LACE-PCR (Light-assisted-cohesive-ending PCR) 法の開発と ARCUTへの 応用 >
1 . TNPP による DNAポリメラ一ゼ伸長反応の阻害
図 1に示すように、 DNAポリメラーゼ (以下、 本実施例では、 単にポリメラ一 ゼと言う) による伸長反応が阻害されることを確認するために、 下記スキーム 1 中に示す C1及び C2を用いたポリメラーゼの伸長反応を確認した。 なお、 スキー ム 1中の C1〜C6の塩基配列は、 それぞれ順に、 配列番号 1〜6に示されるもの である。 スキーム 1
C1 5 ' - AGCTNPPGTCCGGCGTAGAgG¾TCG¾G -3 r (酉己列番号 1 )
3 ' -GCCGCATCTCCTAGCTC-FAM -5 * C2 (配列番号 2)
C3 5 ' - A¾TNPPTNPPCACCCTCACCCTOG GCTG -3 ' (配列番号 3)
C4 5 ' - AAT^PT^GTCCGGCGTAGAGGATCGAG -3 ' (酉己列番号 4)
C5 5 · - ATCATCAGT^PaACCCGTNPPCACCGTCACCCTGGATGCTG - 3, (配列番号 5)
C6 5 ' - ACGGG CGTAGAGGATCGAG -3 ' (配列番号 6)
Figure imgf000020_0001
τΝΡΡ
ここで、 CIは、 PCRプライマーとして使用する C2 のテンプレート (铸型 DNA) となっており、 TNPPを 1つだけ有する。 TNPPを有するプライマーの合成 法は、 先に述べた通りである。 C2の 5'末端は FAMでラベルした。 様々なポリメ ラ一ゼを用いたが、 中でも最も結果が明確であった Ex Taq を用いた反応による 結果を図 2に示した。 図 2中、 レーン 3 において C1 は反応開始前に光照射 (UV 照射) されたものを用いているが、 レーン 1 と比較すると伸長反応は 24 mer ま で進んでいることが分かった。 しかし、 レーン 2 において、 伸長反応はレーン 3 ほどは進んでおらず、 目的の 20 merのところで止まっていることが確認できた。 C4と C6による伸長反応の阻害も、 同様に、 目的の部分で伸長反応が止まってい ることを確認した (デ一夕は示さず)。 これらのことから、 2つのことが結論づけ られた。 1つ目は、 目的の TNPP のところでポリメラーゼにょる伸長反応を止め ることができるということ、 2つ目は、 TNPP の caged保護 (すなわち NPP基に よる DNAポリメラーゼ伸長反応からの保護 (伸長反応阻害) ) が UV照射によつ て効率よく外れるということであった。 また、 当該伸長反応を止めるためには TNPP は 1つ含まれていれば十分であるということも分かった。
ポリメラーゼの伸長反応が TTダイマ一によって抑制されるということは、 従 来から知られていることであり、 このことを利用し、 修飾塩基を 2つ並べたテン プレートを用意して伸長反応を阻害し、 光照射によって片方が外れることで伸長 反応が促進されたという報告がある (Tang, X. J. et al., (2005) Photoregulation of DNA polymerase I (Klenow) with caged fluorescent oligodeoxynucleotides. Bioorg. Med. Chem. Lett, 15, 5303-5306.) 。 そのため、 2つ連続して導入した 方が、 阻害効率が高まると考えて C3のプライマ一には TNPP を 2つ導入した。 本発明の方法によれば、 所望の 5'突出末端を有する DNA断片の作製が可能と なったので、 実際に、 所望の合成プライマーと PCR を用いて様々な挿入 DNA断 片 (インサート) を調製し、 一般的な方法でインサートをべクタ一に挿入した。 本実施例では、 制限酵素 (EcoR や ARCUT により切断したベクターを用いた 場合の方法について、 その概要を図 3に示した。 なお、 ARCUT (人工的制限 DNA力ッ夕一) については "Yamamoto, Y. et al., Chem. Bio. Chem., vol.7, p.673-677, 2006" を参照することができる。
2 . ^oRIによる 1ケ所切断部位への揷入
2-1. &0R1 LACE-プライマーの設計及び合成
ベクター (PUC18)を coRI で切断し、 そこに調製したインサートを挿入する ために、 スキーム 1 に示す C3及び C4の PCRプライマ一を合成した。 C3及び C4 は、 pQBI T7-GFP (Qbiogene; 5115bp (配列番号 9)) の GFP遺伝子及び T7プロ モー夕一配列を共に含む塩基配列領域 (121〜: 1170 bp)を増幅でき、 増幅産物とし て得られるインサートは oRI切断断片と相補的な 5'突出末端を持つように設 計した (図 4) 。 なお、 図 4に示したインサートの配列中、 T7-GFPと表示した部 分の塩基配列 (GFP遺伝子及び T7プロモ一夕一配列を含む; 計 1031bp:配列 番号 9の塩基配列中の第 131番目〜第 1161番目の塩基からなる) は、 配列番号 10 に示した (図 9、 図 14b及び図 16bにおいても同じ) 。 上で述べた通り、 阻害効率 を高めるために TNPP はそれぞれ 2つずつ導入した。 以後、 LACE-PCR に用い たプライマ一を LACE-プライマーとした。 2-2. LACE-PCR産物のベクターへの挿入 (組換えベクターの作製) ベクター (pUC18)側の調製は、 公知の一般的な方法で行った。 プラスミド DNAの自己環化を防ぐためにホスファタ一ゼによって脱リン酸を行った。 イン サートを調製する際には、 正確性の高い KOD-Plus を PCR のポリメラ一ゼとし て用いた。 図 5中の PCR後の産物を見ると、 l kbp のところにバンドが見え、 問題なく PCRが行い得たことが分かった。 その後、 光照射により保護基を外し、 キナーゼによるリン酸化を行った。 この段階で脱保護を行わないとキナーゼがう まく働かない可能性が考えられた。 なお、 プライマーに初めから 5'末端がリン酸 化されたものを用いた場合、 この作業は省略可能である。 調製したベクターとィ ンサートをライゲ一シヨンさせ、 形質転換させたところ、 形質転換体のコロニー が認められたので、 コロニー PCR によって陽性 (ポジティブ) コロニーを選択 した。 その結果を図 6に示した。
図 6中、 レーン 2及びレーン 15 のポジティブコロニーのプラスミド DNA を抽 出して塩基配列を読んだところ、 目的の形でインサートが挿入されていることが 確認できた (図 7)。 1ケ所切断で導入した場合、 インサートの入り方が 2通りあ り、 レーン 2 はインサートが所望の向きに揷入されたもの、 レーン 15 はインサ 一卜が逆向きに挿入されたものとなっていることが分かった。 また、 片側では GAATTGという配列で挿入されており ^oRIにより認識される切断部位が 1ケ 所つぶれたことが分かった。 制限酵素サイトをつぶすことができることも、 この 方法の特徴であり、 有用性及び実用性に優れたものである。
このことから、 LACE-PCR によって調製したインサートをべクタ一に正確に 挿入し、 組換えベクターが作製できることが示された。 3 . HPLC による LACE-プライマーの評価
UV照射によってどれくらい caged化合物 (NPP基によって保護された塩基 (T) を有する DNA) が脱保護されるかを評価するため、 C3及び C4 を UV照射 し、 それぞれを RP-HPLC で分析した。 その結果を図 8に示した。 この際、 検出 波長を 260 nm としていたため、 保護基である NPPが外れたものと、 外れてい ないものとで、 吸光係数が異なるので存在比とピーク面積比がずれる可能性が考 えられた。 しかし、 UV照射前後での総ピーク面積がそれほど違わなかったた め、 吸光係数の違いは無視できる範囲であると考えて割合を算出した。 図 8のグ ラフから、 l h の UV照射によって 90%以上の NPPが脱保護されたことが分か つた。 これにより、 l hの UV照射によって十分量の caged脱保護が進んだと考 えられる。 2つの脱保護が 90%進んだと仮定すると、 80%は目的のものができた' と考えられる。
PCR の条件は、 90°C に加熱するなど比較的過激な条件となっているため、 NPP が熱によって脱離される可能性があった。 そこで、 C3 を; PCR と同条件 でインキュベーションした後、 HPLC で分析したところ、 保護基である NPP が 2つとも脱離されたものが 7.7%、 1つ脱離されたものが 18.9%、 脱保護されな かったもの力 73.4%となっている。 つまり、 3'側の NPPが脱離せずに残ったも のは、 約 85%と考えられた。 PCRではプライマーを 2つ用いるので、 目的の位 置の塩基が caged保護されている確率は 70%であつた。
以上の 2つの要素から、 NPP保護を用いた場合、 目的の 5'突出末端を持った PCR産物が得られる確率は、 50~60%程度と考えられた。
4. ^οΜ-^ίΓ ίΛΠによる 2ケ所切断部位への揷入
4-1. EcoRl- indlll LACE-プライマーの設計及び合成
前述の通り、 1ケ所切断の系では遺伝子組換え操作を成功したので、 次に 2ケ 所切断の系も挿入できるかどうかを試みた。 基本的には、 1ケ所切断の系と同様 の方法で行った。 LACE-プライマ一として C1 を用いて Himflll突出末端を持つ ようにした。 また、 《?RI突出末端を得るため C3 を用いた。 このとき、
LACE-プライマーの中には 1つしか caged保護がないが、 これにより、 PCR の 条件下において、 1つの caged保護によってポリメラ一ゼ伸長反応が止まるか どうかについても同時に調べた。 目的の通りに反応が成功すると、 図 9 に示す ようなィンサー卜が得られる。
4-2. LACE-PCR産物のベクターへの揷入 (組換えベクターの作製) 基本的な手順は前記 2.項の記載と同様にして行った。 pUCl8 を Hinrfinによ つて 37°C、 4 h反応させた後、 さらに coRI によって 37°C、 16 h反応させて 2ケ所切断したベクター側を調製した。 C1 と C3 を LACE-PCR のプライマ一 に用いることで、 インサート側を調製した (図 10, レーン 2)。 また、 レーン 1より 調製したインサートは UV照射によって切断のような目に見える損傷は起こつ ていないことが確認できた。 調製したィンサー卜とベクターとをライゲーシヨン し、 形質転換をしたところ、 確認された形質転換体のコロニーは 6個と少なか つたが、 そのうち 2個のコロニーがコロニー PCRでポジティブであった (図 11 のレーン 2, 3)。 ポジティブであった形質転換体のプラスミド DNA を抽出して塩 基配列を確認したところ、 目的の形でインサートが挿入できていたことが分かつ た (図 12)。 これにより、 2ケ所切断の系においても、 十分応用可能であることが 確認できた。 また、 この PCR の条件において、 caged保護は 1つで十分である ということも示された。 5 . ARCUTによる 1力所切断部位への挿入
5-1. ARCUT LACE-プライマーの設計及び合成
前述の通り、 天然の制限酵素でベクターを切断した系に関しては 1力所切断及 び 2ケ所切断の両方の系において、 LACE-PCRで調製したィンサートを導入す ることに成功した。 この方法による最大の特徴として好きな配列を持った突出末 端を作ることができるということで、 ARCUT切断後に生じる天然には存在し ない突出末端と直接ライゲーシヨンすることができるのではないかと考えた。 そ こで、 pBR322 (夕カラバイオ株式会社; 4361bp (配列番号 7): GenBank Accession No. J01749) を ARCUTで一力所切断した系にィンサ一トを直接揷 入することを試みた。 図 13a に示すように ARCUT の標的切断部位は pBR322の 1830 bp付近にした。 使用した pcPNA (擬似相補性ペプチド核酸) も同様に図 13aに示した。 ARCUT によるベクターの切断は、 図 13b中に示す矢印のところ のいずれかで起こるが、 今回は青い矢印 (両鎖とも、 図 13bに示された 5本の矢 印のうち右から 2番目の矢印) のところで起こった切断によって生じるベクター 断片 (図 14a)をターゲットとした。 なお、 図 14aに示したベクター断片中、 中間 の pBR322と表示した部分の塩基配列 (計 2501bp:配列番号 7の塩基配列中の第 1850番目〜第 4350番目の塩基からなる) は、 配列番号 8に示した (図 16aにおい ても同じ) 。 そこで、 図 14b に示す突出末端を持つようなインサート断片を作 製するように、 前記スキーム 1の C5及び C6の: PCRプライマーを設計し、 前述の 2-1.項の方法と同様に、 pQBI T7-GFPを铸型として PCR、 及び光照射を行い、 所望のインサート断片 (図 14b)を合成、 精製した。 ここで、 プライマーの設計に 非常に重要な点を一つ述べる。 ARCUT の突出末端は非常に長いため、 LACE- PCRで用いるプライマーもそれに応じて長くなる。 このとき 2つのプライマー は相補的な配列を含むことになり、 プライマーダイマーを形成しやすくなる。 そ こで、 C5及び C6のように、 互いに相補的な部分にあえて TNPP を導入すること でプライマ一どうしの相互作用を阻害し、 プライマーダイマーを形成しないよう に設計を行った。
5-2. pBR322の ARCUTによる 1ケ所切断、 及び切断断片の精製
スーパーコイルの pBR322 を ARCUTにより切断した断片を、 ゲル精製し、 線 状化された断片を得た。 さらに PNA と相補的な oligoDNA を過剰に加えて PNA 除去を行い、 その後、 ホスファタ一ゼ処理を行って脱リン酸化した。
5-3. IACE-PCR産物のベクターへの挿入 (組換えベクターの作製)
設計した通りに LACE-PCR でインサートが増幅されたことが確認されたので、 caged脱保護後にキナーゼ処理をし、 ARCUTにより線状化したベクターへの挿 入を試みたが、 結論から言うとこの系は全てうまくいかなかった。 その主な原因 として挙げられるのは突出末端が長いために、 制限酵素で 1力所だけ切断した系 と比較すると自己環化が起きやすくなつているからだと考えられる。 インサート の量をベクターの 50 当量から 200 当量まで増やしてライゲーシヨンを行った力 いずれの場合にもコロニー PCRでポジティブのものは得られてこなかった。 ま た、 ライゲーシヨン反応無しで大腸菌に形質転換した場合もコロニーが増えてき たことから、 この系はライゲーション反応無しでも十分挿入することが可能であ ると考えられた。 6 . ^¾?RI-ARCUTによる 2ケ所切断部位への揷入
6- 1. oRI-ARCUT LACE-プライマーの設計
により線状化した pBR322 を 1830bp付近で ARCUT によって切断する ことで、 1830 bp と 2530 bp の 2つの断片が得られる。 このうち 2530 bp の断 片は、 薬剤耐性遺伝子 (Amp) と複製起点 (ori) を持っているためベクターと しての働きを有するものであった (図 15) 。 そこで、 これまでに合成した C3 と C6 を LACE-プライマーとして用いることで、 図 16bに示すような突出末端を有 する断片を作製し、 図 16aに示す ARCUT切断断片にインサートを挿入すること を行った。
6-2. pBR322の ^oRIと ARCUTによる 2ケ所切断、 及び切断断片の精製
により線状化した pBR322を、 さらに ARCUTによって切断し、 前記 4-2. 項と同様にして精製した。 図 17に、 pBR322の切断後の電気泳動の結果を示した (レーン 1: ^coRIのみで切断、 レーン 2: oRI及び ARCUTで切断) 。
6-3. LACE-PCR産物のベクターへの挿入 (組換えべクタ一の作製)
設計した通りに LACE-PCR でィンサー卜が増幅されたことが確認されたので、 caged脱保護後にキナーゼ処理をし、 前記 5-2.項で調製したベクター側とインサ —卜とを、 1: 40の比となるように混合し、 ライゲ一シヨンした後に、 DH5 aに 導入して形質転換した。 コロニーの生成が確認されたので、 これまでと同様にコ ロニー PCR を行い、 ポジティブコロニ一のプラスミド DNAを抽出し、 EcoRiで 1力所切断し抽出してきたプラスミド DNAの大きさを確認した (図 18, レーン 4)。 前述した方法と同様にして当該プラスミド DNAの塩基配列を確認したところ、 図 19に示した通り、 A oE Iにより切断した部分も ARCUTにより切断した部分も、 目的の位置でラィゲ一ションが行えたことが分かつた。
さらに、 T7 RNAポリメラーゼを持った BL21-Gold (DE3)に当該プラスミド を導入して形質転換させたところ、 GFPが発現することも確認できた (図 20) 。 7 . まとめ及び考察
本実施例をまとめると、 ポリメラーゼは、 caged保護した DNA をテンプレー 卜としたときに、 保護基がついた塩基より先には伸長反応 (相補鎖合成反応) を 起こすことはできず、 任意の 5'末端突出構造が形成された。 caged保護は UV 照射によって容易に脱保護することができるため、 遺伝子組換え技術にもこのこ とを応用し、 caged保護された DNA をプライマ一として用いて; PCR を行うこ とで自由に 5'突出末端を調製することに成功した (LACE-PCR)。 LACE-PCRに よって調製したィンサ一トを制限酵素処理したベクター及び ARCUT 処理した ベクターに挿入することに成功した。 このことにより、 ARCUT の挿入断片に Oligojointを用いることなく目的の位置でライゲーシヨンを行うことに成功した。 この技術の確立により、 例えば ARCUT を用いた遺伝子工学への応用が可能と 考えられた。 また、 近年、 細菌のゲノムを一から化学合成することに成功した力 この際にも特定の突出末端を作製するという点が一つのキーポイントとなってい た。 本発明の方法を応用することで遺伝子合成、 DNA-overhang cloning(DOC) などが可能になると考えられた。
〔実施例 2〕
< LACE-PCR法を利用したリガーゼを用いない遺伝子組換え ( Ligation-
Indepenaent Cloning)
1 . GFP遺伝子を含むプラスミドへの揷入による GFP-BFP遺伝子の作製
粘着末端がある程度長い断片同士を用いた場合、 大腸菌の修復機構を利用して ライゲーション無しに形質転換を行うことができることが知られている。 10塩 基前後の長い粘着末端を有する LACE-PCRで増幅した、 pQBI T7-GFPベクター (Qbiogene; 5115 bp (配列番号 9);図 21左) の全長と、 同じく LACE-PCRで増 幅した、 pQBl 67ベクター (Qbiogene; 6361 bp;図 21右) 中の BFP断片とを結 合し、 GFP-BFP融合タンパク質をコードする新たなベクターを構築した (図 21 参照) 。
2 . LACE-プライマーの設計及び合成 2-1. pQBI-T7 GFPベクタ一増幅用プライマー
PQBI-T7 GFPベクターの全長を LACE-PCRで増幅するため、 以下に示す C7 及び C8の PCRプライマ一を合成した。
C7 5 ' -PACCGCCACCTNPPCCGTTGTACAGTTCATCCATGCC - 3 ' (配列番号 11) C8 5 ' -pAGGATCCGGCTNPPGCTA¾CAAAGCCCGAA¾GGAAGC - 3 1 (配列番号 12)
C7及び C8は、 pQBI T7-GFPベクタ一のうちの第 314番目〜第 328番目の 塩基を除いた塩基配列全領域を増幅するプライマ一である。 この除かれる領域に GFP遺伝子の終止コドンが含まれているため、 外来タンパク質の遺伝子を含む DNA 断片が挿入されると GFP との融合タンパク質が翻訳 (生成) される。 LACE-PCR により粘着末端となるプライマーの TNPPより 5'側には、 グリシン リンカ一をコードする 9塩基 (C7) 又は pQBI T7-GFPの第 315番目〜第 324 番目の塩基と同一の 10塩基 (C8) を付加した。 2-2. BFP遺伝子増幅用プライマー
pQBI 67ベクターにコードされた BFP遺伝子を LACE-PCRで増幅するため、 以下に示す C9及び C10の PCRプライマ一を合成した。
C9 5 , - pAGCCQGATCCTNPPCAGTTQTACAQTTCATCCATGCC - 3 ' (配列番号 13) C10 5 ' -pAGGTGGCGGTNPPGGCAAAGGAGAAGAACTCTTCACTGG - 3 1 (配列番号 14)
C9及び C10は、 pQBI 67ベクターのうち第 335番目〜第 1035番目の塩基からな る BFP本体をコードする塩基配列領域 (701 bp ;配列番号 15) を増幅するブラ イマ一である。 LACE-PCRにより粘着末端となるプライマーの TNPPより 5'側に は、 グリシンリンカ一をコードする 9塩基 (C10) 又は pQBI T7-GFPの第 315番 目〜第 324番目の塩基と同一の 10塩基 (C9) を付加した。
2-3. LACE-PCR 前記プライマーを用いた LACE-PCR を行った。 C7及び C8 を用いたベクタ 一断片の増幅には市販されている Pfu ultra, C9及び CIOを用いた BFPィンサ 一トの増幅には Pfu turboを PCRのポリメラ一ゼとして使用した。 PCR後、 メ チル化された DNAを消化する Dpn Iで 37°C—晚処理した後、 市販のキットを 用いて増幅された断片を簡易精製し、 それぞれの断片の水溶液 (TE 緩衝液) を 得た。 次いで、 UV照射により、 NPP保護基の脱保護を行った。 増幅した断片 のァガロース電気泳動結果を図 22 に示した。 レーン 1 に流した増幅断片は、 200 bpごとのラダーの 600 bpの断片と 800 bpの断片との間にバンドが観察さ れ、 設計通り 710 bpの断片が増幅していることが確認された。
2-4. LACE-PCR産物を用いた大腸菌の形質転換
ベクター断片 50 ng、 BFPインサート 24 ng (mole換算で約 3当量。 全量 2 L ) に相当するそれぞれの溶液を混合した後、 37°Cで 1 h保温し、 ライゲーシヨン 反応を行わずに JM109大腸菌株の溶液に加え形質転換を行った。 この大腸菌液 をカルペニシリン 50 gのプレートでー晚培養した結果、 6個のコロニーを得た。 コロニー PCRを行い、 5個のコロニーが目的の組換え体であることを確認した。 それぞれを液体培養してプラスミドを抽出した後、 これらを BL21(DE3)株に形 質転換した。 カルべニシリン 50 x gプレートで培養した結果、 生えたコロニー は暗緑色蛍光を発した。 図 23にこの大腸菌の蛍光の色を示した。 「UT」 の二文 字が本実施例で作製した組換え体の蛍光であり、 蛍光の色は GI 遺伝子のみを もつ 「L」 の文字、 BFPの遺伝子のみをもつ 「ACE」 の文字のどちらとも異なる ものであった。
2-5. 組換えベクターが設計通り構築されているかどうかの確認
抽出したプラスミドを制限酵素で切断し、 長さが正しいことを確認した。 ァガ ロースゲル電気泳動の結果を図 24に示す。 Eco RIで処理して直鎖にした抽出し たプラスミド (レーン 2) は、 明らかに LACE-PCRで増幅したベクタ一断片 (レ ーン 1, 5125 bp) よりも泳動度が遅く、 正しく BFP断片が挿入されていることが わかる。 このことは Eco RIに加えて Nhe Iの 2力所で切断したレーン 3でも予想 される 1862 bp及び 3975 bpのバンドが明瞭に観察されることでも確認できた。
2-6. 組換えベクターにより発現されるタンパク質の確認
組換えベクターにより発現した夕ンパク質が正しく GIT-BFP融合夕ンパク質 であることを確認するため、 形質転換した大腸菌を液体培養した後、 溶菌処理を 行った。 溶菌液の蛍光を測定した結果、 BITに由来する 448 nm及び GFPに由来 する 504 nmの両方の蛍光ピークが確認された (図 25) 。 また、 溶菌液を SDS- PAGEで解析したところ、 BFP (26.9 kDa) とも GFP (26.9 kDa) とも異なる 50 kDa前後の新たなタンパク質 (GP -BFP融合タンパク質; Fusion) が強く発 現していることが確認された (図 26) 。
〔実施例 3〕
ぐ 2-(2-二トロフエニル)プロピルォキシメチル基で保護したチミン及びアミダイ 卜モノマーの合成 >
2-(2-二トロフエニル)プ口ピルォキシメチル基で保護したチミン導入用のアミ ダイトモノマ一は、 下記スキーム 2に従って合成した。
スキーム 2
Figure imgf000031_0001
4 (NPPOM-CI) q,
Figure imgf000031_0002
Figure imgf000031_0003
9 スキーム 2中の各化合物 (化合物 2〜9) の合成は、 具体的には、 以下のよう にして行った。
2-(2-ニトロフエニル)プロパノール(化合物 2)の合成
TritonB (40% MeOH溶液) (17 g)の中に、 化合物 1の 2-ェチル二ト口べンゼ ン (6,0 g, 40 mmol)と (HCHO)n (1.5 g, 40mmol)を加え、 7時間加熱還留させた。 溶媒を留去させた後、 酢酸ェチルに再溶解し、 有機層を 5%塩酸で洗浄する。 有 機層を硫酸ナトリウムで乾燥し、 シリカゲルクロマトグラフィでへキサン:酢酸 ェチル (3:1) を展開溶媒として精製し、 赤紫色の油状の目的物 (化合物 2) を 1.95 g (10.7 mmol, 収率 27%)得た。
NWIR (CDCI3) S= 1.34 (3H, d, CH3) , 3.50—3.58 (1Η, m, CH), 3.77-3.86 (2H, m, CH2), 7.36 (1H, t, Ar— H), 7.50 (1H, d, Ar-H) , 7.58 (1H, t, Ar-H) , 7.76 (1H, d, Ar-H) 2-『 -ニトロフエニル) - (メチルチオ)メトキシ 1-プロパン (化合物 3)の合成
化合物 2 (1.95 10.7mmol) を 20 mLの THFに溶解し、 窒素雰囲気下、 0°C で冷却、 撹拌しながら水素化ナトリウム (60%) (0.6 g)を加えた。 45 分間撹拌し た後、 ヨウ化ナトリウム (1.62 g, 10.7 mmol)を加え、 次いでクロロメチルメチ ルスルフィド (C1CH2SCH3 ; 1.29 g, 13.35 mmol) を加えた。 4時間氷冷しなが ら撹拌した後、 室温に戻し、 次いで溶媒を留去した。 30 mL の水を加え、 エー テルで抽出した。 有機層を硫酸ナトリウムで乾燥し、 シリカゲルクロマトグラフ ィでジクロロメタンを展開溶媒として精製し、 茶色油状の目的物 (化合物 3) を 1.32 g (5.43 mmol, 収率 50%)得た。
]W NMR (CDCI3) 5=1.36 (3H, d, CH3), 2.00 (3H, s, CH3), 3.63-3.76 (3H, m, CH, CH2), 4.58 (2H, d, CH2), 7.34 (1H, t, Ar-H) , 7.52 (2H, m, Ar-H) , 7.75 (1H, d, Ar-H)
2-IY2-ニトロフエニル) -クロロメトキシトプロパン (化合物 4)の合成
化合物 3 (1.32 g, 5.43 mmol)をジクロロメタン 20 mLに溶解し、 窒素雰囲気 下 0°Cで撹拌しながら S02C12 (0.94 g, 6.96 mmol)を加えた。 4時間氷冷化で撹 拌し、 室温に戻した後に過剰の S02C12を減圧留去した。 反応は定量的で、 得ら れた化合物 (化合物 4) はこのまま精製せずに次の反応に用いた。
,H國 R (CDCI3) 5=1.37 (3H, d, CH3), 3.66 (1H, m, CH), 3.81 (2H, m, CH2), 5.43 (2H, q, CH2) , 7.36 (1H, t, Ar—H), 7.48 (1H, d, Ar-H) , 7.57 (1H, t, Ar-H) , 7.76 (1H, d, Ar-H) チミジンアセテート (化合物 5)の合成
窒素雰囲気下、 チミジン (2.93 g, 12.1 mmol) と DMAP (40 mg, 0.327 mmol) を 60 mL の無水酢酸に溶解し、 30 mLの乾燥ピリジンを加えて室温でー晚撹拌 した。 ピリジンおよび無水酢酸を減圧留去し、 100 mLのクロ口ホルムを加え、 有機層を水 100 mLで洗浄した。 有機層を無水硫酸ナトリウムで乾燥した後、 シ リカゲルクロマ卜グラフィでへキサン:酢酸ェチル (1:3) を展開溶媒として精 製し、 2.82 g (8.64 mmol, 収率 71%)の目的物 (化合物 5) を得た。
H NMR (CDCI3) (5=1.94 (3H, s, CH3), 2.10-2.22 (8H, m, XCH3, CH2), 2.46 (1H, m, CH), 4.36 (2H, dd, CH2), 5.22 (1H, d, CH), 6.32 (1H, q, CH) , 7.29 (1H, s, CH), 8.65 (1H, s, NH)
3-Aq2-(2-ニトロフエニル) -プロピルォキシメチル 1 チミジンァセテ一卜 (化合物 6)の合成
化合物 5を 20 mLの DMFに溶解し、 炭酸セシウムを加えて室温で 1時間撹 拌した。 次いで溶液を氷冷して DMFに溶かした化合物 4 (1.26 g, 5.47 mmol)を 滴下した。 溶媒を減圧留去した後、 酢酸ェチルを加えた。 有機層を 30 mLの水 で 2 回、 飽和炭酸水素ナトリウム水で 1回洗浄し、 硫酸ナトリウムで乾燥させ た。 溶媒を減圧留去し、 シリカゲルクロマトグラフィでへキサン:酢酸ェチル (1:2) を展開溶媒として精製し、 1.50 g (2.89 mmol, 収率 52%)の目的物 (化合 物 6) を得た。
]W NMR (CDC 13) «5=1.31 (3H, dd, CH3), 1.93 (3H, d, CH3), 2.11 (8H, m, 2XCH3, CH2), 3.57 (1H, m, CH), 3.74-3.88 (2H, m, CH2), 4.25 (1H, s, CH) , 4.34 (2H, (n, CH2), 5.21 (1H, d, CH), 5.36 (2H, m, CH2), 7.28 (1H, s, CH), 7.31 (1H, t, Ar-H), 7.46 (1H, d, Ar-H), 7.51 (1H, t, Ar— H), 7.71 (1H, t, Ar-H) 3-i\^2-(2-ニトロフエニル) -プロピルォキシメチル 1 チミジン (化合物 7)の合成 化合物 6(1.50 g, 2.89 mmol)をメタノール 20 mLに溶解し、 濃アンモニア水 8 mLを加え、 室温で 1時間撹拌した。 溶媒を減圧留去し、 目的物 (化合物 7) を 定量的に得た。
1H NMR (CDCI3) (5=1.31 (3H, d, CH3), 1.90 (3H, d, CH3), 2.31-2.42 (2H, m, CH2), 3.55-3.65 (1H, m, CH) , 3.75-3.95 (4H, m, 2 CH2), 3.97 (1H, q, CH), 4.55 (1H, m, CH) , 5.34 (2H, m, CH2), 7.31 (1H, t, CH), 7.43 (2H, t, 2XAr-H), 7.52 (1H, t, Ar-H) , 7.70 (1H, dd, Ar-H)
3-i\ 2-(2-ニトロフエニル) -プロピルォキシメチル 1 チミジン ジメトキシトリチ ルエーテル (化合物 8)の合成
化合物 7 (1.26 g, 2.89 mmol)と塩化ジメトキシトリチル (1.19 g, 3.51 mmol) をピリジン 20 mLに溶解し、 窒素雰囲気下、 室温で一晩撹拌した。 溶媒を減圧 留去し、 残渣を酢酸ェチル 30 mLに溶解した。 飽和食塩水で有機層を洗浄し、 硫酸ナトリウムで乾燥させ、 溶媒を減圧留去した。 シリカゲルクロマトグラフィ で 3%トリェチルァミン含有へキサン:酢酸ェチル (1:1) を展開溶媒として精 製し、 1.31 g (1.77 mmol, 収率 61%)の目的物 (化合物 8) を得た。
】H 隱 (CDCI3) δ=].31 (3Η, d, CH3), 1.92 (3H, d, CH3) , 2.28-2.50 (2H, m, CH2), 3.56 (1H, m, CH), 3.76-3.90 (10H, m, 2XCH2, 2XCH3), 3.92 (1H, m, CH), 4.56 (1H, m, CH), 5.37 (2H, m, CH2), 6.16 (1H, d, CH) , 6.84 (4H, d, 4XAr-H), 7.17 (3H, d, 3 x Ar-H), 7.27-7.36 (7H, m, 6XAr—H, CH) , 7.36 (1H, d, Ar-H) , 7.47 (1H, d, Ar-H), 7.51 (1H, q, Ar-H) , 7.71 (1H, d, Ar - H)
ESI -WIS [M+Na]+ m/z= .8 3-Λ^2-(2-ニトロフエ二ル)-プロピルォキシメチル 1 チミジン ホスホルアミダイ 卜 (化合物 9)の合成
化合物 8 (0.30 g, 0.406 mmol)を窒素雰囲気下で 2 mLの乾燥ァセトニトリル に溶解した。 ジイソプロピルエヂルァミン、 2-シァノエチル -ジイソプロピル-ク ロロホスホルアミド (200 L, 0.912 mmol)を加え室温で、 1時間半撹拌した。 溶媒を減圧留去し、 飽和炭酸水素ナトリゥム水と酢酸ェチルを加えて有機層に抽 出した。 有機層を飽和食塩水で洗浄し、 硫酸ナトリウムで乾燥して溶媒を減圧留 去した。 3 %トリェチルァミン含有クロ口ホルム:メタノール (20:1)を展開溶媒 としてシリカゲルクロマトグラフィで精製し、 0.25 g (0.26 mmol, 収率 65%)の 目的物 (化合物 9) を得た。
ES I - S [M+Na] + m/z= \. 7 産業上の利用可能性
本発明によれば、 粘着末端を有する所望の 2本鎖 DNA断片が、 PCR後の増幅 産物 (増幅断片) から制限酵素処理を介さずに直接的かつ容易に得られる、 DNA断片の調製方法提供することができる。 また、 本発明によれば、 当該調製 方法に用い得る新規な PCRプライマーを提供することができる。 さらに、 本発 明によれば、 当該調製方法により得られる DNA断片を用いた、 遺伝子組換え方 法を提供することができる。
本発明の調製方法によれば、 粘着末端を有する 2本鎖 DNA断片として、 制限 酵素処理により得られる粘着末端と同一の塩基配列からなる粘着末端を有する DNA断片であっても、 制限酵素処理により得られる粘着末端とは異なる塩基配 列からなる粘着末端を有する DNA断片であっても、 いずれも容易に得ることが できる。 ここで、 後者の DNA断片としては、 粘着末端部分 (1本鎖 DNAの部分 ) の塩基長は、 PCRプライマー中の铸型 DNAと結合しない部分の塩基長を任意 に設計することで、 所望の長さとすることができ、 特に制限がない。 そのため、 ホスト DNAとの結合に関し、 特異性や結合効率を所望のレベルに向上させた DNA断片を調製することも容易に可能である。 また、 例えば、 粘着末端部分の 塩基長の長い DNA断片を遺伝子組換えに用いた場合、 ホス卜 DNAとの結合に際 し、 従来のようにリガーゼ等の DNA結合酵素を使用しなくても、 当該 DNA断片 とホス卜 DNAとを混合するだけで互いに結合し得る反応を行うこともできる。 よって、 本発明は、 簡便性、 経済性、 実用性に優れた遺伝子組換え方法を提供す ることもできる。 配列表フリーテキス卜
配列番号 1 :合成 DNA
配列番号 1 : tは 2-(2-ニトロフエニル)プロピル基 (NPP基) 基で修飾されてい る (存在位置 4) 。
配列番号 2 :合成 DNA
配列番号 3 :合成 DNA
配列番号 3 : tは 2-(2-ニトロフエニル)プロピル基 (NPP基) 基で修飾されてい る (存在位置 3) 。
配列番号 3 : tは 2-(2-ニトロフエニル)プロピル基 (NPP基) 基で修飾されてい る (存在位置 4) 。
配列番号 4 :合成 DNA
配列番号 4 : tは 2-(2-ニトロフエニル)プロピル基 (NPP基) 基で修飾されてい る (存在位置 3) 。
配列番号 4 : tは 2-(2-ニトロフエ二リレ)プロピル基 (NPP基) 基で修飾されてい る (存在位置 4) 。
配列番号 5 :合成 DNA
配列番号 5 : tは 2-(2-ニトロフエニル)プロピル基 (NPP基) 基で修飾されてい る (存在位置 9) 。
配列番号 5 : tは 2-(2-ニトロフエニル)プロピル基 (NPP基) 基で修飾されてい る (存在位置 16) 。
配列番号 6 :合成 DNA
配列番号 6 : tは 2-(2-ニトロフエニル)プロピル基 (NPP基) 基で修飾されてい る (存在位置 8) 。
配列番号 6 : tは 2-(2-ニトロフエニル)プロピル基 (NPP基) 基で修飾されてい る (存在位置 16) 。
配列番号 7 :クローニングベクター pBR322
配列番号 8 :クローニングベクター pBR322
配列番号 9 :クローニングベクター pQBI T7-GFP
配列番号 1 0 :クローニングベクタ一 pQBI T7-GFP
配列番号 1 1 : tは 2-(2-ニトロフエニル)プロピル基 (NPP基) 基で修飾されて いる (存在位置 10) 。
配列番号 1 1 : tは 2-(2-ニトロフエニル)プロピル基 (NPP基) 基で修飾されて いる (存在位置 10) 。
配列番号 1 2 : tは 2-(2-ニトロフエニル)プロピル基 (NPP基) 基で修飾されて いる (存在位置 11) 。
配列番号 1 2 : tは 2-(2-ニトロフエニル)プロピル基 (NPP基) 基で修飾されて いる (存在位置 11) 。
配列番号 1 3 : tは 2-(2-ニトロフエニル)プロピル基 (NPP基) 基で修飾されて いる (存在位置 11) 。
配列番号 1 3 : tは 2-(2-ニトロフエニル)プロピル基 (NPP基) 基で修飾されて いる (存在位置 11) 。
配列番号 1 4 : tは 2-(2-ニトロフエニル)プロピル基 (NPP基) 基で修飾されて いる (存在位置 10) 。
配列番号 1 4 : tは 2-(2-ニトロフエニル)プロピル基 (NPP基) 基で修飾されて いる (存在位置 10) 。
配列番号 1 5 :クローニングベクタ一 pQBI67 (BF 遺伝子)

Claims

請求 の 範 囲 PCR用のプライマーであって、
踌型 DNA中の増幅対象領域と相補的に結合する塩基配列からなる相補 DNA 部分と、 当該相補 DNA部分の 5'末端に連結し且つ前記増幅対象配列と相補 的に結合しない塩基配列からなる非相補 DNA部分とから構成され、 当該非相補 DNA部分の塩基配列中の少なくとも 3'末端に相当する塩基が DNAポリメラーゼによる DNA複製の進行を停止させ得る保護基で修飾され ている
ことを特徴とする、 前記プライマ一。
前記保護基は、 光照射処理、 アルカリ処理、 酸処理、 酸化処理、. 還元処理、 脱シリル化処理、 熱処理、 エステラーゼ処理又はホスファターゼ処理により 被修飾塩基から脱離し得るものである、 請求項 1記載のプライマー。
前記光照射処理により被修飾塩基から脱離し得る保護基が、 2-(2-ニトロフ ェニル)プロピル基、 2-(2-ニトロフエニル)プロピルォキシメチル基、 1-(2-二 トロフエニル)ェチル基、 6-ニトロピぺロニルォキシメチル基である、 請求 項 2記載のプライマー。
前記アルカリ処理により被修飾塩基から脱離し得る保護基が、 イソプチリル 基、 ベンゾィル基又はァセトキシメチル基である、 請求項 2記載のプライマ 一。
前記酸処理により被修飾塩基から脱離し得る保護基が、 トリチル基又はその メトキシ誘導体である、 請求項 2記載のプライマー。
前記酸化処理により被修飾塩基から脱離し得る保護基が、 ァリルォキシメチ ル基、 ジメトキシベンジルォキシメチル基又はトリメトキシベンジルォキシ メチル基である、 請求項 2記載のプライマー。
前記還元処理により被修飾塩基から脱離し得る保護基が、 ベンジルォキシメ チル基、 又は任意の置換基により置換されたべンジルォキシメチル基である、 請求項 2記載のプライマー。
前記脱シリル化処理により被修飾塩基から脱離し得る保護基が、 t-プチルジ メトキシシリルォキシメチル基又は t-プチルジフエニルシリルォキシメチル 基である、 請求項 2記載のプライマ一。
9. 前記熱処理により被修飾塩基から脱離し得る保護基が、 イソシァネート基で ある、 請求項 2記載のプライマ一。
10. 前記エステラーゼ処理により被修飾塩基から脱離し得る保護基が、 ァセト キシメチル基である、 請求項 2記載のプライマー。
1 1. 前記ホスファターゼ処理により被修飾塩基から脱離し得る保護基が、 リン 酸メチル基である、 請求項 2記載のプライマ一。
12. 前記非相補 DNA部分の塩基配列中の少なくとも 3'末端に相当する塩基が、 チミン又はグァニンである、 請求項 3〜 1 1のいずれか 1項に記載のプライ マー。
13. 前記非相補 DNA部分の塩基長が、 1〜: 100塩基である、 請求項 1記載のプ ライマ一。
14. ( 1 ) 铸型 DNAと、 請求項 1〜13のいずれか 1項に記載のプライマー とを用いて PCR反応を行うことにより増幅 DNA断片を得る工程、 及び
( i i ) 前記増幅 DNA断片に所定の処理を施すことにより当該断片中の保 護基を脱離させる工程
を含む、 粘着末端を有する DNA断片の調製方法。
15. 前記所定の処理が、 光照射処理、 アルカリ処理、 酸処理、 酸化処理、 還元 処理、 脱シリル化処理、 熱処理、 エステラーゼ処理又はホスファタ一ゼ処理 により被修飾塩基から脱離し得るものである、 請求項 14記載の方法。
16. 前記粘着末端が、 制限酵素処理により得られる粘着末端と同一の塩基配列 からなる、 請求項 14記載の方法。
17. 前記粘着末端が、 制限酵素処理により得られる粘着末端とは異なる塩基配 列からなる、 請求項 14記載の方法。
18. 請求項 14〜1 7のいずれか 1項に記載の方法により得られた: DNA断片 と、 ホスト DNAとを結合させる工程を含む、 遺伝子組換え方法。
19. 前記結合が、 DNA結合酵素を用いずに行うものである、 請求項 18記載 の方法。 下記式 (Γ) に示される化合物を含む置換基導入剤。
(1,)
Figure imgf000040_0001
〔式 (Γ) 中、 Xは Cl、 I、 Br、 p-トルエンスルホン酸エステル又は硫酸ェ ステルを表す。 〕
2-(2-ニトロフエニル)プロピルォキシメチル基を有する生体分子。
下記式 (I) に示されるものである、 請求項 2 1記載の生体分子。
Figure imgf000040_0002
〔式 (I) 中、 Rは生体分子を表す。 〕
前記生体分子が塩基である、 請求項 2 1又は 2 2記載の生体分子。
前記塩基がチミン又はグァニンである、 請求項 2 3記載の生体分子。 下記式 (II) :
Figure imgf000040_0003
に示されるものである、 請求項 2 4記載の生体分子。
PCT/JP2009/054989 2008-03-11 2009-03-10 粘着末端を有するdna断片の調製方法 WO2009113709A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/921,930 US20110009607A1 (en) 2008-03-11 2009-03-10 Method for preparing dna fragment having sticky end
JP2010502911A JP5397960B2 (ja) 2008-03-11 2009-03-10 粘着末端を有するdna断片の調製方法
EP09719525A EP2270142A4 (en) 2008-03-11 2009-03-10 PROCESS FOR THE PREPARATION OF A DNA FRAGMENT HAVING A STICKY EXTREME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008061678 2008-03-11
JP2008-061678 2008-03-11

Publications (1)

Publication Number Publication Date
WO2009113709A1 true WO2009113709A1 (ja) 2009-09-17

Family

ID=41065363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054989 WO2009113709A1 (ja) 2008-03-11 2009-03-10 粘着末端を有するdna断片の調製方法

Country Status (4)

Country Link
US (1) US20110009607A1 (ja)
EP (1) EP2270142A4 (ja)
JP (1) JP5397960B2 (ja)
WO (1) WO2009113709A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020562A1 (ja) 2019-07-31 2021-02-04 国立研究開発法人科学技術振興機構 プライマー及びこれを用いた二本鎖dnaの製造装置並びに二本鎖dnaの製造方法
WO2021020561A1 (ja) 2019-07-31 2021-02-04 国立研究開発法人科学技術振興機構 プライマー及びこれを用いた二本鎖dnaの製造装置並びに二本鎖dnaの製造方法
WO2024185697A1 (ja) * 2023-03-03 2024-09-12 国立大学法人東海国立大学機構 ポリヌクレオチド連結産物の製造方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102160389B1 (ko) 2013-08-05 2020-09-28 트위스트 바이오사이언스 코포레이션 드 노보 합성된 유전자 라이브러리
WO2016126882A1 (en) 2015-02-04 2016-08-11 Twist Bioscience Corporation Methods and devices for de novo oligonucleic acid assembly
WO2016126987A1 (en) * 2015-02-04 2016-08-11 Twist Bioscience Corporation Compositions and methods for synthetic gene assembly
US9981239B2 (en) 2015-04-21 2018-05-29 Twist Bioscience Corporation Devices and methods for oligonucleic acid library synthesis
EP3350314A4 (en) 2015-09-18 2019-02-06 Twist Bioscience Corporation BANKS OF OLIGONUCLEIC ACID VARIANTS AND SYNTHESIS THEREOF
KR20180058772A (ko) 2015-09-22 2018-06-01 트위스트 바이오사이언스 코포레이션 핵산 합성을 위한 가요성 기판
CN115920796A (zh) 2015-12-01 2023-04-07 特韦斯特生物科学公司 功能化表面及其制备
CA3034769A1 (en) 2016-08-22 2018-03-01 Twist Bioscience Corporation De novo synthesized nucleic acid libraries
US10417457B2 (en) 2016-09-21 2019-09-17 Twist Bioscience Corporation Nucleic acid based data storage
GB2573069A (en) 2016-12-16 2019-10-23 Twist Bioscience Corp Variant libraries of the immunological synapse and synthesis thereof
CA3054303A1 (en) 2017-02-22 2018-08-30 Twist Bioscience Corporation Nucleic acid based data storage
US10894959B2 (en) 2017-03-15 2021-01-19 Twist Bioscience Corporation Variant libraries of the immunological synapse and synthesis thereof
WO2018231864A1 (en) 2017-06-12 2018-12-20 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
AU2018284227B2 (en) 2017-06-12 2024-05-02 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
CN111566125A (zh) 2017-09-11 2020-08-21 特韦斯特生物科学公司 Gpcr结合蛋白及其合成
GB2583590A (en) 2017-10-20 2020-11-04 Twist Bioscience Corp Heated nanowells for polynucleotide synthesis
AU2019205269A1 (en) 2018-01-04 2020-07-30 Twist Bioscience Corporation DNA-based digital information storage
CN112639130B (zh) 2018-05-18 2024-08-09 特韦斯特生物科学公司 用于核酸杂交的多核苷酸、试剂和方法
JP2022522668A (ja) 2019-02-26 2022-04-20 ツイスト バイオサイエンス コーポレーション 抗体を最適化するための変異体核酸ライブラリ
WO2020176678A1 (en) 2019-02-26 2020-09-03 Twist Bioscience Corporation Variant nucleic acid libraries for glp1 receptor
JP2022534790A (ja) * 2019-06-06 2022-08-03 ザ・リージエンツ・オブ・ザ・ユニバーシテイ・オブ・コロラド、ア・ボデイー・コーポレイト 粘着末端型ポリヌクレオチドの直接合成のための新規のシステム、方法、および組成物
CA3144644A1 (en) 2019-06-21 2020-12-24 Twist Bioscience Corporation Barcode-based nucleic acid sequence assembly
AU2020356471A1 (en) 2019-09-23 2022-04-21 Twist Bioscience Corporation Variant nucleic acid libraries for CRTH2

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248931A (ja) 2005-03-09 2006-09-21 Tokyo Institute Of Technology 置換カルバモイル基を保護基とした核酸の合成方法
JP2008061678A (ja) 2006-09-05 2008-03-21 Funai Electric Co Ltd 掃除機のダストボックスユニット

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248931A (ja) 2005-03-09 2006-09-21 Tokyo Institute Of Technology 置換カルバモイル基を保護基とした核酸の合成方法
JP2008061678A (ja) 2006-09-05 2008-03-21 Funai Electric Co Ltd 掃除機のダストボックスユニット

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
"Nucleic Acids Symposium Series, 2008.09", article TANAKA K. ET AL.: "Direct Preparation of Sticky-Ended Duplexes within PCR by Using Caged Primers", pages: 467 - 468, XP008143649 *
ASLANIDIS, C. ET AL.: "Ligation-independent cloning of PCR products (LIC-PCR)", NUCLEIC ACIDS RES., vol. 18, 1990, pages 6069 - 6074
BITINAITE, J. ET AL.: "USERTM friendly DNA engineering and cloning method by uracil excision", NUCLEIC ACIDS RES., vol. 35, 2007, pages 1992 - 2002
GREEN ET AL.: "Protective Groups in Organic Synthesis", 1991, JOHN WILEY AND SONS
SAMBROOK, J. ET AL.: "Molecular Cloning: A Laboratory Manual", 2001, COLD SPRING HARBOR LABORATORY PRESS
See also references of EP2270142A4 *
SMIRNOVA J. ET AL.: "Synthesis of Caged Nucleosides with Photoremovable Protecting Groups Linked to Intramolecular Antennae", HELV.CHIM.ACTA, vol. 88, no. 4, 2005, pages 891 - 904, XP008143647 *
TANAKA K. ET AL.: "A restriction enzyme free manipulation of double stranded DNA terminus by using Caged-nucleotide", CSJ: THE CHEMICAL SOCIETY OF JAPAN KOEN YOKOSHU, vol. 88, no. 2, 12 March 2008 (2008-03-12), pages 824 *
TANG, X. J ET AL.: "Photoregulation of DNA polymerase I (Klenow) with caged fluorescent oligodeoxynucleotides", BIOORG. MED. CHEM. LETT., vol. 15, 2005, pages 5303 - 5306
WOELL D. ET AL.: "Triplet-Sensitized Photodeprotection of Oligonucleotides in Solution and on Microarray Chips", HELV.CHIM. ACTA, vol. 87, no. 1, 2004, pages 28 - 45, XP002509732 *
XIN, W. ET AL., CONSTRUCTION OF LINEAR FUNCTIONAL EXPRESSION ELEMENTS WITH DNA AND RNA HYBRID PRIMERS: A FLEXIBLE METHOD FOR PROTEOMICS., vol. 25, 2003, pages 273 - 277
YAMAMOTO, Y ET AL., CHEM. BIO. CHEM., vol. 7, 2006, pages 673 - 677
YAMAMOTO, Y. ET AL., CHEM. BIO. CHEM., vol. 7, 2006, pages 673 - 677
YOUNG D.D. ET AL.: "Light-triggered polymerase chain reaction", CHEM.COMMUN., 28 January 2008 (2008-01-28), pages 462 - 464, XP008143646 *
ZHU, B. ET AL.: "InFusionTM assembly: seamless engineering of multidomain fusion proteins, modular vectors, and mutations", BIOTECHNIQUES, vol. 43, 2007, pages 354 - 359

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020562A1 (ja) 2019-07-31 2021-02-04 国立研究開発法人科学技術振興機構 プライマー及びこれを用いた二本鎖dnaの製造装置並びに二本鎖dnaの製造方法
WO2021020561A1 (ja) 2019-07-31 2021-02-04 国立研究開発法人科学技術振興機構 プライマー及びこれを用いた二本鎖dnaの製造装置並びに二本鎖dnaの製造方法
CN114174509A (zh) * 2019-07-31 2022-03-11 国立研究开发法人科学技术振兴机构 引物和使用了该引物的双链dna的制造装置以及双链dna的制造方法
JP7521816B2 (ja) 2019-07-31 2024-07-24 国立研究開発法人科学技術振興機構 プライマー及びこれを用いた二本鎖dnaの製造装置並びに二本鎖dnaの製造方法
JP7551134B2 (ja) 2019-07-31 2024-09-17 国立研究開発法人科学技術振興機構 プライマー及びこれを用いた二本鎖dnaの製造装置並びに二本鎖dnaの製造方法
WO2024185697A1 (ja) * 2023-03-03 2024-09-12 国立大学法人東海国立大学機構 ポリヌクレオチド連結産物の製造方法

Also Published As

Publication number Publication date
EP2270142A1 (en) 2011-01-05
JP5397960B2 (ja) 2014-01-22
EP2270142A4 (en) 2011-06-01
US20110009607A1 (en) 2011-01-13
JPWO2009113709A1 (ja) 2011-07-21

Similar Documents

Publication Publication Date Title
JP5397960B2 (ja) 粘着末端を有するdna断片の調製方法
CA3124374C (en) Rna-directed dna cleavage by the cas9-crrna complex
JP5628664B2 (ja) 相同組換え方法およびクローニング方法並びにキット
US20200232005A1 (en) Methods of Producing and Using Single-Stranded Deoxyribonucleic Acids and Compositions for Use in Practicing the Same
US20230079822A1 (en) Method and products for producing single stranded dna polynucleotides
WO2022066335A1 (en) Systems and methods for transposing cargo nucleotide sequences
WO2002034907A1 (fr) Methode de synthese d&#39;acide nucleique simple brin
EP3914704A1 (en) A method for screening of an in vitro display library within a cell
US20240301445A1 (en) Crispr-associated transposon systems and methods of using same
US20240301371A1 (en) Crispr-associated transposon systems and methods of using same
Yin et al. Long oligos: direct chemical synthesis of genes with up to 1,728 nucleotides
WO2021015234A1 (ja) キメラ分子、医薬組成物、標的核酸の切断方法、及び、標的核酸切断用又は診断用キット
EP2221372A1 (en) Method of site-selectively cleaving target nucleic acid
US20190322998A1 (en) One pot assembly
Gissberg et al. Fast and efficient synthesis of Zorro-LNA type 3′-5′-5′-3′ oligonucleotide conjugates via parallel in situ stepwise conjugation
WO2023241051A1 (zh) 一种荧光标记的复合sgRNA及其制备方法和应用
WO2023077095A2 (en) Effector proteins, compositions, systems, devices, kits and methods of use thereof
WO2023164591A2 (en) Systems and methods for transposing cargo nucleotide sequences
CA3222937A1 (en) Methods of nucleic acid sequencing using surface-bound primers
WO2024039652A1 (en) Cell-free method of producing synthetic circular nucleic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09719525

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010502911

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12921930

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009719525

Country of ref document: EP