WO2009113580A1 - Rna選択的ハイブリダイズ試薬及びその利用 - Google Patents

Rna選択的ハイブリダイズ試薬及びその利用 Download PDF

Info

Publication number
WO2009113580A1
WO2009113580A1 PCT/JP2009/054675 JP2009054675W WO2009113580A1 WO 2009113580 A1 WO2009113580 A1 WO 2009113580A1 JP 2009054675 W JP2009054675 W JP 2009054675W WO 2009113580 A1 WO2009113580 A1 WO 2009113580A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
rna
group
dna
formula
Prior art date
Application number
PCT/JP2009/054675
Other languages
English (en)
French (fr)
Inventor
義仁 上野
幸夫 北出
Original Assignee
独立行政法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人科学技術振興機構 filed Critical 独立行政法人科学技術振興機構
Priority to EP09719898.0A priority Critical patent/EP2270015B1/en
Priority to US12/921,909 priority patent/US8609826B2/en
Priority to CA2722479A priority patent/CA2722479C/en
Priority to JP2010502852A priority patent/JP5201639B2/ja
Priority to CN200980108476.4A priority patent/CN101970443B/zh
Publication of WO2009113580A1 publication Critical patent/WO2009113580A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/173Purine radicals with 2-deoxyribosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6832Enhancement of hybridisation reaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a hybridization reagent that hybridizes with high selectivity to RNA and its use.
  • Non-Patent Documents 1 to 7 peptide nucleic acid (PNA) and bridge type nucleic acid (BNA) are mentioned.
  • PNA peptide nucleic acid
  • BNA bridge type nucleic acid
  • Non-Patent Documents 8 and 9 ring-expanded modification at the base has been attempted.
  • RNA Since the initial product of gene expression is RNA which is a transcription product, it is preferable that it hybridizes to RNA with higher selectivity than DNA rather than detecting it as DNA by RT-PCR. In addition, it is also required to detect RNA in cells in real time by hybridizing with RNA.
  • PNA is intended to reduce electrostatic repulsion by eliminating the charge at the phosphate site and form a stronger bond between the PNA / DNA duplex and the DNA / DNA duplex.
  • BNA increases the binding affinity for target DNA or RNA by cross-linking the 2'-position and 4'-position of the ribose ring and preliminarily fixing it to the N-type structure. For this reason, both PNA and BNA improve stability with respect to both DNA and RNA. That is, it shows high affinity not only for RNA but also for DNA.
  • most of various sugar ring-opening type derivatives thermally destabilize both DNA and RNA hybrids.
  • the present inventors have found that ring-expanded nucleotides do not form stable hybrids with RNA.
  • the present inventors examined the effects of sugar ring opening on the stability of DNA / RNA duplex and the base specificity. After verifying and examining the results in detail, the present invention was completed by finding a nucleotide structure that stabilizes the DNA / RNA duplex and has base discrimination ability. According to the present invention, the following means are provided.
  • nucleoside derivative represented by any of the following formulas (1) and (2) is provided.
  • Z represents a carbon atom or a nitrogen atom
  • R ⁇ 1 > represents a hydrogen atom or a hydroxyl-protecting group
  • R ⁇ 2 > represents a hydrogen atom or a phosphodiester group.
  • the nucleoside derivative is represented by the formula (1), and Z is preferably a nitrogen atom.
  • nucleoside derivatives represented by the following formulas (3) and (4) are provided.
  • Z represents a carbon atom or a nitrogen atom
  • W 1 represents a hydrogen atom or a hydroxyl protecting group
  • W 2 represents a hydroxyl protecting group, a phosphoramidite group, or Represents a linking group bound to or bound to a solid phase carrier
  • R 3 represents a hydrogen atom or an amino protecting group.
  • an oligonucleotide comprising one or more nucleotide derivative units represented by any of the following formulas (5) and (6) is provided.
  • Z represents a carbon atom or a nitrogen atom
  • X 1 represents O
  • S or Se
  • X 2 represents SH (or S ⁇ )
  • S or Se ⁇ represents an alkyl group having 1 to 4 carbon atoms or a morpholino group.
  • an RNA hybridization reagent comprising one or more nucleotide derivative units represented by any one of the above formulas (5) and (6).
  • the nucleotide derivative unit is preferably represented by the formula (5), and the Z is preferably a nitrogen atom. It is also preferable to provide the nucleotide derivative unit at the end. Furthermore, it is also preferable to have a base sequence capable of forming a stem-loop structure and to have the nucleotide derivative unit in the loop.
  • a probe set for detecting a mutation on RNA wherein one or more nucleotide derivative units represented by any one of the above formulas (5) and (6) A first probe provided at the 5 ′ end or 3 ′ end corresponding to the mutation site, and a deoxynucleotide having a base complementary to a base that may be present at the mutation site, the 3 ′ end corresponding to the mutation site or There is provided a probe set comprising one or more second probes provided at the 5 ′ end.
  • a method for detecting a single nucleotide polymorphism the step of preparing an RNA sample as a gene expression product that may contain the single nucleotide polymorphism, and the above-mentioned probe set of the present invention.
  • the first probe, the second probe, and the RNA sample obtained by combining one type of the first probe and one type of the second probe, or a combination of two or more types, And a step of contacting the RNA sample, the first probe, and the second probe to detect a fluorescent signal based on the first probe.
  • a detection method is provided.
  • Example 3 it is a figure which shows the evaluation result of the thermal stability (double strand with RNA) of F-3 and F-4.
  • the thermal stability of F-1 and complementary RNA that was double-stranded state in the Example 4 was compared by measuring the 50% melting temperature T m. It is a figure which shows a melting curve and Tm value.
  • the present invention relates to a novel nucleoside derivative represented by any of the following formulas (1) and (2) and use thereof.
  • Z represents a carbon atom or a nitrogen atom
  • R ⁇ 1 > represents a hydrogen atom or a hydroxyl-protecting group
  • R ⁇ 2 > represents a hydrogen atom or a phosphodiester group.
  • the present inventors have made various studies in order to solve the above-described problems. First, focus on the distance between adjacent phosphates in DNA / DNA duplexes and DNA / RNA duplexes, and then for the nucleoside derivatives that can reduce the phosphate distance, As a result of investigating the stability and its defect, a structure having both thermal stability and base selectivity was found.
  • the present inventors have found that the distance between phosphates (the distance between bases) of an RNA / RNA duplex (A-type duplex) is larger than that of a DNA / DNA duplex (B-type duplex). Focusing on the shortness, the phosphoric acid between the phosphate backbones was reduced from 3 to 2 carbons of the natural nucleoside. In addition, the present inventors made the nucleobase site tricyclic different from the natural nucleoside in order to enhance the base selectivity. It was found that the nucleoside analog thus obtained has a selectively high affinity for RNA. In addition, it became clear that strong fluorescence was emitted around 400 nm. It was also found that the gene polymorphism of the gene of P glycoprotein involved in drug resistance can be detected by providing a nucleoside having such affinity and fluorescence characteristics.
  • the nucleoside derivative of the present invention has higher RNA selectivity than the conventional type, it can be used for gene therapy and various research techniques targeting RNA such as antisense and siRNA methods. Further, since the nucleoside derivative of the present invention is fluorescent per se, it is extremely advantageous for detecting gene polymorphisms.
  • FIG. 1 is a diagram showing the inter-phosphate distance between a DNA / DNA duplex and a DNA / RNA duplex and the modification of a nucleoside based on the distance
  • FIG. 2 shows the DNA / DNA duplex of a primary modified nucleoside derivative
  • FIG. 3 is a diagram showing the evaluation results of the thermal stability and base selectivity of the DNA / RNA duplex of the modified nucleoside derivative
  • FIG. 4 is a diagram showing modeling results based on MOE of modified nucleosides
  • FIG. 5 is a diagram showing the production of secondary modified nucleoside derivatives (nucleoside derivatives of the present invention).
  • FIG. 1 is a diagram showing the inter-phosphate distance between a DNA / DNA duplex and a DNA / RNA duplex and the modification of a nucleoside based on the distance
  • FIG. 2 shows the DNA / DNA duplex of a primary modified nucleoside derivative.
  • FIG. 3 is a diagram showing the evaluation results
  • FIG. 6 is a graph showing the thermal stability (Tm value) of DNA / RNA duplexes and DNA / DNA duplexes of oligonucleotides containing secondary modified nucleoside derivatives
  • FIG. It is a graph which shows the base selectivity (Tm value) of the secondary nucleoside in / RNA duplex and DNA / DNA duplex
  • FIG. 8 is a figure which shows the fluorescence spectrum of a secondary modified nucleoside derivative.
  • MOE is a program based on the molecular mechanics method, and the modeling result in FIG. 4 was executed using the force field of MMFF94x.
  • the average distance between phosphoric acids was calculated for two types of duplex structures, and the results were 6.7 mm for DNA / DNA duplex and 5. for DNA / RNA duplex, respectively. It turned out to be 7 angstroms. That is, it was found that the distance between phosphates in a DNA / RNA duplex was shorter than that in a DNA / DNA duplex. Therefore, the present inventors paid attention to the difference in the distance between phosphoric acids, and made two carbons between adjacent phosphoric acids (where ordinary nucleosides are three carbons) so as to reduce the distance between phosphoric acids.
  • the distance to the complementary base is sufficient, but the flexibility of the side chain is high, the double chain is thermally destabilized, and in the propyl type, the side chain is It was inferred that the base selectivity was lowered due to the insufficient distance to the complementary bases, although the flexibility of the resin was lower and the thermal stability was kept higher than the butyl type.
  • the present inventors designed these derivatives having a pyridine ring introduced as a secondary nucleoside derivative in order to ensure the distance to the complementary base at the base site of the propyl type analog, and amidite compounds for DNA synthesis and Oligonucleotides were synthesized (see FIG. 5). As shown in FIG. 5, these are all tricyclic compounds.
  • an oligonucleotide (DNA) containing a secondary modified nucleoside derivative is destabilized in a double strand with DNA, whereas in a double strand with RNA, the number of derivatives increases. It was found that the thermal stability of the double chain was increased. Further, as shown in FIG. 7, the oligonucleotide (DNA) containing the secondary modified nucleoside derivative has a low selectivity when the DNA is a complementary strand, whereas the oligonucleotide (DNA) has a tricyclic structure when the RNA is a complementary strand. It was found that the base selectivity is improved as compared with the primary modified nucleoside derivative.
  • the secondary modified nucleoside derivative has strong fluorescence centering on 400 nm, and it was found that the hybridized product can be directly detected by fluorescence.
  • the present invention has a sugar ring-opening structure in which the propyl group is replaced with deoxyribose to reduce the distance between adjacent phosphates in the oligonucleotide, and can form a hydrogen bond with a complementary base. It was found that an oligonucleotide containing a nucleoside derivative having stability against RNA duplex and base discrimination can be provided by providing a ring-expanded base structure in order to ensure a sufficient distance. Furthermore, it was also found that such a modified nucleoside derivative was able to impart single-base discrimination because it was found to have fluorescence.
  • the nucleoside derivative of the present invention is a compound represented by formula (1) or formula (2).
  • Z represents a carbon atom (CH) or a nitrogen atom.
  • the hydrogen atom bonded to the ring-constituting carbon atom of ring A in these compounds may not be substituted or may be substituted.
  • the substituent is preferably a chain alkyl group having 1 to 4 carbon atoms. That is, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group can be mentioned. In consideration of steric hindrance and the like, a methyl group and an ethyl group may be preferably used. Also, the number of substituents is not particularly limited, but when steric hindrance or the like becomes a problem, it is preferably about one or two.
  • R 1 can be a hydrogen atom or a hydroxyl protecting group.
  • R 2 can be a hydrogen atom or a phosphodiester group (PO 3 ).
  • the phosphodiester group is not particularly limited. Instead of one oxygen atom bonded to the phosphorus atom with a double bond, it can be O, S or Se, and in place of another hydroxyl group (oxygen ion), SH (or S ⁇ ), S or Se - it can be a C 1-4 alkyl group or a morpholino group carbon.
  • Examples of the various phosphodiester groups obtained by the combination of X 1 and X 2 include various groups of the following formula (7) (however, oxygen atoms connected to carbon atoms are removed).
  • the nucleoside derivative represented by the formula (1) can be used as an adenosine analog.
  • the nucleoside derivative represented by the formula (2) can be used as a guanosine analog.
  • the nucleoside derivative represented by Formula (1) and Formula (2) becomes a nucleotide derivative when R 2 has a phosphodiester bond group.
  • the nucleoside derivative of the present invention can also emit fluorescence. That is, when light having an excitation wavelength of about 330 nm is irradiated, fluorescence having a peak near 400 nm can be emitted. For this reason, hybridization with a specific RNA or a specific base can be easily detected.
  • This nucleoside derivative can be synthesized by extending the ring at the purine base according to the description of PA Harris and W. Pendergast, J. Heterocyclic Chem., 33, 319 (1996).
  • the compound represented by the formula (1) is synthesized in the following scheme 1.
  • nucleoside derivatives suitable for oligonucleotide synthesis examples include compounds represented by the following formulas (3) and (4).
  • Z and A ring in Formula (3) and Formula (4) are synonymous with Z in Formula (1) and Formula (2).
  • W 1 can represent a hydrogen atom or a hydroxyl protecting group.
  • the hydroxyl protecting group may be any group that protects hydroxyl groups from unintended reactions. Such a hydroxyl protecting group is not particularly limited, and various conventionally known hydroxyl protecting groups can be used.
  • Preferred protecting groups of the present invention include fluorenylmethoxycarbonyl group (FMOC group), dimethoxytrityl group (DMT group), quaternary butyldimethylsilyl group (TBDMS group), monomethoxytrityl group, trifluoroacetyl group, levulinyl group Or a silyl group.
  • a preferred protecting group is a trityl group, for example selected from dimethoxytrityl (DMT) and quaternary butyldimethylsilyl group (TBDMS group).
  • W 2 represents a hydroxyl group protecting group, a phosphoramidite group, or a linking group bound to or bound to a solid phase carrier.
  • a compound (amidite compound) in which W 2 is a phosphoramidite group can be used as a phosphoramidite reagent by the phosphoramidite method to synthesize oligonucleotides.
  • the phosphoramidite group can be represented by the following formula (8).
  • each Y 1 may independently be the same or different and represents a branched or straight chain alkyl group having 1 to 5 carbon atoms; Y 2 is A branched or straight chain alkyl group having 1 to 5 carbon atoms or an optionally substituted alkoxyl group is represented.
  • Y 1 is not particularly limited, but is preferably an isopropyl group
  • Y 2 includes —OCH 3 , —OEtCN, —OCH 2 CHCH 2 and the like.
  • the compound in which W 2 is a linking group bonded to the solid phase carrier in the formulas (3) and (4) allows the linking group to bind to a predetermined functional group on the solid phase carrier such as an amino group. Thus, it is held on the solid phase carrier.
  • the compound in which W 2 is a linking group bonded to a solid phase carrier is because the nucleoside derivative of the present invention is bonded to the solid phase carrier via the linking group.
  • a polymer carrier is generally used as the solid phase carrier, and examples thereof include CPG (controlled pored glass), HCP (highly cross-linked polystyrene), and a certain kind of gel.
  • the solid phase carrier may have an appropriate spacer.
  • the linking group is a linker that links the solid phase carrier and the present compound.
  • a known succinate linker, oxalate linker, silanediyl linker, silyl linker, or the like can be used.
  • R 3 in formula (3) can be a hydrogen atom or an amino protecting group.
  • the primary amino group derived from an adenine base is appropriately protected with a protecting group as necessary.
  • Such protection methods and protecting groups are well known to those skilled in the art. Examples of the amino protecting group include a benzoyl group, an acetyl group, and a phenoxyacetyl group.
  • nucleoside derivative represented by the formula (3) or the formula (4) is synthesized by a known method from the nucleoside derivative represented by the formula (1) or the formula (2).
  • nucleoside derivatives represented by the formula (3) are synthesized in the following scheme 2.
  • the oligonucleotide of this invention can be equipped with the 1 type, or 2 or more types of nucleotide derivative unit represented by either the following formula
  • Z in Formula (5) and Formula (6) is synonymous with Z in Formula (1) etc.
  • a ring is also synonymous with A ring in Formula (1) etc.
  • X 1 can be O, S or Se
  • X 2 is SH (or S ⁇ ), S or Se ⁇ , alkyl having 1 to 4 carbon atoms.
  • Group or morpholino group examples include various groups described in Formula (7).
  • the nucleotide derivative unit in the oligonucleotide of the present invention may be one or more, or two or more. Moreover, one may be sufficient, multiple may be sufficient, and the whole may be sufficient.
  • the nucleotide derivative unit contained in the oligonucleotide of the present invention is determined according to the use of the oligonucleotide.
  • the position of the nucleotide derivative unit in the oligonucleotide is not particularly limited. It can be provided at any of the 5 ′ end, 3 ′ end and other portions.
  • a hydroxyl group may be bonded to the 5 ′ end, or a phosphate group (PO 4 ) may be bonded.
  • a hydroxyl group may be bonded to the 3 ′ end of the present oligonucleotide, or a phosphate group (PO 4 ) may be bonded.
  • the other 5 ′ end and 3 ′ end can each have an appropriate structure as required.
  • the oligonucleotide of the present invention can comprise ribonucleotides and / or deoxyribonucleotides in addition to the nucleotide units of the present invention.
  • the oligonucleotide of the present invention may be an oligonucleotide consisting of only deoxyribonucleotides other than the nucleotide unit of the present invention, may be an oligonucleotide consisting of only ribonucleotides other than the nucleotide unit of the present invention, and
  • the oligonucleotide may contain both deoxyribonucleotides and ribonucleotides in addition to the nucleotide unit of the present invention.
  • the oligonucleotide of the present invention which is RNA, also stabilizes the duplex with the complementary RNA strand Can do.
  • Oligonucleotide means a polymer having a plurality of monomer units each having a nucleotide as a monomer unit, and an oligonucleotide usually contains a polymer of several to 100 or less nucleotides.
  • the oligonucleotide of the present invention can be made to have a length according to the use, but it is preferably 10 or more and 35 or less in consideration of the synthesis of the oligonucleotide. In the case of antisense, it can be about 10 or more and 30 or less. In the case of siRNA, the total chain length of B and C is preferably 15 or more and 35 or less, more preferably 30 or less. It is.
  • a primer it is preferably 10 or more and 30 or less
  • in the case of a probe it is preferably 10 or more and 30 or less
  • in the case of a molecular beacon it is preferably 15 or more and 40 or less.
  • a polynucleotide comprising the nucleotide derivative unit of the present invention is also provided.
  • the altered nucleotide means that some chemical modification is applied to various parts of the nucleotide, that is, the base, sugar part and phosphate part.
  • the oligonucleotide of the present invention can be synthesized by a conventionally known nucleic acid synthesis method using an amidite that is a kind of the described nucleoside derivative.
  • the oligonucleotide of the present invention comprises the nucleotide unit of the present invention, it can selectively and stably hybridize with RNA, and also has base discrimination, so that RNA of a specific sequence can be detected. Moreover, since it itself has fluorescence, gene mutations such as single nucleotide polymorphisms can also be detected.
  • RNA since it hybridizes with RNA with high selectivity, it can be preferably used particularly for detection of RNA in cells and real-time detection of gene expression in cells. Furthermore, what hold
  • the oligonucleotide of the present invention can take the form of various gene expression regulators. That is, it can be used for antigenes, antisenses, aptamers, miRNAs and ribozymes.
  • the oligonucleotide of the present invention can also be used for siRNA, shRNA, antisense, ribozyme and aptamer.
  • the oligonucleotide of the present invention can be used for probes and primers.
  • the probe is an oligonucleotide that has a base sequence specifically defined for the target nucleic acid by design or selection, and is obtained so as to hybridize with the target nucleic acid under a predetermined stringency.
  • the oligonucleotide probe of the present invention can be preferably used particularly for intracellular RNA detection, particularly for real-time detection.
  • a probe set for detecting a mutation on RNA using this is provided.
  • This probe set can be composed of a first probe having the nucleotide derivative unit of the present invention and a second probe not having the nucleotide derivative unit of the present invention.
  • the first probe is provided with the nucleotide derivative unit of the present invention at a position corresponding to the mutation site. Further, such a nucleotide derivative unit is provided at the 3 ′ end or 5 ′ end of the probe. For example, as shown in FIG. 9, when the first probe is hybridized to the 3 ′ side of the target strand (RNA in the example shown in FIG.
  • the nucleotide derivative unit may or may not have a base analog corresponding to (complementary to) a base that may exist at the mutation site to be detected.
  • the first probe may be one type or two or more types. The type (number) of the first probe is determined according to the type of the nucleotide derivative unit of the present invention provided at the position corresponding to the mutation site to be detected.
  • the second probe is provided with a deoxynucleotide having a base corresponding to (complementary to) a base that may exist at the mutation site.
  • the mutation-corresponding nucleotide is provided at the 3 'end or 5' end of the probe.
  • the second probe may be one type or two or more types. The type (number) of second probes is determined according to the type of deoxynucleotide provided at the position corresponding to the mutation site to be detected.
  • the base of the mutation site can be discriminated from the match / mismatch of the first probe and the match / mismatch of the second probe with respect to the mutation site.
  • the first probe and the second probe match the mutation site, the first probe and the second probe compete at the mutation site, so that at least a part of the nucleotide unit of the first probe Flip out to enable fluorescence emission.
  • the nucleotide unit of the first probe can be largely flipped out of the duplex to emit more intense fluorescence. .
  • Such a probe set can be preferably used particularly for detecting a single nucleotide polymorphism.
  • the detection method of the single nucleotide polymorphism using such a probe set is also provided. That is, a step of preparing an RNA sample as a gene expression product that may contain a single nucleotide polymorphism is combined with one type of first probe and one type of second probe selected from the probe set. The first probe and the second probe, and the RNA sample in all combinations obtained in such a manner that they can be hybridized, and the hybridization between the RNA sample, the first probe, and the second probe. Detecting a fluorescence signal based on the first probe of the soybean product.
  • RNA samples can be prepared from various subjects by known methods.
  • the subject is not particularly limited, such as various body fluids and tissues including blood.
  • the contact form (order) of the RNA sample, the first probe, and the second probe is not particularly limited.
  • a form in which the first probe and the second probe are simultaneously brought into contact with the RNA sample may be used, or after the first probe is brought into contact, the second probe may be brought into contact. Further, the first probe may be contacted after the second probe is contacted.
  • Hybridization conditions are appropriately determined according to the type of RNA sample and probe. Also in this detection method, an array in which at least a part of the first probe and the second probe is immobilized on a solid phase carrier can be used.
  • the oligonucleotide of the present invention can be a molecular beacon type probe having a stem-loop structure. That is, a probe having a base sequence designed to form a stem and a loop can also be used. By providing the nucleotide unit of the present invention in this loop, the base analog part is easily flipped out of the loop and easily fluorescent, and emits fluorescence when not hybridized and quenches when hybridized. Can be built. According to such a probe, hybridization can be easily detected.
  • the oligonucleotide of the present invention can be used as a gene expression inhibitor by constructing it to function as siRNA, antisense or the like. Further, the oligonucleotide of the present invention can be used as an active ingredient of a pharmaceutical composition for prevention / treatment of diseases in humans and non-human animals. For example, for a disease associated with gene expression, the oligonucleotide derivative of the present invention constructed as a gene expression inhibitor is effective for the prevention and treatment of such diseases.
  • the oligonucleotide of the present invention can be used as a hybridization reagent (typically, a test reagent, a diagnostic reagent, etc.) such as a probe and a primer using its anti-RNA hybridization function. Since it hybridizes with RNA with high selectivity, it can be preferably used particularly for detection of RNA in cells and real-time detection of gene expression in cells. Furthermore, what hold
  • a hybridization reagent typically, a test reagent, a diagnostic reagent, etc.
  • the oligonucleotide of the present invention is in the form of a gene expression control agent and can be used in a method for suppressing gene expression in cells of human and non-human animals. Furthermore, the oligonucleotide of the present invention can be used in a method for detecting a specific gene or a specific mutation in nucleic acid samples obtained from human and non-human animals in the form of a hybridization reagent.
  • the experimental conditions for obtaining the products (1) to (10) in Scheme 3 were as follows. Reagents and conditions: (1) Malononitrile, 2-propanol, 90 ° C, 78%. (2) p-toluenesulfonilchloride, DMAP, CH 2 Cl, rt, 83%. (3) K 2 CO 3 , DMF, 60 ° C, (4) (i) triethyl ortho-formate, 100 ° C, (ii) NH 3 / MeOH, 110 ° C, 65%. (5) 80% CH 3 COOH, 60 ° C. (6) TBDMS, Imidazole, DMF, 78%. (7) Benzoyl chloride, pyridine, 87%.
  • an oligonucleotide was synthesized using the amidite synthesized in Example 1.
  • oligonucleotides in which the synthesized amidite of compound 10 was introduced into the X portion of the following sequence were synthesized and purified.
  • F-1 and F-2 are oriented to a stem-loop structure such as a molecular beacon.
  • the underlined portion of the array is the stem portion, and the underlined portion is the loop portion.
  • CPG was suspended in 1.2 ml of 28% NH 4 OH and incubated for 12 hours while maintaining at 55 ° C. in an incubator.
  • the eluate was roughly purified using a Sep-pak C18 reverse phase column, and the eluate was removed under reduced pressure by centrifugal speed reduction.
  • Oligonucleotides were quantified using MALDI-TOF / MS. The results are shown in the table below. F-1, 3 and 4 were judged to be the target oligonucleotides based on the results of TOF / MS. The measured value of F-2 was not described because the OD value was very small and could not be detected.
  • Tm measurement the thermal stability of double strands of DNA and RNA complementary to F-3 and F-4, respectively, is expressed as a Tm value. evaluated. It should be noted that the concentration of each chain in Tm measurement was dissolved in 200 ⁇ L of a measurement buffer (10 mM NaPhosphate (pH 7.0) -100 mM NaCl) so as to be 3 ⁇ M, and annealed at 95 ° C. for 3 minutes, followed by 1 hour. It was left to return to room temperature and deaerated for 15 minutes. 150 ⁇ L of the sample was placed in a dedicated cell and measured. The sequences of F-3, F-4 and complementary DNA and RNA are shown in the following table.
  • -Q in the table represents a tricyclic analog
  • XX of complementary DNA represents TA, TT, TG, TC
  • XX of complementary RNA represents UA, UU, UG, UC.
  • both probes greatly destabilize the double strand with DNA.
  • the double strand is increased when the number of analogs increases. It was found that the thermal stability of was increased.
  • Tm measurement Tm measurement
  • the thermal stability of duplexes of F-1 and complementary RNAs was evaluated by the Tm value. After dissolving in 200 ⁇ L of the buffer for measurement (10 mM NaPhosphate (pH 7.0)-100 mM NaCl) so that the concentration of each strand in the Tm measurement of F-1 is 3 ⁇ M, and annealing at 95 ° C. for 3 minutes, It was left for 1 hour, returned to room temperature, and deaerated for 15 minutes.
  • the buffer for measurement 10 mM NaPhosphate (pH 7.0)-100 mM NaCl
  • Q in the table represents a tricyclic analog
  • X in complementary RNA represents A, U, G, or C.
  • the underlined sequence in the F-1 sequence indicates the stem site, and the central 5 mer indicates the loop portion.
  • the double-stranded state was F-1 and the thermal stability with a complementary RNA were compared by measuring the 50% melting temperature T m.
  • the melting curve and Tm value are shown in FIG.
  • F-1 was found to exhibit much better thermal stability when forming duplexes with complementary RNA than when forming duplexes within the probe.
  • a CPG unit (11) united with a tricyclic analog was prepared. That is, 143 mg (0.21 mmol) of compound (9) is dissolved in pyridine (2 mL), DMAP 0.5 ⁇ g (4.2 ⁇ mol, 0.02 eq), succinic anhydride 63 mg (0.63 mmol, 3.0 eq) are added, and Ar atmosphere is added. Under stirring at room temperature. After 110 hours, confirm that the reaction does not proceed any more by TLC, dilute with ethyl acetate, extract and wash with water (x2), NaHCO3 (x1), saturated aqueous NaCl solution (x1), and acetic acid.
  • Oligonucleotide incorporating a tricyclic analog at its end (synthesis of FK-1, FK-3)
  • a DNA synthesizer using a DNA synthesizer, one type of oligonucleotide introduced into the X portion (3 ′ end) of the following base sequence using the synthesized CPG unite (11) (fluorescent analog Q) claim ( FK-1) was synthesized and purified.
  • RNA and DNA consisting of the following target sequences (similar to thymine instead of uracil) were synthesized and purified.
  • RNA target sequence
  • Target RNA 5 '-r (GAC-UCA-CCU -UCC-CAG- X- -ACC-UUC-UAG-UUC-UU) -3 '(31 mer)
  • FK-1 5'- d (AAA-GAA-CTA-GAA-GGT-Q ) -3 '(16 mer)
  • FK-2 5'-d (Y-CTG-GGA-AGG-TGA-GTC) -3 '(16 mer)
  • a purified oligonucleotide was obtained by the same operation as in Example 2.
  • the hybridization samples of FK-1 and FK-2 (Y: dA) complementary to X (rU) of the target strand showed the strongest fluorescence, and other hybridization samples was almost equivalent to the FK-1 single sample. That is, when FK-1 and FK-2 (Y: dA) are used as probes for the target strand, the competition between FK-1 and FK-2 causes the fluorescent analog base Q, as shown in FIG. was flipped out of the duplex and considered to fluoresce. In the other hybridization samples, since each FK-2 probe was not a probe competing with FK-1, the fluorescent base Q was not flipped out of the double strand and therefore did not exhibit fluorescence. It was.
  • Hybridization and fluorescence measurement of two types of probes to target strands 2 Three oligonucleotides with a predetermined combination of FK-1, FK-2 (Y: dA, dT, dC) synthesized in Example 6 and target RNA strands (X: rU, rG, rA) Is dissolved in 1 mL of measurement buffer (10 mM NaPhosphate (pH 7.0)-100 mM NaCl) so that the concentration of each strand is 3 ⁇ M, annealed at 95 ° C. for 3 minutes, and then allowed to stand at room temperature for 1 hour. Returned and degassed for 15 minutes.
  • measurement buffer 10 mM NaPhosphate (pH 7.0)-100 mM NaCl

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

【課題】、RNAに対して高い親和性を有するヌクレオシド誘導体を提供する。 【解決手段】以下の式(1)及び式(2)のいずれかで表されるヌクレオシド誘導体を用いる。 (ただし、式(1)及び式(2)中、Zは、炭素原子又は窒素原子を表し、R1は、水素原子又は水酸基保護基を表し、R2は、水素原子又はホスホジエステル基を表す。)

Description

RNA選択的ハイブリダイズ試薬及びその利用
 本発明は、RNAに対して高い選択性でハイブリダイズするハイブリダイズ試薬及びその用途に関する。
遺伝子発現産物につき、種々の解析手法が知られている。例えば、in situ ハイブリダイゼーション、蛍光共鳴エネルギー移動、蛍光偏光の解消等を利用した方法等が挙げられる。これらの各種解析手法において特定の塩基配列を検出するためのプローブやプライマーなどが用いられるが、解析の目的によりプローブ等に求められる特性は相違する。
 これまで特定の塩基配列を検出するためのプローブ等につき、種々の修飾や改変がなされたヌクレオシド誘導体が開発されてきている。例えば、ペプチド核酸(PNA)やブリッジ型核酸(BNA)が挙げられる。さらに、糖部開環型のヌクレオチド誘導体も各種報告されている(非特許文献1~7)。また、塩基における環拡張型の修飾も試みられている(非特許文献8、9)
P.E.Nielsen, M.Egholm, R.H.Berg, O.Buchardt, Science, 254, 497 (1991). S.Obika, D.Nanbu, Y.Hari, J.Andoh, K.Morio, T.Doi, T.Imanishi, Tetrahedron Lett., 39, 5401 (1998). K.C.Schneider, S.A.Benner, J. Am. Chem. Soc., 112, 453 (1990). K.Augustyns, A.V.Aerschot, A.V.Schepdael, C.Urbanke, P.Herdewijn, Nucleic Acids Res., 19, 2589 (1991). M.Azymah, C.Chavis, M.Lucas, F.Morvan, J.-L.Imbach, Nucleosides & Nucleotides, 11, 1241 (1992). P.Nielsen, F.Kirpekar, J.Wengel, Nucleic Acids Res., 22, 703 (1994). L.Zang, A.Peritz, E.Meggers, J. Am. Chem. Soc., 127, 4174 (2005). N.Minakawa, N.Kojima, S.Hikishima, T.Sasaki, A.Kiyosue, N.Atsumi, Y.Ueno, A.Matsuda, J. Am. Chem. Soc., 125, 9970 (2003). H.Liu, J.Gao, L.Maynard, Y.D.Saito, E.T.Kool, J. Am. Chem. Soc., 126, 1102 (2004).
 遺伝子発現の最初の産物は、転写産物であるRNAであることから、RT-PCRでDNAとして検出するよりも、RNAに対してDNAよりも高い選択性でハイブリダイズするものであることが好ましい。また、RNAとハイブリダイズすることで細胞内においてRNAをリアルタイムで検出することも求められる。
 PNAは、リン酸部位の電荷を排除することで静電反発を減少させて、PNA/DNAの二重鎖がDNA/DNAの二重鎖よりも強い結合を形成することを意図したものである。また、BNAは、リボース環の2’位と4’位とを架橋して予めN型構造に固定することで、標的となるDNAやRNAに対する結合親和性を高めている。このため、PNA及びBNAのいずれも、DNA及びRNAの双方に対して安定性を向上させてしまう。すなわち、RNAのみならずDNAに対しても同様に高い親和性を示してしまう。また、各種の糖部開環型の誘導体のほとんどは、DNAおよびRNAとのハイブリッドをいずれも熱的に大きく不安定化してしまうことが知られている。さらに、環拡張型ヌクレオチドは、本発明者らによれば、RNAとは安定はハイブリッドを形成しないことがわかった。
 また、RNAに対して塩基特異性を有することで、SNPを遺伝子発現レベルで検出することができることができる程度に塩基特異性の高い対RNA用のハイブリダイズ試薬は提供されていない。
 そこで、本発明は、RNAに対して高い親和性を有するヌクレオシド誘導体及びその製造方法を提供することを一つの目的とする。また、本発明は、塩基識別能を有するヌクレオシド誘導体及びその製造方法を提供することを他の一つの目的とする。このようなヌクレオシド誘導体のハイブリダイズ試薬としての用途を提供することを他の一つの目的とする。
本発明者らは、DNA/DNA二重鎖及びDNA/RNA二重鎖の構造比較に基づき、糖部開環のDNA/RNA二重鎖の安定性への影響及び塩基特異性への影響を検証し、その結果を詳細に検討したうえ、DNA/RNA二重鎖を安定化し、しかも、塩基識別能を有するヌクレオチド構造を見出し、本発明を完成した。本発明によれば以下の手段が提供される。
 本発明によれば、以下の式(1)及び式(2)のいずれかで表されるヌクレオシド誘導体が提供される。
Figure JPOXMLDOC01-appb-C000007
 
(ただし、式(1)及び式(2)中、Zは、炭素原子又は窒素原子を表し、R1は、水素原子又は水酸基保護基を表し、R2は、水素原子又はホスホジエステル基を表す。)
 前記ヌクレオシド誘導体は、式(1)で表され、前記Zは窒素原子であることが好ましい。
 本発明によれば、以下の式(3)及び(4)で表されるヌクレオシド誘導体が提供される。
Figure JPOXMLDOC01-appb-C000008
 
(ただし、式(3)及び式(4)中、Zは、炭素原子又は窒素原子を表し、Wは水素原子又は水酸基保護基を表し、Wは、水酸基保護基、ホスホルアミダイト基又は固相担体に結合される若しくは結合された連結基を表し、R3は、水素原子又はアミノ保護基を表す。)
 本発明によれば、以下の式(5)及び式(6)のいずれかで表される1種又は2種以上のヌクレオチド誘導体単位を備えるオリゴヌクレオチドが提供される。
Figure JPOXMLDOC01-appb-C000009
 
(ただし、式(5)及び式(6)中、Zは、炭素原子又は窒素原子を表し、X1は、O、S又はSeを表し、X2は、SH(若しくはS)、S又はSe、炭素数1~4個のアルキル基又はモルホリノ基を表す。)
 本発明によれば、上記式(5)及び式(6)のいずれかで表される1種又は2種以上のヌクレオチド誘導体単位を備える、RNAハイブリダイズ試薬が提供される。
 本発明のハイブリダイズ試薬において、前記ヌクレオチド誘導体単位は、式(5)で表され、前記Zは窒素原子であることが好ましい。また、前記ヌクレオチド誘導体単位を末端に備えることも好ましい。さらに、ステム-ループ構造を形成可能な塩基配列を有し、前記ループに前記ヌクレオチド誘導体単位を備えることも好ましい。
 本発明によれば、RNA上の変異を検出するためのプローブセットであって、上記式(5)及び式(6)のいずれかで表される1種又は2種以上のヌクレオチド誘導体単位を前記変異部位に相当する5’末端又は3’末端に備える第1のプローブと、前記変異部位において存在可能性のある塩基に相補的な塩基を有するデオキシヌクレオチドを前記変異部位に相当する3’末端又は5’末端に備える1種又は2種以上の第2のプローブと、を含むプローブセットが提供される。
 本発明によれば、一塩基多型の検出方法であって、前記一塩基多型を含む可能性のある遺伝子発現産物としてのRNA試料を準備する工程と、上記本発明のプローブセットから選択される1種の前記第1のプローブと1種の前記第2のプローブとを組み合わせて得られる1種又は2種以上の組み合わせで前記第1のプローブ及び前記第2のプローブと、前記RNA試料と、をハイブリダイゼーション可能に接触させる工程と、前記RNA試料と前記第1のプローブと前記第2のプローブとのハイブリダイズ産物の前記第1のプローブに基づく蛍光シグナルを検出する工程と、を備える、検出方法が提供される。
DNA/DNA二重鎖とDNA/RNA二重鎖とのリン酸間距離及びそれに基づくヌクレオシドの改変を示す図である。 一次改変ヌクレオシド誘導体のDNA/DNA二重鎖の熱的安定性及び塩基選択性の評価結果を示す図である。 一次改変ヌクレオシド誘導体のDNA/RNA二重鎖の熱的安定性及び塩基選択性の評価結果を示す図である。 一次改変ヌクレオシドのMOEに基づくモデリング結果を示す図である。 二次改変ヌクレオシド誘導体(本発明のヌクレオシド誘導体)の作製について示す図である。 二次改変ヌクレオシド誘導体を含むオリゴヌクレオチドのDNA/RNA二重鎖及びDNA/DNA二重鎖の熱的安定性(Tm値)を示すグラフ図である。 DNA/RNA二重鎖及びDNA/DNA二重鎖における二次改変ヌクレオシド誘導体の塩基選択性(Tm値)を示すグラフ図である。 二次改変ヌクレオシド誘導体の蛍光スペクトルを示す図である。 本発明のプローブセットの一例を示す図である。 実施例3においてF-3, F-4の熱安定性(DNAとの二重鎖)の評価結果を示す図である。 実施例3においてF-3, F-4の熱安定性(RNAとの二重鎖)の評価結果を示す図である。 実施例4において二本鎖状態にしたF-1と相補RNAとの熱的安定性を50%融解温度Tmを測定することで比較した。融解曲線とTm値とを示す図である。 実施例5において蛍光分光装置 (日立-F4500)にて蛍光測定を行い、励起波長及び蛍光波長を示す図である。 励起光(λex=338 nm)を照射したときのそれぞれの蛍光波長と蛍光強度のグラフを示す図である。 実施例7において励起光(λex=338 nm)を照射したときのそれぞれの蛍光波長と蛍光強度のグラフを示す図である。 実施例8において励起光(λex=338 nm)を照射したときのそれぞれの蛍光波長と蛍光強度のグラフを示す図である。
発明を実施するための形態

 本発明は、以下の式(1)及び式(2)のいずれかで表される新規なヌクレオシド誘導体及びその利用に関する。
Figure JPOXMLDOC01-appb-C000010
 
(ただし、式(1)及び式(2)中、Zは、炭素原子又は窒素原子を表し、R1は、水素原子又は水酸基保護基を表し、R2は、水素原子又はホスホジエステル基を表す。) 
 本発明者らは、上記した課題を解決するべく、種々の検討を行った。第1に、DNA/DNA二重鎖及びDNA/RNA二重鎖における隣接するリン酸間距離に着目し、次いで、リン酸間距離を減少させることのできるヌクレオシド誘導体につき、二重鎖の熱的安定性及びその楮について検討した結果、熱的安定性と塩基選択性との双方を両立する構造を見出した。
 本発明者らは、RNA/RNA二重鎖(A型二重鎖)のリン酸間の距離(塩基間の距離)は、DNA/DNA二重鎖(B型二重鎖)と比較して短いことに着目し、リン酸バックボーンのリン酸間を天然ヌクレオシドの三炭素から二炭素に減少させた。また、本発明者らは、塩基選択性を高めるために、核酸塩基部位を天然ヌクレオシドとは異なる3環性とした。こうして得られたヌクレオシドアナログによれば、RNAに対して選択的に高い親和性があることがわかった。加えて、400nmを中心として強い蛍光を発することも明らかになった。こうした親和性及び蛍光特性を備えるヌクレオシドを備えることにより、薬剤耐性に関与するP糖タンパク質の遺伝子の遺伝子多型を検出できるという知見も得た。
 本発明のヌクレオシド誘導体は、従来型に比較してRNA選択性が高いことから、アンチセンス、siRNA法などRNAを標的として遺伝子治療や各種研究手法に活用することができる。また、本発明のヌクレオシド誘導体は、それ自体蛍光性であるため、遺伝子多型等の検出に極めて有利である。
 以下、本発明の概要について図面を参照しながら説明する。図1は、DNA/DNA二重鎖とDNA/RNA二重鎖とのリン酸間距離及びそれに基づくヌクレオシドの改変を示す図であり、図2は、一次改変ヌクレオシド誘導体のDNA/DNA二重鎖の熱的安定性及び塩基選択性の評価結果を示す図であり、図3は、改変ヌクレオシド誘導体のDNA/RNA二重鎖の熱的安定性及び塩基選択性の評価結果を示す図であり、図4は、改変ヌクレオシドのMOEに基づくモデリング結果を示す図であり、図5は、二次改変ヌクレオシド誘導体(本発明のヌクレオシド誘導体)の作製について示す図である。さらに、図6は、二次改変ヌクレオシド誘導体を含むオリゴヌクレオチドのDNA/RNA二重鎖及びDNA/DNA二重鎖の熱的安定性(Tm値)を示すグラフ図であり、図7は、DNA/RNA二重鎖及びDNA/DNA二重鎖における二次ヌクレオシドの塩基選択性(Tm値)を示すグラフ図であり、図8は、二次改変ヌクレオシド誘導体の蛍光スペクトルを示す図である。
 なお、MOEは、分子力学法に基づくプログラムであり、図4のモデリング結果は、MMFF94xの力場を用いてプログラムを実行した。
 図1に示すように、2種類の二重鎖構造につき、リン酸間の距離の平均を計算したところ、それぞれDNA/DNA二重鎖については6.7Å、DNA/RNA二重鎖については5.7オングストロームであることがわかった。すなわち、DNA/RNA二重鎖におけるリン酸間距離は、はDNA/DNA二重鎖と比較して短いことがわかった。そこで、本発明者らは、リン酸間の距離の違いに着目し、リン酸間距離を小さくするように、隣接するリン酸間を二炭素(通常のヌクレオシドは三炭素であるところ)としたプロピルアデニンおよびブチルアデニンを塩基アナログ体として使用することを考案し(一次改変ヌクレオシド誘導体の考案)、これを含むオリゴヌクレオチドを合成し、そのRNA選択性について検証した。検証は、DNA/DNAおよびDNA/RNAの両二重鎖の熱的安定性をTm値で比較するとともに、RNA中の4種類の塩基に対する塩基選択性をTm値で比較した。結果を図2、3に示す。
 図2に示すように、ブチル型のものではDNA/DNAおよびDNA/RNAの両二重鎖を熱的に不安定化してしまうのに対して、プロピル型ではDNAとの二重鎖を熱的に不安定化するものの、RNAとの二重鎖を若干ではあるが熱的に安定化することが分かった。また、図3に示すように、未修飾のもの(各グラフの上段の4つのバー)と比較して改変したアナログ体(各グラフの中央部4つのバー及び下段4つのバー)では塩基選択性が低いということが分かった。
 そこで、これらの2種類のアナログ体を導入したDNA/RNA二重鎖のMOEによるモデリングを実施したところ、図4に示すように、ブチル型(図4右側)のものでは水素結合に関与する原子間の距離が水素結合可能な3Å以内であるのに対して、プロピル型(図4左側)のものではそれ以上であり、水素結合を形成する為には不十分な長さであることが分かった。本発明者らは、ブチル型のものでは相補塩基までの距離は十分であるものの側鎖のフレキシビリティーが高く、二重鎖が熱的に不安定化してしまい、プロピル型のものでは側鎖のフレキシビリティーがより低く熱的安定性はブチル型より高く保持されるものの相補塩基までの距離が不十分である為に塩基選択性が低下したのではないかと推論した。
 そこで、本発明者らは、プロピル型のアナログの塩基部位に相補塩基までの距離を確保する為にピリジン環を導入したこれらの誘導体を二次ヌクレオシド誘導体として設計し、DNA合成用のアミダイト化合物及びオリゴヌクレオチドを合成した(図5参照)。図5に示すように、これらはいずれも三環性の化合物である。
 図6に示すように、二次改変ヌクレオシド誘導体を含むオリゴヌクレオチド(DNA)は、DNAとの二重鎖では不安定化するのに対し、RNAとの二重鎖では、誘導体数が増えると逆に二重鎖の熱的安定性が上昇することが分かった。また、図7に示すように、二次改変ヌクレオシド誘導体を含むオリゴヌクレオチド(DNA)は、DNAが相補鎖の場合は選択性が低いのに対して、RNAが相補鎖の場合には、三環性にすることで一次改変ヌクレオシド誘導体よりも塩基選択性が向上することが分かった。
 さらに、図8に示すように、二次改変ヌクレオシド誘導体は、400nmを中心に強い蛍光を持つことが分り、ハイブリダイズ産物を直接蛍光検出できること分かった。
 以上のことから、本発明は、オリゴヌクレオチドにおいて隣接されるリン酸間距離を減少するためにプロピル基をデオキシリボースに替えた糖部開環構造を備え、相補塩基との間で水素結合形成可能な距離を確保するためにと環拡張型塩基構造を備えることで、対RNA二重鎖安定性と塩基識別性を備えるヌクレオシド誘導体をそれを含むオリゴヌクレオチドを提供できることが分かった。さらに、こうした改変ヌクレオシド誘導体は蛍光を有することが判明したため、一塩基識別性を付与できることもわかった。
 以下、本発明の各種実施形態につき詳細に説明する。
 以下、本発明の実施の形態であるヌクレオシド誘導体、オリゴヌクレオチドこれらの製造方法及びそれに用いる化合物、これらの用途について詳細に説明する。なお、本発明に関する当業者の技術の範囲内である分子生物学および核酸化学の従来の技術は、文献中で説明されている。例えば、Sambrookら、Molecular Cloning: A Laboratory Manual, Cold Spring HarborLaboratory, Cold Spring Harbor, New York, 1989年;Gait, M.J., OligonucleotideSynthesis,編集(1984年);Hames, B.D.およびHiggins, S.J.、Nucleic Acid Hybridization, 編集(1984年);および一連のMethodsin Enzymology, Academic Press, Inc.を参照することができる。
(ヌクレオシド誘導体)
 本発明のヌクレオシド誘導体は、式(1)又は式(2)で表される化合物である。これらの化合物において、Zは、炭素原子(CH)又は窒素原子を表している。
 また、これらの化合物における環Aの環構成炭素原子に結合する水素原子は置換されていなくてもよいし、置換されていてもよい。置換基としては、炭素数1~4個の鎖状アルキル基とすることが好ましい。すなわち、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基及びtert-ブチル基が挙げられる。立体障害等を考慮したとき、メチル基及びエチル基を好ましく用いることができる場合がある。また、置換基の数も特に限定しないが、立体障害等が問題となる場合には、1個又は2個程度とすることが好ましい。
 R1は、水素原子又は水酸基保護基とすることができる。水酸基保護基は、公知のものを利用できる。具体例は、後段で説明するものと同様のものが挙げられる。また、R2は、水素原子又はホスホジエステル基(PO3)とすることができる。ホスホジエステル基としては特に限定しない。リン原子に二重結合で結合する1種の酸素原子に替えて、O、S又はSeとすることができ、他の水酸基(酸素イオン)に替えて、SH(若しくはS)、S又はSe、炭素数1~4個のアルキル基又はモルホリノ基とすることができる。これらX及びXの組み合わせによって得られる各種のホスホジエステル基としては、例えば、以下の式(7)の各種基(ただし炭素原子に連結される酸素原子が除かれたもの)が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 
 式(1)で表されるヌクレオシド誘導体は、アデノシンアナログとして利用できる。また、式(2)で表されるヌクレオシド誘導体は、グアノシンアナログとして利用できる。また、式(1)及び式(2)で表されるヌクレオシド誘導体は、R2にホスホジエステル結合基を備える場合、ヌクレオチド誘導体となる。
 本発明のヌクレオシド誘導体は、また、蛍光を発することができる。すなわち、330nm程度とする励起波長の光を照射すると、400nm近傍にピークを有する蛍光を発することができる。このため、特定のRNA又は特定の塩基等とのハイブリダイゼーションを容易に検出することができる。
 本ヌクレオシド誘導体は、P.A.Harris and W.Pendergast, J. Heterocyclic Chem., 33, 319 (1996).の記載に準じて、プリン塩基において環を拡張することで、合成することができる。例えば、式(1)で表される化合物は以下のスキーム1で合成される。
Figure JPOXMLDOC01-appb-C000012
(オリゴヌクレオチド合成に適したヌクレオシド誘導体)
 オリゴヌクレオチド合成に適したヌクレオシド誘導体としては、以下の式(3)及び式(4)で表される化合物が挙げられる。なお、式(3)及び式(4)におけるZ及びA環は、式(1)及び式(2)におけるZと同義である。
Figure JPOXMLDOC01-appb-C000013
 式(3)及び式(4)において、Wは水素原子又は水酸基保護基を表すことができる。水酸基保護基としては、水酸基を意図しない反応から保護する基であればよい。こうした水酸基保護基としては、特に限定しないで従来公知の各種の水酸基保護基を用いることができる。本発明の好ましい保護基は、フルオレニルメトキシカルボニル基(FMOC基)、ジメトキシトリチル基(DMT基)、四級ブチルジメチルシリル基(TBDMS基)、モノメトキシトリチル基、トリフルオロアセチル基、レブリニル基、またはシリル基である。好ましい保護基は、トリチル基であり、例えば、ジメトキシトリチル(DMT)及び四級ブチルジメチルシリル基(TBDMS基)から選択される。
 また、Wは、水酸基保護基、ホスホルアミダイト基又は固相担体に結合される若しくは結合された連結基を表す。Wがホスホルアミダイト基である化合物(アミダイト化合物)は、ホスホルアミダイト法によるホスホルアミダイト試薬として用いて、オリゴヌクレオチドを合成するのに用いることができる。なお、本発明において、ホスホルアミダイト基は、以下の式(8)で表すことができる。
Figure JPOXMLDOC01-appb-C000014
(式(8)中、各Yは独立して、同一であっても異なっていてもよく、分枝状又は直鎖状の炭素数1~5個のアルキル基を表し、Yは、分枝状又は直鎖状の炭素数1~5個のアルキル基又は置換されていてもよいアルコキシル基を表す。)
 上記式(8)において、Yは、特に限定しないがイソプロピル基が好ましいものとして挙げられ、また、Yとしては、-OCH、-OEtCN、-OCHCHCH等が挙げられる。
 また、式(3)及び式(4)においてWが固相担体に結合される連結基である化合物は、当該連結基とアミノ基など固相担体上の所定の官能基とを結合させることにより、固相担体に保持される。そして、式(3)及び式(4)において、Wが固相担体に結合された連結基である化合物は、連結基を介して本発明のヌクレオシド誘導体が固相担体に結合されているため、各種の核酸固相合成法の出発材料として用いることができる。この出発材料を用いることで、式(5)や式(6)で表されるユニットを有するオリゴヌクレオチドを製造することができる。
 ここで、固相担体とは、一般に高分子担体が用いられ、例えば、CPG(controlled pored glass)やHCP(highly cross-linked polystyrene)、ある種のゲルなどが挙げられる。また、固相担体には適切なスペーサーを有していてもよい。連結基は、固相担体と本化合物とを連結するリンカーである。こうした連結基としては、公知のコハク酸エステルリンカー、シュウ酸エステルリンカー、シランジイルリンカー、シリルリンカーなどを用いることができる。
 なお、式(3)におけるR3は、水素原子又はアミノ保護基とすることができる。アデニン塩基由来の第1級アミノ基は、必要に応じて適宜保護基で保護される。このような保護方法及び保護基は当業者において周知である。アミノ保護基としては、例えば、ベンゾイル基、アセチル基、フェノキシアセチル基が挙げられる。
 このような式(3)又は式(4)で表されるヌクレオシド誘導体は、式(1)又は式(2)で表されるヌクレオシド誘導体から既知の方法で合成される。例えば、式(3)で表される各種ヌクレオシド誘導体は、以下のスキーム2で合成される。
Figure JPOXMLDOC01-appb-C000015
(オリゴヌクレオチド)

 本発明のオリゴヌクレオチドは、以下の式(5)及び式(6)のいずれかで表される、1種又は2種以上のヌクレオチド誘導体単位を備えることができる。式(5)及び式(6)中のZは、式(1)等におけるZと同義であり、A環についても、式(1)等におけるA環と同義である。
Figure JPOXMLDOC01-appb-C000016
 式(5)及び式(6)中、X1は、O、S又はSeとすることができ、X2は、SH(若しくはS)、S又はSe、炭素数1~4個のアルキル基又はモルホリノ基とすることができる。このようなホスホジエステル基としては、式(7)に記載の各種基が挙げられる。
 本発明のオリゴヌクレオチドにおける上記ヌクレオチド誘導体単位は、1種以上であってもよいし2種以上であってもよい。また、1個であってもよいし複数個であってもよいし、全体であってもよい。本発明のオリゴヌクレオチドに含まれるヌクレオチド誘導体単位は、オリゴヌクレオチドの用途等に応じて決定される。
 また、オリゴヌクレオチドにおけるヌクレオチド誘導体単位の位置も特に限定されない。5’末端、3’末端及びそれ以外部分のいずれにも備えることができる。なお、本発明のオリゴヌクレオチドにおいて5’末端には水酸基が結合されていてもよいし、リン酸基(PO4)が結合されていてもよい。また、同様に、本オリゴヌクレオチドの3’末端には、水酸基が結合されていてもよいし、リン酸基(PO4)が結合されていてもよい。その他5’末端及び3’末端はそれぞれ必要に応じて適切な構造を採ることができる。
本発明のオリゴヌクレオチドは、本発明のヌクレオチド単位以外にリボヌクレオチド及び/又はデオキシリボヌクレオチドを備えることができる。本発明のオリゴヌクレオチドは、本発明のヌクレオチド単位以外にデオキシリボヌクレオチドのみからなるオリゴヌクレオチドであってもよいし、本発明のヌクレオチド単位以外にリボヌクレオチドのみからなるオリゴヌクレオチドであってもよいし、さらに、本発明のヌクレオチド単位以外にデオキシリボヌクレオチド及びリボヌクレオチドの双方を含むオリゴヌクレオチドであってもよい。RNA/DNA二重鎖及びRNA/RNA二重鎖は共にA型の二重鎖構造であるため、RNAである本発明のオリゴヌクレオチドは相補的なRNA鎖との二重鎖も安定化することができる。
 オリゴヌクレオチドとは、ヌクレオチドをモノマー単位として該モノマー単位を複数有するポリマーを意味するものとし、オリゴヌクレオチドは、通常数個以上100個以下程度までのヌクレオチドのポリマーを含むものとする。本発明のオリゴヌクレオチドは、用途に応じた長さとすることができるが、オリゴヌクレオチドの合成を考慮すると、10以上35以下とすることが好ましい。また、アンチセンスの場合には、10以上30以下程度にすることができ、また、siRNAの場合には、B及びCの合計の鎖長は、好ましくは15以上35以下、より好ましくは30以下である。プライマーの場合には、10以上30以下であり、プローブの場合には10以上30以下であることが好ましく、モレキュラービーコンの場合には、15以上40以下であることが好ましい。
 なお、本発明によれば当然に、本発明のヌクレオチド誘導体単位を備えるポリヌクレオチドも提供される。
 また、本発明のヌクレオチド単位以外の改変されたヌクレオチドを備えていてもよい。改変されたヌクレオチドとは、ヌクレオチドの各種部分、すなわち、塩基、糖部分及びリン酸エステル部分において何らかの化学修飾が施されていることをいうものとする。
 本発明のオリゴヌクレオチドは、記述のヌクレオシド誘導体の一種であるアミダイト体を利用する従来公知の核酸合成法によって合成することができる。
 本発明のオリゴヌクレオチドは、本発明のヌクレオチド単位を備えているため、RNAと選択的に安定にハイブリダイズできるとともに、塩基識別性も備えているため、特定配列のRNAを検出することができる。しかもそれ自体蛍光性を有しているため、一塩基多型などの遺伝子変異も検出できる。
 また、RNAと高い選択性でハイブリダイゼーションすることから、特に細胞内でのRNA検出、細胞内における遺伝子発現のリアルタイム検出に好ましく用いることができる。さらに、これらオリゴヌクレオチドをチップやビーズ等の固相担体等に保持したものは、検査装置や診断装置又はこれらの一部として利用することができる。
 本発明のオリゴヌクレオチドは、各種の遺伝子発現制御剤の形態を採ることができる。すなわち、アンチジーン、アンチセンス、アプタマー、miRNA及びリボザイムに用いることができる。また、本発明のオリゴヌクレオチドは、siRNA、shRNA、アンチセンス、リボザイム及びアプタマーに用いることもできる。
 本発明のオリゴヌクレオチドは、プローブ及びプライマーに用いることができる。プローブは、設計または選択により、ターゲット核酸に特異的に規定された塩基配列を有しており、所定のストリンジェンシーの下で、ターゲット核酸とハイブリダイズするようにするに取得されたオリゴヌクレオチドである。上記したことから、本発明のオリゴヌクレオチドプローブは特に、細胞内のRNA検出、特にリアルタイム検出用に好ましく用いることができる。

 本発明のオリゴヌクレオチドが含むヌクレオチド誘導体単位は、それ自体蛍光を発するため、これを利用したRNA上の変異を検出するためのプローブセットが提供される。このプローブセットは、本発明のヌクレオチド誘導体単位を有する第1のプローブと本発明のヌクレオチド誘導体単位を有しない第2のプローブとから構成できる。第1のプローブは、前記変異部位に対応する位置に本発明のヌクレオチド誘導体単位を備えるようにする。また、このようなヌクレオチド誘導体単位をプローブの3’末端又は5’末端に有するようにする。例えば、図9に示すように、第1のプローブをターゲット鎖(図9に示す例ではRNA)の3’側にハイブリダイズさせる場合には、3’末端に本発明のヌクレオチド誘導体単位を有するようにする。なお、ヌクレオチド誘導体単位は、検出しようとする変異部位において存在可能性のある塩基に対応する(相補する)塩基アナログを有するものであってもよいし、そうでなくともよい。第1のプローブは、1種類であってもよいし2種類以上であってもよい。検出しようとする変異部位に対応する位置に備える本発明のヌクレオチド誘導体単位の種類に応じて第1のプローブの種類(数)が決定される。
 また、第2のプローブは、前記変異部位において存在可能性のある塩基に対応する(相補する)塩基を有するデオキシヌクレオチドを備えるようにする。また、この変異対応ヌクレオチドを、プローブの3’末端又は5’末端に有するようにする。例えば、図9に示すように、第2のプローブをターゲット鎖(RNA)の5’側にハイブリダイズさせる場合には、5’末端に適切なデオキシヌクレオチドを有するようにする。第2のプローブは、1種類であってもよいし2種類以上であってもよい。検出しようとする変異部位に対応する位置に備えるデオキシヌクレオチドの種類に応じて第2のプローブの種類(数)が決定される。
 以上のように、検出しようとする変異部位に対応する位置に本発明のヌクレオチド誘導体単位を有するプローブと同一の変異部位に存在する可能性のある塩基に相補的な通常のデオキシヌクレオチド単位を有するプローブとを作製することで、変異部位に対する第1のプローブのマッチ/ミスマッチ及び第2のプローブのマッチ/ミスマッチから、変異部位の塩基を識別することができる。例えば、変異部位に対して第1のプローブも第2のプローブもマッチするときには、第1のプローブと第2のプローブとが変異部位で競合するため、第1のプローブのヌクレオチド単位の少なくとも一部がフリップアウトして蛍光発光が可能となる。また、第1のプローブがミスマッチであり、第2のプローブがマッチするとき、第1のプローブのヌクレオチド単位は二重鎖から大きくフリップアウトしてより強度の高い蛍光を発光できるようになるのである。
 第2のプローブを、存在可能性のあるすべての塩基を変異部位対応末端に備えるように複数準備することで、第1のプローブが一種類であっても、すべての塩基の変異を検出することができる。このようなプローブセットは、特に一塩基多型を検出するのに好ましく用いることができる。
 なお、本発明によれば、このようなプローブセットを用いる一塩基多型の検出方法も提供される。すなわち、一塩基多型を含む可能性のある遺伝子発現産物としてのRNA試料を準備する工程と、前記プローブセットから選択される1種の第1のプローブと1種の第2のプローブとを組み合わせて得られるすべての組み合わせで第1のプローブ及び第2のプローブと、RNA試料と、をハイブリダイゼーション可能に接触させる工程と、前記RNA試料と前記第1のプローブと前記第2のプローブとのハイブリダイズ産物の前記第1のプローブに基づく蛍光シグナルを検出する工程と、を備えることができる。
 RNA試料が各種の被験体から公知の方法で調製することができる。被験体としては、血液を含む各種体液や組織等、特に限定されない。
 RNA試料と第1のプローブと第2のプローブとの接触形態(順序)は、特に限定されない。RNA試料に対して、第1のプローブと第2のプローブとを同時に接触させる形態であってもよいし、第1のプローブを接触させた後、第2のプローブを接触させてもよい。さらに、第2のプローブを接触させた後に第1のプローブを接触させてもよい。
ハイブリダイゼーションの条件は、RNA試料とプローブの種類に応じて適宜決定される。また、この検出方法においても、第1のプローブ及び第2のプローブのうち少なくとも一部を固相担体に固定化させたアレイを用いることができる。
 本発明のオリゴヌクレオチドは、ステム-ループ構造を有するモレキュラービーコン型のプローブとすることもできる。すなわち、ステムとループとを形成可能に塩基配列を設計したプローブとすることもできる。このループ中に本発明のヌクレオチド単位を備えることで、塩基アナログ部分がループからフリップアウトして蛍光発色しやすくなってなり、非ハイブリダイズ時において蛍光を発すし、ハイブリダイズ時には消光するようなプローブを構築できる。このようなプローブによれば、ハイブリダイズを容易に検出できる。
 以上のことから、本発明のオリゴヌクレオチドは、siRNAやアンチセンス等として機能するよう構築することで、遺伝子発現抑制剤として利用できる。また、本発明のオリゴヌクレオチドは、ヒト及び非ヒト動物における疾患の予防・治療用医薬組成物の有効成分として用いることができる。例えば、遺伝子発現に伴う疾患に対して、遺伝子発現抑制剤として構築した本発明のオリゴヌクレオチド誘導体はこうした疾患の予防や治療に有効である。
 さらに、本発明のオリゴヌクレオチドは、その対RNAハイブリダイゼーション機能を利用してプローブ、プライマー等のハイブリダイズ試薬(典型的には、検査試薬や診断試薬等である。)として用いることができる。RNAと高い選択性でハイブリダイゼーションすることから、特に細胞内でのRNA検出、細胞内における遺伝子発現のリアルタイム検出に好ましく用いることができる。さらに、これらオリゴヌクレオチドをチップやビーズ等の固相担体等に保持したものは、検査装置や診断装置又はこれらの一部として利用することができる。さらには、こうした検査試薬や診断薬は、他の試薬薬や診断薬あるいは装置等と組み合わせた検査用又は診断用キットとしても用いることができる。
 本発明のオリゴヌクレオチドは遺伝発現制御剤の形態で、ヒト及び非ヒト動物の細胞における遺伝子発現抑制方法にも利用できる。さらに、本発明のオリゴヌクレオチドは、ハイブリダイズ試薬の形態で、ヒト及び非ヒト動物から取得した核酸試料における特定遺伝子又は特定変異の検出方法にも利用できる。
 以下、本発明を、実施例を挙げて具体的に説明するが、これらの実施例は本発明を限定するものではない。
 本実施例では以下のスキーム3により3環性ヌクレオシドアナログを合成した。
Figure JPOXMLDOC01-appb-C000017
 なお、上記スキーム3における各生成物(1)~(10)を取得するための実験条件は以下のとおりであった。
Reagents and conditions: (1)Malononitrile, 2-propanol, 90℃, 78 %. (2) p-toluenesulfonilchloride, DMAP, CH2Cl,rt, 83 %. (3) K2CO3, DMF, 60 ℃,51 %. (4)(i)triethyl ortho-formate, 100℃,(ii) NH/ MeOH, 110℃, 65 %. (5) 80% CH3COOH, 60℃. (6) TBDMS, Imidazole, DMF, 78 %. (7) Benzoyl chloride, pyridine, 87%. (8)TBAF, THF, 77%. (9) 4-4’-Dimethoxytrityl chloride, pyridine, 44 %. (10) i-Pr2NP(Cl)OCE, Huning Base , CH2Cl2, rt, 47%.
(1)5-Aminoimdazo [4,5-b] pyrimidine-6-carbonitrileの合成
 Purine 1.0 g (8.3 mmol) を2-propanol 60 mL に溶解し、Malononitrile 2.6 g (39 mmol,4.7 eq) を加え、アルゴン雰囲気下、オイルバスで90℃を保ちながら撹拌する。(黄色透明)99時間撹拌後、原料の消失をTLCで確認し、室温に冷やす。(赤ワイン色)室温に冷やした後、溶液内に結晶物が現れるので、その結晶を氷水で冷却した2-propanolで洗い流しながら吸引ろ過し、結晶物 (1) を得た(光緑色)。得られた結晶を一晩真空ポンプで乾燥し、NMR測定をした(収量 1.5 g, 9.75 mmol, 収率58 %)。
1H NMR (400MHz, DMSO) δ;6.58 (2H,s,6-CH and 8-CH)、8.17(3H,s,2-NH2,9-NH)
(2)2,2-Dimethyl-4- (p-toluenesulfonyloxymethyl) -1,3-dioxolane の合成
 Dimethyl-1,3-dioxolane-4-methanol 1.3 g,1.2 ml (10 mmol) に、1時間乾燥させた 4-Dimethyl amino pyridine 3.7g (3.0 mmol,3.0 eq) を加え、CHCl 100 mL で溶解する。その後、p-Toluenesulfonyl chloride 2.3 g (12 mmol,1.2 eq) を加えた後、初めの30分間冷水に着けながら室温、アルゴン雰囲気下で撹拌する (無色透明)。18時間撹拌後、TLCで原料の消失を確認し、分液ロート(有機溶媒:CDCl3)で分液し油層を無水硫酸Naで脱水する。1時間後、綿栓ろ過し、エバポレーターで濃縮したものをシリカゲルカラムクロマトグラフィー(CHCl3→CHCl3:MeOH=100~10:1)で目的物を単離し、オイリーな液体 (2) を得た(淡黄色透明~無色透明)。得た液体を一晩乾燥し、NMR測定をした。(収量 1.85 g, 8.3 mmol, 収率83 %)
1H NMR (400MHz, CDCl3) δ;1.31 (3H, s, 2-CH3), 1.34 (3H, d, 2-CH3), 2.46 (3H, s,4-phenylmethyl),3.72-3.82(1H,q,4-sulfonylmethyl),3.95-4.06 (3H, m, 4 sulfonylmethyl), 4.22-4.31 (1H, m, 4-CH), 7.27-7.37 (2H, d, 5-CH2), 7.76-7.84 (2H, d, 4-1’-CH2)
(3)9- (4’-4’-dimethyl-3’,5’-dioxolane-methyl) -1carbonitrile-2-aminopurineの合成
5-Aminoimdazo[4,5-b]pyrimidine-6-carbonitrile 0.7 g (4.4 mmol) にK2CO3  0.73 g(5.3 mmol,1.2 eq) を加え、さらに1時間乾燥する。乾燥した後、2,2-Dimethyl-4-(p-toluene -sulfonyloxymethyl)-1,3-dioxolane 1.17 g (5.3 mmol,1.2 eq) をDMF  40 mlに溶解し、その溶液を先ほどの5-Aminoimdazo[4,5-b]pyrimidine-6-carbonitrileとK2CO3のフラスコに加え、アルゴン雰囲気下、オイルバスで60℃に保ちながら撹拌する。(淡赤色)
70時間撹拌後、原料の消失を確認し、分液ロート(有機溶媒:酢エチ)で分液し、油層を無水硫酸Naで脱水する。1時間後、綿栓ろ過し、エバポレーターで濃縮したものをシリカゲルカラムクロマトグラフィー(CHCl3→CHCl3:MeOH=100:1)で目的物を単離し、白色固体(3) を得た(収量 0.25 g, 0.92 mmol, 収率21 %)。
1HNMR(400MHz,DMSO) δ;1.33(3H,s,9-4’-CH3)、1.38(3H,s,9-4’-CH3)1.61(1H,s,9-NH)、
3.69-3.73(2H,q,9-6’-CH2)、4.08-4.12(2H,q,9-6’-CH2)、4.16-4.21(2H,q,9-1’-CH2)、4.29-4.34(2H,q,9-1’-CH2)、4.43-4.49(1H,m,9-2’-CH)、5.11(2H,s,2-NH2)、7.97(1H,s,6-CH)、
8.07(1H,s,8-CH)
HRMS (FAB) calcd for C13H15N5O( MH) ; 273.12258, found ; 273.12291
(4) 13- (4’-4’-dimethyl-3’,5’-dioxolane-methyl) -6-aminoimidazo-quinazolineの合成
 13-(4’-4’-dimethyl-3’,5’-dioxolane-methyl)-6-aminoimidazo quinazoline 0.27 g (1.0 mmol)に、triethyl orthofomate  8mL を加え、オイルバスで100℃を保ちながら撹拌する(無色透明)。
52h撹拌後、TLCで原料の消失を確認しようとしたところ物質が壊れ始めていたので、ただちに撹拌を止め、エバポレーターで溶媒を減圧除去し濃縮した(濃黄色)。濃縮物をNH/MeOH に溶解し、100mLのスチール容器に移し、オイルバスで110℃を保ちながら撹拌する。121h撹拌後、TLCで原料の消失を確認し、水流エバポレーターで濃縮する。濃縮したものを(CHCl3:MeOH=5:1)に溶解しシリカを加え、エバポレーターで濃縮することにより物質をシリカに吸着させる。吸着後、シリカゲルカラムクロマトグラフィー(CHCl3:MeOH=15:1→10:1)で目的物を単離し、濃黄色の固体 (4) を得た。得た固体を一晩乾燥し、NMR測定をした(収量 0.15 g, 0.499 mmol, 収率65.0 %)。
1HNMR(400MHz,DMSO) δ;1.22(3H,s,12-4’-CH3)、1.27(3H,s,12-4’-CH3)、3.80-3.83
(2H,q,12-1’-CH2)、4.36-4.49(2H,q,12-6’-CH2)、4.55-4.58(1H,m,12-2’-CH)、
7.98(2H,s,2-NH2)、8.47(1H,s,2-CH)、8.63(1H,s,7-CH)、9.03(1H,s,11-CH)
(5)13- (2’-4’-hydoroxi) -6-aminoimidazo-quinazolineの合成
 13-(2’-4’-hydoroxi)-6-aminoimidazo-quinazoline 0.3 g(1.0 mmol) に、80%希釈酢酸を5mL加え、オイルバスで60℃を保ちながら撹拌する。
撹拌開始9h後、TLCで反応の進行を確認した後、水流エバポレーターで酢酸を減圧除去することで、黄色の固体(5) を得た。得た固体を一晩乾燥し、NMR測定をした。
1HNMR(400MHz,DMSO) δ;1.22(1H,s,13-2’-1’’-OH)、1.27(1H,s,13-3’-1’’-OH)、3.93
(2H,s,13-1’-CH2)、4.11-4.17(2H,q,13-1’-CH2)、4.45-4.50(2H,q,12-3’-CH2)、
4.88(2H,t,12-3’-CH2)、5.13-5.15(1H,s,13-2’-CH)、7.97(2H,s,6-NH2) 、8.47(1H,s,2-CH)、8.59 (1H,s,7-CH)、9.01(1H,s,12-CH)
Elemental Anal. Calcd for C11H12N6O2・1/5 H2O: C, 50.29; H, 4.74; N, 30.87.
Found: C, 50.37; H, 4.87; N, 30.89.
(6)13- (2’-1’’,4’-tert-butyldimethyl-silane) -6-aminoimidazo-quinazolineの合成
 13-(2’-1’’,4’-tert-butyldimethyl-silane)-6-aminoimidazo-quinazoline 260 mg (1.0 mmol)に、DMF 10 ml、imidazole 544 mg(8.0 mmol,8.0 eq)、tert-butyldimethyl-chlorosilane 600 mg(4.0 mmol,4.0 eq)を加え、アルゴン雰囲気下、室温で撹拌する(濃黄色透明)。撹拌開始18h後、TLCで目的物の消失を確認し、分液ロート(有機溶媒:酢酸エチル)で分液(NaHCO3×3→飽和食塩水×1)した後、無水Na2SO4で1h脱水した。脱水した後、エバポレーターで濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒: CHCl3:MeOH=20:1~10:1)で目的物を単離し、エバポレーターで溶媒を減圧除去することで白色の固体 (6) を得た。得た固体一晩真空ポンプで乾燥し、NMR測定をした(収量 380 mg, 0.78 mmol, 収率 77.7 %)。
1HNMR(400MHz,DMSO) δ;-0.71(3H,s,13-3’-2’’-CH3)、-0.23(3H,s,13-2’-2’’-CH3)、
-0.01(6H,s,13-2’-2’’,3’-2’’-2CH3)、0.57(9H,s,13-3’-3’’-3CH3)、0.82(9H,s,13-2’-3’ ’-3CH3)、
3.57(2H,s,13-1’-CH2)、3.58(2H,q,13-1’-CH2)、4.16(2H,q,12-3’-CH2)、4.19(2H,t,12-3’-CH2)
、4.38-4.40(1H,w,13-2’-CH)、7.92(2H,s,6-NH2) 、8.39(1H,s,2-CH)、8.50 (1H,s,7-CH)
8.93(1H,s,12-CH)
HRMS (FAB) calcd for C23H40N6O2Si( MH) ; 488.27514, found ; 488.27596
(7)13- (2’-1’’,4’-tert-butyldimethyl-silane) -6-aminoimidazo[1’-benzoyl]-quinazolineの合成
13-(2’-1’’,4’-tert-butyldimethyl-silane)-6-aminoimidazo[1’-benzoyl]-quinazoline 530 mg
(1.1 mmol) に、pyridine 20 ml、benzoyl chloride 0.11ml,0.15 mg (1.1 mmol,1.0 eq) 、を加え、アルゴン雰囲気下、室温で撹拌する(黄緑色透明)。
撹拌開始2h後、TLCの結果より、benzoyl chlorideが足りない傾向があったので0.11 ml,0.15 mg (1.1 mmol,1.0 eq) 追加した。撹拌開始7h後、TLCで目的物の消失を確認し、分液ロート(有機溶媒:CHCl3)で分液(NaHCO3×2→飽和食塩水×1)した後、無水Na2SO4で1h脱水した。脱水した後、エバポレーターで濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒:CHCl3→CHCl3:MeOH=10:1) で目的物を単離し、エバポレーターで溶媒を減圧除去することで淡緑色の固体 (7) を得た。得た固体を一晩真空ポンプで乾燥し、NMR測定をした(収量 557 mg, 0.94 mmol, 収率87.0 %)。
1HNMR(400MHz,DMSO) δ;-0.46(3H,s,13-3’-2’’-CH3)、-0.07(3H,s,13-2’-2’’-CH3)、
0.09(6H,s,13-2’-2’’,3’-2’’-2CH3)、0.79(9H,s,13-3’-3’’-3CH3)、0.93(9H,s,13-2’-3’ ’-3CH3)、
3.60-3.64(2H,s,13-1’-CH2)、3.71-3.74(2H,q,13-1’-CH2)、4.24-4.25(2H,q,12-3’-CH2)、4.67-4.72(2H,t,12-3’-CH2)、4.38-4.40(1H,w,13-2’-CH) 、8.39-8.49(3H,q,6-1’-C6H5)、
7.51(1H,s,2-CH)、7.55 (1H,s,7-CH)、7.60(1H,s,12-CH)、9.60(1H,s,6-NH)
(8)13- (2’-4’-hydoroxi) - 6-aminoimidazo[1’-benzoyl]-quinazolineの合成
13-(2’-4’-hydoroxi)- 6-aminoimidazo[1’-benzoyl]-quinazoline 557 mg (0.94 mmol) にTHF 20 ml、tetrabutylammonium fluoride,1.0M solution in tetrahydro furan 3.4 g, 3.76 ml (3.76 mmol,4.0 eq) 、を加え、アルゴン雰囲気下、室温で撹拌する(黄緑色透明)。撹拌開始2h後、TLCで目的物の消失を確認し、エバポレーターで濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒:CHCl3:MeOH=20:1~7:1)で目的物を単離し、エバポレーターで溶媒を減圧除去することで淡緑色の固体 (8) を得た。得た固体を一晩真空ポンプで乾燥し、NMR測定をした(収量 265 mg, 0.73 mmol, 収率77.3 %)。
1HNMR(400MHz,DMSO) δ;1.25(1H,s,13-2’-1’’-OH)、1.26(1H,s,13-3’-1’’-OH)、3.91
(2H,s,13-1’-CH2)、4.21-4.27(2H,q,13-1’-CH2)、4.60-4.69(2H,q,12-3’-CH2)、4.85-4.90
(2H,t,12-3’-CH2)、5.20-5.25(1H,s,13-2’-CH)、7.60-7.79(3H,q,6-1’-C6H5)、8.12(1H,s,2-CH)、8.60 (1H,s,7-CH)、8.79(1H,s,12-CH)、9.42(1H,s,6-NH)
(9)13- [2’-hydoroxi-4’-(4,4’-dimethoxytrityl)] - 6-aminoimidazo[1’-benzoyl]-quinazolineの合成
 13-(2’-4’-hydoroxi)-6-aminoimidazo[1’-benzoyl]-quinazoline 260 mg (0.71 mmol) に、4-4’-Dimethoxytrithyl chloride 240 mg (0.71 mmol,1.0 eq)、pyridine 20 mLを加え、アルゴン雰囲気下、室温で撹拌する。撹拌開始2時間後、TLCの結果より4-4’-Dimethoxytrithyl chlorideが足りない傾向があったので、240 mg (0.71 mmol,1.0 eq)追加した。撹拌開始7時間後、TLCよりこれ以上反応が進まない感じであったので、分液ロート(有機溶媒:CHCl3)で分液(飽和NaHCO3×2→飽和食塩水×1)した後、無水硫酸ナトリウムで1h脱水した。脱水後、エバポレーターで濃縮し、中性シリカゲルカラムクロマトグラフィー(展開溶媒:CHCl3~CHCl3:MeOH=50:1)で目的物を単離し、エバポレーターで溶媒を減圧除去することで淡黄色の化合物 (9) を固体で得た(収量210 mg,0.314 mmol, 収率44.0 %)。
1HNMR(400MHz, CDCl3,D2O) δ;1.25(1H,s,13-2’-1’’-OH)、1.26(1H,s,13-3’-1’’-OH)、3.91
(2H,s,13-1’-CH2)、4.21-4.27(2H,q,13-1’-CH2)、4.60-4.69(2H,q,12-3’-CH2)、4.85-4.90
(2H,t,12-3’-CH2)、5.20-5.25(1H,s,13-2’-CH)、7.60-7.79(3H,q,6-1’-C6H5)、8.12(1H,s,2-CH)、8.60 (1H,s,7-CH)、8.79(1H,s,12-CH)、9.42(1H,s,6-NH)
(10)13- [2’-[(N,N-diisopropylamino)phosphinyl] -4’-(4,4’-dimethoxytrityl)] - 6-amino
-imidazo[1’-benzoyl]-quinazolineの合成
13- [2’-hydoroxi-4’-(4,4’-dimethoxytrityl)] - 6-aminoimidazo[1’-benzoyl]-quinazoline 135
(0.20 mmol)をCH2Cl2 2 mlで溶解した後、Huning Base 68μl(0.40 mmol, 2.0 eq)、i-Pr2NP(Cl)OCE 67μl(0.30 mmol, 1.5 eq)を加え、アルゴン雰囲気下、室温で撹拌した。30分後、TLCで反応の進行を確認した後、撹拌を停止した。その後、分液ロート(有機溶媒:CHCl3)で分液(飽和NaHCO3×2→飽和食塩水×1)した後、無水硫酸ナトリウムで数分脱水処理した。脱水後、エバポレーターで濃縮し、中性シリカゲルカラムクロマトグラフィー(展開溶媒:酢エチ)で目的物を単離し、エバポレーターで溶媒を減圧除去することで淡黄色の化合物 (9) を固体で得た。また、乾燥後、31P NMRにて目的のピーク(149.1, 150.2 ppm)を確認した(収量122.1 mg, 0.314 mmol, 収率47.0 %)。
 本実施例では、実施例1で合成したアミダイト体を用いてオリゴヌクレオチドを合成した。
 DNA合成機を用いて、合成した化合物10のアミダイト体を下記配列のX部分に導入した4種類のオリゴヌクレオチドを合成、精製した。また、以下の配列の内、F-1とF-2はモレキュラービーコンのようなステム-ループ構造を指向した配列になっており、配列下線部はステム部分、下線部無しがループ部分になる。
F-1 5’- d (TTC TGA CTT X TTT TCA GAA) -3’ (19 mer)
F-2 5’- d (TTC TGA CTA X ATT TCA GAA) -3’ (19 mer)
F-3 5’- d (AAG GAA AX GAG GAA AGA) -3’  (17 mer)
F-4 5’- d (AAG GAA XX GAG GAA AGA) -3’  (17 mer)
 なお、合成機によりカップリングした後、28%NH4OH 1.2mlにCPGを懸濁し、インキュベーターで55℃に保ちながら12時間インキュベートした。CPG懸濁液をエッペンドルチューブに移し、さらにH2O:MeOH=3:1溶液1ml×2回で洗浄、上清液の溶媒をスピードバックで遠心減圧除去した。減圧後、これをloading solution 200μlで回収し電気泳動をし、目的のバンドをゲル溶出液と共に撹拌することで目的のオリゴヌクレオチドを溶出させた。溶出液をSep-pak C18逆相カラムを用いて粗精製し、この溶出液をスピードバックで遠心減圧除去した。
 MALDI-TOF / MSを用いて、オリゴヌクレオチドの定量を行った。結果を以下の表に示す。F-1, 3, 4はTOF / MSの結果のより、目的のオリゴヌクレオチドであると判断した。F-2の測定値が記されていないのは、OD値が極めて微量なためであり、検出できなかった。
Figure JPOXMLDOC01-appb-T000018
 F-3, F-4の熱安定性の評価:T m 測定
 本実施例では、F-3, F-4とそれぞれ相補的なDNA及びRNAとの二重鎖の熱安定性をTm値で評価した。なお、Tm測定におけるそれぞれの鎖の濃度は3μMになるように、測定用緩衝液( 10mM NaPhosphate ( pH7.0 ) - 100mM NaCl ) 200μLに溶解させ、95℃で3分間アニーリングした後、1時間放置し常温に戻し、15分間の脱気を行った。そのサンプルの内150μLを専用セルに入れ測定した。F-3, F-4及び相補DNA, RNAの配列は以下の表に記す。
Figure JPOXMLDOC01-appb-T000019
・ 表中のQは3環性アナログを、相補DNAのXXはTA, TT, TG, TC、相補RNAのXXはUA, UU, UG, UCを示す。
 図10及び図11に示すように、いずれのプローブもDNAとの二重鎖を大きく不安定化するのに対して、RNAが相補である場合にはアナログの数が増えると逆に二重鎖の熱的安定性が上昇することが分かった。
 F-1の熱安定性の評価:T m 測定
 本実施例では、F-1とそれぞれ相補的なRNAとの二重鎖の熱安定性をTm値で評価した。F-1のTm測定におけるそれぞれの鎖の濃度は3μMになるように、測定用緩衝液( 10mM NaPhosphate ( pH7.0 ) - 100mM NaCl ) 200μLに溶解させ、95℃で3分間アニーリングした後、1時間放置し常温に戻し、15分間の脱気を行った。
F-1及びその相補RNAの配列は以下の表に記す。
Figure JPOXMLDOC01-appb-T000020
※表中のQは3環性アナログを、相補RNAのXはA, U, G, Cを示す。またF-1の配列中の下線部分の配列はステム部位を、中央の5 merはループ部分を示している。
 2本鎖状態にしたF-1と相補RNAとの熱的安定性を50%融解温度Tmを測定することで比較した。融解曲線とTm値を図12に示す。
 図12に示すように、F-1は、プローブ内で二重鎖を形成するときよりも、相補RNAと二重鎖を形成するときに極めて良好な熱的安定性を呈することがわかった。
3環性アナログ体の蛍光特性と極性依存度の測定
 本実施例では、実施例1で合成した化合物5を用いて、3環性アナログ体の蛍光特性を評価した。化合物5を1mg量りとりDMSO 500μlに溶解した。十分に溶解した後、10μlを新たなエッペンドルチューブに移し、蒸留水を990μl加えた。その後、蛍光分光装置(日立-F4500)にて蛍光測定を行った。励起、蛍光波長を図13に示す。また、化合物( 5 )を1 mg量り取り、DMSO 500μlに十分に溶解した後、10μlづつを新たなエッペンドルチューブ3本にそれぞれ移し、H2O(蒸留水)、dry MeOH、dry CHCl3それぞれを990μlづつ加えて、3種類のサンプルを作成した。それぞれのサンプルを蛍光セル容器に移し、蛍光分光装置 (日立-F4500)にて蛍光測定を行った。励起光(λex=338 nm)を照射したときのそれぞれの蛍光波長と蛍光強度のグラフを図14に示す。
 図13に示すように、化合物5は、約338nmで吸光し、約400nmの蛍光を発することがわかった。また、図14に示すように、蒸留水中で最も強い蛍光を発し、メタノール中でも蛍光を発したが、クロロホルム中では蛍光を発しないことがわかった。
3環性アナログの結合したCPGの合成
 本実施例では、3環アナログの結合したCPG unit (11)を作製した。すなわち、化合物 (9) 143 mg (0.21 mmol) をpyridine (2 mL) に溶解させ、DMAP 0.5 μg (4.2μmol,0.02 eq)、無水コハク酸63 mg (0.63 mmol, 3.0 eq) を加え、Ar雰囲気下、室温で撹拌した。110時間後、TLCでこれ以上反応が進行しないことを確認し、酢酸エチルで希釈し、水 (×2),NaHCO3 (×1),飽和NaCl水溶液 (×1)で抽出・洗浄を行い、酢酸ナトリウムで乾燥させ、溶媒を除去した。そこから、DMF (4mL) に溶解させ、CPG 0.62 g (0.047 mmol, 1.0 eq) を反応液になじませ、WSC 36 mg (0.188 mmol,4 eq) を加えた。室温で2日間、振とうし、その後、pyridineで洗浄、乾燥させた後に、無水酢酸 1.5 mL, pyridine 13.5 mL, DMAP 0.183 g [0.1 M DMAP in pyridine:Ac2O (9:1) ] を加え、室温で15時間振とうさせた。洗浄液を、Pyridine、MeOH及びアセトンの順に替えて洗浄し乾燥させた。この結果、31.2 μmol / gの活性で生成物を得た。なお、活性は、乾燥したCPG樹脂6 mgをガラスフィルターにのせ、HClO4:EtOH=3:2の溶液を流し込み、その濾液のUV 498 nmの波長 (DMTr基の波長) の吸光度を求め、以下の式に代入することにより算出した。
Figure JPOXMLDOC01-appb-M000021
末端に3環性アナログを組み込んだオリゴヌクレオチド (FK-1, FK-3の合成)
本実施例では、DNA合成機を用いて、合成したCPG unite (11)(蛍光性アナログQ)請求項を用いて下記塩基配列のX部分(3’末端)に導入した1種類のオリゴヌクレオチド(FK-1)を合成、精製した。また、以下のターゲット配列からなるRNA及びDNA(ウラシルに替えてチミンを塩基とする)を合成、精製した。また、FK-2配列の5’末端のNに、dA, dT, dG, dCそれぞれが組み込まれた4種類のオリゴヌクレオチドも合成、精製した。なお、本実施例で用いる以下のターゲット配列(RNA)は、薬物トランスポーターMDR1(P糖タンパク質)の遺伝子多型の一つである2677G/A/Tを含んでいる(2677位がYに相当している。)
ターゲットRNA:5’ -r (GAC - UCA - CCU -UCC - CAG- X -
  - ACC - UUC - UAG - UUC - UUU) -3’      (31 mer)
FK-1:5’- d (AAA - GAA - CTA - GAA - GGT - Q) -3’ (16 mer)
FK-2:5’- d (Y- CTG - GGA - AGG - TGA - GTC) -3’ (16 mer)
 なお、DNA合成機の使用にあたっては、実施例2と同様に操作して、精製したオリゴヌクレオチドを取得した。
ターゲット鎖に対する2種類のプローブのハイブリダイゼーション及び蛍光測定その1
 実施例6で合成したFK-1、FK-2(Y:dA、dT、dG、dCの4種類)、及びターゲットRNA鎖(X:rU)の3種のオリゴヌクレオチドをそれぞれの鎖の濃度が3μMになるように、測定用緩衝液( 10mM NaPhosphate ( pH7.0 ) - 100mM NaCl ) 1 mLに溶解させ、95℃で3分間アニーリングした後、1時間放置し常温に戻し、15分間の脱気を行った。計4種類のハイブリダイゼーションサンプルに加えて、FK1-単独のサンプルを蛍光セル容器に移し、蛍光分光装置 (日立-F4500)にて蛍光測定を行った。励起光(λex=338 nm)を照射したときのそれぞれの蛍光波長と蛍光強度のグラフを図15に示す。
 図15に示すように、ターゲット鎖のX(rU)にそれぞれ相補的なFK-1とFK-2(Y:dA)のハイブリダイゼーションサンプルにおいては、最も強い蛍光を示し、その他のハイブリダイゼーションサンプルについては、ほぼFK-1単独サンプルとほぼ同等であった。すなわち、FK-1とFK-2(Y:dA)をターゲット鎖に対するプローブとして用いたとき、FK-1とFK-2との競合により、図9に示すように、蛍光性アナログ塩基であるQが二重鎖からフリップアウトされて、蛍光を発したと考えられた。また、その他のハイブリダイゼーションサンプルにおいては、それぞれのFK-2プローブがFK-1と競合するプローブでなかったために、蛍光性塩基Qは二重鎖からフリップアウトされることがなかっため蛍光を呈しなかった。
ターゲット鎖に対する2種類のプローブのハイブリダイゼーション及び蛍光測定その2
 実施例6で合成したFK-1、FK-2(Y:dA、dT、dCの3種類)、及びターゲットRNA鎖(X:rU、rG、rA)を所定の組み合わせで、3種のオリゴヌクレオチドをそれぞれの鎖の濃度が3μMになるように、測定用緩衝液( 10mM NaPhosphate ( pH7.0 ) - 100mM NaCl ) 1 mLに溶解させ、95℃で3分間アニーリングした後、1時間放置し常温に戻し、15分間の脱気を行った。計4種類のハイブリダイゼーションサンプルに加えて、FK1-単独のサンプルを蛍光セル容器に移し、蛍光分光装置 (日立-F4500)にて蛍光測定を行った。励起光(λex=338 nm)を照射したときのそれぞれの蛍光波長と蛍光強度のグラフを図16に示す。
 図16に示すように、ターゲット鎖(X:rG)に対してFK-1とFK-2(Y:dC)をハイブリダイゼーションさせたとき、ターゲット鎖とFK-2とが強くハイブリダイゼーション(GC塩基対)した結果、FK-1の蛍光性塩基Qが強くフリップアウトして最も強い蛍光を発した。次いで、ターゲット鎖(X:rA)に対してFK-1とFK-2(Y:dT)をハイブリダイゼーションさせたとき、ターゲット鎖とFK-2とがハイブリダイゼーションした結果、FK-1の蛍光性塩基Qがフリップアウトして強い蛍光を発した。さらに、ターゲット鎖のX(rU)にそれぞれ相補的なFK-1とFK-2(Y:dA)のハイブリダイゼーションサンプルにおいては、これらの次いで蛍光を発した。
 以上のことから、ターゲットRNA中のXに対応する位置(5’末端)にXとして存在可能性のある塩基に相補的な通常の塩基のプローブ(FK-2)とXに対応する位置(3’末端)に蛍光性塩基Qを備えるプローブ(FK-1)とをハイブリダイゼーションさせることにより、蛍光性塩基Qのフリップアウトの程度により、蛍光強度が異なるため、これを利用して、ターゲットRNA中のXの塩基を検出することができる。
配列番号1~7、9,10:合成オリゴヌクレオチド

Claims (10)

  1.  以下の式(1)及び式(2)のいずれかで表されるヌクレオシド誘導体。
    Figure JPOXMLDOC01-appb-C000001
    (ただし、式(1)及び式(2)中、Zは、炭素原子又は窒素原子を表し、R1は、水素原子又は水酸基保護基を表し、R2は、水素原子又はホスホジエステル基を表す。)
  2.  式(1)で表され、前記Zは窒素原子である、請求項1に記載のヌクレオシド誘導体。
  3.  以下の式(3)及び(4)で表されるヌクレオシド誘導体。
    Figure JPOXMLDOC01-appb-C000002
    (ただし、式(3)及び式(4)中、Zは、炭素原子又は窒素原子を表し、Wは水素原子又は水酸基保護基を表し、Wは、水酸基保護基、ホスホルアミダイト基又は固相担体に結合される若しくは結合された連結基を表し、R3は、水素原子又はアミノ保護基を表す。)
  4.  以下の式(5)及び式(6)のいずれかで表される、1種又は2種以上のヌクレオチド誘導体単位を備えるオリゴヌクレオチド。
    Figure JPOXMLDOC01-appb-C000003
    (ただし、式(5)及び式(6)中、Zは、炭素原子又は窒素原子を表し、X1は、O、S又はSeを表し、X2は、SH(若しくはS)、S又はSe、炭素数1~4個のアルキル基又はモルホリノ基を表す。)
  5.  以下の式(5)及び式(6)のいずれかで表される、1種又は2種以上のヌクレオチド誘導体単位を備える、RNAハイブリダイズ試薬。
    Figure JPOXMLDOC01-appb-C000004
    (ただし、式(5)及び式(6)中、Zは、炭素原子又は窒素原子を表し、X1は、O、S又はSeを表し、X2は、SH(若しくはS)、S又はSe、炭素数1~4個のアルキル基又はモルホリノ基を表す。)
  6.  前記ヌクレオチド誘導体単位は、式(5)で表され、前記Zは窒素原子である、請求項5に記載のRNAハイブリダイズ試薬。
  7.  前記ヌクレオチド誘導体単位を末端に備える、請求項5又は6に記載のハイブリダイズ試薬。
  8.  ステム-ループ構造を形成可能な塩基配列を有し、前記ループに前記ヌクレオチド誘導体単位を備える、請求項5~7のいずれかに記載のハイブリダイズ試薬。
  9.  RNA上の変異を検出するためのプローブセットであって、
     以下の式(5)及び式(6)のいずれかで表される1種又は2種以上のヌクレオチド誘導体単位を前記変異部位に相当する5’末端又は3’末端に備える第1のプローブと、
     前記変異部位において存在可能性のある塩基に相補的な塩基を有するデオキシヌクレオチドを前記変異部位に相当する3’末端又は5’末端に備える1種又は2種以上の第2のプローブと、
    を含むプローブセット。
    Figure JPOXMLDOC01-appb-C000005
    (ただし、式(5)及び式(6)中、Zは、炭素原子又は窒素原子を表し、X1は、O、S又はSeを表し、X2は、SH(若しくはS)、S又はSe、炭素数1~4個のアルキル基又はモルホリノ基を表す。)
  10.  一塩基多型の検出方法であって、
     前記一塩基多型を含む可能性のある遺伝子発現産物としてのRNA試料を準備する工程と、
     以下のプローブセット:
     以下の式(5)及び式(6)のいずれかで表されるヌクレオチド誘導体単位を前記一塩基多型部位に相当する5’末端又は3’末端に備える第1のプローブと、前記一塩基多型部位において存在可能性のある塩基に相補的な塩基を有するデオキシヌクレオチドを前記一塩基多型部位に相当する3’末端又は5’末端に備える1種又は2種以上の第2のプローブと、を含むプローブセット。
    Figure JPOXMLDOC01-appb-C000006
     
    (ただし、式(5)及び式(6)中、Zは、炭素原子又は窒素原子を表し、X1は、O、S又はSeを表し、X2は、SH(若しくはS)、S又はSe、炭素数1~4個のアルキル基又はモルホリノ基を表す。)
    から選択される1種の前記第1のプローブと1種の前記第2のプローブとを組み合わせて得られる1種又は2種以上の組み合わせで前記第1のプローブ及び前記第2のプローブと、前記RNA試料と、をハイブリダイゼーション可能に接触させる工程と、
     前記RNA試料と前記第1のプローブと前記第2のプローブとのハイブリダイズ産物の前記第1のプローブに基づく蛍光シグナルを検出する工程と、
    を備える、検出方法。
PCT/JP2009/054675 2008-03-11 2009-03-11 Rna選択的ハイブリダイズ試薬及びその利用 WO2009113580A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09719898.0A EP2270015B1 (en) 2008-03-11 2009-03-11 Rna-selective hybridization reagent and utilization of the same
US12/921,909 US8609826B2 (en) 2008-03-11 2009-03-11 RNA-selective hybridization reagent and use of the same
CA2722479A CA2722479C (en) 2008-03-11 2009-03-11 Rna-selective hybridization reagent and use of the same
JP2010502852A JP5201639B2 (ja) 2008-03-11 2009-03-11 Rna選択的ハイブリダイズ試薬及びその利用
CN200980108476.4A CN101970443B (zh) 2008-03-11 2009-03-11 Rna选择性杂交试剂及其应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-061751 2008-03-11
JP2008061751 2008-03-11

Publications (1)

Publication Number Publication Date
WO2009113580A1 true WO2009113580A1 (ja) 2009-09-17

Family

ID=41065241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054675 WO2009113580A1 (ja) 2008-03-11 2009-03-11 Rna選択的ハイブリダイズ試薬及びその利用

Country Status (6)

Country Link
US (1) US8609826B2 (ja)
EP (1) EP2270015B1 (ja)
JP (1) JP5201639B2 (ja)
CN (1) CN101970443B (ja)
CA (1) CA2722479C (ja)
WO (1) WO2009113580A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2447376A1 (en) * 2010-10-28 2012-05-02 Arkray, Inc. Polymorphism detection probe, polymorphism detection method, evaluation of drug efficacy, and polymorphism detection kit
EP2647617A1 (en) * 2010-11-30 2013-10-09 Japan Science And Technology Agency Nucleoside analog or salt thereof, oligonucleotide analog, gene expression inhibitor, and nucleic-acid probe for detecting gene

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9696277B2 (en) * 2011-11-14 2017-07-04 The Regents Of The University Of California Two-chamber dual-pore device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7629447B2 (en) * 2006-09-12 2009-12-08 Wako Pure Chemical Industries, Ltd. Dideoxynucleoside derivatives

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
"Methods in Enzymology", ACADEMIC PRESS, INC.
CLAYTON,R. ET AL.: "Synthesis of pyridine- stretched 2'-deoxynucleosides", SYNLETT, vol. 9, 2002, pages 1483 - 1486, XP008143023 *
DVORAKOVA,H. ET AL.: "Studies on S-adenosyl-L- homocysteine hydrolase. XVII. Fluorescent analogs of acyclic inhibitors of S-adenosyl-L- homocysteine hydrolase", COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, vol. 53, no. 8, 1988, pages 1779 - 1794, XP008143018 *
GAIT, M. J., OLIGONUCLEOTIDE SYNTHESIS, COMPILATION, 1984
H. LIU; J. GAO; L. MAYNARD; Y. D. SAITO; E. T. KOOL, J. AM. CHEM. SOC., vol. 126, 2004, pages 1102
HAMES, B. D.; HIGGINS, S. J., NUCLEIC ACID HYBRIDIZATION, 1984
K. AUGUSTYNS; A. V. AERSCHOT; A. V. SCHEPDAEL; C. URBANKE; P. HERDEWIJN, NUCLEIC ACIDS RES., vol. 19, 1991, pages 2589
K. C. SCHNEIDER; S. A. BENNER, J. AM. CHEM. SOC., vol. 112, 1990, pages 453
L. ZANG; A. PERITZ; E. MEGGERS, J. AM. CHEM. SOC., vol. 12.7, 2005, pages 4174
LIU,H. ET AL ET AL.: "Size-Expanded Analogues of dG and dC: Synthesis and Pairing Properties in DNA", JOURNAL OF ORGANIC CHEMISTRY, vol. 70, no. 2, 2005, pages 639 - 647, XP008143019 *
LIU,H. ET AL ET AL.: "Toward a New Genetic System with Expanded Dimensions: Size-Expanded Analogs of Deoxyadenosine and Thymidine", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 126, no. 4, 2004, pages 1102 - 1109, XP008143021 *
LIU,H. ET AL.: "A Four-Base Paired Genetic Helix with Expanded Size", SCIENCE(WASHINGTON, DC, UNITED STATES), vol. 302, no. 5646, 2003, pages 868 - 871, XP008143022 *
M. AZYMAH; C. CHAVIS; M. LUCAS; F. MORVAN; J.-L. IMBACH, NUCLEOSIDES & NUCLEOTIDES, vol. 11, 1992, pages 1241
N. MINAKAWA; N. KOJIMA; S. HIKISHIMA; T. SASAKI; A. KIYOSUE; N. ATSUMI; Y. UENO; A. MATSUDA, J. AM. CHEM. SOC., vol. 125, 2003, pages 9970
P. E. NIELSEN; M. EGHOLM; R. H. BERG; O. BUCHARDT, SCIENCE, vol. 254, 1991, pages 497
P. NIELSEN; F. KIRPEKAR; J. WENGEL, NUCLEIC ACIDS RES., vol. 22, 1994, pages 703
P.A. HARRIS; W. PENDERGAST, J. HETEROCYCLIC CHEM., vol. 33, 1996, pages 319
S. OBIKA; D. NANBU; Y. HARI; J. ANDOH; K. MORIO; T. DOI; T. IMANISHI, TETRAHEDRON LETT., vol. 39, 1998, pages 5401
SAMBROOK: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY
See also references of EP2270015A4
ZHANG,L. ET AL.: "A Simple Glycol Nucleic Acid", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 127, no. 12, 2005, pages 4174 - 4175, XP002357695 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2447376A1 (en) * 2010-10-28 2012-05-02 Arkray, Inc. Polymorphism detection probe, polymorphism detection method, evaluation of drug efficacy, and polymorphism detection kit
EP2647617A1 (en) * 2010-11-30 2013-10-09 Japan Science And Technology Agency Nucleoside analog or salt thereof, oligonucleotide analog, gene expression inhibitor, and nucleic-acid probe for detecting gene
EP2647617A4 (en) * 2010-11-30 2014-06-18 Japan Science & Tech Agency NUCLEOSIDE ANALOGON OR SALT THEREOF, OLIGONUCLEOTIDE ANALOGON, GENE EXPRESSION INHIBITOR AND NUCLEIC ACID ENGINE FOR GENERAL DETECTION
US8865898B2 (en) 2010-11-30 2014-10-21 Japan Science And Technology Agency Nucleoside analog or salt thereof, oligonucleotide analog, gene expression inhibitor, and nucleic-acid probe for detecting gene

Also Published As

Publication number Publication date
EP2270015B1 (en) 2013-07-10
US20110033863A1 (en) 2011-02-10
CA2722479C (en) 2017-01-03
US8609826B2 (en) 2013-12-17
JPWO2009113580A1 (ja) 2011-07-21
CN101970443A (zh) 2011-02-09
JP5201639B2 (ja) 2013-06-05
CN101970443B (zh) 2014-03-12
EP2270015A4 (en) 2012-03-21
CA2722479A1 (en) 2009-09-17
EP2270015A1 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
CA2574088C (en) Oligonucleotides comprising a modified or non-natural nucleobase
US7144995B2 (en) Fluorescent nitrogenous base and nucleosides incorporating same
JP5493117B2 (ja) オリゴヌクレオチド誘導体及びその利用
JP2002543214A (ja) L−リボ−lna類縁体
US20080038745A1 (en) Nucleotide analogs with six-membered rings
CN110678447B (zh) 经修饰的核酸单体化合物及寡核酸类似物
US20050187383A1 (en) Negatively charged minor groove binders
JP5201639B2 (ja) Rna選択的ハイブリダイズ試薬及びその利用
Osawa et al. Synthesis, duplex-forming ability, enzymatic stability, and in vitro antisense potency of oligonucleotides including 2′-C, 4′-C-ethyleneoxy-bridged thymidine derivatives
Yanagi et al. A fluorescent 3, 7-bis-(naphthalen-1-ylethynylated)-2′-deoxyadenosine analogue reports thymidine in complementary DNA by a large emission Stokes shift
JPWO2014034934A1 (ja) オリゴヌクレオチド
JPWO2011105610A1 (ja) インスレーター及びその利用
JP6621831B2 (ja) ヌクレオシド誘導体及びその利用
WO2023127857A1 (ja) 新規人工核酸、その製造方法及び用途
CN101410406B (zh) 6-修饰的双环核酸类似物
CN118813612A (zh) 一种化合物在RNAi药物中的应用
Seidu-Larry Studies on the chemical biology of natural and chemical ribonucleotide modifications
Dong DNA complexes containing novel aromatic residues
WO2013175656A1 (ja) 新規核酸誘導体、及び当該核酸誘導体とアミン化合物のコンジュゲート
Seidu-Larry Zur Erlangung der Doktorwürde der Naturwissenschaftlich–Mathematischen Gesamtfakultät der Ruprecht-Karls-Universität
JP2007015948A (ja) ヌクレオシド誘導体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108476.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09719898

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010502852

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12921909

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009719898

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2722479

Country of ref document: CA