WO2009111972A1 - 预编码方法和装置 - Google Patents

预编码方法和装置 Download PDF

Info

Publication number
WO2009111972A1
WO2009111972A1 PCT/CN2009/070697 CN2009070697W WO2009111972A1 WO 2009111972 A1 WO2009111972 A1 WO 2009111972A1 CN 2009070697 W CN2009070697 W CN 2009070697W WO 2009111972 A1 WO2009111972 A1 WO 2009111972A1
Authority
WO
WIPO (PCT)
Prior art keywords
vector
bit error
error rate
precoding
precoding matrix
Prior art date
Application number
PCT/CN2009/070697
Other languages
English (en)
French (fr)
Inventor
李颖
刘传梅
李�杰
Original Assignee
华为技术有限公司
西安电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 西安电子科技大学 filed Critical 华为技术有限公司
Publication of WO2009111972A1 publication Critical patent/WO2009111972A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a precoding method and apparatus. Background technique
  • the spatial multiplexing (Spatial Multiplexing) technology directly decomposes the information bit rate stream into multiple parallel data streams, which can effectively improve MIMO (Multiple Input Multiple Output) - OFDM (Orthogonal Frequency Division Multiplexing) Reuse)
  • MIMO Multiple Input Multiple Output
  • OFDM Orthogonal Frequency Division Multiplexing
  • the most ideal precoding technique requires the transmitter to fully know the channel fading information, but this requires a very high feedback link from the receiver to the sender, which is generally not possible.
  • a more practical solution is a codebook based limited bit feedback precoding technique, that is, the same codebook set is stored at both ends of the transceiver, and the receiving end selects the most appropriate preamble according to certain criteria according to the channel fading information and the currently received signal. Encoding the matrix and passing the sequence number of the precoding matrix to the transmitting end through the feedback link.
  • a precoding matrix selection method for ML (Maximize Likelihood) detection is provided in the prior art, and the method provides a precoding matrix based on the minimum distance according to the criterion of the minimum pairwise error probability. Method of choosing. According to the description of equations (1) and (2), the basic principle of maximum likelihood decoding is:
  • the method given by the above formula (4) is obtained by minimizing the pairwise error probability criterion, and the error probability of the vector symbol can be guaranteed to be the smallest, but the bit error rate cannot be truly realized.
  • it is generally a cascade structure of channel coding and MIMO, and usually iterative detection is used to approximate the performance of maximum likelihood detection.
  • the bit error rate of the MIMO demodulator output will directly affect the performance of the channel decoder.
  • Embodiments of the present invention provide a precoding method and apparatus for selecting a suitable precoding matrix such that a precoded bit error rate is minimized.
  • An embodiment of the present invention provides a precoding method, including:
  • An embodiment of the present invention further provides a precoding apparatus, including:
  • bit error rate upper limit obtaining unit configured to obtain an upper limit of a bit error rate of each precoding matrix in the codebook set for the symbol vector set
  • a precoding matrix selecting unit configured to select a precoding matrix that minimizes an upper limit of the bit error rate according to an upper limit of a bit error rate of each precoding matrix in the codebook set acquired by the bit error rate upper bound obtaining unit;
  • the array precodes the incoming data stream.
  • a precoding method and apparatus capable of realizing the minimum bit error rate are provided, which can further improve the precoding.
  • FIG. 1 is a schematic diagram of a precoding MIMO-OFDM system model in the prior art
  • FIG. 2 is a flowchart of a precoding method in an embodiment of the present invention
  • FIG. 4 is a schematic diagram showing performance comparison of a four-issue two-receive precoding MIMO system in different precoding matrix selection modes in the case where MIMO is not cascaded with a channel error correction code in the embodiment of the present invention
  • FIG. 5 is a schematic diagram showing performance comparison of a four-output two-receive precoding MIMO system in different precoding matrix selection modes in the case where MIMO and channel error correction codes are cascaded in the embodiment of the present invention
  • FIG. 6 is a schematic diagram of comparison of bit error performance when a 4-bit and 6-bit codebook set is used in a four-transmitted two-receive precoding MIMO system according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram showing performance comparison of a four-issue two-receive precoding MIMO-OFDM system in different precoding matrix selection modes according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a precoding apparatus according to an embodiment of the present invention. detailed description
  • Embodiments of the present invention provide a precoding method that improves performance of a precoding system based on a minimum error rate criterion.
  • the method is shown in Figure 2 and includes the following steps: Step s101, obtaining an upper limit of the bit error rate of each precoding matrix in the codebook set for the symbol vector set.
  • step sl02 according to the upper limit of the bit error rate of each precoding matrix in the obtained codebook set, the precoding matrix that minimizes the upper limit of the bit error rate is selected to precode the input data stream.
  • MIMO-OFDM uses the bit error rate when detecting ML. If the receiving end misinterprets the symbol vector transmitted by the nth subcarrier at time t as Equation (4), the following equation can be obtained:
  • the receiving end misinterprets the symbol vector transmitted by the nth subcarrier at time t as a pairwise error probability:
  • ⁇ ( ⁇ , )) is the probability of transmitting the symbol vector ⁇ , and it is generally considered that all symbol vectors are sent with equal probability.
  • Step s202 selecting a vector from the symbol vector set ⁇ , and s(n, t) ⁇ s'(n, t);
  • step s203 the Hamming distance and the Euclidean distance
  • Step s204 repeating steps s202 and s203, traversing all possible symbol vector combinations, and accumulating the bit error rates of each combination to obtain an upper limit of the bit error rate when selecting the precoding matrix:
  • Figure 4 shows the performance comparison of the four-transmitting and two-receive precoding MIMO system in different precoding matrix selection modes when MIMO is not cascaded with the channel error correction code, where the number of transmitting antennas is 4 and the number of receiving antennas is 2.
  • modulation method is QPSK ( Quadrature Phase-Shift Keying, channel coding is not used in the system.
  • the specific simulation parameters are as follows: The channel is assumed to be block fading, and the receiving end can accurately estimate the channel fading coefficient; the data frame length is 2048 bits; the MIMO multiplexing degree is 2; MIMO detection uses maximum likelihood detection.
  • Figure 5 shows the performance comparison of the MIMO and channel error correction code cascading in the four preamble precoding MIMO systems in different precoding matrix selection modes, where the number of transmitting antennas is 4 and the number of receiving antennas is 2.
  • the modulation method is QPSK
  • the error correction code uses a 1/2 code rate Turbo code whose generator polynomial is (7, 5).
  • the specific simulation parameters are:
  • the decoding algorithm of Turbo code is Max-Log-Map (the maximum logarithmic posterior probability); the channel is assumed to be block fading, and the receiving end can accurately estimate the channel fading coefficient;
  • the interleaver in Turbo code is random Interleaving, the length is 2048;
  • the multiplexing degree of MIMO is 2;
  • MIMO detection uses MAP detection;
  • the maximum number of iterations between Turbo decoder and MIMO detection is 10, and 4 iterations are performed each time Turbo decoding.
  • the precoding matrix selection method based on the minimum bit error rate is slightly better than the minimum distance based precoding matrix selection method, and there is no gain of O.ldB.
  • Figure 6 shows the bit error performance comparison of the four-bit and two-receive precoding MIMO systems using the 4-bit and 6-bit codebook sets respectively.
  • the precoding matrix selection methods are based on the minimum distance and the minimum bit error rate, respectively.
  • Figure 5. Analysis of Figure 6 gives the following conclusions:
  • the number of precoding matrices in the codebook set is increased from 16 to 64.
  • the performance improvement is not obvious.
  • the precoding method proposed in the embodiments of the present invention has a coding gain of approximately 0.5 dB than the method based on the minimum bit error rate.
  • Figure 7 shows the performance comparison of precoding MIMO-OFDM systems in different precoding matrix selection modes.
  • the number of transmitting antennas is 4, the number of receiving antennas is 2, the modulation mode is QPSK, and the error correction code is generator polynomial (7).
  • 5) Turbo code the number of subcarriers in OFDM is 128, the channel is a 4-gain multipath fading channel of equal gain, and the Doppler shift is 10 Hz.
  • the specific simulation parameters are:
  • the decoding algorithm of the Turbo code is Max-Log-Map; It is assumed that the receiving end can accurately estimate the channel fading coefficient; the interleaver in the Turbo code is random interleaving, the length is 2048; the multiplexing degree of MIMO is 2; MIMO detection uses MAP detection; the maximum number of iterations between Turbo decoder and MIMO detection is 4, and 4 iterations are performed each time Turbo decoding.
  • the MD algorithm has a gain of approximately 0.3 dB.
  • a precoding method and apparatus capable of realizing the minimum bit error rate are presented, which can further improve the performance of the precoding MIMO system.
  • An embodiment of the present invention further provides a precoding apparatus, which is structured as shown in FIG. 8, and includes:
  • the bit error rate upper limit obtaining unit 10 is configured to obtain an upper limit of the bit error rate of each precoding matrix in the codebook set for the symbol vector set.
  • a precoding matrix selecting unit 20 configured to obtain, according to the bit error rate upper limit obtaining unit 10 The upper limit of the bit error rate of each precoding matrix in the codebook set is taken, and a precoding matrix that minimizes the upper limit of the bit error rate is selected.
  • the precoding unit 30 is configured to precode the input data stream using the precoding matrix selected by the precoding matrix selecting unit 20.
  • the bit error rate upper limit obtaining unit 10 further includes:
  • a vector selection subunit 11 for arbitrarily selecting the first vector and the second vector from the set of symbol vectors
  • the bit error rate obtaining subunit 12 obtains a bit error rate that the first vector is misinterpreted as the second vector according to the precoding matrix; the bit error rate obtaining subunit 12 is specifically: the first bit error rate obtaining subunit, according to The Hamming distance and the Euclidean distance between the first vector and the second vector, and the precoding matrix, obtain a bit error rate that misinterprets the first vector as the second vector.
  • the bit error rate obtained by the first bit error rate acquisition subunit for misjudge the first vector as the second vector is specifically:
  • the Hamming distance between the vector ⁇ and ; is the transmitted symbol vector
  • N 0 the noise variance
  • H ⁇ the channel fading matrix
  • the bit error rate upper limit obtaining sub-unit 13 sums the bit error rates of all possible first vectors and second vector combinations as the upper limit of the bit error rate of the precoding matrix.
  • the upper limit of the bit error rate of the precoding matrix acquired by the bit error rate upper limit obtaining subunit 13 is:
  • a A precoding method and apparatus capable of minimizing bit error rate can further improve precoding
  • the present invention can be implemented by hardware, or can be implemented by means of software plus necessary general hardware platform, and the technical solution of the present invention. It can be embodied in the form of a software product that can be stored in a non-volatile storage medium (which can be a CD-ROM, a USB flash drive, a mobile hard disk, etc.), including a number of instructions for making a computer device (may It is a personal computer, a server, or a network device, etc.) that performs the methods described in various embodiments of the present invention.
  • a non-volatile storage medium which can be a CD-ROM, a USB flash drive, a mobile hard disk, etc.
  • a computer device may It is a personal computer, a server, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)

Description

预编码方法和装置 本申请要求于 2008 年 3 月 14 日提交中国专利局, 申请号为 200810084731.3, 发明名称为 "预编码方法和装置" 的中国专利申请 的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信技术领域, 尤其涉及一种预编码方法和装置。 背景技术
空间复用 (Spatial Multiplexing )技术直接将信息比特率流分解 为多个并行数据流, 可以有效提高 MIMO ( Multiple-Input Multiple Output , 多输入多输出) -OFDM ( Orthogonal Frequency Division Multiplexing, 正交频分复用) 系统的频谱利用率, 且实现相对筒单。 但空间复用技术没有在空间引入冗余, 因此很难获得理想的分集增 益, 而预编码技术对发送数据进行一定的旋转变换, 可以有效提高空 间复用技术的性能。
最理想的预编码技术需要发送端完全已知信道衰落信息,但这对 接收端到发送端的反馈链路要求非常高, 一般无法实现。 比较实用的 方案是基于码本的有限比特反馈预编码技术,即在收发两端都存储相 同的码本集合, 接收端根据信道衰落信息和当前接收的信号, 按照一 定的准则选择最合适的预编码矩阵,并将预编码矩阵的序号通过反馈 链路给发送端。
现有技术中的预编码 MIMO-OFDM系统模型, 如图 1所示。 假设 MIMO-OFDM系统中有 根发送天线, Nf根接收天线, Ne个子载波 数, 2¾阶的调制方式, S = (v, )为调制的信号星座, M≤min^,N 为每个子载波发送的并行数据流个数。
令 t) = (Sl (n,t),- sM (n, t) 表示第《个子载波在时刻 时发送的符 号向量, 则
Figure imgf000004_0001
为第《个子载波 上选择的预编码矩 阵 , 则 发送端发送的 信号 向 量 x(n, t) = (jCj {n, t), x2 {η,ΐ),··· xN {n, t) 可表示为:
x(n,t) = F(n)s(n,t) (1) 对应的接收信号 j^ ) )^/^),)^/^), 为
y{n, ή = ff(n)F(n)s(n, t)+ η{η, t) (2) 其中 H(«)为一^ xNf阶的信道衰落矩阵,这里假设 H(«)是慢变化 的。 ^ =^(^), , ^为接收端在第 《个子载波上的加性白噪 声, 是均值为 0, 方差为 N。的复高斯白噪声, 且假设不同接收 天线之间的加性噪声相互独立。
基于上述模型, 现有技术中提供了一种针对 ML ( Maximize Likelihood, 最大似然)检测的预编码矩阵选择方法, 该方法按照最 小成对错误概率的准则给出了基于最小距离的预编码矩阵选择方法。 根据公式 (1)和 (2)的描述, 最大似然译码的基本原理为:
s(n )= argminy(n,i)- H(n)F(n)s(n,t ^2 (3) 假设 , = l,2,— N}表示码本集合, 发送端采用 26阶的调制方式, 信号星座点用 S表示, 则对应的预编码矩阵选择方法为:
Figure imgf000004_0002
其中, |H(W) (Sl - f是两个不同的符号向量进行预编码以后的欧氏 距离。 给定一个预编码矩阵 , 对所有的符号向量对计算欧氏距离, 并保存其中的最小值 η¾η |H(W) (Sl -S2;f。遍历所有的预编码矩阵, 选择使 min H(«) (Sl -S2f的最大的做为预编码矩阵。 发明人在实现本发明的过程中, 发现现有技术至少存在以下问 题:
上述式 (4)给出的方法是按照最小化成对错误概率准则得到的,可 以保证向量符号的错误概率最小, 但并不能真正的实现误比特率最 小。 在实际通信系统中, 一般是信道编码和 MIMO的级联结构, 且 通常都是采用迭代检测来逼近最大似然检测的性能, MIMO解调器输 出的误比特率将直接影响信道解码器的性能。 发明内容
本发明的实施例提供一种预编码方法和装置,用于选择合适的预 编码矩阵, 使得预编码后的误比特率最小。
本发明的实施例提供一种预编码方法, 包括:
获取码本集合中的每一预编码矩阵对于符号向量集合的误比特 率上限;
根据所述获取的码本集合中每一预编码矩阵的误比特率上限,选 择使误比特率上限最小的预编码矩阵对输入的数据流进行预编码。
本发明的实施例还提供一种预编码装置, 包括:
误比特率上限获取单元,用于获取码本集合中的每一预编码矩阵 对于符号向量集合的误比特率上限;
预编码矩阵选择单元,用于根据所述误比特率上限获取单元获取 的码本集合中每一预编码矩阵的误比特率上限,选择使误比特率上限 最小的预编码矩阵;
预编码单元,用于使用所述预编码矩阵选择单元选择的预编码矩 阵对输入的数据流进行预编码。
与现有技术相比, 本发明的实施例具有以下优点:
通过使用本发明的实施例,基于最小误比特率准则, 给出了一种 可实现误比特率最小的预编码方法和装置, 可以进一步提高预编码
MIMO系统的性能。 附图说明
图 1是现有技术中的预编码 MIMO-OFDM系统模型示意图; 图 2是本发明实施例中预编码方法的流程图;
图 3是本发明实施例中码本集合为^ , = 1,2,···Λ 符号向量集合 为 时, 预编码方法的流程图;
图 4是本发明实施例中 MIMO未与信道纠错码级联的情况下, 四发两收预编码 MIMO 系统在不同预编码矩阵选择方式下的性能比 较示意图;
图 5是本发明实施例中 MIMO与信道纠错码级联的情况下, 四 发两收预编码 MIMO 系统在不同预编码矩阵选择方式下的性能比较 示意图;
图 6是本发明实施例中四发两收预编码 MIMO系统分别采用 4bit 和 6bit码本集合时的误比特性能比较示意图;
图 7是本发明实施例中四发两收预编码 MIMO-OFDM系统在不 同预编码矩阵选择方式下的性能比较示意图;
图 8是本发明实施例中预编码装置的结构示意图。 具体实施方式
本发明的实施例提供一种预编码方法, 基于最小误码率准则, 提 高预编码系统的性能。 该方法如图 2所示, 包括以下步骤: 步骤 slOl, 获取码本集合中的每一预编码矩阵对于符号向量集合 的误比特率上限。
步骤 sl02,根据获取的码本集合中每一预编码矩阵的误比特率上 限,选择使误比特率上限最小的预编码矩阵对输入的数据流进行预编 码。
具体的, 以下在描述本发明实施例的预编码方法之前, 首先分析
MIMO-OFDM采用 ML检测时的误比特率。 如果接收端把第 n个子 载波在 t时刻发送的符号向量 误判为 由公式 (4)可得到下 式:
Figure imgf000007_0001
< \\y{n,t)- H{n)F{n)s{n,t (5) 由式 (2), 得:
Figure imgf000007_0002
进一步化筒, 得:
|H(w F(wXs(w, )-s'(w, ) +2Re(H(w) (wXs(w, )-s'(w, ))/*(w, ))< 0 (7) 其中 Re(.)表示取复数的实部。
分析 式 (7) , 当 接收端 准 确 估 计信 道信 息 时 , 4w, ) = ||H(w) (wXs(w, )-s'(w, ))|2 为 一 确 定 量 , η'(η, t) = H(n)F(nls(n, t)- s'(n, )>/* ( , )是复高斯向量 )的线性变换, 因 而 依 然 服 从 高 斯 分 布 , 且 均 值 为 零 , 方 差 为 =|H(w (wXs(w, )_s'(w, )f N。。 由该结论, 易知随机变量 2Re(7/'(«, )) 是均值为零, 方差为 2 的高斯随机变量。
根据上述分析, 接收端把第 n个子载波在 t时刻发送的符号向量 误判为 的成对错误概率为:
P(s(n,t)→ s'(n,t)H(n))= ρ(2 ο(η'(η, )< -d(n,t)H(n))
Figure imgf000008_0001
根据式 (8)和 Q函数的性质, 得到成对错误概率的上限为
Figure imgf000008_0002
Figure imgf000008_0003
根据式 (9), 第《个子载波上的误比特率的联合界为:
Figure imgf000008_0004
(10) 其中, "e,b"表示误比特, Mb为每个子载波上发送的信息比特数; de (s(n, t)→ s'{n, ή)是向量 t)与 )之间的汉明 ( Hamming )距离;
Ρ(^, ))是发送符号向量 ^ 的概率,一般认为所有符号向量是等概 率发送的。
由式 (9)和 (10)可看出, min( ( )))0min∑ ∑ d^n ^ p(s(n,t)→ s'(n,t)H(n))
H(n)F(n)s(n,t)-s'(n,i
(11)
Mb 4Nr> 因此, 根据上述推导, 基于最小误比特率的预编码矩阵选择方
Figure imgf000008_0005
(12) 假设码本集合为 , =1,2,..^}, 符号向量集合为 SM , 则由公式 (12)给出的预编码方法如图 3所示, 包括以下步骤:
步骤 s201, 从码本集合 , = 1,2,···^}选择预编码矩阵^;
步骤 s202, 从符号向量集合^选择向量 , )与 且 s(n,t)≠ s'(n,t);
步骤 s203,计算 与 之间的汉明距离 和 欧氏距离 |H(w) (wXs(w, )-4", fl2 , 得到 错判为 的误比特 率:
Figure imgf000009_0001
(13)
步骤 s204, 重复步骤 s202和 s203,遍历所有可能的符号向量组 合, 并将每种组合的误比特率累加, 得到在选择预编码矩阵 时的 误比特率上限:
Figure imgf000009_0002
(14)
步骤 s205, 令 =+l并重复步骤 s201, 直至 =N, 即可得到在每 个预编码矩阵下的误比特率上限, 选择其中误比特率最小的预编码 矩阵作为预编码矩阵, 并将该预编码矩阵的序号反馈至接收端用于 对数据流的预编码。
图 4给出了 MIMO未与信道纠错码级联的情况下, 四发两收预 编码 MIMO系统在不同预编码矩阵选择方式下的性能比较, 其中发 送天线数为 4, 接收天线数为 2, 调制方式为 QPSK ( Quadrature Phase-Shift Keying, 正交相移键控), 系统中未采用信道编码。 具体 仿真参数为: 信道假设为块衰落, 且接收端可准确估计信道衰落系 数; 数据帧长度为 2048比特; MIMO的复用度为 2; MIMO检测采 用最大似然检测。
图 5给出了 MIMO与信道纠错码级联的情况下, 四发两收预编 码 MIMO系统在不同预编码矩阵选择方式下的性能比较, 其中发送 天线数为 4, 接收天线数为 2, 调制方式为 QPSK, 纠错码采用生成 多项式为 (7,5)的 1/2码率 Turbo码。 具体仿真参数为: Turbo码的译 码算法为 Max-Log-Map (最大对数后验概率); 信道假设为块衰落, 且接收端可准确估计信道衰落系数; Turbo码中的交织器为随机交 织, 长度为 2048; MIMO的复用度为 2; MIMO检测采用 MAP检 测; Turbo译码器和 MIMO检测之间的最大迭代次数为 10 , 且每次 Turbo译码进行 4次迭代。
分析图 4和图 5 , 可得到以下几个结论:
(1) 在 MIMO不与 Tubo码级联的情况,基于最小误比特率的预 编码矩阵选择方法略优于基于最小距离的预编码矩阵选择方法, 有 不到 O.ldB的增益。
(2) 在 MIMO与 Turbo码级联的情况下, 基于最小误比特率的 预编码矩阵选择方法有明显的改进, 在 B R = 10_4时, 本发明实施例 中的算法比基于最小距离的算法有接近 0.5 dB的增益, 这主要是由 于采用了纠错能力比较强的信道编码, 从而放大了 MIMO检测器输 出端得到的增益。
图 6给出了四发两收预编码 MIMO系统分别采用 4bit和 6bit码 本集合时的误比特性能比较, 其中预编码矩阵选择方法分别为基于 最小距离和基于最小误比特率, 其他仿真参数同图 5。 分析图 6 , 可得到以下几个结论:
(1)码本集合中预编码矩阵的个数从 16增加到 64对性能的改善 不明显。
(2)不论采用哪种码本集合, 本发明实施例中提出的预编码方法 均比基于最小误比特率的方法有接近 0.5dB 的编码增益。
图 7给出了预编码 MIMO-OFDM系统在不同预编码矩阵选择方 式下的性能比较, 其中发送天线数为 4 , 接收天线数为 2 , 调制方式 为 QPSK,纠错码采用生成多项式为 (7,5)的 Turbo码, OFDM中的子 载波数为 128 , 信道为等增益的 4径多径衰落信道, 多谱勒频移为 10Hz。 具体仿真参数为: Turbo码的译码算法为 Max-Log-Map; 假 设接收端可准确估计信道衰落系数; Turbo码中的交织器为随机交 织, 长度为 2048; MIMO的复用度为 2; MIMO检测采用 MAP检 测; Turbo译码器和 MIMO检测之间的最大迭代次数为 4, 且每次 Turbo译码进行 4次迭代。
由图 7可看出, 本发明实施例给出的基于最小误比特率的预编 码方法依然优于基于最小距离的预编码矩阵选择方法,在 BER = 10_3 时, 本发明实施例的算法比 MD算法有接近 0.3 dB的增益。
通过本发明实施例提供的方法, 基于最小误比特率准则, 给出 了一种可实现误比特率最小的预编码方法和装置, 可以进一步提高 预编码 MIMO系统的性能。
本发明的实施例还提供一种预编码装置, 其结构如图 8所示, 包括:
误比特率上限获取单元 10 , 用于获取码本集合中的每一预编码 矩阵对于符号向量集合的误比特率上限。
预编码矩阵选择单元 20 , 用于根据误比特率上限获取单元 10获 取的码本集合中每一预编码矩阵的误比特率上限,选择使误比特率上 限最小的预编码矩阵。
预编码单元 30 , 用于使用预编码矩阵选择单元 20选择的预编码 矩阵对输入的数据流进行预编码。
该误比特率上限获取单元 10进一步包括:
向量选择子单元 11 , 用于从符号向量集合中任意选择第一向量 和第二向量;
误比特率获取子单元 12 , 根据预编码矩阵, 获取将第一向量误 判为第二向量的误比特率; 该误比特率获取子单元 12具体为: 第一 误比特率获取子单元,根据第一向量与第二向量之间的汉明距离和欧 式距离, 以及预编码矩阵, 获取将第一向量误判为第二向量的误比特 率。该第一误比特率获取子单元获取的将第一向量误判为第二向量的 误比特率具体为:
Figure imgf000012_0001
其中, 为每个子载波上发送的信息比特数, 和 为符 号向量集合中的第一向量和第二向量; ^( 是向量 ^ 与 之间的汉明距离; 是发送符号向量 , )的概率; N0为噪 声方差; H ^)为信道衰落矩阵。
误比特率上限获取子单元 13 , 对所有可能的第一向量和第二向 量组合的误比特率进行求和, 作为预编码矩阵的误比特率上限。 该误 比特率上限获取子单元 13获取的预编码矩阵的误比特率上限为:
Figure imgf000012_0002
通过使用本发明的实施例,基于最小误比特率准则, 给出了一种 可实现误比特率最小的预编码方法和装置, 可以进一步提高预编码
MIMO系统的性能。
需要说明的是, 本发明以上实施例虽然以 MIMO-OFDM系统为 例, 但以上实施例在单载波 MIMO预编码系统中同样适用。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解 到本发明可以通过硬件实现,也可以可借助软件加必要的通用硬件平 台的方式来实现基于这样的理解,本发明的技术方案可以以软件产品 的形式体现出来, 该软件产品可以存储在一个非易失性存储介质(可 以是 CD-ROM, U盘, 移动硬盘等) 中, 包括若干指令用以使得一 台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行 本发明各个实施例所述的方法。
总之, 以上所述仅为本发明的较佳实施例而已, 并非用于限定本 发明的保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求
1、 一种预编码方法, 其特征在于, 包括:
获取码本集合中的每一预编码矩阵对于符号向量集合的误比特 率上限;
根据所述获取的码本集合中每一预编码矩阵的误比特率上限,选 择使误比特率上限最小的预编码矩阵对输入的数据流进行预编码。
2、 如权利要求 1所述预编码方法, 其特征在于, 所述获取码本 集合中的每一预编码矩阵对于符号向量集合的误比特率上限的步骤 具体为:
从所述符号向量集合中任意选择第一向量和第二向量; 根据所述预编码矩阵,获取将所述第一向量误判为第二向量的误 比特率;
对所有可能的第一向量和第二向量组合的误比特率进行求和,作 为所述预编码矩阵对于所述符号向量集合的误比特率上限。
3、 如权利要求 2所述预编码方法, 其特征在于, 所述获取将所 述第一向量误判为第二向量的误比特率的步骤具体为:
根据所述第一向量与第二向量之间的汉明距离和欧式距离,以及 所述预编码矩阵, 获取将所述第一向量误判为第二向量的误比特率。
4、 如权利要求 3所述预编码方法, 其特征在于, 所述第一向量 误判为第二向量的误比特率具体为:
Figure imgf000015_0001
其中, 为每个子载波上发送的信息比特数, 和 为符 号向量集合中的第一向量和第二向量; 是向量 ^ 与 之间的汉明距离; Ρ(^, ))是发送符号向量 的概率; N0为噪 声方差; H 为信道衰落矩阵。
5、 如权利要求 4所述预编码方法, 其特征在于, 所述预编码矩 阵的误比特率上限具体为:
Figure imgf000015_0002
6、 一种预编码装置, 其特征在于, 包括:
误比特率上限获取单元,用于获取码本集合中的每一预编码矩阵 对于符号向量集合的误比特率上限;
预编码矩阵选择单元,用于根据所述误比特率上限获取单元获取 的码本集合中每一预编码矩阵的误比特率上限,选择使误比特率上限 最小的预编码矩阵;
预编码单元,用于使用所述预编码矩阵选择单元选择的预编码矩 阵对输入的数据流进行预编码。
7、 如权利要求 6所述预编码装置, 其特征在于, 所述误比特率 上限获取单元进一步包括:
向量选择子单元,用于从所述符号向量集合中任意选择第一向量 和第二向量;
误比特率获取子单元, 根据所述预编码矩阵, 获取将所述第一向 量误判为第二向量的误比特率;
误比特率上限获取子单元,对所有可能的第一向量和第二向量组 合的误比特率进行求和, 作为所述预编码矩阵的误比特率上限。
8、 如权利要求 7所述预编码装置, 其特征在于, 所述误比特率 获取子单元具体为:
第一误比特率获取子单元,根据所述第一向量与第二向量之间的 汉明距离和欧式距离, 以及所述预编码矩阵, 获取将所述第一向量误 判为第二向量的误比特率。
9、 如权利要求 8所述预编码装置, 其特征在于, 所述第一误比 特率获取子单元获取的将第一向量误判为第二向量的误比特率具体 为:
Figure imgf000016_0001
其中, 为每个子载波上发送的信息比特数, /^)和4^)为符 号向量集合中的第一向量和第二向量; 是向量 与 之间的汉明距离; Ρ(^,》是发送符号向量 ^, )的概率; N0为噪 声方差; H ^)为信道衰落矩阵。
10、 如权利要求 9所述预编码装置, 其特征在于, 所述误比特率 上限获取子单元获取的预编码矩阵的误比特率上限为:
Figure imgf000016_0002
PCT/CN2009/070697 2008-03-14 2009-03-09 预编码方法和装置 WO2009111972A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810084731A CN101534267B (zh) 2008-03-14 2008-03-14 预编码方法和装置
CN200810084731.3 2008-03-14

Publications (1)

Publication Number Publication Date
WO2009111972A1 true WO2009111972A1 (zh) 2009-09-17

Family

ID=41064757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070697 WO2009111972A1 (zh) 2008-03-14 2009-03-09 预编码方法和装置

Country Status (2)

Country Link
CN (1) CN101534267B (zh)
WO (1) WO2009111972A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102457347A (zh) * 2010-10-21 2012-05-16 上海交通大学 信号发送设备和方法及相应的信号接收设备和方法
US9172413B2 (en) * 2013-02-08 2015-10-27 Mediatek Inc. Method and apparatus for performing wireless communications with aid of successive data processing in multiple iterations
CN105528178B (zh) * 2014-10-21 2018-09-21 华为技术有限公司 数据存储方法及固态硬盘
WO2017049640A1 (zh) * 2015-09-25 2017-03-30 华为技术有限公司 一种预编码方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110664A (ja) * 2005-10-12 2007-04-26 Tokyo Institute Of Technology Mimoプリコーディング方式
CN1973473A (zh) * 2004-06-23 2007-05-30 英特尔公司 利用用于反馈的码本的闭环mimo系统
WO2007066936A2 (en) * 2005-12-09 2007-06-14 Electronics And Telecommunications Research Institute Transmitting apparatus and method, and receiving apparatus and method in multiple antenna system
CN101136718A (zh) * 2006-11-07 2008-03-05 中兴通讯股份有限公司 无线通信系统中多输入多输出的空间复用的预编码方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7616701B2 (en) * 2003-03-08 2009-11-10 Broadcom Corporation Zero excess bandwidth modulation
CN100425017C (zh) * 2005-12-08 2008-10-08 西安电子科技大学 基于预编码的并行卷积ldpc码的编码器及其快速编码方法
CN101106410B (zh) * 2006-07-13 2011-05-18 华为技术有限公司 一种多输入多输出系统的数据重传方法及数据发送端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1973473A (zh) * 2004-06-23 2007-05-30 英特尔公司 利用用于反馈的码本的闭环mimo系统
JP2007110664A (ja) * 2005-10-12 2007-04-26 Tokyo Institute Of Technology Mimoプリコーディング方式
WO2007066936A2 (en) * 2005-12-09 2007-06-14 Electronics And Telecommunications Research Institute Transmitting apparatus and method, and receiving apparatus and method in multiple antenna system
CN101136718A (zh) * 2006-11-07 2008-03-05 中兴通讯股份有限公司 无线通信系统中多输入多输出的空间复用的预编码方法

Also Published As

Publication number Publication date
CN101534267A (zh) 2009-09-16
CN101534267B (zh) 2012-09-05

Similar Documents

Publication Publication Date Title
US8565360B1 (en) Dimension reduction for codebook search
Wen et al. Generalized multiple-mode OFDM with index modulation
US9780922B2 (en) Method and apparatus for data transmission using multiple transmit antennas
US8718204B1 (en) Multi-stream maximum-likelihood demodulation based on bitwise constellation partitioning
US8346262B2 (en) Method and system for utilizing tone grouping with givens rotations to reduce overhead associated with explicit feedback information
CN201045756Y (zh) 利用不对等调制和编码方案实现空时处理的发射机和接收机
JP5705138B2 (ja) ネットワークコーディングされた無線中継通信のための非コヒーレント時空間トレリス符号化変調
JP4714743B2 (ja) ビット領域におけるリピティションリアレンジメントによってあいまい性を低減させる方法および送信器構造
US8095097B1 (en) Increasing the robustness of channel estimates derived through sounding for WLAN
RU2303330C1 (ru) Способ приема сигнала в системе связи с несколькими каналами передачи и приема
WO2008083576A1 (fr) Procédé de communication, procédé de transmission, procédé de réception et dispositif associé
CN101529782B (zh) 利用harq和/或重复编码的mimo系统的符号级组合
Seifi et al. Media-based MIMO: Outperforming known limits in wireless
TWI446762B (zh) 用於準正交空間對時間及空間對頻率區塊編碼之選擇群集轉動角度之方法
CN107094063B (zh) 半穷举迭代块解码方法和设备
CN106982106B (zh) 递归子块解码
US9031145B1 (en) Low complexity technique for log-likelihood ratio computation
CN101860514B (zh) 一种基于自适应符号载波分配的不等差错保护方法
US9094063B1 (en) Multi-stream soft demodulation using hard-decision schemes
US6741658B1 (en) Apparatus, and associated method, for forming a signal for communication upon a fading channel
WO2009111972A1 (zh) 预编码方法和装置
US8139668B2 (en) Unified STTC encoder for WAVE transceivers
KR100780364B1 (ko) 성능 향상된 시공간 블록 부호화 장치 및 방법
KR20070118835A (ko) 다중 안테나 시스템에서 반복 검출 및 복호 수신 성능을향상시키기 위한 장치 및 방법
KR20050071546A (ko) 송신 다이버시티 장치, 수신기 및 입력 기호 디코딩 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09720216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09720216

Country of ref document: EP

Kind code of ref document: A1