WO2009109240A1 - Procédé de détermination de l'angle de dérive de la roue d'un véhicule à moteur - Google Patents
Procédé de détermination de l'angle de dérive de la roue d'un véhicule à moteur Download PDFInfo
- Publication number
- WO2009109240A1 WO2009109240A1 PCT/EP2008/063339 EP2008063339W WO2009109240A1 WO 2009109240 A1 WO2009109240 A1 WO 2009109240A1 EP 2008063339 W EP2008063339 W EP 2008063339W WO 2009109240 A1 WO2009109240 A1 WO 2009109240A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- wheel
- slip angle
- inertial
- coordinate system
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/172—Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
- B60W40/103—Side slip angle of vehicle body
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2210/00—Detection or estimation of road or environment conditions; Detection or estimation of road shapes
- B60T2210/30—Environment conditions or position therewithin
- B60T2210/36—Global Positioning System [GPS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2230/00—Monitoring, detecting special vehicle behaviour; Counteracting thereof
- B60T2230/02—Side slip angle, attitude angle, floating angle, drift angle
Definitions
- the invention relates to a method for determining the slip angle on a wheel of a vehicle
- Vehicle control systems such as ESP (Electronic Stability Program) use sensor-determined driving state variables that characterize the current vehicle state in terms of longitudinal and lateral dynamics, as well as state variables estimated from mathematical models in order to influence driving behavior with the aid of active actuators.
- lateral dynamic variables such as the yaw rate or the lateral acceleration as well as wheel slip values can be inferred from the driving stability of the vehicle, whereby an intervention, for example in the brakes or in the engine management, can be carried out to stabilize the vehicle.
- the information about the current slip angle at the wheels is of interest, which designates the angle between the wheel center plane and the resulting, projected on the roadway speed vector in the wheel center.
- the invention has for its object to determine with simple measures the slip angle on a wheel of a vehicle with high quality. This should be carried out in particular with a sensor arranged in the vehicle for a vehicle control system, which is present for example in an ESP system.
- Differential equation system further processed in order to determine at least one slip angle on a wheel of the vehicle.
- Already existing sensor platforms in the motor vehicle can be used, whose signals are evaluated.
- This relates in particular to an inertial sensor system, which is usually present in electronic stability programs (ESP) and can be determined with the vehicle accelerations and yaw rates in the direction of the vehicle axles or about the vehicle axles.
- the inertial sensor system is located, for example, in the center of gravity of the vehicle or the signals supplied by the inertial sensor system are converted to the vehicle center of gravity.
- a so-called 6D inertial sensor system which supplies the vehicle accelerations and the rotation rates in or around all three vehicle axles in the inertial system. This information is needed to calculate the slip angle.
- Inertialsensorik off in which the vehicle accelerations in all three vehicle axles and the yaw rates around the Vehicle longitudinal axis x (roll rate) and around the vehicle's vertical axis z (yaw rate) are measured.
- the yaw rate about the vehicle transverse axis y (pitch rate) can also be determined from a mathematical model.
- the vehicle longitudinal speed, the vehicle lateral velocity and the attitude angle to all three vehicle axes are calculated relative to the inertial system.
- the vehicle longitudinal speed and the vehicle lateral velocity are transformed from the inertial system into the wheel-own coordinate system taking into account the distance between the inertial system and the axial coordinate system.
- the slip angle can be calculated based on the ratio of vehicle lateral velocity to vehicle longitudinal velocity in the wheel coordinate system. In this case, both an exact calculation is possible in which the arctangent from the ratio of Anlagenquer-
- Vehicle longitudinal speed is formed, as well as an approximate determination for small angles by the skew angle is equated without trigonometric conversion with the ratio of vehicle to vehicle longitudinal speed in Radeigen coordinate system.
- the vehicle geometry When transforming the vehicle lateral velocity from the inertial system into the wheel coordinate system, the vehicle geometry must be taken into account. It may be sufficient for reasons of symmetry, only to take into account the measured in the direction of the vehicle longitudinal axis longitudinal distance between the coordinate systems and disregard the transverse offset between the longitudinal center axis and the lateral position of the vehicle wheel.
- the longitudinal distance between the coordinate systems is multiplied by the yaw rate, which is present as the measured value of the inertial sensor.
- the yaw rate corresponds to the measured yaw rate about the z-axis (vertical axis).
- the yaw angle is determined by integrating the kinematic differential equation system from the measured yaw rates.
- the vehicle lateral velocity in the internal coordinate system is determined by adding the vehicle lateral velocity in the inertial system and the product of the yaw rate and the distance between the inertial system and the internal coordinate system.
- the vehicle longitudinal speed in the wheel coordinate system is advantageously equated with the vehicle longitudinal speed in the inertial system, which preferably also applies to steered wheels.
- the conversion into the wheel coordinate system is limited to the vehicle lateral velocity.
- Front wheel or in the rear wheel taking into account the corresponding longitudinal distance and with positive (front wheel) and negative (rear wheel) sign of the term, formed from the product of yaw rate and distance of the coordinate systems.
- a neutral handling without oversteer or understeer is present when the slip angles at the front wheel and the rear wheel are the same.
- An oversteering drivability exists if the slip angle at the front wheel is smaller than at the rear wheel and understeering vehicle behavior if the slip angle at the front wheel is greater than at the rear wheel.
- a countermeasure can be initiated by applying a vehicle control system, for example by applying the brakes or the engine management or an active suspension actuator.
- the method for determining the slip angle preferably runs in a control unit in the vehicle, which may be part of a vehicle control system with an actively adjustable actuator. In the control unit or control signals are generated, which are supplied to the actuator for changing the current driving condition of the vehicle.
- FIG. 1 is a schematic representation of a front wheel and a rear wheel in a vehicle with an inertial system arranged in the center of gravity of the vehicle as well as with wheel-own coordinate systems, in each of which speed vectors are entered,
- Fig. 2 is a block diagram, the blocks of different steps to the expiry of the determination of
- a vehicle with a front wheel 1 and a rear wheel 2 wherein the respective speed vectors v ⁇ at the front wheel 1 and v ⁇ at the rear wheel 2 are also registered.
- the velocity vectors v TM and v ⁇ are the respective resulting vectors, which are determined from the vehicle's own coordinate system - which in the case of the steerable front wheel 1 rotates with the steering angle - vehicle speeds v ⁇ v and v w for the front wheel and v ⁇ h and V w yh composed vectorially for the rear wheel.
- the angular difference between the resulting speed vector v ⁇ and the respective Radstoff Kunststoffsachse is referred to as front wheel slip angle ⁇ v and rear wheel slip angle c ⁇ h .
- An inertial sensor system is available in the motor vehicle which determines the vehicle accelerations a x , a y and a z in the center of gravity in the vehicle longitudinal, vehicle transverse and vehicle vertical direction in accordance with the conventional convention for vehicles in the x, y and z directions.
- the inertial sensor system can also sense the yaw rates ⁇ x , ⁇ y and ⁇ z about the respective vehicle axles in the center of gravity of the vehicle. From this information, the vehicle longitudinal velocity v x and the vehicle lateral velocity v y in the vehicle center of gravity 3 can be calculated; the yaw rate ⁇ corresponds to the measured yaw rate ⁇ z .
- This information and the geometric distances l v and l h between the center of gravity 3 and the center of the front wheel 3 and the center of the rear wheel 2 are basically sufficient to the vehicle speeds v TM in the front wheel and v ⁇ in the rear wheel with the respective components in x and Determine y-direction in the respective wheel coordinate system from which the slip angle ⁇ v and ⁇ h can be calculated at the front wheel or rear wheel.
- the distances l v and I h between the vehicle center of gravity and the wheel centers are preferably taken into account only in the vehicle longitudinal direction regardless of the transverse offset of the vehicle wheels.
- Fig. 2 is a block diagram for calculating the slip angle is shown.
- the yaw rates ⁇ x , ⁇ y and ⁇ z about all three spatial axes as well as the vehicle longitudinal acceleration a x , the vehicle lateral acceleration a y and the vehicle acceleration a z in the vertical direction are determined by means of inertial sensors. These sizes are required to calculate the slip angles. Accordingly, a 6D inertial sensor is used, with which these sizes can be sensed. If necessary, a 5D inertial sensor system in which the vehicle accelerations and yaw rates about the x and z axes are measured, wherein the yaw rate is computationally determined about the y-axis. From the state variables measured in the inertial sensor system are from a known kinematic relationship, which is described by a differential equation system, which is solved by numerical integration, the
- Vehicle speeds v x , v y , v z in all three spatial directions and the attitude angle ⁇ , ⁇ , ⁇ are determined to all vehicle fixed axis directions, of which the attitude angle ⁇ the roll angle, the attitude angle ⁇ the pitch angle and the attitude angle ⁇ the yaw angle.
- the kinematic differential equation system in block 10 can be given in the following form:
- the vehicle longitudinal velocity v x obtained in the numerical solution of the kinematic differential equation system 10, the vehicle lateral velocity Vy and the measured yaw rate ⁇ are then fed to a block 11, in which a transformation of these variables from the inertial system into the radeigene coordinate system of the front wheel or Rear wheel is performed.
- the transformation from the inertial system into the wheel-own coordinate systems takes place only for the vehicle lateral velocity.
- the vehicle longitudinal speed v ⁇ v in the front wheel and v ⁇ h in the rear wheel are equated with the vehicle longitudinal speed v x in the inertial system.
- the information about the distance between the inertial system and the wheel-own coordinate system, measured in the vehicle longitudinal direction is additionally required. This distance is denoted by l v and l h for the front wheel and the rear wheel. This can be calculated with the vehicle lateral velocity v y of the inertial system and the yaw rate ⁇ according to the relationships
- the vehicle lateral velocity v y w v in the front wheel or v y w h in the rear wheel are calculated.
- the slip angles ⁇ v and c ⁇ h are calculated from the respective components of the vehicle longitudinal and lateral speeds in the front wheel or rear wheel.
- the slip angles are in principle calculated on the basis of the ratio of the transverse component of the speed to the longitudinal component
- a comparison is made between the front wheel slip angle ⁇ v and the rear wheel slip angle c ⁇ h . If the rear wheel slip angle. c ⁇ h is greater than the front wheel slip angle ⁇ v , there is oversteer of the vehicle. In the opposite case, ie with a larger front wheel slip angle ⁇ v compared to the rear wheel slip angle ⁇ h , there is an understeer of the vehicle. If the front wheel slip angle ⁇ v and the rear wheel slip angle ⁇ h are the same size, there is a neutral driving behavior.
- a signal S can be generated, which can be subsequently fed to a vehicle control system or an actuator to cause a reaction that contributes to the stabilization of the vehicle.
- the signal S can also be used for documentation or be displayed to the driver, for example as a warning signal.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Mathematical Physics (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Regulating Braking Force (AREA)
Abstract
Procédé destiné à déterminer l'angle de dérive de la roue d'un véhicule, selon lequel un capteur inertiel mesure les accélérations du véhicule et les vitesses de rotation, et, à partir de ces dernières, la vitesse longitudinale du véhicule et la vitesse transversale du véhicule sont calculées dans le système inertiel. Puis les vitesses provenant du système inertiel sont transformées dans le système de coordonnées des roues, et l'angle de dérive est déterminé sur la base du rapport entre la vitesse longitudinale du véhicule et la vitesse transversale du véhicule.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007050115 | 2007-10-19 | ||
DE102007050115.5 | 2007-10-19 | ||
DE102008013102.4 | 2008-03-07 | ||
DE102008013102A DE102008013102A1 (de) | 2007-10-19 | 2008-03-07 | Verfahren zur Fahrzustandsbeobachtung |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009109240A1 true WO2009109240A1 (fr) | 2009-09-11 |
Family
ID=40459046
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/063330 WO2009053233A1 (fr) | 2007-10-19 | 2008-10-06 | Procédé d'observation de l'état de conduite |
PCT/EP2008/063339 WO2009109240A1 (fr) | 2007-10-19 | 2008-10-06 | Procédé de détermination de l'angle de dérive de la roue d'un véhicule à moteur |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/063330 WO2009053233A1 (fr) | 2007-10-19 | 2008-10-06 | Procédé d'observation de l'état de conduite |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102008013102A1 (fr) |
WO (2) | WO2009053233A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019101392A1 (de) * | 2019-01-21 | 2020-07-23 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Traktionskontrolle eines einspurigen Kraftfahrzeugs unter Berücksichtigung des Schräglaufwinkels des Hinterrades |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9382327B2 (en) | 2006-10-10 | 2016-07-05 | Vaccinex, Inc. | Anti-CD20 antibodies and methods of use |
DE102010050278A1 (de) | 2010-11-02 | 2012-05-03 | Audi Ag | Verfahren zum Schätzen eines Schwimmwinkels |
DE102012210793B4 (de) | 2012-06-26 | 2014-08-28 | Robert Bosch Gmbh | Verfahren zur Plausibilisierung eines Vortriebs eines Fahrzeuges |
US20170247038A1 (en) * | 2014-10-20 | 2017-08-31 | Politecnico Di Milano | Method For Estimating A Vehicle Side Slip Angle, Computer Program Implementing Said Method, Control Unit Having Said Computer Program Loaded, And Vehicle Comprising Said Control Unit |
DE102015010173B3 (de) | 2015-08-06 | 2016-07-14 | Audi Ag | Verfahren zur Schwimmwinkelmessung in Fahrzeugen |
JP6473684B2 (ja) * | 2015-11-11 | 2019-02-20 | 日立建機株式会社 | 車輪の滑り角推定装置及びその方法 |
DE102019134258A1 (de) * | 2019-12-13 | 2021-05-06 | Daimler Ag | Verfahren zum Steuern einer Fahrfunktion eines Fahrzeugs |
DE102021211390A1 (de) | 2021-10-08 | 2023-04-13 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zum Betreiben eines Zweirads |
DE102021211388A1 (de) | 2021-10-08 | 2023-04-13 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zum Ermitteln von Bewegungsgrößen eines Zweirads |
DE102022132395A1 (de) | 2022-12-06 | 2023-01-26 | Daimler Truck AG | Verfahren zur Bildung eines Referenzwerts einer Quergeschwindigkeit für die Schätzung eines Bewegungszustands eines Fahrzeugs |
DE102023108149A1 (de) | 2023-03-30 | 2024-10-02 | Daimler Truck AG | Verfahren zur simultanen Schätzung eines Bewegungszustands eines Fahrzeugs und eines Schwimmwinkelgradienten |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5408411A (en) * | 1991-01-18 | 1995-04-18 | Hitachi, Ltd. | System for predicting behavior of automotive vehicle and for controlling vehicular behavior based thereon |
EP1000838A2 (fr) * | 1998-11-11 | 2000-05-17 | DaimlerChrysler AG | Méthode pour le contrôle des dynamiques transversales d'un véhicule avec direction pour les roues avant |
US20020198655A1 (en) * | 2001-01-29 | 2002-12-26 | Bevly David M. | Determination and control of vehicle sideslip using GPS |
US20030093190A1 (en) * | 2001-11-15 | 2003-05-15 | Honda Giken Kogyo Kabushiki Kaisha | Method of estimating quantities that represent state of vehicle |
US20040046448A1 (en) * | 2002-09-06 | 2004-03-11 | Ford Motor Company | Independent braking and controllability control method and system for a vehicle with regenerative braking |
US20040249545A1 (en) * | 2003-02-26 | 2004-12-09 | Jianbo Lu | Integrated sensing system for an automotive system |
DE102006009682A1 (de) * | 2006-03-02 | 2007-09-06 | Bayerische Motoren Werke Ag | Verfahren zum Bestimmen des Fahrzustands eines zweispurigen Fahrzeugs durch Schwimmwinkel-Schätzung |
EP1844996A1 (fr) * | 2005-02-04 | 2007-10-17 | Byd Company Limited | Système de commande de frein anti-dérapage pour véhicule et son procédé de commande |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3669668B2 (ja) * | 1998-07-10 | 2005-07-13 | 本田技研工業株式会社 | 車両用車輪スリップ角検出装置 |
DE10247991A1 (de) | 2002-10-15 | 2004-04-29 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Ermittlung des Schwimmwinkels eines Kraftfahrzeugs |
US7010409B2 (en) * | 2003-02-26 | 2006-03-07 | Ford Global Technologies, Llc | Reference signal generator for an integrated sensing system |
US7274984B2 (en) * | 2004-06-14 | 2007-09-25 | General Motors Corporation | Vehicle stability enhancement system |
US7451033B2 (en) * | 2005-06-10 | 2008-11-11 | Ford Global Technologies, Llc | Lateral and longitudinal velocity determination for an automotive vehicle |
-
2008
- 2008-03-07 DE DE102008013102A patent/DE102008013102A1/de active Pending
- 2008-10-06 WO PCT/EP2008/063330 patent/WO2009053233A1/fr active Application Filing
- 2008-10-06 WO PCT/EP2008/063339 patent/WO2009109240A1/fr active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5408411A (en) * | 1991-01-18 | 1995-04-18 | Hitachi, Ltd. | System for predicting behavior of automotive vehicle and for controlling vehicular behavior based thereon |
EP1000838A2 (fr) * | 1998-11-11 | 2000-05-17 | DaimlerChrysler AG | Méthode pour le contrôle des dynamiques transversales d'un véhicule avec direction pour les roues avant |
US20020198655A1 (en) * | 2001-01-29 | 2002-12-26 | Bevly David M. | Determination and control of vehicle sideslip using GPS |
US20030093190A1 (en) * | 2001-11-15 | 2003-05-15 | Honda Giken Kogyo Kabushiki Kaisha | Method of estimating quantities that represent state of vehicle |
US20040046448A1 (en) * | 2002-09-06 | 2004-03-11 | Ford Motor Company | Independent braking and controllability control method and system for a vehicle with regenerative braking |
US20040249545A1 (en) * | 2003-02-26 | 2004-12-09 | Jianbo Lu | Integrated sensing system for an automotive system |
EP1844996A1 (fr) * | 2005-02-04 | 2007-10-17 | Byd Company Limited | Système de commande de frein anti-dérapage pour véhicule et son procédé de commande |
DE102006009682A1 (de) * | 2006-03-02 | 2007-09-06 | Bayerische Motoren Werke Ag | Verfahren zum Bestimmen des Fahrzustands eines zweispurigen Fahrzeugs durch Schwimmwinkel-Schätzung |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019101392A1 (de) * | 2019-01-21 | 2020-07-23 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Traktionskontrolle eines einspurigen Kraftfahrzeugs unter Berücksichtigung des Schräglaufwinkels des Hinterrades |
CN113226880A (zh) * | 2019-01-21 | 2021-08-06 | 宝马股份公司 | 用于在考虑后轮轮胎侧偏角的情况下对单轮辙机动车进行牵引力控制的方法 |
US11731596B2 (en) | 2019-01-21 | 2023-08-22 | Bayerische Motoren Werke Aktiengesellschaft | Method for the traction control of a single-track motor vehicle taking the slip angle of the rear wheel into consideration |
CN113226880B (zh) * | 2019-01-21 | 2024-07-05 | 宝马股份公司 | 用于在考虑后轮轮胎侧偏角的情况下对单轮辙机动车进行牵引力控制的方法 |
Also Published As
Publication number | Publication date |
---|---|
DE102008013102A1 (de) | 2009-04-23 |
WO2009053233A1 (fr) | 2009-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009109240A1 (fr) | Procédé de détermination de l'angle de dérive de la roue d'un véhicule à moteur | |
EP1692026B1 (fr) | Procede et systeme de surveillance d'un dispositif de mesure dispose dans un vehicule a roues | |
DE112017005121B4 (de) | Vorrichtung mit Kraftfahrzeug-Bewegungszustand-Bewertungsvorrichtung | |
EP0846610B1 (fr) | Procédé de direction auxilliaire pour aider le conducteur d'un véhicule routier | |
DE102007037209B4 (de) | Verfahren zur Fahrzeugsteuerung | |
DE602004006049T2 (de) | Integriertes Erfassungssystem für Kraftfahrzeug | |
DE10327593B4 (de) | System und Verfahren zum Bestimmen der Lage eines Kraftfahrzeuges | |
DE102005033237B4 (de) | Verfahren zur Bestimmung und Korrektur von Fehlorientierungen und Offsets der Sensoren einer Inertial Measurement Unit in einem Landfahrzeug | |
DE102007037508B4 (de) | Verfahren zur Fahrzeugsteuerung | |
EP2755868B1 (fr) | Système capteur comportant une unité de modèle de véhicule | |
DE112018006045B4 (de) | Fahrzeug, fahrzeugbewegungszustandsschätzeinrichtung und verfahren zum schätzen des fahrzeugbewegungszustands | |
DE102017102269A1 (de) | Neigungs- und fehlausrichtungsausgleich für 6-dof-imu unter verwendung von gnss-/ins-daten | |
DE102006026937A9 (de) | Verfahren zum Steuern eines Systems eines Fahrzeugs | |
DE10327590A1 (de) | Verfahren und Apparat zum Kompensieren von Abweichungen eines Sensorsystems zum Einsatz in einem Fahrzeugdynamiksteuersystem | |
DE102005000726A1 (de) | Verhalten-Erfassungssystem für ein Automobil relativ zur Straße | |
DE10327591A1 (de) | System zum Detektieren des Flächenprofils einer Fahrstraße | |
DE102007037513A1 (de) | Verfahren und Vorrichtung zur Fahrzeugsteuerung | |
DE102016225140B3 (de) | Verfahren zum Bestimmen einer relativen Position eines Kraftfahrzeugs, Positionsbestimmungssystem für ein Kraftfahrzeug und Kraftfahrzeug | |
DE102016219379A1 (de) | Verfahren zur Ermittlung einer Orientierung eines Fahrzeugs | |
DE102010029245B4 (de) | Verfahren zur Seitenwindkompensation in Fahrzeugen | |
DE10320544A1 (de) | Verfahren und Vorrichtung zur Bestimmung der Quergeschwindigkeit eines Fahrzeuges | |
EP1692025A1 (fr) | Determination des charges dynamiques s'exercant au niveau des essieux et/ou des roues d'un vehicule a roues | |
DE112019007748T5 (de) | Zustandsgrößen-Berechnungsvorrichtung, Steuervorrichtung und Fahrzeug | |
DE10360728A1 (de) | Verfahren und Vorrichtung zur Bestimmung eines Fahrzeugzustandes | |
DE102006049118B4 (de) | Verfahren und Vorrichtung zum Ermitteln eines Signalversatzes eines Nickratensensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08805083 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08805083 Country of ref document: EP Kind code of ref document: A1 |