WO2009109240A1 - Procédé de détermination de l'angle de dérive de la roue d'un véhicule à moteur - Google Patents

Procédé de détermination de l'angle de dérive de la roue d'un véhicule à moteur Download PDF

Info

Publication number
WO2009109240A1
WO2009109240A1 PCT/EP2008/063339 EP2008063339W WO2009109240A1 WO 2009109240 A1 WO2009109240 A1 WO 2009109240A1 EP 2008063339 W EP2008063339 W EP 2008063339W WO 2009109240 A1 WO2009109240 A1 WO 2009109240A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
wheel
slip angle
inertial
coordinate system
Prior art date
Application number
PCT/EP2008/063339
Other languages
German (de)
English (en)
Inventor
Oliver Oettgen
Ulrich Blankenhorn
Marco Rajapakse Pathirage
Andreas Schulz
Andreas Reim
Alexander Steinbach
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2009109240A1 publication Critical patent/WO2009109240A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/103Side slip angle of vehicle body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/30Environment conditions or position therewithin
    • B60T2210/36Global Positioning System [GPS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2230/00Monitoring, detecting special vehicle behaviour; Counteracting thereof
    • B60T2230/02Side slip angle, attitude angle, floating angle, drift angle

Definitions

  • the invention relates to a method for determining the slip angle on a wheel of a vehicle
  • Vehicle control systems such as ESP (Electronic Stability Program) use sensor-determined driving state variables that characterize the current vehicle state in terms of longitudinal and lateral dynamics, as well as state variables estimated from mathematical models in order to influence driving behavior with the aid of active actuators.
  • lateral dynamic variables such as the yaw rate or the lateral acceleration as well as wheel slip values can be inferred from the driving stability of the vehicle, whereby an intervention, for example in the brakes or in the engine management, can be carried out to stabilize the vehicle.
  • the information about the current slip angle at the wheels is of interest, which designates the angle between the wheel center plane and the resulting, projected on the roadway speed vector in the wheel center.
  • the invention has for its object to determine with simple measures the slip angle on a wheel of a vehicle with high quality. This should be carried out in particular with a sensor arranged in the vehicle for a vehicle control system, which is present for example in an ESP system.
  • Differential equation system further processed in order to determine at least one slip angle on a wheel of the vehicle.
  • Already existing sensor platforms in the motor vehicle can be used, whose signals are evaluated.
  • This relates in particular to an inertial sensor system, which is usually present in electronic stability programs (ESP) and can be determined with the vehicle accelerations and yaw rates in the direction of the vehicle axles or about the vehicle axles.
  • the inertial sensor system is located, for example, in the center of gravity of the vehicle or the signals supplied by the inertial sensor system are converted to the vehicle center of gravity.
  • a so-called 6D inertial sensor system which supplies the vehicle accelerations and the rotation rates in or around all three vehicle axles in the inertial system. This information is needed to calculate the slip angle.
  • Inertialsensorik off in which the vehicle accelerations in all three vehicle axles and the yaw rates around the Vehicle longitudinal axis x (roll rate) and around the vehicle's vertical axis z (yaw rate) are measured.
  • the yaw rate about the vehicle transverse axis y (pitch rate) can also be determined from a mathematical model.
  • the vehicle longitudinal speed, the vehicle lateral velocity and the attitude angle to all three vehicle axes are calculated relative to the inertial system.
  • the vehicle longitudinal speed and the vehicle lateral velocity are transformed from the inertial system into the wheel-own coordinate system taking into account the distance between the inertial system and the axial coordinate system.
  • the slip angle can be calculated based on the ratio of vehicle lateral velocity to vehicle longitudinal velocity in the wheel coordinate system. In this case, both an exact calculation is possible in which the arctangent from the ratio of Anlagenquer-
  • Vehicle longitudinal speed is formed, as well as an approximate determination for small angles by the skew angle is equated without trigonometric conversion with the ratio of vehicle to vehicle longitudinal speed in Radeigen coordinate system.
  • the vehicle geometry When transforming the vehicle lateral velocity from the inertial system into the wheel coordinate system, the vehicle geometry must be taken into account. It may be sufficient for reasons of symmetry, only to take into account the measured in the direction of the vehicle longitudinal axis longitudinal distance between the coordinate systems and disregard the transverse offset between the longitudinal center axis and the lateral position of the vehicle wheel.
  • the longitudinal distance between the coordinate systems is multiplied by the yaw rate, which is present as the measured value of the inertial sensor.
  • the yaw rate corresponds to the measured yaw rate about the z-axis (vertical axis).
  • the yaw angle is determined by integrating the kinematic differential equation system from the measured yaw rates.
  • the vehicle lateral velocity in the internal coordinate system is determined by adding the vehicle lateral velocity in the inertial system and the product of the yaw rate and the distance between the inertial system and the internal coordinate system.
  • the vehicle longitudinal speed in the wheel coordinate system is advantageously equated with the vehicle longitudinal speed in the inertial system, which preferably also applies to steered wheels.
  • the conversion into the wheel coordinate system is limited to the vehicle lateral velocity.
  • Front wheel or in the rear wheel taking into account the corresponding longitudinal distance and with positive (front wheel) and negative (rear wheel) sign of the term, formed from the product of yaw rate and distance of the coordinate systems.
  • a neutral handling without oversteer or understeer is present when the slip angles at the front wheel and the rear wheel are the same.
  • An oversteering drivability exists if the slip angle at the front wheel is smaller than at the rear wheel and understeering vehicle behavior if the slip angle at the front wheel is greater than at the rear wheel.
  • a countermeasure can be initiated by applying a vehicle control system, for example by applying the brakes or the engine management or an active suspension actuator.
  • the method for determining the slip angle preferably runs in a control unit in the vehicle, which may be part of a vehicle control system with an actively adjustable actuator. In the control unit or control signals are generated, which are supplied to the actuator for changing the current driving condition of the vehicle.
  • FIG. 1 is a schematic representation of a front wheel and a rear wheel in a vehicle with an inertial system arranged in the center of gravity of the vehicle as well as with wheel-own coordinate systems, in each of which speed vectors are entered,
  • Fig. 2 is a block diagram, the blocks of different steps to the expiry of the determination of
  • a vehicle with a front wheel 1 and a rear wheel 2 wherein the respective speed vectors v ⁇ at the front wheel 1 and v ⁇ at the rear wheel 2 are also registered.
  • the velocity vectors v TM and v ⁇ are the respective resulting vectors, which are determined from the vehicle's own coordinate system - which in the case of the steerable front wheel 1 rotates with the steering angle - vehicle speeds v ⁇ v and v w for the front wheel and v ⁇ h and V w yh composed vectorially for the rear wheel.
  • the angular difference between the resulting speed vector v ⁇ and the respective Radstoff Kunststoffsachse is referred to as front wheel slip angle ⁇ v and rear wheel slip angle c ⁇ h .
  • An inertial sensor system is available in the motor vehicle which determines the vehicle accelerations a x , a y and a z in the center of gravity in the vehicle longitudinal, vehicle transverse and vehicle vertical direction in accordance with the conventional convention for vehicles in the x, y and z directions.
  • the inertial sensor system can also sense the yaw rates ⁇ x , ⁇ y and ⁇ z about the respective vehicle axles in the center of gravity of the vehicle. From this information, the vehicle longitudinal velocity v x and the vehicle lateral velocity v y in the vehicle center of gravity 3 can be calculated; the yaw rate ⁇ corresponds to the measured yaw rate ⁇ z .
  • This information and the geometric distances l v and l h between the center of gravity 3 and the center of the front wheel 3 and the center of the rear wheel 2 are basically sufficient to the vehicle speeds v TM in the front wheel and v ⁇ in the rear wheel with the respective components in x and Determine y-direction in the respective wheel coordinate system from which the slip angle ⁇ v and ⁇ h can be calculated at the front wheel or rear wheel.
  • the distances l v and I h between the vehicle center of gravity and the wheel centers are preferably taken into account only in the vehicle longitudinal direction regardless of the transverse offset of the vehicle wheels.
  • Fig. 2 is a block diagram for calculating the slip angle is shown.
  • the yaw rates ⁇ x , ⁇ y and ⁇ z about all three spatial axes as well as the vehicle longitudinal acceleration a x , the vehicle lateral acceleration a y and the vehicle acceleration a z in the vertical direction are determined by means of inertial sensors. These sizes are required to calculate the slip angles. Accordingly, a 6D inertial sensor is used, with which these sizes can be sensed. If necessary, a 5D inertial sensor system in which the vehicle accelerations and yaw rates about the x and z axes are measured, wherein the yaw rate is computationally determined about the y-axis. From the state variables measured in the inertial sensor system are from a known kinematic relationship, which is described by a differential equation system, which is solved by numerical integration, the
  • Vehicle speeds v x , v y , v z in all three spatial directions and the attitude angle ⁇ , ⁇ , ⁇ are determined to all vehicle fixed axis directions, of which the attitude angle ⁇ the roll angle, the attitude angle ⁇ the pitch angle and the attitude angle ⁇ the yaw angle.
  • the kinematic differential equation system in block 10 can be given in the following form:
  • the vehicle longitudinal velocity v x obtained in the numerical solution of the kinematic differential equation system 10, the vehicle lateral velocity Vy and the measured yaw rate ⁇ are then fed to a block 11, in which a transformation of these variables from the inertial system into the radeigene coordinate system of the front wheel or Rear wheel is performed.
  • the transformation from the inertial system into the wheel-own coordinate systems takes place only for the vehicle lateral velocity.
  • the vehicle longitudinal speed v ⁇ v in the front wheel and v ⁇ h in the rear wheel are equated with the vehicle longitudinal speed v x in the inertial system.
  • the information about the distance between the inertial system and the wheel-own coordinate system, measured in the vehicle longitudinal direction is additionally required. This distance is denoted by l v and l h for the front wheel and the rear wheel. This can be calculated with the vehicle lateral velocity v y of the inertial system and the yaw rate ⁇ according to the relationships
  • the vehicle lateral velocity v y w v in the front wheel or v y w h in the rear wheel are calculated.
  • the slip angles ⁇ v and c ⁇ h are calculated from the respective components of the vehicle longitudinal and lateral speeds in the front wheel or rear wheel.
  • the slip angles are in principle calculated on the basis of the ratio of the transverse component of the speed to the longitudinal component
  • a comparison is made between the front wheel slip angle ⁇ v and the rear wheel slip angle c ⁇ h . If the rear wheel slip angle. c ⁇ h is greater than the front wheel slip angle ⁇ v , there is oversteer of the vehicle. In the opposite case, ie with a larger front wheel slip angle ⁇ v compared to the rear wheel slip angle ⁇ h , there is an understeer of the vehicle. If the front wheel slip angle ⁇ v and the rear wheel slip angle ⁇ h are the same size, there is a neutral driving behavior.
  • a signal S can be generated, which can be subsequently fed to a vehicle control system or an actuator to cause a reaction that contributes to the stabilization of the vehicle.
  • the signal S can also be used for documentation or be displayed to the driver, for example as a warning signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Regulating Braking Force (AREA)

Abstract

Procédé destiné à déterminer l'angle de dérive de la roue d'un véhicule, selon lequel un capteur inertiel mesure les accélérations du véhicule et les vitesses de rotation, et, à partir de ces dernières, la vitesse longitudinale du véhicule et la vitesse transversale du véhicule sont calculées dans le système inertiel. Puis les vitesses provenant du système inertiel sont transformées dans le système de coordonnées des roues, et l'angle de dérive est déterminé sur la base du rapport entre la vitesse longitudinale du véhicule et la vitesse transversale du véhicule.
PCT/EP2008/063339 2007-10-19 2008-10-06 Procédé de détermination de l'angle de dérive de la roue d'un véhicule à moteur WO2009109240A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102007050115 2007-10-19
DE102007050115.5 2007-10-19
DE102008013102A DE102008013102A1 (de) 2007-10-19 2008-03-07 Verfahren zur Fahrzustandsbeobachtung
DE102008013102.4 2008-03-07

Publications (1)

Publication Number Publication Date
WO2009109240A1 true WO2009109240A1 (fr) 2009-09-11

Family

ID=40459046

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2008/063339 WO2009109240A1 (fr) 2007-10-19 2008-10-06 Procédé de détermination de l'angle de dérive de la roue d'un véhicule à moteur
PCT/EP2008/063330 WO2009053233A1 (fr) 2007-10-19 2008-10-06 Procédé d'observation de l'état de conduite

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/063330 WO2009053233A1 (fr) 2007-10-19 2008-10-06 Procédé d'observation de l'état de conduite

Country Status (2)

Country Link
DE (1) DE102008013102A1 (fr)
WO (2) WO2009109240A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019101392A1 (de) * 2019-01-21 2020-07-23 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Traktionskontrolle eines einspurigen Kraftfahrzeugs unter Berücksichtigung des Schräglaufwinkels des Hinterrades

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9382327B2 (en) 2006-10-10 2016-07-05 Vaccinex, Inc. Anti-CD20 antibodies and methods of use
DE102010050278A1 (de) 2010-11-02 2012-05-03 Audi Ag Verfahren zum Schätzen eines Schwimmwinkels
DE102012210793B4 (de) 2012-06-26 2014-08-28 Robert Bosch Gmbh Verfahren zur Plausibilisierung eines Vortriebs eines Fahrzeuges
EP3209529B1 (fr) * 2014-10-20 2019-02-06 Politecnico di Milano Procédé pour estimer un angle de dérapage d'un véhicule, programme informatique mettant en oeuvre ledit procédé, unité de commande dans laquelle est chargé ledit programme informatique, et véhicule comprenant ladite unité de commande
DE102015010173B3 (de) * 2015-08-06 2016-07-14 Audi Ag Verfahren zur Schwimmwinkelmessung in Fahrzeugen
JP6473684B2 (ja) * 2015-11-11 2019-02-20 日立建機株式会社 車輪の滑り角推定装置及びその方法
DE102019134258A1 (de) * 2019-12-13 2021-05-06 Daimler Ag Verfahren zum Steuern einer Fahrfunktion eines Fahrzeugs
DE102021211388A1 (de) 2021-10-08 2023-04-13 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Ermitteln von Bewegungsgrößen eines Zweirads
DE102021211390A1 (de) 2021-10-08 2023-04-13 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben eines Zweirads
DE102022132395A1 (de) 2022-12-06 2023-01-26 Daimler Truck AG Verfahren zur Bildung eines Referenzwerts einer Quergeschwindigkeit für die Schätzung eines Bewegungszustands eines Fahrzeugs

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408411A (en) * 1991-01-18 1995-04-18 Hitachi, Ltd. System for predicting behavior of automotive vehicle and for controlling vehicular behavior based thereon
EP1000838A2 (fr) * 1998-11-11 2000-05-17 DaimlerChrysler AG Méthode pour le contrôle des dynamiques transversales d'un véhicule avec direction pour les roues avant
US20020198655A1 (en) * 2001-01-29 2002-12-26 Bevly David M. Determination and control of vehicle sideslip using GPS
US20030093190A1 (en) * 2001-11-15 2003-05-15 Honda Giken Kogyo Kabushiki Kaisha Method of estimating quantities that represent state of vehicle
US20040046448A1 (en) * 2002-09-06 2004-03-11 Ford Motor Company Independent braking and controllability control method and system for a vehicle with regenerative braking
US20040249545A1 (en) * 2003-02-26 2004-12-09 Jianbo Lu Integrated sensing system for an automotive system
DE102006009682A1 (de) * 2006-03-02 2007-09-06 Bayerische Motoren Werke Ag Verfahren zum Bestimmen des Fahrzustands eines zweispurigen Fahrzeugs durch Schwimmwinkel-Schätzung
EP1844996A1 (fr) * 2005-02-04 2007-10-17 Byd Company Limited Système de commande de frein anti-dérapage pour véhicule et son procédé de commande

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3669668B2 (ja) * 1998-07-10 2005-07-13 本田技研工業株式会社 車両用車輪スリップ角検出装置
DE10247991A1 (de) 2002-10-15 2004-04-29 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ermittlung des Schwimmwinkels eines Kraftfahrzeugs
US7010409B2 (en) * 2003-02-26 2006-03-07 Ford Global Technologies, Llc Reference signal generator for an integrated sensing system
US7274984B2 (en) * 2004-06-14 2007-09-25 General Motors Corporation Vehicle stability enhancement system
US7451033B2 (en) * 2005-06-10 2008-11-11 Ford Global Technologies, Llc Lateral and longitudinal velocity determination for an automotive vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408411A (en) * 1991-01-18 1995-04-18 Hitachi, Ltd. System for predicting behavior of automotive vehicle and for controlling vehicular behavior based thereon
EP1000838A2 (fr) * 1998-11-11 2000-05-17 DaimlerChrysler AG Méthode pour le contrôle des dynamiques transversales d'un véhicule avec direction pour les roues avant
US20020198655A1 (en) * 2001-01-29 2002-12-26 Bevly David M. Determination and control of vehicle sideslip using GPS
US20030093190A1 (en) * 2001-11-15 2003-05-15 Honda Giken Kogyo Kabushiki Kaisha Method of estimating quantities that represent state of vehicle
US20040046448A1 (en) * 2002-09-06 2004-03-11 Ford Motor Company Independent braking and controllability control method and system for a vehicle with regenerative braking
US20040249545A1 (en) * 2003-02-26 2004-12-09 Jianbo Lu Integrated sensing system for an automotive system
EP1844996A1 (fr) * 2005-02-04 2007-10-17 Byd Company Limited Système de commande de frein anti-dérapage pour véhicule et son procédé de commande
DE102006009682A1 (de) * 2006-03-02 2007-09-06 Bayerische Motoren Werke Ag Verfahren zum Bestimmen des Fahrzustands eines zweispurigen Fahrzeugs durch Schwimmwinkel-Schätzung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019101392A1 (de) * 2019-01-21 2020-07-23 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Traktionskontrolle eines einspurigen Kraftfahrzeugs unter Berücksichtigung des Schräglaufwinkels des Hinterrades
CN113226880A (zh) * 2019-01-21 2021-08-06 宝马股份公司 用于在考虑后轮轮胎侧偏角的情况下对单轮辙机动车进行牵引力控制的方法
US11731596B2 (en) 2019-01-21 2023-08-22 Bayerische Motoren Werke Aktiengesellschaft Method for the traction control of a single-track motor vehicle taking the slip angle of the rear wheel into consideration

Also Published As

Publication number Publication date
WO2009053233A1 (fr) 2009-04-30
DE102008013102A1 (de) 2009-04-23

Similar Documents

Publication Publication Date Title
WO2009109240A1 (fr) Procédé de détermination de l'angle de dérive de la roue d'un véhicule à moteur
EP1692026B1 (fr) Procede et systeme de surveillance d'un dispositif de mesure dispose dans un vehicule a roues
DE112017005121B4 (de) Vorrichtung mit Kraftfahrzeug-Bewegungszustand-Bewertungsvorrichtung
EP0846610B1 (fr) Procédé de direction auxilliaire pour aider le conducteur d'un véhicule routier
DE102007037209B4 (de) Verfahren zur Fahrzeugsteuerung
DE602004006049T2 (de) Integriertes Erfassungssystem für Kraftfahrzeug
DE10327593B4 (de) System und Verfahren zum Bestimmen der Lage eines Kraftfahrzeuges
DE102005033237B4 (de) Verfahren zur Bestimmung und Korrektur von Fehlorientierungen und Offsets der Sensoren einer Inertial Measurement Unit in einem Landfahrzeug
DE102007037508B4 (de) Verfahren zur Fahrzeugsteuerung
EP2755868B1 (fr) Système capteur comportant une unité de modèle de véhicule
DE102017102269A1 (de) Neigungs- und fehlausrichtungsausgleich für 6-dof-imu unter verwendung von gnss-/ins-daten
DE102006026937A9 (de) Verfahren zum Steuern eines Systems eines Fahrzeugs
DE10327590A1 (de) Verfahren und Apparat zum Kompensieren von Abweichungen eines Sensorsystems zum Einsatz in einem Fahrzeugdynamiksteuersystem
DE102005000726A1 (de) Verhalten-Erfassungssystem für ein Automobil relativ zur Straße
DE10327591A1 (de) System zum Detektieren des Flächenprofils einer Fahrstraße
DE102007037513A1 (de) Verfahren und Vorrichtung zur Fahrzeugsteuerung
DE102016225140B3 (de) Verfahren zum Bestimmen einer relativen Position eines Kraftfahrzeugs, Positionsbestimmungssystem für ein Kraftfahrzeug und Kraftfahrzeug
DE102016219379A1 (de) Verfahren zur Ermittlung einer Orientierung eines Fahrzeugs
DE10320544A1 (de) Verfahren und Vorrichtung zur Bestimmung der Quergeschwindigkeit eines Fahrzeuges
WO2005056358A1 (fr) Determination des charges dynamiques s'exercant au niveau des essieux et/ou des roues d'un vehicule a roues
DE102010029245B4 (de) Verfahren zur Seitenwindkompensation in Fahrzeugen
DE102006049118B4 (de) Verfahren und Vorrichtung zum Ermitteln eines Signalversatzes eines Nickratensensors
DE10360728A1 (de) Verfahren und Vorrichtung zur Bestimmung eines Fahrzeugzustandes
DE112019007748T5 (de) Zustandsgrößen-Berechnungsvorrichtung, Steuervorrichtung und Fahrzeug
DE102015009284A1 (de) Verfahren zum Betrieb eines Fahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08805083

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 08805083

Country of ref document: EP

Kind code of ref document: A1