WO2009109240A1 - Method for determining the slip angle of a wheel on a vehicle - Google Patents

Method for determining the slip angle of a wheel on a vehicle Download PDF

Info

Publication number
WO2009109240A1
WO2009109240A1 PCT/EP2008/063339 EP2008063339W WO2009109240A1 WO 2009109240 A1 WO2009109240 A1 WO 2009109240A1 EP 2008063339 W EP2008063339 W EP 2008063339W WO 2009109240 A1 WO2009109240 A1 WO 2009109240A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
wheel
slip angle
inertial
coordinate system
Prior art date
Application number
PCT/EP2008/063339
Other languages
German (de)
French (fr)
Inventor
Oliver Oettgen
Ulrich Blankenhorn
Marco Rajapakse Pathirage
Andreas Schulz
Andreas Reim
Alexander Steinbach
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2009109240A1 publication Critical patent/WO2009109240A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/103Side slip angle of vehicle body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/30Environment conditions or position therewithin
    • B60T2210/36Global Positioning System [GPS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2230/00Monitoring, detecting special vehicle behaviour; Counteracting thereof
    • B60T2230/02Side slip angle, attitude angle, floating angle, drift angle

Definitions

  • the invention relates to a method for determining the slip angle on a wheel of a vehicle
  • Vehicle control systems such as ESP (Electronic Stability Program) use sensor-determined driving state variables that characterize the current vehicle state in terms of longitudinal and lateral dynamics, as well as state variables estimated from mathematical models in order to influence driving behavior with the aid of active actuators.
  • lateral dynamic variables such as the yaw rate or the lateral acceleration as well as wheel slip values can be inferred from the driving stability of the vehicle, whereby an intervention, for example in the brakes or in the engine management, can be carried out to stabilize the vehicle.
  • the information about the current slip angle at the wheels is of interest, which designates the angle between the wheel center plane and the resulting, projected on the roadway speed vector in the wheel center.
  • the invention has for its object to determine with simple measures the slip angle on a wheel of a vehicle with high quality. This should be carried out in particular with a sensor arranged in the vehicle for a vehicle control system, which is present for example in an ESP system.
  • Differential equation system further processed in order to determine at least one slip angle on a wheel of the vehicle.
  • Already existing sensor platforms in the motor vehicle can be used, whose signals are evaluated.
  • This relates in particular to an inertial sensor system, which is usually present in electronic stability programs (ESP) and can be determined with the vehicle accelerations and yaw rates in the direction of the vehicle axles or about the vehicle axles.
  • the inertial sensor system is located, for example, in the center of gravity of the vehicle or the signals supplied by the inertial sensor system are converted to the vehicle center of gravity.
  • a so-called 6D inertial sensor system which supplies the vehicle accelerations and the rotation rates in or around all three vehicle axles in the inertial system. This information is needed to calculate the slip angle.
  • Inertialsensorik off in which the vehicle accelerations in all three vehicle axles and the yaw rates around the Vehicle longitudinal axis x (roll rate) and around the vehicle's vertical axis z (yaw rate) are measured.
  • the yaw rate about the vehicle transverse axis y (pitch rate) can also be determined from a mathematical model.
  • the vehicle longitudinal speed, the vehicle lateral velocity and the attitude angle to all three vehicle axes are calculated relative to the inertial system.
  • the vehicle longitudinal speed and the vehicle lateral velocity are transformed from the inertial system into the wheel-own coordinate system taking into account the distance between the inertial system and the axial coordinate system.
  • the slip angle can be calculated based on the ratio of vehicle lateral velocity to vehicle longitudinal velocity in the wheel coordinate system. In this case, both an exact calculation is possible in which the arctangent from the ratio of Anlagenquer-
  • Vehicle longitudinal speed is formed, as well as an approximate determination for small angles by the skew angle is equated without trigonometric conversion with the ratio of vehicle to vehicle longitudinal speed in Radeigen coordinate system.
  • the vehicle geometry When transforming the vehicle lateral velocity from the inertial system into the wheel coordinate system, the vehicle geometry must be taken into account. It may be sufficient for reasons of symmetry, only to take into account the measured in the direction of the vehicle longitudinal axis longitudinal distance between the coordinate systems and disregard the transverse offset between the longitudinal center axis and the lateral position of the vehicle wheel.
  • the longitudinal distance between the coordinate systems is multiplied by the yaw rate, which is present as the measured value of the inertial sensor.
  • the yaw rate corresponds to the measured yaw rate about the z-axis (vertical axis).
  • the yaw angle is determined by integrating the kinematic differential equation system from the measured yaw rates.
  • the vehicle lateral velocity in the internal coordinate system is determined by adding the vehicle lateral velocity in the inertial system and the product of the yaw rate and the distance between the inertial system and the internal coordinate system.
  • the vehicle longitudinal speed in the wheel coordinate system is advantageously equated with the vehicle longitudinal speed in the inertial system, which preferably also applies to steered wheels.
  • the conversion into the wheel coordinate system is limited to the vehicle lateral velocity.
  • Front wheel or in the rear wheel taking into account the corresponding longitudinal distance and with positive (front wheel) and negative (rear wheel) sign of the term, formed from the product of yaw rate and distance of the coordinate systems.
  • a neutral handling without oversteer or understeer is present when the slip angles at the front wheel and the rear wheel are the same.
  • An oversteering drivability exists if the slip angle at the front wheel is smaller than at the rear wheel and understeering vehicle behavior if the slip angle at the front wheel is greater than at the rear wheel.
  • a countermeasure can be initiated by applying a vehicle control system, for example by applying the brakes or the engine management or an active suspension actuator.
  • the method for determining the slip angle preferably runs in a control unit in the vehicle, which may be part of a vehicle control system with an actively adjustable actuator. In the control unit or control signals are generated, which are supplied to the actuator for changing the current driving condition of the vehicle.
  • FIG. 1 is a schematic representation of a front wheel and a rear wheel in a vehicle with an inertial system arranged in the center of gravity of the vehicle as well as with wheel-own coordinate systems, in each of which speed vectors are entered,
  • Fig. 2 is a block diagram, the blocks of different steps to the expiry of the determination of
  • a vehicle with a front wheel 1 and a rear wheel 2 wherein the respective speed vectors v ⁇ at the front wheel 1 and v ⁇ at the rear wheel 2 are also registered.
  • the velocity vectors v TM and v ⁇ are the respective resulting vectors, which are determined from the vehicle's own coordinate system - which in the case of the steerable front wheel 1 rotates with the steering angle - vehicle speeds v ⁇ v and v w for the front wheel and v ⁇ h and V w yh composed vectorially for the rear wheel.
  • the angular difference between the resulting speed vector v ⁇ and the respective Radstoff Kunststoffsachse is referred to as front wheel slip angle ⁇ v and rear wheel slip angle c ⁇ h .
  • An inertial sensor system is available in the motor vehicle which determines the vehicle accelerations a x , a y and a z in the center of gravity in the vehicle longitudinal, vehicle transverse and vehicle vertical direction in accordance with the conventional convention for vehicles in the x, y and z directions.
  • the inertial sensor system can also sense the yaw rates ⁇ x , ⁇ y and ⁇ z about the respective vehicle axles in the center of gravity of the vehicle. From this information, the vehicle longitudinal velocity v x and the vehicle lateral velocity v y in the vehicle center of gravity 3 can be calculated; the yaw rate ⁇ corresponds to the measured yaw rate ⁇ z .
  • This information and the geometric distances l v and l h between the center of gravity 3 and the center of the front wheel 3 and the center of the rear wheel 2 are basically sufficient to the vehicle speeds v TM in the front wheel and v ⁇ in the rear wheel with the respective components in x and Determine y-direction in the respective wheel coordinate system from which the slip angle ⁇ v and ⁇ h can be calculated at the front wheel or rear wheel.
  • the distances l v and I h between the vehicle center of gravity and the wheel centers are preferably taken into account only in the vehicle longitudinal direction regardless of the transverse offset of the vehicle wheels.
  • Fig. 2 is a block diagram for calculating the slip angle is shown.
  • the yaw rates ⁇ x , ⁇ y and ⁇ z about all three spatial axes as well as the vehicle longitudinal acceleration a x , the vehicle lateral acceleration a y and the vehicle acceleration a z in the vertical direction are determined by means of inertial sensors. These sizes are required to calculate the slip angles. Accordingly, a 6D inertial sensor is used, with which these sizes can be sensed. If necessary, a 5D inertial sensor system in which the vehicle accelerations and yaw rates about the x and z axes are measured, wherein the yaw rate is computationally determined about the y-axis. From the state variables measured in the inertial sensor system are from a known kinematic relationship, which is described by a differential equation system, which is solved by numerical integration, the
  • Vehicle speeds v x , v y , v z in all three spatial directions and the attitude angle ⁇ , ⁇ , ⁇ are determined to all vehicle fixed axis directions, of which the attitude angle ⁇ the roll angle, the attitude angle ⁇ the pitch angle and the attitude angle ⁇ the yaw angle.
  • the kinematic differential equation system in block 10 can be given in the following form:
  • the vehicle longitudinal velocity v x obtained in the numerical solution of the kinematic differential equation system 10, the vehicle lateral velocity Vy and the measured yaw rate ⁇ are then fed to a block 11, in which a transformation of these variables from the inertial system into the radeigene coordinate system of the front wheel or Rear wheel is performed.
  • the transformation from the inertial system into the wheel-own coordinate systems takes place only for the vehicle lateral velocity.
  • the vehicle longitudinal speed v ⁇ v in the front wheel and v ⁇ h in the rear wheel are equated with the vehicle longitudinal speed v x in the inertial system.
  • the information about the distance between the inertial system and the wheel-own coordinate system, measured in the vehicle longitudinal direction is additionally required. This distance is denoted by l v and l h for the front wheel and the rear wheel. This can be calculated with the vehicle lateral velocity v y of the inertial system and the yaw rate ⁇ according to the relationships
  • the vehicle lateral velocity v y w v in the front wheel or v y w h in the rear wheel are calculated.
  • the slip angles ⁇ v and c ⁇ h are calculated from the respective components of the vehicle longitudinal and lateral speeds in the front wheel or rear wheel.
  • the slip angles are in principle calculated on the basis of the ratio of the transverse component of the speed to the longitudinal component
  • a comparison is made between the front wheel slip angle ⁇ v and the rear wheel slip angle c ⁇ h . If the rear wheel slip angle. c ⁇ h is greater than the front wheel slip angle ⁇ v , there is oversteer of the vehicle. In the opposite case, ie with a larger front wheel slip angle ⁇ v compared to the rear wheel slip angle ⁇ h , there is an understeer of the vehicle. If the front wheel slip angle ⁇ v and the rear wheel slip angle ⁇ h are the same size, there is a neutral driving behavior.
  • a signal S can be generated, which can be subsequently fed to a vehicle control system or an actuator to cause a reaction that contributes to the stabilization of the vehicle.
  • the signal S can also be used for documentation or be displayed to the driver, for example as a warning signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Regulating Braking Force (AREA)

Abstract

The invention relates to a method for determining the slip angle of a wheel on a vehicle, wherein the vehicle acceleration and yaw rate are measured with an inertial sensor system and the vehicle longitudinal speed and the vehicle transverse speed are calculated in the inertia system. The speeds from the inertia system are then transformed into the wheel specific coordinate system and the slip angle determined on the basis of the ratio of vehicle transverse speed to vehicle transverse speed.

Description

BeSchreibungDescription
Titeltitle
Verfahren zur Ermittlung des Schräglaufwinkels an einem Rad eines FahrzeugsMethod for determining the slip angle on a wheel of a vehicle
Die Erfindung bezieht sich auf ein Verfahren zur Ermittlung des Schräglaufwinkels an einem Rad eines FahrzeugsThe invention relates to a method for determining the slip angle on a wheel of a vehicle
Stand der TechnikState of the art
Fahrzeugregelsysteme wie beispielsweise ESP (Elektronisches Stabilitätsprogramm) nutzen sensorisch ermittelte Fahrzustandsgrößen, die den aktuellen Fahrzeugzustand hinsichtlich der Längs- und Querdynamik kennzeichnen, sowie aus mathematischen Modellen geschätzte Zustandsgrößen, um mithilfe aktiver Stellglieder das Fahrverhalten zu beeinflussen. Insbesondere querdynamische Größen wie die Gierrate oder die Querbeschleunigung sowie Radschlupfwerte lassen auf die Fahrstabilität des Fahrzeuges rückschließen, wobei zur Stabilisierung des Fahrzeugs ein Eingriff beispielsweise in die Bremsen oder in das Motormanagement durchgeführt werden kann.Vehicle control systems such as ESP (Electronic Stability Program) use sensor-determined driving state variables that characterize the current vehicle state in terms of longitudinal and lateral dynamics, as well as state variables estimated from mathematical models in order to influence driving behavior with the aid of active actuators. In particular, lateral dynamic variables such as the yaw rate or the lateral acceleration as well as wheel slip values can be inferred from the driving stability of the vehicle, whereby an intervention, for example in the brakes or in the engine management, can be carried out to stabilize the vehicle.
Um festzustellen, ob das Fahrzeug bei Kurvenfahrt übersteuert oder untersteuert, ist die Information über den aktuellen Schräglaufwinkel an den Rädern von Interesse, welcher den Winkel zwischen der Radmittelebene und dem resultierenden, auf die Fahrbahn projizierten Geschwindigkeitsvektor im Radmittelpunkt bezeichnet .In order to determine whether the vehicle is oversteering or understeering when cornering, the information about the current slip angle at the wheels is of interest, which designates the angle between the wheel center plane and the resulting, projected on the roadway speed vector in the wheel center.
Offenbarung der Erfindung Der Erfindung liegt die Aufgabe zugrunde, mit einfachen Maßnahmen den Schräglaufwinkel an einem Rad eines Fahrzeugs mit hoher Güte zu bestimmen. Dies soll insbesondere mit einer im Fahrzeug für ein Fahrzeugregelsystem angeordneten Sensorik durchgeführt werden, die beispielsweise in einem ESP-System vorhanden ist.Disclosure of the invention The invention has for its object to determine with simple measures the slip angle on a wheel of a vehicle with high quality. This should be carried out in particular with a sensor arranged in the vehicle for a vehicle control system, which is present for example in an ESP system.
Diese Aufgabe wird erfindungsgemäß mit den Merkmalen des Anspruches 1 gelöst. Die Unteransprüche geben zweckmäßige Weiterbildungen an.This object is achieved with the features of claim 1. The dependent claims indicate expedient developments.
Bei dem erfindungsgemäßen Verfahren zur Bestimmung des Schräglaufwinkels an einem Rad eines Fahrzeugs werden mithilfe einer kraftfahrzeugeigenen Sensorik verschiedene Fahrzeugzustandsgrößen gemessen, die in einemIn the method according to the invention for determining the slip angle on a wheel of a vehicle, different vehicle state variables are measured with the aid of a vehicle-specific sensor system
Differenzialgleichungssystem weiterverarbeitet werden, um daraus zumindest einen Schräglaufwinkel an einem Rad des Fahrzeuges zu bestimmen. Es können bereits vorhandenen Sensorplattformen im Kraftfahrzeug genutzt werden, deren Signale ausgewertet werden. Dies betrifft insbesondere eine Inertialsensorik, die üblicherweise bei elektronischen Stabilitätsprogrammen (ESP) vorhanden ist und mit der Fahrzeugbeschleunigungen sowie Drehraten in Richtung der Fahrzeugachsen bzw. um die Fahrzeugachsen ermittelbar sind. Die Inertialsensorik befindet sich beispielhaft im Fahrzeugschwerpunkt oder es werden die von der Inertialsensorik gelieferten Signale auf den Fahrzeugschwerpunkt umgerechnet.Differential equation system further processed in order to determine at least one slip angle on a wheel of the vehicle. Already existing sensor platforms in the motor vehicle can be used, whose signals are evaluated. This relates in particular to an inertial sensor system, which is usually present in electronic stability programs (ESP) and can be determined with the vehicle accelerations and yaw rates in the direction of the vehicle axles or about the vehicle axles. The inertial sensor system is located, for example, in the center of gravity of the vehicle or the signals supplied by the inertial sensor system are converted to the vehicle center of gravity.
Als Inertialsensorik wird vorzugsweise eine so genannte 6D- Inertialsensorik eingesetzt, die die Fahrzeugbeschleunigungen sowie die Drehraten in bzw. um alle drei Fahrzeugachsen im Inertialsystem liefert. Diese Informationen werden zur Berechnung des Schräglaufwinkels benötigt.As an inertial sensor system, a so-called 6D inertial sensor system is preferably used which supplies the vehicle accelerations and the rotation rates in or around all three vehicle axles in the inertial system. This information is needed to calculate the slip angle.
Grundsätzlich reicht als Inertialsensorik eine 5D-As inertial sensor technology, a 5D
Inertialsensorik aus, bei der die Fahrzeugbeschleunigungen in alle drei Fahrzeugachsen und die Drehraten um die Fahrzeuglängsachse x (Wankrate) und um die Fahrzeughochachse z (Gierrate) gemessen werden. Die Drehrate um die Fahrzeugquerachse y (Nickrate) kann auch aus einem mathematischen Modell bestimmt werden.Inertialsensorik off, in which the vehicle accelerations in all three vehicle axles and the yaw rates around the Vehicle longitudinal axis x (roll rate) and around the vehicle's vertical axis z (yaw rate) are measured. The yaw rate about the vehicle transverse axis y (pitch rate) can also be determined from a mathematical model.
Aus den gemessenen Fahrzeugbeschleunigungen und Drehraten können durch Integration eines kinematischenFrom the measured vehicle accelerations and yaw rates can be achieved by integrating a kinematic
Differenzialgleichungssystems die Fahrzeuglängsgeschwindigkeit, die Fahrzeugquergeschwindigkeit sowie die Lagewinkel um alle drei Fahrzeugachsen bezogen auf das Inertialsystem berechnet werden. In einem darauf folgenden Schritt werden die Fahrzeuglängsgeschwindigkeit und die Fahrzeugquergeschwindigkeit aus dem Inertialsystem in das radeigene Koordinatensystem unter Berücksichtigung des Abstandes zwischen Inertialsystem und radeigenem Koordinatensystem transformiert. Anschließend kann der Schräglaufwinkel unter Zugrundelegung des Verhältnisses von Fahrzeugquergeschwindigkeit zu Fahrzeuglängsgeschwindigkeit in dem radeigenen Koordinatensystem berechnet werden. Hierbei ist sowohl eine exakte Berechnung möglich, bei der der Arcustangens aus dem Verhältnis von Fahrzeugquer- zuDifferential equation system, the vehicle longitudinal speed, the vehicle lateral velocity and the attitude angle to all three vehicle axes are calculated relative to the inertial system. In a following step, the vehicle longitudinal speed and the vehicle lateral velocity are transformed from the inertial system into the wheel-own coordinate system taking into account the distance between the inertial system and the axial coordinate system. Subsequently, the slip angle can be calculated based on the ratio of vehicle lateral velocity to vehicle longitudinal velocity in the wheel coordinate system. In this case, both an exact calculation is possible in which the arctangent from the ratio of Fahrzeugquer-
Fahrzeuglängsgeschwindigkeit gebildet wird, als auch eine näherungsweise Ermittlung für kleine Winkel, indem der Schräglaufwinkel ohne trigonometrische Umrechnung mit dem Verhältnis von Fahrzeugquer- zu Fahrzeuglängsgeschwindigkeit im radeigenen Koordinatensystem gleichgesetzt wird.Vehicle longitudinal speed is formed, as well as an approximate determination for small angles by the skew angle is equated without trigonometric conversion with the ratio of vehicle to vehicle longitudinal speed in Radeigen coordinate system.
Bei der Transformation der Fahrzeugquergeschwindigkeit vom Inertialsystem in das radeigene Koordinatensystem muss die Fahrzeuggeometrie berücksichtigt werden. Es kann aus Symmetriegründen ausreichend sein, lediglich den in Richtung der Fahrzeuglängsachse gemessenen Längsabstand zwischen den Koordinatensystemen zu berücksichtigen und den Querversatz zwischen der Längsmittelachse und der seitlichen Position des Fahrzeugrades außer Acht zu lassen. Der Längsabstand zwischen den Koordinatensystemen wird mit der Gierrate multipliziert, welche als Messwert der Inertialsensorik vorliegt. Die Gierrate entspricht der gemessenen Drehrate um die z-Achse (Hochachse) . - A -When transforming the vehicle lateral velocity from the inertial system into the wheel coordinate system, the vehicle geometry must be taken into account. It may be sufficient for reasons of symmetry, only to take into account the measured in the direction of the vehicle longitudinal axis longitudinal distance between the coordinate systems and disregard the transverse offset between the longitudinal center axis and the lateral position of the vehicle wheel. The longitudinal distance between the coordinate systems is multiplied by the yaw rate, which is present as the measured value of the inertial sensor. The yaw rate corresponds to the measured yaw rate about the z-axis (vertical axis). - A -
Der Gierwinkel wird durch Integration des kinematischen Differenzialgleichungssystems aus den gemessenen Drehraten bestimmt .The yaw angle is determined by integrating the kinematic differential equation system from the measured yaw rates.
Die Fahrzeugquergeschwindigkeit im radeigenen Koordinatensystem bestimmt sich aus Addition der Fahrzeugquergeschwindigkeit im Inertialsystem und dem Produkt aus der Gierrate und dem Abstand zwischen dem Inertialsystem und dem radeigenen Koordinatensystem.The vehicle lateral velocity in the internal coordinate system is determined by adding the vehicle lateral velocity in the inertial system and the product of the yaw rate and the distance between the inertial system and the internal coordinate system.
Die Fahrzeuglängsgeschwindigkeit im radeigenen Koordinatensystem wird vorteilhafterweise mit der Fahrzeuglängsgeschwindigkeit im Inertialsystem gleichgesetzt, was vorzugsweise auch für gelenkte Räder gilt. Damit beschränkt sich die Umrechnung in das radeigene Koordinatensystem auf die Fahrzeugquergeschwindigkeit.The vehicle longitudinal speed in the wheel coordinate system is advantageously equated with the vehicle longitudinal speed in the inertial system, which preferably also applies to steered wheels. Thus, the conversion into the wheel coordinate system is limited to the vehicle lateral velocity.
Durch einen Vergleich der Schräglaufwinkel zwischen einem Vorderrad und einem Hinterrad kann auf Übersteuern oder Untersteuern geschlossen werden. Die Umrechnung der Fahrzeugquergeschwindigkeit auf ein Koordinatensystem imBy comparing the slip angle between a front wheel and a rear wheel can be concluded that oversteer or understeer. The conversion of the vehicle lateral velocity to a coordinate system in the
Vorderrad bzw. im Hinterrad erfolgt unter Berücksichtigung des entsprechenden Längsabstandes sowie mit positivem (Vorderrad) bzw. negativem (Hinterrad) Vorzeichen des Terms, gebildet aus dem Produkt von Gierrate und Abstand der Koordinatensysteme. Ein neutrales Fahrverhalten ohne Übersteuern oder Untersteuern liegt vor, wenn die Schräglaufwinkel am Vorderrad und am Hinterrad gleich groß sind. Ein übersteuerndes Fahrverhalten liegt vor, falls der Schräglaufwinkel am Vorderrad kleiner ist als am Hinterrad und ein untersteuerndes Fahrzeugverhalten, falls der Schräglaufwinkel am Vorderrad größer ist als am Hinterrad. Aus der Information über Übersteuern oder Untersteuern des Fahrzeugs kann eine Gegenmaßnahme durch Beaufschlagung eines Fahrzeugregelsystems eingeleitet werden, beispielsweise durch Beaufschlagung der Bremsen oder des Motormanagements oder eines aktiven Fahrwerk-Stellgliedes. Das Verfahren zur Ermittlung des Schräglaufwinkels läuft vorzugsweise in einem Regel- bzw. Steuergerät im Fahrzeug ab, das Teil eines Fahrzeugregelsystems mit einem aktiv einstellbaren Stellglied sein kann. In dem Regel- bzw. Steuergerät werden Stellsignale generiert, die dem Stellglied zur Änderung des aktuellen Fahrzustandes des Fahrzeuges zugeführt werden.Front wheel or in the rear wheel taking into account the corresponding longitudinal distance and with positive (front wheel) and negative (rear wheel) sign of the term, formed from the product of yaw rate and distance of the coordinate systems. A neutral handling without oversteer or understeer is present when the slip angles at the front wheel and the rear wheel are the same. An oversteering drivability exists if the slip angle at the front wheel is smaller than at the rear wheel and understeering vehicle behavior if the slip angle at the front wheel is greater than at the rear wheel. From the information about oversteer or understeer of the vehicle, a countermeasure can be initiated by applying a vehicle control system, for example by applying the brakes or the engine management or an active suspension actuator. The method for determining the slip angle preferably runs in a control unit in the vehicle, which may be part of a vehicle control system with an actively adjustable actuator. In the control unit or control signals are generated, which are supplied to the actuator for changing the current driving condition of the vehicle.
Weitere Vorteile und zweckmäßige Ausführungen sind den weiteren Ansprüchen, der Figurenbeschreibung und den Zeichnungen zu entnehmen. Es zeigen:Further advantages and expedient embodiments can be taken from the further claims, the description of the figures and the drawings. Show it:
Fig. 1 eine schematische Darstellung eines Vorderrades und eines Hinterrades in einem Fahrzeug mit einem im Fahrzeugschwerpunkt angeordneten Inertialsystem sowie mit radeigenen Koordinatensystemen, in denen jeweils Geschwindigkeitsvektoren eingetragen sind,1 is a schematic representation of a front wheel and a rear wheel in a vehicle with an inertial system arranged in the center of gravity of the vehicle as well as with wheel-own coordinate systems, in each of which speed vectors are entered,
Fig. 2 ein Blockschaltbild, dessen Blöcke verschiedene Schritte zum Ablauf der Ermittlung derFig. 2 is a block diagram, the blocks of different steps to the expiry of the determination of
Schräglaufwinkel symbolisieren.Symbolize slip angle.
In Fig. 1 ist ein Fahrzeug mit einem Vorderrad 1 und einem Hinterrad 2 gezeigt, wobei die jeweiligen Geschwindigkeitsvektoren vζ am Vorderrad 1 und vζ am Hinterrad 2 ebenfalls eingetragen sind. Bei den Geschwindigkeitsvektoren v™ und vζ handelt es sich um die jeweiligen resultierenden Vektoren, die sich aus den im radeigenen Koordinatensystem - welches im Falle des lenkbaren Vorderrades 1 mit dem Lenkwinkel mitdreht - festgelegten Fahrzeuggeschwindigkeiten vζv und vw für das Vorderrad und vζh und Vw yh für das Hinterrad vektoriell zusammensetzen. Die Winkeldifferenz zwischen dem resultierenden Geschwindigkeitsvektor vζ und der jeweiligen Radmittellängsachse wird als Vorderrad-Schräglaufwinkel αv bzw. Hinterrad- Schräglaufwinkel c<h bezeichnet. Im Kraftfahrzeug steht eine Inertialsensorik zur Verfügung, die die Fahrzeugbeschleunigungen ax, ay und az im Schwerpunkt in Fahrzeuglängs-, Fahrzeugquer- und Fahrzeughochrichtung entsprechend der üblichen Konvention bei Fahrzeugen in x-, y- und z-Richtung ermittelt. Die Inertialsensorik kann darüber hinaus die Drehraten ωx, ωy und ωz um die jeweiligen Fahrzeugachsen im Schwerpunkt des Fahrzeuges sensieren. Aus diesen Informationen können die Fahrzeuglängsgeschwindigkeit vx sowie die Fahrzeugquergeschwindigkeit vy im Fahrzeugschwerpunkt 3 berechnet werden; die Gierrate ψ entspricht der gemessenen Drehrate ωz . Diese Informationen sowie die Geometrieabstände lv und lh zwischen dem Schwerpunkt 3 und dem Mittelpunkt des Vorderrades 3 bzw. dem Mittelpunkt des Hinterrades 2 sind grundsätzlich ausreichend, um die Fahrzeuggeschwindigkeiten v™ im Vorderrad und vζ im Hinterrad mit den jeweiligen Komponenten in x- und y-Richtung im jeweiligen radeigenen Koordinatensystem zu ermitteln, woraus der Schräglaufwinkel αv und αh am Vorderrad bzw. Hinterrad berechnet werden kann. Die Abstände lv und Ih zwischen dem Fahrzeugschwerpunkt und den Radmittelpunkten werden vorzugsweise ungeachtet des Querversatzes der Fahrzeugräder nur in Fahrzeuglängsrichtung berücksichtigt.In Fig. 1, a vehicle with a front wheel 1 and a rear wheel 2 is shown, wherein the respective speed vectors vζ at the front wheel 1 and vζ at the rear wheel 2 are also registered. The velocity vectors v ™ and vζ are the respective resulting vectors, which are determined from the vehicle's own coordinate system - which in the case of the steerable front wheel 1 rotates with the steering angle - vehicle speeds vζ v and v w for the front wheel and vζ h and V w yh composed vectorially for the rear wheel. The angular difference between the resulting speed vector vζ and the respective Radmittellängsachse is referred to as front wheel slip angle α v and rear wheel slip angle c < h . An inertial sensor system is available in the motor vehicle which determines the vehicle accelerations a x , a y and a z in the center of gravity in the vehicle longitudinal, vehicle transverse and vehicle vertical direction in accordance with the conventional convention for vehicles in the x, y and z directions. The inertial sensor system can also sense the yaw rates ω x , ω y and ω z about the respective vehicle axles in the center of gravity of the vehicle. From this information, the vehicle longitudinal velocity v x and the vehicle lateral velocity v y in the vehicle center of gravity 3 can be calculated; the yaw rate ψ corresponds to the measured yaw rate ω z . This information and the geometric distances l v and l h between the center of gravity 3 and the center of the front wheel 3 and the center of the rear wheel 2 are basically sufficient to the vehicle speeds v ™ in the front wheel and vζ in the rear wheel with the respective components in x and Determine y-direction in the respective wheel coordinate system from which the slip angle α v and α h can be calculated at the front wheel or rear wheel. The distances l v and I h between the vehicle center of gravity and the wheel centers are preferably taken into account only in the vehicle longitudinal direction regardless of the transverse offset of the vehicle wheels.
In Fig. 2 ist ein Blockschaltdiagramm zur Berechnung der Schräglaufwinkel dargestellt. Zunächst werden mithilfe der Inertialsensorik die Drehraten ωx, ωy und ωz um alle drei Raumachsen sowie die Fahrzeuglängsbeschleunigung ax, die Fahrzeugquerbeschleunigung ay sowie die Fahrzeugbeschleunigung az in Hochrichtung ermittelt. Diese Größen sind erforderlich, um die Schräglaufwinkel zu berechnen. Dementsprechend wird eine 6D- Inertialsensorik eingesetzt, mit der diese Größen sensiert werden können. Gegebenenfalls genügt auch eine 5D- Inertialsensorik, bei der die Fahrzeugbeschleunigungen und die Drehraten um die x- und z-Achse gemessen werden, wobei die Drehrate um die y-Achse rechnerisch ermittelt wird. Aus den in der Inertialsensorik gemessenen Zustandsgrößen werden aus einem bekannten kinematischen Zusammenhang, der über ein Differenzialgleichungssystem beschrieben wird, welches durch numerische Integration zu lösen ist, dieIn Fig. 2 is a block diagram for calculating the slip angle is shown. First, the yaw rates ω x , ω y and ω z about all three spatial axes as well as the vehicle longitudinal acceleration a x , the vehicle lateral acceleration a y and the vehicle acceleration a z in the vertical direction are determined by means of inertial sensors. These sizes are required to calculate the slip angles. Accordingly, a 6D inertial sensor is used, with which these sizes can be sensed. If necessary, a 5D inertial sensor system in which the vehicle accelerations and yaw rates about the x and z axes are measured, wherein the yaw rate is computationally determined about the y-axis. From the state variables measured in the inertial sensor system are from a known kinematic relationship, which is described by a differential equation system, which is solved by numerical integration, the
Fahrzeuggeschwindigkeiten vx, vy, vz in allen drei Raumrichtungen und die Lagewinkel φ, θ, ψ um alle fahrzeugfesten Achsrichtungen ermittelt werden, von denen der Lagewinkel φ den Rollwinkel, der Lagewinkel θ den Nickwinkel und der Lagewinkel ψ den Gierwinkel bezeichnet. Das kinematische Differenzialgleichungssystem im Block 10 kann in folgender Form angegeben werden:Vehicle speeds v x , v y , v z in all three spatial directions and the attitude angle φ, θ, ψ are determined to all vehicle fixed axis directions, of which the attitude angle φ the roll angle, the attitude angle θ the pitch angle and the attitude angle ψ the yaw angle. The kinematic differential equation system in block 10 can be given in the following form:
Figure imgf000009_0001
Figure imgf000009_0002
Figure imgf000009_0001
Figure imgf000009_0002
wobei mit g die Erdbeschleunigung bezeichnet ist.where g denotes the gravitational acceleration.
Die im Block 10 aus der numerischen Lösung des kinematischen Differenzialgleichungs Systems gewonnene Fahrzeuglängsgeschwindigkeit vx, die Fahrzeugquergeschwindigkeit Vy und die gemessene Gierrate ψ werden anschließend einem Block 11 zugeführt, in welchem eine Transformation dieser Größen aus dem Inertialsystem in das radeigene Koordinatensystem des Vorderrades bzw. des Hinterrades durchgeführt wird.The vehicle longitudinal velocity v x obtained in the numerical solution of the kinematic differential equation system 10, the vehicle lateral velocity Vy and the measured yaw rate ψ are then fed to a block 11, in which a transformation of these variables from the inertial system into the radeigene coordinate system of the front wheel or Rear wheel is performed.
Die Transformation aus dem Inertialsystem in die radeigenen Koordinatensysteme erfolgt lediglich für die Fahrzeugquergeschwindigkeit. Die Fahrzeuglängsgeschwindigkeit vζv im Vorderrad und vζh im Hinterrad werden dagegen mit der Fahrzeuglängsgeschwindigkeit vx im Inertialsystem gleichgesetzt. Um auch die Querkomponenten der Fahrzeuggeschwindigkeiten im Vorderrad und im Hinterrad zu ermitteln, ist zusätzlich die Information über den Abstand zwischen dem Inertialsystem und dem radeigenen Koordinatensystem, gemessen in Fahrzeuglängsrichtung, erforderlich. Dieser Abstand wird mit lv und lh für das Vorderrad bzw. das Hinterrad bezeichnet. Daraus kann mit der Fahrzeugquergeschwindigkeit vy des Inertialsystems sowie der Gierrate ψ gemäß den BeziehungenThe transformation from the inertial system into the wheel-own coordinate systems takes place only for the vehicle lateral velocity. The vehicle longitudinal speed vζ v in the front wheel and vζ h in the rear wheel, however, are equated with the vehicle longitudinal speed v x in the inertial system. In order to determine the transverse components of the vehicle speeds in the front wheel and in the rear wheel, the information about the distance between the inertial system and the wheel-own coordinate system, measured in the vehicle longitudinal direction, is additionally required. This distance is denoted by l v and l h for the front wheel and the rear wheel. This can be calculated with the vehicle lateral velocity v y of the inertial system and the yaw rate ψ according to the relationships
Figure imgf000010_0001
Figure imgf000010_0001
die Fahrzeugquergeschwindigkeit vy w v im Vorderrad bzw. vy w h im Hinterrad berechnet werden.the vehicle lateral velocity v y w v in the front wheel or v y w h in the rear wheel are calculated.
Im nächsten Block 12 werden aus den jeweiligen Komponenten der Fahrzeuglängs- und -Quergeschwindigkeit im Vorderrad bzw. Hinterrad die Schräglaufwinkel αv bzw. c<h berechnet. Die Schräglaufwinkel berechnen sich hierbei grundsätzlich unter Zugrundelegung des Verhältnisses von Querkomponente der Geschwindigkeit zu Längskomponente ausIn the next block 12, the slip angles α v and c < h are calculated from the respective components of the vehicle longitudinal and lateral speeds in the front wheel or rear wheel. The slip angles are in principle calculated on the basis of the ratio of the transverse component of the speed to the longitudinal component
Figure imgf000010_0002
Figure imgf000010_0002
Allerdings kann es aus Vereinfachungsgründen zweckmäßig sein, den Schräglaufwinkel unmittelbar mit dem Verhältnis von Quer- zu Längsgeschwindigkeit gleichzusetzen, was für kleine Winkel mit hinreichender Genauigkeit zulässig ist:
Figure imgf000011_0001
However, for reasons of simplification, it may be expedient to equate the skew angle directly with the ratio of transverse to longitudinal velocity, which is permissible for small angles with sufficient accuracy:
Figure imgf000011_0001
"y,k α* = vx,h"y, k α * = vx, h
Im letzten Block 13 wird ein Vergleich zwischen dem Vorderrad- Schräglaufwinkel αv und dem Hinterrad-Schräglaufwinkel c<h durchgeführt. Sofern der Hinterrad-Schräglaufwinkel. c<h größer ist als der Vorderrad-Schräglaufwinkel αv, liegt ein Übersteuern des Fahrzeuges vor. Im umgekehrten Fall, also bei größerem Vorderrad-Schräglaufwinkel αv im Vergleich zum Hinterrad- Schräglaufwinkel αh, liegt ein Untersteuern des Fahrzeuges vor. Sofern der Vorderrad-Schräglaufwinkel αv und der Hinterrad- Schräglaufwinkel αh gleich groß sind, liegt ein neutrales Fahrverhalten vor.In the last block 13, a comparison is made between the front wheel slip angle α v and the rear wheel slip angle c < h . If the rear wheel slip angle. c < h is greater than the front wheel slip angle α v , there is oversteer of the vehicle. In the opposite case, ie with a larger front wheel slip angle α v compared to the rear wheel slip angle α h , there is an understeer of the vehicle. If the front wheel slip angle α v and the rear wheel slip angle α h are the same size, there is a neutral driving behavior.
Aus dem Vergleich von Vorderrad-Schräglaufwinkel αv mit dem Hinterrad-Schräglaufwinkel αh kann ein Signal S generiert werden, das im weiteren Verlauf einem Fahrzeugregelsystem bzw. einem Stellglied zugeführt werden kann, um eine Reaktion zu veranlassen, die zur Stabilisierung des Fahrzeuges beiträgt. Grundsätzlich kann das Signal S auch zur Dokumentation verwendet werden bzw. dem Fahrer angezeigt werden, beispielsweise als Warnsignal . From the comparison of front wheel slip angle α v with the rear wheel slip angle α h , a signal S can be generated, which can be subsequently fed to a vehicle control system or an actuator to cause a reaction that contributes to the stabilization of the vehicle. In principle, the signal S can also be used for documentation or be displayed to the driver, for example as a warning signal.

Claims

Ansprüche claims
1. Verfahren zur Ermittlung des Schräglaufwinkels an einem Rad eines Fahrzeugs, mit den folgenden Verfahrensschritten:1. A method for determining the slip angle on a wheel of a vehicle, comprising the following method steps:
Messen der Fahrzeugbeschleunigungen (ax, ay, az) in alle drei Fahrzeugachsen und zumindest der Drehraten (ωx, ωz) um die Fahrzeuglängsachse (x) und um die Fahrzeughochachse (z) mittels einer Inertialsensorik,Measuring the vehicle accelerations (a x , a y , a z ) in all three vehicle axles and at least the rotation rates (ω x , ω z ) about the vehicle longitudinal axis (x) and about the vehicle vertical axis (z) by means of an inertial sensor system,
Berechnen der Fahrzeuglängsgeschwindigkeit (vx) und der Fahrzeugquergeschwindigkeit (vy) sowie der Lagewinkel (φ, θ, ψ) um die Fahrzeugachsen im Inertialsystem der Inertialsensorik durch Integration einesCalculating the vehicle longitudinal speed (v x ) and the vehicle lateral velocity (v y ) and the attitude angle (φ, θ, ψ) about the vehicle axes in the inertial inertial system by integration of a
Differentialgleichungssystem aus den gemessenen Fahrzeugbeschleunigungen (ax, ay, az) und den Drehraten (ωx, ωy, ωz) , Transformieren der Fahrzeuglängsgeschwindigkeit (vx) und der Fahrzeugquergeschwindigkeit (vy) aus dem Inertialsystem in das radeigene Koordinatensystem am Fahrzeugrad und Ermitteln des Schräglaufwinkels (OC) unter Zugrundelegung des Verhältnisses von Fahrzeugquergeschwindigkeit ( V™ ) zuDifferential equation system of the measured vehicle accelerations (a x , a y , a z ) and the rotation rate (ω x , ω y , ω z ), transforming the vehicle longitudinal velocity (v x ) and the vehicle lateral velocity (v y ) from the inertial system in the wheel coordinate system on the vehicle wheel and determining the slip angle (OC) based on the ratio of vehicle lateral velocity (V ™) to
Fahrzeuglängsgeschwindigkeit ( vζ ) im radeigenen Koordinatensystem.Vehicle longitudinal speed (vζ) in the wheel coordinate system.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Transformation der2. The method according to claim 1, characterized in that the transformation of
Fahrzeugquergeschwindigkeit ( vj ) vom Inertialsystem in das radeigene Koordinatensystem am Fahrzeugrad (1, 2) mittels der Gierrate (ψ ) durchgeführt wird.Vehicle transverse velocity (vj) of the inertial system in the wheel-own coordinate system on the vehicle wheel (1, 2) by means of the yaw rate (ψ) is performed.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Transformation gemäß
Figure imgf000013_0001
3. The method according to claim 2, characterized in that the transformation according to
Figure imgf000013_0001
durchgeführt wird, wobeiis performed, wherein
/ den Abstand zwischen dem Inertialsystem und dem radeigenen Koordinatensystem/ the distance between the inertial system and the wheel coordinate system
bezeichnet .designated .
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Fahrzeuglängsgeschwindigkeit ( vζ ) im radeigenen Koordinatensystem mit der Fahrzeuglängsgeschwindigkeit (vx) im Inertialsystem gleichgesetzt wird:4. The method according to any one of claims 1 to 3, characterized in that the vehicle longitudinal speed (vζ) is equated in the wheel-own coordinate system with the vehicle longitudinal speed (v x ) in the inertial system:
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Schräglaufwinkel (OC) aus der Fahrzeuglängsgeschwindigkeit ( vζ ) und der5. The method according to any one of claims 1 to 4, characterized in that the slip angle (OC) from the vehicle longitudinal speed (vζ) and the
Fahrzeugquergeschwindigkeit (vζ ) im radeigenen Koordinatensystem gemäß der BeziehungVehicle lateral velocity (vζ) in the internal coordinate system according to the relationship
v α = arctan L——v α = arctane L--
ermittelt wird.is determined.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Schräglaufwinkel (OC) für kleine Winkelbeträge näherungsweise aus der6. The method according to any one of claims 1 to 5, characterized in that the slip angle (OC) for small angular amounts approximately from the
Fahrzeuglängsgeschwindigkeit ( vζ ) und der Fahrzeugquergeschwindigkeit ( vj ) im radeigenen Koordinatensystem gemäß der BeziehungVehicle longitudinal speed (vζ) and the Vehicle lateral velocity (vj) in the internal coordinate system according to the relationship
CC =CC =
ermittelt wird.is determined.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass zur Unter- bzw. Übersteuerungserkennung in einem Fahrzeug der Vorderrad- Schräglaufwinkel (GW) und der Hinterrad-Schräglaufwinkel (0Ch) bestimmt und miteinander verglichen werden, wobei ein Untersteuern vorliegt, wenn der Vorderrad-Schräglaufwinkel (OCj größer ist als der Hinterrad-Schräglaufwinkel (OCh) und ein Übersteuern vorliegt, wenn der Vorderrad-Schräglaufwinkel (OCj kleiner ist als der Hinterrad-Schräglaufwinkel (0Ch) .7. The method according to any one of claims 1 to 6, characterized in that for under- or oversteer detection in a vehicle, the front wheel slip angle (GW) and the rear wheel slip angle (0C h ) are determined and compared with each other, wherein there is an understeer when the front wheel slip angle (OCj is greater than the rear wheel slip angle (OC H) and oversteering present when the front wheel slip angle (OCj is smaller than the rear wheel slip angle (0C H).
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass bei festgestelltem Untersteuern oder Übersteuern ein den Fahrzustand beeinflussendes Stellsystem im Fahrzeug beaufschlagt wird.8. The method according to claim 7, characterized in that when the detected understeer or oversteer a driving condition affecting adjusting system is applied in the vehicle.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Drehrate (ωy) um die Fahrzeugquerachse (y) ebenfalls mithilfe der Inertialsensorik gemessen wird.9. The method according to any one of claims 1 to 8, characterized in that the rotation rate (ω y ) about the vehicle transverse axis (y) is also measured using the inertial sensor.
10. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Drehrate (ωy) um die Fahrzeugquerachse (y) aus einem mathematischen Modell bestimmt wird.10. The method according to any one of claims 1 to 8, characterized in that the rotation rate (ω y ) about the vehicle transverse axis ( y ) is determined from a mathematical model.
11. Regel- bzw. Steuergerät zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 10. 11. regulating or control device for carrying out the method according to one of claims 1 to 10.
12. Fahrzeugregelsystem mit einem Regel- bzw. Steuergerät nach Anspruch 11. 12. Vehicle control system with a control or control device according to claim 11.
PCT/EP2008/063339 2007-10-19 2008-10-06 Method for determining the slip angle of a wheel on a vehicle WO2009109240A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102007050115.5 2007-10-19
DE102007050115 2007-10-19
DE102008013102.4 2008-03-07
DE102008013102A DE102008013102A1 (en) 2007-10-19 2008-03-07 Method for driving state observation

Publications (1)

Publication Number Publication Date
WO2009109240A1 true WO2009109240A1 (en) 2009-09-11

Family

ID=40459046

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2008/063330 WO2009053233A1 (en) 2007-10-19 2008-10-06 Method for monitoring driving condition
PCT/EP2008/063339 WO2009109240A1 (en) 2007-10-19 2008-10-06 Method for determining the slip angle of a wheel on a vehicle

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/063330 WO2009053233A1 (en) 2007-10-19 2008-10-06 Method for monitoring driving condition

Country Status (2)

Country Link
DE (1) DE102008013102A1 (en)
WO (2) WO2009053233A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019101392A1 (en) * 2019-01-21 2020-07-23 Bayerische Motoren Werke Aktiengesellschaft Process for traction control of a single-track motor vehicle taking into account the slip angle of the rear wheel
CN113226880B (en) * 2019-01-21 2024-07-05 宝马股份公司 Method for controlling the traction of a single track motor vehicle taking into account the slip angle of the rear tires

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9382327B2 (en) 2006-10-10 2016-07-05 Vaccinex, Inc. Anti-CD20 antibodies and methods of use
DE102010050278A1 (en) 2010-11-02 2012-05-03 Audi Ag Method for estimating attitude angle settled during travel of vehicle, involves providing mathematical model, which interrelates to measured input parameters by non-measured parameter
DE102012210793B4 (en) 2012-06-26 2014-08-28 Robert Bosch Gmbh Method for checking the plausibility of a drive of a vehicle
JP2017531597A (en) * 2014-10-20 2017-10-26 ポリテクニコ ディ ミラノPolitecnico Di Milano Method for estimating vehicle side slip angle, computer program for implementing the method, control unit reading the computer program, and vehicle equipped with the control unit
DE102015010173B3 (en) 2015-08-06 2016-07-14 Audi Ag Method for measuring the angle of slip in vehicles
JP6473684B2 (en) * 2015-11-11 2019-02-20 日立建機株式会社 Wheel slip angle estimating apparatus and method
DE102019134258A1 (en) * 2019-12-13 2021-05-06 Daimler Ag Method for controlling a driving function of a vehicle
DE102021211390A1 (en) 2021-10-08 2023-04-13 Robert Bosch Gesellschaft mit beschränkter Haftung Method of operating a two-wheeler
DE102021211388A1 (en) 2021-10-08 2023-04-13 Robert Bosch Gesellschaft mit beschränkter Haftung Method for determining the motion parameters of a two-wheeler
DE102022132395A1 (en) 2022-12-06 2023-01-26 Daimler Truck AG Method for forming a reference value for a lateral speed for estimating a state of motion of a vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408411A (en) * 1991-01-18 1995-04-18 Hitachi, Ltd. System for predicting behavior of automotive vehicle and for controlling vehicular behavior based thereon
EP1000838A2 (en) * 1998-11-11 2000-05-17 DaimlerChrysler AG Method for controlling the lateral dynamics of a vehicle with front axle steering
US20020198655A1 (en) * 2001-01-29 2002-12-26 Bevly David M. Determination and control of vehicle sideslip using GPS
US20030093190A1 (en) * 2001-11-15 2003-05-15 Honda Giken Kogyo Kabushiki Kaisha Method of estimating quantities that represent state of vehicle
US20040046448A1 (en) * 2002-09-06 2004-03-11 Ford Motor Company Independent braking and controllability control method and system for a vehicle with regenerative braking
US20040249545A1 (en) * 2003-02-26 2004-12-09 Jianbo Lu Integrated sensing system for an automotive system
DE102006009682A1 (en) * 2006-03-02 2007-09-06 Bayerische Motoren Werke Ag Dual-tracked vehicle`s driving condition determining method, involves using tire or wheel forces in vehicle-transverse direction, direction of vehicle-vertical axis and direction of longitudinal direction as value measured at vehicle
EP1844996A1 (en) * 2005-02-04 2007-10-17 Byd Company Limited Vehicle anti-skid brake control system and its control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3669668B2 (en) * 1998-07-10 2005-07-13 本田技研工業株式会社 Vehicle wheel slip angle detection device
DE10247991A1 (en) 2002-10-15 2004-04-29 Robert Bosch Gmbh Yaw angle determination method for a motor vehicle, e.g. for a dynamic control system, in which the velocity vector is determined by frequency analysis of a GPS receiver signal and is then combined with a measured yaw rate value
US7010409B2 (en) * 2003-02-26 2006-03-07 Ford Global Technologies, Llc Reference signal generator for an integrated sensing system
US7274984B2 (en) * 2004-06-14 2007-09-25 General Motors Corporation Vehicle stability enhancement system
US7451033B2 (en) * 2005-06-10 2008-11-11 Ford Global Technologies, Llc Lateral and longitudinal velocity determination for an automotive vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408411A (en) * 1991-01-18 1995-04-18 Hitachi, Ltd. System for predicting behavior of automotive vehicle and for controlling vehicular behavior based thereon
EP1000838A2 (en) * 1998-11-11 2000-05-17 DaimlerChrysler AG Method for controlling the lateral dynamics of a vehicle with front axle steering
US20020198655A1 (en) * 2001-01-29 2002-12-26 Bevly David M. Determination and control of vehicle sideslip using GPS
US20030093190A1 (en) * 2001-11-15 2003-05-15 Honda Giken Kogyo Kabushiki Kaisha Method of estimating quantities that represent state of vehicle
US20040046448A1 (en) * 2002-09-06 2004-03-11 Ford Motor Company Independent braking and controllability control method and system for a vehicle with regenerative braking
US20040249545A1 (en) * 2003-02-26 2004-12-09 Jianbo Lu Integrated sensing system for an automotive system
EP1844996A1 (en) * 2005-02-04 2007-10-17 Byd Company Limited Vehicle anti-skid brake control system and its control method
DE102006009682A1 (en) * 2006-03-02 2007-09-06 Bayerische Motoren Werke Ag Dual-tracked vehicle`s driving condition determining method, involves using tire or wheel forces in vehicle-transverse direction, direction of vehicle-vertical axis and direction of longitudinal direction as value measured at vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019101392A1 (en) * 2019-01-21 2020-07-23 Bayerische Motoren Werke Aktiengesellschaft Process for traction control of a single-track motor vehicle taking into account the slip angle of the rear wheel
CN113226880A (en) * 2019-01-21 2021-08-06 宝马股份公司 Method for traction control of a single-track motor vehicle taking into account the sidewall slip angle of the rear wheel
US11731596B2 (en) 2019-01-21 2023-08-22 Bayerische Motoren Werke Aktiengesellschaft Method for the traction control of a single-track motor vehicle taking the slip angle of the rear wheel into consideration
CN113226880B (en) * 2019-01-21 2024-07-05 宝马股份公司 Method for controlling the traction of a single track motor vehicle taking into account the slip angle of the rear tires

Also Published As

Publication number Publication date
WO2009053233A1 (en) 2009-04-30
DE102008013102A1 (en) 2009-04-23

Similar Documents

Publication Publication Date Title
WO2009109240A1 (en) Method for determining the slip angle of a wheel on a vehicle
EP1692026B1 (en) Method and arrangement for monitoring a measuring device located in a wheeled vehicle
DE112017005121B4 (en) Apparatus with motor vehicle moving condition evaluation device
EP0846610B1 (en) Auxillary steering method for helping the driver of a road vehicle
DE102007037209B4 (en) Vehicle control method
DE602004006049T2 (en) Integrated detection system for motor vehicles
DE10327593B4 (en) System and method for determining the position of a motor vehicle
DE102005033237B4 (en) Method for determining and correcting misalignments and offsets of the sensors of an inertial measurement unit in a land vehicle
DE102007037508B4 (en) Vehicle control method
EP2755868B1 (en) Sensor system comprising a vehicle model unit
DE102017102269A1 (en) TILT AND MISSING EQUALIZATION FOR 6-DOF IMU USING GNSS / INS DATA
DE102006026937A9 (en) Method for controlling a system of a vehicle
DE10327590A1 (en) Method and apparatus for compensating for deviations in a sensor system for use in a vehicle dynamics control system
DE102005000726A1 (en) Behavior detection system for an automobile relative to the road
DE10327591A1 (en) System for detecting the surface profile of a route
DE102007037513A1 (en) Method and device for vehicle control
DE102016225140B3 (en) Method for determining a relative position of a motor vehicle, position determination system for a motor vehicle and motor vehicle
DE102016219379A1 (en) Method for determining an orientation of a vehicle
DE10320544A1 (en) Method and device for determining the transverse speed of a vehicle
WO2005056358A1 (en) Determination of dynamic axle loads and/or wheel loads of a wheel vehicle
DE102010029245B4 (en) Method for crosswind compensation in vehicles
DE102006049118B4 (en) Method and device for determining a signal offset of a pitch rate sensor
DE10360728A1 (en) Method and device for determining a vehicle condition
DE112019007748T5 (en) State quantity calculation device, control device and vehicle
DE102015009284A1 (en) Method for operating a vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08805083

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 08805083

Country of ref document: EP

Kind code of ref document: A1