WO2009109116A1 - 光发射机和光信号产生的方法 - Google Patents

光发射机和光信号产生的方法 Download PDF

Info

Publication number
WO2009109116A1
WO2009109116A1 PCT/CN2009/070411 CN2009070411W WO2009109116A1 WO 2009109116 A1 WO2009109116 A1 WO 2009109116A1 CN 2009070411 W CN2009070411 W CN 2009070411W WO 2009109116 A1 WO2009109116 A1 WO 2009109116A1
Authority
WO
WIPO (PCT)
Prior art keywords
return
optical signal
signal
zero code
optical
Prior art date
Application number
PCT/CN2009/070411
Other languages
English (en)
French (fr)
Inventor
高俊明
昌庆江
苏翼凯
陶智慧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2009109116A1 publication Critical patent/WO2009109116A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
    • H04B10/5561Digital phase modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/5162Return-to-zero modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/5165Carrier suppressed; Single sideband; Double sideband or vestigial

Definitions

  • the present invention relates to the field of optical communications, and in particular, to an optical transmitter and a method for generating optical signals. Background technique
  • phase modulation formats especially multi-phase phase modulation formats, such as Differential Quadrature Phase Shift Keying (DQPSK) optical signals, can effectively alleviate some of the above-mentioned adverse effects. Since the DQPSK optical signal carries a 2-bit signal per symbol, it occupies less spectral bandwidth, has higher spectrum utilization, and has stronger resistance to CD and PMD.
  • DQPSK Differential Quadrature Phase Shift Keying
  • the DQPSK optical signal has a constant amplitude and can be effectively mitigated.
  • SPM self-Phase Modulation
  • the carrier-suppressed return-to-Zero-Differential Quadrature Phase-Shift Keying (CSRZ-DQPSK) optical signal has Higher spectrum utilization, stronger resistance to nonlinear damage, suitable for long-distance and large-capacity optical transmission systems.
  • the transmitter achieves a transmission speed of 20 Gb/s.
  • the optical signal output by the laser is first modulated by an intensity modulator, which is a Mach-Zehnder. Modulator (MZM), whose drive signal is a 5 GHz clock signal.
  • MZM Mach-Zehnder.
  • a CSRZ optical pulse having a duty ratio of approximately 66% and a repetition frequency of 10 GHz can be generated.
  • the resulting light pulse is then modulated by a cascaded DQPSK modulator.
  • the DQPSK modulator is an integrated device that produces the desired DQPSK optical signal by controlling the corresponding bias point.
  • the DQPSK modulator drive signal is two differentially precoded 10 Gb/s electrical data signals. After two levels of modulation, the final 20 Gb / s CSRZ-DQPSK optical signal number.
  • the inventors have found that the CSRZ-DQPSK optical signal transmitter shown in Fig. 1 has at least the following problems:
  • the transmitter uses two modulators to generate the CSRZ optical pulse and the DQPSK signal respectively, that is, two-stage modulation is required, so that the transmitter has a high cost, a large volume, and is difficult to integrate.
  • the transmitter uses discrete optical components, and the drive signals of the two modulators need to be strictly adjusted to achieve synchronization, which increases the insertion loss of the entire transmitter.
  • the traditional Manchester pattern is realized by an exclusive OR operation between the clock signal and the data signal (using an exclusive OR gate), but the XOR gate is an active device and requires an external voltage drive, resulting in a lower cost of the transmitter. high.
  • Embodiments of the present invention provide a method for generating an optical transmitter and an optical signal for generating a CSRZ-DQPSK optical signal; the technical solution is as follows:
  • optical transmitter comprising:
  • a first mixer configured to receive a data to be sent and a clock signal, wherein a frequency of the one clock signal is half of a rate value of the data to be sent, and the data to be sent and one clock signal are sent Phase mixing, generating a first return-to-zero code bipolar signal, and outputting the first return-to-zero code bipolar signal;
  • a second mixer receiving another data to be transmitted and another clock signal, wherein the frequency value of the other clock signal is half of a rate value of the other data to be transmitted, and the other data to be sent is The other clock signal is mixed, generating a second return-to-zero code bipolar signal, and outputting the second return-to-zero code bipolar signal;
  • a modulator configured to receive an optical signal, a first return-to-zero code bipolar signal output by the first mixer, and a second return-to-zero code bipolar signal output by the second mixer,
  • the optical signal is split into two paths, the first return-to-zero code bipolar signal is modulated onto one optical signal, and the second return-to-zero code bipolar signal is modulated onto another optical signal,
  • the modulated two optical signals are combined to generate and output a carrier suppression return-to-zero code-differential four-phase phase shift keying optical signal.
  • a method of generating an optical signal comprising:
  • the data to be sent is divided into two paths, and respectively mixed with two clock signals to generate two return-to-zero code bipolar signals, wherein the frequency values of the two clock signals are all half of the rate value of the data to be transmitted. ;
  • the two-way return-to-zero code bipolar signals are separately modulated, and the two-way return-to-zero code bipolar signals are respectively modulated onto two optical signals, and the modulated two optical signals are combined to generate a carrier.
  • the return-to-zero code-differential four-phase phase shift keying optical signal is suppressed.
  • the data to be transmitted and the clock signal are mixed, and the modulator is driven by the mixed signal.
  • the CSRZ-DQPSK optical signal reduces the cost of the optical transmitter.
  • only one modulator is used in this embodiment, which reduces the insertion loss during optical signal transmission, and has good stability and reliability.
  • Another embodiment of the present invention provides a method for generating an optical transmitter and an optical signal for generating a Manchester optical signal, where the optical transmitter includes:
  • a mixer configured to receive data to be transmitted and a sinusoidal clock signal, wherein a frequency value of the sinusoidal clock signal is the same as a rate value of the data to be transmitted, and a phase of the sinusoidal clock signal is adjusted, so that the sinusoidal clock signal is Synchronizing the phase with the data to be transmitted, mixing the data to be transmitted with the sinusoidal clock signal after adjusting the phase, generating a Manchester code, and outputting the Manchester code;
  • a modulator configured to receive an optical signal, a Manchester code of the mixer output, and modulate the Manchester code onto the optical signal under a bias voltage to generate a Manchester optical signal.
  • the method for generating the optical signal includes:
  • Adjusting a phase of the sinusoidal clock signal synchronizing a phase of the sinusoidal clock signal with the data to be transmitted, mixing the data to be transmitted with a sinusoidal clock signal after adjusting the phase, and generating a Manchester code
  • the Manchester code is modulated onto the optical signal by a bias voltage to produce a Manchester optical signal.
  • the modulator is driven by the mixed signal to generate a Manchester optical signal, which reduces the cost of the optical transmitter.
  • FIG. 1 is a schematic structural diagram of a CSRZ-DQPSK optical transmitter provided by the prior art
  • FIG. 2 is a schematic structural diagram of an optical transmitter according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of a DQPSK modulator according to Embodiment 1 of the present invention.
  • Embodiment 4 is a schematic diagram of signals provided by Embodiment 1 of the present invention.
  • FIG. 5 is an eye diagram of an AC-coupled data and a clock signal obtained by mixing a mixer according to Embodiment 1 of the present invention
  • FIG. 6 is a schematic structural diagram of an optical transmitter after adding an electrical amplifier according to Embodiment 1 of the present invention
  • FIG. 7 is a schematic structural diagram of an optical transmitter according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic structural diagram of an optical transmitter after adding an electric amplifier according to Embodiment 2 of the present invention.
  • Embodiment 9 is a schematic diagram of signals provided in Embodiment 2 of the present invention.
  • 10 is a flowchart of a method for generating an optical signal according to Embodiment 3 of the present invention;
  • Figure 11 is a flow chart showing a method of generating an optical signal according to Embodiment 4 of the present invention. detailed description
  • the optical transmitter provided by the embodiment of the invention mixes the data to be transmitted and the clock signal by using a passive electric mixer, and drives the modulator with the mixed signal to generate a CSRZ-DQPSK optical signal or Manchester light. signal.
  • Example 1
  • this embodiment provides an optical transmitter, including:
  • the first mixer 100 is configured to receive a data to be sent and a clock signal.
  • the frequency of the clock signal is half of the rate of the data to be sent, and the data to be sent is mixed with the clock signal. , generating a first return-to-zero code bipolar signal, and outputting a first return-to-zero code bipolar signal;
  • the second mixer 200 receives another data to be transmitted and another clock signal, and the frequency value of the other clock signal is half of the rate value of the other data to be transmitted, and the other data to be transmitted is compared with the other clock signal. Mixing, generating a second return-to-zero code bipolar signal, and outputting a second return-to-zero code bipolar signal;
  • the modulator 300 is configured to receive an optical signal, a first return-to-zero code bipolar signal output by the first mixer 100, and a second return-to-zero code bipolar signal output by the second mixer 200, to receive
  • the obtained optical signal is divided into two paths, the first return-to-zero code bipolar signal is adjusted to one optical signal, and the second return-to-zero code bipolar signal is modulated to another optical signal, and the modulated two are modulated.
  • the road light signal is combined to generate and output a CSRZ-DQPSK optical signal.
  • the data to be sent may be the original data or the encoded data.
  • the two channels to be sent received by the first mixer 100 and the second mixer 200 are two signals to be sent, two The rate of the road signal is the same.
  • the modulator 300 is specifically a DQPSK modulator, and the DQPSK modulator is implemented based on an integrated dual parallel single-drive MZM, which specifically includes:
  • An optical signal input port 301 configured to receive an optical signal, and divide the optical signal into two paths;
  • the first sub-modulator 302 is configured to receive an optical signal of the optical signal input port 301 and a first return-to-zero code bipolar signal output by the first mixer 100, and the first bias voltage is used.
  • a zero-code bipolar signal is modulated onto one optical signal to generate a first CSRZ-DPSK optical signal, and a first CSRZ-DPSK optical signal is output;
  • a second sub-modulator 303 configured to receive another optical signal of the optical signal input port 301 and output of the second mixer 200
  • the second return-to-zero code bipolar signal modulates the second return-to-zero code bipolar signal to another optical signal under the action of the second bias voltage to generate a second CSRZ-DPSK optical signal. Outputting a second CSRZ-DPSK optical signal;
  • the combining module 304 is configured to receive the first CSRZ-DPSK optical signal output by the first sub-modulator 302 and the second CSRZ-DPSK optical signal output by the second sub-modulator 303, and function at the third bias voltage
  • the phase difference between the first CSRZ-DPSK optical signal and the second CSRZ-DPSK optical signal is adjusted to be 31 /2, and the first CSRZ-DPSK optical signal and the second CSRZ-DPSK optical signal are combined to generate And output CSRZ-DQPSK optical signal.
  • the first bias voltage and the second bias voltage are preferably set at the lowest point of the respective transmission curves to generate a CSRZ-DPSK optical signal.
  • the encoded AC is shown by (1) in FIG.
  • the coupled data is taken as an example of the data to be sent.
  • the AC coupled data is input to the first mixer 100 and the second mixer 200 in two ways, and is mixed with one clock signal, wherein the clock signal is as shown in FIG. 4 (2).
  • the frequency of the clock signal is 1/2 of the value of the AC coupled data signal.
  • the first mixer 100 and the second mixer 200 are mixed to produce two super-Gaussian bipolar RZ data, as shown in (3) of FIG.
  • the two bipolar RZ data are respectively modulated to the first sub-modulator 302 and the second sub-modulator 303 of the modulator 300, and the bias voltages of the first sub-modulator 302 and the second sub-modulator 303 are set in respective transmission curves.
  • the lowest point, the CSRZ-DPSK signal is generated, as shown in Figure 4 (4).
  • an eye diagram obtained by mixing the AC-coupled data and the clock signal through a mixer is used.
  • the AC coupled data rate is 8Gb/s
  • the clock signal frequency is 4GHz
  • the mixer's local oscillator port frequency and RF port frequency are 2-12GHz.
  • the peak-to-peak value of the AC-coupled data is 2V; the peak-to-peak value of the clock signal is 3V.
  • the mixer output is a super-Gaussian RZ bipolar data, which is in agreement with the signal diagram shown in (3) of Figure 4.
  • a first electrical amplifier 400 is disposed between the first mixer 100 and the modulator 300, and the first path for outputting the first mixer 100 is reset to zero.
  • the code bipolar signal is amplified, and the amplified first return-to-zero code bipolar signal is output to the modulator 300;
  • a second electric amplifier 500 is disposed between the second mixer 200 and the modulator 300 for amplifying the second return-to-zero code bipolar signal output by the second mixer 200, and the amplified The two-way return-to-zero code bipolar signal is output to the modulator 300.
  • the structure of the optical transmitter after adding the electric amplifier is shown in Fig. 6.
  • the modulator 300 takes the DQPSK modulator as an example.
  • the process of generating the CSRZ-DQPSK optical signal by using the optical transmitter provided in Fig. 6 is briefly described as follows:
  • each encoded data is mixed with one clock signal through a passive electric mixer to obtain bi-polar RZ data of super Gaussian shape.
  • the generated two-way RZ data is amplified by an electric amplifier, and then the DQPSK modulator is driven to generate CSRZ-DQPSK optical signal.
  • the data to be transmitted and the clock signal are mixed, and the modulated signal is driven by the mixed signal to generate a CSRZ-DQPSK optical signal, thereby reducing the cost of the optical transmitter.
  • only one modulator is used, which reduces the insertion loss during optical signal transmission, and has good stability and reliability.
  • this embodiment provides an optical transmitter, including:
  • the mixer 600 is configured to receive data to be sent and a sinusoidal clock signal, where the frequency value of the sinusoidal clock signal is the same as the rate value of the data to be transmitted, and the phase of the sinusoidal clock signal is adjusted to make the phase of the sinusoidal clock signal and the data to be transmitted. Synchronizing, mixing the data to be transmitted with the sinusoidal clock signal after adjusting the phase, generating a Manchester code, and outputting a Manchester code;
  • the modulator 700 is configured to receive the optical signal, the Manchester code output by the mixer 600, and modulate the Manchester code onto the optical signal under the bias voltage to generate a Manchester optical signal.
  • the data to be transmitted is original data; in order to increase the driving capability of the signal to the modulator, an electric amplifier 600a is provided between the mixer 600 and the modulator 700 for amplifying the Manchester code output by the mixer 600, The amplified Manchester code is output to the modulator 700.
  • the mixer 600 is a passive electric mixer
  • the modulator 700 is a single-drive Mach-Zehnder modulator. The process of generating a Manchester optical signal using the optical transmitter provided in Figure 8 is briefly described as follows:
  • the data to be transmitted is coupled to a port of the mixer 600, wherein the data to be transmitted is the AC signal shown in (1) of FIG. 9, and the data to be transmitted is mixed with the clock signal input to the other port of the mixer 600.
  • Frequency the frequency value of the clock signal is the same as the data signal rate value, as shown in (2) of Figure 9. Adjust the phase of the clock signal to synchronize with the data to be transmitted.
  • the "1" in the original data to be transmitted becomes "1 0"
  • the "0" in the original data becomes "0 1", that is,
  • the Manchester encoding of the original data is implemented, as shown in (3) of FIG.
  • the encoded data is amplified by an electrical amplifier 600a, and the modulator 700 is driven, wherein the modulator 700 receives the continuous optical signal output by the laser.
  • the Manchester optical signal is generated by setting the bias voltage of the modulator 700 at the orthogonal point (half power point) of the transmission curve.
  • the data to be transmitted and the clock signal are mixed, and the mixed signal is used to drive the modulator to generate a Manchester optical signal light signal, thereby reducing the cost of the optical transmitter.
  • only one modulator is used, which reduces the insertion loss during optical signal transmission, and has good stability and reliability.
  • this embodiment provides a method for generating an optical signal, including:
  • Step 801 split the data to be sent into two paths
  • Step 802 Mix two channels of data to be transmitted with two clock signals to generate a two-way return code bipolar signal; wherein, the frequency of the clock signal is half of the rate value of the data to be sent;
  • Step 803 respectively modulate the two-way return-code bipolar signals, respectively modulate the two-way return-code bipolar signals onto the two optical signals, and combine the modulated two optical signals to generate CSRZ- DQPSK optical signal.
  • Step 803 specifically implements modulation of the signal by using the DQPSK modulator provided in FIG. 3.
  • the modulation method is simply described as follows:
  • the first CSRZ-DPSK optical signal and the second CSRZ-DPSK optical signal are combined to generate and output a CSRZ-DQPSK optical signal.
  • step 802 further includes:
  • the two-way return-to-zero code bipolar signals are respectively amplified to obtain the amplified two-way return-to-zero code bipolar signals, and the amplified two-way return-to-zero code bipolar signals are used to drive the modulator, and the amplified two are used.
  • the road return-to-zero code bipolar signals are respectively modulated onto the two optical signals, and the modulated two optical signals are combined to generate a CSRZ-DQPSK optical signal.
  • the CSRZ-DQPSK optical signal is generated, which reduces the cost of the optical transmitter.
  • only one modulator is used in this embodiment. , which reduces the insertion loss during optical signal transmission and has good stability and reliability.
  • this embodiment provides a method for generating an optical signal, including:
  • Step 901 Receive data to be transmitted and a sinusoidal clock signal.
  • the frequency value of the sinusoidal clock signal is the same as the rate value of the data to be sent.
  • Step 902 Adjust the phase of the sinusoidal clock signal to synchronize the phase of the sinusoidal clock signal with the data to be transmitted.
  • Step 903 Mix the data to be transmitted with the sinusoidal clock signal after adjusting the phase to generate a Manchester code.
  • Step 904 The Manchester code is modulated onto the optical signal by the applied voltage to produce a Manchester optical signal. Among them, the bias voltage is set at the orthogonal point of the transmission curve (half power point).
  • step 903 the method further includes:
  • the generated Manchester code is amplified to obtain an enlarged Manchester code, and the amplified Manchester code is used as a drive signal of the modulator, and the amplified Manchester code is modulated onto the optical signal by a bias voltage to generate Manchester light. signal.
  • the data to be transmitted and the clock signal are mixed, and the modulated signal is driven by the mixed signal to generate a Manchester optical signal optical signal, which reduces the cost of the optical transmitter.
  • only one modulator is used in this embodiment. It reduces the insertion loss during optical signal transmission and has good stability and reliability.
  • All or part of the technical solutions provided by the above embodiments may be implemented by software programming, and the software program is stored in a readable storage medium such as a hard disk, an optical disk or a floppy disk in a computer.
  • a readable storage medium such as a hard disk, an optical disk or a floppy disk in a computer.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Description

说 明 书 光发射机和光信号产生的方法 技术领域
本发明涉及光通信领域, 特别涉及一种光发射机和光信号产生的方法。 背景技术
随着通信容量的增加, 尤其是高速以太网的普及和多媒体业务的发展, 人们对现有的 光纤通信系统提出了更高的要求, 长距离、大容量的波分复用(WDM, Wavelength Division Multiplexing)系统正在成为研究和商用的热点。目前 40 Gb/s的系统已经开始商用, 100 Gb/s 和 160 Gb/s的超高速传输系统正在受到业界广泛的关注。 随着数据速率的提高, 传统的采 用非归零码 ( RZ, Non Return-to-Zero) 归零码 (RZ, Return-to-Zero)等幅度调制格式的 传输系统的性能受到很大影响, 如系统所占的带宽加大, 受到较强的色度色散 (CD, Chromatic Dispersion)、 偏振模色散 (PMD, Polarization Mode Dispersion) 的影响; 一些 非线性效应, 如自相位调制 (SPM, Self-Phase modulation) 等也开始凸现出来。 研究表明, 采用相位调制格式,尤其是多进制相位调制格式,如差分四相相移键控(DQPSK, Differential Quadrature Phase-shift Keying)光信号, 能够有效地减轻上述一些不利的影响。 由于 DQPSK 光信号每个符号携带 2个比特的信号, 其占用的频谱带宽比较小, 频谱利用率高, 具有较 强的抵抗 CD、 PMD能力; 而且 DQPSK光信号具有恒定的幅度, 可以有效地减轻自相位调 制 ( SPM, Self-Phase Modulation) 对系统的影响。 与比传统的 NRZ、 RZ等调制格式相比, 载波抑制归零码一差分四相相移键控 (CSRZ-DQPSK, Carrier-suppressed Return-to-Zero - Differential Quadrature Phase-shift Keying) 光信号具有更高的频谱利用率, 更强的抵抗非线 性损伤的能力, 适合于长距离大容量的光传输系统。
参见图 1所示的 CSRZ-DQPSK光信号发射机, 该发射机实现了 20 Gb/s的传输速度, 激光器输出的光信号首先被一个强度调制器调制, 该强度调制器为一个马赫 -曾德调制器 (MZM),其驱动信号为一个 5 GHz的时钟信号。通过将该 MZM的偏置点设在传输曲线的 最低点, 则可以产生占空比接近 66% 、 重复频率为 10 GHz的 CSRZ光脉冲。 产生的光脉 冲再被一个级联的 DQPSK调制器调制。 该 DQPSK调制器为一个集成的器件, 通过控制相 应的偏置点, 能够产生所需的 DQPSK光信号。 该 DQPSK调制器驱动信号为两路差分预编 码的 10 Gb/s的电数据信号。这样经过两级调制后,最终产生 20 Gb/s的 CSRZ-DQPSK光信 号。
在实现本发明的过程中, 发明人发现图 1所示的 CSRZ-DQPSK光信号发射机至少存在 以下问题:
该发射机使用两个调制器分别产生 CSRZ光脉冲和 DQPSK信号,即需要进行两级调制, 因而发射机的成本较高, 体积较大, 不易集成。 同时, 发射机采用分立的光器件, 需要严 格调整两个调制器的驱动信号以实现同步, 增加了整个发射机的插入损耗。
另外, 传统的曼彻斯特码型是通过时钟信号和数据信号之间的异或操作 (使用异或门) 来实现的, 但是异或门是有源器件, 需要外加电压驱动, 导致发射机的成本较高。 发明内容
本发明实施例提供了一种光发射机和光信号产生的方法, 用于产生 CSRZ-DQPSK光信 号; 所述技术方案如下:
一种光发射机, 所述光发射机包括:
第一混频器, 用于接收一路待发送数据和一路时钟信号, 所述一路时钟信号的频率值 为所述一路待发送数据的速率值的一半,将所述一路待发送数据与一路时钟信号相混频, 生 成第一路归零码双极性信号, 输出所述第一路归零码双极性信号;
第二混频器, 接收另一路待发送数据和另一路时钟信号, 所述另一路时钟信号的频率 值为所述另一路待发送数据的速率值的一半,将所述另一路待发送数据与另一路时钟信号相 混频, 生成第二路归零码双极性信号, 输出所述第二路归零码双极性信号;
调制器, 用于接收光信号、 所述第一混频器输出的第一路归零码双极性信号和所述第 二混频器输出的第二路归零码双极性信号, 将所述光信号分成两路, 将所述第一路归零码 双极性信号调制到一路光信号上, 将所述第二路归零码双极性信号调制到另一路光信号上, 将调制后的两路光信号合路, 产生并输出载波抑制归零码-差分四相相移键控光信号。
一种光信号产生的方法, 所述方法包括:
将待发送数据分成两路, 分别与两路时钟信号相混频,生成两路归零码双极性信号, 所 述两路时钟信号的频率值均为所述待发送数据的速率值的一半;
分别对所述两路归零码双极性信号进行调制, 将所述两路归零码双极性信号分别调制 到两路光信号上, 将调制后的两路光信号合路, 产生载波抑制归零码-差分四相相移键控光 信号。
本发明实施例通过将待发送数据和时钟信号相混频, 用混频后的信号驱动调制器, 产 生 CSRZ-DQPSK光信号, 降低了光发射机的成本, 同时本实施例只采用了一个调制器, 降 低了光信号传输过程中的插入损耗, 具有良好的稳定性和可靠性。 本发明实施例还提供了另一种光发射机和光信号产生的方法, 用于产生曼彻斯特光信 号, 所述光发射机包括:
混频器, 用于接收待发送数据和正弦时钟信号, 所述正弦时钟信号的频率值与所述待 发送数据的速率值相同, 调节所述正弦时钟信号的相位,使所述正弦时钟信号的相位与所述 待发送数据同步, 将所述待发送数据与调节相位后的正弦时钟信号相混频, 生成曼彻斯特 编码, 输出所述曼彻斯特编码;
调制器, 用于接收光信号、 所述混频器输出的曼彻斯特编码, 在偏置电压的作用下将 所述曼彻斯特编码调制到所述光信号上, 产生曼彻斯特光信号。
所述光信号产生的方法包括:
接收待发送数据和正弦时钟信号, 所述正弦时钟信号的频率值与所述待发送数据的速 率值相同;
调节所述正弦时钟信号的相位, 使所述正弦时钟信号的相位与所述待发送数据同步, 将所述待发送数据与调节相位后的正弦时钟信号相混频, 生成曼彻斯特编码;
在偏置电压的作用下将所述曼彻斯特编码调制到光信号上, 产生曼彻斯特光信号。 本实施例通过将待发送数据和时钟信号相混频, 用混频后的信号驱动调制器, 产生曼 彻斯特光信号, 降低了光发射机的成本。 附图说明
图 1是现有技术提供的 CSRZ-DQPSK光发射机的结构示意图;
图 2是本发明实施例 1提供的光发射机的结构示意图;
图 3是本发明实施例 1提供的 DQPSK调制器的结构示意图;
图 4是本发明实施例 1提供的信号示意图;
图 5是本发明实施例 1提供的交流耦合数据与时钟信号通过混频器混频后得到的眼图; 图 6是本发明实施例 1提供的增加电放大器后的光发射机的结构示意图;
图 7是本发明实施例 2提供的光发射机的结构示意图;
图 8是本发明实施例 2提供的增加电放大器后的光发射机的结构示意图;
图 9是本发明实施例 2提供的信号示意图; 图 10是本发明实施例 3提供的光信号产生的方法流程图;
图 11是本发明实施例 4提供的光信号产生的方法流程图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式作 进一步地详细描述。
本发明实施例提供的光发射机通过采用无源的电混频器, 将待发送的数据和时钟信号 相混频, 用混频后的信号驱动调制器, 产生 CSRZ-DQPSK光信号或曼彻斯特光信号。 实施例 1
参见图 2, 本实施例提供了一种光发射机, 包括:
第一混频器 100, 用于接收一路待发送数据和一路时钟信号, 该一路时钟信号的频率值 为一路待发送数据的速率值的一半,将该一路待发送数据与一路时钟信号相混频, 生成第一 路归零码双极性信号, 输出第一路归零码双极性信号;
第二混频器 200, 接收另一路待发送数据和另一路时钟信号, 另一路时钟信号的频率值 为另一路待发送数据的速率值的一半,将另一路待发送数据与另一路时钟信号相混频, 生成 第二路归零码双极性信号, 输出第二路归零码双极性信号;
调制器 300, 用于接收光信号、 第一混频器 100输出的第一路归零码双极性信号和第二 混频器 200输出的第二路归零码双极性信号, 将接收到的光信号分成两路, 将第一路归零码 双极性信号调整到一路光信号上, 将第二路归零码双极性信号调制到另一路光信号上, 将 调制后的两路光信号合路, 产生并输出 CSRZ-DQPSK光信号。
其中, 待发送的数据可以为原始数据, 也可以为编码后的数据; 第一混频器 100和第二 混频器 200所接收到的两路待发送数据为两路待发送的信号, 两路信号的速率相同。
参见图 3, 调制器 300具体为 DQPSK调制器, DQPSK调制器是基于集成的双平行单驱动 MZM来实现的, 具体包括:
光信号输入端口 301, 用于接收光信号, 并将光信号分成两路;
第一子调制器 302, 用于接收光信号输入端口 301的一路光信号和第一混频器 100输出的 第一路归零码双极性信号, 在第一偏置电压的作用下将第一路归零码双极性信号调制到一 路光信号上, 产生第一路 CSRZ-DPSK光信号, 输出第一路 CSRZ-DPSK光信号;
第二子调制器 303, 用于接收光信号输入端口 301的另一路光信号和第二混频器 200输出 的第二路归零码双极性信号, 在第二偏置电压的作用下将第二路归零码双极性信号调制到 另一路光信号上, 产生第二路 CSRZ-DPSK光信号, 输出第二路 CSRZ-DPSK光信号;
合路模块 304, 用于接收第一子调制器 302输出的第一路 CSRZ-DPSK光信号和第二子调 制器 303输出的第二路 CSRZ-DPSK光信号, 在第三偏置电压的作用下调整第一路 CSRZ-DPSK光信号和第二路 CSRZ-DPSK光信号之间的相位差为 31 /2, 第一路 CSRZ-DPSK 光信号和第二路 CSRZ-DPSK光信号合路, 产生并输出 CSRZ-DQPSK光信号。
本实施例优选将第一偏置电压和第二偏置电压设置在各自传输曲线的最低点产生 CSRZ-DPSK光信号, 参见图 4, 以图 4中 ( 1 )所示的编码后得到的交流耦合数据作为待发数 据为例, 交流耦合数据分两路分别输入第一混频器 100和第二混频器 200, 与一路时钟信号 进行混频, 其中, 时钟信号如图 4中 (2 ) 所示, 该时钟信号的频率值为交流耦合数据信号 速率值的 1/2。 第一混频器 100和第二混频器 200混频后产生两路超高斯形状的双极性 RZ数 据 , 如图 4中 (3 )所示。 两路双极性 RZ数据分别调制到调制器 300的第一子调制器 302和第 二子调制器 303, 第一子调制器 302和第二子调制器 303的偏置电压设置在各自传输曲线的最 低点, 产生 CSRZ-DPSK信号, 如图 4中 (4) 所示。
参见图 5, 为上述交流耦合数据与时钟信号通过混频器混频后得到的眼图。 其中, 交流 耦合数据的速率为 8Gb/s, 时钟信号的频率为 4GHz, 混频器的本地振荡端口频率和射频端口 频率为 2-12GHz。 交流耦合数据的峰峰值为 2V; 时钟信号的峰峰值为 3V。 ώ眼图可知, 混 频器输出为超高斯形状的 RZ双极性数据, 与图 4中 (3 ) 所示的信号示意图吻合。
进一步地, 为了增强信号对调制器的驱动能力, 在第一混频器 100与调制器 300之间设 置有第一电放大器 400, 用于对第一混频器 100输出的第一路归零码双极性信号进行放大, 将放大后的第一路归零码双极性信号输出给调制器 300;
在第二混频器 200与调制器 300之间设置有第二电放大器 500, 用于对第二混频器 200输 出的第二路归零码双极性信号进行放大, 将放大后的第二路归零码双极性信号输出给调制 器 300。
增加电放大器后的光发射机结构参见图 6所示, 调制器 300以 DQPSK调制器为例, 应用 图 6提供的光发射机产生 CSRZ-DQPSK光信号的过程简单描述如下:
原始数据经过编码后, 分成两路; 将每路数据中的直流成分去除后, 原来数据变成双 极性的交流信号, "0" 变为 " -1 " " 1 " 变为 " +1 " , 且 " +1 "与 " -1 " 的幅度相同。 然后, 每路编码数据分别与一路时钟信号通过一个无源的电混频器相混频, 得到超高斯形 状的双极性 RZ数据。将产生的两路 RZ数据经过电放大器放大后, 驱动 DQPSK调制器, 生成 CSRZ-DQPSK光信号。
本实施例通过采用无源的电混频器, 将待发送数据和时钟信号相混频, 用混频后的信 号驱动调制器, 产生 CSRZ-DQPSK光信号, 降低了光发射机的成本, 同时本实施例只采用 了一个调制器, 降低了光信号传输过程中的插入损耗, 具有良好的稳定性和可靠性。 实施例 2
参见图 7, 本实施例提供了一种光发射机, 包括:
混频器 600, 用于接收待发送数据和正弦时钟信号, 其中, 正弦时钟信号的频率值与待 发送数据的速率值相同, 调节正弦时钟信号的相位,使正弦时钟信号的相位与待发送数据同 步, 将待发送数据与调节相位后的正弦时钟信号相混频, 生成曼彻斯特编码, 输出曼彻斯 特编码;
调制器 700, 用于接收光信号、 混频器 600输出的曼彻斯特编码, 在偏置电压的作用下 将曼彻斯特编码调制到光信号上, 产生曼彻斯特光信号。
其中, 待发送数据为原始数据; 为了增加信号对调制器的驱动能力, 在混频器 600与调 制器 700之间设置有电放大器 600a,用于对混频器 600输出的曼彻斯特编码进行放大,将放大 后的曼彻斯特编码输出给调制器 700。
参见图 8, 为增加电放大器后的光发射机结构图。 其中, 混频器 600为无源的电混频器, 调制器 700为单驱动马赫曾德调制器。 应用图 8提供的光发射机产生曼彻斯特光信号的过程 简单描述如下:
待发送数据耦合到混频器 600的一个端口, 其中, 待发送的数据为图 9中 (1 )所示的交 流信号, 待发送数据与输入到混频器 600另一端口的时钟信号相混频, 该时钟信号的频率值 与数据信号速率值相同, 如图 9中 (2) 所示。 调节时钟信号的相位, 使其与待发送数据相 同步, 混频后, 原来待发送数据中的 " 1 "变成 " 1 0" , 原来数据中的 "0"变成 "0 1 " , 即实现了对原来数据的曼彻斯特编码, 如图 9中 (3 )所示。编码后的数据经过电放大器 600a 进行放大后, 驱动调制器 700, 其中, 调制器 700接收激光器输出的连续光信号。 将调制器 700的偏置电压设置在传输曲线的正交点 (半功率点) , 即可产生曼彻斯特光信号。
本实施例通过采用无源的电混频器, 将待发送数据和时钟信号相混频, 用混频后的信 号驱动调制器, 产生曼彻斯特光信号光信号, 降低了光发射机的成本, 同时本实施例只采 用了一个调制器, 降低了光信号传输过程中的插入损耗, 具有良好的稳定性和可靠性。 实施例 3
参见图 10, 本实施例提供了一种光信号产生的方法, 包括:
步骤 801 : 将待发送数据分成两路;
步骤 802: 将两路待发送数据分别与两路时钟信号相混频,生成两路归零码双极性信号; 其中, 时钟信号的频率值为待发送数据的速率值的一半;
步骤 803 : 分别对两路归零码双极性信号进行调制, 将两路归零码双极性信号分别调制 到两路光信号上, 将调制后的两路光信号合路, 产生 CSRZ-DQPSK光信号。
其中, 步骤 803具体可以通过图 3提供的 DQPSK调制器实现对信号的调制, 调制方法简 单描述如下:
在第一偏置电压的作用下将一路归零码双极性信号调制到一路光信号上, 产生第一路
CSRZ-DPSK光信号;
在第二偏置电压的作用下将另一路归零码双极性信号调制到另一路光信号上, 产生第 二路 CSRZ-DPSK光信号;
在第三偏置电压的作用下调整第一路 CSRZ-DPSK光信号和第二路 CSRZ-DPSK光信号 之间的相位差为
将第一路 CSRZ-DPSK光信号和第二路 CSRZ-DPSK光信号合路, 产生并输出 CSRZ-DQPSK光信号。
进一步地, 步骤 802与步骤 803之间还包括:
分别对两路归零码双极性信号进行放大, 得到放大后的两路归零码双极性信号, 使用 放大后的两路归零码双极性信号驱动调制器, 将放大后的两路归零码双极性信号分别调制 到两路光信号上, 将调制后的两路光信号合路, 产生 CSRZ-DQPSK光信号。
本实施例通过将待发送数据和时钟信号相混频, 用混频后的信号驱动调制器, 产生 CSRZ-DQPSK光信号, 降低了光发射机的成本, 同时本实施例只采用了一个调制器, 降低 了光信号传输过程中的插入损耗, 具有良好的稳定性和可靠性。 实施例 4
参见图 11, 本实施例提供了一种光信号产生的方法, 包括:
步骤 901 : 接收待发送数据和正弦时钟信号, 正弦时钟信号的频率值与待发送数据的速 率值相同; 步骤 902: 调节正弦时钟信号的相位, 使正弦时钟信号的相位与待发送数据同步; 步骤 903 : 将待发送数据与调节相位后的正弦时钟信号相混频, 生成曼彻斯特编码; 步骤 904:在偏置电压的作用下将曼彻斯特编码调制到光信号上,产生曼彻斯特光信号。 其中, 偏置电压设置在传输曲线的正交点 (半功率点) 。
进一步地, 步骤 903和步骤 904之间还包括:
对生成的曼彻斯特编码进行放大, 得到放大后的曼彻斯特编码, 将放大后的曼彻斯特 编码作为调制器的驱动信号, 在偏置电压的作用下将放大后的曼彻斯特编码调制到光信号 上, 产生曼彻斯特光信号。
本实施例通过待发送数据和时钟信号相混频, 用混频后的信号驱动调制器, 产生曼彻 斯特光信号光信号, 降低了光发射机的成本, 同时本实施例只采用了一个调制器, 降低了 光信号传输过程中的插入损耗, 具有良好的稳定性和可靠性。 以上实施例提供的技术方案中的全部或部分内容可以通过软件编程实现, 其软件程序 存储在可读取的存储介质中, 存储介质例如: 计算机中的硬盘、 光盘或软盘。 以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1.一种光发射机, 其特征在于, 所述光发射机包括:
第一混频器, 用于接收一路待发送数据和一路时钟信号, 所述一路时钟信号的频率值 为所述一路待发送数据的速率值的一半,将所述一路待发送数据与一路时钟信号相混频, 生 成第一路归零码双极性信号, 输出所述第一路归零码双极性信号;
第二混频器, 接收另一路待发送数据和另一路时钟信号, 所述另一路时钟信号的频率 值为所述另一路待发送数据的速率值的一半,将所述另一路待发送数据与另一路时钟信号 相混频, 生成第二路归零码双极性信号, 输出所述第二路归零码双极性信号;
调制器, 用于接收光信号、 所述第一混频器输出的第一路归零码双极性信号和所述第 二混频器输出的第二路归零码双极性信号, 将所述光信号分成两路, 将所述第一路归零码 双极性信号调制到一路光信号上, 将所述第二路归零码双极性信号调制到另一路光信号上, 将调制后的两路光信号合路, 产生并输出载波抑制归零码-差分四相相移键控光信号。
2.如权利要求 1所述的光发射机, 其特征在于, 所述调制器包括:
光信号输入端口, 用于接收光信号, 并将所述光信号分成两路;
第一子调制器, 用于接收所述光信号输入端口输出的一路光信号和所述第一混频器输 出的第一路归零码双极性信号, 在第一偏置电压的作用下将所述第一路归零码双极性信号 调制到所述一路光信号上, 产生第一路载波抑制归零码-差分相移键控光信号, 输出所述第 一路载波抑制归零码-差分相移键控光信号;
第二子调制器, 用于接收所述光信号输入端口输出的另一路光信号和所述第二混频器 输出的第二路归零码双极性信号, 在第二偏置电压的作用下将所述第二路归零码双极性信 号调制到所述另一路光信号上, 产生第二路载波抑制归零码-差分相移键控光信号, 输出所 述第二路载波抑制归零码-差分相移键控光信号;
合路模块, 用于接收所述第一子调制器输出的第一路载波抑制归零码-差分相移键控光 信号和第二子调制器输出的第二路载波抑制归零码-差分相移键控光信号, 在第三偏置电压 的作用下调整所述第一路载波抑制归零码 -差分相移键控光信号和所述第二路载波抑制归 零码-差分相移键控光信号之间的相位差为 /2, 所述第一路载波抑制归零码 -差分相移键 控光信号和所述第二路载波抑制归零码-差分相移键控光信号合路, 产生并输出载波抑制归 零码 -差分四相相移键控光信号。
3.如权利要求 1或 2所述的光发射机, 其特征在于, 所述第一混频器与所述调制器之间 设置有第一电放大器, 用于对所述第一混频器输出的第一路归零码双极性信号进行放大, 将放大后的第一路归零码双极性信号输出给所述调制器;
所述第二混频器与所述调制器之间设置有第二电放大器, 用于对所述第二混频器输出 的第二路归零码双极性信号进行放大, 将放大后的第二路归零码双极性信号输出给所述调 制器。
4. 一种光信号产生的方法, 其特征在于, 所述方法包括:
将待发送数据分成两路, 分别与两路时钟信号相混频,生成两路归零码双极性信号, 所 述两路时钟信号的频率值均为所述待发送数据的速率值的一半;
分别对所述两路归零码双极性信号进行调制, 将所述两路归零码双极性信号分别调制 到两路光信号上, 将调制后的两路光信号合路, 产生载波抑制归零码-差分四相相移键控光 信号。
5. 如权利要求 4所述的光信号产生的方法, 其特征在于, 所述将所述两路归零码双极 性信号分别调制到两路光信号上, 将调制后的两路光信号合路, 产生载波抑制归零码 -差分 四相相移键控光信号包括:
在第一偏置电压的作用下将一路归零码双极性信号调制到一路光信号上, 产生第一路 载波抑制归零码-差分相移键控光信号;
在第二偏置电压的作用下将另一路归零码双极性信号调制到另一路光信号上, 产生第 二路载波抑制归零码-差分相移键控光信号;
在第三偏置电压的作用下调整所述第一路载波抑制归零码 -差分相移键控光信号和所 述第二路载波抑制归零码-差分相移键控光信号之间的相位差为 /2;
将所述第一路载波抑制归零码-差分相移键控光信号和所述第二路载波抑制归零码-差 分相移键控光信号合路, 产生并输出载波抑制归零码-差分四相相移键控光信号。
6.如权利要求 4或 5所述的光信号产生的方法, 其特征在于, 所述生成两路归零码双极 性信号之后还包括:
分别对所述两路归零码双极性信号进行信号放大;
相应地, 所述将所述两路归零码双极性信号分别调制到光信号上, 将调制后的两路光 信号合路, 产生载波抑制归零码-差分四相相移键控光信号, 具体为: 将放大后的两路归零码双极性信号分别调制到两路光信号上, 将调制后的两路光信号 合路, 产生载波抑制归零码-差分四相相移键控光信号。
7. 一种光发射机, 其特征在于, 所述光发射机包括:
混频器, 用于接收待发送数据和正弦时钟信号, 所述正弦时钟信号的频率值与所述待 发送数据的速率值相同, 调节所述正弦时钟信号的相位, 使所述正弦时钟信号的相位与所 述待发送数据同步, 将所述待发送数据与调节相位后的正弦时钟信号相混频, 生成曼彻斯 特编码, 输出所述曼彻斯特编码;
调制器, 用于接收光信号、 所述混频器输出的曼彻斯特编码, 在偏置电压的作用下将 所述曼彻斯特编码调制到所述光信号上, 产生曼彻斯特光信号。
8. 如权利要求 7所述的光发射机, 其特征在于, 所述混频器与所述调制器之间设置有 电放大器, 用于对所述混频器输出的曼彻斯特编码进行放大, 将放大后的曼彻斯特编码输 出给所述调制器。
9. 如权利要求 7或 8所述的光发射机, 其特征在于, 所述调制器为单驱动马赫-曾德调 制器。
10. 一种光信号产生的方法, 其特征在于, 所述方法包括:
接收待发送数据和正弦时钟信号, 所述正弦时钟信号的频率值与所述待发送数据的速 率值相同;
调节所述正弦时钟信号的相位, 使所述正弦时钟信号的相位与所述待发送数据同步, 将所述待发送数据与调节相位后的正弦时钟信号相混频, 生成曼彻斯特编码;
在偏置电压的作用下将所述曼彻斯特编码调制到光信号上, 产生曼彻斯特光信号。
11.如权利要求 10所述的光信号产生的方法, 其特征在于, 所述生成曼彻斯特编码之后 还包括:
对所述曼彻斯特编码进行放大, 得到放大后的曼彻斯特编码;
相应地, 所述在偏置电压的作用下将所述曼彻斯特编码调制到光信号上, 产生曼彻斯 特光信号, 具体为: 在偏置电压的作用下将放大后的曼彻斯特编码调制到光信号上, 产生曼彻斯特光信号。
PCT/CN2009/070411 2008-03-04 2009-02-12 光发射机和光信号产生的方法 WO2009109116A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810008367.2 2008-03-04
CN 200810008367 CN101527601B (zh) 2008-03-04 2008-03-04 光发射机和光信号产生的方法

Publications (1)

Publication Number Publication Date
WO2009109116A1 true WO2009109116A1 (zh) 2009-09-11

Family

ID=41055544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070411 WO2009109116A1 (zh) 2008-03-04 2009-02-12 光发射机和光信号产生的方法

Country Status (2)

Country Link
CN (1) CN101527601B (zh)
WO (1) WO2009109116A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610115A (zh) 2008-06-20 2009-12-23 华为技术有限公司 光信号的产生方法及装置
CN102340468B (zh) * 2010-07-14 2015-08-12 中兴通讯股份有限公司 驱动信号幅度的控制方法和装置、dqpsk发射机系统
CN102130723A (zh) * 2010-12-13 2011-07-20 华为技术有限公司 一种光信号生成装置和方法
CN103297136A (zh) * 2012-02-29 2013-09-11 深圳光启创新技术有限公司 一种led控制系统及led控制方法
CN103297135A (zh) * 2012-02-29 2013-09-11 深圳光启创新技术有限公司 一种信箱控制系统、移动终端及信箱控制装置
CN108387902B (zh) * 2017-12-30 2021-01-05 武汉灵途传感科技有限公司 一种光测距方法及设备
CN116865866B (zh) * 2023-09-04 2023-12-05 湖北经济学院 载波抑制归零交替偏振/频移键控正交调制光通信系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0981214A2 (en) * 1998-08-19 2000-02-23 Nec Corporation Optical transmitter
CN1453945A (zh) * 2002-04-25 2003-11-05 三星电子株式会社 用于混合光纤-无线系统中双工通信的方法和设备
JP2004056229A (ja) * 2002-07-16 2004-02-19 Sumitomo Electric Ind Ltd 光伝送装置、および、光伝送方式
CN1674473A (zh) * 2004-03-24 2005-09-28 株式会社东芝 光发射系统及其光发射装置
CN1692536A (zh) * 2002-12-12 2005-11-02 住友电气工业株式会社 在光输出面上具有衍射膜的光发射器件及其制造方法
CN1808946A (zh) * 2005-01-19 2006-07-26 三星电子株式会社 偏移正交相移键控方法及使用其的光发射机
CN101001112A (zh) * 2006-12-31 2007-07-18 华为技术有限公司 一种利用光纤传送数据信号的方法、装置和系统
JP4024017B2 (ja) * 2001-05-23 2007-12-19 三菱電機株式会社 光送信装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4141028B2 (ja) * 1998-11-25 2008-08-27 富士通株式会社 光デュオバイナリ伝送用の符号変換回路およびこれを用いた光送信装置および光受信装置
US7346283B2 (en) * 2004-06-30 2008-03-18 Lucent Technologies Inc. Method and apparatus for CRZ-DQPSK optical signal generation
CN101047452B (zh) * 2006-05-01 2010-05-12 华为技术有限公司 一种光调制的实现方法和装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0981214A2 (en) * 1998-08-19 2000-02-23 Nec Corporation Optical transmitter
JP4024017B2 (ja) * 2001-05-23 2007-12-19 三菱電機株式会社 光送信装置
CN1453945A (zh) * 2002-04-25 2003-11-05 三星电子株式会社 用于混合光纤-无线系统中双工通信的方法和设备
JP2004056229A (ja) * 2002-07-16 2004-02-19 Sumitomo Electric Ind Ltd 光伝送装置、および、光伝送方式
CN1692536A (zh) * 2002-12-12 2005-11-02 住友电气工业株式会社 在光输出面上具有衍射膜的光发射器件及其制造方法
CN1674473A (zh) * 2004-03-24 2005-09-28 株式会社东芝 光发射系统及其光发射装置
CN1808946A (zh) * 2005-01-19 2006-07-26 三星电子株式会社 偏移正交相移键控方法及使用其的光发射机
CN101001112A (zh) * 2006-12-31 2007-07-18 华为技术有限公司 一种利用光纤传送数据信号的方法、装置和系统

Also Published As

Publication number Publication date
CN101527601A (zh) 2009-09-09
CN101527601B (zh) 2011-09-21

Similar Documents

Publication Publication Date Title
JP4465458B2 (ja) 位相制御光fsk変調器
US8831440B2 (en) Method and device for generating optical signals
EP2197165B1 (en) Efficient QAM signal generation
Sakamoto et al. 50-Gb/s 16 QAM by a quad-parallel Mach-Zehnder modulator
JP5015288B2 (ja) 光伝送方法および装置
WO2009109116A1 (zh) 光发射机和光信号产生的方法
US20120121264A1 (en) Apparatus and method for transmitting light, and apparatus and method for receiving light
US20120320442A1 (en) Apparatus for pseudo-return-to-zero modulation
JP2008530900A (ja) 光mskデータフォーマット
US20100239264A1 (en) Optical transmission system, apparatus and method
CN107852390B (zh) 一种调制器、调制系统以及实现高阶调制的方法
CN101494501B (zh) 多码型光发射机和光信号产生的方法
JP2005073262A (ja) 半導体光増幅器を用いたデュオバイナリー光伝送装置及びデュオバイナリー光伝送方法
JP2000249994A (ja) 光変調装置、復調装置、その方法、光送信機及び光受信機
US8594512B2 (en) Method and apparatus for transmission of two modulated signals via an optical channel
WO2011023083A1 (zh) 一种光发射机及光信号的产生方法
JP2004343766A (ja) 半導体光増幅器を用いたデュオバイナリー光伝送装置
JP4083144B2 (ja) 偏光デュオバイナリ光伝送装置
WO2023093856A1 (zh) 基于直接调制的多制式兼容空间激光通信方法及系统
JP4759663B2 (ja) 光通信システム
CN103634052A (zh) 光调制系统及其方法
JP2012108301A (ja) 光送信器および偏波ビットインターリーブ信号生成方法
Zhao et al. 40G QPSK and DQPSK modulation
Yu et al. Single-carrier advanced modulation formats
Wen et al. Advanced data modulation techniques for WDM transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09717930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09717930

Country of ref document: EP

Kind code of ref document: A1