WO2009107940A2 - 신호처리블록을 구비하는 적층형 마이크로폰과 그 제조방법 - Google Patents

신호처리블록을 구비하는 적층형 마이크로폰과 그 제조방법 Download PDF

Info

Publication number
WO2009107940A2
WO2009107940A2 PCT/KR2009/000695 KR2009000695W WO2009107940A2 WO 2009107940 A2 WO2009107940 A2 WO 2009107940A2 KR 2009000695 W KR2009000695 W KR 2009000695W WO 2009107940 A2 WO2009107940 A2 WO 2009107940A2
Authority
WO
WIPO (PCT)
Prior art keywords
processing block
signal processing
microphone
signal
metal layer
Prior art date
Application number
PCT/KR2009/000695
Other languages
English (en)
French (fr)
Other versions
WO2009107940A3 (ko
Inventor
이병수
Original Assignee
(주)실리콘화일
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)실리콘화일 filed Critical (주)실리콘화일
Publication of WO2009107940A2 publication Critical patent/WO2009107940A2/ko
Publication of WO2009107940A3 publication Critical patent/WO2009107940A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/04Structural association of microphone with electric circuitry therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor

Definitions

  • the present invention relates to a microphone and a method of manufacturing the same, and more particularly, to a stacked microphone including a signal processing block in which microphones are stacked on an upper portion of a semiconductor substrate on which a signal processing block is formed by a CMOS process. .
  • the microphone is a device that converts an external voice signal into an electrical signal, and is mainly used in communication devices such as mobile phones, MP3s, telephones, medical devices such as hearing aids, or miniaturized multifunctional smart sensors, or small precision devices.
  • communication devices such as mobile phones, MP3s, telephones, medical devices such as hearing aids, or miniaturized multifunctional smart sensors, or small precision devices.
  • small microphones can be largely divided into resistance type, piezoelectric type, and condenser type, and condenser type is mainly used.
  • the condenser type is one of the microphones with small volume, high sensitivity, and excellent frequency characteristics, and one pole of the capacitor is fixed and the other pole serves as a diaphragm. Therefore, when the diaphragm vibrates due to external pressure, the distance from the fixed pole is changed and at the same time, the capacitance is used as a microphone.
  • micro microphones using the Micro Electro Mechanical Sysems (hereinafter referred to as 'MEMS') process have been proposed, and micro microphones using the MEMS process are generally manufactured using a silicon substrate.
  • the conventional condenser-type microphone using a silicon substrate is a method of installing a pole plate by growing polycrystalline silicon, silicon nitride, silicon oxide, etc. using a low pressure chemical vapor deposition (LPCVD) process on the silicon substrate.
  • LPCVD low pressure chemical vapor deposition
  • the present invention has been made in an effort to provide a stacked microphone having a signal processing block in which microphones are stacked on a substrate on which a signal processing block is formed by a CMOS process.
  • Another technical problem to be solved by the present invention is to provide a method for manufacturing a microphone formed in a stacked form on top of a substrate on which a signal processing block is formed by a CMOS process.
  • a stacked microphone including a signal processing block according to the present invention for achieving the technical problem is a signal processing block formed through a CMOS process on a semiconductor substrate; And microphones stacked on top of the semiconductor substrate.
  • a method of manufacturing a stacked microphone including a signal processing block which comprises: (a) manufacturing a signal processing block through a CMOS process on a semiconductor substrate and forming a first metal layer on a surface of the semiconductor substrate; Forming an input / output pad; (b) forming a photoresist layer on top of the first metal layer; (c) forming a second metal layer on the semiconductor substrate on which the photoresist layer is formed; And (d) separating the second metal layer formed on the photoresist layer and the second metal layer formed on the input / output pad for electrical insulation.
  • a method of manufacturing a stacked microphone including a signal processing block including a signal processing block according to an embodiment of the present invention.
  • a method of manufacturing a stacked microphone including a signal processing block which comprises: (a) manufacturing a signal processing block through a CMOS process on a semiconductor substrate and forming a first metal layer on a surface of the semiconductor substrate; Forming an input / output pad; (b) forming a photoresist layer on top of the first metal layer; (c) forming a second metal layer on the semiconductor substrate on which the photoresist layer is formed; (d) separating the second metal layer formed on the photoresist layer and the second metal layer formed on the input / output pad for electrical insulation, and a plurality of second metal layers formed on the photoresist layer.
  • the signal generated from the stacked microphone due to the vibration of the diaphragm is processed and outputted into a required shape in a signal processing block located below the microphone and signal processing. It is more resistant to external noise than a separate device, and can be output as a desired type without a separate signal processing device. The advantage is that it is possible.
  • FIG. 1 is a view showing the configuration of a stacked microphone having a signal processing block according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a circuit of a stacked microphone having a signal processing block according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of a circuit of a stacked microphone having a signal processing block according to another embodiment of the present invention.
  • FIG. 4 is a block diagram of a circuit of a stacked microphone having a signal processing block according to another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a stacked microphone having a signal processing block according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a stacked microphone having a signal processing block according to another embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a stacked microphone having a signal processing block according to another embodiment of the present invention.
  • FIG. 8 is a plan view of a diaphragm of a stacked microphone having a signal processing block according to an embodiment of the present invention.
  • FIG. 9 is a side view of a diaphragm of a stacked microphone having a signal processing block according to an embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of a stacked microphone having a signal processing block according to another embodiment of the present invention.
  • FIG. 11 is a view illustrating a manufacturing process of a stacked microphone having a signal processing block according to an embodiment of the present invention shown in FIG. 5.
  • FIG. 12 is a view illustrating a manufacturing process of a stacked microphone having a signal processing block according to another embodiment of the present invention shown in FIG. 6.
  • FIG. 13 is a view illustrating a manufacturing process of a stacked microphone having a signal processing block according to another embodiment of the present invention shown in FIG. 10.
  • FIG. 1 is a view showing the configuration of a stacked microphone having a signal process block according to the present invention.
  • a stacked microphone 100 having a signal processing block includes a signal processing block 120 and a signal processing block 120 formed on a silicon semiconductor substrate 110 using a CMOS process. ) Is provided with a microphone 130 formed in a laminated structure.
  • the signal processing block 120 Since the signal processing block 120 is formed using a normal CMOS process, the signal processing block 120 includes a plurality of transistors and a silicon gate, and the surface of the semiconductor substrate 110 on which the signal processing block 120 is formed is a metal line. ) And a passivation layer 150 made of silicon oxide, silicon nitride, or the like.
  • a stacked microphone 130 is formed on the signal processing block 120 using the CMOS process, and a pad 140 for input / output is installed.
  • FIG. 2 to 4 is a block diagram of a circuit of a stacked microphone having a signal processing block according to the present invention shown in FIG.
  • the stacked microphone 130 is electrically connected to the signal processing block 120, and the signal processing block 120 converts an analog signal and an analog signal 121 to amplify the signal into a digital signal.
  • Analog-to-digital converter (ADC) 122, a digital signal processor (DSP, 123) for processing digital signals and the amplifier 121, analog-to-digital converter 122 and the digital signal processor 123 of A control unit 124 for controlling the operation is provided.
  • the signal processing block 120 may include only an amplifier 121, an analog filter 125, a controller 124, and the like, as required. As shown in FIG. 4. Modulation circuits 126 such as pulse width modulation (PWM) may be further provided.
  • PWM pulse width modulation
  • FIG. 5 is a cross-sectional view of a stacked microphone having a signal processing block according to an embodiment of the present invention.
  • a surface of the semiconductor substrate 510 on which the signal processing block 520 is manufactured by a CMOS process is formed on the outer surface of the first metal layer 531.
  • the first metal layer 531 is used as a lower electrode of the microphone, and a photoresist layer 532 is formed on the first metal layer 531.
  • the photoresist layer 532 may be formed through a reflow process by applying an appropriate temperature as necessary.
  • a second metal layer 533 is formed on the photoresist layer 532.
  • the second metal layer 533 formed on the photoresist layer 532 and the second metal layer 541 formed on the input / output pad 540 are separated for electrical insulation.
  • the photoresist layer 532 and the second metal layer 533 constitute a diaphragm of the microphone, and the characteristics of the vibration of the diaphragm are mainly determined by the characteristics of the photoresist layer 532. Accordingly, in order to change physical properties of the photoresist layer 532, the curing process of the PR may be performed.
  • FIGS. 6 and 7 are cross-sectional views of stacked microphones having a signal processing block according to another embodiment of the present invention.
  • a plurality of sound holes 534 are formed in the second metal layer 533 in the stacked microphone having the signal processing block according to another exemplary embodiment of the present invention.
  • the photoresist layer 532 is removed by etching through the plurality of sound holes 534 to form a structure in which the space between the first metal layer 531 and the second metal layer 533 is empty.
  • the second metal layer 533 functions as a diaphragm.
  • Vibration of the stacked microphone having the signal processing block according to another embodiment of the present invention is the physical characteristics (elastic coefficient, internal stress, etc.) and the second metal layer 533 of the second metal layer 533 forming the diaphragm ) Is determined by the thickness (t) of the diaphragm, the diameter (a) of the diaphragm, and the electrical characteristics (capacitance) are the area of the diaphragm and the distance d between the first metal layer 531 and the second metal layer 533. Is determined by. Therefore, the thickness of the second metal layer 533 to be deposited may be selected in consideration of the above characteristics.
  • FIG. 8 is a plan view of a diaphragm of a stacked microphone including a signal processing block according to an embodiment of the present invention
  • FIG. 9 is a side view of a diaphragm of a stacked microphone including a signal processing block according to an embodiment of the present invention.
  • the diaphragm has a circular or polygonal shape and has a plurality of sound holes.
  • a plurality of reflection vibration prevention holes are formed around the diaphragm.
  • the diaphragm is connected to the diaphragm fixing pad, and the diaphragm fixing pad is connected to the other electrode.
  • the diaphragm vibrates, and the reflected vibration generated by the vibration of the diaphragm flows out through the anti-reflection vibration holes on the side surface. Therefore, resonance due to the internal structure is suppressed.
  • the high frequency vibration is suppressed by a sound hole.
  • FIG. 10 is a cross-sectional view of a stacked microphone having a signal processing block according to another embodiment of the present invention.
  • the stacked microphone including the signal processing block according to another exemplary embodiment of the present invention illustrated in FIG. 10 further includes a metal plating layer 535 on the second metal layer 533.
  • the plurality of sound holes 534 formed in the second metal layer 533 communicate with the metal plating layer 535, and the metal plating layer is mainly formed by electroplating metal of gold (Au) or chromium (Cr) material. do.
  • FIG. 11 is a view illustrating a manufacturing process of a stacked microphone having a signal processing block according to an embodiment of the present invention shown in FIG. 5.
  • the signal processing block 520 is manufactured through a CMOS process on the semiconductor substrate 510. Forming a first metal layer 531 and an input / output pad 540 on a surface of the semiconductor substrate; (b) forming a photoresist layer 532 on the first metal layer; (c) reflowing the photoresist layer as needed; (d) forming a second metal layer 533 on the semiconductor substrate on which the photoresist layer is formed; (e) separating the second metal layer 533 formed on the photoresist layer and the second metal layer 541 formed on the input / output pad 540 for electrical insulation.
  • the characteristic with respect to a vibration is mainly determined by the characteristic of a photoresist layer.
  • FIG. 12 is a view illustrating a manufacturing process of a stacked microphone having a signal processing block according to another embodiment of the present invention shown in FIG. 6.
  • a manufacturing method of a stacked microphone including a signal processing block includes (a) performing a signal processing block 520 on a semiconductor substrate 510 through a CMOS process. Manufacturing and forming a first metal layer (531) and an input / output pad (540) on a surface of the semiconductor substrate; (b) forming a photoresist layer 532 on the first metal layer 531; (c) reflowing the photoresist layer as needed; (d) forming a second metal layer 533 on the semiconductor substrate on which the photoresist layer is formed; (e) separating the second metal layer 533 formed on the photoresist layer and the second metal layer 541 formed on the input / output pad 540 to electrically insulate the upper portion of the photoresist layer. Forming a plurality of sound holes 534 in the formed second metal layer 533; (f) etching and removing the photoresist layer 532 through the plurality of sound holes 534.
  • the process up to (d) of forming the second metal layer 533 is the same as the manufacturing process illustrated in FIG. 11. Thereafter, (e) the diaphragm in the step of separating the second metal layer 533 formed on the photoresist layer 532 and the second metal layer 541 formed on the input / output pad 540 for electrical insulation.
  • the diaphragm in the step of separating the second metal layer 533 formed on the photoresist layer 532 and the second metal layer 541 formed on the input / output pad 540 for electrical insulation.
  • FIG. 13 is a view illustrating a manufacturing process of a stacked microphone having a signal processing block according to another embodiment of the present invention shown in FIG. 10.
  • a manufacturing method of a stacked microphone including a signal processing block includes (a) a signal processing block 520 through a CMOS process on a semiconductor substrate 510. Forming a first metal layer (531) and an input / output pad (540) on a surface of the semiconductor substrate; (b) forming a photoresist layer 532 on the first metal layer 531; (c) reflowing the photoresist layer as needed; (d) forming a second metal layer 533 on the semiconductor substrate on which the photoresist layer is formed; (e) separating the second metal layer 533 formed on the photoresist layer and the second metal layer 541 formed on the input / output pad 540 to electrically insulate the upper portion of the photoresist layer.
  • the diaphragm according to this method is composed of the second metal layer 533 and the metal plating layer 562 can be produced in parallel with the deposition and plating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Pressure Sensors (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

본 발명은 마이크로폰 및 그 제조방법에 관한 것으로, 보다 상세하게는 CMOS 공정에 의해 신호처리블록이 형성된 반도체 기판의 상부에 마이크로폰이 적층되어 있는 신호처리블록을 구비하는 적층형 마이크로폰 및 그 제조 방법에 관한 것이다. 본 발명에 따른 신호처리블록을 구비하는 적층형 마이크로폰 및 그 제조방법에 의하면 진동판의 진동에 의하여 적층형 마이크로폰에서 발생된 신호가 하부에 위치하는 신호처리블록에서 필요한 형태로 가공되어 출력되므로, 마이크로폰과 신호처리장치가 별도로 있는 경우에 비하여 외부의 잡음에 강하며, 별도의 신호처리장치 없이 원하는 형태의 신호로 출력할 수 있으며, 마이크로폰을 제작하는데 있어서 CMOS의 공정을 사용함으로써 제작비용이 낮으며 소형으로 제작이 가능하다는 장점이 있다.

Description

[규칙 제26조에 의한 보정 24.02.2009] 신호처리블록을 구비하는 적층형 마이크로폰과 그 제조방법
본 발명은 마이크로폰 및 그 제조방법에 관한 것으로, 보다 상세하게는 CMOS 공정에 의해 신호처리블록이 형성된 반도체 기판의 상부에 마이크로폰이 적층되어 있는 신호처리블록을 구비하는 적층형 마이크로폰 및 그 제조 방법에 관한 것이다.
마이크로폰은 외부의 음성신호를 전기신호로 변환하는 장치로서 핸드폰, MP3, 전화기 등의 통신기기와 보청기 등의 의료기기 또는 소형화된 다기능 스마트 센서에 내장되거나 소형 정밀 기기 등에 주로 사용되고 있다. 오늘날 이러한 마이크로폰이 실장되는 음향기기 또는 정보통신기기 등의 소형화가 가속화됨에 따라 마이크로폰의 초소형화가 더욱 요구되고 있는 실정이다.
일반적으로 소형 마이크로폰은 크게 저항형, 압전형 및 콘덴서형으로 나눌 수 있으며 주로 콘덴서형이 사용된다. 상기 콘덴서형은 부피가 작고, 민감도가 높으며, 주파수 특성이 우수한 마이크로폰 중의 하나로써 콘덴서의 한 극은 고정되어 있고 다른 한 극은 진동판의 역할을 한다. 따라서, 외부 압력에 의해 진동판이 진동하게 되면 고정된 극과의 간격이 변하는 동시에 정전 용량이 변화하는 특성을 이용하여 마이크로폰으로 사용한다.
최근 마이크로 전자 기계 시스템(Micro Electro Mechanical Sysems:이하 'MEMS'라 한다) 공정을 이용한 초소형 마이크로폰을 제작하는 여러 방법이 제안되었으며, MEMS공정을 이용한 초소형 마이크로폰은 일반적으로 실리콘 기판을 사용하여 제작된다.
종래의 실리콘 기판을 사용하는 콘덴서형 마이크로폰은 실리콘 기판의 상부에 저압화학기상증착(Low Pressure Chemical Vapor Deposition:LPCVD) 공정을 사용하여 다결정 실리콘이나 실리콘 질화물, 실리콘 산화물 등을 성장시켜 극판을 설치하는 방법을 사용한다. 따라서 고온의 공정이 필요하므로 CMOS 공정에 의해 이미 회로가 형성된 기판은 사용할 수 없다는 문제가 있다.
본 발명이 해결하고자 하는 기술적 과제는 CMOS공정에 의하여 신호처리블록이 형성된 기판의 상부에 적층형으로 마이크로폰이 형성된 신호처리블록을 구비하는 적층형 마이크로폰을 제공하는데 있다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는 CMOS공정에 의하여 신호처리블록이 형성된 기판의 상부에 적층형으로 형성된 마이크로폰을 제조하는 방법을 제공하는데 있다.
상기 기술적 과제를 이루기 위한 본 발명에 따른 신호처리블록을 구비하는 적층형 마이크로폰은 반도체 기판에 CMOS 공정을 통해 형성된 신호처리블록; 및 상기 반도체 기판의 상부에 적층되어 형성된 마이크로폰을 구비하는 것을 특징으로 한다.
상기 다른 기술적 과제를 이루기 위한 본 발명에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 제조방법은, (a) 반도체 기판 상에 CMOS 공정을 통해 신호처리블록을 제조하고 상기 반도체 기판의 표면에 제1금속층과 입출력패드를 형성하는 단계; (b) 상기 제1금속층의 상부에 포토레지스터층을 형성하는 단계; (c) 상기 포토레지스터층이 형성된 상기 반도체 기판의 상부에 제2금속층을 형성하는 단계; 및 (d) 전기적 절연을 위해 상기 포토레지스터층의 상부에 형성된 상기 제2금속층과 상기 입출력 패드의 상부에 형성된 상기 제2금속층을 분리하는 단계;를 구비하는 것을 특징으로 한다.
상기 다른 기술적 과제를 이루기 위한 본 발명에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 제조방법은, (a) 반도체 기판 상에 CMOS 공정을 통해 신호처리블록을 제조하고 상기 반도체 기판의 표면에 제1금속층과 입출력패드를 형성하는 단계; (b) 상기 제1금속층의 상부에 포토레지스터층을 형성하는 단계; (c) 상기 포토레지스터층이 형성된 상기 반도체 기판의 상부에 제2금속층을 형성하는 단계; (d) 전기적 절연을 위해 상기 포토레지스터층의 상부에 형성된 상기 제2금속층과 상기 입출력 패드의 상부에 형성된 상기 제2금속층을 분리하고 상기 포토레지스터층의 상부에 형성된 상기 제2금속층에 복수의 음향홀을 형성하는 단계; 및 (e) 상기 복수의 음향홀을 통해 상기 포토레지스터층을 에칭하여 제거하는 단계;를 구비하는 것을 특징으로 한다.
상기 다른 기술적 과제를 이루기 위한 본 발명에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 제조방법은, (a) 반도체 기판 상에 CMOS 공정을 통해 신호처리블록을 제조하고 상기 반도체 기판의 표면에 제1금속층과 입출력패드를 형성하는 단계; (b) 상기 제1금속층의 상부에 포토레지스터층을 형성하는 단계; (c) 상기 포토레지스터층이 형성된 상기 반도체 기판의 상부에 제2금속층을 형성하는 단계; (d) 전기적 절연을 위해 상기 포토레지스터층의 상부에 형성된 상기 제2금속층과 상기 입출력 패드의 상부에 형성된 상기 제2금속층을 분리하고, 상기 포토레지스터층의 상부에 형성된 상기 제2금속층에 복수의 음향홀을 형성하고, 상기 제2금속층이 형성된 상기 반도체 기판의 상부에 금속의 전기도금을 위한 접착층을 형성하는 단계; (e) 도금방지 포토레지스터층을 형성하고 상기 도금방지용 포토레지스터층이 형성되지 아니한 부분을 전기도금하여 금속도금층을 형성하는 단계; 및 (f) 상기 도금방지용 포토레지스터층을 에칭하여 제거하는 단계;를 구비하는 것을 특징으로 한다.
본 발명에 따른 신호처리블록을 구비하는 적층형 마이크로폰 및 그 제조방법에 의하면 진동판의 진동에 의하여 적층형 마이크로폰에서 발생된 신호가 하부에 위치하는 신호처리블록에서 필요한 형태로 가공되어 출력되므로, 마이크로폰과 신호처리장치가 별도로 있는 경우에 비하여 외부의 잡음에 강하며, 별도의 신호처리장치 없이 원하는 형태의 신호로 출력할 수 있으며, 마이크로폰을 제작하는데 있어서 CMOS의 공정을 사용함으로써 제작비용이 낮으며 소형으로 제작이 가능하다는 장점이 있다.
도 1은 본 발명의 실시 예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 구성을 나타내는 도면이다.
도 2는 본 발명의 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 회로의 구성도이다.
도 3은 본 발명의 다른 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 회로의 구성도이다.
도 4는 본 발명의 또 다른 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 회로의 구성도이다.
도 5는 본 발명의 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 단면도이다.
도 6은 본 발명의 다른 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 단면도이다.
도 7은 본 발명의 다른 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 단면도이다.
도 8은 본 발명의 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 진동판의 평면도이다.
도 9는 본 발명의 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 진동판의 측면도이다.
도 10은 본 발명의 또 다른 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 단면도이다.
도 11은 도 5에 도시된 본 발명의 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 제조 공정을 나타내는 도면이다.
도 12는 도 6에 도시된 본 발명의 다른 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 제조 공정을 나타내는 도면이다.
도 13은 도 10에 도시된 본 발명의 또 다른 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 제조 공정을 나타내는 도면이다.
이하에서는 본 발명의 구체적인 실시 예를 첨부된 도면을 참조하여 상세히 설명하도록 한다.
도 1은 본 발명에 따른 신호처리블록(signal process block)을 구비하는 적층형 마이크로폰의 구성을 나타내는 도면이다.
도 1을 참조하면 본 발명에 따른 신호처리블록을 구비하는 적층형 마이크로폰(100)은 실리콘 재질의 반도체 기판(110) 상에 CMOS 공정을 사용하여 형성된 신호처리블록(120)과 상기 신호처리블록(120)에 적층 구조로 형성된 마이크로폰(130)을 구비한다.
상기 신호처리블록(120)은 보통의 CMOS의 공정을 사용하여 형성되므로 복수의 트랜지스터와 실리콘 게이트로 구성되며, 상기 신호처리블록(120)이 형성된 반도체 기판(110)의 표면은 금속라인(metal ine)과 실리콘산화물및 실리콘질화물 등으로된 보호막층(passivation layer, 150)등으로 구성된다.
상기의 CMOS공정을 사용한 신호처리블록(120)의 상부에 적층형의 마이크로폰(130)이 구성되며, 입출력을 위한 패드(140)가 설치된다.
도 2 내지 도 4는 도 1에 도시된 본 발명에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 회로의 구성도이다.
도 2에 도시된 바와 같이 적층형의 마이크로폰(130)은 신호처리블록(120)에 전기적으로 연결되며, 신호처리블록(120)은 신호를 증폭하기 위한 증폭기(121)와 아날로그신호를 디지털 신호로 변환하기위한 아날로그디지털 변환기(ADC, 122), 디지털 신호를 처리하기 위한 디지털 신호처리기(Digital Signal Processor:DSP, 123) 및 상기 증폭기(121), 아날로그디지털 변환기(122) 및 디지털 신호처리기(123)의 동작을 제어하는 제어부(124)를 구비한다.
도 3에 도시된 바와 같이 신호처리블록(120)은 필요에 따라 증폭기(121)나 아날로그필터(analog filter, 125) 및 제어부(124) 등으로 만 구성될 수 있으며, 도 4에 도시된 바와 같이 펄스폭변조(Pulse width modulation:PWM)등의 변조회로(modulation, 126)를 더 구비할 수도 있다.
도 5는 본 발명의 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 단면도이다.
도 5를 참조하면 본 발명의 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰에서 CMOS공정으로 신호처리블록(520)이 제작된 반도체 기판(510)의 표면은 제1금속층(531)과 외부 입출력패드(540) 및 보호막층(passivation layer, 550)으로 이루어진다
이때 상기 제1금속층(531)은 마이크로폰의 하부전극으로 사용되며 상기 제1금속층(531) 상부에 포토레지스터층(532)이 형성되어 있다. 이때 필요에 따라 상기 포토레지스터층(532)은 적당한 온도를 가하여 리플로우(reflow)과정을 거쳐 형성될 수 있다. 상기 포토레지스터층(532) 상부에는 제2금속층(533)이 형성되어 있다.
상기 포토레지스터층(532) 상부에 형성된 제2금속층(533)과 입출력패드(540)의 상부에 형성된 제2금속층(541)은 전기적 절연을 위해 분리되어 있다.
상기 포토레지스터층(532)과 상기 제2금속층(533)은 마이크로폰의 진동판을 구성하고 이러한 진동판의 진동에 대한 특성은 포토레지스터층(532)의 특성에 의하여 주로 결정된다. 따라서 포토레지스터층(532)의 물리적 특성을 변화시키기 위하여 PR의 경화 과정 등을 거칠 수 있다.
도 6 및 도 7은 본 발명의 다른 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 단면도이다.
도 6을 참조하면 본 발명의 다른 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰에서 상기 제2금속층(533)에 복수의 음향홀(534)이 형성되어 있음을 알 수 있다.
또한 상기 포토레지스터층(532)은 상기 복수의 음향홀(534)을 통한 에칭에 의해 제거되어 상기 제1금속층(531)과 상기 제2금속층(533) 사이가 비어있는 구조를 이룬다.
도 6에 도시된 본 발명의 다른 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰에서는 상기 제2금속층(533)만이 진동판의 기능을 한다.
상기 본 발명의 다른 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 진동은 진동판을 형성하는 상기 제2금속층(533)의 물리적 특성(탄성계수, 내부응력 등)과 상기 제2금속층(533)의 두께(t), 진동판의 지름(a)등에 의하여 결정되며, 전기적 특성(정전용량)은 진동판의 면적 및 상기 제1금속층(531)과 상기 제2금속층(533) 사이의 거리(d)에 의하여 결정된다. 따라서 증착되는 상기 제2금속층(533)의 두께는 위의 특성들을 고려하여 선택될 수 있다.
도 8은 본 발명의 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 진동판의 평면도이고, 도 9는 본 발명의 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 진동판의 측면도이다.
도 8을 참조하면, 진동판은 원형 또는 다각형의 형상을 갖고 복수의 음향홀을 가진다. 상기 진동판의 둘레에는 복수의 반사진동 방지홀이 형성되어 있다.
음향홀은 제작과정에서 내부에 있게 되는 포토레지스터층을 제거하는데 사용되며, 진동판의 주파수특성을 균일하게 만드는 용도로 사용된다. 상기의 형태로 제작되는 진동판의 측면은 도 9에 도시된 바와 같다.
진동판은 진동판 고정 패드에 연결되며, 진동판 고정 패드는 다른 전극에 연결된다. 상기 진동판에 음향진동이 입사하는 경우 진동판은 진동하며, 진동판의 진동에 의해 발생한 반사 진동은 측면의 반사 진동 방지 홀을 통하여 외부로 유출된다. 따라서 내부구조에 의한 공진이 억제된다. 또한 진동판에 고주파의 잡음진동이 입사하는 경우 음향홀(hole)에 의하여 고주파 진동이 억제된다.
도 10은 본 발명의 또 다른 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 단면도이다.
도 10에 도시된 본 발명의 또 다른 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰은 상기 제2금속층(533)의 상부에 금속도금층(535)을 더 구비하고 있다. 상기 제2금속층(533)에 형성된 복수의 음향홀(534)은 상기 금속도금층(535)에 연통되어 있으며, 상기 금속도금층은 주로 금(Au) 또는 크롬(Cr) 재질의 금속을 전기도금 하여 형성된다.
도 11은 도 5에 도시된 본 발명의 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 제조 공정을 나타내는 도면이다.
도 11에 도시된 바와 같이 본 발명의 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 제조 공정은, (a) 반도체 기판(510) 상에 CMOS 공정을 통해 신호처리블록(520)을 제조하고 상기 반도체 기판의 표면에 제1금속층(531)과 입출력패드(540)를 형성하는 단계; (b) 상기 제1금속층의 상부에 포토레지스터층(532)을 형성하는 단계; (c) 필요에 따라 상기 포토레지스터층을 리플로우(reflow)하는 단계; (d) 상기 포토레지스터층이 형성된 상기 반도체 기판의 상부에 제2금속층(533)을 형성하는 단계; (e) 전기적 절연을 위해 상기 포토레지스터층의 상부에 형성된 상기 제2금속층(533)과 상기 입출력 패드(540)의 상부에 형성된 상기 제2금속층(541)을 분리하는 단계;를 구비한다.
이러한 방법에 의해 형성된 진동판은 제2금속층(533)과 포토레지스터층(532)으로 구성되므로 진동에 대한 특성은 포토레지스터층의 특성에 의해 주로 결정된다.
도 12는 도 6에 도시된 본 발명의 다른 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 제조 공정을 나타내는 도면이다.
도 12에 도시된 바와 같이 본 발명의 다른 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 제조 공정은, (a) 반도체 기판(510) 상에 CMOS 공정을 통해 신호처리블록(520)을 제조하고 상기 반도체 기판의 표면에 제1금속층(531)과 입출력패드(540)를 형성하는 단계; (b) 상기 제1금속층(531)의 상부에 포토레지스터층(532)을 형성하는 단계; (c) 필요에 따라 상기 포토레지스터층을 리플로우(reflow)하는 단계; (d) 상기 포토레지스터층이 형성된 상기 반도체 기판의 상부에 제2금속층(533)을 형성하는 단계; (e) 전기적 절연을 위해 상기 포토레지스터층의 상부에 형성된 상기 제2금속층(533)과 상기 입출력 패드(540)의 상부에 형성된 상기 제2금속층(541)을 분리하고 상기 포토레지스터층의 상부에 형성된 상기 제2금속층(533)에 복수의 음향홀(534)을 형성하는 단계; (f) 상기 복수의 음향홀(534)을 통해 상기 포토레지스터층(532)을 에칭하여 제거하는 단계;를 구비한다.
도 12를 참고하면 제2금속층(533)을 형성하는 (d)단계까지는 도 11에 도시된 제조 공정과 동일하다. 이후 (e)전기적 절연을 위해 상기 포토레지스터층(532)의 상부에 형성된 상기 제2금속층(533)과 상기 입출력 패드(540)의 상부에 형성된 상기 제2금속층(541)을 분리하는 단계에서 진동판에 음향홀(534)을 형성하고 이후 에칭에 의해 포토레지스터층(532)을 제거함으로써 제1금속층(531)과 제2금속층(533) 사이가 비어있는 구조를 형성할 수 있다.
도 13은 도 10에 도시된 본 발명의 또 다른 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 제조 공정을 나타내는 도면이다.
도 13에 도시된 바와 같이 본 발명의 또 다른 일 실시예에 따른 신호처리블록을 구비하는 적층형 마이크로폰의 제조 공정은, (a) 반도체 기판(510) 상에 CMOS 공정을 통해 신호처리블록(520)을 제조하고 상기 반도체 기판의 표면에 제1금속층(531)과 입출력패드(540)를 형성하는 단계; (b) 상기 제1금속층(531)의 상부에 포토레지스터층(532)을 형성하는 단계; (c) 필요에 따라 상기 포토레지스터층을 리플로우(reflow)하는 단계; (d) 상기 포토레지스터층이 형성된 상기 반도체 기판의 상부에 제2금속층(533)을 형성하는 단계; (e) 전기적 절연을 위해 상기 포토레지스터층의 상부에 형성된 상기 제2금속층(533)과 상기 입출력 패드(540)의 상부에 형성된 상기 제2금속층(541)을 분리하고 상기 포토레지스터층의 상부에 형성된 상기 제2금속층(533)에 복수의 음향홀(534)을 형성하고 상기 제2금속층이 형성된 상기 반도체 기판의 상부에 금속의 전기도금을 위한 접착층(561)을 형성하는 단계; (f) 도금방지 포토레지스터층을 형성하고 상기 도금방지용 포토레지스터층(563)이 형성되지 아니한 부분을 전기도금하여 금속도금층(562)을 형성하는 단계 및 (g)상기 도금방지용 포토레지스터층(563)을 에칭하여 제거하는 단계;를 구비한다.
이러한 방법에 의한 진동판은 제2금속층(533)과 금속도금층(562)으로 구성되며 증착과 도금을 병행하여 제작할 수 있다.
이상으로, 본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 등록청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (5)

  1. 반도체 기판에 CMOS 공정을 통해 형성된 신호처리블록;
    상기 반도체 기판의 상부에 형성되며 상기 신호처리블록에 전기적으로 연결되어 하부전극의 역할을 하는 제1금속층; 및
    상기 제1금속층의 상부에 형성된 진동판을 포함하고,
    상기 진동판은,
    복수의 음향홀(hole)을 구비하고, 원형 또는 다각형의 형상을 가지며, 상기 진동판과 상기 제1금속층 사이에는 소정의 공간이 형성되어 있고, 상기 진동판의 둘레에는 복수의 반사진동 방지홀이 형성되어 있는 것을 특징으로 하는 신호처리블록을 구비하는 적층형 마이크로폰.
  2. 제1항에 있어서,
    신호의 입력 및 출력을 위한 입출력 패드를 더 구비하는 것을 특징으로 하는 신호처리블록을 구비하는 적층형 마이크로폰.
  3. 제1항에 있어서, 상기 신호처리블록은
    상기 마이크로폰의 신호를 증폭하기 위한 증폭기;
    상기 증폭기의 출력신호를 디지털 신호로 변환하기 위한 아날로그 디지털 변환기;
    상기 변환된 디지털 신호를 처리하기 위한 디지털 신호 처리기; 및
    상기 증폭기, 상기 아날로그 디지털 변환기 및 상기 디지털 신호 처리기의 동작을 제어하는 제어부를 구비하는 것을 특징으로 하는 신호처리블록을 구비하는 적층형 마이크로폰.
  4. 제1항에 있어서, 상기 신호처리블록은
    상기 마이크로폰의 신호를 증폭하기 위한 증폭기;
    상기 증폭기의 출력신호를 필터링하는 아날로그필터;및
    상기 증폭기 및 상기 아날로그필터의 동작을 제어하는 제어부를 구비하는 것을 특징으로 하는 신호처리블록을 구비하는 적층형 마이크로폰.
  5. 제4항에 있어서, 상기 신호처리블록은
    상기 아날로그필터의 출력신호인 아날로그신호를 변조하는 변조회로부를 더 구비하는 것을 특징으로 하는 신호처리블록을 구비하는 적층형 마이크로폰.
PCT/KR2009/000695 2008-02-28 2009-02-13 신호처리블록을 구비하는 적층형 마이크로폰과 그 제조방법 WO2009107940A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0018083 2008-02-28
KR1020080018083A KR100878454B1 (ko) 2008-02-28 2008-02-28 신호처리블록을 구비하는 적층형 마이크로폰과 그 제조방법

Publications (2)

Publication Number Publication Date
WO2009107940A2 true WO2009107940A2 (ko) 2009-09-03
WO2009107940A3 WO2009107940A3 (ko) 2009-11-26

Family

ID=40482589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/000695 WO2009107940A2 (ko) 2008-02-28 2009-02-13 신호처리블록을 구비하는 적층형 마이크로폰과 그 제조방법

Country Status (2)

Country Link
KR (1) KR100878454B1 (ko)
WO (1) WO2009107940A2 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015161147A1 (en) * 2014-04-18 2015-10-22 Butterfly Network, Inc. Ultrasonic transducers in complementary metal oxide semiconductor (cmos) wafers and related apparatus and methods
US9242275B2 (en) 2013-03-15 2016-01-26 Butterfly Networks, Inc. Complementary metal oxide semiconductor (CMOS) ultrasonic transducers and methods for forming the same
US9394162B2 (en) 2014-07-14 2016-07-19 Butterfly Network, Inc. Microfabricated ultrasonic transducers and related apparatus and methods
US9499392B2 (en) 2013-02-05 2016-11-22 Butterfly Network, Inc. CMOS ultrasonic transducers and related apparatus and methods
US9987661B2 (en) 2015-12-02 2018-06-05 Butterfly Network, Inc. Biasing of capacitive micromachined ultrasonic transducers (CMUTs) and related apparatus and methods
US10196261B2 (en) 2017-03-08 2019-02-05 Butterfly Network, Inc. Microfabricated ultrasonic transducers and related apparatus and methods
US10512936B2 (en) 2017-06-21 2019-12-24 Butterfly Network, Inc. Microfabricated ultrasonic transducer having individual cells with electrically isolated electrode sections

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5573679A (en) * 1995-06-19 1996-11-12 Alberta Microelectronic Centre Fabrication of a surface micromachined capacitive microphone using a dry-etch process
KR20030004944A (ko) * 2001-07-07 2003-01-15 주식회사 비에스이 칩 마이크로폰
KR20040026756A (ko) * 2002-09-26 2004-04-01 삼성전자주식회사 플렉서블 mems 트랜스듀서와 그 제조방법 및 이를채용한 플렉서블 mems 무선 마이크로폰
KR20040061586A (ko) * 2002-12-31 2004-07-07 전자부품연구원 음향 감지 소자의 제조방법
KR100765149B1 (ko) * 2005-10-05 2007-10-15 전자부품연구원 초소형 음향 감지 장치 및 그 제조 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100513424B1 (ko) * 2002-11-27 2005-09-09 전자부품연구원 음향 감지 소자의 제조방법
US6943448B2 (en) 2003-01-23 2005-09-13 Akustica, Inc. Multi-metal layer MEMS structure and process for making the same
DE102006001493B4 (de) * 2006-01-11 2007-10-18 Austriamicrosystems Ag MEMS-Sensor und Verfahren zur Herstellung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5573679A (en) * 1995-06-19 1996-11-12 Alberta Microelectronic Centre Fabrication of a surface micromachined capacitive microphone using a dry-etch process
KR20030004944A (ko) * 2001-07-07 2003-01-15 주식회사 비에스이 칩 마이크로폰
KR20040026756A (ko) * 2002-09-26 2004-04-01 삼성전자주식회사 플렉서블 mems 트랜스듀서와 그 제조방법 및 이를채용한 플렉서블 mems 무선 마이크로폰
KR20040061586A (ko) * 2002-12-31 2004-07-07 전자부품연구원 음향 감지 소자의 제조방법
KR100765149B1 (ko) * 2005-10-05 2007-10-15 전자부품연구원 초소형 음향 감지 장치 및 그 제조 방법

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9895718B2 (en) 2013-02-05 2018-02-20 Butterfly Network, Inc. CMOS ultrasonic transducers and related apparatus and methods
US11684949B2 (en) 2013-02-05 2023-06-27 Bfly Operations, Inc. CMOS ultrasonic transducers and related apparatus and methods
US10518292B2 (en) 2013-02-05 2019-12-31 Butterfly Network, Inc. CMOS ultrasonic transducers and related apparatus and methods
US11833542B2 (en) 2013-02-05 2023-12-05 Bfly Operations, Inc. CMOS ultrasonic transducers and related apparatus and methods
US10272470B2 (en) 2013-02-05 2019-04-30 Butterfly Network, Inc. CMOS ultrasonic transducers and related apparatus and methods
US9499392B2 (en) 2013-02-05 2016-11-22 Butterfly Network, Inc. CMOS ultrasonic transducers and related apparatus and methods
US10843227B2 (en) 2013-02-05 2020-11-24 Butterfly Network, Inc. CMOS ultrasonic transducers and related apparatus and methods
US9533873B2 (en) 2013-02-05 2017-01-03 Butterfly Network, Inc. CMOS ultrasonic transducers and related apparatus and methods
US9718098B2 (en) 2013-02-05 2017-08-01 Butterfly Network, Inc. CMOS ultrasonic transducers and related apparatus and methods
US9944514B2 (en) 2013-03-15 2018-04-17 Butterfly Network, Inc. Complementary metal oxide semiconductor (CMOS) ultrasonic transducers and methods for forming the same
US10266401B2 (en) 2013-03-15 2019-04-23 Butterfly Network, Inc. Complementary metal oxide semiconductor (CMOS) ultrasonic transducers and methods for forming the same
US10710873B2 (en) 2013-03-15 2020-07-14 Butterfly Network, Inc. Complementary metal oxide semiconductor (CMOS) ultrasonic transducers and methods for forming the same
US9242275B2 (en) 2013-03-15 2016-01-26 Butterfly Networks, Inc. Complementary metal oxide semiconductor (CMOS) ultrasonic transducers and methods for forming the same
US9290375B2 (en) 2013-03-15 2016-03-22 Butterfly Network, Inc. Complementary metal oxide semiconductor (CMOS) ultrasonic transducers and methods for forming the same
US9499395B2 (en) 2013-03-15 2016-11-22 Butterfly Network, Inc. Complementary metal oxide semiconductor (CMOS) ultrasonic transducers and methods for forming the same
US9738514B2 (en) 2013-03-15 2017-08-22 Butterfly Network, Inc. Complementary metal oxide semiconductor (CMOS) ultrasonic transducers and methods for forming the same
US9899371B2 (en) 2014-04-18 2018-02-20 Butterfly Network, Inc. Ultrasonic transducers in complementary metal oxide semiconductor (CMOS) wafers and related apparatus and methods
US10707201B2 (en) 2014-04-18 2020-07-07 Butterfly Network, Inc. Ultrasonic transducers in complementary metal oxide semiconductor (CMOS) wafers and related apparatus and methods
US9505030B2 (en) 2014-04-18 2016-11-29 Butterfly Network, Inc. Ultrasonic transducers in complementary metal oxide semiconductor (CMOS) wafers and related apparatus and methods
US10177139B2 (en) 2014-04-18 2019-01-08 Butterfly Network, Inc. Ultrasonic transducers in complementary metal oxide semiconductor (CMOS) wafers and related apparatus and methods
WO2015161147A1 (en) * 2014-04-18 2015-10-22 Butterfly Network, Inc. Ultrasonic transducers in complementary metal oxide semiconductor (cmos) wafers and related apparatus and methods
US10247708B2 (en) 2014-07-14 2019-04-02 Butterfly Network, Inc. Microfabricated ultrasonic transducers and related apparatus and methods
US10228353B2 (en) 2014-07-14 2019-03-12 Butterfly Networks, Inc. Microfabricated ultrasonic transducers and related apparatus and methods
US9394162B2 (en) 2014-07-14 2016-07-19 Butterfly Network, Inc. Microfabricated ultrasonic transducers and related apparatus and methods
US10175206B2 (en) 2014-07-14 2019-01-08 Butterfly Network, Inc. Microfabricated ultrasonic transducers and related apparatus and methods
US11828729B2 (en) 2014-07-14 2023-11-28 Bfly Operations, Inc. Microfabricated ultrasonic transducers and related apparatus and methods
US9910018B2 (en) 2014-07-14 2018-03-06 Butterfly Network, Inc. Microfabricated ultrasonic transducers and related apparatus and methods
US9910017B2 (en) 2014-07-14 2018-03-06 Butterfly Network, Inc. Microfabricated ultrasonic transducers and related apparatus and methods
US10782269B2 (en) 2014-07-14 2020-09-22 Butterfly Network, Inc. Microfabricated ultrasonic transducers and related apparatus and methods
US10272471B2 (en) 2015-12-02 2019-04-30 Butterfly Network, Inc. Biasing of capacitive micromachined ultrasonic transducers (CMUTs) and related apparatus and methods
US9987661B2 (en) 2015-12-02 2018-06-05 Butterfly Network, Inc. Biasing of capacitive micromachined ultrasonic transducers (CMUTs) and related apparatus and methods
US10196261B2 (en) 2017-03-08 2019-02-05 Butterfly Network, Inc. Microfabricated ultrasonic transducers and related apparatus and methods
US10672974B2 (en) 2017-03-08 2020-06-02 Butterfly Network, Inc. Microfabricated ultrasonic transducers and related apparatus and methods
US10967400B2 (en) 2017-06-21 2021-04-06 Butterfly Network, Inc. Microfabricated ultrasonic transducer having individual cells with electrically isolated electrode sections
US11559827B2 (en) 2017-06-21 2023-01-24 Bfly Operations, Inc. Microfabricated ultrasonic transducer having individual cells with electrically isolated electrode sections
US10525506B2 (en) 2017-06-21 2020-01-07 Butterfly Networks, Inc. Microfabricated ultrasonic transducer having individual cells with electrically isolated electrode sections
US10512936B2 (en) 2017-06-21 2019-12-24 Butterfly Network, Inc. Microfabricated ultrasonic transducer having individual cells with electrically isolated electrode sections

Also Published As

Publication number Publication date
WO2009107940A3 (ko) 2009-11-26
KR100878454B1 (ko) 2009-01-13

Similar Documents

Publication Publication Date Title
WO2009107940A2 (ko) 신호처리블록을 구비하는 적층형 마이크로폰과 그 제조방법
US11197103B2 (en) MEMS devices and processes
US8670579B2 (en) MEMS microphone
KR100931575B1 (ko) Mems를 이용한 압전 소자 마이크로 스피커 및 그 제조방법
US20100322451A1 (en) MEMS Microphone
US8649545B2 (en) Microphone unit
US8798291B2 (en) Structure of MEMS electroacoustic transducer and fabricating method thereof
EP2663093A1 (en) Sound transducer and microphone using same
US8114697B2 (en) Piezoelectric microphone, speaker, microphone-speaker integrated device and manufacturing method thereof
JP2013030822A (ja) マイクロホンユニット、及び、それを備えた音声入力装置
WO2017200219A1 (ko) 피에조 멤스 마이크로폰 및 그 제조방법
US20150296307A1 (en) Dual diaphragm and dual back plate acoustic apparatus
CN104254047A (zh) 具有用于机电换能器的大背面体积的电子设备
JP2008199226A (ja) コンデンサマイク装置
KR101703628B1 (ko) 마이크로폰 및 그 제조방법
WO2015157061A1 (en) Mems motors having insulated substrates
JP2015502693A (ja) 寄生容量が低減されたmemsマイクロフォン
WO2018197836A1 (en) Mems device and process
WO2019035534A1 (ko) 멤스 음향 센서
KR200415820Y1 (ko) 마이크로폰 조립체
WO2011093584A2 (ko) 광대역 멤스 마이크로폰 구조
KR20130042445A (ko) 엘렉트릿 컨덴서 마이크로폰
CN213847003U (zh) Mems传感器芯片、麦克风和电子设备
WO2022135213A1 (zh) Mems传感器芯片、麦克风和电子设备
WO2019078532A1 (ko) 멤스 마이크로폰

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09714657

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09714657

Country of ref document: EP

Kind code of ref document: A2