WO2009107865A1 - Method for detecting breakouts in continuous casting and an apparatus therefor, breakout prevention apparatus, method for estimating solidification shell thickness and an apparatus therefor, and a continuous casting method for steel - Google Patents

Method for detecting breakouts in continuous casting and an apparatus therefor, breakout prevention apparatus, method for estimating solidification shell thickness and an apparatus therefor, and a continuous casting method for steel Download PDF

Info

Publication number
WO2009107865A1
WO2009107865A1 PCT/JP2009/054118 JP2009054118W WO2009107865A1 WO 2009107865 A1 WO2009107865 A1 WO 2009107865A1 JP 2009054118 W JP2009054118 W JP 2009054118W WO 2009107865 A1 WO2009107865 A1 WO 2009107865A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat flux
breakout
solidified shell
molten steel
vertical
Prior art date
Application number
PCT/JP2009/054118
Other languages
French (fr)
Japanese (ja)
Inventor
飯嶋寛昌
久保田淳
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009038855A external-priority patent/JP2010194548A/en
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2009107865A1 publication Critical patent/WO2009107865A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/188Controlling or regulating processes or operations for pouring responsive to thickness of solidified shell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • B22D11/207Controlling or regulating processes or operations for removing cast stock responsive to thickness of solidified shell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling

Definitions

  • the present invention relates to a method and an apparatus for accurately detecting and further preventing a breakout generated in a piece in continuous casting of molten copper.
  • the present invention also relates to a continuous steel forging method using the breakout detection method.
  • the invention further relates to a method and apparatus for estimating the solidification shell thickness in the continuous casting of molten steel.
  • the molten steel poured into the mold is cooled in the mold to form a solidified shell and is drawn out of the mold.
  • the solidified shell will be broken when this thinned solid shell portion comes to the vertical outlet (bottom lower end). As a result, there is a risk of a so-called breakout of molten steel.
  • Patent Document 1 Japanese Patent Publication No. 63-53903 discloses the following technology.
  • Patent Document 1 is a breakout prevention method by detecting a change in heat flux using a heat flux meter.
  • the local heat flux of each part of the saddle shape means the amount of heat removed from the saddle shape, and the amount of heat removal is related to the formation of the solidified shell. Therefore, it is reasonable to predict that when there is an abnormality in the change in heat flux, there is an abnormality in the formation of the solidified shell thickness and there is a risk of breakout.
  • the occurrence of breakout is directly related to the thickness of the solidified shell at the vertical outlet, and if the thickness of the solidified shell can be estimated accurately, the risk of breakout can be accurately determined. That is, the inventor considered that it is important to find an index closely related to whether the solidified shell thickness at the vertical outlet reaches a predetermined thickness.
  • an object of the present invention is to provide a method and an apparatus for detecting breakout generated in a piece more accurately and preventing it in continuous forging of molten steel.
  • Another object of the present invention is to provide a method and apparatus for estimating the thickness of the solidified shell at the vertical outlet more accurately.
  • the thickness of the solidified shell is closely related to the heat removal state between the saddle mold and the scissors. In other words, if the solidified shell thickness is thin, the amount of heat transferred from the piece to the bowl increases and the amount of heat removed increases. Conversely, if the thickness of the solidified shell is thick, the amount of heat transferred to the piece cup and bowl decreases. The amount of heat is reduced. The inventor decided to examine this fact in more detail and to examine the specific heat removal state in the actual saddle type.
  • FIG. 2 is a cross-sectional view of vertical mold 1, which is connected to the bottom of tundish 40, and molten steel 5 is discharged from immersion nozzle 3 installed in vertical mold 1 (arrow) Is shown. Mold powder 7 (shown as a layer) is added to the molten metal surface, and this mold powder 7 flows into the gap between the mold 1 and the molten steel 5 to act as a lubricant. The molten steel 5 is extracted by the mold 1 through the mold powder 7, and is pulled out toward the vertical mold outlet without forming the solidified shell 9.
  • FIG. 3 is an enlarged cross-sectional view showing a part of the vertical copper plate 11 forming the vertical mold 1.
  • a thermocouple 17 is used to detect this.
  • the thermocouple 17 has a hole 15 formed in the bottom of the cooling water passage 13 formed on the outer surface of the vertical copper plate 11, and a certain distance in the depth direction 2 is formed therein. It is buried in the place. A temperature gradient is detected from the output of the embedded thermocouple 17, and the heat flux can be obtained by calculation based on this temperature gradient.
  • the local heat flux ql (J Vm 2 ) is calculated by calculating the detection temperature of the two thermocouples 17 (T1 C), T2 CC), the embedding interval d (m), and the thermal conductivity of the vertical type 1; L As (jZs'm ' ⁇ ), use the following formula.
  • thermocouples 17 arranged in the vertical direction of the vertical shape is a vertical short piece (for example, the shorter side in a vertical shape with a horizontal cross section).
  • a total of nine places were installed at a height of 40 to 200 mm below the normal surface position.
  • the local heat flux was obtained by the above equation, and the relationship between the local heat flux and the position of the molten metal surface force was investigated.
  • Fig. 5 is a graph showing an example of the results of this investigation.
  • the vertical axis shows the local heat flux (unit: jZs'm 2 ), and the horizontal axis shows the distance from the molten metal surface (unit: mm).
  • the shape of the graph showing the relationship between the local heat flux and the distance from the molten metal surface is shown as the heat flux profile, where the vertical axis is the local heat flux and the horizontal axis is the distance from the molten metal surface.
  • the local heat flux decreases in the direction of the molten metal surface force toward the vertical outlet, takes a local minimum in the vicinity of the distance force S400mm from the molten metal surface, and then once shows an increasing trend.
  • the increasing tendency shows a maximum value when the distance from the molten metal surface is about 600 mm, and then decreases again.
  • the inventor paid attention to the fact that the local heat flux turned from a decreasing tendency toward a vertical outlet toward the vertical outlet direction, and further studied.
  • the position where the local heat flux shows the minimum value is a distance from the molten metal surface of about 400 mm.
  • the position of the discharge flow of the molten steel 5 (flow from the spout: arrow) of the immersion nozzle 3 is vertical. It coincides with the position where it collides with the short side (see Fig. 2).
  • the relationship between such changes in local heat flux and molten steel discharge flow is as follows. Tells the following: -As shown in Fig. 5, the local heat flux decreases in the direction of the hot water surface force toward the vertical outlet, because the thermal resistance increased, that is, the solidified shell thickness gradually increased as shown in Fig. 2. It shows that it is getting thicker.
  • the solidified shell 9 is remelted, the thickness of the solidified shell is reduced, and the thinned solidified shell 9 is solidified. It is thought that the heat generated by the molten steel flow is applied to the solid interface and the local heat flux is increased. .
  • the shape of the solidified shell 9 at a certain moment is shown in Fig. 2.
  • the thickness of the solidified shell 9 increases from the molten metal surface to the position of the local heat flux, and the local heat flux From the minimum value to the maximum value, the thickness of the solidified shell 9 decreases, and after the local heat flux maximum value, the thickness of the solidified shell 9 increases again.
  • the thickness of the solidified shell at the vertical shape outlet is determined through the process of increasing or decreasing the thickness of the solidified shell.
  • the inventor conducted further studies to investigate the relationship between the above-mentioned two levels, that is, the degree of growth of the solidified shell thickness and the degree of thinning of the solidified shell 9 once formed, and the occurrence of breakout.
  • the thickness of the solidified shell at the vertical outlet is considered to be proportional to the sum of the heat removal.
  • the heat flux profile in the above graph is blurred. It can be said that it can be easily used as an indicator of the occurrence of a breakout.
  • the degree of growth of the solidified shell thickness is not proportional to the amount of heat removal but is proportional to the measured amount of heat removal minus the amount of heat removal due to the influence of the molten steel flow. Conceivable.
  • the amount of heat removal due to the influence of the molten steel flow can be evaluated as heat input to the solidification interface by the molten steel flow (hereinafter simply referred to as “solidification interface heat input”).
  • the degree to which the solidified shell becomes thin can be evaluated by solidification interface heat input, while the degree to which the solidified shell grows depends on the thermocouple.
  • Local heat flux force that can be measured Solidification interface ⁇ It can be evaluated by subtracting heat.
  • this solidification interface heat input is c ⁇ iZs'm 2
  • this solidification interface heat input q2 is the heat transfer coefficient from the molten steel to the solidification interface h (in J / Vm 2 ')
  • the degree of superheat of the molten copper Let be ⁇ ⁇ (in) and it can be expressed by the following equation.
  • V Molten steel flow velocity (mZs)
  • T s Molten copper solidus temperature (° C)
  • the mold inner molten steel temperature T 0 (° C) may be obtained by actually measuring the mold inner molten steel temperature, for example, based on the tundish (TD) molten steel temperature (actually measured value) You may calculate with a temperature estimation formula.
  • T 0 705.156 + 0.544086T TD ⁇ 2.35053Vc-0.00303W + 18.12663 (0.10181nFC-0.3362)
  • T TD Temperature of molten steel in TD (° C) (actual value)
  • FC Applied current value (A) (actual value)
  • the solidification interface heat input q2 is related to the heat transfer coefficient h, and the heat transfer coefficient h is an amount related to the molten copper flow velocity V. Therefore, in order to measure the solidification interface heat input q2 online, it is necessary to measure the molten steel flow velocity V in the vertical mold online. While operating, the molten steel flow velocity V can be It is difficult to measure.
  • the inventor samples the pieces produced in advance at various forging speeds, obtains the molten steel flow velocity values at each forging speed from the dendrite angle in the pieces, and based on the molten steel flow velocity values.
  • the dendrite inclination is the inclination of the primary branch of the dendrite extending in the surface force thickness direction with respect to the normal direction to the surface of the slab, and is known to correlate with the molten steel flow velocity value.
  • the solidification interface heat input q2 obtained in advance is referred to as “solidification interface heat input q2j in a steady state, and is expressed as steady solidification interface heat input q2 res .
  • the purpose of using the term steady state is as follows. The purpose is to eliminate an abnormal state where the immersion nozzle is clogged and has a drift in the molten steel flow velocity.
  • the inventor wanted to estimate the thickness of the solidified shell at the vertical outlet or evaluate the occurrence of breakout, and subtracted the steady-state solidification interface heat input q2 reg from the local heat flux measured by the thermocouple in the operating state.
  • a heat flux profile was obtained for the amount of heat, and based on this heat flux profile, it was considered to evaluate the thickness of the solidified shell at the vertical outlet or the occurrence of breakout.
  • the reasons for considering the steady-state solidification interface heat input q2 reg from the measured local heat flux in this way are as follows.
  • this heat flux profile is the above-mentioned immersion nozzle. This means that it is the same as the heat flow rate profile in the case where the molten steel in the mold is simply drawn out without discharging from the mold.
  • the solidification interface heat input q2 in the operating state is the same as the steady state solidification interface heat input q2 res . In other words, in this state, the degree of thinning of the solidified shell is the same as in the steady state, that is, due to the molten steel flow from the normal immersion nozzle.
  • the breakout caused by the solidification interface remelting due to the increase in the solidification interface heat input q2 contributes to the growth of the solidified shell thickness while moving from the molten steel caniscus to the vertical bottom exit. If the solidified shell does not grow sufficiently during this movement when the amount of heat removal is small and the thickness is thin, a breakout due to the small amount of heat removal contributing to the growth of the solidified shell thickness (hereinafter simply referred to as “heat removal”). There is a risk of occurrence of deficiency breakout J).
  • the heat flux profile related to the amount of heat obtained by subtracting the steady solidification interface heat input q2 reg from the local heat flux measured by the thermocouple rises at a certain distance from the molten metal surface, that is, the heat flux profile has a minimum value.
  • the actual solidification interface heat input q2 is larger than the steady solidification interface heat input q2 reg , and in this state, the degree of remelting of the solidified shell is less than in the steady state. It is considered high. For example, a drift in the molten steel flow occurs in the vertical mold due to the clogging of the immersion nozzle, and the heat input at the vertical interface that is the object to be measured increases more than usual.
  • the size of the bumps represents a heat input larger than the normal solidification interface heat input q2.
  • the degree of the size of the bumps is such that the solidified shell caused by the abnormal molten steel flow is remelted and the thickness of the solidified shell is reduced, and if this is large, vertical cooling is performed as usual. Even so, it can be evaluated that there is a risk of occurrence of a remeltable breakout.
  • the inventor obtained the molten steel flow velocity from the dendritic tilt angle for various forging speeds, obtained the steady solidification interface heat input q2 res for each case, and obtained this steady solidification interface heat input q2 reg for the operating conditions.
  • the heat flux profile subtracted by the thermocouple in the state was obtained, and the heat flux profile was obtained.
  • the solidified shell thickness was estimated based on the heat flux profile, and the occurrence of breakout was further investigated.
  • the graph is graphed with the molten metal flow velocity on the vertical axis and the distance of the molten metal surface on the horizontal axis.
  • the molten steel flow velocity V (m / s) is obtained from this graph, and the steady solidification interface heat input q2 res is obtained based on the above equation (1). Then, the local heat flux in the operating state is measured with a thermocouple, and the steady-state solidification interface heat input q2 re8 at the same forging speed as the measured operating state is subtracted from the measured value force to obtain the heat flux profile for the subtracted heat amount.
  • the vertical axis shows the local heat flux (jZs' m 2 )
  • the horizontal axis shows the distance (mm) from the molten metal surface
  • the black circle value (D1) in the graph shows the value measured by the thermocouple.
  • the white circle value (D2) indicates the value measured by the thermocouple, the steady-state solidification interface heat input q2 reg , and the value (ql-q2 reg ).
  • Fig. 8 is a graph schematically showing the heat flux profile of (ql-q2 res ) drawn by the white circles in Fig. 7.
  • the area enclosed by the graph that is, the integrated value of the local heat flux (overall heat It is explanatory drawing explaining an example of how to obtain
  • the graph is divided into a plurality of trapezoids to obtain the area of each trapezoid (Q1-1 to Q1-7), and the total area Q is obtained by adding them.
  • the minimum point in the graph is A
  • the maximum point is B
  • the saddle-shaped exit point is C
  • the triangle ABC is regarded as a bump
  • the area of this bump that is, the area Q2 of the triangle ABC is obtained as follows (Fig. 9). reference).
  • the point on the horizontal axis corresponding to point A is A '
  • the point on the horizontal axis corresponding to point C is C'
  • areas (1) to (3) are areas where there is a risk of breakout occurrence (that is, areas where the breakout judgment is “Yes” in the above investigation), and areas ( 4) and (5) are areas where there is no risk of breakout.
  • areas (1) to (3) are areas where there is a risk of breakout occurrence (that is, areas where the breakout judgment is “Yes” in the above investigation)
  • areas ( 4) and (5) are areas where there is no risk of breakout.
  • Region (1) (Ql ⁇ a 1 and Q2 ⁇ ) Q 1 is small and it can be evaluated that both the risk of insufficient heat removal breakout and the risk of occurrence of remeltable breakout are large. . And since there was actually a breakout in region (1), it can be said that this breakout has the properties of both an underheated breakout and a remeltable breakout.
  • Region (2) (Q l ⁇ a 1 and Q2 ⁇ J3) has a small Q1 and there is a risk of inadequate heat removal breakout. Since force Q2 is also small, the risk of remelting breakout is small. Can be evaluated. And since there was actually a breakout in region (2), it can be said that this breakout has the property of an insufficient heat release breakout.
  • Region (3) (a 1 ⁇ Q1 ⁇ ⁇ 2 and Q2 ⁇ ] 3) is less danger of Q 1 is relatively large heat extraction lack of breakout generation, the re-solubility breakout occurs because Q2 is large It can be evaluated as a dangerous area. Since breakout actually occurred in the region (3), it can be said that this breakout has the property of re-dissolvable breakout.
  • Region (4) (Ql> ⁇ 2 and Q2 ⁇ / 3) is a region where Ql is large and there is little risk of underheated breakout, but because Q2 is large, there is a risk of remeltable breakout. It can be evaluated that there is. In this region (4), the breakout generation was ineffective, and the amount of heat removal that contributed to the growth of the solidified shell thickness was sufficiently large. Even if there is a hot spot, it is considered that the breakout was extremely powerful.
  • Region (5) (Ql> ⁇ 1 and Q2 ⁇ 0) is a region where Q1 is relatively large and there is little risk of occurrence of incomplete heat breakout. Since Q2 is small, there is no risk of remeltable breakout. Can be evaluated. In addition, the absence of breakout in this region (5) means that the amount of heat removal contributing to the growth of the solidified seal thickness was large, and therefore there was no portion where the solidified shell was locally thin because the thickness of the entire solidified shell was thick. It was thought that it was hard enough to make it thin even if it was hot. As can be seen from the examination of the above regions (4) and (5), when the state of region (4) and the state of region (5) are compared, the state of region (5) is more preferable. Therefore, in order to change the state of the areas (1) to (3) where the breakout occurred to a state where no breakout occurred, it is effective to change the state to the area (4). It is more preferable to control the operating conditions so as to achieve the state of (5).
  • the operating conditions may be controlled so that Q 1 is increased to the state of the region (5).
  • the operating conditions should be set so that Q2 is reduced to force the state of region (5) or Q 1 is increased to the state of region (4). If you control.
  • Controlling operating conditions that increase Q1 includes reducing the forging speed and / or increasing the vertical cooling.
  • electromagnetic brake devices are placed, for example, above and below the immersion nozzle discharge hole in a vertical type, and the flow rate of molten steel is reduced by applying a DC magnetic field.
  • the basic method of the above explanation is to determine the heat flux ql that enters the solidification interface from the molten steel surface to the vertical outlet and the steady solidification interface heat input q2 res to obtain (ql _q2 res ) To determine whether a breakout can occur based on the heat flux profile.
  • the description other than this is an example, and the present invention is not limited to the above contents.
  • the heat flux ql can be obtained by a method such as a method of obtaining from the inlet and outlet temperatures of the vertical cooling water. good.
  • the steady-state solidification interface heat input (12 ⁇ may be obtained based on the result of the estimated value of the molten steel flow velocity by, for example, numerical simulation within the vertical mold.
  • the method of analyzing the heat flux profile of (ql-q2 reg ) is most preferably performed by calculating Q 1 and Q 2 described above, but is not limited to this.
  • the height and position of the bumps may simply be used as a criterion for determining the risk of breakout (for example, it is considered effective in the case of a facility with a strong molten steel flow that hits the solidification interface and a large fluctuation). .
  • Q1 and Q2 it is also possible to use only Q1 for estimation of shell thickness and judgment of breakout. For example, it is difficult for molten copper to reach the solidification interface. When Q2 fluctuation is expected to be small, it is expected that there will be little decrease in estimation and judgment accuracy without considering Q2.
  • integration means other than the above-described method may be used to obtain Q l and Q2.
  • the boundary line AC between Q1 and Q2 need not be a straight line.
  • the curve from the molten metal surface to A may be taken into account as an approximate curve.
  • Q1 is an index of heat removal due to solidification (that is, a factor that reduces the risk of breakout by increasing the value).
  • Q2 can be used appropriately as an indicator of solidification interface heat input exceeding the steady state (ie, a factor that increases the risk of breakout by increasing the numerical value).
  • Q l ⁇ 1 corresponding to the case where the solidified shell thickness growth is insufficient regardless of Q2 (region (1) and region (2) above), and the solidified shell thickness growth is a breakout regardless of Q2.
  • Q 1> ⁇ 2 corresponding to the region (5) where Ql> a 2 and region (4)) are often present. It is preferable to predetermine the ground ⁇ 1 and ⁇ 2 ( ⁇ 1 ⁇ 2).
  • the region of a 1 ⁇ Q1 ⁇ ⁇ 2 is a region affected by the magnitude of Q2, so it may be determined that there is a risk of breakout depending on the value of Q2. That is, in this case, it is preferable to determine that there is a risk of breakout when a predetermined threshold value is exceeded.
  • the threshold value of Q2 is preferably determined based on Q1, but as a result, it may be a constant value throughout al ⁇ Q l ⁇ 2. This corresponds to the ⁇ force in the example in Table 1 above. As another method, it is conceivable to further subdivide a 1 ⁇ Q1 ⁇ «2 and set a threshold value for each region.
  • Q ⁇ j33 can be a condition corresponding to the occurrence of breakout. In this case, generally: 31 ⁇ 2 ⁇ 3.
  • Q2 ⁇ f (Ql) (f is a function) can be set as a condition corresponding to the occurrence of a breakout.
  • ⁇ 1 15000kjZm 2
  • ⁇ 2 21000kj / m 2
  • the criterion of Q2 ⁇ aQl (a 0.25) It is also possible to use.
  • Q1 and Q2 do not have an upper limit, but this is because there is an upper limit to the values that Q1 and Q2 can take depending on the equipment.
  • the values of ⁇ 1, ⁇ 2, J3, and ⁇ exemplified above agree well when the molten steel is an extremely low carbon steel.
  • the extremely low carbon steel with molten steel refers to steel with C ⁇ 0.01% at the stage of forging molten steel.
  • the basic part of the analysis of the solidified shell formation phenomenon does not depend on the steel type. Therefore, it can be applied to other steel types without problems by calibrating coefficients and thresholds as necessary.
  • the inventor believes that each value of Ql and Q2 is closely related to the occurrence of breakout, and each force value is related to the cause of occurrence of a different breakout.
  • the overall heat flux Q1 obtained in this way can be evaluated as the amount of heat consumed for solidification of the molten steel, and the overall heat flux Q2 re-melts the solidified shell by collision of the molten steel flow with the solidified shell. It can be evaluated that it is the sensible heat of the molten steel flow that is the amount of heat.
  • the thickness of the solidified shell at the vertical outlet is estimated based on the overall heat flux Q1, the solidified shell thickness can be accurately estimated. Therefore, we determined the solidified shell thickness from Q1 and examined the possibility of quantitatively evaluating the risk of breakout from the solidified shell thickness.
  • a method for estimating the thickness of the solidified shell at the vertical outlet using the overall heat flux Q1 will be described.
  • the molten steel injected from the immersion nozzle into the vertical mold has an enthalpy: H 0 (heat content) including sensible heat and latent heat of solidification.
  • H 0 heat content
  • the molten copper having this ent Halby: H 0 loses the enthalpy of heat dissipation: AH sur by dissipating the heat of the hot water surface, and is removed by vertical cooling between the hot water surface and the vertical outlet.
  • This enthalpy relationship from the immersion nozzle to the molten metal injected into the vertical mold reaches the molten metal surface vertical outlet is expressed by the following equation (4).
  • the enthalpy of the solidified shell at the vertical outlet can be obtained from the following equation (5).
  • Equation (5) expresses the enthalpy by integrating the specific heat of solid-phase steel with temperature and expresses it as a function of temperature.
  • T lave in Eq. (5) represents the average temperature of the solidified shell at the vertical outlet, and this T Iave is obtained from Eq. (6) shown below.
  • the vertical axis shows the vertical outlet shell thickness direction average temperature C), and the horizontal axis shows the forging speed (m / min).
  • the enthalpy: ⁇ H sur corresponding to the heat release from the molten metal surface can be obtained from the following equation (7).
  • H 0 The enthalpy of vertical molten steel: H 0 is obtained by integrating the specific heat of liquid phase steel with temperature to obtain the enthalpy and expressing it as a function of temperature based on equation (8). Can do.
  • H 0 (1 X 10- 10 XT 0 4 -4X 10 "7 XT 0 3 + 0.0005 XT 0 2 - 0.0098 XT 0 + 4.5508)
  • the molten copper temperature T 0 in Eq. (8) is the following (9), where the molten steel temperature in the eaves was actually measured with a thermocouple in the existing equipment, and the multiple regression equation was calculated under the operating conditions at that time. ) Expression force can be obtained.
  • T TD Tundish (TZD: tundish) internal steel temperature (° C)
  • FC FC (flow control) current (A)
  • Hi AH sur , and H 0 can be obtained. Therefore, ⁇ can be obtained from the following equation (10) obtained by modifying equation (4). .
  • the solidified shell thickness D at the vertical outlet is calculated using the overall heat flux Q1. It can be expressed by equation (2).
  • Equation (11) is a recursive equation that obtains the density of solid iron from 20 to 1500 at 5 points and makes it a function of temperature.
  • the molten steel discharge flow temporarily increases from the immersion nozzle during forging, that is, when the overall heat flux Q2 is present, the solidified shell is remelted by the molten steel flow, and solidification delay is considered to occur. .
  • the thickness of the solidified shell becomes thinner than the thickness of the solidified shell obtained by simply excluding the overall heat flux Q2.
  • the solidified shell thickness estimated based on the overall heat flux Q1 is considered to be D
  • the solidified shell thickness considering remelting due to the overall heat flux Q2 is considered to be that X1 of Q1 and Q2 acts as remelting.
  • the following proportional relationship is established.
  • D1 D (1—X'Q2 / Q1).
  • V Molten steel flow velocity (m / s)
  • the molten steel flow velocity V ( m ⁇ s) can be obtained from the force of equation (13) using the overall heat flux Q2.
  • V (Q2 / (a -t- A ⁇ )) 1 25 * (13) a: Molten steel flow rate constant (no unit)
  • FC Upper pole FC DC current
  • RS Solidification delay
  • the component force D and D1 are stable and close to the measured values, and D1 is particularly improved.
  • the solidified shell thickness D at the vertical outlet can be obtained using the overall heat flux Q1, and further, the solidified shell thickness D1 in consideration of the solidification delay can be obtained.
  • the relationship between the thickness of the solidified shell and the presence / absence of occurrence of breakout can be obtained in advance to provide an index for the presence / absence of occurrence of breakout. For example, when the predicted thickness D exceeds the threshold, it can be determined that the breakout occurs, or when the predicted thickness D1 exceeds the threshold, it can be determined that the breakout occurs. .
  • the threshold may be set in advance from examples or calculated by theoretical calculation according to the steel type, equipment, and operating conditions.
  • this breakout occurrence index is based on the thickness of the solidified shell at the vertical outlet, and is a more direct index than that based solely on the change in heat flux described above. It can be said that the accuracy is high.
  • the breakout generation detection method based on Q1 or based on Q1 and Q2 as illustrated in FIG. 10 may be omitted while apparently omitting the process of actually calculating the solidified shell thickness. Since the presence or absence of breakout is predicted based on the effect on Ql and Q2 on the thickness of the solid shell, high accuracy can be obtained as well.
  • the present invention has been made based on the above knowledge, and specifically has the following constitutional power.
  • a breakout detection method in continuous fabrication comprising: a step of obtaining a heat flux profile up to and a step of determining whether or not there is a risk of occurrence of a breakout based on the heat flux profile.
  • the overall heat flux corresponding to the area above the straight line is defined as Q2
  • the heat flux from the hot water surface to the vertical outlet is defined as Q2.
  • the total heat flux corresponding to the total area enclosed by the entire profile curve Q2 is the total heat flux corresponding to the area minus Q2, and (ii) there is no minimum point indicating the minimum value in the heat flux profile.
  • the overall heat flux is obtained by integrating the local heat flux as is apparent from the above description.
  • the present invention is also the breakout detection method in continuous fabrication as described in (2) above, wherein in the step of determining whether or not there is a risk of occurrence of the breakout, the risk of breakout is reduced by increasing Q1. It is characterized by the fact that Q2 is treated as a factor that increases the risk of breakout by increasing the numerical value, and whether there is a breakout risk based on Q1 or based on Q1 and Q2. It is also a breakout detection method.
  • the breakout detection method in continuous forging measures the heat flux ql that is input to the solidification interface during the time from the molten metal in the mold to the mold outlet in the continuous casting,
  • the steady-state solidification interface heat input q2 reg due to the flow of molten copper in the vertical mold is obtained based on the above equation (1), and the difference between these heat flux ql and steady-state solidification interface heat input q2 re8 (ql ⁇ q2 res )
  • the heat flux profile from the molten steel surface to the vertical outlet is obtained for the molten steel, and the local heat flux value at the local minimum and the vertical outlet is present when there are local minimum points indicating the minimum value in the thermal flux profile.
  • the total heat flux corresponding to the area above the straight line is Q2, and the total area surrounded by the entire curve of the heat flux profile file from the hot water surface position to the vertical outlet is Q2.
  • Subtracting Q2 from the overall heat flux equivalent to Q1 is the overall heat flux corresponding to the product, and Q1 ⁇ a1 and Q2 ⁇ ⁇ for the thresholds ⁇ 1 and ⁇ 2 ( ⁇ 1 ⁇ 2) and Q2 It is characterized by determining that there is a risk of breakout when Ql ⁇ a1 and Q2 ⁇ , or a1 ⁇ Q1 ⁇ a2 and Q2 ⁇ j3.
  • ⁇ ⁇ enthalpy drop per unit weight of solidified shell at vertical outlet (jZkg)
  • p solidified shell density at vertical outlet (kg / m
  • the unit of ql is j / s'm 2
  • the unit of q 2 reg in the above formula (1) is jZs'rn 2 h
  • the unit of JZ sm 2 ⁇ is jZs'rn 2 h
  • the unit of JZ sm 2 ⁇ is jZs'rn 2 h
  • the unit of JZ sm 2 ⁇ is jZs'rn 2 h
  • V Molten steel flow velocity (m / s)
  • V (Q2 ( ⁇ . ⁇ ⁇ ⁇ 0)) 1 ⁇ 25
  • the minimum point showing a minimum value in the heat flux profile is determined by the method described in (7) above.
  • the solidification shell thickness at the vertical outlet is estimated by the method described in (8) above, and whether there is a risk of occurrence of breakout can be determined based on the estimated value and the threshold value. preferable.
  • is a bowl-shaped thermal conductivity
  • the local heat flux calculation means to determine the local heat flux ql at each thermocouple installation site, and the steady solidification interface heat input q2 res due to the molten steel flow of the vertical bowl in the steady state are the data obtained from the following equation (1).
  • the overall heat fluxes Q1 and Q2 are obtained by the following method; that is, (0 When there is a minimum point indicating a minimum value in the heat flux profile, the minimum point and the vertical outlet When the local heat flux value is connected with a straight line, the overall heat flux corresponding to the area above the straight line is defined as Q2, and it is surrounded by the entire curve of the heat flux profile from the molten metal surface position to the vertical outlet.
  • the total heat flux force Q2 corresponding to the total area is deducted, the total heat flux corresponding to the area is Q1, and (ii) there is no minimum point indicating the minimum value in the heat flux profile file Is the overall heat flux corresponding to the entire area surrounded by the entire curve of the heat flux profile between the hot water surface position and the vertical outlet, and the overall heat flux Q 1 and Q2 is zero;
  • a breakout detection device which is a breakout determination means, characterized by determining whether or not there is a risk of occurrence of a breakout based on the overall heat flux Q1 or based on Q1 and Q2.
  • the present invention is also the breakout detection device for continuous fabrication as described in (12) above, wherein the breakout determination means power Q 1 is treated as a factor for reducing the risk of breakout by increasing the numerical value. Treating Q2 as a factor that increases the risk of breakout by increasing the numerical value, it is a breakout judgment means that determines whether there is a risk of breakout based on Q1 or based on Q1 and Q2. This is a breakout detection device.
  • the breakout detection device in continuous fabrication as described in (12) or (13) above, wherein the breakout determination means has a predetermined threshold value ⁇ 1, ⁇ for the overall heat flux Q 1. 2 For ( ⁇ .1 ⁇ 2), (i) When Q l a a 1, it is determined that there is a risk of breakout. (Ii) When a 1 ⁇ Q 1 ⁇ ⁇ 2 The breakout detection device, which is a breakout determination means, determines that there is a risk of breakout according to the value of Q2.
  • Q2 is equal to or greater than a predetermined threshold based on Q1 (which may be a constant value across a1 ⁇ Q1 ⁇ 2), it is determined that there is a risk of breakout. preferable.
  • the breakout detection device in continuous fabrication includes a thermocouple group in which a plurality of pairs of thermocouples embedded at two points having different depths in the vertical thickness direction are installed in the vertical fabrication direction.
  • the local heat flux calculation means to obtain the local heat flux ql at each thermocouple installation site by inputting the temperature information from the thermocouple group, and the steady solidification interface heat input due to the molten copper flow in the bowl in the steady state q2 reg
  • the steady solidification interface heat input storage means for storing the data obtained from the above equation (1) and the difference between the heat flux ql and the steady solidification interface heat input q2 reg (ql _ q2 res )
  • the profile calculation means for obtaining the heat flux profile up to the heel-shaped outlet, and when there is a minimum point indicating the minimum value in the heat flux profile obtained by the profile calculation means, the minimum point and the mirror-type outlet
  • the overall heat flux corresponding to the area above this straight line is Q2 when connected to the local heat flux value of this line with
  • the solidified shell thickness calculating means for calculating the solid shell thickness D and the calculated value of the solidified shell thickness calculating means are input, and the calculated value D and the threshold value obtained in advance in relation to the risk of occurrence of breakout are used.
  • a breakout detection device comprising: a breakout determination means main body for determining whether there is a risk of occurrence of breakout based on the breakout determination main body.
  • ⁇ H enthalpy drop per unit weight of solidified shell at vertical outlet (jZkg)
  • p solidified shell density at vertical outlet (kgZm 3 )
  • the unit of ql is jZs'm 2
  • the unit of q2 reg is L s'm ⁇ h in the above formula (1)
  • a breakout detection device comprising: a breakout determination means main body that determines whether or not there is a risk of occurrence of breakout based on a threshold value obtained in relation to
  • V Molten steel flow velocity (m / s)
  • V (Q2Z ( "'t- ⁇ ⁇ )) 1 - 25
  • the unit of ql is J s 'm 2
  • the unit of q 2 res is jZs' m 2
  • the unit of h is JZ s 'm 2 ' ° C
  • the unit of ⁇ is To do.
  • the solidification shell computing means shows the minimum value in the heat flux profile by the method of (17) when there is no minimum point showing the minimum value in the heat flux profile of (ql ⁇ q2 res ).
  • the calculation means is for calculating the thickness of the solidified shell at the saddle type outlet by the method (18).
  • a breakout prevention device for continuous forging comprising control means for controlling to reduce the forging speed when it is determined that there is a risk of out.
  • this risk determination is based on Ql ⁇ a 1 and Q2 ⁇ ⁇
  • the operating conditions are controlled so as to lower the forming speed and strengthen the dredging or dredging cooling, or (b) in addition to the control, control to lower the molten steel flow velocity in the dredging.
  • is a bowl-shaped thermal conductivity
  • the step of measuring the heat flux ql that enters the solidification interface before the molten steel in the mold reaches the mold surface force in the continuous forging, and the steady state due to the molten steel flow in the mold in the steady state The step of obtaining the solidification interface heat input q2 reg based on the following equation (1) and the difference between the heat flux ql O / s' m 2 ) and the steady solidification interface heat input q2 reg (ql-q2 res )
  • a step of obtaining a heat flux profile from the surface to the vertical outlet, and G) if there is a minimum point indicating a minimum value in the heat flux profile, the local heat flux value at the minimum point and the vertical outlet The total heat flux corresponding to the area above this straight line is defined as Q2, and the molten metal surface force is equivalent to the total area surrounded by the entire curve of the heat flux profile between the vertical outlets.
  • the total heat flux force Q2 is bowed.
  • the flux be the overall heat flux Q1
  • ⁇ H enthalpy drop per unit weight of solidified shell at the vertical outlet (jZkg)
  • P solidified shell density at the mold outlet (kgZm 3 )
  • V Molten steel flow velocity (m / s)
  • thermocouple group in which a plurality of thermocouples embedded in two points at different depths in the vertical thickness direction are installed in the vertical fabrication direction, and temperature information from the thermocouple counter is input.
  • the local heat flux calculation means for determining the local heat flux ql at each thermocouple installation site and the steady solidification interface heat input q2 reB by the molten steel flow in the mold in the steady state.
  • Profile calculation means for obtaining a heat flux profile up to the mouth
  • a solidification shell thickness estimation device in continuous forging characterized by comprising solidification shell thickness calculation means for calculating the solidification shell thickness D at the vertical outlet based on the following formula (2) using the general heat flux Q1 .
  • V (Q2Z (a. ⁇ 0)) 1 ⁇ 25
  • the solidified shell thickness estimation device is the minimum point of the heat flux profile of (ql-q2 reg ).
  • the solidified shell thickness (D) is estimated by the method described in (31) above. It is preferable to estimate the thickness of the solidified shell in each case.
  • FIG. 1 is an explanatory diagram of a continuous forging facility provided with a breakout prevention device according to an embodiment of the present invention.
  • FIG. 2 is an explanatory view for explaining means for solving the problem, and is a cross-sectional view showing an example of a continuous forging mold in which a thermocouple is embedded.
  • FIG. 3 is an explanatory diagram for explaining means for solving the problem, and is an explanatory diagram showing an example of a thermocouple embedding method.
  • FIG. 4 is an explanatory view for explaining means for solving the problem, and is an explanatory view showing an example of a thermocouple mounting position.
  • Fig. 5 is an explanatory diagram for explaining the means for solving the problem, and shows an example of the relationship between the local heat flux (vertical axis: jZs' m 2 ) and the distance from the molten metal surface (horizontal axis: mm). It is a graph.
  • FIG. 6 is an explanatory diagram for explaining the means for solving the problem, and is a graph showing an example of the relationship between the molten steel flow velocity (vertical axis: mZs) and the distance from the molten metal surface (horizontal axis: mm).
  • Fig. 7 is an explanatory diagram for explaining the means for solving the problem.
  • the local heat flux ql black circle
  • (ql -q2 reg ) white circle
  • It is a graph which shows an example of the relationship with distance (horizontal axis: mm).
  • FIG. 8 is an explanatory diagram for explaining the means for solving the problem, and shows an example of how to obtain the area of the heat flux profile indicated by the graph showing the relationship between the local heat flux and the distance from the molten metal surface. It is a figure.
  • Fig. 9 is an explanatory diagram for explaining the means for solving the problem.
  • FIG. 10 is an explanatory diagram for explaining an example of means for solving the problem.
  • the horizontal axis is Ql (kj / m 2 ), and the vertical axis is Plot the numerical values shown in Table 1 on the coordinate plane, and breakout occurs
  • the coordinate plane is divided into five regions in relation to the presence or absence of.
  • FIG. 11 is an explanatory diagram for explaining the means for solving the problem, and is a graph showing an example of the relationship between the forging speed and the average temperature in the shell thickness direction at the vertical outlet, and the vertical axis indicates the vertical outlet shell thickness.
  • the direction average temperature (in) and the horizontal axis shows the forging speed (m / min).
  • FIG. 12 is an explanatory view of a continuous forging apparatus provided with a breakout prevention device according to another embodiment of the present invention. ⁇
  • FIG. 13 is an explanatory diagram of a continuous forging facility in which a breakout prevention device according to still another embodiment of the present invention is installed.
  • FIG. 1, FIG. 12 and FIG. 13 are explanatory diagrams of a continuous forging facility provided with a breakout detection and prevention device and a solidified shell thickness estimation device according to an embodiment of the present invention.
  • the same parts as those in Fig. 2 are given the same reference numerals.
  • An immersion nozzle 3 connected to the bottom of the tundish 40 and installed in the mold 1 to discharge the molten steel 5 from the tundish 40;
  • the continuous fabrication facility having such a configuration is provided with a breakout prevention device (including a breakout detection device and a solidified shell thickness estimation device) having the following constitutional power.
  • a breakout prevention device including a breakout detection device and a solidified shell thickness estimation device
  • thermocouple group in which a plurality of thermocouples 17 embedded in two points at different depths in a vertical copper plate 11 forming a vertical mold 1 are installed in the vertical direction of the vertical dimension and the manufacturing direction;
  • a local heat flux calculating means 29 for calculating the local heat flux ql at each thermocouple installation site by inputting temperature information from the thermocouple group 17 in the vertical thickness direction;
  • Steady solidification interface heat input storage means 31 for storing data obtained from steady solidification interface heat input q2 res based on the following equation (1) due to molten steel flow in the mold in the steady state;
  • the heat flux profile calculation means 32 for obtaining the heat flux profile from the molten steel to the hot metal surface ⁇ type outlet for the difference between the heat flux ql and the steady-state solidification interface heat input q2 ree (ql-q2 res ),
  • Breakout determination means 33 for determining whether there is a risk of breakout based on the obtained heat flux profile
  • -It is provided with an alarm device 37 that issues an alarm when the breakout determination means 33 determines that there is a risk of breakout.
  • Solidified shell thickness calculating means 34 for calculating the thickness (solid shell thickness)
  • Breakout determination that inputs the calculated value of the solidified shell thickness calculation means 34 and determines whether there is a risk of breakout occurrence based on the calculated value and the threshold value obtained in advance in relation to the risk of breakout occurrence Means body 33 ⁇ ,
  • thermocouple 17 is embedded in the vertical copper plate ii in the same manner as shown in FIGS.
  • a hole 15 is made in the bottom of the cooling water passage 13 formed on the outer surface of the mm copper plate 11 (see Fig. 3), and a thermocouple 17 is embedded in the hole 15 so as to have a certain distance in the depth direction 2
  • a pair of thermocouples 17 buried in the place are installed in nine places (18 in total) in the vertical production direction.
  • thermocouple 17 is embedded on the short side and the long side of the saddle (the longer side in the saddle shape where the horizontal cross section is a rectangular parallelepiped), and is measured for each side of the saddle shape. Then, the presence or absence of breakout is determined based on the measured value for each side.
  • the local heat flux calculating means 29 inputs the signal of the thermocouple 17 and calculates the local heat flux ql.
  • the local heat flux calculation means 29 is realized by the CPU executing a predetermined program. As described above, the local heat flux calculation means 29 includes the detected temperatures of the two thermocouples 17 as Tl, ⁇ 2, The following equation (4) is written to calculate the local heat flux, where d is the embedding interval and ⁇ is the thermal conductivity of ⁇ type 1.
  • the steady solidification interface heat input storage means 31 stores the data of the steady solidification interface heat input q2 res by the molten steel flow in the mold in the steady state, which is obtained based on the following equation (1).
  • V Molten steel flow velocity (mZs)
  • T s Molten steel solidus temperature (° C)
  • the steady-state solidification interface heat input q2 res is obtained by obtaining the molten steel flow velocity from the dendrite inclination angle of the slab produced when operating at a predetermined forging speed, and using the molten steel flow velocity as described in (1) above.
  • a method for obtaining the steady-state solidification interface heat input q2 reg based on the equation is preferred.
  • the heat flux profile calculation means 32 receives the heat flux ql calculated by the local heat flux calculation means 29 and the steady solidification interface heat input q2 reg stored in the steady solidification interface heat storage means 31 from each device. For these differences (ql _q2 res ), the heat flux profile from the molten steel force to the vertical outlet is obtained.
  • the heat flux profile calculation means 32 is realized by the CPU executing a predetermined program. This program has a logic for calculating the above-mentioned heat flux profile. Has been written.
  • the solidification seal thickness calculation means 34 provided in the breakout prevention device of FIG. 1 calculates the solidification shell thickness D at the vertical outlet based on the heat flux profile obtained by the heat flux profile calculation means 32.
  • a specific calculation method is as follows. If there is no local minimum point indicating the minimum value in the heat flux profile obtained by the heat flux profile calculation means 32, it corresponds to the entire area surrounded by the entire curve of the heat flux profile between the molten metal surface position and the vertical outlet. Let Q1 be the overall heat flux to be calculated, and use this overall heat flux Q1 to calculate the solidification seal thickness D at the vertical outlet based on the following equation (2).
  • ⁇ H enthalpy drop per unit weight of solidified shell at vertical outlet (j / kg)
  • the solidified shell thickness calculation means 34 is generated by remelting with the overall heat flux Q2.
  • V Molten copper flow velocity (m / s)
  • the breakout determination means 33 includes the solidified shell thickness calculation means 34 and a breakout determination means body 33A.
  • the breakout judging means 33 does not go through the solidified shell thickness calculation, but directly determines whether there is a risk of breakout occurrence from the heat flux profile calculated by the heat flux profile calculating means 32. judge.
  • the breakout judging means body 33A inputs the calculated value (solidified shell thickness D or D1) of the solidified shell thickness calculating means 34 and generates the breakout in advance.
  • Whether or not there is a risk of occurrence of breakout is determined based on the threshold value obtained in relation to the risk of occurrence of the breakout.
  • the threshold values are obtained by acquiring data in simulation experiments and actual operations in advance about various Q l and Q2, the thickness of the solidified shell, and the occurrence of breakout at the solidified shell thickness. For example, if the target solidified shell thickness at the vertical outlet is a numerical value (or numerical range) within the range of 20-30mrn, the numerical value within the range of the solidified shell thickness of 5-7mm is below this value, there is a risk of breakout
  • the threshold value is determined to be present. In the case of the breakout prevention device of FIGS.
  • the breakout determination means 33 is based on the heat flux profile calculated by the heat flux profile calculation means 32, for example, the relationship between Q1 and Q2 shown in ⁇ 9 above. And determine whether or not there is a risk of occurrence of these threshold values and a predetermined threshold force breakout.
  • Q 1 and Q 2 shown in FIG. 9 described above are obtained, and a predetermined threshold value ⁇ ⁇ . ⁇ 2 ( ⁇ 1 ⁇ a 2) and Q 2 with a predetermined threshold value / 3 are obtained. From the relationship, determine whether there is a risk of breakout based on the criteria shown in Figure 10.
  • the breakout determination means 33 determines that there is a risk of breakout, the breakout determination means 33 outputs the fact to the control means 35.
  • the risk of breakout is a force based on Q 1 a 1 and Q2 ⁇ ⁇ ⁇ or a force based on Q 1 a 1 and Q2 ⁇ , or alternatively ⁇ 1 ⁇ Q 1 ⁇ ⁇ 2 and Q2 ⁇ ⁇ It is preferable that the output is based on the
  • Standards based on Q1 or other criteria based on the relationship between Q1 and Q2 may be used. For example, if a l ⁇ Ql ⁇ ⁇ 2, it may be determined whether there is a risk of breakout if Q2 is greater than or equal to the threshold that is more sensible based on Q 1.
  • a predetermined threshold is determined by the type of molten steel. For example, when the molten steel is an extremely low carbon steel, it is 0.25.
  • the breakout determination means 33 or breakout determination means 33A is also realized by the CPU executing a predetermined program, and the determination logic described above is written in this program. Control means>
  • the control means 35 controls various devices to avoid breakout based on the determination result.
  • the breakout prevention device shown in FIG. 12 specifically, there is a risk of breakout due to Q 1 ⁇ 1 and Q2 ⁇ from the breakout judging means 33 with respect to ⁇ 1, ⁇ 2 and / 3.
  • the control means 35 inputs a signal from the breakout determination means 33 that there is a risk of breakout due to Q 1 ⁇ 1 and Q 2 ⁇ , the rotation of the motor 25 to the pinch roll control device 27 Outputs a command to decelerate the speed.
  • control means 35 inputs a signal from the breakout judging means 33 that there is a risk of breakout due to a 1 ⁇ Q1 ⁇ 2 and Q2 ⁇ 13, the control means 35 sends a type 1 signal to the electromagnetic brake device 41.
  • the signal which applies the direct current magnetic field which lowers the molten steel flow velocity inside is output.
  • the rotation speed of the motor 25 is controlled to the pinch roll control device 27. Outputs a signal to command deceleration.
  • a signal for applying a DC magnetic field that lowers the molten steel flow velocity in the mirror mold 1 may be output to the electromagnetic brake device 41.
  • the forging speed is simply controlled to be reduced, that is, to the pinch roll control device 27. This can be done by outputting a signal to command the motor 25 to reduce the rotational speed.
  • the vertical cooling control means for controlling vertical cooling water etc. Control may be performed to send a signal to enhance saddle cooling and increase the thickness of the solidified shell. This is particularly effective for countermeasures against the lack of heat removal due to insufficient Q1.
  • the control means 35 outputs a command signal so as to issue an alarm to the alarm device 37 when a signal indicating that there is a danger of breakout is input.
  • the control means 35 is also realized by the CPU executing a predetermined program, and logic for outputting the above-described command signal is written in this program.
  • the alarm device 37 issues an alarm when a signal from the breakout determination means 33 is input.
  • a signal from the breakout determination means 33 There are no restrictions on the type of alarm, but examples include alarm sounds, lighting of alarm lamps, and combinations thereof. The operation of the present embodiment configured as described above will be described.
  • the signal from the thermocouple 17 is input to the local heat flux calculating means 29 to calculate the local heat flux. Then, the calculation result is input to the profile calculation means 32.
  • the heat flux profile calculation means 32 is based on the local heat flux ql input from the local heat flux calculation means 29 and the steady solidification interface heat input memory means 31 stored on the steady solidification interface heat input q2 reg .
  • ql Calculates q2 reg and calculates the heat flux profile based on the result. Then, for example, Ql and Q2 as shown in FIG. 9 are obtained for the calculated heat flux profile, and these calculated values Q1 and Q2 are input to the breakout determination means 33.
  • the breakout determination means 33 determines whether or not there is a risk of occurrence of a breakout according to a predetermined rule for the input Ql or Q2. For example, the presence or absence of a breakout risk is determined based on the relationship between the values of Q1 and Q2 in FIG.
  • the solidified shell thickness calculating means 34 first calculates the overall heat flux Ql or Q2 by the above-described method based on the heat flux profile obtained by the heat flux profile calculating means 32. Ask for.
  • the solidified shell thickness calculating means 34 further calculates the solidified shell thickness D or D1 at the vertical outlet by the above-described method based on the overall heat flux Ql or Q2.
  • breakout judgment means body 33A force Solidified shell thickness D or D1 calculated by solidified shell thickness calculating means 34 is input, and whether there is a risk of breakout occurring or not in relation to this value and a predetermined threshold value Determine. As a result of the determination, if there is no risk of breakout, the operation is continued as it is.
  • the breakout determination means 33 outputs a signal to the control means 35 that there is a risk of breakout. At the same time, a command signal for issuing an alarm to the alarm device 37 is output.
  • the breakout determination means 33 may further output the type of breakout danger to the control means 35.
  • the control means 35 performs control for, for example, reducing the forging speed and the molten steel flow velocity.
  • the control means 35 outputs a signal for instructing the pinch roll control device 27 to decelerate the rotational speed of the motor 25.
  • the pinch roll control device 27 receiving this signal controls the motor 25 to reduce the rotational speed.
  • the control means 35 outputs a signal for applying a DC magnetic field to the electromagnetic brake device 41 so as to reduce the molten steel flow velocity in the mold 1.
  • the electromagnetic brake device 41 applies a DC magnetic field to the mold 1 and the molten steel flow speed in the mold 1 decreases.
  • the molten steel flow velocity decreases, the velocity at which the molten steel collides with the solidified shell interface decreases, and the degree of remelting of the solidified shell decreases, so that the thickness of the solidified shell increases and the risk of breakout can be avoided.
  • the breakout prevention device of FIG. 12 more detailed processing as described below can be performed in response to the determination using ⁇ 1 , ⁇ 2 , and J3.
  • control means 35 When the control means 35 receives the signal from the breakout determination means 33 and it is based on Q 1 a 1 and Q 2 ⁇ ⁇ , the heat release insufficient breakout occurs and the remeltability occurs. Since there is a risk of both breakout occurrences, control is performed to reduce the forging speed and the molten steel flow velocity.
  • the control means 35 is a pinch roll control device. Outputs a signal to command the motor 27 to reduce the rotational speed of the motor 25.
  • the pinch roll control device 27 receiving this signal controls the motor 25 to reduce the rotational speed.
  • the control for lowering the molten copper flow velocity is such that the control means 35 outputs a signal that applies a DC magnetic field to the electromagnetic brake device 41 to lower the molten steel flow velocity of the vertical type 1 ⁇ , When this signal is output, the electromagnetic brake device 41 applies a DC magnetic field to the mold 1 and the molten steel flow velocity in the mold 1 decreases.
  • the molten steel flow velocity decreases, the velocity at which the molten steel collides with the solidified shell interface decreases, and the degree of remelting of the solidified shell decreases, thus avoiding the risk of breakout due to remelting of the solidified shell. it can.
  • the signal from breakout judging means 33 is based on Q 1, a 1, Q2, and ⁇ , it means that there is a risk of breakout due to insufficient heat removal.
  • the signal from breakout judging means 33 is based on a1 ⁇ Q1 ⁇ 2 and Q2 ⁇ J3, there is a risk of remeltable breakout.
  • 35 outputs a signal for applying a DC magnetic field to the electromagnetic brake device 41 so as to reduce the flow velocity of the molten steel in the mold 1 so that remelting breakout can be avoided as described above.
  • the alarm device issues an alarm when a signal from the breakout determination means 33 is input. This can inform the operator of the danger of a breakout.
  • the thermocouple group consisting of thermocouples 17, local heat flux calculation means 29, steady-solidification interface heat input storage means 31, heat flux profile calculation means 32, and breakout are shown in FIGS.
  • the determination means 33 (or the alarm device 37) constitutes a breakout detection device.
  • the thermocouple group consisting of thermocouples 17, the local heat flux calculating means 29, the steady solidification interface heat input memory means 31, the heat flux profile calculating means 32, and the solidification seal thickness calculating means 34 are solidified.
  • Construct shell thickness estimation device For example, using a communication ⁇ Installation according to FIG. 12, for ultra low carbon steel, 2. was going to steering business in ⁇ rate of OmZ min, Q2 rather was the 4500KjZm 2, the value of Q 1 is Q 1 lSOOOkj / m 2 There was a risk of a heat deficient breakout.
  • the geometrically performed method is mainly used as a method for obtaining the integrated value of the heat flux corresponding to the overall heat flux and the size of the bump from the heat flux profile. Indicated.
  • the present invention is not limited to this.
  • the overall heat flux may be obtained by integrating the dull.
  • the molten copper in the mold in the continuous casting is between the hot water surface and the mold outlet.
  • the heat flux ql input to the solidification interface was measured, and the difference between the heat flux ql and the steady solidification interface heat input q2 reg due to the molten steel flow in the mold in the steady state (ql-q2 reg ) Since the heat flux profile from the top to the vertical outlet was obtained and the risk of breakout occurrence was determined based on this heat flux profile, the occurrence of breakout under various operating conditions It is easy and reliable to predict with high sensitivity, and breakout can be prevented reliably.
  • by determining and analyzing the overall heat flux Q1 and Q2 based on the heat flux profile it is possible to further determine the cause of each breakout, making it possible to take appropriate measures to avoid breakout based on the cause. .
  • the solidified shell thickness at the vertical outlet is estimated using the overall heat flux Ql or further Q2, the solidified shell thickness can be accurately estimated.
  • the present invention has various excellent effects in the field of continuous forging control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

Disclosed is a method and an apparatus for detecting breakouts in continuous casting and an apparatus therefor, for precisely detecting breakouts that occur in slabs during the continuous casting of molten steel, wherein: a heat flux q1 of heat input to the solidification interface from when the molten steel in the mold is at bath level to when it reaches the mold exit, is measured; a steady solidification interface heat input q2reg, caused by the flow of molten steel in mold in a steady state, is obtained based on the formula below (1); a heat flux profile is obtained for the difference between heat flux q1 and the steady solidification interface heat input q2reg (q1-q2reg) from when the molten steel is at bath level to when it reaches the mold exit; and whether a breakout occurred and whether the breakout is due to resolubility or heat extraction deficiency, is determined, based on the heat flux profile. q2reg=h⋅Δθ …………(1) Where: h = heat transfer coefficient between molten steel and solidification shell; and Δθ = degree of superheat of molten steel

Description

明 細 書 連続铸造におけるブレークアウト検出方法および装置、ブレークアウト防止装置、 凝固シェル厚み推定方法および装置、ならびに鋼の連続铸造方法 技術分野  Description Breakout detection method and apparatus in continuous forging, breakout prevention apparatus, solidified shell thickness estimation method and apparatus, and steel continuous forging method TECHNICAL FIELD
本発明は、溶銅の連続铸造において、铸片に発生するブレークアウト (breakout)を精度良く検 出し、さらには防止する方法及び装置に関するものである。 本発明はまた、前記ブレークアウト 検出方法を用いた鋼の連続錶造方法に関するものである。  The present invention relates to a method and an apparatus for accurately detecting and further preventing a breakout generated in a piece in continuous casting of molten copper. The present invention also relates to a continuous steel forging method using the breakout detection method.
本発明はさらにまた、溶鋼の連続铸造における凝固シェル厚み(solidification shell thickness) を推定する方法及び装置にも関するものである。 背景技術  The invention further relates to a method and apparatus for estimating the solidification shell thickness in the continuous casting of molten steel. Background art
連続铸造においては、铸型に注入された溶鋼は铸型内で冷却されることにより凝固シェルを 形成して錶型から引き抜かれる。 しかし、なんらかの原因により凝固シェルの形成が不十分にな り凝固シェル厚の薄い箇所が存在すると、この凝固シェル厚の薄い部位が铸型出口(铸型下端) に来たときに凝固シェルが破れて溶鋼が吹き出る、いわゆるブレークアウトが発生する危険があ る。  In continuous forging, the molten steel poured into the mold is cooled in the mold to form a solidified shell and is drawn out of the mold. However, if for some reason the formation of the solidified shell becomes insufficient and there is a portion with a thin solidified shell thickness, the solidified shell will be broken when this thinned solid shell portion comes to the vertical outlet (bottom lower end). As a result, there is a risk of a so-called breakout of molten steel.
プ'レークアウトが発生すると操業停止とならざるを得ず、ブレークアウトが発生しないような操業 条件を選択する必要があるが、ブレークアウトの発生を恐れて铸造速度を必要以上に遅くするこ とは、操業効率の悪化となり好ましくない。 このような背景から、高速铸造を行ないながらも、ブレ ークアウトの危険を的確に判断できる手法の開発が望まれ、様々な方法が提案されている。  If a breakout occurs, the operation must be stopped, and it is necessary to select an operating condition that does not cause a breakout. Is not preferable because the operation efficiency deteriorates. Against this background, development of a method that can accurately determine the risk of breakout while performing high-speed fabrication is desired, and various methods have been proposed.
例えば、特許文献 1 (特公昭 63— 53903号公報)においては、以下のような技術が開示され ている。  For example, Patent Document 1 (Japanese Patent Publication No. 63-53903) discloses the following technology.
铸型の外表面に配置した薄板型の表面熱流束計により、铸型の抜熱量(heat extraction of mold)に応じた熱流束を測定して、連続铸造におけるブレークアウトを防止する方法において、多 数の熱流束計により、铸型各部の局所的な熱流束を測定し、該熱流束の時間的変化を表した熱 流束波形の波高が急激に所定値を上まわった時に鐃込み速度を低下させ、前記波高が元に戻 るまで低速铸込みを行うことにより、ブレークアウトの発生を防止することを特徴とする連続铸造に おけるブレークアウト防止方法。 発明の開示 In a method for preventing breakout in continuous forging by measuring the heat flux according to the heat extraction of mold with a thin plate type surface heat flux meter placed on the outer surface of the saddle. The local heat flux of each part of the saddle type is measured with several heat flux meters, and the entrainment speed is measured when the wave height of the heat flux waveform representing the temporal change of the heat flux suddenly exceeds a predetermined value. A breakout prevention method in continuous fabrication, wherein the occurrence of breakout is prevented by lowering and slowing in until the wave height returns to its original state. Disclosure of the invention
〔発明が解決しょうとする課題〕  [Problems to be solved by the invention]
特許文献 1に開示された技術は熱流束計を用いて熱流束の変化を検出することによるブレー クアウト防止方法である。 铸型各部の局所的な熱流束は、铸型からの抜熱量を意味しており、 抜熱量が凝固シェルの形成に関連している。 したがって、熱流束の変化に異常があつたときに 凝固シェル厚の形成に異常が生じ、ブレークアウトの発生の危険があると予測することは一応合 理的である。  The technique disclosed in Patent Document 1 is a breakout prevention method by detecting a change in heat flux using a heat flux meter. The local heat flux of each part of the saddle shape means the amount of heat removed from the saddle shape, and the amount of heat removal is related to the formation of the solidified shell. Therefore, it is reasonable to predict that when there is an abnormality in the change in heat flux, there is an abnormality in the formation of the solidified shell thickness and there is a risk of breakout.
し力しながら、ブレークアウトの発生は、铸型出口において凝固シェル厚が所定の厚みに達し ていないことによって起こることを考えると、熱流束の変化のみによっては正確なブレークアウトの 危険性を把握するには必ずしも十分とは言えない。 なぜなら、铸型内での凝固シェル形成過程 の初期の段階において熱流束の異常があつたとしても、凝固シェル形成過程のその後の段階に おいて凝固シェルが形成され、铸型出口においで所定の厚みの凝固シェルが形成されていれば、 ブレークアウト発生の危険はないと判断できる場合もある力 である。  However, considering that the occurrence of breakout occurs when the thickness of the solidified shell does not reach the prescribed thickness at the vertical outlet, the risk of an accurate breakout can be grasped only by the change in heat flux. It's not always enough to do that. This is because even if there is an abnormality in the heat flux in the early stage of the solidified shell formation process in the vertical mold, a solidified shell is formed in the subsequent stage of the solidified shell formation process, If a solidified shell with a thickness is formed, it may be judged that there is no risk of breakout.
つまり、従来例に示された局所熱流束の変化のみによって、ブレークアウト発生の危険を予測 することは十分正確な指標とは言いがたレ、ものであった。  In other words, predicting the risk of breakout based only on the change in local heat flux shown in the conventional example was not a sufficiently accurate indicator.
上記のように、ブレークアウトの発生は铸型出口における凝固シェル厚みに直接関わるもので あり、凝固シェル厚みを精度よく推定できればブレークアウト発生の危険についても精度よく判断 できる。 すなわち、铸型出口における凝固シェル厚が所定の厚みに達してレ、るかどうかという事 実に、密接に関連する指標を見いだすことが重要であると発明者は考えた。  As described above, the occurrence of breakout is directly related to the thickness of the solidified shell at the vertical outlet, and if the thickness of the solidified shell can be estimated accurately, the risk of breakout can be accurately determined. That is, the inventor considered that it is important to find an index closely related to whether the solidified shell thickness at the vertical outlet reaches a predetermined thickness.
したがって、本発明の目的とするところは、溶鋼の連続铸造において、铸片に発生するブレー クアウトをより精度良く検出し、さらにはこれを防止する方法及び装置を提供することである。 本 発明の目的はさらに、鎵型出口における凝固シェル厚みをより精度良く推定する方法および装置 を提供することにある。  Accordingly, an object of the present invention is to provide a method and an apparatus for detecting breakout generated in a piece more accurately and preventing it in continuous forging of molten steel. Another object of the present invention is to provide a method and apparatus for estimating the thickness of the solidified shell at the vertical outlet more accurately.
〔課題を解決するための手段〕 [Means for solving the problems]
<現象の調査おょぴ解析 >  <Population research and analysis>
凝固シェル厚は铸型と铸片の間の抜熱状態に密接に関係している。 すなわち、凝固シェル 厚が薄いと、鐃片から铸型への伝熱量が多くなり抜熱量が多くなるし、逆に凝固シェル厚が厚い と、铸片カ 铸型への伝熱量が少なくなり抜熱量が少なくなる。 発明者はこの事実をより詳細に 検討すベぐ実際の铸型内における具体的な抜熱状態を調べることとした。  The thickness of the solidified shell is closely related to the heat removal state between the saddle mold and the scissors. In other words, if the solidified shell thickness is thin, the amount of heat transferred from the piece to the bowl increases and the amount of heat removed increases. Conversely, if the thickness of the solidified shell is thick, the amount of heat transferred to the piece cup and bowl decreases. The amount of heat is reduced. The inventor decided to examine this fact in more detail and to examine the specific heat removal state in the actual saddle type.
抜熱状態を検知するには、鐯型の各部位における熱流束を求める必要があるが、これは以下 のように行なうことができる。 図 2は铸型 1の断面図であり、タンディッシュ 40の底部に接続され、铸型 1内に設置された浸 漬ノズル (immersion nozzle) 3から、溶鋼 5を吐出している(矢印)状態を示している。 湯面には モールドパウダー 7 (層として示す)が添加され、このモールドパウダー 7が铸型 1と溶鋼 5の隙間 に流れ込み潤滑剤の役割をはたす。 溶鋼 5はこのモールドパウダー 7を介して铸型 1に抜熱さ れ、凝固シェル 9を形成しな力 铸型出口に向力 て引き抜かれる。 In order to detect the heat removal state, it is necessary to obtain the heat flux at each part of the saddle type. This can be done as follows. Fig. 2 is a cross-sectional view of vertical mold 1, which is connected to the bottom of tundish 40, and molten steel 5 is discharged from immersion nozzle 3 installed in vertical mold 1 (arrow) Is shown. Mold powder 7 (shown as a layer) is added to the molten metal surface, and this mold powder 7 flows into the gap between the mold 1 and the molten steel 5 to act as a lubricant. The molten steel 5 is extracted by the mold 1 through the mold powder 7, and is pulled out toward the vertical mold outlet without forming the solidified shell 9.
図 3は铸型 1を形成している铸型銅板 11の一部を拡大して示す断面図である。 熱流束を求 めるためには铸型銅板 11における温度勾配を検出する必要があり、これを検出するために熱電 対 17が用いられる。 この熱電対 17は、図 3に示すように、铸型銅板 11の外側面に形成された 冷却水通路 13の底部に孔 15をあけ、その中に深さ方向に一定の距離を離した 2箇所に埋設さ れている。 この埋設した熱電対 17の出力から温度勾配を検出し、この温度勾配に基づいて計 算により熱流束を求めることができる。  FIG. 3 is an enlarged cross-sectional view showing a part of the vertical copper plate 11 forming the vertical mold 1. In order to obtain the heat flux, it is necessary to detect the temperature gradient in the vertical copper plate 11, and a thermocouple 17 is used to detect this. As shown in FIG. 3, the thermocouple 17 has a hole 15 formed in the bottom of the cooling water passage 13 formed on the outer surface of the vertical copper plate 11, and a certain distance in the depth direction 2 is formed therein. It is buried in the place. A temperature gradient is detected from the output of the embedded thermocouple 17, and the heat flux can be obtained by calculation based on this temperature gradient.
局所熱流束 ql (J Vm2)の算出は、 2本の熱電対 17の検出温度を T1 C)、T2 CC)、埋設 間隔を d(m)、及び铸型 1の熱伝導率を; L (jZs'm'^)として、次式を用いて行なう。 The local heat flux ql (J Vm 2 ) is calculated by calculating the detection temperature of the two thermocouples 17 (T1 C), T2 CC), the embedding interval d (m), and the thermal conductivity of the vertical type 1; L As (jZs'm '^), use the following formula.
ql = λ (Tl— T2) Zd  ql = λ (Tl— T2) Zd
発明者の調査では、铸型厚み方向に設置した 2本の熱電対 17からなる一対の熱電対を、例え ば铸型短片(水平断面が直方体を成す铸型において、短い方の辺)の場合は図 4の黒丸印によ つて示すように通常の湯面位置より下方位置に、高さ 40〜200mmおきに合計で 9箇所設置した。 これらめ熱電対 17からの出力信号に基づいて、上記の式により局所熱流束を求め、この局所熱 流束と湯面力 の位置との関係につ ヽて調査を行なった。 図 5はこの調査結果の一例を示すグラフであり、縦軸が局所熱流束 (単位: jZs'm2)を示し、 横軸が湯面からの距離(単位: mm)を示している。 なお、本明細書においては、縦軸を局所熱 流束、横軸を湯面からの距離として、局所熱流束と湯面からの距離との関係を示したグラフの形 状を熱流束プロファイルとレ、う。 According to the inventor's research, a pair of thermocouples 17 arranged in the vertical direction of the vertical shape is a vertical short piece (for example, the shorter side in a vertical shape with a horizontal cross section). As shown by the black circles in Fig. 4, a total of nine places were installed at a height of 40 to 200 mm below the normal surface position. Based on the output signal from these thermocouples 17, the local heat flux was obtained by the above equation, and the relationship between the local heat flux and the position of the molten metal surface force was investigated. Fig. 5 is a graph showing an example of the results of this investigation. The vertical axis shows the local heat flux (unit: jZs'm 2 ), and the horizontal axis shows the distance from the molten metal surface (unit: mm). In this specification, the shape of the graph showing the relationship between the local heat flux and the distance from the molten metal surface is shown as the heat flux profile, where the vertical axis is the local heat flux and the horizontal axis is the distance from the molten metal surface. Yeah.
図 5のグラフに示すように、局所熱流束は湯面力 铸型出口方向に向かって減少し、湯面から の距離力 S400mmの近傍で極小値をとり、その後、一旦増加傾向を示し、その増加傾向は湯面か らの距離が約 600mm近傍で極大値を示し、その後再び減少して 、る。  As shown in the graph of Fig. 5, the local heat flux decreases in the direction of the molten metal surface force toward the vertical outlet, takes a local minimum in the vicinity of the distance force S400mm from the molten metal surface, and then once shows an increasing trend. The increasing tendency shows a maximum value when the distance from the molten metal surface is about 600 mm, and then decreases again.
発明者は、局所熱流束が铸型出口方向に向かって減少傾向からー且上昇傾向に転ずること に注目し、さらに検討を重ねた。  The inventor paid attention to the fact that the local heat flux turned from a decreasing tendency toward a vertical outlet toward the vertical outlet direction, and further studied.
局所熱流束が極小値を示す位置は湯面からの距離が 400mm近傍であり、この位置は、浸漬 ノズル 3の吐出ロカ 吐出される溶鋼 5の吐出流(flow from the spout:矢印)が錶型短辺に衝突 する位置と一致している(図 2参照)。 このような局所熱流束の変化と溶鋼吐出流との関係は以 下のことを物語っている。 - 図 5に示すように、湯面力 鍚型出口方向に行くにしたがって局所熱流束が減少しているのは、 熱抵抗が増したこと、すなわち、図 2に示すように凝固シェル厚が徐々に厚くなつていることを示し ている。 The position where the local heat flux shows the minimum value is a distance from the molten metal surface of about 400 mm. The position of the discharge flow of the molten steel 5 (flow from the spout: arrow) of the immersion nozzle 3 is vertical. It coincides with the position where it collides with the short side (see Fig. 2). The relationship between such changes in local heat flux and molten steel discharge flow is as follows. Tells the following: -As shown in Fig. 5, the local heat flux decreases in the direction of the hot water surface force toward the vertical outlet, because the thermal resistance increased, that is, the solidified shell thickness gradually increased as shown in Fig. 2. It shows that it is getting thicker.
そして、浸漬ノズル 3から吐出される溶鋼 5の吐出流が凝固シェル 9に衝突する位置において は、凝固シェル 9の再溶解が起こり、凝固シェル厚みが減少し、この薄くなつた凝固シェル 9の凝 固界面に溶鋼流動による熱が加わり局所熱流束が上昇したものと考えられる。 .  Then, at the position where the discharge flow of the molten steel 5 discharged from the immersion nozzle 3 collides with the solidified shell 9, the solidified shell 9 is remelted, the thickness of the solidified shell is reduced, and the thinned solidified shell 9 is solidified. It is thought that the heat generated by the molten steel flow is applied to the solid interface and the local heat flux is increased. .
そしてさらに铸造方向の下流に行くにしたがって、溶鋼流動の影響がなくなり、再び局所熱流 束が減少してレ、ることから凝固シェル厚が厚くなつて 、ると考えられる。  Further, as it goes further downstream in the forging direction, the influence of molten steel flow disappears, and the local heat flux decreases again, which is considered to increase the thickness of the solidified shell.
以上の検討から、ある瞬間における凝固シェル 9の形状は、図 2に示されるように、湯面から局 所熱流束の極小値の位置までは凝固シェル 9の厚みが増し、また局所熱流束の極小値から極大 値までは凝固シェル 9の厚みが減少し、さらに局所熱流束の極大値以降は再び凝固シェル 9の 厚みが増してレ、ると考えられる。  From the above considerations, the shape of the solidified shell 9 at a certain moment is shown in Fig. 2. The thickness of the solidified shell 9 increases from the molten metal surface to the position of the local heat flux, and the local heat flux From the minimum value to the maximum value, the thickness of the solidified shell 9 decreases, and after the local heat flux maximum value, the thickness of the solidified shell 9 increases again.
铸型内ではこのように凝固シェル厚が厚くなつたり薄くなつたりする過程を経て铸型出口での 凝固シェル厚が決定されるのである。  In the vertical shape, the thickness of the solidified shell at the vertical shape outlet is determined through the process of increasing or decreasing the thickness of the solidified shell.
铸型内において凝固シヱル厚が成長する程度と、凝固シヱル 9が再溶解することによってー且 形成された凝固シェル 9が薄くなる程度との関係は、铸型出口における凝固シェル厚に直接的に 関係していると考えられる。 さらに、ブレークアウトの発生が铸型出口における凝固シェル厚に 関係することを考えると、上記の 2つの程度の関係がブレークアウトの発生の有無に深く関わると 考えられる。  The relationship between the extent to which the solidified seal thickness grows in the mold and the degree to which the solidified shell 9 formed by re-dissolution of the solidified seal 9 becomes thinner is directly related to the solidified shell thickness at the mold outlet. It seems to be related. Furthermore, considering that the occurrence of breakout is related to the thickness of the solidified shell at the vertical outlet, the above two relationships are considered to be deeply related to the presence or absence of breakout.
そこで、発明者は上記の 2つの程度すなわち凝固シェル厚が成長する程度と一旦形成された凝 固シェル 9が薄くなる程度の関係とブレークアウト発生との関連を調べるべくさらに検討を重ねた。 Therefore, the inventor conducted further studies to investigate the relationship between the above-mentioned two levels, that is, the degree of growth of the solidified shell thickness and the degree of thinning of the solidified shell 9 once formed, and the occurrence of breakout.
<凝固界面入熱(solidification interface heat input)の導入 >, <Introduction of solidification interface heat input>,
仮に铸型內で溶銅流による凝固シェルの再溶解という現象が発生しないとした場合、例えば 浸漬ノズルからの吐出がなく铸型内の溶鋼が引き抜かれるだけの場合、凝固シェルは湯面から 铸型出口に向かって徐々にその厚みを増していくと考えられる。  If the phenomenon of remelting of the solidified shell due to the molten copper flow does not occur in the vertical mold, for example, when there is no discharge from the immersion nozzle and only the molten steel in the vertical mold is pulled out, the solidified shell is removed from the molten metal surface. It is thought that the thickness gradually increases toward the mold outlet.
このような溶鋼流による凝固シェルの再溶解という現象が発生しない状態を想定して、図 5と同 様に横軸を湯面からの距離、縦軸を局所熱流束としたグラフを想定すると、図 5の場合に見られ た途中の盛り上がりのなレ、なだらかな減少曲線になると想定される。  Assuming that the phenomenon of remelting of the solidified shell due to the molten steel flow does not occur, and assuming a graph where the horizontal axis is the distance from the molten metal surface and the vertical axis is the local heat flux, as in Fig. 5. In the case of Fig. 5, it is assumed that there will be a gradual rise and a gentle decrease curve.
そして、この場合には凝固シェルの铸型出口での厚みは抜熱量を積算したものに比例すると 考えられる。 つまり、このような仮定の状況であるなら、上記グラフの熱流束プロファイルを、ブレ ークアウト発生の指標に容易にできると言える。 In this case, the thickness of the solidified shell at the vertical outlet is considered to be proportional to the sum of the heat removal. In other words, if the situation is such an assumption, the heat flux profile in the above graph is blurred. It can be said that it can be easily used as an indicator of the occurrence of a breakout.
他方、現実の铸型内においては浸漬ノズルからの吐出流による溶鋼流 (以下、単に「溶鋼流」 という)の影響で凝固シェルの再溶解が生じており、この再溶解によって凝固シェル 9が薄くなると 共に抜熱量が増大するという現象が生じている。  On the other hand, in an actual vertical mold, remelting of the solidified shell occurs due to the influence of the molten steel flow (hereinafter simply referred to as “molten steel flow”) due to the discharge flow from the submerged nozzle. As a result, the phenomenon of increased heat removal has occurred.
したがって、溶鋼流の影響のある状態においては、凝固シェル厚の成長する程度は、単に抜 熱量に比例するのではなぐ実測される抜熱量から溶鋼流の影響による抜熱量を差し引いたもの に比例すると考えられる。この溶鋼流の影響による抜熱量は、溶鋼流 よる凝固界面への入熱 (以下、単に「凝固界面入熱」とレ、う。 )として評価できる。  Therefore, in a state where there is an influence of the molten steel flow, the degree of growth of the solidified shell thickness is not proportional to the amount of heat removal but is proportional to the measured amount of heat removal minus the amount of heat removal due to the influence of the molten steel flow. Conceivable. The amount of heat removal due to the influence of the molten steel flow can be evaluated as heat input to the solidification interface by the molten steel flow (hereinafter simply referred to as “solidification interface heat input”).
このように考えると、浸漬ノズルから溶鋼を吐出している操業状態においては、凝固'シェルが薄 くなる程度は凝固界面入熱で評価でき、他方、凝固シェルが成長する程度は、熱電対によって測 定できる局所熱流束力 凝固界面 Λ熱を差し引いたもので評価できる。  Considering this, in the operating state in which molten steel is discharged from the immersion nozzle, the degree to which the solidified shell becomes thin can be evaluated by solidification interface heat input, while the degree to which the solidified shell grows depends on the thermocouple. Local heat flux force that can be measured Solidification interface Λ It can be evaluated by subtracting heat.
よって、これらの 2つの評価量を比較検討することで、ブレークアウト発生の指標とできる。 ところで、凝固界面入熱を c^ iZs'm2)とすると、この凝固界面入熱 q2は、溶鋼から凝固界面 への熱伝達係数を h(J/Vm2 'で)、溶銅の過熱度を Δ Θ (で)とすると、次式で表すことができ る。 Therefore, by comparing these two evaluation quantities, it can be used as an indicator of breakout occurrence. By the way, if the solidification interface heat input is c ^ iZs'm 2 ), this solidification interface heat input q2 is the heat transfer coefficient from the molten steel to the solidification interface h (in J / Vm 2 '), and the degree of superheat of the molten copper Let be Δ Θ (in) and it can be expressed by the following equation.
q2=h- Δ Θ (1)  q2 = h- Δ Θ (1)
但し、 h= l. 22 X 105 XV° 8 However, h = l. 22 X 10 5 XV ° 8
V:溶鋼流速 (mZs)  V: Molten steel flow velocity (mZs)
厶 0 =T0-TS(°C) 厶 0 = T 0 -T S (° C)
T0 :铸型內溶銅温度 (で) T 0: vertical type molten copper temperature (in)
Ts :溶銅固相線温度 (°C) T s: Molten copper solidus temperature (° C)
なお、铸型内溶鋼温度 T0(°C)は、铸型内溶鋼温度を実測してもよいし、例えばタンディッシュ (TD)内溶鋼温度 (実測値)に基づいて次の鎳型内溶鋼温度推定式によって算出してもよい。 The mold inner molten steel temperature T 0 (° C) may be obtained by actually measuring the mold inner molten steel temperature, for example, based on the tundish (TD) molten steel temperature (actually measured value) You may calculate with a temperature estimation formula.
T0 = 705.156+0.544086 · TTD― 2.35053 · Vc - 0.00303 · W+18.12663 · (0.10181nFC - 0.3362) T 0 = 705.156 + 0.544086T TD ― 2.35053Vc-0.00303W + 18.12663 (0.10181nFC-0.3362)
但し、 TTD: TD内溶鋼温度 (°C) (実測値) However, T TD : Temperature of molten steel in TD (° C) (actual value)
Vc:铸造速度 (mz min) '  Vc: Forging speed (mz min) '
W:铸造幅 (m) (実測値)  W: Forging width (m) (actual value)
FC :印加電流値 (A) (実測値)  FC: Applied current value (A) (actual value)
上記のように、凝固界面入熱 q2は熱伝達係数 hに関係し、熱伝達係数 hは溶銅流速 Vに関係 する量である。そのため、凝固界面入熱 q2をオンラインで測定するには、錡型内の溶鋼流速 Vを オンラインで測定する必要がある。 し力しながら、溶鋼流速 Vを操業状態においてオンラインで 測定することは難しい。 As described above, the solidification interface heat input q2 is related to the heat transfer coefficient h, and the heat transfer coefficient h is an amount related to the molten copper flow velocity V. Therefore, in order to measure the solidification interface heat input q2 online, it is necessary to measure the molten steel flow velocity V in the vertical mold online. While operating, the molten steel flow velocity V can be It is difficult to measure.
そこで、発明者は、事前に種々の铸造速度において铸造された铸片をサンプリングし、この铸 片におけるデンドライト傾角(dendrite angle)から各铸造速度における溶鋼流速値を求めて、この 溶鋼流速値に基づく凝固界面入熱 q2を求めることを考えた。 ここでデンドライト傾角とは、铸片 表面に対する法線方向に対して、表面力 厚み方向に伸びてレ、るデンドライトの一次枝の傾角で あり、溶鋼流速値と相関することが知られている。  Therefore, the inventor samples the pieces produced in advance at various forging speeds, obtains the molten steel flow velocity values at each forging speed from the dendrite angle in the pieces, and based on the molten steel flow velocity values. We considered obtaining the solidification interface heat input q2. Here, the dendrite inclination is the inclination of the primary branch of the dendrite extending in the surface force thickness direction with respect to the normal direction to the surface of the slab, and is known to correlate with the molten steel flow velocity value.
この事前に求めた凝固界面入熱 q2を「定常状態における凝固界面入熱 q2jと称し、定常凝固 界面入熱 q2resと表記するものとする。なお、定常状態という文言を用いている趣旨は、浸漬ノズル に詰まり等力 り溶鋼流速に偏流があるような異常状態を排除する趣旨である。 The solidification interface heat input q2 obtained in advance is referred to as “solidification interface heat input q2j in a steady state, and is expressed as steady solidification interface heat input q2 res . The purpose of using the term steady state is as follows. The purpose is to eliminate an abnormal state where the immersion nozzle is clogged and has a drift in the molten steel flow velocity.
そして、発明者は、铸型出口における凝固シェル厚みを推定したいあるいはブレークアウト発 生の有無を評価したい、操業状態において、熱電対によって測定した局所熱流束から定常凝固 界面入熱 q2regを差し引いた熱量について熱流束プロファイルを求め、この熱流束プロファイルに 基づいて铸型出口における凝固シェル厚あるいはブレークアウトの発生の有無の評価をすること を考えた。 このように実測された局所熱流束から定常凝固界面入熱 q2regを差し弓 Iくことを考えた 理由は以下の通りである。 Then, the inventor wanted to estimate the thickness of the solidified shell at the vertical outlet or evaluate the occurrence of breakout, and subtracted the steady-state solidification interface heat input q2 reg from the local heat flux measured by the thermocouple in the operating state. A heat flux profile was obtained for the amount of heat, and based on this heat flux profile, it was considered to evaluate the thickness of the solidified shell at the vertical outlet or the occurrence of breakout. The reasons for considering the steady-state solidification interface heat input q2 reg from the measured local heat flux in this way are as follows.
操業状態における実測された局所熱流束から定常凝固界面入熱 q2regを差し引いた熱量につ いての熱流束プロファイルがなだらかに減少する曲線となった場合には、この熱流束プロファイル が上述した浸漬ノズルからの吐出がなく铸型内の溶鋼が引き抜かれるだけの場合の熱流速プロ ファイルと同じであることを意味する。 このことは操業状態における凝固界面入熱 q2が定常凝固 界面入熱 q2resと同じであることを意味している。 つまり、この状態の場合には凝固シェルを薄く する程度は通常の浸漬ノズルからの溶鋼流によるもの、つまり定常状態と同じであり、このような状 況であればあれば铸型の冷却が通常通り行なわれており、凝固シェルが通常通り成長すればブ レークアウトは発生しないと評価できる。 また、このような状況であれば実測された局所熱流束か ら定常凝固界面入熱 q2regを差し引レ、た熱量ついての熱流束プロファイルに基づレ、て铸型出口で の凝固シェル厚みを推定することが可能である。 If the heat flux profile for the amount of heat obtained by subtracting the steady solidification interface heat input q2 reg from the measured local heat flux in the operating state becomes a gradually decreasing curve, this heat flux profile is the above-mentioned immersion nozzle. This means that it is the same as the heat flow rate profile in the case where the molten steel in the mold is simply drawn out without discharging from the mold. This means that the solidification interface heat input q2 in the operating state is the same as the steady state solidification interface heat input q2 res . In other words, in this state, the degree of thinning of the solidified shell is the same as in the steady state, that is, due to the molten steel flow from the normal immersion nozzle. It can be evaluated that breakout does not occur if the solidified shell grows normally. In this situation, the steady-state solidification interface heat input q2 reg is subtracted from the measured local heat flux, and the solidification shell thickness at the vertical outlet is calculated based on the heat flux profile for the amount of heat. Can be estimated.
なお留意すべき点として、凝固界面入熱 q2が定常凝固界面入熱 q2regと同じ場合には、凝固 界面入熱 q2の増加によって凝固界面が再溶解することに起因するブレークアウト(以下、「再溶 解性ブレークアウト」と 、う)の発生危険はなレ、と言える力 この場合であっても溶鋼カ^ニスカスか ら鋒型下端出口まで移動する間の凝固シェル厚の成長に寄与する抜熱量が小さぐこの移動の 際に凝固シェルが十分成長ぜずにその厚みが薄い場合には凝固シェル厚の成長に寄与する抜 熱量が小さいことに起因するブレークアウト(以下、単に「抜熱不足性ブレークアウト Jという)の発 生の危険はある。 ' . 他方、熱電対によって測定した局所熱流束から定常凝固界面入熱 q2regを差し引いた熱量に 関する熱流束プロファイルが湯面からある距離の位置で盛り上がるような場合、すなわち熱流束 プロファイルが極小値を有しコブができるような場合には、定常凝固界面入熱 q2regよりも実際の凝 固界面入熱 q2が大きいことを意味し、この状態では定常状態よりも凝固シェルの再溶解の程度 が高いと考えられる。 例えば浸漬ノズノレの片詰まりなどによって铸型內において溶鋼流に偏流 が生じ、測定対象としてレヽる铸型界面の入熱が通常よりも増大したような場合である。 It should be noted that when the solidification interface heat input q2 is the same as the steady solidification interface heat input q2 reg , the breakout caused by the solidification interface remelting due to the increase in the solidification interface heat input q2 (hereinafter referred to as “ In this case, it contributes to the growth of the solidified shell thickness while moving from the molten steel caniscus to the vertical bottom exit. If the solidified shell does not grow sufficiently during this movement when the amount of heat removal is small and the thickness is thin, a breakout due to the small amount of heat removal contributing to the growth of the solidified shell thickness (hereinafter simply referred to as “heat removal”). There is a risk of occurrence of deficiency breakout J). On the other hand, if the heat flux profile related to the amount of heat obtained by subtracting the steady solidification interface heat input q2 reg from the local heat flux measured by the thermocouple rises at a certain distance from the molten metal surface, that is, the heat flux profile has a minimum value. This means that the actual solidification interface heat input q2 is larger than the steady solidification interface heat input q2 reg , and in this state, the degree of remelting of the solidified shell is less than in the steady state. It is considered high. For example, a drift in the molten steel flow occurs in the vertical mold due to the clogging of the immersion nozzle, and the heat input at the vertical interface that is the object to be measured increases more than usual.
この場合には、コブの大きさの程度が通常の凝固界面入熱 q2よりも大きい入熱を表していると 考えられる。 すなわち、このコブの大きさの程度が異常な溶鋼流による凝固シェルを再溶解させ、 凝固シェル厚みを薄くする程度であると評価でき、これが大きい場合には铸型の冷却が通常通り 行なわれていたとしても、再溶解性ブレークアウトの発生の危険性があると評価できる。  In this case, it is considered that the size of the bumps represents a heat input larger than the normal solidification interface heat input q2. In other words, it can be evaluated that the degree of the size of the bumps is such that the solidified shell caused by the abnormal molten steel flow is remelted and the thickness of the solidified shell is reduced, and if this is large, vertical cooling is performed as usual. Even so, it can be evaluated that there is a risk of occurrence of a remeltable breakout.
このように、実測された局所熱流束から定常凝固界面入熱 q2resを差し引 、た熱量についての 熱流束プロファイルを求めることで、その熱流束プロファイルにおけるコブの有無やその大きさの 程度によって凝固シェルの再溶解の程度が定常状態と比べてどの程度であるかを明確に把握で き、铸型出口における凝固シェル厚みを推定することが可能となるとともに、当該厚み等に基づい て再溶解性ブレークアウト発生の危険性の評価が可能なのである。 In this way, by subtracting the steady-state solidification interface heat input q2 res from the measured local heat flux and obtaining the heat flux profile for the amount of heat, solidification depends on the presence or absence of bumps and the magnitude of the heat flux profile. It is possible to clearly grasp the degree of shell remelting compared to the steady state, and it is possible to estimate the thickness of the solidified shell at the vertical outlet, and the remeltability based on the thickness etc. The risk of breakout can be evaluated.
またコブを除いた抜熱熱量を求めることにより抜熱不足性ブレークアウト発生の危険性の評価 も可能となるのである。  In addition, it is possible to evaluate the risk of a heat-out insufficient breakout by obtaining the heat removal amount excluding the bumps.
<総括熱流束 Ql、 Q2の導入 > <Introduction of general heat flux Ql, Q2>
そこで、発明者は種々の铸造速度の場合について、デンドライト傾角から溶鋼流速を求め、そ れぞれの場合について、定常凝固界面入熱 q2resを求め、この定常凝固界面入熱 q2regを操業状 態において熱電対によって測定される抜熱量力 差し引き、それについて熱流束プロファイルを 求め、その熱流束プロファイルに基づいて凝固シェル厚の推定およびブレークアウト発生の有無 についてさらに検討した。 Therefore, the inventor obtained the molten steel flow velocity from the dendritic tilt angle for various forging speeds, obtained the steady solidification interface heat input q2 res for each case, and obtained this steady solidification interface heat input q2 reg for the operating conditions. The heat flux profile subtracted by the thermocouple in the state was obtained, and the heat flux profile was obtained. The solidified shell thickness was estimated based on the heat flux profile, and the occurrence of breakout was further investigated.
以下、この検討内容を具体的に説明する。  Hereinafter, the contents of the examination will be specifically described.
図 6は、铸造速度 Vc = 2. 54mZminで、铸造幅 W= 1100mmの場合において、铸片のデ ンドライト傾角に基づいて、溶鋼流速 (mZs)と湯面からの距離 (mm)の関係を求めたものを、溶 銅流速を縦軸とし、湯面力ちの距離を横軸としてグラフ化したものである。  Figure 6 shows the relationship between the molten steel flow velocity (mZs) and the distance from the molten metal surface (mm) based on the dendrite tilt angle of the slab when the forging speed Vc = 2.54 mZmin and the forging width W = 1100 mm. The graph is graphed with the molten metal flow velocity on the vertical axis and the distance of the molten metal surface on the horizontal axis.
このグラフから溶鋼流速 V(m/s)を求め、上記(1)式に基づいて定常凝固界面入熱 q2resを求 める。 そして、操業状態における局所熱流束を熱電対で測定し、この測定した操業状態と同じ 铸造速度における定常凝固界面入熱 q2re8を測定値力 差し引き、差し引いた熱量における熱流 束プロファイルを求める。 図 7は縦軸が局所熱流束 (jZs 'm2)を示し、横軸が湯面からの距離 (mm)を示しており、また グラフにおける黒丸の値 (D1)が熱電対による測定値を示し、白丸の値 (D2)が熱電対による測 定値カ 定常凝固界面入熱 q2regを差し弓 Iレ、た値 (ql一 q2reg)を示してレ、る。 The molten steel flow velocity V (m / s) is obtained from this graph, and the steady solidification interface heat input q2 res is obtained based on the above equation (1). Then, the local heat flux in the operating state is measured with a thermocouple, and the steady-state solidification interface heat input q2 re8 at the same forging speed as the measured operating state is subtracted from the measured value force to obtain the heat flux profile for the subtracted heat amount. In Fig. 7, the vertical axis shows the local heat flux (jZs' m 2 ), the horizontal axis shows the distance (mm) from the molten metal surface, and the black circle value (D1) in the graph shows the value measured by the thermocouple. The white circle value (D2) indicates the value measured by the thermocouple, the steady-state solidification interface heat input q2 reg , and the value (ql-q2 reg ).
図 8は図 7における白丸によって描かれたグラフ、すなわち(ql— q2res)の熱流束プロファイル を模式的に示した図であり、グラフによって囲まれた面積すなわち局所熱流束の積算値 (総括熱 流束)の求め方の一例を説明する説明図である。 Fig. 8 is a graph schematically showing the heat flux profile of (ql-q2 res ) drawn by the white circles in Fig. 7. The area enclosed by the graph, that is, the integrated value of the local heat flux (overall heat It is explanatory drawing explaining an example of how to obtain | require (flux).
以下、図 8に基づいて総括熱流束の求め方を説明する。  Hereinafter, the method for obtaining the overall heat flux will be described with reference to FIG.
まず、図 8に示すようにグラフを複数の台形に分割することにより、各台形の面積(Q1— 1〜Q 1 - 7)を求め、それらを足し算することで全体の面積 Qを求める。  First, as shown in FIG. 8, the graph is divided into a plurality of trapezoids to obtain the area of each trapezoid (Q1-1 to Q1-7), and the total area Q is obtained by adding them.
そして、グラフにおける極小点を A、極大点を B、铸型出口の点を Cとし、三角形 ABCをコブと 捉え、このコブの面積すなわち三角形 ABCの面積 Q2を以下のようにして求める(図 9参照)。 点 Aに対応する横軸上の点を A'、点 Cに対応する横軸上の点を C'とし、台形 AC TA'の面 積 Q1— 8を求め、この Q1— 8と Ql— 1〜Q1— 3を足し算した面積を Q1とすると、 Q2 = Q-Q1 として求まる。  The minimum point in the graph is A, the maximum point is B, the saddle-shaped exit point is C, the triangle ABC is regarded as a bump, and the area of this bump, that is, the area Q2 of the triangle ABC is obtained as follows (Fig. 9). reference). The point on the horizontal axis corresponding to point A is A ', the point on the horizontal axis corresponding to point C is C', and the area Q1-8 of trapezoid AC TA 'is obtained, and this Q1-8 and Ql-1 ~ Q1— If the area obtained by adding 3 is Q1, Q2 = Q-Q1.
このようにして求めた Q1と Q2に基づいて、それぞれの錄造条件におけるブレークアウト発生 の有無との関係について検討した。その結果を表 1に示す。 ブレークアウトの有無については、 シェル厚みが閾値 6mm以下となった場合、ブレークアウト発生「有り」と判定した。 Based on Q1 and Q2 obtained in this way, we examined the relationship between the occurrence of breakout in each forging condition. The results are shown in Table 1. With regard to the presence or absence of breakout, it was determined that a breakout occurred when the shell thickness was 6mm or less.
Q1 Q2 ブレークアウト 検討例 Q1 Q2 Breakout Example
発生有無  Occurrence
1 19000 1200 無し  1 19000 1200 None
2 17900 1450 無し  2 17900 1450 None
3 25000 540 無し  3 25000 540 None
4 27000 Τ500 無し  4 27000 Τ500 None
5 28000 3500 無し  5 28000 3500 None
6 31500 5000 無し  6 31500 5000 None
7 33500 8500 無し  7 33500 8500 None
8 27500 6850 無し  8 27500 6850 None
9 26000 10050 無し  9 26000 10050 None
10 つ 19500 3550 無し  10 19500 3550 None
11 18900 4090  11 18900 4090
Ε 無し  Ε None
12 17800 3950 12 17800 3950
Μ ( 無し  Μ (None
13 17900 4500 有 y  13 17900 4500 Y
14 19000 5700 有 y  14 19000 5700 Yes y
t5 19070 5950 有リ  t5 19070 5950 Yes
16 19450 7500 有り  16 19 450 7500 Yes
17 20570 8500 有り  17 20570 8500 Yes
ΐ& 14000 1000 有り  ΐ & 14000 1000 Yes
19 ί3300 100 有り  19 ί3300 100 Yes
20 12500 - 1020 CM 有り  20 12500-1020 CM available
21 11700 1500 有リ  21 11700 1500 Yes
22 10500 3200 有り  22 10500 3200 Yes
23 9750 1500 有り  23 9750 1500 Yes
24 8050 300 有 y  24 8050 300 Yes y
25 7650 450 有り  25 7650 450 Yes
26 6500 270 有り  26 6500 270 Yes
27 5450 55 有り  27 5450 55 Yes
28 4890 150 有り  28 4890 150 Yes
29 14500 108Q0 有り  29 14500 108Q0 Yes
30 13000 9000 有り  30 13000 9000 Yes
31 12700 9500 有り  31 12700 9500 Yes
32 10700 8000 有り  32 10700 8000 Yes
33 10200 7500 有り  33 10 200 7500 Yes
34 9000 6000 有り  34 9000 6000 Yes
35 7050 5500 有リ  35 7050 5500 Yes
36 8650 8200 有り  36 8650 8200 Yes
37 7400 4500 有 y  37 7400 4500 Y
38 5100 4700 有 y  38 5100 4700 Yes y
39 7150 6800 有り  39 7150 6800 Yes
40 6950 6500 有 y  40 6950 6500 Yes y
図 10は、横軸を Ql(kjZm2)、縦軸を Q2(kjZm2)とした座標平面に、表 1に示した数値をプ ロットし、さらにブレークアウト発生の有無との関係で座標平面を 5つの領域に分割して示したもの である。 領域の境界線は、 Q l ( a l) = 15000 (kj/m2)、 Q l ( a 2) = 21000 (kj/m2)、 Q2 ( i3 ) =4500 (kjZm2)である。 Figure 10 plots the numerical values shown in Table 1 on the coordinate plane with the horizontal axis Ql (kjZm 2 ) and the vertical axis Q2 (kjZm 2 ), and the coordinate plane in relation to the occurrence of breakout. Is divided into five areas. The boundaries of the region are: Q l (al) = 15000 (kj / m 2 ), Q l (a 2) = 21000 (kj / m 2 ), Q2 (i3) = 4500 (kjZm 2 ).
なお、図 10に示した領域において、領域(1)〜(3)はブレークアウト発生危険有りの領域 (す なわち、上記調査でブレークアウト判定「有り」となった領域)であり、領域 (4)、(5)はブレークァゥ ト発生危険無しの領域である。 まず、ブレークアウト発生危険有りで共通してレ、る領域(1)〜(3)について比較検討する。 く領域(1)〉  In the area shown in FIG. 10, areas (1) to (3) are areas where there is a risk of breakout occurrence (that is, areas where the breakout judgment is “Yes” in the above investigation), and areas ( 4) and (5) are areas where there is no risk of breakout. First, we will compare and examine the common areas (1) to (3) where there is a risk of breakout. Area (1)>
領域(1) (Ql < a 1かつ Q2≥ )ば Q 1が小さく抜熱不足性ブレークアウト発生の危険と、 Q2 が大きく再溶解性ブレークアウト発生の危険の両方が重なる領域であると評価できる。 そして、 領域(1)で実際にブレークアウト発生が有ったことから、このブレークアウトは抜熱不足性ブレーク アウト及び再溶解性ブレークアウトの両方の性質を有するものであると言える。  Region (1) (Ql <a 1 and Q2≥) Q 1 is small and it can be evaluated that both the risk of insufficient heat removal breakout and the risk of occurrence of remeltable breakout are large. . And since there was actually a breakout in region (1), it can be said that this breakout has the properties of both an underheated breakout and a remeltable breakout.
なお、領域(1)の状態を凝固シェル厚みという観点からみると、 Q 1が小さいことから、凝固シェ ル全体の厚みが薄ぐかつ Q2が大きいこと力 局部的にも凝固シェルの厚みが薄くなつている部 分が存在し、薄くなる程度が大きいと考えられる。  From the viewpoint of the solidified shell thickness in the state of region (1), since Q1 is small, the total solidified shell thickness is thin and Q2 is large. It is thought that there is a part that is connected and the degree of thinning is large.
く領域 (2) >  Area (2)>
領域(2) (Q l < a 1かつ Q2< J3 )は Q1が小さく抜熱不足性ブレークアウト発生の危険がある 力 Q2も小さいことから再溶解性ブレークアウト発生の危険は小さい領域であると評価できる。 そして、領域(2)で実際にブレークアウト発生が有ったことから、このブレークアウトは抜熱不足性 ブレークアウトの性質を有するものであると言える。  Region (2) (Q l <a 1 and Q2 <J3) has a small Q1 and there is a risk of inadequate heat removal breakout. Since force Q2 is also small, the risk of remelting breakout is small. Can be evaluated. And since there was actually a breakout in region (2), it can be said that this breakout has the property of an insufficient heat release breakout.
なお、領域(2)の状態を凝固シェル厚みという観点からみると、 Q1が小さいことから、凝固シェ ル全体の厚みが薄いが、 Q2が小さいことから局部的に凝固シェルの厚みが薄くなつている部分 が存在しなレ、か存在したとしても薄くなる程度が小さいと考えられる。  In terms of the state of region (2) from the viewpoint of the solidified shell thickness, since Q1 is small, the total thickness of the solidified shell is thin, but since Q2 is small, the thickness of the solidified shell is locally thin. It is considered that there is no part that exists, or even if it exists, the degree of thinning is small.
く領域 (3) >  Area (3)>
領域(3) ( a 1≤Q1≤ α 2かつ Q2≥ ]3 )は Q 1が比較的大きく抜熱不足性ブレークアウト発生 の危険は少ないが、 Q2が大きいために再溶解性ブレークアウト発生の危険がある領域であると 評価できる。 そして、領域(3)で実際にブレークアウト発生が有ったことから、このブレークアウト は再溶解性ブレークアウトの性質を有するものであると言える。 Region (3) (a 1≤Q1≤ α 2 and Q2≥] 3) is less danger of Q 1 is relatively large heat extraction lack of breakout generation, the re-solubility breakout occurs because Q2 is large It can be evaluated as a dangerous area. Since breakout actually occurred in the region (3), it can be said that this breakout has the property of re-dissolvable breakout.
なお、領域(3)の状態を凝固シェル厚みという観点力 みると、 Q1が大きいことから、凝固シェ ル全体の厚みは比較的厚レ、が、 Q2が大きいことから局部的に凝固シェルの厚みが薄くなつてい る部分が存在し、薄くなる程度が大きいと考えられる。 次に、ブレークアウト発生無しの領域 (4)、 (5)について比較検討する。 <領域 (4) > From the viewpoint of the solidified shell thickness in the state of region (3), since Q1 is large, the total thickness of the solidified shell is relatively thick, but since Q2 is large, the thickness of the solidified shell is locally increased. There is a part where the thickness is thin, and the degree of thinning is considered to be large. Next, we will compare the areas (4) and (5) where no breakout occurs. <Area (4)>
領域 (4) (Ql〉 α 2かつ Q2≥ /3 )は Qlが大きく抜熱不足性ブレークアウト発生の危険は少な いが、 Q2も大きいために再溶解性ブレークアウト発生の危険がある領域であると評価できる。 も つとも、この領域 (4)ではブレークアウト発生が無力、つたことから、凝固シェル厚の成長に寄与する 抜熱量が十分大きかったため、凝固シェル全体の厚みが厚ぐ局部的に凝固シェルが薄くなつた 箇所があつたとしてもブレークアウトには至らな力 たものと考えられる。  Region (4) (Ql> α 2 and Q2≥ / 3) is a region where Ql is large and there is little risk of underheated breakout, but because Q2 is large, there is a risk of remeltable breakout. It can be evaluated that there is. In this region (4), the breakout generation was ineffective, and the amount of heat removal that contributed to the growth of the solidified shell thickness was sufficiently large. Even if there is a hot spot, it is considered that the breakout was extremely powerful.
ぐ領域 (5) >  Area (5)>
領域(5) (Ql > α 1かつ Q2 < 0 )は Q1が比較的大きく珐熱不足性ブレークアウト発生の危険 が少なぐ Q2が小さいので再溶解性ブレークアウト発生の危険もない領域であると評価できる。 そして、この領域(5)でブレークアウト発生が無かったことは、凝固シヱル厚の成長に寄与する抜 熱量が大きかったため、凝固シェル全体の厚みが厚ぐ局部的に凝固シェルが薄くなる箇所が無 かったか、あつたとしても薄くなる程度力小さ力つたものと考えられる。 上記の領域 (4)、 (5)の検討から判るように、領域 (4)の状態と領域(5)の状態を比較すると、 より好ましいのは領域(5)の状態である。したがって、ブレークアウト発生が有った領域(1)〜(3) の状態をブレークアウト発生無しの状態にする場合には、領域 (4)の状態にすることも有効である が、さらには領域(5)の状態にするように操業条件の制御をするのがより好ましい。  Region (5) (Ql> α 1 and Q2 <0) is a region where Q1 is relatively large and there is little risk of occurrence of incomplete heat breakout. Since Q2 is small, there is no risk of remeltable breakout. Can be evaluated. In addition, the absence of breakout in this region (5) means that the amount of heat removal contributing to the growth of the solidified seal thickness was large, and therefore there was no portion where the solidified shell was locally thin because the thickness of the entire solidified shell was thick. It was thought that it was hard enough to make it thin even if it was hot. As can be seen from the examination of the above regions (4) and (5), when the state of region (4) and the state of region (5) are compared, the state of region (5) is more preferable. Therefore, in order to change the state of the areas (1) to (3) where the breakout occurred to a state where no breakout occurred, it is effective to change the state to the area (4). It is more preferable to control the operating conditions so as to achieve the state of (5).
具体的には、領域(1)の状態である場合には、 Q1を大きくして領域 (4)の状態にするか、さら に Q2を小さくして領域(5)の状態にするように操業条件を制御すればよい。また、領域(2)の状 態にある場合には、 Q 1を大きくして領域(5)の状態にするように操業条件を制御すればよい。さ らに、領域(3)の状態にある場合には、 Q2を小さくして領域(5)の状態にする力 あるいは Q 1を 大きくして領域 (4)の状態にするように操業条件を制御すればょレ、。  Specifically, if it is in the state of region (1), operate to increase Q1 to the state of region (4) or further decrease Q2 to the state of region (5). The condition may be controlled. In the state of the region (2), the operating conditions may be controlled so that Q 1 is increased to the state of the region (5). In addition, when in the state of region (3), the operating conditions should be set so that Q2 is reduced to force the state of region (5) or Q 1 is increased to the state of region (4). If you control.
Q1を大きくする操業条件の制御として、铸造速度を低下させる及び または铸型冷却を強く することが挙げられる。また、 Q2を小さくする操業条件の制御としては、電磁ブレーキ装置を、例 えば、鎵型において浸漬ノズル吐出孔の上部、下部に配置し、直流磁場をかけることにより溶鋼 流速を減速するようにすることが挙げられる。 なお、以上の説明の方法の基本は、溶鋼が湯面から铸型出口に至るまでの間に凝固界面へ 入熱する熱流束 qlと、定常凝固界面入熱 q2resを求め、(ql _q2res)の熱流束プロファイルに基 づきブレークアウトが発生し得るかどうかを判断する点にある。 これ以外の説明は例示であり、上 記内容に限定されない。 Controlling operating conditions that increase Q1 includes reducing the forging speed and / or increasing the vertical cooling. In order to control the operating conditions for reducing Q2, electromagnetic brake devices are placed, for example, above and below the immersion nozzle discharge hole in a vertical type, and the flow rate of molten steel is reduced by applying a DC magnetic field. Can be mentioned. The basic method of the above explanation is to determine the heat flux ql that enters the solidification interface from the molten steel surface to the vertical outlet and the steady solidification interface heat input q2 res to obtain (ql _q2 res ) To determine whether a breakout can occur based on the heat flux profile. The description other than this is an example, and the present invention is not limited to the above contents.
例えば熱流束 qlは铸型冷却水の入側、出側の温度から求める方法等の方法によって得ても 良い。 また、定常凝固界面入熱 (12^は例えば铸型内数値シミュレーションによる溶鋼流速の推 定値の結果に基づいて求めても良い。 For example, the heat flux ql can be obtained by a method such as a method of obtaining from the inlet and outlet temperatures of the vertical cooling water. good. Further, the steady-state solidification interface heat input (12 ^ may be obtained based on the result of the estimated value of the molten steel flow velocity by, for example, numerical simulation within the vertical mold.
(ql - q2reg)の熱^束プロファイルの解析方法は、上記 Q 1および Q2を算出して行うことが最 も好ましいが、これに限定されない。 例えば単純に前記コブの高さや位置をブレークアウト発生 リスクの判定基準としてもよい (例えば凝固界面に当たる溶鋼流が強い上に変動の激しい設備の 場合に有効と考えられる)。. The method of analyzing the heat flux profile of (ql-q2 reg ) is most preferably performed by calculating Q 1 and Q 2 described above, but is not limited to this. For example, the height and position of the bumps may simply be used as a criterion for determining the risk of breakout (for example, it is considered effective in the case of a facility with a strong molten steel flow that hits the solidification interface and a large fluctuation). .
なお、. Q1および Q2を用いて解析するに際し、熱流束プロファイルに極小値およびコブが生じ ない場合は、 Q1 = Q (図 8)、 Q2 = 0とすればよい。 (ql— q2reg)の極小値が分力^にくい(曖昧 である、 2箇所以上見つかる等)の場合は、図 8に示されるようなパターンにできるだけ近づくよう 近似曲線を描いて、(ql— q2reg)の低減曲線 (図 9の Q1に対応する曲線、すなわち局所熱流束の 低下量が湯面に近いほど大きレヽ曲線)力 外れて極小となる点を求めればょレ、。 When analyzing using Q1 and Q2, if there is no minimum value or bumps in the heat flux profile, Q1 = Q (Fig. 8) and Q2 = 0 may be used. If the minimum value of (ql—q2 reg ) is difficult (partially ambiguous, two or more locations are found, etc.), draw an approximate curve as close as possible to the pattern shown in FIG. q2 reg ) reduction curve (the curve corresponding to Q1 in Fig. 9, that is, the lower the local heat flux the closer to the molten metal surface, the larger the curve).
また、 Q 1と Q2の両方を考慮することが好ましいが、 Q 1のみをシェル厚みの推測やブレークァ ゥトの判定に用いることも可能である。 例えば凝固界面に溶銅流が届きにくぐ Q2の変動が小さ いと期待される場合には Q2を考慮しなくても推定 ·判定精度の低下は少ないと期待される。  Although it is preferable to consider both Q1 and Q2, it is also possible to use only Q1 for estimation of shell thickness and judgment of breakout. For example, it is difficult for molten copper to reach the solidification interface. When Q2 fluctuation is expected to be small, it is expected that there will be little decrease in estimation and judgment accuracy without considering Q2.
Q l、 Q2を求めるに際し、上に説明した方法(台形法)以外の積分手段を用いても良いことは 言うまでもない。 また図 9の解析において、 Q1と Q2の境界線 ACは直線である必要はなぐ例え ば湯面から Aまでの曲線等を考慮して近似曲線として求めてもよい。  Needless to say, integration means other than the above-described method (trapezoidal method) may be used to obtain Q l and Q2. In the analysis of Fig. 9, the boundary line AC between Q1 and Q2 need not be a straight line. For example, the curve from the molten metal surface to A may be taken into account as an approximate curve.
Q 1および Q2を用いた具体的なブレークアウト判定に際しても、上記説明の方法に限定され ず、 Q 1を凝固による抜熱量の指標 (すなわち、数値の増大によりブレークアウトのリスクを低減す る因子)とし、 Q2を定常を超える凝固界面入熱の指標(すなわち、数値の増大によりブレークァゥ トのリスクを増大させる因子)として、適宜用いればよい。 The specific breakout determination using Q1 and Q2 is not limited to the method described above, and Q1 is an index of heat removal due to solidification (that is, a factor that reduces the risk of breakout by increasing the value). Q2 can be used appropriately as an indicator of solidification interface heat input exceeding the steady state (ie, a factor that increases the risk of breakout by increasing the numerical value).
ただし、凝固シェル厚の成長が Q2に関わらず不十分である場合(前記領域(1)および領域 (2) )に対応する Q l < α 1、凝固シェル厚の成長が Q2に関わらずブレークアウトを回避するに充 分である場合(前記領域 (5)の Ql〉 a 2となる部分、および領域 (4) )に対応する Q l > α 2が存 在することが多いので、それぞれの境界地 α 1および α 2 ( α 1 < α 2)を予め定めでおくことが好 ましい。  However, Q l <α 1 corresponding to the case where the solidified shell thickness growth is insufficient regardless of Q2 (region (1) and region (2) above), and the solidified shell thickness growth is a breakout regardless of Q2. Q 1> α 2 corresponding to the region (5) where Ql> a 2 and region (4)) are often present. It is preferable to predetermine the ground α 1 and α 2 (α 1 <α 2).
この場合、 a 1≤Q1≤ α 2の領域は、 Q2の大小に影響される領域となるので、 Q2の値に応じ てブレークアウトの危険があると判定すればよい。 すなわち、この場合は予め定められた閾値以 上となった場合にブレークアウトの危険があると判定するのが好ましい。 この Q2の閾値は Q1に 基づき定めることが望ましいが、結果的に a l≤Q l≤ α 2の全域で一定の値となってもよい。 上 記表 1の例の β力これに該当する。 他の方法としては、 a 1≤Q1≤ «2をさらに細分化して、各領域ごとに閾値を設定することが 考えられる。 例えば α3および α4を設定し(α1< α3< α4< α2)、 α 1≤Q1< α3の場合 に Q≥ ]31、 a3≤Ql< α4の場合に Q 2、 a4≤Ql≤ α 2の場合に Q≥ j33をそれぞれブ レークアウト発生に対応する条件とすることができる。 なお、この場合は一般に;31< β2〈 β3 となる。 In this case, the region of a 1 ≤ Q1 ≤ α 2 is a region affected by the magnitude of Q2, so it may be determined that there is a risk of breakout depending on the value of Q2. That is, in this case, it is preferable to determine that there is a risk of breakout when a predetermined threshold value is exceeded. The threshold value of Q2 is preferably determined based on Q1, but as a result, it may be a constant value throughout al≤Q l≤α2. This corresponds to the β force in the example in Table 1 above. As another method, it is conceivable to further subdivide a 1≤Q1≤ «2 and set a threshold value for each region. For example, if α3 and α4 are set (α1 <α3 <α4 <α2), then Q≥] 31 if α1≤Q1 <α3, Q2 if a3≤Ql <α4, if a4≤Ql≤ α2 In addition, Q≥j33 can be a condition corresponding to the occurrence of breakout. In this case, generally: 31 <β2 <β3.
他に、 al≤Ql≤ α2の領域において Q2≥f(Ql) (fは関数)をブレークアウト発生に対応す る条件とすることもできる。 例えば、表 1にお.いて α 1 (15000kjZm2)〜 α 2 (21000kj/m2) の領域 (検討例 1, 2, 10〜17)においては、 Q2≥ aQl(a=0.25)という判定基準を用いること も可能である。 なお、設備によっては、 α 1、 α 2による前記境界を設けず、単純に Q2≥ a Ql (α:例えば 0.25)によりブレークアウト判定すれば充分である場合も考えられる(操業条件による Q 1の変動が小さレ、場合など)。 In addition, in the region of al≤Ql≤ α2, Q2≥f (Ql) (f is a function) can be set as a condition corresponding to the occurrence of a breakout. For example, in Table 1, in the range of α 1 (15000kjZm 2 ) to α 2 (21000kj / m 2 ) (Examination Examples 1, 2, 10 to 17), the criterion of Q2≥ aQl (a = 0.25) It is also possible to use. Depending on the equipment, it may be sufficient to make a breakout judgment by simply using Q2 ≥ a Ql (α: 0.25), for example, without providing the above-mentioned boundary due to α 1 and α 2 (Q 1 depending on operating conditions) If the fluctuation is small, etc.)
なお、 Q1および Q2にはとくに上限を設けていないが、これは設備に応じて Q1および Q2が取 りうる値に自ず力、ら上限があるためである。  Q1 and Q2 do not have an upper limit, but this is because there is an upper limit to the values that Q1 and Q2 can take depending on the equipment.
なお、以上で例示した α1、 α2、 J3および αの値は、溶鋼が極低炭素鋼の場合、よく一致す る。 ここで溶鋼が極低炭素鋼とは、铸造される溶鋼の段階で、 C≤0.01%の鋼を指す。 上記 ブレークアウト判定法では、凝固シェル形成現象の解析の基本部分は鋼種に依存しない。 した がって、必要に応じ係数や閾値の校正を行うことにより、他の鋼種にも問題なく適用できる。 以上のように、発明者は、 Ql、 Q2の各値がブレークアウト発生に密接に関連しており、し力 それぞれの値が異なるブレークアウト発生原因に関連してレ、ることから、 Ql、 Q2の値をブレーク アウト発生の有無の指標とすることで、精度よくブレークアウト発生を検出でき、さらにブレークァゥ ト発生の危険を回避するための制御をブレークアウト発生原因に基づいて適切に行ない得ること を見出した。 く凝固シェル厚の推定〉  It should be noted that the values of α1, α2, J3, and α exemplified above agree well when the molten steel is an extremely low carbon steel. Here, the extremely low carbon steel with molten steel refers to steel with C≤0.01% at the stage of forging molten steel. In the above breakout judgment method, the basic part of the analysis of the solidified shell formation phenomenon does not depend on the steel type. Therefore, it can be applied to other steel types without problems by calibrating coefficients and thresholds as necessary. As described above, the inventor believes that each value of Ql and Q2 is closely related to the occurrence of breakout, and each force value is related to the cause of occurrence of a different breakout. By using the value of Q2 as an indicator of the occurrence of breakouts, breakout occurrences can be detected accurately, and control to avoid the risk of breakouts can be appropriately performed based on the cause of breakout occurrences. I found. <Estimation of solidified shell thickness>
ところで、このようにして求めた総括熱流束 Q1は、溶鋼が凝固するのに費やされる熱量である と評価でき、また総括熱流束 Q2は溶鋼流が凝固シェルに衝突して凝固シェルを再溶解させる熱 量である溶鋼流衝突顕熱であると評価できる。 つまり、総括熱流束 Q1に基づいて铸型出口に おける凝固シェル厚みを推定すれば、精度よく凝固シェル厚みの推定が可能となるのである。 そこで、 Q1より凝固シェル厚を求め、凝固シェル厚よりブレークアウトの危険性を定量的に評 価する可能性についても検討を行った。以下、総括熱流束 Q1を用いて铸型出口における凝固 シェル厚みを推定する方法にっレヽて説明する。 まず、铸型内での溶鋼が凝固する物理的過程を考えると、浸漬ノズルから鎵型內に注入され た溶鋼は顕熱と凝固潜熱を含めたェンタルピー: H0 (含熱量)を持っている。そして、このェンタ ルビー: H0を有する溶銅は、湯面力 の放熱することで放熱分のェンタルピー: A Hsurを失い、ま た湯面から铸型出口に至る間に铸型冷却によって抜熱されることによって抜熱量相当分のェンタ ルビー: ΔΗ (ェンタルピー落差: enthalpy drop)を失レ、、最終的に铸型出口においてェンタルピ 一: を有する凝固シェルとして铸型から弓 Iき抜かれることになる。この、浸漬ノズルから铸型内 に注入される溶鋼が湯面力 铸型出口に至るまでのェンタルピーの関係を式で表すと、下式 (4) のようになる。 By the way, the overall heat flux Q1 obtained in this way can be evaluated as the amount of heat consumed for solidification of the molten steel, and the overall heat flux Q2 re-melts the solidified shell by collision of the molten steel flow with the solidified shell. It can be evaluated that it is the sensible heat of the molten steel flow that is the amount of heat. In other words, if the thickness of the solidified shell at the vertical outlet is estimated based on the overall heat flux Q1, the solidified shell thickness can be accurately estimated. Therefore, we determined the solidified shell thickness from Q1 and examined the possibility of quantitatively evaluating the risk of breakout from the solidified shell thickness. Hereinafter, a method for estimating the thickness of the solidified shell at the vertical outlet using the overall heat flux Q1 will be described. First, considering the physical process of solidification of the molten steel in the vertical mold, the molten steel injected from the immersion nozzle into the vertical mold has an enthalpy: H 0 (heat content) including sensible heat and latent heat of solidification. . The molten copper having this enthalby: H 0 loses the enthalpy of heat dissipation: AH sur by dissipating the heat of the hot water surface, and is removed by vertical cooling between the hot water surface and the vertical outlet. Enthalpy drop of enthalpy drop corresponding to the amount of heat removed, and finally the bow I is punched from the bowl as a solidified shell with enthalpy at the bowl exit. . This enthalpy relationship from the immersion nozzle to the molten metal injected into the vertical mold reaches the molten metal surface vertical outlet is expressed by the following equation (4).
^^=^^+△11+厶 Hsur (4) ^^ = ^^ + △ 11 + 厶 H sur (4)
但し、 H0:铸型内溶鋼のェンタルピー O kg) However, H 0 : Enthalpy of molten steel in a vertical mold O kg)
Hi:铸型出口での凝固シェルのェンタルピー(jZkg)  Hi: Enthalpy of solidified shell at the vertical outlet (jZkg)
Δ H:铸型出口での凝固シェルの単位重量当たりのヱンタルピー落差 (jZkg) 厶 H 湯面力 の放熱分 a/kg)  Δ H: タ ル ピ ー ピ ー ピ ー タ ル (jZkg) per unit weight of solidified shell at the vertical outlet 厶 H molten metal surface heat dissipation a / kg)
ここで、:¾、 Δ Η H0はそれぞれ、以下のようにして求めることができる。 ぐ!^の求め方 > Here, ¾ and Δ Η H 0 can be obtained as follows. Gu! How to find ^>
铸型出口での凝固シェルのェンタルピー: は以下の(5)式から求めることができる。  The enthalpy of the solidified shell at the vertical outlet can be obtained from the following equation (5).
H! = 670. 27Tlave+ 11958 (5) H! = 670. 27T lave + 11958 (5)
(5)式は、固相の鋼の比熱を温度で積分してェンタルピーを出し、それを温度の関数として式 に表したものである。 (5)式における Tlaveは铸型出口での凝固シェル平均温度(で)を表してお り、この TIaveは以下に示す(6)式から求められる。 Equation (5) expresses the enthalpy by integrating the specific heat of solid-phase steel with temperature and expresses it as a function of temperature. T lave in Eq. (5) represents the average temperature of the solidified shell at the vertical outlet, and this T Iave is obtained from Eq. (6) shown below.
Tlave=28. 75Vc+ 1234. 275 · · · · · (6) T lave = 28. 75Vc + 1234. 275 (6)
但し、 Vc:鎵造速度 (mZmin)  Vc: Forging speed (mZmin)
(6)式は、铸型内の伝熱凝固計算を、 Vc=1.4m/min 1.8m/min 2.2m/min 2.6m/minで行な レ、、求めた鐃型出口シヱル平均温度を Vcの 1次式として表したものである。 (6)式の導出に用い たグラフを図 11に示す。 図 11は縦軸が铸型出口シェル厚み方向平均温度 C)、横軸が铸造 速度 (m/min)を不し飞いる。  Equation (6) calculates the heat transfer solidification in the vertical mold at Vc = 1.4m / min 1.8m / min 2.2m / min 2.6m / min, and the calculated average temperature of the vertical outlet seal Vc It is expressed as a linear expression of Figure 11 shows the graph used to derive Eq. (6). In Fig. 11, the vertical axis shows the vertical outlet shell thickness direction average temperature C), and the horizontal axis shows the forging speed (m / min).
< A Hsurの求め方〉 <How to find AH sur >
湯面力 の放熱分に相当するェンタルピー: Δ Hsurは以下の(7)式から求めることができる。 The enthalpy: Δ H sur corresponding to the heat release from the molten metal surface can be obtained from the following equation (7).
厶 Hsur= (10000Z7100) . (60ZVc) (7) 厶 H sur = (10000Z7100). (60ZVc) (7)
但し、 Vc:鎵造速度 (mZmin)  Vc: Forging speed (mZmin)
(7)式は、湯面からの放熱分であり、溶鋼単位体積あたりどれだけェンタルピーが放出される かを計算したものである。 湯面単位面積あたりの放出ェンタルピーを、 A Hsur 'とすると(単位 W/m2)、溶鋼単位体積あたりのェンタルピー放出量 Δ Hsur(J/kg)は、 Δ H を単位時間の铸造 速度で決まる溶鋼重量で割ればよいので、 A Hsur= / (密度7100 ¥(;/60 1 (=単位面 積))となる。 そして、 A HSU /を 10000W/m2としたのが(7)式である。 Equation (7) is the amount of heat released from the molten metal surface, and how much enthalpy is released per unit volume of molten steel. It is calculated. If the discharge enthalpy per unit surface area of the molten metal is AH sur '(unit W / m 2 ), the amount of enthalpy release per unit volume of molten steel Δ H sur (J / kg) is expressed as the rate of forging per unit time Δ H sur Since it suffices to divide by the determined molten steel weight, AH sur = / (density 7100 ¥ (; / 60 1 (= unit area)), and AH SU / is set to 10000 W / m 2 (7) It is.
<H。の求め方〉  <H. How to find>
铸型内溶鋼のェンタルピー: H0は、液相の鋼の比熱を温度で積分してェンタルピーを出し、そ れを温度の関数として式に表した (8)式に基づレ、て求めることができる。 The enthalpy of vertical molten steel: H 0 is obtained by integrating the specific heat of liquid phase steel with temperature to obtain the enthalpy and expressing it as a function of temperature based on equation (8). Can do.
H0=(1 X 10-10XT0 4-4X 10"7XT0 3 + 0.0005 XT0 2 - 0.0098 XT0 + 4.5508) H 0 = (1 X 10- 10 XT 0 4 -4X 10 "7 XT 0 3 + 0.0005 XT 0 2 - 0.0098 XT 0 + 4.5508)
X 4.19 X 1000 (8)  X 4.19 X 1000 (8)
但し、 T0:铸型内溶鋼温度 (°C) However, T 0 : Temperature of molten steel in vertical mold (° C)
なお、(8)式における铸型内溶銅温度 T0は、既設の設備において実際に铸型内の溶鋼温度 を熱電対で測定し、その時の操業条件で重回帰式とした下記の(9)式力 求めることができる。 In addition, the molten copper temperature T 0 in Eq. (8) is the following (9), where the molten steel temperature in the eaves was actually measured with a thermocouple in the existing equipment, and the multiple regression equation was calculated under the operating conditions at that time. ) Expression force can be obtained.
T0=705.156+0.544086TXD-2.35053Vc-0.00303W T 0 = 705.156 + 0.544086T XD -2.35053Vc-0.00303W
+18.12663 (0.10181-ln(FC)-0.3362) (9)  +18.12663 (0.10181-ln (FC) -0.3362) (9)
但し、 TTD:タンディッシュ (TZD: tundish)内溶鋼温度(°C) However, T TD : Tundish (TZD: tundish) internal steel temperature (° C)
Vc:铸造速度、m/ min)  (Vc: Forging speed, m / min)
W:モールド (M/D: mold)幅(m)  W: Mold (M / D) width (m)
FC: FC (flow control)電流(A) 上述のように、 Hi、 AHsur、H0を求めることができるので、(4)式を変形した下記の(10)式から ΔΗを求めることができる。FC: FC (flow control) current (A) As described above, Hi, AH sur , and H 0 can be obtained. Therefore, ΔΗ can be obtained from the following equation (10) obtained by modifying equation (4). .
Figure imgf000017_0001
Figure imgf000017_0001
ΔΗは、湯面から铸型出口に至る間に铸型冷却によって抜熱されることによって抜熱量相当 分のェンタルピーであるから、铸型出口での凝固シェル厚み Dは総括熱流束 Q1を用いて下式 (2)で表すことができる。 Since ΔΗ is an enthalpy equivalent to the amount of heat removed by removing heat from the hot water surface to the vertical outlet, the solidified shell thickness D at the vertical outlet is calculated using the overall heat flux Q1. It can be expressed by equation (2).
Figure imgf000017_0002
Figure imgf000017_0002
但し、 p:铸型出口での凝固シェルの密度 (kgZm3) Where p: density of solidified shell at the vertical outlet (kgZm 3 )
なお、 pは 20~ 1500でまでの固体鉄の密度を 5点で求め、それを温度の関数になるように回 帰式とした下式(11)力 求めることができる。  In addition, p can be obtained from the following equation (11), which is a recursive equation that obtains the density of solid iron from 20 to 1500 at 5 points and makes it a function of temperature.
P =(—1.686 X 10— 10Tlave 3+2.7069 X 10— 7Tlave 2— 5.2909 X lO_ Tlave+7.9106)X 1000 … (11) なお、 A Hsur、H0、 pの求め方については、上述した方法に限定されるものではなぐ 種々の方法で求めればょレ、。 なお、上記の検討では、総括熱流束 Q2は溶鋼流が凝固シェルに衝突して凝固シェルを再溶 解させる溶鋼流衝突顕熱であるとして、凝固シェル厚みを推定するための総括熱流束から除くよ うにした。 P = (- 1.686 X 10- 10 T lave 3 +2.7069 X 10- 7 T lave 2 - 5.2909 X lO _ T lave +7.9106) X 1000 ... (11) It should be noted, AH sur, for H 0, how to obtain the p Is not limited to the method described above. In the above examination, the overall heat flux Q2 is excluded from the overall heat flux for estimating the solidified shell thickness, assuming that the molten steel flow collides with the solidified shell and is a molten steel flow collision sensible heat that remelts the solidified shell. I did it.
しかし、铸造中において浸漬ノズルから溶鋼吐出流が一時的に大きくなつた場合、すなわち総 括熱流束 Q2が存在する場合には、溶鋼流によって凝固シェルが再溶解され、凝固遅れが発生 すると考えられる。そのため、単に総括熱流束 Q2を除いて求めた凝固シェル厚みよりも凝固シヱ ノレ厚みが薄くなることも考えられる。  However, when the molten steel discharge flow temporarily increases from the immersion nozzle during forging, that is, when the overall heat flux Q2 is present, the solidified shell is remelted by the molten steel flow, and solidification delay is considered to occur. . For this reason, it is conceivable that the thickness of the solidified shell becomes thinner than the thickness of the solidified shell obtained by simply excluding the overall heat flux Q2.
そこで、以下においては再溶解による凝固遅れを考慮した凝固シェル厚みのより精度の高い 推定方法にっレ、て説明する。  Therefore, in the following, a more accurate estimation method of the solidified shell thickness in consideration of the solidification delay due to remelting will be described.
発明者は、総括熱流束 Q2による再溶解が生ずるとしても、総括熱流束 Q2の全てが凝固シェ ルを再溶解させるために作用するのではな その何割かが再溶解させるために作用すると考え た。 そのように考えると、総括熱流束 Q1に基づいて推定される凝固シェル厚みを D、総括熱流 束 Q2による再溶解を考慮した凝固シェル厚みを D1、Q2の X%が再溶解として作用すると考える と、下記の比例関係が成立する。  The inventor considered that even if remelting due to the overall heat flux Q2 occurs, not all of the overall heat flux Q2 acts to remelt the solidified shell, but some of it acts to remelt. . Considering that, the solidified shell thickness estimated based on the overall heat flux Q1 is considered to be D, and the solidified shell thickness considering remelting due to the overall heat flux Q2 is considered to be that X1 of Q1 and Q2 acts as remelting. The following proportional relationship is established.
Q1 : D= (Q1 -X-Q2): D1  Q1: D = (Q1 -X-Q2): D1
上記の比例式を D1について整理すると、 D1 =D (1— X'Q2/Q1)となる。  If the above proportional expression is arranged for D1, D1 = D (1—X'Q2 / Q1).
したがって、 Xを求めることができれば、 D1を求めることができる。  Therefore, if X can be obtained, D1 can be obtained.
そこで、上記の比例式を Xについて整理すると、 X= (D_D1) ZD'Q1ZQ2となる。この式に 現れた(D— Dl) ZDの値は、凝固遅れ度 RS (Retardation of Solidification:凝固遅れ度)として、 公知文献である「凝固遅れにおよぼす溶鋼流動、溶鋼過熱度の影響」 ( (独)日本学術振興会製 鋼第 19委員会 凝固プロセス研究会提出資料: p.8〜9)において、下記の(3)式によって求める ことができることが示されている。  Therefore, if the above proportional expression is arranged with respect to X, X = (D_D1) ZD'Q1ZQ2. The value of (D—Dl) ZD that appears in this equation is the solidification delay RS (Retardation of Solidification), which is a well-known document “Effects of Molten Steel Flow and Molten Superheat” (( Germany) Japan Society for the Promotion of Science, Steel 19th Committee Solidification Process Study Group presentation materials: p.8-9), it is shown that it can be obtained by the following formula (3).
RS= |3 X (V0·8·厶 0 ) · ' · · (3) RS = | 3 X (V 0 · 8 · 厶 0) · '· · (3)
β:凝固遅れ定数 (無単位)  β: Coagulation delay constant (unitless)
V:溶鋼流速 (m/s)  V: Molten steel flow velocity (m / s)
厶 Θ:溶鋼過熱度(°C)  厶 Θ: Molten steel superheat (° C)
RS:凝固遅れ度 (無単位)  RS: Solidification delay (no unit)
溶鋼過熱度 Δ 0は、前述したように Δ Θ =T0— TS (T。:銬型内溶鋼温度 (で)、 Ts :溶鋼固相 線温度(°C) )として求めることができるので、溶鋼流速 Vが求まれば RSを求めることができる。 そして、溶鋼流速 V(m< s)は、総括熱流束 Q2を用いて(13)式力ら求めることができる。 As described above, the degree of superheat of molten steel Δ 0 can be determined as Δ Θ = T 0 — T S (T .: Molten steel temperature (in), T s: Molten steel solidus temperature (° C)) Therefore, if the molten steel flow velocity V is obtained, RS can be obtained. The molten steel flow velocity V ( m < s) can be obtained from the force of equation (13) using the overall heat flux Q2.
V= (Q2/ ( a -t- A θ ) ) 1·25 * · · (13) a :溶鋼流速定数 (無単位) V = (Q2 / (a -t- A θ)) 1 25 * (13) a: Molten steel flow rate constant (no unit)
t:凝固シヱルがプロファイルにおける極小点を通過して力 錶型出口に至るまでに要する 時間 )  t: Time required for the solidification seal to pass through the minimum point in the profile to reach the force-type outlet)
X= (D— D ZD.Q1ZQ2の式における(D— D1) ZDを RSと置き換えると、 X=RS-Q1 ZQ2となる。この Xの値を上述した Dl =D (1—X.Q2ZQ1)に代入すると、 Dl =D (1— RS)と なり、凝固遅れを考慮した凝固シェル厚み D1を求めることができる。 以上のように、上記(14)式に示される凝固遅れ度 RSを求めることができ、それ故に総括熱流 束 Q2による凝固遅れを考慮した凝固シヱル厚み D1を、 D1 =D(1— RS)として求めることができ るのである。  X = (D—D ZD.Q1ZQ2 In the equation, if (D—D1) ZD is replaced with RS, then X = RS-Q1 ZQ2. This value of X is the above-mentioned Dl = D (1—X.Q2ZQ1) Substituting into, Dl = D (1-RS), so that the solidification shell thickness D1 can be obtained in consideration of the solidification delay As described above, the solidification delay RS shown in the above equation (14) can be obtained. Therefore, the solidification seal thickness D1 considering the solidification delay due to the overall heat flux Q2 can be obtained as D1 = D (1 – RS).
以上の検討の妥当性を検証するために、いくつかの操業条件において、 Dおよび D1を求め、 他の方法により得られた値との比較を行った。  In order to verify the validity of the above examination, D and D1 were obtained under some operating conditions and compared with values obtained by other methods.
比較法としては、下記 D'および D1 'を算出した。  As a comparison method, the following D ′ and D1 ′ were calculated.
D' =qlのみの熱流束プロファイルを用い、抜熱量のみから計算したシェル厚み。 すなわち、 ql一 q2resの代わりに qlを用レ、て総括熱流束 Qに相当する値を算出し (Q'とする)、前記 (2)式に 準じて D' =Q' Z ( AH' ρ )により求められる値 Shell thickness calculated from only the amount of heat removed using a heat flux profile with D '= ql only. In other words, ql is used instead of ql q2 res , and a value corresponding to the overall heat flux Q is calculated (referred to as Q ′), and D ′ = Q ′ Z (AH ′) according to the above equation (2) ρ)
Dl ' ==D 'に凝固遅れを考慮したシェル厚み。 すなわち、 RSより Dl' =D' (1— RS)により求 められる値。  Shell thickness considering solidification delay in Dl '== D'. That is, the value obtained from Dl '= D' (1—RS) from RS.
Dreal =铸片の内部割れ位置力 推定したシェル厚み D real = Internal crack location force of the shell Estimated shell thickness
表 2 Table 2
Figure imgf000019_0001
Figure imgf000019_0001
Vc :錶造速度  Vc: Forging speed
W:錶造幅  W: Forged width
TTD: TD内溶鋼温度 T TD : Temperature of molten steel in TD
Δ 0:溶鋼過熱度  Δ 0: Molten steel superheat
FC :上極 FC直流電流  FC: Upper pole FC DC current
RS :凝固遅れ 以上の結果力 分力^ょうに、 Dおよび D1は安定して実測値に近い値をとり、またとくに D1は より改善された値となる。 ' このように、総括熱流束 Q1を用いて鎵型出口における凝固シェル厚み Dを求めることができ、 さらに凝固遅れを考慮した凝固シェル厚み D1を求めることができる。 RS: Solidification delay As a result, the component force D and D1 are stable and close to the measured values, and D1 is particularly improved. In this way, the solidified shell thickness D at the vertical outlet can be obtained using the overall heat flux Q1, and further, the solidified shell thickness D1 in consideration of the solidification delay can be obtained.
そして、凝固シェル厚みを求めることができれば、凝固シェル厚みとブレークアウト発生の有無 との関係を予め求めておくことにより、ブレークアウト発生の有無の指標とすることができる。 例え ば、予測厚み Dが閾値以上となった場合にブレークアウトの発生条件にあると判定したり、予測厚 み D1が閾値以上となった場合にブレークアウトの発生条件にあると判定したりできる。 閾値は鋼 種、設備、操業条件に応じ、予め事例から設定したり、理論計算により求めたりすればよい。 しかも、このブレークアウト発生の有無の指標は铸型出口での凝固シェル厚みに基づくもので あり、前述した熱流束の変化のみに基づくものに比較してより直接的な指標であることから、その 精度が高レ、と言える。  If the thickness of the solidified shell can be obtained, the relationship between the thickness of the solidified shell and the presence / absence of occurrence of breakout can be obtained in advance to provide an index for the presence / absence of occurrence of breakout. For example, when the predicted thickness D exceeds the threshold, it can be determined that the breakout occurs, or when the predicted thickness D1 exceeds the threshold, it can be determined that the breakout occurs. . The threshold may be set in advance from examples or calculated by theoretical calculation according to the steel type, equipment, and operating conditions. Moreover, this breakout occurrence index is based on the thickness of the solidified shell at the vertical outlet, and is a more direct index than that based solely on the change in heat flux described above. It can be said that the accuracy is high.
また、前記図 10に例示されるような、 Q1に基づ あるいは Q1および Q2に基づくブレークァ ゥト発生検出法も、凝固シェル厚みを実際に算出するプロセスを見かけ上省いてレ、るものの、凝 固シェル厚への Ql、 Q2への影響を基にブレークアウト発生の有無を予測しているので、.同様に 高い精度を得ることができる。 本発明は以上の知見を基になされたものであり、具体的には以下の構成力 なる。  In addition, the breakout generation detection method based on Q1 or based on Q1 and Q2 as illustrated in FIG. 10 may be omitted while apparently omitting the process of actually calculating the solidified shell thickness. Since the presence or absence of breakout is predicted based on the effect on Ql and Q2 on the thickness of the solid shell, high accuracy can be obtained as well. The present invention has been made based on the above knowledge, and specifically has the following constitutional power.
(1) 連続铸造における铸型内の溶鋼が湯面から铸型出口に至るまでの間に凝固界面へ入熱 する熱流束 qlを測定するステップと、定常状態における铸型内の溶鋼流動による定常凝固界面 入熱 q2resを下式(1)に基づいて求めるステップと、これら熱流束 qlと定常凝固界面入熱 q2resの 差 (ql— q2reg)について溶鋼が湯面力 ^铸型出口に至るまでの熱流束プロファイルを求めるステ ップと、この熱流束プロファイルに基づいてブレークアウト発生の危険の有無を判定するステップ とを有することを特徴とする連続铸造におけるブレークアウト検出方法。 (1) The step of measuring the heat flux ql that enters the solidification interface between the molten steel in the mold from the molten metal surface to the mold outlet in continuous forging, and the steady state due to the molten steel flow in the mold in the steady state The solidification interface heat input q2 res is calculated based on the following equation (1), and the difference between the heat flux ql and the steady solidification interface heat input q2 res (ql-q2 reg ) A breakout detection method in continuous fabrication, comprising: a step of obtaining a heat flux profile up to and a step of determining whether or not there is a risk of occurrence of a breakout based on the heat flux profile.
q2reg=h- Δ Θ . · · · · (1) q2 reg = h- Δ Θ. (1)
但し、 h:溶鋼と凝固シェルの間の熱伝達係数  Where h: heat transfer coefficient between molten steel and solidified shell
Δ Θ:溶鋼の過熱度。 (2) 上記(1)に記載の、連続铸造におけるブレークアウト検出方法であって、 前記(ql— q2res)について求められた前記該熱流束プロファイルに基づいてブレークアウト 発生の危険の有無を判定するするステップが、 ― ΔΘ: degree of superheat of molten steel. (2) The breakout detection method in continuous fabrication as described in (1) above, wherein whether or not there is a risk of occurrence of breakout is determined based on the heat flux profile obtained for (ql-q2 res ) The steps to do are:
前記熱流束プロファイルに基づき総括熱流束 Q1および Q2を以下の方法により求めるステツ プ; すなわち、(i)前記該熱流束プロファイルに極小値を示す極小点が存在する場合には、該極 小点と铸型出口での局所熱流束値とを直線で結んだときにこの直線よりも上の部分の面積に相 当する総括熱流束を Q2とし、.湯面位置から铸型出口間の該熱流束プロファイルの曲線全体で囲 まれる全面積に相当する総括熱流束力 Q2を差し引いた面積に相当する総括熱流束を Q1とし、 (ii)前記該熱流束プロファイルに極小値を示す極小点が存在しない場合には、湯面位置力 铸型 出口間の該熱流束プロファイルの曲線全体で囲まれる全面積に相当する総括熱流束を総括熱 流束 Q1とし、 Q2を零とするステップ; および、  A step of obtaining overall heat fluxes Q1 and Q2 by the following method based on the heat flux profile; that is, (i) if there is a minimum point showing a minimum value in the heat flux profile, When the local heat flux value at the vertical outlet is connected with a straight line, the overall heat flux corresponding to the area above the straight line is defined as Q2, and the heat flux from the hot water surface to the vertical outlet is defined as Q2. The total heat flux corresponding to the total area enclosed by the entire profile curve Q2 is the total heat flux corresponding to the area minus Q2, and (ii) there is no minimum point indicating the minimum value in the heat flux profile. In this case, the step of setting the total heat flux corresponding to the entire area surrounded by the entire curve of the heat flux profile between the molten metal surface force 铸 type outlet as the total heat flux Q1 and Q2 as zero; and
前記総括熱流束 Q1に基づいて、あるいは Q 1および Q2に基づいて、ブレークアウト発生の 危険の有無を判定するステップとを有することを特徴とする、ブレークアウト検出方法。  Determining whether there is a risk of occurrence of breakout based on the overall heat flux Q1 or based on Q1 and Q2.
なお、総括熱流束とは、上記の記載からも明らかなように局所熱流束を積算したものである。  The overall heat flux is obtained by integrating the local heat flux as is apparent from the above description.
(3) 上記(2)に記載の、連続铸造におけるブレークアウト検出方法であって、前記ブレークァゥ ト発生の危険の有無を判定するステップにおいて、 Q 1を凝固による抜熱量の指標とし、 Q2を定 常を超える凝固界面入熱の指標として、 Q1に基づいてあるいは Q1および Q2に基づいてブレー クアウト発生の危険の有無を判定することを特微とする、ブレークアウト検出方法。 (3) The breakout detection method in continuous fabrication as described in (2) above, wherein Q1 is defined as an index of heat removal due to solidification, and Q2 is defined in the step of determining whether there is a risk of occurrence of breakout. Breakout detection method characterized by determining whether there is a risk of breakout based on Q1 or based on Q1 and Q2 as an indicator of solidification interface heat input exceeding normal.
本発明はまた、上記(2)に記載の、連続铸造におけるブレークアウト検出方法であって、前記 ブレークアウト発生の危険の有無を判定するステップにおいて、 Q1を数値の増大によりブレーク アウトのリスクを低減する因子として扱い、 Q2を数値の増大によりブレークアウトのリスクを増大さ せる因子として扱って、 Q1に基づいてあるいは Q1および Q2に基づいてブレークアウト発生の危 険の有無を判定することを特徴とする、ブレークアウト検出方法でもある。  The present invention is also the breakout detection method in continuous fabrication as described in (2) above, wherein in the step of determining whether or not there is a risk of occurrence of the breakout, the risk of breakout is reduced by increasing Q1. It is characterized by the fact that Q2 is treated as a factor that increases the risk of breakout by increasing the numerical value, and whether there is a breakout risk based on Q1 or based on Q1 and Q2. It is also a breakout detection method.
(4) 上記 (2)または (3)に記載の、連続铸造におけるブレークアウト検出方法であって、前記総 括熱流束 Q1に基づいてブレークアウト発生の危険の有無を判定するステップにおいて、 Q1につ いて予め定めた閾値 α 1、 α 2 ( α 1 < α 2)について、 (i)Q l < a 1のときに、ブレークアウトの危 険があると判定し、(ii) a l≤Ql≤ α 2のときには、 Q2の値に応じてブレークアウトの危険があると 判定することを特徴とする、ブレークアウト検出方法。 (4) The breakout detection method in continuous fabrication as described in (2) or (3) above, wherein in the step of determining whether there is a risk of occurrence of breakout based on the overall heat flux Q1, With regard to the predetermined threshold values α 1 and α 2 (α 1 <α 2), it is determined that there is a breakout risk when (i) Q l <a 1, and (ii) al≤Ql≤ A breakout detection method, characterized by determining that there is a risk of breakout according to the value of Q2 when α2.
ここで、 Q2力 Q 1に基づき予め定められた閾値(a l≤Q l≤ ο: 2の全域で一定の値であって もよい)以上となった場合にブレークアウトの危険があると判定することが好ましい。 (5) 上記(2)〜(4)のいずれかに記載の、連続铸造におけるブレークアウト検出方法であって、 前記(ql— q2res)について求められた前記熱流束プロファイルにおいて極小値を示す極小点が 存在する場合において、 Q1について予め定めた閾値 α 1、 α2(α1< α2)及び Q2について予 め定めた閾値 J3に対して、 (i)Ql< α 1かつ Q2≥ β、または (ii)Ql< α 1かつ Q2< β、または (iii) a 1≤Q1≤ a 2かつ Q2≥ j3のときにブレークアウトの危険があると判定することを特徴とする、 铸造におけるブレークアウト検出方法。 Here, it is determined that there is a risk of breakout when the value exceeds a predetermined threshold (al ≤ Q l ≤ ο: may be a constant value over the entire range of 2) based on Q2 force Q 1 It is preferable. (5) The breakout detection method in continuous fabrication according to any one of (2) to (4) above, wherein the minimum value indicates a minimum value in the heat flux profile obtained for (ql-q2 res ) In the case where there are points, (i) Ql <α 1 and Q2 ≥ β, or (ii) for the thresholds α1, α2 (α1 <α2) and Q2 ) Ql <α1 and Q2 <β, or (iii) a breakout detection method in fabrication, wherein it is determined that there is a risk of breakout when a1≤Q1≤a2 and Q2≥j3.
すなわち、本発明に係る連続铸造におけるブレークアウト検出方法は、連続铸造における錄型 内の溶鋼が湯面から鍀型出口に至るまでの間に凝固界面へ入熱する熱流束 qlを測定し、定常 状態における铸型内の溶銅流動による定常凝固界面入熱 q2regを前記式(1)に基づいて求め、こ れら熱流束 qlと定常凝固界面入熱 q2re8の差 (ql— q2res)について溶鋼が湯面から鍀型出口に 至るまでの熱流束プロファイルを求め、該熱流束プロファイルにおいて極小値を示す極小点が存 在する場合において、該極小点と錶型出口での局所熱流束値とを直線で結んだときにこの直線 よりも上の部分の面積に相当する総括熱流束を Q2とし、湯面位置から錄型出口間の該熱流束プ 口ファイルの曲線全体で囲まれる全面積に相当する総括熱流束力ら Q2を差し引レ、た面積に相 当する総括熱流束を Q1とし、 Q1について予め定めた閾値 α1、 α2(α1< α2)及ぴ Q2につい て予め定めた閾値 i3に対して、 Ql< a 1かつ Q2≥ β、または Qlく a 1かつ Q2く β、または a 1≤Q1≤ a 2かつ Q2≥ j3のときにブレークアウトの危険があると判定することを特徴とするもので ある。 That is, the breakout detection method in continuous forging according to the present invention measures the heat flux ql that is input to the solidification interface during the time from the molten metal in the mold to the mold outlet in the continuous casting, The steady-state solidification interface heat input q2 reg due to the flow of molten copper in the vertical mold is obtained based on the above equation (1), and the difference between these heat flux ql and steady-state solidification interface heat input q2 re8 (ql− q2 res ) The heat flux profile from the molten steel surface to the vertical outlet is obtained for the molten steel, and the local heat flux value at the local minimum and the vertical outlet is present when there are local minimum points indicating the minimum value in the thermal flux profile. The total heat flux corresponding to the area above the straight line is Q2, and the total area surrounded by the entire curve of the heat flux profile file from the hot water surface position to the vertical outlet is Q2. Subtracting Q2 from the overall heat flux equivalent to Q1 is the overall heat flux corresponding to the product, and Q1 <a1 and Q2 ≥ β for the thresholds α1 and α2 (α1 <α2) and Q2 It is characterized by determining that there is a risk of breakout when Ql <a1 and Q2 <β, or a1≤Q1≤a2 and Q2≥j3.
(6) 上記(5)に記載の、連続鐃造におけるブレークアウト検出方法であって、溶鋼が極低炭素 鋼であり、 alが 15000(kJ/m2).、 a 2カ 1000 (kjZm2)、 ]3力 S4500(kjZm2)であることを特 徴とする連続铸造におけるブレークアウト検出方法。 (6) A breakout detection method in continuous forging as described in (5) above, wherein the molten steel is an ultra-low carbon steel, al is 15000 (kJ / m 2 ), a 2 1000 (kjZm 2 ),] 3 force S4500 (kjZm 2 ) Breakout detection method in continuous fabrication, characterized by
(7) 上記(2)または(3)に記載の、連続铸造におけるブレークアウト検出方法であって、前記総 括熱流束 Q1に基づいてブレークアウト発生の危険の有無を判定するステップ力 前記総括熱流 束 Q1を用いて下式(2)に基づいて铸型出口における凝固シェル厚み Dを推定するステップと、 前記推定された凝固シェル厚み Dと、予めブレークアウト発生の危険性との関係で求めた閾値と に基づいてブレークアウト発生の危険の有無を判定するステップとを有することを特徴とするブレ —クアウト検出方法。 (7) The breakout detection method in continuous fabrication as described in (2) or (3) above, wherein step power for determining whether or not there is a risk of occurrence of breakout based on the overall heat flux Q1 Based on the following formula (2) using the bundle Q1, the step of estimating the solidified shell thickness D at the vertical outlet, and the relationship between the estimated solidified shell thickness D and the risk of occurrence of breakout was obtained in advance. And determining whether there is a risk of occurrence of breakout based on the threshold value.
D = QlZ(AH. p) (2)  D = QlZ (AH.p) (2)
但し、 D :鍀型出口での凝固シェル厚み (m) Ql:総括熱流束 (j/m2) D: Thickness of the solidified shell at the vertical outlet (m) Ql: Overall heat flux (j / m 2 )
Δ Η:铸型出口での凝固シェルの単位重量当たりのェンタルピー落差 (jZkg) p :铸型出口の凝固シェル密度 (kg/m  Δ Η: enthalpy drop per unit weight of solidified shell at vertical outlet (jZkg) p: solidified shell density at vertical outlet (kg / m
また、前記 qlの単位を j/s'm2、前記式 (1)において q2 regの単位を jZs'rn2 hの単位を JZ s-m2- , Δ Θの単位を。 Cとする。 Further, the unit of ql is j / s'm 2 , the unit of q 2 reg in the above formula (1) is jZs'rn 2 h, the unit of JZ sm 2 −, and the unit of ΔΘ. C.
(8) 上記(2)または(3)に記載の、連続铸造におけるブレークアウト検出方法であって、前記 (q 1 -q2reg)について求められた前記熱流束プロファイルにおいて極小値を示す極小点が存在す る場合において、前記総括熱流束 Q1および Q2に基づいてブレークアウト発生の危険の有無を 判定するステップが、前記総括熱流束 Q1を用いて下式 (2)に基づいて鎵型出口における凝固 シェル厚み Dを推定するステップと、総括熱流束 Q2による再溶解によって生ずる凝固遅れを考 慮した凝固シェル厚み D1を、下記式(3)に基づいて求められた凝固遅れ度 RSを用いて、 Dl= D(l— RS)の関係により推定するステップと、前記推定された凝固シェル厚み D1と、予めブレー クアウト発生の危険性との関係で求めた閾値とに基づいてブレークアウト発生の危険の有無を判 定するステップとを有することを特徴とするブレークアウト検出方法。 (8) The breakout detection method in continuous fabrication as described in (2) or (3) above, wherein a minimum point indicating a minimum value in the heat flux profile obtained for the (q 1 -q2 reg ) If present, the step of determining the presence or absence of a breakout risk based on the overall heat flux Q1 and Q2 is performed by solidifying the vertical outlet based on the following equation (2) using the overall heat flux Q1. Estimating the shell thickness D and the solidification shell thickness D1 taking into account the solidification delay caused by remelting by the overall heat flux Q2, using the solidification delay RS determined based on the following equation (3), Dl = Presence / absence of breakout risk based on the estimated step based on the relationship D (l-RS), the estimated solidified shell thickness D1, and the threshold value previously determined in relation to the risk of breakout occurrence Judgment And a breakout detecting method.
D=Q1/ (厶 Η· ρ) (2)  D = Q1 / (厶 Η ・ ρ) (2)
但し、 D :铸型出口での凝固シェル厚み (m)  D: Thickness of the solidified shell at the vertical outlet (m)
• Ql:総括熱流束 (jZm2) • Ql: Overall heat flux (jZm 2 )
ΔΗ:錶型出口での凝固シェルの単位重量当たりのェンタルピー落差 (jZkg) P :铸型出口の凝固シェル密度 (kgZm3) ΔΗ: enthalpy drop per unit weight of solidified shell at vertical outlet (jZkg) P: solidified shell density at vertical outlet (kgZm 3 )
RS= X (V0·8· Δ 0 ) ····· (3) RS = X (V 0 8 Δ 0) (3)
但し、 RS:凝固遅れ度 (無単位)  However, RS: solidification delay (no unit)
β:凝固遅れ定数 (無単位)  β: Coagulation delay constant (unitless)
V:溶鋼流速 (m/s)  V: Molten steel flow velocity (m / s)
Δ Θ:溶鋼過熱度 (で)  Δ Θ: Molten steel superheat (in)
ここで V=(Q2 (α.ΐ·Δ 0))1·25 Where V = (Q2 (α.ΐ · Δ 0)) 1 · 25
Q2:総括熱流束 (jZm2) Q2: Overall heat flux (jZm 2 )
α :溶鋼流速定数 (無単位)  α: Flow rate constant of molten steel (unitless)
t:凝固シェルが熱流束プロファイルにおける極小点を通過してから鐃型出口に至るま でに要する時間 (S)  t: Time required for the solidified shell to pass through the minimum point in the heat flux profile to reach the vertical outlet (S)
また、前記 qlの単位を jZs'm2、前記式 (1)において q2regの単位を jZs'm2、 hの単位を JZ s'm2'°C、 Δ Θの単位を。 Cとする。 なお、前記 (ql— q2res)について求められた前記熱流束プロファイルにおいて極小値を示す 極小点が存在しない場合は上記(7)に記載の方法で、該熱流束プロファイルにおいて極小値を 示す極小点が存在する場合は上記(8)に記載の方法で、それぞれ铸型出口における凝固シェ ル厚みを推定し、当該推定値と前記閾値とに基づいてブレークアウト発生の危険の有無を判定 することが好ましい。 Further, jZs'm 2 units of the ql, the formula (1) in q2 units of reg jZs'm 2, the units of h JZ s'm 2 '° C, the unit of delta theta. C. When there is no minimum point showing a minimum value in the heat flux profile obtained for (ql−q2 res ), the minimum point showing a minimum value in the heat flux profile is determined by the method described in (7) above. In the case where there is, the solidification shell thickness at the vertical outlet is estimated by the method described in (8) above, and whether there is a risk of occurrence of breakout can be determined based on the estimated value and the threshold value. preferable.
(9) 上記(1)〜(6)のいずれかに記載の、連続錶造におけるブレークアウト検出方法であって、 熱流束 qlが、铸型内に铸型厚み方向で埋め込み深さの異なる 2点間に埋め込んだ一対の熱電 対を、鍀型鐯造方向に複数設置して、前記一対の熱電対の出力に基づいて下式 (4)によって求 める局所熱流束であることを特徴とする、ブレークアウト検出方法。 (9) The breakout detection method in continuous fabrication as described in any one of (1) to (6) above, wherein the heat flux ql differs in the embedding depth in the saddle thickness in the saddle shape. A plurality of pairs of thermocouples embedded between points are installed in the vertical forging direction, and the local heat flux is obtained by the following equation (4) based on the output of the pair of thermocouples. A breakout detection method.
ql = λ (Tl -T2) /d (4)  ql = λ (Tl -T2) / d (4)
但し、 λ :铸型の熱伝導率  Where λ is a bowl-shaped thermal conductivity
Tl、 Τ2 :熱電対の検出温度  Tl, Τ2: Thermocouple detection temperature
d:熱電対の埋設間隔  d: Thermocouple burying interval
(10) 上記(7)または(8)に記載の、連続铸造におけるブレークアウト検出方法であって、熱流 束 qlが、铸型内に铸型厚み方向で埋め込み深さの異なる 2点間に埋め込んだ一対の熱電対を、 铸型鎵造方向に複数設置して、前記一対の熱電対の出力に基づいて下式 (4)によって求める局 所熱流束であることを特徴とする、ブレークアウト検出方法。 . (10) The breakout detection method in continuous fabrication as described in (7) or (8) above, wherein the heat flux ql is embedded between two points having different embedding depths in the vertical direction in the vertical shape. Breakout detection, characterized in that a plurality of pairs of thermocouples are installed in the vertical forging direction and the local heat flux is obtained by the following equation (4) based on the output of the pair of thermocouples Method. .
ql = l (Tl -T2) /d (4)  ql = l (Tl -T2) / d (4)
但し、 ; L :錶型の熱伝導率 (jZs'm'で) '  However, L: 錶 -shaped thermal conductivity (in jZs'm ')'
Tl、 T2 :熱電対の検出温度 CC)  (Tl, T2: Thermocouple detection temperature CC)
d:熱電対の埋設間隔 (m)  d: Thermocouple burying interval (m)
(11) 铸型厚み方向に異なる深さの 2点に埋め込んだ一対の熱電対を、铸型铸造方向に複数 設置してなる熱電対群と、該熱電対群からの温度情報を入力して各熱電対設置部位における局 所熱流束 qlを求める局所熱流束演算手段と、定常状態における铸型內の溶鋼流動による定常 凝固界面入熱 q2resを下式(1)に基づいて求めたデータを記憶する定常凝固界面入熱記憶手段 と、これら熱流束 qlと定常凝固界面入熱 q2resの差 (ql— q2res)について溶鋼が湯面力 铸型出 口に至るまでの熱流束プロファイルを求めるプロファイル演算手段と、求められた熱流束プロファ ィルに基づいてブレークアウト発生の危険の有無を判定するブレークアウト判定手段とを備えたこ とを特徴とする連続鏡造におけるブレークアウト検出装置。 (11) By inputting a pair of thermocouples embedded in two points at different depths in the vertical thickness direction, the thermocouple group installed in the vertical forging direction, and temperature information from the thermocouple group The local heat flux calculation means to determine the local heat flux ql at each thermocouple installation site, and the steady solidification interface heat input q2 res due to the molten steel flow of the vertical bowl in the steady state are the data obtained from the following equation (1). Memorize the steady solidification interface heat input memorization and the difference between the heat flux ql and the steady solidification interface heat input q2 res (ql-q2 res ) Profile calculation means and breakout judgment means for judging whether or not there is a risk of occurrence of breakout based on the obtained heat flux profile. Breakout detection device for continuous mirror construction.
q2reg=h- Δ Θ · · ( 1) q2 reg = h- Δ Θ (1)
但し、 h :溶銅と凝固シェルの間の熱伝達係数  Where h: Heat transfer coefficient between molten copper and solidified shell
Δ Θ:溶鋼の過熱度。  ΔΘ: degree of superheat of molten steel.
( 12) 上記(1 1 )に記載の連続錶造におけるブレークアウト検出装置であって、前記ブレークァ ゥト判定手段が、 (12) The breakout detection device for continuous fabrication according to (1 1) above, wherein the breakout determination means includes:
前記熱流束プロファイルに基づき総括熱流束 Q1および Q2を以下の方法により求め; すなわち、 (0前記熱流束プロファイルに極小値を示す極小点が存在する場合には、該極小点と铸型出口で の局所熱流束値とを直線で結んだときにこの直線よりも上の部分の面積に相当する総括熱流束 を Q2とし、湯面位置から铸型出口間の該熱流束プロファイルの曲線全体で囲まれる全面積に相 当する総括熱流束力 Q2を差し引レ、た面積に相当する総括熱流束を Q 1とし、(ii)前記熱流束プ 口ファイルに極小値を示す極小点が存在しない場合には、湯面位置から铸型出口間の該熱流束 プロファイルの曲線全体で囲まれる全面積に相当する総括熱流束を総括熱流束 Q 1とし、 Q2を 零とし; Based on the heat flux profile, the overall heat fluxes Q1 and Q2 are obtained by the following method; that is, (0 When there is a minimum point indicating a minimum value in the heat flux profile, the minimum point and the vertical outlet When the local heat flux value is connected with a straight line, the overall heat flux corresponding to the area above the straight line is defined as Q2, and it is surrounded by the entire curve of the heat flux profile from the molten metal surface position to the vertical outlet. If the total heat flux force Q2 corresponding to the total area is deducted, the total heat flux corresponding to the area is Q1, and (ii) there is no minimum point indicating the minimum value in the heat flux profile file Is the overall heat flux corresponding to the entire area surrounded by the entire curve of the heat flux profile between the hot water surface position and the vertical outlet, and the overall heat flux Q 1 and Q2 is zero;
前記総括熱流束 Q 1に基づいて、あるいは Q 1および Q2に基づいて、ブレークアウト発生の 危険の有無を判定することを特徴とするブレークアウト判定手段である、ブレークアウト検出装 置。  A breakout detection device, which is a breakout determination means, characterized by determining whether or not there is a risk of occurrence of a breakout based on the overall heat flux Q1 or based on Q1 and Q2.
( 13) 上記(12)に記載の、連続錶造におけるブレークアウト検出装置であって、前記ブレークァ ゥト判定手段が、前記総括熱流束 Q 1を凝固による抜熱量の指標とし、必要に応じ Q2を定常を超 える凝固界面入熱の指標として、 Q 1に基づいて、あるいは Q 1および Q2に基づいて、ブレークァ ゥト発生の危険の有無を判定するブレークアウト判定手段である、ブレークアウト検出装置。 (13) The breakout detection device for continuous fabrication as described in (12) above, wherein the breakout determination means uses the overall heat flux Q1 as an index of heat removal due to solidification, and if necessary, Q2 Is a breakout detection device that is a breakout determination means that determines whether there is a risk of breakout based on Q1 or based on Q1 and Q2 .
本発明はまた、上記(12)に記載の、連続铸造におけるブレークアウト検出装置であって、前 記ブレークアウト判定手段力 Q 1を数値の増大によりブレークアウトのリスクを低減する因子とし て扱い、 Q2を数値の増大によりブレークアウトのリスクを増大させる因子として扱って、 Q 1に基づ いてあるいは Q 1および Q2に基づいてブレークアウト発生の危険の有無を判定するブレークァゥ ト判定手段であることを特徴とする、ブレークアウト検出装置である。  The present invention is also the breakout detection device for continuous fabrication as described in (12) above, wherein the breakout determination means power Q 1 is treated as a factor for reducing the risk of breakout by increasing the numerical value. Treating Q2 as a factor that increases the risk of breakout by increasing the numerical value, it is a breakout judgment means that determines whether there is a risk of breakout based on Q1 or based on Q1 and Q2. This is a breakout detection device.
( 14) 上記(12)または(13)に記載の、連続錶造におけるブレークアウト検出装置であって、前 記ブレークアウト判定手段が、前記総括熱流束 Q 1について予め定めた閾値 α 1、 α 2 ( α.1 < α 2)に対し、(i)Q lく a 1のときに、ブレークアウトの危険があると判定し、(ii) a 1≤Q 1≤ α 2のとき には、 Q2の値に応じてブレークアウトの危険があると判定することを特徴とする、ブレークアウト判 定手段である、ブレークアウト検出装置。 (14) The breakout detection device in continuous fabrication as described in (12) or (13) above, wherein the breakout determination means has a predetermined threshold value α 1, α for the overall heat flux Q 1. 2 For (α.1 <α 2), (i) When Q l a a 1, it is determined that there is a risk of breakout. (Ii) When a 1 ≤ Q 1 ≤ α 2 The breakout detection device, which is a breakout determination means, determines that there is a risk of breakout according to the value of Q2.
ここで Q2が、 Q1に基づき予め定められた閾値(a 1≤Q1≤ α 2の全域で一定の値であって もよい)以上となった場合にブレークアウトの危険があると判定することが好ましい。  Here, when Q2 is equal to or greater than a predetermined threshold based on Q1 (which may be a constant value across a1≤Q1≤α2), it is determined that there is a risk of breakout. preferable.
( 15) 上記(12)または(13)に記載の、連続鍀造におけるブレークアウト検出装置であって、前 記ブレークアウト判定手段が、前記(ql— q2ree)について求められた前記熱流束プロファイルに おいて極小値を示す極小点が存在する場合において、 Q 1について予め定めた閾値 α 1、 α 2 ( a 1 < Q! 2)及び Q2について予め定めた閾値 に対して、(i)Ql < a 1かつ Q2≥ )3、または (ii) Q l < a 1かつ Q2 < /3、または (iii) o: 1≤Q 1≤ α 2かつ Q2≥ βのときにブレークアウトの危険が あると判定するブレークアウト判定手段であることを特徴とする、ブレークアウト検出装置。 (15) according to the above (12) or (13), a breakout detector in continuous鍀造, before Symbol breakout judging means, wherein (ql- q2 ree) the heat flux profile obtained for If there is a minimum point indicating a minimum value in Q1, the thresholds α1, α2 (a1 <Q! 2) for Q1 and the thresholds for Q2 <a 1 and Q2≥) 3, or (ii) Q l <a 1 and Q2 </ 3, or (iii) o: risk of breakout when 1≤Q 1≤ α 2 and Q2≥ β A breakout detection device for determining whether or not
すなわち、本発明に係る連続铸造におけるブレークアウト検出装置は、铸型厚み方向に異 なる深さの 2点に埋め込んだ一対の熱電対を、铸型铸造方向に複数設置してなる熱電対群と、 該熱電対群からの温度情報を入力して各熱電対設置部位における局所熱流束 qlを求める局所 熱流束演算手段と、定常状態における铸型内の溶銅流動による定常凝固界面入熱 q2regを前記 式(1)に基づいて求めたデータを記憶する定常凝固界面入熱記憶手段と、これら熱流束 qlと定 常凝固界面入熱 q2regの差(ql _ q2res)について溶鋼が湯面力 鎵型出口に至るまでの熱流束 プロファイルを求めるプロファイル演算手段と、該プロファイル演算手段によって求められた熱流 束プロファイルにおいて極小値を示す極小点が存在する場合において、該極小点と鏡型出口で の局所熱流束値とを直線で結んだときにこの直線よりも上の部分の面積に相当する総括熱流束 を Q2とし、湯面位置から錄型出口間の該熱流束プロファイルの曲線全体で囲まれる全面積に相 当する総括熱流束力 Q2を差し弓 Iいた面積に相当する総括熱流束を Q1とし、 Q 1について予め 定めた閾値 α 1、 α 2 ( α 1 < α 2)及ぴ Q2について予め定めた閾値 に対して、 Q l < α 1かつ Q2≥ 、または Ql < α 1かつ Q2< β、または α 1≤ Ql≤ a 2かつ Q2≥ j3のときにブレークァ ゥトの危険があると判定するブレークアウト判定手段とを備えたことを特徴とするものである。 That is, the breakout detection device in continuous fabrication according to the present invention includes a thermocouple group in which a plurality of pairs of thermocouples embedded at two points having different depths in the vertical thickness direction are installed in the vertical fabrication direction. The local heat flux calculation means to obtain the local heat flux ql at each thermocouple installation site by inputting the temperature information from the thermocouple group, and the steady solidification interface heat input due to the molten copper flow in the bowl in the steady state q2 reg The steady solidification interface heat input storage means for storing the data obtained from the above equation (1) and the difference between the heat flux ql and the steady solidification interface heat input q2 reg (ql _ q2 res ) The profile calculation means for obtaining the heat flux profile up to the heel-shaped outlet, and when there is a minimum point indicating the minimum value in the heat flux profile obtained by the profile calculation means, the minimum point and the mirror-type outlet The overall heat flux corresponding to the area above this straight line is Q2 when connected to the local heat flux value of this line with a straight line, and is surrounded by the entire curve of the heat flux profile between the hot water surface position and the vertical outlet Q1 is the total heat flux force corresponding to the total area Q2 and Q1 is the total heat flux equivalent to the total area I, and the predetermined threshold values α1, α2 (α1 <α2) and Q2 for Q1 There is a risk of breakout when Q l <α 1 and Q2≥, or Ql <α 1 and Q2 <β, or α 1 ≤ Ql ≤ a 2 and Q2 ≥ j3 And a breakout determination means for determining the above.
(16) 上記(15)に記載の、連続铸造におけるブレークアウト検出装置であって、溶鋼が極低炭 素銅である場合において、 a l力 5000 (kjZm2)、 0;2が21000 (¾1 1112)、 力 4500 (kjZm 2)に設定されていることを特徴とするブレークアウト検出装置。 (16) The breakout detection device for continuous forging as described in (15) above, where the al force is 5000 (kjZm 2 ), 0; 2 is 21000 (¾1 111) when the molten steel is extremely low carbon copper. 2 ), Breakout detection device characterized by being set to force 4500 (kjZm 2 ).
(17) 上記(12)または(13)に記載の、連続铸造におけるブレークアウト検出装置であって、前 記ブレークアウト判定手段が、総括熱流束 Q 1を用いて下式 (2)に基づいて铸型出口における凝 固シェル厚み Dを演算する凝固シェル厚演算手段と、前記凝固シェル厚演算手段の演算値を入 力して、該演算値 Dと予めブレークアウト発生の危険性との関係で求めた閾値とに基づいてブレ ークアウト発生の危険の有無を判定する、ブレークアウト判定手段本体とを有することを特徴とす る、ブレークアウト検出装置。 (17) The breakout detection device for continuous fabrication as described in (12) or (13) above, wherein the breakout determination means is based on the following equation (2) using the overall heat flux Q1. Congeal at the vertical exit The solidified shell thickness calculating means for calculating the solid shell thickness D and the calculated value of the solidified shell thickness calculating means are input, and the calculated value D and the threshold value obtained in advance in relation to the risk of occurrence of breakout are used. A breakout detection device comprising: a breakout determination means main body for determining whether there is a risk of occurrence of breakout based on the breakout determination main body.
D=Q1Z (厶 Η· ρ) (2)  D = Q1Z (厶 Η ・ ρ) (2)
但し、 D :铸型出口での凝固シェル厚み (m)  D: Thickness of the solidified shell at the vertical outlet (m)
Q1:総括熱流束 (jZm2) Q1: Overall heat flux (jZm 2 )
厶 H:铸型出口での凝固シェルの単位重量当たりのェンタルピー落差 (jZkg) p :鎵型出口の凝固シェル密度 (kgZm3) 厶 H: enthalpy drop per unit weight of solidified shell at vertical outlet (jZkg) p: solidified shell density at vertical outlet (kgZm 3 )
また、前記 qlの単位を jZs'm2、前記式 (1)において q2regの単位を L s'm^ hの単位を JZ s-m2'°C, Δ 0の単位を。 Cとする。 In addition, the unit of ql is jZs'm 2 , the unit of q2 reg is L s'm ^ h in the above formula (1), and the unit of JZ sm 2 '° C, Δ 0. C.
(18) 上記(12)または(13)に記載の、連続铸造におけるブレークアウト検出装置であって、前 記ブレークアウト判定手段が、総括熱流束 Q1を用いて下式 (2)に基づいて铸型出口における凝 固シェル厚み Dを演算し、さらに総括熱流束 Q2による再溶解によって生ずる凝固遅れを考慮し た凝固シェル厚み D1を、下記式 (3)に基づいて求められた凝固遅れ度 RSを用いて、 D1 = D(1 一 RS)の関係により演算する、凝固シェル厚演算手段と、前記凝固シェル厚演算手段の演算値を 入力して、該演算値 D1と予めブレークアウト発生の危険性との関係で求めた閾値とに基づいて ブレークアウト発生の危険の有無を判定する、ブレークアウト判定手段本体とを有することを特徴 とする、ブレークアウト検出装置。 (18) The breakout detection device for continuous fabrication as described in (12) or (13) above, wherein the breakout determination means is based on the following equation (2) using the overall heat flux Q1. Calculate the solidified shell thickness D at the mold outlet, and further consider the solidification shell thickness D1 taking into account the solidification delay caused by remelting by the overall heat flux Q2, and the solidification delay RS obtained based on the following equation (3): The calculated value of the solidified shell thickness calculating means and the calculated value of the solidified shell thickness calculating means are calculated according to the relationship D1 = D (1 RS), and the calculated value D1 and the risk of occurrence of breakout in advance A breakout detection device comprising: a breakout determination means main body that determines whether or not there is a risk of occurrence of breakout based on a threshold value obtained in relation to
D=Q1Z (厶 Η· ρ) (2)  D = Q1Z (厶 Η ・ ρ) (2)
但し、 D :鎵型出口での凝固シェル厚み (m)  D: Thickness of the solidified shell at the vertical outlet (m)
Ql:総括熱流束 (jZm2) Ql: Overall heat flux (jZm 2 )
ΔΗ:铸型出口での凝固シェルの単位重量当たりのェンタルピー落差 (JZkg) P :铸型出口の凝固シェル密度 (kgZm3) ΔΗ: enthalpy drop per unit weight of solidified shell at vertical outlet (JZkg) P: solidified shell density at vertical outlet (kgZm 3 )
RS= β X (V0·8·厶 0 ) (3) RS = β X (V 0 8 8 0) (3)
但し、 RS:凝固遅れ度 (無単位)  However, RS: solidification delay (no unit)
0 :凝固遅れ定数 (無単位)  0: Coagulation delay constant (no unit)
V:溶鋼流速(m/s)  V: Molten steel flow velocity (m / s)
厶 Θ:溶銅過熱度 (°C) ―  厶 Θ: Molten copper superheat (° C) ―
ここで V=(Q2Z(" 't- Δ Θ ))1-25 Where V = (Q2Z ( "'t- Δ Θ)) 1 - 25
02:総括熱流束(1 !^) . α:溶鋼流速定数 (無単位) 02: Overall heat flux (1! ^) α: Molten steel flow rate constant (no unit)
t :凝固シェルが熱流束プロファイルにおける極小点を通過して力ら銹型出口に至るま でに要する時間 (S)  t: Time required for the solidified shell to pass through the minimum point in the heat flux profile and reach the vertical outlet (S)
また、前記 qlの単位を J s 'm2、前記式 (1)において q2 resの単位を jZs 'm2、 hの単位を JZ s 'm2'°C、 Δ Θの単位をでとする。 なお、上記凝固シェル演算手段は、(ql— q2res)の熱流束プロファイルにおいて極小値を示 す極小点が存在しない場合には上記(17)の方法で、該熱流束プロファイルにおいて極小値を 示す極小点が存在する場合には上記(18)の方法で、それぞれ铸型出口における凝固シェル厚 みを演算する演算手段であることが好ましい。 In addition, the unit of ql is J s 'm 2 , the unit of q 2 res is jZs' m 2 , the unit of h is JZ s 'm 2 ' ° C, and the unit of ΔΘ is To do. The solidification shell computing means shows the minimum value in the heat flux profile by the method of (17) when there is no minimum point showing the minimum value in the heat flux profile of (ql−q2 res ). In the case where there is a minimum point, it is preferable that the calculation means is for calculating the thickness of the solidified shell at the saddle type outlet by the method (18).
(19) 上記(11)〜(18)のいずれかに記載のブレークアウト検出装置を用いたブレークアウト防 止装置であって、ブレークアウト判定手段の信号を入力して、ブレークアウト判定手段がブレーク アウトの危険有りと判定した場合において、錶造速度を下げるように操業条件を制御し、または該 制御に加えて铸型内の溶銅流速を低下させる制御を行う制御手段を備えたことを特徴とする連 続铸造におけるブレークアウト防止装置。 (19) A breakout prevention device using the breakout detection device according to any one of (11) to (18) above, wherein the breakout determination unit inputs a signal from the breakout determination unit and the breakout determination unit When it is determined that there is a risk of out, control conditions are provided to control the operating conditions so as to reduce the forging speed, or in addition to this control, to reduce the molten copper flow velocity in the mold. Breakout prevention device in continuous manufacturing.
(20) 上記(11)〜(18)のいずれかに記載のブレークアウト検出装置を用いたブレークアウト防 止装置であって、ブレークアウト判定手段の信号を入力して、ブレークアウト判定手段がブレーク アウトの危険有りと判定したときに、铸造速度を減速するように制御する制御手段を備えたことを 特徴とする連続铸造におけるブレークアウト防止装置。 (20) A breakout prevention device using the breakout detection device according to any one of (11) to (18) above, wherein the breakout determination unit inputs a signal from the breakout determination unit and the breakout determination unit A breakout prevention device for continuous forging, comprising control means for controlling to reduce the forging speed when it is determined that there is a risk of out.
(21) 上記(15)または(16)に記載のブレークアウト検出装置を用いたブレークアウト防止装置 であって、 (21) A breakout prevention device using the breakout detection device according to (15) or (16) above,
ブレークアウト判定手段の信号を入力して、ブレークアウト判定手段がブレークアウトの危険 有りと判定した場合において、(i)この危険有りとの判定が Ql < a 1かつ Q2≥ βに基づく危険判 定の場合には (a)铸造速度を下げる及び Ζ又は铸型冷却を強くするように操業条件を制御し、ま たは (b)該制御に加えて錶型内の溶鋼流速を低下させる制御を行い、 (ii)Q K α 1かつ Q2く β に基づく危険判定の場合には铸造速度を下げる及び Ζ又は铸型冷却を強くするように操業条件 を制御し、(iii) a 1≤Q1≤ α 2かつ Q2≥ βに基づく危険判定の場合は (Α)铸型内の溶鋼流速を 低下させるか、あるいはさらに (B)铸造速度を下げる及び/または銬型冷却を強くする制御を行う 制御手段を備えたことを特徴とする連続铸造におけるブレークアウト防止装置。 (22) 上記 (4)に記載のブレークアウト検出方法を用いた鋼の連続铸造方法であって、 (i)Q l > α 2、または、(ii) a I Ql≤ α 2かつ Q2がブレークアウトの危険があると判定されないよう低減し た値となるように、操業条件を制御することを特徴とする鋼の連続铸造方法。 When a breakout determination means signal is input and the breakout determination means determines that there is a risk of breakout, (i) this risk determination is based on Ql <a 1 and Q2 ≥ β In this case, (a) the operating conditions are controlled so as to lower the forming speed and strengthen the dredging or dredging cooling, or (b) in addition to the control, control to lower the molten steel flow velocity in the dredging. (Ii) In the case of risk judgment based on QK α 1 and Q2 and β, control the operating conditions so as to reduce the forging speed and increase the dredging or vertical cooling, and (iii) a 1≤Q1≤ α 2 and in the case of risk judgment based on Q2≥β, (i) control means to reduce the molten steel flow velocity in the mold, or (B) to control the steelmaking speed and / or to increase the mold cooling. A breakout prevention device in continuous fabrication characterized by comprising. (22) A continuous steel forging method using the breakout detection method described in (4) above, wherein (i) Q l> α 2 or (ii) a I Ql ≤ α 2 and Q2 A continuous forging method of steel, characterized by controlling the operating conditions so that the value is reduced so that it is not determined that there is a risk of out.
(23) 上記(5)または(6)に記載のブレークアウト検出方法を用いた鋼の連続铸造方法であって、 Q l > α 2かつ Q2≥ β、または、 Q l≥a 1かつ Q2く βとなるように操業条件を制御することを特 徴とする銅の連続铸造方法。 (23) A continuous steel forging method using the breakout detection method described in (5) or (6) above, wherein Q l> α 2 and Q 2 ≥ β, or Q l ≥ a 1 and Q 2 A continuous copper production method characterized by controlling the operating conditions so as to be β.
(24) 上記(23)に記載の、鋼の連続铸造方法であって、操業中において、(i)Ql < α 1かつ Q2 ≥ βになった場合には (a)铸造速度を下げる及び Ζ又は鎵型冷却を強くするように操業条件を制 御し、または該制御に加えて (b)铸型内の溶鋼流速を低下させるように操業条件を制御し、 (ii)Q l < α 1かつ Q2< j3になった場合には铸造速度を下げる及び Z又は铸型冷却を強くするように操 業条件を制御し、(iii) a 1≤Q 1≤ α 2かつ Q2≥ βになった場合は、(Α)铸型内の溶鋼流速を低 下させるか、あるいはさらに (B)鐯造速度を下げる及び/または铸型冷却を強くするように操業条 件を制御することを特徴とする、鋼の連続铸造方法。 (24) The continuous steel forging method as described in (23) above, wherein (i) when Ql <α 1 and Q2 ≥ β during operation, (a) reduce the forging speed and Alternatively, control the operating conditions so as to enhance the vertical cooling, or in addition to the control, (b) control the operating conditions so as to decrease the molten steel flow velocity in the vertical mold, and (ii) Q l <α 1 When Q2 <j3, the operating conditions were controlled so as to reduce the forging speed and increase Z or vertical cooling. (Iii) a 1≤Q 1≤ α 2 and Q2≥ β In this case, (iii) the molten steel flow velocity in the vertical mold is decreased, or (B) the operating conditions are controlled so as to lower the forging speed and / or increase the vertical cooling. , Continuous forging method of steel.
(25) 上記(22)〜(24)に記載の、鋼の連続铸造方法であって、熱流束 qlが、铸型内に铸型厚 み方向で埋め込み深さの異なる 2点間に埋め込んだ一対の熱電対を、铸型铸造方向に複数設 置して、前記一対の熱電対の出力に基づいて下式 (4)によって求める局所熱流束である、鋼の 連続铸造方法。 (25) The steel continuous forging method as described in (22) to (24) above, wherein the heat flux ql is embedded in the mold between two points with different embedding depths in the mold thickness direction. A steel continuous forging method, in which a plurality of a pair of thermocouples are arranged in the vertical forging direction and the local heat flux is obtained by the following equation (4) based on the output of the pair of thermocouples.
ql = X (Tl -T2) /d (4)  ql = X (Tl -T2) / d (4)
但し、 λ :錶型の熱伝導率  Where λ is a bowl-shaped thermal conductivity
Τ1、Τ2 :熱電対の検出温度  Τ1, Τ2: Thermocouple detection temperature
d:熱電対の埋設間隔  d: Thermocouple burying interval
(26) 上記(7)に記載のブレークアウト検出方法を用いた鋼の連続铸造方法であって、推定され た凝固シェル厚み D力 予めブレークアウト発生の危険性との関係で求めた閾値より小さくなるよ うに操業条件を制御する鋼の連続铸造方法。 (26) A continuous steel forging method using the breakout detection method described in (7) above, in which the estimated solidified shell thickness D force is smaller than the threshold value determined in advance in relation to the risk of breakout occurrence. A continuous forging method for steel that controls the operating conditions.
(27) 上記 (8)に記載のブレークアウト検出方法を用いた鋼の連続铸造方法であって、推定され た凝固シェル厚み D1が、予めブレークアウト発生の危険性との関係で求めた閾値より小さくなる ように操業条件を制御する鋼の連続铸造方法。 なお、(ql— q2reg)の熱流束プロファイルの極小点が存在しない場合は、上記(26)に記載 の方法により連続鍀造し、極小点が存在する場合は上記 (27)に記載の方法で連続铸造すること が好ましい。 (27) A continuous steel forging method using the breakout detection method described in (8) above, in which the estimated solidified shell thickness D1 is determined in advance from a threshold value determined in relation to the risk of breakout occurrence. Become smaller Steel continuous forging method to control the operating conditions. If the minimum point of the heat flux profile of (ql-q2 reg ) does not exist, continuous fabrication is performed by the method described in (26) above, and if the minimum point exists, the method described in (27) above. It is preferable to continuously forge.
(28) 連続铸造における铸型内の溶鋼が湯面力 铸型出口に至るまでの間に凝固界面へ入熱 する熱流束 qlを測定するステップと、定常状態における铸型内の溶鋼流動による定常凝固界面 入熱 q2regを下式 (1)に基づいて求めるステップと、これら熱流束 ql O/s' m2)と定常凝固界面入 熱 q2regの差 (ql— q2res)について溶鋼が湯面から鐯型出口に至るまでの熱流束プロファイルを 求めるステップと、 G)前記熱流束プロファイルにおいて極小値を示す極小点が存在する場合には、 該極小点と铸型出口での局所熱流束値とを直線で結んだときにこの直線よりも上の部分の面積 に相当する総括熱流束を Q2として湯面位置力 铸型出口間の該熱流束プロファイルの曲線全 体で囲まれる全面積に相当する総括熱流束力 Q2を差し弓 Iいた面積に相当する総括熱流束を Q1とし、(ii)前記熱流束プロファイルにおいて極小値を示す極小点が存在しない場合には、湯面 位置から铸型出口間の該熱流束プロファイルの曲線全体で囲まれる全面積に相当する総括熱 流束を総括熱流束 Q1とし、 (28) The step of measuring the heat flux ql that enters the solidification interface before the molten steel in the mold reaches the mold surface force in the continuous forging, and the steady state due to the molten steel flow in the mold in the steady state The step of obtaining the solidification interface heat input q2 reg based on the following equation (1) and the difference between the heat flux ql O / s' m 2 ) and the steady solidification interface heat input q2 reg (ql-q2 res ) A step of obtaining a heat flux profile from the surface to the vertical outlet, and G) if there is a minimum point indicating a minimum value in the heat flux profile, the local heat flux value at the minimum point and the vertical outlet The total heat flux corresponding to the area above this straight line is defined as Q2, and the molten metal surface force is equivalent to the total area surrounded by the entire curve of the heat flux profile between the vertical outlets. The total heat flux force Q2 is bowed. Qii, and (ii) when there is no local minimum point indicating the minimum value in the heat flux profile, the total heat corresponding to the entire area surrounded by the entire curve of the heat flux profile from the molten metal surface position to the vertical outlet Let the flux be the overall heat flux Q1,
これら総括熱流束 Q 1を用いて下式(2)に基づ 、て铸型出口における凝固シェル厚み Dを推 定するステップとを有することを特徴とする、連続铸造における凝固シェル厚み推定方法。  And a step of estimating the solidified shell thickness D at the vertical outlet based on the following formula (2) using the overall heat flux Q 1.
q2reg=h- Δ Θ (1) q2 reg = h- Δ Θ (1)
但し、 q2reg :定常凝固界面入熱 (j/s'm2) Where q2 reg: steady-state solidification interface heat input (j / s'm 2 )
h:溶鋼と凝固シェルの間の熱伝達係数 (J/s · m2 · °C) h: Heat transfer coefficient between molten steel and solidified shell (J / s · m 2 · ° C)
厶 Θ:溶鋼の過熱度 CC)  厶 Θ: Molten steel superheat CC)
D=Q1 / ( AH- p ) (2) D = Q1 / (AH- p) (2)
但し、 D:铸型出口での凝固シェル厚み (m)  D: Solidified shell thickness at the vertical outlet (m)
Q1 :総括熱流束 (jZm2) Q1: Overall heat flux (jZm 2 )
厶 H:鎵型出口での凝固シェルの単位重量当たりのェンタルピー落差 (jZkg) P: 型出口の凝固シェル密度 (kgZm3) 厶 H: enthalpy drop per unit weight of solidified shell at the vertical outlet (jZkg) P: solidified shell density at the mold outlet (kgZm 3 )
(29) 熱流束プロファイルにおいて極小値を示す極小点が存在する場合において、総括熱流束 Q2による再溶解によって生ずる凝固遅れを考慮した凝固シェル厚み D1を推定する方法であつ て、上記(28)によって求められた凝固シェル厚みを Dとすると、 D1 = D (1— RS)とすることを特 徴とする連続铸造における凝固シェル厚み推定方法。 (29) A method for estimating the solidified shell thickness D1 in consideration of the solidification delay caused by remelting by the overall heat flux Q2 when there is a local minimum point showing a minimum value in the heat flux profile, according to (28) above. If the calculated thickness of the solidified shell is D, D1 = D (1—RS). A method for estimating the thickness of a solidified shell in continuous forging.
但し、 RS - β X (V0·8· Δ Θ ) (3) RS-β X (V 0 8 Δ Θ) (3)
RS :凝固遅れ度 (無単位)  RS: Freezing delay (no unit)
β:凝固遅れ定数 (無単位)  β: Coagulation delay constant (unitless)
V:溶鋼流速(m/s)  V: Molten steel flow velocity (m / s)
厶 Θ:溶鋼過熱度 (°C)  厶 Θ: Molten steel superheat (° C)
ここで V= (Q2Z ( α -t. Δ 0 ) ) 1 25 Where V = (Q2Z ( α -t. Δ 0)) 1 25
Q2 :総括熱流束 (L m2)  Q2: Overall heat flux (L m2)
a:溶銅流速定数 (無単位)  a: Molten copper flow rate constant (no unit)
t :凝固シェルが熱流束プロファイルにおける極小点を通過して力 铸型出口に至るま でに要する時間 (S) なお、(q l— q2res)の熱流束プロファイルの極小点が存在しない場合には、上記(28)に記 載の方法で凝固シェル厚み (D)を推測し、極小点が存在する場合には上記(29)に記載の方法 で凝固シェル厚み (D1)を推測することにより、それぞれ凝固シェル厚みを推定することが好まし い。 t: Time required for the solidified shell to pass through the minimum point in the heat flux profile to reach the force saddle type outlet (S) Note that if there is no minimum point in the heat flux profile of (ql-q2 res ) By estimating the solidified shell thickness (D) by the method described in (28) above, and when there is a minimum point, by estimating the solidified shell thickness (D1) by the method described in (29) above, It is preferable to estimate the thickness of each solidified shell.
(30) 上記(28)または(29)に記載の連続铸造における凝固シェル厚み推定方法であって、熱 流束 qlは、铸型内に铸型厚み方向で埋め込み深さの異なる 2点間に埋め込んだ一対の熱電対 を、铸型铸造方向に複数設置して、前記一対の熱電対の出力に基づいて下式 (4)によって求め る局所熱流束であることを特徴とする連続铸造における凝固シェル厚み推定方法。 (30) The method for estimating the thickness of a solidified shell in continuous casting as described in (28) or (29) above, wherein the heat flux ql is between two points having different embedding depths in the vertical direction of the vertical shape in the vertical shape. Solidification in continuous forging characterized by a local heat flux obtained by the following equation (4) based on the output of the pair of thermocouples by installing a plurality of embedded thermocouples in the vertical forging direction. Shell thickness estimation method.
ql = λ (Tl -T2) /d (4)  ql = λ (Tl -T2) / d (4)
但し、 ql :熱流束 (J Vm2) Where ql: Heat flux (J Vm 2 )
λ:铸型の熱伝導率 (j/s ' m'^)  λ: vertical thermal conductivity (j / s 'm' ^)
Tl、 T2 :熱電対の検出温度 (t)  Tl, T2: Thermocouple detection temperature (t)
d :熱電対の埋設間隔 (m)  d: Embedment interval of thermocouple (m)
(31 ) 铸型厚み方向に異なる深さの 2点に埋め込んだ一対の熱電対を、铸型铸造方向に複数 設置してなる熱電対群と、該熱電对群からの温度情報を入力して各熱電対設置部位における局 所熱流束 qlを求める局所熱流束演算手段と、定常状態における铸型内の溶鋼流動による定常 凝固界面入熱 q2reBを下式(1)に基づいて求めたデータを記憶する定常凝固界面入熱記憶手段 と、これら熱流束 qlと定常凝固界面入熱 q2reeの差 (ql— q2reg)について溶鋼が湯面力 铸型出 口に至るまでの熱流束プロファイルを求めるプロファイル演算手段と、 (31) A thermocouple group in which a plurality of thermocouples embedded in two points at different depths in the vertical thickness direction are installed in the vertical fabrication direction, and temperature information from the thermocouple counter is input. The local heat flux calculation means for determining the local heat flux ql at each thermocouple installation site and the steady solidification interface heat input q2 reB by the molten steel flow in the mold in the steady state. The memorized steady solidification interface heat input memory and the difference between the heat flux ql and the steady solidification interface heat input q2 ree (ql-q2 reg ) Profile calculation means for obtaining a heat flux profile up to the mouth,
(i)該プロファイル演算手段によって求められた熱流束プロファイルにおいて極小値を示す極 小点が存在しない場合は、湯面位置から铸型 ffl口間の該熱流束プロファイルの曲線全体で囲ま れる全面積に相当する総括熱流束を Q1とし、 Gi)前記プロファイル演算手段によって求められた 熱流束プロファイルにおいて極小値を示す極小点が存在する場合は、該極小点と铸型出口での 局所熱流束値とを直線で結んだときにこの直線よりも上の部分の面積に相当ずる総括熱流束を Q2として湯面位置から鐃型出口間の該熱流束プロファイルの曲線全体で囲まれる全面積に相 当する総括熱流束力ら Q2を差し引 、た面積に相当する総括熱流束を Q 1とし、  (i) When there is no local minimum point indicating the minimum value in the heat flux profile obtained by the profile calculation means, the entire area surrounded by the entire curve of the heat flux profile between the molten metal surface position and the vertical ffl port Gi) If there is a local minimum point indicating the minimum value in the heat flux profile obtained by the profile calculation means, the total heat flux corresponding to Q1 is defined as Q1 and the local heat flux value at the vertical outlet Q2 is the total heat flux corresponding to the area above the straight line, and corresponds to the entire area surrounded by the entire curve of the heat flux profile between the molten metal surface and the vertical outlet. By subtracting Q2 from the overall heat flux force, the overall heat flux corresponding to the area is Q1,
これら総括熱流束 Q1を用いて下式(2)に基づいて铸型出口における凝固シェル厚み Dを 演算する凝固シェル厚演算手段とを備えたことを特徴とする連続鍀造における凝固シヱル厚み 推定装置。  A solidification shell thickness estimation device in continuous forging characterized by comprising solidification shell thickness calculation means for calculating the solidification shell thickness D at the vertical outlet based on the following formula (2) using the general heat flux Q1 .
q2reg=h- Δ Θ (1) q2 reg = h- Δ Θ (1)
但し、 q2reg:定常凝固界面入熱 (J/ m2) Where q2 reg : Steady solidification interface heat input (J / m 2 )
h:溶鋼と凝固シェルの間の熱伝達係数 (jZs'm2'^) h: Heat transfer coefficient between molten steel and solidified shell (jZs'm 2 '^)
厶 Θ:溶鋼の過熱度 (°C)  厶 Θ: Molten steel superheat (° C)
D=QlZ(AH' p) (2)  D = QlZ (AH 'p) (2)
但し、 D :鏡型出口での凝固シェル厚み (m)  D: Solidified shell thickness at the mirror exit (m)
Ql:総括熱流束 (jZm2) Ql: Overall heat flux (jZm 2 )
ΔΗ:錄型出口での凝固シェルの単位重量当たりのェンタルピー落差 O/kg) p :铸型出口の凝固シェル密度 (kgZm3) ΔΗ: enthalpy drop per unit weight of solidified shell at vertical outlet O / kg) p: solidified shell density at vertical outlet (kgZm 3 )
(32) 上記(31)に記載の凝固シェル厚み推定装置において、凝固シェル厚演算手段は、総括 熱流束 Q2による再溶解によって生ずる凝固遅れを考慮した凝固シェル厚みを D1として、 D1 = D (1— RS)とすることを特徴とする連続铸造における凝固シェル厚み推定装置。 (32) In the solidified shell thickness estimation device described in (31) above, the solidified shell thickness calculation means uses D1 = D (1 when D1 is the solidified shell thickness considering the solidification delay caused by remelting by the overall heat flux Q2. — RS), a solidified shell thickness estimation device for continuous forging.
但し、 RS=i3 Χ(ν°·8·Δ 0) (3) However, RS = i3 Χ (ν ° · 8 · Δ 0) (3)
j3 :凝固遅れ定数 (無単位) '  j3: Solidification delay constant (no unit) '
V :溶鋼流速 (m/s)  V: Flow velocity of molten steel (m / s)
Δ Θ:溶銅過熱度 (°C)  Δ Θ: Molten copper superheat (° C)
RS :凝固遅れ度 (無単位)  RS: Freezing delay (no unit)
ここで V=(Q2Z(a. Δ 0))1·25 Here V = (Q2Z (a. Δ 0)) 1 · 25
Q2:総括熱流束 (JZm2) Q2: Overall heat flux (JZm 2 )
α :溶鋼流速定数 (無単位) t :凝固シェルが熱流束プロファイルにおける極小点を通過して力 铸型出口に至るま でに要する時間 (S) なお凝固シェル厚み推定装置は、(ql— q2reg)の熱流束プロファイルの極小点が存在しない 場合には、上記(31)に記鍾の方法で凝固シェル厚み(D)を推測し、極小点が存在する場合に は上記(32)に記載の方法で凝固シェル厚み(D1)を推測することにより、それぞれ凝固シェル厚 みを推定することが好ましい。 図面の簡単な説明 α: Flow rate constant of molten steel (unitless) t: Time required for the solidified shell to pass through the minimum point in the heat flux profile to reach the force saddle type exit (S) Note that the solidified shell thickness estimation device is the minimum point of the heat flux profile of (ql-q2 reg ). In the case where the solidified shell thickness (D1) does not exist, the solidified shell thickness (D) is estimated by the method described in (31) above. It is preferable to estimate the thickness of the solidified shell in each case. Brief Description of Drawings
図 1は、本発明の一実施の形態に係るブレークアウト防止装置を設置した連続铸造設備の説 明図である。  FIG. 1 is an explanatory diagram of a continuous forging facility provided with a breakout prevention device according to an embodiment of the present invention.
図 2は、課題を解決するための手段を説明する説明図であり、熱電対を埋め込んだ連続铸造 用铸型の一例を示す断面図である。  FIG. 2 is an explanatory view for explaining means for solving the problem, and is a cross-sectional view showing an example of a continuous forging mold in which a thermocouple is embedded.
図 3は、課題を解決するための手段を説明する説明図であり、熱電対の埋め込み方法の一例 を示す説明図である。  FIG. 3 is an explanatory diagram for explaining means for solving the problem, and is an explanatory diagram showing an example of a thermocouple embedding method.
図 4は、課題を解決するための手段を説明する説明図であり、熱電対の取り付け位置の一例 を示す説明図である。  FIG. 4 is an explanatory view for explaining means for solving the problem, and is an explanatory view showing an example of a thermocouple mounting position.
図 5は、課題を解決するための手段を説明する説明図であり、局所熱流束 (縦軸: jZs ' m2)と 湯面からの距離 (横軸: mm)との関係の一例を示すグラフである。 Fig. 5 is an explanatory diagram for explaining the means for solving the problem, and shows an example of the relationship between the local heat flux (vertical axis: jZs' m 2 ) and the distance from the molten metal surface (horizontal axis: mm). It is a graph.
図 6は課題を解決するための手段を説明する説明図であり、溶鋼流速(縦軸: mZs)と湯面か らの距離 (横軸: mm)との関係の一例を示すグラフである。  FIG. 6 is an explanatory diagram for explaining the means for solving the problem, and is a graph showing an example of the relationship between the molten steel flow velocity (vertical axis: mZs) and the distance from the molten metal surface (horizontal axis: mm).
図 7は、課題を解決するための手段を説明する説明図であり、局所熱流束 ql (黒丸)および (q l -q2reg) (白丸)(縦軸: JZs 'm2)と湯面力 の距離 (横軸: mm)との関係の一例を示すグラフで ある。 Fig. 7 is an explanatory diagram for explaining the means for solving the problem. The local heat flux ql (black circle) and (ql -q2 reg ) (white circle) (vertical axis: JZs' m 2 ) It is a graph which shows an example of the relationship with distance (horizontal axis: mm).
図 8は、課題を解決するための手段を説明する説明図であり、局所熱流束と湯面からの距離と の関係を示すグラフによって示される熱流束プロファイルの面積の求め方の一例を示す説明図 である。  FIG. 8 is an explanatory diagram for explaining the means for solving the problem, and shows an example of how to obtain the area of the heat flux profile indicated by the graph showing the relationship between the local heat flux and the distance from the molten metal surface. It is a figure.
図 9は、課題を解決するための手段を説明する説明図であり、局所熱流束と湯面からの距離と の関係を示すグラフによって示される熱流束プロファイル Q1および Q2の面積の求め方の一例を 示す説明図である。  Fig. 9 is an explanatory diagram for explaining the means for solving the problem. An example of how to determine the area of the heat flux profiles Q1 and Q2 shown by the graph showing the relationship between the local heat flux and the distance from the molten metal surface FIG.
図 10は、課題を解決するための手段の一例を説明する説明図であり、横軸を Ql (kj/m2)、 縦軸を
Figure imgf000033_0001
とした座標平面に、表 1に示した数値をプロットし、さらにブレークアウト発生 の有無との関係で座標平面を 5つの領域に分割して示したものである。
FIG. 10 is an explanatory diagram for explaining an example of means for solving the problem. The horizontal axis is Ql (kj / m 2 ), and the vertical axis is
Figure imgf000033_0001
Plot the numerical values shown in Table 1 on the coordinate plane, and breakout occurs The coordinate plane is divided into five regions in relation to the presence or absence of.
図 11は、課題を解決するための手段を説明する説明図であり、铸造速度と鎊型出口における シェル厚み方向の平均温度との関係の一例を示すグラフで、縦軸が鎵型出口シェル厚み方向平 均温度 (で)、横軸が铸造速度 (m/min)を示してレヽる。  FIG. 11 is an explanatory diagram for explaining the means for solving the problem, and is a graph showing an example of the relationship between the forging speed and the average temperature in the shell thickness direction at the vertical outlet, and the vertical axis indicates the vertical outlet shell thickness. The direction average temperature (in) and the horizontal axis shows the forging speed (m / min).
図 12は、本発明の別の一実施の形態に係るブレークアウト防止装置を設置した連続铸造設 備の説明図である。 ·  FIG. 12 is an explanatory view of a continuous forging apparatus provided with a breakout prevention device according to another embodiment of the present invention. ·
図 13は、本発明のさらに別の一実施の形態に係るブレークアウト防止装置を設置した、連続 铸造設備の説明図である。  FIG. 13 is an explanatory diagram of a continuous forging facility in which a breakout prevention device according to still another embodiment of the present invention is installed.
(符号の説明) (Explanation of symbols)
1 鐯型  1 vertical
3 浸漬ノズル  3 Immersion nozzle
5 溶鋼  5 Molten steel
7 モーノレドパウダー  7 Monored powder
9 凝固シェル  9 Solidified shell
11 铸型銅板  11 Vertical copper plate
13 冷却水通路  13 Cooling water passage
15 (冷却水通路底部の)孔  15 Hole (at the bottom of the cooling water passage)
17 熱電対  17 Thermocouple
19 铸片  19 pieces
21 ガイドローラ  21 Guide roller
23 ピンチロール  23 Pinch roll
25 モーター  25 motor
27 ピンチロール制御装置  27 Pinch roll control device
29 局所熱流束演算手段  29 Local heat flux calculation means
31 定常凝固界面入熱記憶手段  31 Steady solidification interface heat input memory
32 熱流束プロファイル演算手段  32 Heat flux profile calculation means
33 ブレークアウト判定手段  33 Breakout judgment means
33A ブレークアウト判定手段本体  33A Breakout judgment means body
34 凝固シェル厚演算手段  34 Solidified shell thickness calculation means
35 制御装置  35 Control unit
37 警報装置 40 タンディッシュ 37 Alarm device 40 tundish
41 電磁ブレーキ装置 発明を実施するための最良の形態  41 Electromagnetic brake device BEST MODE FOR CARRYING OUT THE INVENTION
図 1、図 12および図 13は本発明の一実施の形態に係るブレークアウト検知および防止装置、 および凝固シェル厚み推定装置を設置した連続铸造設備の説明図である。 図 2と同一の部分 には同一の符号を付してある。  FIG. 1, FIG. 12 and FIG. 13 are explanatory diagrams of a continuous forging facility provided with a breakout detection and prevention device and a solidified shell thickness estimation device according to an embodiment of the present invention. The same parts as those in Fig. 2 are given the same reference numerals.
連続铸造設備は、  Continuous forging equipment
.铸型1と、  Type 1 and
•タンディッシュ 40の底部に接続され铸型 1内に設詹されて、タンディッシュ 40からの溶鋼 5を 吐出する浸漬ノズル 3と、  An immersion nozzle 3 connected to the bottom of the tundish 40 and installed in the mold 1 to discharge the molten steel 5 from the tundish 40;
-鍀型 1から出た铸片 19をガイドするガイドローラ 21と、  -Guide roller 21 that guides the piece 19 from the bowl 1 and
-鐯片 19を引抜くためのピンチロール 23と、  -Pinch roll 23 for pulling out the piece 19
'ピンチロール 23を回転駆動するためのモーター 25と、  'A motor 25 for rotationally driving the pinch roll 23,
•モーター 25を制御するためのピンチロール制御装置 27と  • Pinch roll control device 27 to control the motor 25 and
を備えている。  It has.
このような構成の連続铸造設備には、以下の構成力 なるブレークアウト防止装置 (ブレークァ ゥト検知装置および凝固シェル厚み推定装置を含む)が設けられている。  The continuous fabrication facility having such a configuration is provided with a breakout prevention device (including a breakout detection device and a solidified shell thickness estimation device) having the following constitutional power.
ブレークアウト防止装置は、  Breakout prevention device
-铸型 1を形成している铸型銅板 11に異なる深さの 2点に埋め込んだ一対の熱電対 17を、铸 型幅方向およぴ铸造方向に複数設置してなる熱電対群と、  -A thermocouple group in which a plurality of thermocouples 17 embedded in two points at different depths in a vertical copper plate 11 forming a vertical mold 1 are installed in the vertical direction of the vertical dimension and the manufacturing direction;
•铸型厚み方向に該熱電対群 17からの温度情報を入力して各熱電対設置部位における局所 熱流束 qlを演算する局所熱流束演算手段 29と、  A local heat flux calculating means 29 for calculating the local heat flux ql at each thermocouple installation site by inputting temperature information from the thermocouple group 17 in the vertical thickness direction;
•定常状態における铸型内の溶鋼流動による定常凝固界面入熱 q2resを下式(1)に基づいて 求めたデータを記憶する定常凝固界面入熱記憶手段 31と、 • Steady solidification interface heat input storage means 31 for storing data obtained from steady solidification interface heat input q2 res based on the following equation (1) due to molten steel flow in the mold in the steady state;
'これら熱流束 qlと定常凝固界面入熱 q2reeの差 (ql— q2res)について溶鋼が湯面力 铸型出 口に至るまでの熱流束プロファイルを求める熱流束プロファイル演算手段 32と、 'The heat flux profile calculation means 32 for obtaining the heat flux profile from the molten steel to the hot metal surface 铸 type outlet for the difference between the heat flux ql and the steady-state solidification interface heat input q2 ree (ql-q2 res ),
•求められた熱流束プロファイルに基づいてブレークアウト発生の危険の有無を判定するブレ ークアウト判定手段 33と、  • Breakout determination means 33 for determining whether there is a risk of breakout based on the obtained heat flux profile;
•ブレークアウト判定手段 33の信号を入力して、ブレークアウト判定手段 33がブレークアウトの 危険有りと判定したときに、  • When the signal of breakout determination means 33 is input and breakout determination means 33 determines that there is a risk of breakout,
(0 铸造速度を減速するように制御する(図 13)、 (ii) 铸造速度を減速するように制御し及び/または铸型 1内の溶鋼流速を低下させるように制 御する(図 12)、あるいは、 (0 Control to reduce the forging speed (Fig. 13), (ii) Control to reduce the forging speed and / or control to reduce the flow rate of molten steel in the mold 1 (Fig. 12), or
(iii) 鎵造速度を下げる及び Z又は铸型冷却を強くするように操業条件を制御し、または該制 御に加えて铸型内の溶銅流速を低下させる制御を行う(図 1)、  (iii) Control the operating conditions so as to lower the casting speed and strengthen Z or vertical cooling, or in addition to the control, control to reduce the molten copper flow rate in the vertical mold (Fig. 1),
制御手段 35と、  Control means 35;
-ブレークアウト判定手段 33がブレークアウトの危険有りと判定したときに、警報を発する警報 装置 37とを備えている。  -It is provided with an alarm device 37 that issues an alarm when the breakout determination means 33 determines that there is a risk of breakout.
q2reg=h- Δ Θ (1) q2 reg = h- Δ Θ (1)
但し、 h:溶銅と凝固シェルの間の熱伝達係数  Where h: heat transfer coefficient between molten copper and solidified shell
厶 Θ:溶鋼の過熱度 図 1のブレークアウト防止装置においては、ブレークアウト判定手段 33はさらに、  厶 Θ: Degree of superheat of molten steel In the breakout prevention device of Fig. 1, breakout judgment means 33
-プロファイル演算手段 32によって求められた熱流束プロファイルに基づいて総括熱流束 Q1 および Q2を算出し、これら総括熱流束 Q1を用いて、あるいは Q1および Q2を用いて凝固シェル 9 の铸型出口 fこおける厚み (凝固シェル厚み)を演算する凝固シェル厚演算手段 34と、  -Calculate the overall heat flux Q1 and Q2 based on the heat flux profile obtained by the profile calculation means 32, and use the overall heat flux Q1 or Q1 and Q2 to calculate the vertical outlet f of the solidified shell 9. Solidified shell thickness calculating means 34 for calculating the thickness (solid shell thickness)
.凝固シェル厚演算手段 34の演算値を入力して、該演算値と予めブレークアウト発生の危険 性との関係で求めた閾値とに基づいてブレークアウト発生の危険の有無を判定するブレークァゥ ト判定手段本体 33Αと、  Breakout determination that inputs the calculated value of the solidified shell thickness calculation means 34 and determines whether there is a risk of breakout occurrence based on the calculated value and the threshold value obtained in advance in relation to the risk of breakout occurrence Means body 33Α,
を有する。 以下、各構成をさらに詳細に説明する。 ぐ熱電対 >  Have Hereinafter, each configuration will be described in more detail. Gu thermocouple>
熱電対 17は図 3、図 4で示したのと同様に铸型銅板 iiに埋め込まれている。 すなわち、 mm 銅板 11の外側面に形成された冷却水通路 13の底部に孔 15をあけ(図 3参照)、その中に、熱電 対 17を埋め込み、深さ方向に一定の距離を離した 2箇所に埋没した一対の熱電対 17が铸型铸 造方向に 9箇所 (計 18本)設置されるようにしてレ、る。  The thermocouple 17 is embedded in the vertical copper plate ii in the same manner as shown in FIGS. In other words, a hole 15 is made in the bottom of the cooling water passage 13 formed on the outer surface of the mm copper plate 11 (see Fig. 3), and a thermocouple 17 is embedded in the hole 15 so as to have a certain distance in the depth direction 2 A pair of thermocouples 17 buried in the place are installed in nine places (18 in total) in the vertical production direction.
なお、本実施様態では熱電対 17は铸型の短辺側及び長辺(水平断面が直方体を成す铸型 において、長い方の辺)側に埋め込まれており、鎵型の各辺ごとに計測して、各辺ごとの計測値 に基づいてブレークアウト発生の有無を判定する。  In this embodiment, the thermocouple 17 is embedded on the short side and the long side of the saddle (the longer side in the saddle shape where the horizontal cross section is a rectangular parallelepiped), and is measured for each side of the saddle shape. Then, the presence or absence of breakout is determined based on the measured value for each side.
<局所熱流束演算手段〉 局所熱流束演算手段 29は、熱電対 17の信号を入力して局所熱流束 qlを演算する。 局所熱 流束演算手段 29は CPUが所定のプログラムを実行することにより実現されるものであり、このプロ グラムには、前述したように、 2本の熱電対 17の検出温度を Tl、 Τ2、埋設間隔を d、及ぴ铸型 1 の熱伝導率を λとして、局所熱流束を算出する次式 (4)が書き込まれている。 <Local heat flux calculation means> The local heat flux calculating means 29 inputs the signal of the thermocouple 17 and calculates the local heat flux ql. The local heat flux calculation means 29 is realized by the CPU executing a predetermined program. As described above, the local heat flux calculation means 29 includes the detected temperatures of the two thermocouples 17 as Tl, Τ2, The following equation (4) is written to calculate the local heat flux, where d is the embedding interval and λ is the thermal conductivity of 及 type 1.
ql = A (Τ1 -Τ2) /ά (4) く定常凝固界面入熱記憶手段 >  ql = A (Τ1 -Τ2) / ά (4) Steady solidification interface heat storage means>
定常凝固界面入熱記憶手段 31は、下式(1)に基づいて求めた、定常状態における铸型内の 溶鋼流動による定常凝固界面入熱 q2resのデータを記憶する。 The steady solidification interface heat input storage means 31 stores the data of the steady solidification interface heat input q2 res by the molten steel flow in the mold in the steady state, which is obtained based on the following equation (1).
q2reg=h- Δ Θ (1) q2 reg = h- Δ Θ (1)
但し、 h= l. 22 X 105 XV°- 8 However, h = l 22 X 10 5 XV ° -. 8
V:溶鋼流速(mZs)  V: Molten steel flow velocity (mZs)
厶 Θ =T0-TS 厶 Θ = T 0 -T S
T0:铸型内溶銅温度 (°C) T 0 : Temperature of molten copper in mold (° C)
Ts :溶鋼固相線温度 (°C) T s: Molten steel solidus temperature (° C)
なお、定常凝固界面入熱 q2resを求める手法としては、所定の鎵造速度で操業したときに铸造 した铸片のデンドライト傾角 ら溶鋼流速を求め、この溶鋼流速をもとにして上記(1)式に基づい て定常凝固界面入熱 q2regを求める方法が好適である。 Note that the steady-state solidification interface heat input q2 res is obtained by obtaining the molten steel flow velocity from the dendrite inclination angle of the slab produced when operating at a predetermined forging speed, and using the molten steel flow velocity as described in (1) above. A method for obtaining the steady-state solidification interface heat input q2 reg based on the equation is preferred.
<熱流束プロファイル演算手段 > <Heat flux profile calculation means>
熱流束プロファイル演算手段 32は、前記局所熱流束演算手段 29により演算された熱流束 ql と、定常凝固界面入熱記憶手段 31に記憶された定常凝固界面入熱 q2regとを各装置から受け取 り、これらの差 (ql _q2res)について溶鋼が湯面力ら铸型出口に至るまでの熱流束プロファイルを 求める。 The heat flux profile calculation means 32 receives the heat flux ql calculated by the local heat flux calculation means 29 and the steady solidification interface heat input q2 reg stored in the steady solidification interface heat storage means 31 from each device. For these differences (ql _q2 res ), the heat flux profile from the molten steel force to the vertical outlet is obtained.
熱流束プロファイル演算手段 32は、局所熱流束演算手段 29と同様に、 CPUが所定のプログ ラムを実行することにより実現されるものであり、このプログラムには、上述した熱流束プロファイル を演算するロジックが書き込まれている。  Similar to the local heat flux calculation means 29, the heat flux profile calculation means 32 is realized by the CPU executing a predetermined program. This program has a logic for calculating the above-mentioned heat flux profile. Has been written.
<凝固シェル厚演算手段〉 <Solid shell thickness calculation means>
図 1のブレークアウト防止装置に設けられた凝固シヱル厚演算手段 34は、熱流束プロファイル 演算手段 32によって求められた熱流束プロファイルに基づいて铸型出口における凝固シェル厚 み Dを演算する。具体的な演算方法は以下の通りである。 熱流束プロファイル演算手段 32によって求められた熱流束プロファイルにおいて極小値を示 す極小点が存在しない場合は、湯面位置から铸型出口間の該熱流束プロファイルの曲線全体で 囲まれる全面積に相当する総括熱流束を Q1とし、この総括熱流束 Q1を用いて下式(2)に基づ いて铸型出口における凝固シヱル厚み Dを演算する。 The solidification seal thickness calculation means 34 provided in the breakout prevention device of FIG. 1 calculates the solidification shell thickness D at the vertical outlet based on the heat flux profile obtained by the heat flux profile calculation means 32. A specific calculation method is as follows. If there is no local minimum point indicating the minimum value in the heat flux profile obtained by the heat flux profile calculation means 32, it corresponds to the entire area surrounded by the entire curve of the heat flux profile between the molten metal surface position and the vertical outlet. Let Q1 be the overall heat flux to be calculated, and use this overall heat flux Q1 to calculate the solidification seal thickness D at the vertical outlet based on the following equation (2).
また、熱流束プロファイル演算手段 32によって求められた熱流束プロファイルにおいて極小値 を示す極小点が存在する場合は、該極小点と铸型出口での局所熱流束値とを直線で結んだとき にこの直線よりも上の部分の面積に相当する総括熱流束を Q2として湯面位置力 铸型出口間の 該熱流束プロ: 7アイルの曲線全体で囲まれる全面積に相当する総括熱流束から Q2を差し引 、 た面積に相当する総括熱流束を Q1とし、この総括熱流束 Q1を用いて下式 (2)に基づいて铸型 出口における凝固シェル厚み Dを演算する(図 9参照)。  In addition, when there is a local minimum point that shows a minimum value in the heat flux profile obtained by the heat flux profile calculating means 32, this local point is connected to the local heat flux value at the vertical outlet by a straight line. The total surface heat flux corresponding to the area above the straight line is defined as Q2, and the surface heat force between the vertical outlets is the heat flux pro between the vertical outlets: Q2 is calculated from the total heat flux corresponding to the entire area surrounded by the entire curve of 7 isles. The total heat flux corresponding to the subtracted area is defined as Q1, and the total heat flux Q1 is used to calculate the solidified shell thickness D at the vertical outlet based on the following equation (2) (see Fig. 9).
D=Q1/ ( A H- p ) (2)  D = Q1 / (A H- p) (2)
但し、ひ:铸型出口での凝固シェル厚み (m)  However, hi: solidified shell thickness at the vertical outlet (m)
厶 H:铸型出口での凝固シェルの単位重量当たりのェンタルピー落差 (j/kg)  厶 H: enthalpy drop per unit weight of solidified shell at vertical outlet (j / kg)
P :铸型出口の凝固シェル密度 (kgZm3) なお、より精度を向上させた計算方法として、凝固シェル厚演算手段 34は総括熱流束 Q2によ る再溶解によって生ずる ¾固遅れを考慮した凝固シェル厚み D1を、下記式 (3)により得られる凝 固遅れ度 RSを用いて、式 D1 =D (1— RS)により算出するようにしてもよい。 前記熱流束プロフ アイルにおいて極小点が存在しない場合は、 D1に代わり Dを求めるアルゴリズムとしても、 Q2 = 0 として D1を求めるアルゴリズムとしても得られる結果が同じなので、いずれも選択可能である。 P: Solidified shell density at the vertical outlet (kgZm 3 ) As a calculation method with improved accuracy, the solidified shell thickness calculation means 34 is generated by remelting with the overall heat flux Q2. The shell thickness D1 may be calculated by the equation D1 = D (1−RS) using the setting delay RS obtained by the following equation (3). If there is no minimum point in the heat flux profile, either the algorithm for obtaining D instead of D1 or the algorithm for obtaining D1 with Q2 = 0 can obtain the same result.
RS= β X (V0·8· Δ θ ) (3) RS = β X (V 0 8 Δ Δ θ) (3)
β :凝固遅れ定数 (無単位)  β: Coagulation delay constant (unitless)
V :溶銅流速 (m/s)  V: Molten copper flow velocity (m / s)
Δ Θ:溶鋼過熱度 CC)  Δ Θ: Molten steel superheat CC)
RS :凝固遅れ度 (無単位)  RS: Coagulation delay (no unit)
ここで V= (QS ^ a十厶 0 ) ) 1·25 Where V = (QS ^ a10 厶 0)) 1 25
Q2:総括熱流束 CjZm2) Q2: Overall heat flux CjZm 2 )
a :溶鋼流速定数 (無単位)  a: Molten steel flow rate constant (no unit)
t:凝固シェルが熱流束プロファイルにおける極小点を通過してから铸型出口に至るま でに要する時間 (S)  t: Time required for the solidified shell to pass through the minimum point in the heat flux profile to reach the vertical outlet (S)
<ブレークアウト判定手段 > 図 1のブレークアウト防止装置においては、ブレークアウト判定手段 33は、前記凝固シェル厚 演算手段 34と、ブレークアウト判定手段本体 33Aとを有する。 図 12および図 13のブレークァゥ ト防止装置においては、ブレークアウト判定手段 33は凝固シェル厚演算を介さず、熱流束プロフ アイル演算手段 32が演算した熱流束プロファイルより直接ブレークアウト発生の危険の有無を判 定する。 以下、それぞれの場合に分けて説明する。 図 1のブレークアウト防止装置の場合、ブレークアウト判定手段本体 33Aは、凝固シェル厚演 算手段 34の演算値 (凝固シェル厚み Dまたは D1)を入力して、該演算値と予めブレークアウト発 生の危険性との関係で求めた閾値とに基づいてブレークアウト発生の危険の有無を判定する。 閾値は、種々の Q l、 Q2と、それに対する凝固シェル厚みと、当該凝固シェル厚みにおけるブ レークアウト発生の有無について、予めシミュレーション実験や実操業におけるデータを取得する ことによって求めておく。 例えば、铸型出口での目標凝固シェル厚を 20〜30mrnの範囲内の数 値(あるいは数値範囲)とし、凝固シェル厚が 5〜7mmの範囲内の数値を、当該以下でブレーク アウトの危険があると判定する閾値とする。 図 12や図 13のブレークアウト防止装置の場合、ブレークアウト判定手段 33は、熱流束プロフ アイル演算手段 32が演算した熱流束プロファイルに基づいて、例えば上述した囪 9に示す Q 1と Q2の関係を求め、これらの関係と予め定めた閾値力 ブレークアウト発生の危険の有無を判定 する。 <Breakout judgment method> In the breakout prevention device of FIG. 1, the breakout determination means 33 includes the solidified shell thickness calculation means 34 and a breakout determination means body 33A. In the breakout prevention devices shown in FIGS. 12 and 13, the breakout judging means 33 does not go through the solidified shell thickness calculation, but directly determines whether there is a risk of breakout occurrence from the heat flux profile calculated by the heat flux profile calculating means 32. judge. Hereinafter, each case will be described separately. In the case of the breakout prevention device shown in FIG. 1, the breakout judging means body 33A inputs the calculated value (solidified shell thickness D or D1) of the solidified shell thickness calculating means 34 and generates the breakout in advance. Whether or not there is a risk of occurrence of breakout is determined based on the threshold value obtained in relation to the risk of occurrence of the breakout. The threshold values are obtained by acquiring data in simulation experiments and actual operations in advance about various Q l and Q2, the thickness of the solidified shell, and the occurrence of breakout at the solidified shell thickness. For example, if the target solidified shell thickness at the vertical outlet is a numerical value (or numerical range) within the range of 20-30mrn, the numerical value within the range of the solidified shell thickness of 5-7mm is below this value, there is a risk of breakout The threshold value is determined to be present. In the case of the breakout prevention device of FIGS. 12 and 13, the breakout determination means 33 is based on the heat flux profile calculated by the heat flux profile calculation means 32, for example, the relationship between Q1 and Q2 shown in 囪 9 above. And determine whether or not there is a risk of occurrence of these threshold values and a predetermined threshold force breakout.
例えば上述した図 9に.示す Q 1、 Q2を求め、 Q 1につレ、て予め定めた閾値 α ΐ . α 2 ( α 1 < a 2)及ぴ Q2について予め定めた閾値 /3との関係から、図 10に示されるような基準でブレークァゥ ト発生の危険の有無を判定する。  For example, Q 1 and Q 2 shown in FIG. 9 described above are obtained, and a predetermined threshold value α ΐ. Α 2 (α 1 <a 2) and Q 2 with a predetermined threshold value / 3 are obtained. From the relationship, determine whether there is a risk of breakout based on the criteria shown in Figure 10.
具体的には、 (i)Q l < a 1かつ Q2≥ β、または (ii)Q l < α 1かつ Q2く β、 (iii)または a 1≤Q 1 ≤ a 2かつ Q2 βのときにブレークアウトの危険があると判定する。 ブレークアウト判定手段 33 は、ブレークアウトの危険があると判定したときには、その旨を制御手段 35に対して出力する。 そのとき、ブレークアウトの危険が Q 1く a 1かつ Q2≥ βに基づくもの力 \あるいは Q 1く a 1かつ Q2 < に基づくもの力、またあるいは α 1≤Q 1≤ α 2かつ Q2≥ βに基づくものかを合わせて出 力することが好ましい。  Specifically, when (i) Q l <a 1 and Q2 ≥ β, or (ii) Q l <α 1 and Q2 β, (iii) or a 1 ≤Q 1 ≤ a 2 and Q2 β Determine that there is a risk of breakout. When the breakout determination means 33 determines that there is a risk of breakout, the breakout determination means 33 outputs the fact to the control means 35. At that time, the risk of breakout is a force based on Q 1 a 1 and Q2 ≥ β \ or a force based on Q 1 a 1 and Q2 <, or alternatively α 1 ≤Q 1 ≤ α 2 and Q2 ≥ β It is preferable that the output is based on the
なお、閾値 α 1、 α 2、 J3は溶鋼の種類によって決まるものであり、例えば溶鋼が極低炭素鋼 の場合には、 α 1 = 15000 (kj/m2)、 α 2 = 21000 (kj/m2) , = 4500 (kj/m2)である。 なお、極低炭素鋼とは、炭素含有量が 0. 01mass%以下のものをいう。 The threshold alpha 1, alpha 2, J3 are those determined by the type of molten steel, for example, when the molten steel is extremely low carbon steel, α 1 = 15000 (kj / m 2), α 2 = 21000 (kj / m 2 ), = 4500 (kj / m 2 ). Note that the ultra-low carbon steel has a carbon content of 0.01 mass% or less.
Q 1に基づく基準、あるいは Q1と Q2の関係に基づぐ他の判断基準を用いても良い。 例えば 上の例で、 a l≤Ql≤ α 2の場合に、 Q2が Q 1に基づきより細力べ設定きれた閾値以上となった 場合にブレークアウトの危険があるかどうか判断してもよい。 Standards based on Q1 or other criteria based on the relationship between Q1 and Q2 may be used. For example In the above example, if a l ≤ Ql ≤ α 2, it may be determined whether there is a risk of breakout if Q2 is greater than or equal to the threshold that is more sensible based on Q 1.
他の方法として、 例えば Q2と Q1の比の値 Q2ZQ1の値が予め定めた閾値以上のときにブ レークアウト発生の危険有りと判定してもよい。 この閾値は溶鋼の種類によって決まるものであり、 例えば溶鋼が極低炭素鋼の場合には 0. 25である。 ブレークアウト判定手段 33あるいはブレークアウト判定手段 33Aについても、 CPUが所定の プログラムを実行することにより実現されるものであり、このプログラムには上述した判定のロジック が書き込まれている。 ぐ制御手段 >  As another method, for example, when the value of the ratio of Q2 and Q1 Q2ZQ1 is equal to or greater than a predetermined threshold, it may be determined that there is a risk of breakout. This threshold is determined by the type of molten steel. For example, when the molten steel is an extremely low carbon steel, it is 0.25. The breakout determination means 33 or breakout determination means 33A is also realized by the CPU executing a predetermined program, and the determination logic described above is written in this program. Control means>
制御手段 35は、ブレークアウト判定手段 33がブレークアウトの危険有りと判定したときに、該判 定結果に基づいてブレークアウトを回避するために各種の装置の制御を行う。  When the breakout determination means 33 determines that there is a risk of breakout, the control means 35 controls various devices to avoid breakout based on the determination result.
例えば図 12のブレークアウト防止装置の場合、具体的には、前記 α 1、 《2および /3に関して、 ブレークアウト判定手段 33から Q l < α 1かつ Q2≥ βに起因するブレークアウトの危険有りとの 信号を入力すると、ピンチロール制御装置 27に対してモーター 25の回転速度の減速を指令する 信号を出力する。 また、これに加えて電磁ブレーキ装置 41に対して铸型 1内の溶鋼流速を低下 させるような直流磁場をかける信号を出力するようにしてもょレ、。 また、制御手段 35は、ブレーク アウト判定手段 33から Q 1く α 1かつ Q2く βに起因するブレークアウトの危険有りとの信号を入 力すると、ピンチロール制御装置 27に対してモーター 25の回転速度の減速を指令する信号を出 力する。 さらにまた、制御手段 35は、ブレークアウト判定手段 33から a 1≤Q1≤ α 2かつ Q2≥ 13に起因するブレークアウトの危険有りとの信号を入力すると、電磁ブレーキ装置 41に対して铸 型 1内の溶鋼流速を低下させるような直流磁場をかける信号を出力する。  For example, in the case of the breakout prevention device shown in FIG. 12, specifically, there is a risk of breakout due to Q 1 <α 1 and Q2≥β from the breakout judging means 33 with respect to α 1, << 2 and / 3. Is input to the pinch roll control device 27 to instruct the motor 25 to reduce the rotational speed of the motor 25. In addition to this, it is also possible to output a signal for applying a DC magnetic field to the electromagnetic brake device 41 so as to reduce the molten steel flow velocity in the mold 1. When the control means 35 inputs a signal from the breakout determination means 33 that there is a risk of breakout due to Q 1 α 1 and Q 2 β, the rotation of the motor 25 to the pinch roll control device 27 Outputs a command to decelerate the speed. Furthermore, when the control means 35 inputs a signal from the breakout judging means 33 that there is a risk of breakout due to a 1≤Q1≤α2 and Q2≥13, the control means 35 sends a type 1 signal to the electromagnetic brake device 41. The signal which applies the direct current magnetic field which lowers the molten steel flow velocity inside is output.
また、図 1のブレークアウト防止装置の場合、具体的には、ブレークアウト判定手段 34からブレ ークアウトの危険有りとの信号を入力すると、ピンチロール制御装置 27に対してモーター 25の回 転速度の減速を指令する信号を出力する。 まだ、これに加えて電磁ブレーキ装置 41に対して 鏡型 1内の溶鋼流速を低下させるような直流磁場をかける信号を出力するようにしてもよい。  Further, in the case of the breakout prevention device of FIG. 1, specifically, when a signal indicating that there is a risk of breakout is input from the breakout judging means 34, the rotation speed of the motor 25 is controlled to the pinch roll control device 27. Outputs a signal to command deceleration. In addition to this, a signal for applying a DC magnetic field that lowers the molten steel flow velocity in the mirror mold 1 may be output to the electromagnetic brake device 41.
また、図 13のブレークアウト防止装置の場合、ブレークアウト判定手段 33からブレークアウトの 危険有りとの信号を入力すると、単に铸造速度を減速するように制御する、すなわち、ピンチロー ル制御装置 27に対してモーター 25の回転速度の減速を指令する信号を出力することで対応す る。  In the case of the breakout prevention device shown in FIG. 13, when a signal indicating that there is a risk of breakout is input from the breakout judging means 33, the forging speed is simply controlled to be reduced, that is, to the pinch roll control device 27. This can be done by outputting a signal to command the motor 25 to reduce the rotational speed.
その他、いずれの図にも示されていないが、铸型の冷却水等を制御する铸型冷却制御手段に 信号を送り、铸型冷却を強化して、凝固シェル厚を増すような制御を行ってもよい。 これはとくに Q1不足による抜熱不足性ブレークアウトへの対策に有効である。 なお、制御手段 35は、ブレークアウト判定手段力 ブレークアウトの危険有りとの信号を入力 すると、警報装置 37に対して警報を発するように指令信号を出力する。 制御手段 35についても、 CPUが所定のプログラムを実行することにより実現されるものであり、 このプログラムには上述した指令信号を出力するロジックが書き込まれている。 In addition, although not shown in any figure, the vertical cooling control means for controlling vertical cooling water etc. Control may be performed to send a signal to enhance saddle cooling and increase the thickness of the solidified shell. This is particularly effective for countermeasures against the lack of heat removal due to insufficient Q1. The control means 35 outputs a command signal so as to issue an alarm to the alarm device 37 when a signal indicating that there is a danger of breakout is input. The control means 35 is also realized by the CPU executing a predetermined program, and logic for outputting the above-described command signal is written in this program.
<警報装置 > <Alarm device>
警報装置 37は、ブレークアウト判定手段 33からの信号を入力すると警報を発する。警報の種 類は問わないが、例えば警報音、警報ランプの点灯、これらの組合せなどである。 以上のように構成された本実施の形態の動作を説明する。  The alarm device 37 issues an alarm when a signal from the breakout determination means 33 is input. There are no restrictions on the type of alarm, but examples include alarm sounds, lighting of alarm lamps, and combinations thereof. The operation of the present embodiment configured as described above will be described.
浸漬ノズル 3から溶鋼 5を吐出して铸型 1によって冷却して铸片 19を連続铸造する操業におい て、熱電対 17からの信号を局所熱流束演算手段 29に入力して局所熱流束を演算し、この演算 結果をプロファイル演算手段 32に入力する。 熱流束プロファイル演算手段 32は、局所熱流束 演算手段 29から入力された局所熱流束 qlと、定常凝固界面入熱記憶手段 31に記憶されてレ、る 定常凝固界面入熱 q2regに基づいて、 ql— q2regを演算すると共にこの演算結果に基づいて熱流 束プロファイルを演算する。 そして、演算された熱流束プロファイルについて、例えば図 9に示し たような Ql、 Q2を求め、これらの演算値 Q1と Q2をブレークアウト判定手段 33に入力する。 In the operation of discharging molten steel 5 from the immersion nozzle 3 and cooling it with the mold 1 to continuously produce the piece 19, the signal from the thermocouple 17 is input to the local heat flux calculating means 29 to calculate the local heat flux. Then, the calculation result is input to the profile calculation means 32. The heat flux profile calculation means 32 is based on the local heat flux ql input from the local heat flux calculation means 29 and the steady solidification interface heat input memory means 31 stored on the steady solidification interface heat input q2 reg . ql—Calculates q2 reg and calculates the heat flux profile based on the result. Then, for example, Ql and Q2 as shown in FIG. 9 are obtained for the calculated heat flux profile, and these calculated values Q1 and Q2 are input to the breakout determination means 33.
図 12や図 13のブレークアウト防止装置の場合、ブレークアウト判定手段 33は、入力された Ql、 あるいはさらに Q2について、予め定められた規則に従い、ブレークアウト発生の危険の有無を判 定する。 例えば図 12の Q1と Q2の各値と予め定めた上記閾値 α 1、 c 2、 )3との関係でブレー クアウト発生の危険の有無を判定する。  In the case of the breakout prevention device shown in FIG. 12 or FIG. 13, the breakout determination means 33 determines whether or not there is a risk of occurrence of a breakout according to a predetermined rule for the input Ql or Q2. For example, the presence or absence of a breakout risk is determined based on the relationship between the values of Q1 and Q2 in FIG.
図 1のブレークアウト防止装置の場合は、凝固シェル厚演算手段 34がまず、熱流束プロフアイ ル演算手段 32によって求められた熱流束プロファイルに基づいて前述した方法により総括熱流 束を Ql、あるいはさらに Q2を求める。 そして、凝固シェル厚演算手段 34はさらにこの総括熱流 束 Ql、あるいはさらに Q2に基づいて前述した方法により铸型出口における凝固シェル厚み Dあ るいは D1を演算する。 さらにブレークアウト判定手段本体 33A力 凝固シェル厚演算手段 34に よって演算入力された凝固シェル厚み Dあるいは D1を入力して、この値と予め定めた閾値との関 係でブレークアウト発生の危険の有無を判定する。 判定の結果、ブレークアウト発生の危険がない場合には、そのまま操業を続行する。 In the case of the breakout prevention device shown in FIG. 1, the solidified shell thickness calculating means 34 first calculates the overall heat flux Ql or Q2 by the above-described method based on the heat flux profile obtained by the heat flux profile calculating means 32. Ask for. The solidified shell thickness calculating means 34 further calculates the solidified shell thickness D or D1 at the vertical outlet by the above-described method based on the overall heat flux Ql or Q2. Furthermore, breakout judgment means body 33A force Solidified shell thickness D or D1 calculated by solidified shell thickness calculating means 34 is input, and whether there is a risk of breakout occurring or not in relation to this value and a predetermined threshold value Determine. As a result of the determination, if there is no risk of breakout, the operation is continued as it is.
一方、判定の結果、ブレークアウト発生の危険があると判定された場合には、ブレークアウト判 定手段 33が、制御手段 35に対してブレークアウトの危険がある旨の信号を出力する。 また、そ れと同時に警報装置 37に対して警報を発する指令信号を出力する。  On the other hand, if it is determined that there is a risk of breakout as a result of the determination, the breakout determination means 33 outputs a signal to the control means 35 that there is a risk of breakout. At the same time, a command signal for issuing an alarm to the alarm device 37 is output.
図 12や図 13のブレークアウト防止装置の場合、ブレークアウト判定手段 33は制御手段 35に 対してさらに、ブレークアウトの危険の種類を出力してもよい。 例えば、前記《1、 α 2、 |3に関し、 抜熱不足性ブレークアウトの危険域にあるのか(Q 1く α 1かつ Q2 < ]3 )、再溶解性ブレークァゥ トの危険域にあるの力 (a 1≤Q 1≤ α 2かつ Q2≥ )、あるいはその両方の危険域にあるのか (Q l < a 1かつ Q2 β )、知らせる信号を出力する。 制御手段 35は、ブレークアウト判定手段 33からの信号を入力すると、例えば铸造速度を低下 させると共に溶鋼流速を低下させるための制御を行なう。  In the case of the breakout prevention device shown in FIGS. 12 and 13, the breakout determination means 33 may further output the type of breakout danger to the control means 35. For example, with respect to << 1, α2, | 3 above, is it in the danger zone of the heat-insufficient breakout (Q 1 and α1 and Q2 <] 3), or the power in the danger zone of the re-dissolvable breakout? (A 1 ≤ Q 1 ≤ α 2 and Q2 ≥), or both of them are in danger (Q l <a 1 and Q2 β). When the signal from the breakout determination means 33 is input, the control means 35 performs control for, for example, reducing the forging speed and the molten steel flow velocity.
铸造速度を低下させるための制御としては、具体的には、制御手段 35はピンチロール制御装 置 27に対してモーター 25の回転速度の減速を指令する信号を出力する。 この信号を入力した ピンチロール制御装置 27はモーター 25の回転数を下げるように制御する。 モーター 25の回転 数を下げることにより、铸造速度が低下し、铸型 1内での凝固シェル厚が厚くなるので、ブレーク アウト発生の危険を回避することができる。  Specifically, as the control for reducing the forging speed, the control means 35 outputs a signal for instructing the pinch roll control device 27 to decelerate the rotational speed of the motor 25. The pinch roll control device 27 receiving this signal controls the motor 25 to reduce the rotational speed. By reducing the number of revolutions of the motor 25, the forging speed is reduced and the thickness of the solidified shell in the mold 1 is increased, so that the risk of breakout can be avoided.
溶鋼流速を低下させるための制御としては、具体的には、制御手段 35は電磁ブレーキ装置 4 1に対して铸型 1内の溶鋼流速を低下させるような直流磁場をかける信号を出力する。 この信号 が出力されると電磁ブレーキ装置 41によって铸型 1に直流磁場がかけられ、铸型 1内の溶鋼流 速が低下する。 溶鋼流速が低下すると、溶鋼が凝固シェル界面に衝突する速度が低下し、凝 固シェルの再溶解の程度が小さくなるので、やはり凝固シェル厚みが厚くなりブレークアウト発生 の危険を回避することができる。 図 12のブレークアウト防止装置の場合、前記 α 1、 α 2、 J3を用いた判定に対応して、以下に 述べるような、よりきめ細かい処理を行うこともできる。 Specifically, as the control for reducing the molten steel flow velocity, the control means 35 outputs a signal for applying a DC magnetic field to the electromagnetic brake device 41 so as to reduce the molten steel flow velocity in the mold 1. When this signal is output, the electromagnetic brake device 41 applies a DC magnetic field to the mold 1 and the molten steel flow speed in the mold 1 decreases. When the molten steel flow velocity decreases, the velocity at which the molten steel collides with the solidified shell interface decreases, and the degree of remelting of the solidified shell decreases, so that the thickness of the solidified shell increases and the risk of breakout can be avoided. . In the case of the breakout prevention device of FIG. 12, more detailed processing as described below can be performed in response to the determination using α1 , α2 , and J3.
制御手段 35は、ブレークアウト判定手段 33からの信号を入力すると、それが Q 1く a 1かつ Q 2≥ βに基づくものであった場合には、抜熱不足性ブレークアウト発生と再溶解性ブレークアウト 発生の両方の危険がある場合であるので、铸造速度を低下させると共に溶鋼流速を低下させる ための制御を行なう。  When the control means 35 receives the signal from the breakout determination means 33 and it is based on Q 1 a 1 and Q 2 ≥ β, the heat release insufficient breakout occurs and the remeltability occurs. Since there is a risk of both breakout occurrences, control is performed to reduce the forging speed and the molten steel flow velocity.
铸造速度を低下させるための制御としては、具体的には、制御手段 35がピンチロール制御装 置 27に対してモーター 25の回転速度の減速を指令する信号を出力する。 この信号を入力した ピンチロール制御装置 27はモーター 25の回転数を下げるように制御する。 モーター 25の回転 数を下げることにより、铸造速度が低下し、铸型 1内での凝固シェル厚が厚くなるので、抜熱不足 性ブレークアウト発生の危険を回避することができる。 As a control for reducing the forging speed, specifically, the control means 35 is a pinch roll control device. Outputs a signal to command the motor 27 to reduce the rotational speed of the motor 25. The pinch roll control device 27 receiving this signal controls the motor 25 to reduce the rotational speed. By reducing the number of revolutions of the motor 25, the forging speed is reduced and the thickness of the solidified shell in the mold 1 is increased, so that the risk of a breakout due to insufficient heat removal can be avoided.
溶銅流速を低下させるための制御としては、具体的には、制御手段 35が電磁ブレーキ装置 4 1に対して铸型 1內の溶鋼流速を低下させるような直流磁場をかける信号を出力し、この信号が 出力されると電磁ブレーキ装置 41によって铸型 1に直流磁場がかけられ錶型 1内の溶鋼流速が 低下する。 溶鋼流速が低下すると、溶鋼が凝固シェル界面に衝突する速度が低下し、凝固シェ ルの再溶解の程度が小さくなるので、凝固シェルの再溶解に起因するブレークアウト発生の危険 を回避することができる。  Specifically, the control for lowering the molten copper flow velocity is such that the control means 35 outputs a signal that applies a DC magnetic field to the electromagnetic brake device 41 to lower the molten steel flow velocity of the vertical type 1 內, When this signal is output, the electromagnetic brake device 41 applies a DC magnetic field to the mold 1 and the molten steel flow velocity in the mold 1 decreases. When the molten steel flow velocity decreases, the velocity at which the molten steel collides with the solidified shell interface decreases, and the degree of remelting of the solidified shell decreases, thus avoiding the risk of breakout due to remelting of the solidified shell. it can.
また、ブレークアウト判定手段 33からの信号が Q 1く a 1かつ Q2く βに基づくものであった場 合には、抜熱不足性ブレークアウト発生の危険がある場合であるので、制御手段 35はピンチロー ル制御装置 27に対してモーター 25の回転速度の減速を指令する信号を出力する。 これによつ て、铸造速度が低下し、铸型 1内での凝固シェル厚が厚くなるので、抜熱不足性ブレークアウト発 生の危険を回避することができる。  If the signal from breakout judging means 33 is based on Q 1, a 1, Q2, and β, it means that there is a risk of breakout due to insufficient heat removal. Outputs a signal to the pinch roll control device 27 to command the motor 25 to reduce its rotational speed. As a result, the forging speed is reduced and the thickness of the solidified shell in the mold 1 is increased, so that it is possible to avoid the risk of a breakout due to insufficient heat removal.
また、ブレークアウト判定手段 33からの信号が a 1≤Q 1≤ α 2かつ Q2≥ J3に基づくものであ つた場合には、再溶解性ブレークアウト発生の危険がある場合であるので、制御手段 35は電磁 ブレーキ装置 41に対して铸型 1内の溶鋼流速を低下させるような直流磁場をかける信号を出力 し、これによつて上述したように再溶解性ブレークアウト発生を回避できる。 また、警報装置は、ブレークアウト判定手段 33からの信号を入力すると、警報を発する。これに より、操作員にブレークアウト発生の危険を知らせることができる。 なお、レ、うまでもなぐ図 1、 12および 13において、熱電対 17からなる熱電対群、局所熱流束 演算手段 29、定常凝固界面入熱記憶手段 31、熱流束プロファイル演算手段 32、およびブレー クアウト判定手段 33 (、あるいはさらに警報装置 37)の部分が、ブレークアウト検出装置を構成す る。 また、図 1において、熱電対 17からなる熱電対群、局所熱流束演算手段 29、定常凝固界面 入熱記憶手段 31、熱流束プロファイル演算手段 32、および凝固シヱル厚演算手段 34の部分が、 凝固シェル厚 推定装置を構成する。 例えば、図 12に記載の連鍀設備を用い、極低炭素鋼について、 2. OmZ分の铸造速度で操 業を行っていたところ、 Q2く 4500kjZm2であったが、 Q 1の値が Q 1く lSOOOkj/m2になり抜 熱不足性ブレークアウト発生の危険が生じた。 そこで、铸造速度を 0. '5m 分まで落としたとこ ろ、 Ql≥15000kj/m2となり、十分な凝固シェル厚さを得ることができ、ブレークアウトの発生を 防止することができた。 なお、凝固シェル厚を十分厚くした後は、再び铸造速度を上げることに よって、高速铸造を行なうことができる。 If the signal from breakout judging means 33 is based on a1≤Q1≤α2 and Q2≥J3, there is a risk of remeltable breakout. 35 outputs a signal for applying a DC magnetic field to the electromagnetic brake device 41 so as to reduce the flow velocity of the molten steel in the mold 1 so that remelting breakout can be avoided as described above. In addition, the alarm device issues an alarm when a signal from the breakout determination means 33 is input. This can inform the operator of the danger of a breakout. In FIGS. 1, 12, and 13, the thermocouple group consisting of thermocouples 17, local heat flux calculation means 29, steady-solidification interface heat input storage means 31, heat flux profile calculation means 32, and breakout are shown in FIGS. The determination means 33 (or the alarm device 37) constitutes a breakout detection device. Further, in FIG. 1, the thermocouple group consisting of thermocouples 17, the local heat flux calculating means 29, the steady solidification interface heat input memory means 31, the heat flux profile calculating means 32, and the solidification seal thickness calculating means 34 are solidified. Construct shell thickness estimation device. For example, using a communication鍀Installation according to FIG. 12, for ultra low carbon steel, 2. was going to steering business in铸造rate of OmZ min, Q2 rather was the 4500KjZm 2, the value of Q 1 is Q 1 lSOOOkj / m 2 There was a risk of a heat deficient breakout. Thus, when the forging speed was reduced to 0.5'5 min, Ql ≥ 15000kj / m 2 , and a sufficient solidified shell thickness was obtained, preventing the occurrence of breakout. After the solidified shell is sufficiently thick, high-speed forging can be performed by increasing the forging speed again.
また、図 12に記載の連铸設備を用い、極低炭素銅について、 2. 5m/分の铸造速度で操業 を行っていたところ、 Q1の値が 15000¾J/m2≤Ql≤21000kjZm2で、 Q2,の値が Q2≥4500 kL m2になり再溶解性ブレークアウト発生の危険が生じた。 そこで、電磁ブレーキ装置 41を作 動させたところ Q2の値を ASOOkjZm2より小さい値に低下させることができ、再溶解性ブレークァ ゥト発生を防止できた。 さらに、図 13に記載の連錶設備を用い、極低炭素銅について実績として 15000 /^2≤01 ≤21000kjZm2を逸脱しない条件にて、 2. OmZ分の铸造速度で操業を行っていたところ、 Q2 ZQ1の値が 0. 25を超えた。 このため、铸造速度を 0. 5mZ分まで落としたところ、 Q2/QK 0. 25となり、十分な凝固シェル厚さを得ることができ、ブレークアウトの発生を防止することができ た。 なお、凝固シェル厚を十分厚くした後は、再び铸造速度を上げることによって、高速铸造を 行なうことができる。 本実施の形態によれば、鋒型出口における凝固シェル厚に直接的に関係する熱流束プロファ ィルに基づいてブレークアウト発生の危険の有無を判定したり、当該プロファイルよりブレークァゥ トに直接関係する铸型出口における凝固シェル厚みを求めこの凝固シェル厚みに基づいてブレ ークアウト発生の有無を判定したりすることができるので、種々の操業条件下で、ブレークアウトの 発生を、感度良ぐ簡単かつ確実に予知して、ブレークアウトを確実に防止することができる。 ま た、ブレークアウト発生の危険について、それが再溶解性ブレークアウトであるか抜熱不足性ブレ ークアウトであるかを含めて判定することもできるので、最適な防止手段を選択することができる。 なお、以上に説明した本発明の内容や実施の形態においては、熱流束プロファイルから総括 熱流束やコブの大きさに相当する熱流束の積算値を求める手法として幾何学的に行なう手法を 主に示した。 しかし、本発明はこれに限られるものではな 例えば総括熱流束についてはダラ フを積分することで求めてもょ 、。 産業上の利用の可能性 In addition, using the continuous equipment shown in Fig. 12, when operating extremely low carbon copper at a forging rate of 2.5 m / min, the value of Q1 was 15000¾J / m 2 ≤Ql≤21000kjZm 2 , The value of Q2, became Q2≥4500 kL m 2 , and there was a risk of remelting breakout. Therefore, when the electromagnetic brake device 41 was operated, the value of Q2 could be reduced to a value smaller than ASOOkjZm 2 and remeltable breakout could be prevented. Furthermore, using the continuous equipment shown in Fig. 13, the operation of ultra-low carbon copper was conducted at a production speed of 2. OmZ, under the condition that it does not deviate from 15000 / ^ 2 ≤01 ≤21000 kjZm 2 The value of Q2 ZQ1 exceeded 0.25. For this reason, when the forging speed was reduced to 0.5 mZ, it became Q2 / QK 0.25, a sufficient solidified shell thickness could be obtained, and the occurrence of breakout could be prevented. After the solidified shell thickness is sufficiently increased, high-speed forging can be performed by increasing the forging speed again. According to this embodiment, it is determined whether there is a risk of breakout based on the heat flux profile directly related to the thickness of the solidified shell at the vertical outlet, or directly related to breakout from the profile. Since the thickness of the solidified shell at the vertical outlet can be obtained and the presence or absence of breakout can be judged based on this solidified shell thickness, the occurrence of breakout can be detected easily and reliably with high sensitivity under various operating conditions. As a result, breakout can be reliably prevented. In addition, since it is possible to determine the risk of breakout, including whether it is a remeltable breakout or an underheated breakout, it is possible to select an optimal prevention measure. In the contents and embodiments of the present invention described above, the geometrically performed method is mainly used as a method for obtaining the integrated value of the heat flux corresponding to the overall heat flux and the size of the bump from the heat flux profile. Indicated. However, the present invention is not limited to this. For example, the overall heat flux may be obtained by integrating the dull. Industrial applicability
本発明においては、連続铸造における铸型内の溶銅が湯面力 鎳型出口に至るまでの間に 凝固界面へ入熱する熱流束 qlを測定し、熱流束 qlと定常状態における鍚型内の溶鋼流動によ る定常凝固界面入熱 q2regの差 (ql— q2reg)について溶鋼が湯面力ら铸型出口に至るまでの熱流 束プロファイルを求め、この熱流束プロファイルに基づいてブレークアウト発生の危険の有無を判 定するようにしたので、種々の操業条件下で、ブレークアウトの発生を、感度良ぐ簡単かつ確実 に予知して、ブレークアウトを確実に防止することができる。 また前記熱流束プロファイルを基に 総括熱流束 Q1および Q2を求め解析することにより、さらにブレークアウトの原因ごとの判定ができ るので、原因に基づく適切なブレークアウト回避のための対応が可能になる。 In the present invention, the molten copper in the mold in the continuous casting is between the hot water surface and the mold outlet. The heat flux ql input to the solidification interface was measured, and the difference between the heat flux ql and the steady solidification interface heat input q2 reg due to the molten steel flow in the mold in the steady state (ql-q2 reg ) Since the heat flux profile from the top to the vertical outlet was obtained and the risk of breakout occurrence was determined based on this heat flux profile, the occurrence of breakout under various operating conditions It is easy and reliable to predict with high sensitivity, and breakout can be prevented reliably. In addition, by determining and analyzing the overall heat flux Q1 and Q2 based on the heat flux profile, it is possible to further determine the cause of each breakout, making it possible to take appropriate measures to avoid breakout based on the cause. .
更に、前記総括熱流束 Ql、あるいはさらに Q2を用いて铸型出口における凝固シェル厚みを 推定するようにしたので、精度よく凝固シェル厚みを推定することができる。  Further, since the solidified shell thickness at the vertical outlet is estimated using the overall heat flux Ql or further Q2, the solidified shell thickness can be accurately estimated.
以上のように、本発明は連続铸造の制御分野において種々の優れた効果を奏する。  As described above, the present invention has various excellent effects in the field of continuous forging control.

Claims

請求の範囲 The scope of the claims
1. 連続铸造における铸型内の溶銷が湯面力ら铸型出口に至るまでの間に凝固界面へ入熱す る熱流束 qlを測定するステップと、 1. a step of measuring a heat flux ql that is input to the solidification interface from the hot metal surface force to the vertical outlet in the continuous molding,
定常状態における铸型内の溶鋼流動による定常凝固界面入熱 q2regを下式 (1)に基づいて 求めるステップと、 The step of obtaining the steady-state solidification interface heat input q2 reg by the molten steel flow in the mold in the steady state based on the following equation (1):
これら熱流束 qlと定常凝固界面入熱 q2resの差 (ql— q2res)について溶鋼が湯面から铸型 出口に至るまでの熱流束プロファイルを求めるステップと、 A step of obtaining a heat flux profile from the molten steel surface to the vertical outlet for the difference between the heat flux ql and the steady-state solidification interface heat input q2 res (ql-q2 res ),
この熱流束プロファイルに基づいてブレークアウト発生の危険の有無を判定するするステツ プとを有する、  A step of determining whether there is a risk of breakout based on the heat flux profile,
連続铸造におけるブレークアウト検出方法。 '  Breakout detection method in continuous fabrication. '
q2reg=h-厶 Θ (1) q2 reg = h- 厶 Θ (1)
但し、 h:溶銅と凝固シェルの間の熱伝達係数  Where h: heat transfer coefficient between molten copper and solidified shell
Δ Θ:溶鋼の過熱度。  ΔΘ: degree of superheat of molten steel.
2. 請求項 1に記載の、連続铸造におけるブレークアウト検出方法であって、 2. A breakout detection method in continuous fabrication according to claim 1,
前記(ql— q2ree)について求められた前記該熱流束プロファイルに基づいてブレークアウト 発生の危険の有無を判定するするステップが、 Determining whether there is a risk of occurrence of breakout based on the heat flux profile determined for (ql-q2 ree ),
前記熱流束プロファイルに基づき総括熱流束 Q1および Q2を以下の方法により求めるステツ プ; すなわち、  A step of determining overall heat fluxes Q1 and Q2 by the following method based on the heat flux profile;
前記該熱流束プロファイルに極小値を示す極小点が存在する場合には、該極小点と铸型出 口での局所熱流束値とを直線で結んだときにこの直線よりも上の部分の面積に相当する総括熱 流束を Q2とし、湯面位置から铸型出口間の該熱流束プロファイルの曲線全体で囲まれる全面積 に相当する総括熱流束力 Q2を差し弓 I V、た面積に相当する総括熱流束を Q 1とし、  If there is a minimum point indicating a minimum value in the heat flux profile, the area of the portion above this line when the minimum point and the local heat flux value at the saddle-shaped outlet are connected by a straight line Q2 is the total heat flux corresponding to, and the total heat flux force Q2 corresponding to the entire area surrounded by the entire curve of the heat flux profile from the molten metal surface position to the vertical outlet is equivalent to the area of the bow IV The overall heat flux is Q 1
前記該熱流束プロファイルに極小値を示す極小点が存在しない場合には、湯面位置力ら铸 型出口間の該熱流束プロファイルの曲線全体で囲まれる全面積に相当する総括熱流束を総括 熱流束 Q1とし、 Q2を零とするステップ; および、  When there is no local minimum point indicating the minimum value in the heat flux profile, the overall heat flux corresponding to the entire area surrounded by the entire curve of the heat flux profile between the vertical outlets and the molten metal surface force is determined as the overall heat flow. Bundling Q1 and Q2 being zero; and
前記総括熱流束 Q1に基づいて、あるいは Q1および Q2に基づいて、ブレークアウト発生の 危険の有無を判定するステップとを有する、ブレークアウト検出方法。  A breakout detection method comprising: determining whether there is a risk of occurrence of breakout based on the overall heat flux Q1 or based on Q1 and Q2.
3. 請求項 2に記載の、連続铸造におけるブレークアウト検出方法であって、 3. The breakout detection method in continuous fabrication according to claim 2,
前記ブレークアウト発生の危険の有無を判定するステップにおいて、 Q1を凝固による抜熱 量の指標とし、 Q2を定常を超える凝固界面入熱の指標として、 In the step of determining whether there is a risk of breakout, Q1 is removed by solidification As an indicator of quantity, as an indicator of solidification interface heat input exceeding Q2
Q1に基づいてあるいは Q1および Q2に基づいてブレークアウト発生の危険の有無を判定す る、ブレークアウト検出方法。  A breakout detection method that determines whether there is a risk of breakout based on Q1 or based on Q1 and Q2.
4. 請求項 2に記載の、連続铸造におけるブレークアウト検出方法であって、 4. A breakout detection method in continuous fabrication according to claim 2,
前記総括熱流束 Q1に基づいてブレークアウト発生の危険の有無を判定するステップにおい て、 Q1につ Vヽて予め定めた閾値 α1、 α2(αΚα2)につ!/ヽて、  In the step of determining whether or not there is a risk of breakout based on the overall heat flux Q1, V1 is set to V1 and thresholds α1 and α2 (αΚα2) are set in advance!
Ql< a 1のときに、ブレークアウトの危険があると判定し、  When Ql <a 1, it is determined that there is a risk of breakout,
al≤Ql≤ α2のときには、 Q2の値に応じてブレークアウトの危険があると判定する、ブレ ークアウト検出方法。  Breakout detection method that determines that there is a risk of breakout according to the value of Q2 when al≤Ql≤ α2.
5. 請求項 2に記載の、連続铸造におけるブレークアウト検出方法であって、 5. A breakout detection method in continuous fabrication according to claim 2,
前記(ql— q2reg)について求められた前記熱流束プロファイルにおいて極小値を示す極小 点が存在する場合において、 In the case where there is a minimum point indicating a minimum value in the heat flux profile obtained for (ql−q2 reg ),
Q1について予め定めた閾値 α1、 α2(α1く α2)及び Q2について予め定めた閾値 に 対して、 Q1く α 1かつ Q2≥ β、または Qlく a 1かつ Q2< β、または a 1≤Q1≤ a 2力つ Q2 ≥ βのときにブレークアウトの危険があると判定する、ブレークアウト検出方法。  Q1 α1 and Q2 ≥ β, or Ql a1 and Q2 <β, or a1≤Q1≤ a Breakout detection method that determines that there is a danger of breakout when Q2 ≥ β.
6. 請求項 5に記載の、連続鏡造におけるブレークアウト検出方法であって、 6. The breakout detection method in continuous mirror construction according to claim 5,
溶鋼が極低炭素鋼であり、 αΐが 15000(kjZm2)、 (^?が?^^ひ 】/!^)、 J3力 500(kJ ノ m2)であるブレークアウト検出方法。 A breakout detection method in which the molten steel is an extremely low carbon steel, αΐ is 15000 (kjZm 2 ), (^ ??? ^^ hi] /! ^), And J3 force 500 (kJ no m 2 ).
7. 請求項 2に記載の、連続铸造におけるブレークアウト検出方法であって、 7. The breakout detection method in continuous fabrication according to claim 2,
前記総括熱流束 Q1に基づいてブレークアウト発生の危険の有無を判定するステップが、 前記総括熱流束 Q1を用いて下式 (2)に基づいて铸型出口における凝固シェル厚み Dを推 定するステップと、  The step of determining whether there is a risk of occurrence of breakout based on the overall heat flux Q1 is a step of estimating the solidified shell thickness D at the vertical outlet based on the following equation (2) using the overall heat flux Q1. When,
前記推定された凝固シェル厚み Dと、予めブレークアウト発生の危険性との関係で求めた閾 値とに基づいてブレークアウト発生の危険の有無を判定するステップとを有するブレークアウト検 出方法。  A breakout detection method comprising: determining whether there is a risk of occurrence of breakout based on the estimated solidified shell thickness D and a threshold value obtained in advance in relation to the risk of occurrence of breakout.
D = Q1/(AH- p) (2)  D = Q1 / (AH- p) (2)
但し、 D :铸型出口での凝固シェル厚み (m)  D: Thickness of the solidified shell at the vertical outlet (m)
Ql:総括熱流束 (J/m2) 厶 H:铸型出口での凝固シェルの単位重量当たりのェンタルピー落差 (jZkg) p :铸型出口の凝固シェル密度 (kgZm3) Ql: Overall heat flux (J / m 2 ) 厶 H: enthalpy drop per unit weight of solidified shell at vertical outlet (jZkg) p: solidified shell density at vertical outlet (kgZm 3 )
また、前記 qlの単位を J Vm2、前記式 (1)において q2regの単位を J/s'm2 hの単位を JZ s'm2'°C、 Δ Θの単位を。 Cとする。 Further, the unit of ql is J Vm 2 , the unit of q2 reg is J / s'm 2 h in the formula (1), JZ s'm 2 '° C, and the unit of ΔΘ. C.
8. 請求項 2に記載の、連続鎵造におけるブレークアウト検出方法であって、 8. A breakout detection method in continuous fabrication according to claim 2,
前記(ql _q2rei!)について求められた前記熱流束プロファイルにおいて極小値を示す極小 点が存在する場合において、 In the case where there is a minimum point indicating a minimum value in the heat flux profile obtained for (ql_q2 rei! ),
前記総括熱流束 Q 1および Q2に基づいてブレークアウト発生の危険の有無を判定するステ ップ力  Step force for determining the risk of breakout based on the overall heat flux Q1 and Q2
前記総括熱流束 Q1を用いて下式(2)に基づいて铸型出口における凝固シェル厚み Dを推 定するステップと、  Estimating the solidified shell thickness D at the vertical outlet based on the following equation (2) using the overall heat flux Q1;
総括熱流束 Q2による再溶解によって生ずる凝固遅れを考慮した凝固シェル厚み D1を、下 記式(3)に基づいて求められた凝固遅れ度 RSを用いて、 D1 = D (1 _ RS)の関係により推定する ステップと、  The relationship of D1 = D (1 _ RS) using the solidification delay RS obtained based on the following formula (3) as the solidification shell thickness D1 considering the solidification delay caused by remelting by the overall heat flux Q2. Estimating with
前記推定された凝固シェル厚み D1と、予めブレークアウト発生の危険性との関係で求めた 閾値とに基づいてブレークアウト発生の危険の有無を判定するステップとを有するブレークアウト 検出方法。  A breakout detection method comprising: determining whether or not there is a risk of breakout occurrence based on the estimated solidified shell thickness D1 and a threshold value obtained in advance in relation to the risk of breakout occurrence.
D = QlZ( A H. p ) (2)  D = QlZ (A H. p) (2)
但し、 D :鎵型出口での凝固シェル厚み (m)  D: Thickness of the solidified shell at the vertical outlet (m)
Q1 :総括熱流束 (j/m2) Q1: Overall heat flux (j / m 2 )
Δ H:铸型出口での凝固シェルの単位重量当たりのェンタルピー落差 (jZkg) Δ H: enthalpy drop per unit weight of solidified shell at vertical outlet (jZkg)
P :錄型出口の凝固シェル密度 (kgZm3)P: Solidified shell density at the vertical outlet (kgZm 3 )
Figure imgf000048_0001
Figure imgf000048_0001
但し、 RS :凝固遅れ度 (無単位)  RS: Solidification delay (no unit)
J3:凝固遅れ定数 (無単位)  J3: Solidification delay constant (no unit)
V:溶鋼流速 (m/s)  V: Molten steel flow velocity (m / s)
Δ Θ:溶鋼過熱度 (°C)  Δ Θ: Molten steel superheat (° C)
ここで V= (Q2Z 't '厶 0 )) 1·25 Here V = (Q2Z 't'厶0)) 1 - 25
Q2 :総括熱流束 (jZm2) Q2: Overall heat flux (jZm 2 )
α :溶鋼流速定数 (無単位)  α: Flow rate constant of molten steel (unitless)
t :凝固シェルが熱流束プロファイルにおける極小点を通過して力ら铸型出口に至るま でに要する時間 (S) t: The solidified shell passes through the minimum point in the heat flux profile until it reaches the vertical outlet Time required for (S)
また、前記 qlの単位を jZs 'm2 前記式 (1)において q2regの単位を jZs'm2、 hの単位を JZ s'm2.°C、 Δ 0の単位を。 Cとする。 The unit of ql is jZs'm 2 in the above formula (1), the unit of q2 reg is jZs'm 2 , the unit of h is JZ s'm 2 ° C, and the unit of Δ 0 is C.
9. 請求項 2に記載の連続铸造におけるブレークアウト検出方法であって、 9. A breakout detection method in continuous fabrication according to claim 2,
前記(ql— q2re6)につ 、て求められた前記熱流束プロファイルにお!/、て極小値を示す極小 点が存在しな!/、場合は請求項 7に記載の方法で、 For (ql-q2 re6 ), there is no minimum point indicating the minimum value in the heat flux profile obtained! /, In the case described in claim 7,
前記(ql— q2reg)について求められた前記熱流束プロファイルにおいて極小値を示す極小 点が存在する場合は請求項 8の方法で、 In the case where there is a minimum point indicating a minimum value in the heat flux profile obtained for (ql−q2 reg ), the method according to claim 8,
それぞれ鏡型出口における凝固シェル厚みを推定する、ブレークアウト検出方法。  Breakout detection method for estimating the thickness of the solidified shell at the mirror exit.
10. 請求項 1〜6のいずれかに記載の、連続铸造におけるブレークアウト検出方法であって、 熱流束 qlが、铸型內に铸型厚み方向で埋め込み深さの異なる 2点間に埋め込んだ一対の熱 電対を、铸型铸造方向に複数設置して、前記一対の熱電対の出力に基づいて下式 (4)によって 求める局所熱流束である、ブレークアウト検出方法。 10. The breakout detection method in continuous fabrication according to any one of claims 1 to 6, wherein the heat flux ql is embedded between two points having different embedding depths in the vertical thickness direction in the vertical shape. A breakout detection method, wherein a plurality of a pair of thermocouples are installed in a vertical forging direction and a local heat flux is obtained by the following equation (4) based on the output of the pair of thermocouples.
ql = (Tl -T2) /d (4)  ql = (Tl -T2) / d (4)
但し、 λ :鎵型の熱伝導率  Where λ is a bowl-shaped thermal conductivity
. Τ1、Τ2 :熱電対の検出温度  Τ1, Τ2: Thermocouple detection temperature
d:熱電対の埋設間隔  d: Thermocouple burying interval
11. 請求項 7〜9のいずれかに記載の、連続铸造におけるブレークアウト検出方法であって、 熱流束 qlが、铸型内に铸型厚み方向で埋め込み深さの異なる 2点間に埋め込んだ一対の熱 電対を、铸型铸造方向に複数設置して、前記一対の熱電対の出力に基づいて下式 (4)によって 求める局所熱流束である、ブレークアウト検出方法。 11. The breakout detection method according to any one of claims 7 to 9, wherein the heat flux ql is embedded between two points having different embedding depths in the vertical thickness direction in the vertical mold. A breakout detection method, wherein a plurality of a pair of thermocouples are installed in a vertical forging direction and a local heat flux is obtained by the following equation (4) based on the output of the pair of thermocouples.
¾1 = λ (Tl -T2) /d (4) ¾ 1 = λ (Tl -T2) / d (4)
但し、 λ:铸型の熱伝導率 (jZs'm*で)  However, λ: vertical thermal conductivity (in jZs'm *)
Tl、 Τ2 :熱電対の検出温度 (で)  Tl, Τ2: Thermocouple detection temperature (in)
d:熱電対の埋設間隔 (m)  d: Thermocouple burying interval (m)
12. 铸型厚み方向に異なる深さの 2点に埋め込んだ一対の熱電対を、铸型鎵造方向に複数設 置してなる熱電対群と、 12. A thermocouple group in which a pair of thermocouples embedded at two points with different depths in the vertical thickness direction are installed in the vertical direction.
該熱電対群からの温度情報を入力して各熱電対設置部位における局所熱流束 qlを求める 局所熱流束演算手段と、 The temperature information from the thermocouple group is input to determine the local heat flux ql at each thermocouple installation site. Local heat flux calculation means;
定常状態における铸型内の溶鋼流動による定常凝固界面入熱 q2regを下式(1)に基づいて 求めたデータを記憶する定常凝固界面入熱記憶手段と、 Steady solidification interface heat input storage means for storing the data obtained from steady solidification interface heat input q2 reg based on the following equation (1) due to molten steel flow in the mold in the steady state:
これら熱流束 qlと定常凝固界面入熱 q2regの差 (ql— q2reg)について溶鋼が湯面から铸型 出口に至るまでの熱流束プロファイルを求めるプロファイル演算手段と、 Profile calculation means to obtain the heat flux profile from the molten steel surface to the vertical outlet for the difference between the heat flux ql and the steady-state solidification interface heat input q2 reg (ql-q2 reg ),
• 求められた熱流束プロファイルに基づいてブレークアウト発生の危険の有無を判定するブレ ークアウト判定手段とを備えた、連続铸造におけるブレークアウト検出装置。  • A breakout detection device for continuous fabrication, comprising breakout determination means for determining whether there is a risk of breakout occurrence based on the obtained heat flux profile.
q2reg=h- Δ Θ (1) q2 reg = h- Δ Θ (1)
但し、 h:溶鋼と凝固シェルの間の熱伝達係数  Where h: heat transfer coefficient between molten steel and solidified shell
厶 Θ:溶鋼の過熱度。  ΘΘ: Degree of superheat of molten steel.
13. 請求項 12に記載の連続铸造におけるブレークアウト検出装置であって、 13. A breakout detection device for continuous fabrication according to claim 12,
前記ブレークアウト判定手段が、  The breakout determination means is
前記熱流束プロファイルに基づき総括熱流束 Q1および Q2を以下の方法により求め; すな わち、  Based on the heat flux profile, the overall heat fluxes Q1 and Q2 are determined by the following method;
前記熱流束プロファイルに極小値を示す極小点が存在する場合には、該極小点と铸型出口 での局所熱流束値とを直線で結んだときにこの直線よりも上の部分の面積に相当する総括熱流 束を Q2とし、湯面位置から铸型出口間の該熱流束プロファイルの曲線全体で囲まれる全面積に 相当する総括熱流束から Q2を差し引レ、た面積に相当する総括熱流束を Q 1とし、  If there is a minimum point indicating a minimum value in the heat flux profile, it corresponds to the area above this line when the minimum point and the local heat flux value at the vertical outlet are connected by a straight line. The total heat flux corresponding to the area obtained by subtracting Q2 from the total heat flux corresponding to the total area surrounded by the entire curve of the heat flux profile between the molten metal surface position and the vertical outlet is Q2. Is Q 1 and
前記熱流束プロファイルに極小値を示す極小点が存在しない場合には、湯面位置力 铸型 出口,間の該熱流束プロファイルの曲線全体で囲まれる全面積に相当する総括熱流束を総括熱 流束 Q1とし、 Q2を零とし;  When there is no minimum point indicating a minimum value in the heat flux profile, the total heat flux corresponding to the total area surrounded by the entire curve of the heat flux profile between the molten steel surface force 力 type outlet is determined as the total heat flux. Bundle Q1, Q2 is zero;
前記総括熱流束 Q1に基づいて、あるいは Q1および Q2に基づいて、ブレークアウト発生の 危険の有無を判定するブレークアウト判定手段である、ブレークアウト検出装置。  A breakout detection device, which is a breakout determination means for determining whether or not there is a risk of occurrence of a breakout based on the overall heat flux Q1 or based on Q1 and Q2.
14. 請求項 13に記載の、連続铸造におけるブレークアウト検出装置であって、 14. The breakout detection device for continuous fabrication according to claim 13,
前記ブレークアウト判定手段が、前記総括熱流束 Q1を凝固による抜熱量の指標とし、必要 に応じ Q2を定常を超える凝固界面入熱の指標として、  The breakout determination means uses the overall heat flux Q1 as an index of heat removal by solidification, and if necessary, Q2 as an index of solidification interface heat input exceeding the steady state.
Q1に基づいて、あるいは Q1および Q2に基づいて、ブレークアウト発生の危険の有無を判 定するブレークアウト判定手段である、ブレークアウト検出装置。 請求項 13に記載の、連続铸造におけるブレークアウト検出装置であって、 前記ブレークアウト判定手段が、前記総括熱流束 Q1について予め定めた閾値 α 1 α2(α 1< α2)に対し、 A breakout detection device that is a breakout determination means that determines whether there is a risk of breakout occurrence based on Q1 or based on Q1 and Q2. The breakout detection device for continuous fabrication according to claim 13, The breakout determination means, for the predetermined threshold α 1 α2 (α 1 <α2) for the overall heat flux Q1,
Ql< a 1のときに、ブレークアウトの危険があると判定し、  When Ql <a 1, it is determined that there is a risk of breakout,
a 1≤Q1≤ α2のときには、 Q2の値に応じてブレークアウトの危険があると判定するブレー クアウト判定手段である、ブレークアウト検出装置。  a Breakout detection device that is a breakout determination means that determines that there is a risk of breakout according to the value of Q2 when 1≤Q1≤ α2.
16. 請求項 13に記載の、連続铸造におけるブレークアウト検出装置であって、 16. The breakout detection device for continuous fabrication according to claim 13,
前記ブレークアウト判定手段が、前記(ql_q2reg)について求められた前記熱流束プロファ ィルにおいて極小値を示す極小点が存在する場合において、 In the case where the breakout determining means has a local minimum point indicating a local minimum in the heat flux profile obtained for (ql_q2 reg ),
Q1について予め定めた閾値 α1 α2(α1< ο:2)及ぴ Q2について予め定めた閾値 に 対して、 Ql< α 1かつ Q2≥ j3、または Qlく a 1かつ Q2く β、または α 1≤Q1≤ α 2かつ Q2 ≥ 0のときにブレークアウトの危険があると判定するブレークアウト判定手段である、ブレークァゥ ト検出装置。  Predetermined threshold for Q1 α1 α2 (α1 <ο: 2) and for the predetermined threshold for Q2, Ql <α 1 and Q2 ≥ j3, or Ql a 1 and Q2 β, or α 1≤ A breakout detection device that is a breakout determination means that determines that there is a risk of breakout when Q1≤ α 2 and Q2 ≥ 0.
17. 請求項 16に記載の、連続鏡造におけるブレークアウト検出装置であって、 17. The breakout detection device for continuous mirror construction according to claim 16, comprising:
溶銅が極低炭素鋼である場合において、 αΐが 15000(kj/m2)、 0;2が21000(1^//1^)、 ]3が 4500 (kjZm2)に設定されているブレークアウト検出装置。 When the molten copper is an ultra-low carbon steel, αΐ is set to 15000 (kj / m 2 ), 0; 2 is set to 21000 (1 ^ / / 1 ^),] 3 is set to 4500 (kjZm 2 ) Out detection device.
18. 請求項 13に記載の、連続铸造におけるブレークアウト検出装置であって、 18. The breakout detection device for continuous fabrication according to claim 13,
前記ブレークアウト判定手段が、  The breakout determination means is
総括熱流束 Q1を用いて下式 (2)に基づいて铸型出口における凝固シェル厚み Dを演算す る凝固シェル厚演算手段と、  Solidification shell thickness calculation means for calculating the solidification shell thickness D at the vertical outlet based on the following equation (2) using the overall heat flux Q1,
前記凝固シェル厚演算手段の演算値を入力して、該演算値 Dと予めブレークアウト発生の 危険性との関係で求めた閾値とに基づいてブレークアウト発生の危険の有無を判定する、ブレー クアウト判定手段本体とを有する、ブレークアウト検出装置。  The calculation value of the solidified shell thickness calculation means is input, and the presence or absence of breakout occurrence risk is determined based on the calculation value D and a threshold value obtained in advance in relation to the risk of breakout occurrence. A breakout detection device having a determination means main body.
D = QlZ(AH' ;o) (2)  D = QlZ (AH '; o) (2)
但し、 D :铸型出口での凝固シェル厚み (m)  D: Thickness of the solidified shell at the vertical outlet (m)
Ql:総括熱流束 (jZm2) Ql: Overall heat flux (jZm 2 )
厶 H:铸型出口での凝固シェルの単位重量当たりのェンタルピー落差 (j/kg) P :铸型出口の凝固シェル密度 (kgZm3) 厶 H: enthalpy drop per unit weight of solidified shell at vertical outlet (j / kg) P: solidified shell density at vertical outlet (kgZm 3 )
また、前記 qlの単位を J/s'm2、前記式 (1)において q2reeの単位を j/s'm2 hの単位を J/ s'm2'°C Δ 0の単位をでとする。 Further, the unit of ql is J / s'm 2 , the unit of q2 ree is j / s'm 2 h in the formula (1), and the unit of J / s'm 2 '° C Δ 0 is And
19. 請求項 13に記載の、連続铸造におけるブレークアウト検出装置であって、 前記ブレークアウト判定手段が、 19. The breakout detection device for continuous fabrication according to claim 13, wherein the breakout determination means includes:
.総括熱流束 Q1を用いて下式 (2)に基づいて铸型出口における凝固シェル厚み Dを演算し、 さらに総括熱流束 Q2による再溶解によって生ずる凝固遅れを考慮した凝固シェル厚み D1を、下 記式 (3)に基づいて求められた凝固遅れ度 RSを用いて、 D1 ==D (1— RS)の関係により演算する、 凝固シェル厚演算手段と、  Using the overall heat flux Q1, calculate the solidified shell thickness D at the vertical outlet based on the following equation (2), and further reduce the solidified shell thickness D1 considering the solidification delay caused by remelting by the overall heat flux Q2. Solidification shell thickness calculation means for calculating from the relationship of D1 == D (1−RS) using the solidification delay degree RS obtained based on the equation (3),
前記凝固シ レ厚演算手段の演算値を入力して、該演算値 D1と予めブレークアウト発生の 危険性との関係で求めた閾値とに基づいてブレークアウト発生の危険の有無を判定する、ブレー クアウト判定手段本体とを有する、ブレークアウト検出装置。  A calculation value of the solidification thickness calculating means is input, and a breakout risk is determined based on the calculated value D1 and a threshold value obtained in advance in relation to the risk of breakout occurrence. A breakout detection device comprising a quatout determination means main body.
D=Q1/ ( A H- p ) (2)  D = Q1 / (A H- p) (2)
但し、 D :铸型出口での凝固シェル厚み (m)  D: Thickness of the solidified shell at the vertical outlet (m)
Q1 :総括熱流束 (j/m2) Q1: Overall heat flux (j / m 2 )
Δ H:養型出口での凝固シェルの単位重量当たりのェンタルピー落差 (jZkg)  Δ H: enthalpy drop per unit weight of the solidified shell at the shaping outlet (jZkg)
P :铸型出口の凝固シェル密度 (kgZm3) P: Solidified shell density at the vertical outlet (kgZm 3 )
RS= β X (V08· Δ θ ) (3) RS = β X (V 08 · Δ θ) (3)
但し、 RS :凝固遅れ度 (無単位)  RS: Solidification delay (no unit)
β:凝固遅れ定数 (無単位)  β: Coagulation delay constant (unitless)
V:溶銅流速 (m/s)  V: Molten copper flow velocity (m / s)
厶 Θ:溶銅過熱度 CC)  厶 Θ: Molten copper superheat CC)
ここで¥= ((32 / ( 0:-1;'厶 Θ ))1·25 Where \ = ((32 / (0: -1; '厶 Θ)) 1 · 25
Q2 :総括熱流束 (jZm2) Q2: Overall heat flux (jZm 2 )
α :溶銅流速定数 (無単位)  α: Molten copper flow rate constant (no unit)
t:凝固シェルが熱流束プロファイルにおける極小点を通過してから铸型出口に至るま でに要する時間 (S)  t: Time required for the solidified shell to pass through the minimum point in the heat flux profile to reach the vertical outlet (S)
また、前記 qlの単位を J Vm2、前記式 (1)において q2regの単位を jZs'm2、 hの単位を jZ s'm2'°C、 Δ 0の単位を。 Cとする。 In addition, the unit of ql is J Vm 2 , the unit of q2 reg is jZs'm 2 in the formula (1), the unit of h is jZ s'm 2 '° C, and the unit of Δ0. C.
20. 請求項 13に記載の連続铸造におけるブレークアウト検出装置であって、凝固シェル厚演 算手段が、 20. The breakout detection device for continuous fabrication according to claim 13, wherein the solidified shell thickness calculating means comprises:
前記 (ql— q2reg)について求められた前記熱流束プロファイルにおいて極小値を示す極小 点が存在しない場合は請求項 18に記載の方法で、 前記(ql— q2reg)について求められた前記熱流束プロファイルにおいて極小値を示す極小 点が存在する場合は請求項 19の方法で、 The method according to claim 18, wherein there is no local minimum indicating a local minimum in the heat flux profile obtained for (ql-q2 reg ), If there is a local minimum indicating a local minimum in the heat flux profile determined for (ql-q2 reg ),
それぞれ铸型出口における凝固シェル厚みを演算する演算手段である、ブレークアウト検出 装置。  Breakout detection devices, each of which is a calculation means for calculating the thickness of the solidified shell at the vertical outlet.
21. 請求項 12〜20のいずれかに記載のブレークアウト検出装置を用いたブレークアウト防止 装置であって、 - ブレークアウト判定手段の信号を入力して、ブレークアウト判定手段がブレークアウトの危険 有りと判定した場合において、鐃造速度を下げるように操業条件を制御し、または該制御に加え て铸型内の溶鋼流速を低下させる制御を行う制御手段を備えた、連続铸造におけるブレークァゥ ト防止装置。 21. A breakout prevention apparatus using the breakout detection device according to any one of claims 12 to 20, wherein the breakout determination means inputs a signal of the breakout determination means and the breakout determination means has a risk of breakout In the continuous forging, including a control means for controlling the operating conditions so as to reduce the forging speed, or in addition to the control, for reducing the flow rate of the molten steel in the mold. .
22. 請求項 12〜20のいずれかに記載のブレークアウト検出装置を用いたブレークアウト防止 装置であって、 22. A breakout prevention device using the breakout detection device according to any one of claims 12 to 20,
ブレークアウト ^定手段の信号を入力して、ブレークアウト判定手段がブレークアウトの危険 有りと判定したときに、铸造速度を減速するように制御する制御手段を備えた、連続铸造における ブレークアウト防止装置。  Breakout ^ Breakout prevention device in continuous forging with control means to control the speed of forging to be reduced when the breakout judging means judges that there is a risk of breakout by inputting the signal of the fixing means .
23. 請求項 16または 17に記載のブレークアウト検出装置を用いたブレークアウト防止装置であ つて、 23. A breakout prevention device using the breakout detection device according to claim 16 or 17,
ブレークアウト判定手段の信号を入力して、ブレークアウト判定手段がブレークアウトの危険 有りと判定した場合において、  When a breakout determination means signal is input and the breakout determination means determines that there is a risk of breakout,
この危険有りとの判定が Q l < a 1かつ Q2≥ |3に基づく危険判定の場合には铸造速度を下 げる及び 又は铸型冷却を強くするように操業条件を制御し、または該制御に加えて铸型内の 溶鋼流速を低下させる制御を行い、  If the risk determination is based on Q l <a 1 and Q2 ≥ | 3, control the operating conditions to reduce the forging speed and / or increase the vertical cooling, or the control In addition to controlling the flow velocity of molten steel in the vertical mold,
QK a 1かつ Q2く βに基づく危険判定の場合には铸造速度を下げる及び Ζ又は銬型冷 却を強くするように操業条件を制御し、  In the case of a hazard judgment based on QK a 1 and Q2 and β, the operating conditions are controlled so as to reduce the forging speed and strengthen the dredging or vertical cooling,
a 1≤Q1≤ α 2かつ Q2≥ βに基づく危険判定の場合は铸型内の溶鋼流速を低下させる力、、 あるいはさらに铸造速度を下げる及ぴノまたは铸型冷却を強くする制御を行う、  a In case of risk judgment based on 1≤Q1≤α2 and Q2≥β, control to lower the molten steel flow velocity in the mold, or to further reduce the forging speed and strengthen the mold or mold cooling.
制御手段を備えた連続錄造におけるブレークアウト防止装置。  Breakout prevention device in continuous fabrication with control means.
24. 請求項 4に記載のブレークアウト検出方法を用いた鋼の連続铸造方法であって、 Ql > a 2、または、 24. A method for continuously forging steel using the breakout detection method according to claim 4, Ql> a 2 or
a 1≤Q 1≤ α 2かつ Q2がブレークアウトの危険があると判定されないよう低減した値 なる ように、操業条件を制御する鋼の連続铸造方法。  a Continuous steel forging method in which the operating conditions are controlled so that a 1 ≤ Q 1 ≤ α 2 and Q 2 have a reduced value so that they are not judged to be at risk of breakout.
25. 請求項 5または 6に記載のブレークアウト検出方法を用いた鋼の連続铸造方法であって、 Q l > α 2かつ Q2≥ β、または、 Ql≥ α 1かつ Q2 < βとなるように操業条件を制御する鋼 の連続铸造方法。 25. A continuous steel forging method using the breakout detection method according to claim 5 or 6, wherein Q l> α 2 and Q2 ≥ β, or Ql ≥ α 1 and Q2 <β. A continuous steel forging method that controls operating conditions.
26. 請求項 25記載の、鋼の連続鐃造方法であって、操業中において、 26. The method of continuous forging steel according to claim 25, wherein the steel is in operation.
Q K a 1かつ Q2≥ βになった場合には铸造速度を下げる及び 又は铸型冷却を強くする ように操業条件を制御し、または該制御に加えて铸型内の溶鋼流速を低下させるように操業条件 を制御し、  When QK a 1 and Q2 ≥ β, the operating conditions are controlled so as to reduce the forging speed and / or to increase the vertical cooling, or in addition to this control, to decrease the molten steel flow velocity in the vertical mold. Control the operating conditions,
Ql < a 1かつ Q2 < J3になった場合には铸造速 gを下げる及び Z又は铸型冷却を強くする ように操業条件を制御し、  If Ql <a 1 and Q2 <J3, control the operating conditions to lower the forging speed g and increase Z or vertical cooling,
a 1≤Q1≤ a 2かつ Q2≥ βになった場合は、铸型内の溶鋼流速を低下させるか、あるいは さらに铸造速度を下げる及び または铸型冷却を強くするように操業条件を制御する、鋼の連続 铸造方法。  If a1≤Q1≤a2 and Q2≥β, then control the operating conditions to lower the molten steel flow velocity in the mold, or further reduce the forging speed and / or increase the mold cooling. Steel continuous forging method.
27. 請求項 24に記載の、鋼の連続铸造方法であって、 27. A method of continuous forging steel according to claim 24,
熱流束 qlが、铸型内に铸型厚み方向で埋め込み深さの異なる 2点間に埋め込んだ一対の熱 電対を、鋒型铸造方向に複数設置して、前記一対の熱電対の出力に基づいて下式 (4)によって 求める局所熱流束である、鋼の連続铸造方法。  A plurality of pairs of thermocouples embedded between two points with different embedding depths in the saddle mold thickness direction in the saddle mold are installed in the saddle mold fabrication direction to output the pair of thermocouples. Based on the local heat flux obtained by the following equation (4) based on the steel continuous forging method.
ql = X (Tl -T2) /d (4)  ql = X (Tl -T2) / d (4)
但し、 λ :銬型の熱伝導率  Where λ is a bowl-shaped thermal conductivity
Τ1、Τ2 :熱電対の検出温度  Τ1, Τ2: Thermocouple detection temperature
d :熱電対の埋設間隔  d: Thermocouple burying interval
28. 請求項 7〜9に記載のブレークアウ 検出方法を用いた鋼の連続铸造方法であって、 推定された凝固シェル厚みが、予めブレークアウト発生の危険性との関係で求めた閾値より 小さくなるように操業条件を制御する鋼の連続铸造方法。 28. A method for continuously forging steel using the breakout detection method according to claims 7 to 9, wherein the estimated solidified shell thickness is smaller than a threshold value obtained in advance in relation to the risk of occurrence of breakout. A continuous steel forging method that controls the operating conditions.
29. 連続铸造における錄型内の溶鋼が湯面から铸型出口に至るまでの間に凝固界面へ入熱 する熱流束 qlを測定するステップと、 29. Heat input to the solidification interface between the molten steel in the mold and the mold outlet in continuous casting Measuring the heat flux ql to
定常状態における铸型内の溶鋼流動による定常凝固界面入熱 q2regを下式(1)に基づいて 求めるステップと、 The step of obtaining the steady solidification interface heat input q2 reg by the molten steel flow in the mold in the steady state based on the following equation (1):
これら熱流束 ql (j Vm2)と定常凝固界面入熱 q2regの差 (ql— q2reg)について溶鋼が湯面 から錶型出口に至るまでの熱流束プロファイルを求めるステップと、 Obtaining the heat flux profile from the molten steel surface to the vertical outlet for the difference between the heat flux ql (j Vm 2 ) and the steady solidification interface heat input q2 reg (ql-q2 reg ),
前記熱流束プロファイルにおレ、て極小値を示す極小点が存在する場合には、該極小点と铸 型出口での局所熱流束値とを直線で結んだときにこの直線よりも上の部分の面積に相当する総 括熱流束を Q2として湯面位置力ら铸型出口間の該熱流束プロファイルの曲線全体で囲まれる全 面積に相当する総括熱流束から Q2を差し弓 I Vヽた面積に相当する総括熱流束を Q 1とし、  If there is a minimum point indicating a minimum value in the heat flux profile, a portion above this line when the minimum point and the local heat flux value at the vertical outlet are connected by a straight line. Q2 is the total heat flux corresponding to the total area, and Q2 is the total heat flux corresponding to the entire area surrounded by the entire curve of the heat flux profile between the vertical outlet and the molten steel surface position force as Q2. Let Q 1 be the corresponding overall heat flux,
前記熱流束プロファイルにおいて極小値を示す極小点が存在しない場合には、湯面位置か ら铸型出口間の該熱流束プロファイルの曲線全体で囲まれる全面積に相当する総括熱流束を総 括熱流束 Q1とし、  When there is no local minimum point indicating the minimum value in the heat flux profile, the total heat flux corresponding to the entire area surrounded by the entire curve of the heat flux profile from the molten metal surface position to the vertical outlet is determined as the total heat flow. Bundle Q1,
これら総括熱流束 Q 1を用いて下式(2)に基づいて铸型出口における凝固シェル厚み Dを 推定するステップとを有する、連続铸造における凝固シェル厚み推定方法。  A method for estimating the solidified shell thickness in continuous casting, comprising the step of estimating the solidified shell thickness D at the vertical outlet based on the following equation (2) using the overall heat flux Q1.
q2reg=h- Δ Θ (1) · 但し、 q2reg:定常凝固界面入熱 0/s 'm2) q2 reg = h- Δ Θ (1) · where q2 reg : heat input at steady-state solidification interface 0 / s' m 2 )
h:溶銅と凝固シェルの間の熱伝達係数 (L *m2'で) h: Heat transfer coefficient between molten copper and solidified shell (in L * m 2 ')
Δ Θ:溶鋼の過熱度(°C)  Δ Θ: Superheat degree of molten steel (° C)
D=Q1Z (厶 Η· ρ ) (2)  D = Q1Z (厶 Η ・ ρ) (2)
但し、 D:鎊型出口での凝固シェル厚み (m)  D: Solidified shell thickness at the vertical outlet (m)
Ql :総括熱流束 (jZm2) Ql: Overall heat flux (jZm 2 )
厶 H:铸型出口での凝固シェルの単位重量当たりのェンタルピー落差 (L kg) p:铸型出口の凝固シェル密度 (kgZm3) 厶 H: enthalpy drop per unit weight of solidified shell at vertical outlet (L kg) p: solidified shell density at vertical outlet (kgZm 3 )
30. 熱流束プロファイルにおいて極小値を示す極小点が存在する場合において、総括熱流束 Q2による再溶解によって生ずる凝固遅れを考慮した凝固シェル厚み D1を推定する方法であつ て、 30. A method for estimating the solidified shell thickness D1 taking into account the solidification delay caused by remelting by the overall heat flux Q2 when there is a local minimum point in the heat flux profile.
請求項 29によって求められた凝固シェル厚みを Dとすると、 Dl =D (1— RS)とする連続铸造 における凝固シェル厚み推定方法。  30. A method for estimating a solidified shell thickness in continuous fabrication, wherein Dl = D (1—RS), where D is a solidified shell thickness obtained according to claim 29.
但し、 RS= β X (V0·8· Δ 9 ) (3) However, RS = β X (V 0 8 8 9) (3)
RS :凝固遅れ度 (無単位)  RS: Freezing delay (no unit)
J3:凝固遅れ定数 (無単位) V:溶鋼流速 (πι/s) J3: Solidification delay constant (no unit) V: Molten steel flow velocity (πι / s)
厶 Θ:溶鋼過熱度 (°C)  厶 Θ: Molten steel superheat (° C)
ここで V=(Q2Z(a .t' A 0))1·25 Where V = (Q2Z (a .t ' A 0)) 1 · 25
Q2:総括熱流束 (jZm2) Q2: Overall heat flux (jZm 2 )
a:溶鋼流速定数 (無単位)  a: Molten steel flow rate constant (unitless)
t:凝固シェルが熱流束プロファイルにおける極小点を通過して力ら铸型出口に至るま でに要する時間 (S)  t: Time required for the solidified shell to pass through the minimum point in the heat flux profile and reach the vertical outlet (S)
31. 連続鐯造における铸型内の溶鋼が湯面から鐃型出口に至るまでの間に凝固界面へ入熱 する熱流束 qlを測定するステップと、 31. a step of measuring a heat flux ql that enters the solidification interface between the molten steel in the mold in the continuous casting and the mold outlet,
定常状態における铸型内の溶鋼流動による定常凝固界面入熱 q2resを下式(1)に基づいて 求めるステップと、 A step of obtaining a steady solidification interface heat input q2 res based on the following equation (1) by a molten steel flow in the mold in a steady state:
これら熱流束 ql α/s-m2)と定常凝固界面入熱 q2resの差 (ql— q2reg)について溶銷が湯面 から铸型出口に至るまでの熱流束プロファイルを求めるステップと、 The step of obtaining the heat flux profile from the hot metal surface to the vertical outlet for the difference between the heat flux ql α / sm 2 ) and the steady solidification interface heat input q2 res (ql-q2 reg ),
前記熱流束プロファイルから凝固シェル厚みを推測するステップとを有する、凝固シェル厚 みを推定する方法であって、  Estimating the solidified shell thickness from the heat flux profile, comprising the steps of:
前記熱流束プロファイルにおいて極小値を示す極小点が存在しない場合には、請求項 29 に記載の方法で凝固シェル厚みを推測し、  If there is no local minimum point indicating the local minimum in the heat flux profile, the solidified shell thickness is estimated by the method of claim 29,
前記熱流束プロファイルにおいて極小値を示す極小点が存在する場合には請求項 30に記 載の方法で凝固シェル厚みを推測する、  If there is a minimum point showing a minimum value in the heat flux profile, the solidified shell thickness is estimated by the method according to claim 30.
連続铸造における凝固シェル厚み推定方法。 Solidified shell thickness estimation method in continuous forging.
32. 請求項 29〜31_のいずれかに記載の連続鎊造における凝固シェル厚み推定方法であって、 熱流束 qlは、铸型内に錶型厚み方向で埋め込み深さの異なる 2点間に埋め込んだ一対の熱電 対を、铸型铸造方向に複数設置して、前記一対の熱電対の出力に基づいて下式 (4)によって求 める局所熱流束である、連続铸造における凝固シェル厚み推定方法。 32. The method for estimating a solidified shell thickness in continuous forging according to any one of claims 29 to 31_, wherein the heat flux ql is between two points having different embedding depths in the saddle thickness direction in the saddle shape. Estimating the thickness of the solidified shell in continuous forging, which is a local heat flux obtained by the following equation (4) based on the output of the pair of thermocouples by installing multiple embedded thermocouples in the vertical forging direction Method.
ql= λ (Tl-T2)/d (4)  ql = λ (Tl-T2) / d (4)
但し、 ql:熱流束 (jZs'm2) Where ql: heat flux (jZs'm 2 )
λ:铸型の熱伝導率 (jZs'm'°C)  λ: vertical thermal conductivity (jZs'm '° C)
Tl、 T2:熱電対の検出温度 CC)  Tl, T2: Thermocouple detection temperature CC)
d:熱電対の埋設間隔(m) d: Thermocouple burying interval (m)
33. 铸型厚み方向に異なる深さの 2点に埋め込んだ一対の熱電対を、铸型铸造方向に複数設 置してなる熱電対群と、 33. A thermocouple group in which a pair of thermocouples embedded in two points at different depths in the vertical thickness direction are installed in the vertical direction,
該熱電対群からの温度情報を入力して各熱電対設置部位における局所熱流束 qlを求める 局所熱流束演算手段と、  Input the temperature information from the thermocouple group and obtain the local heat flux ql at each thermocouple installation site;
定常状態における铸型内の溶鋼流動による定常凝固界面入熱 q2regを下式(1)に基づいて 求めたデータを記憶する定常凝固界面入熱記憶手段と、 Steady solidification interface heat input storage means for storing the data obtained from steady solidification interface heat input q2 reg based on the following equation (1) due to molten steel flow in the mold in the steady state:
これら熱流束 qlと定常凝固界面入熱 q2regの差(ql— q2reg)について溶鋼が湯面から铸型 出口に至るまでの熱流束プロファイルを求めるプロファイル演算手段と、 Profile calculation means for obtaining the heat flux profile from the molten steel surface to the vertical outlet for the difference between the heat flux ql and the steady-state solidification interface heat input q2 reg (ql-q2 reg ),
該プロファイル演算手段によって求められた熱流束プロファイルにおいて極小値を示す極小 点が存在しない場合は、湯面位置から铸型出口間の該熱流束プロファイルの曲線全体で囲まれ る全面積に相当する総括熱流束を Q1とし、前記プロファイル演算手段によって求められた熱流 束プロファイルにおいて極小値を示す極小点が存在する場合は、該極小点と铸型出口での局所 熱流束値とを直線で結んだときにこの直線よりも上の部分の面積に相当する総括熱流束を Q2と して湯面位置から錶型出口間の該熱流束プロファイルの曲線全体で囲まれる全面積に相当する 総括熱流束力 Q2を差し弓 Iレ、た面積に相当する総括熱流束を Q 1とし、これら総括熱流束 Q 1を 用いて下式 (2)に基づいて铸型出口における凝固シェル厚み Dを演算する凝固シェル厚演算手 段とを備えた連続鎵造における凝固シェル厚み推定装置。  When there is no local minimum point indicating the minimum value in the heat flux profile obtained by the profile calculation means, a summary corresponding to the entire area surrounded by the entire curve of the heat flux profile between the molten metal surface position and the vertical outlet. When the heat flux is Q1, and there is a minimum point that shows the minimum value in the heat flux profile obtained by the profile calculation means, the minimum point and the local heat flux value at the vertical outlet are connected by a straight line. The overall heat flux corresponding to the area above this straight line is defined as Q2, and the overall heat flux force Q2 corresponding to the entire area surrounded by the entire curve of the heat flux profile from the molten metal surface position to the vertical outlet The total heat flux corresponding to the area is Q1, and the total heat flux Q1 is used to calculate the solidified shell thickness D at the vertical outlet based on the following equation (2) using the total heat flux Q1. Solidified shell thickness estimation device in a continuous 鎵造 with an arithmetic hand stage.
q2reg=h- Δ Θ (1) q2 reg = h- Δ Θ (1)
但し、 q2reg :定常凝固界面入熱 ClZs'm2) Where q2 reg: steady-state solidification interface heat input ClZs'm 2 )
h:溶鋼と凝固シェルの間の熱伝達係数 (j/s ·πι2·° h: Heat transfer coefficient between molten steel and solidified shell (j / sππ 2 °
厶 Θ:溶鋼の過熱度 (°C)  厶 Θ: Molten steel superheat (° C)
D=Ql/ ( AH- p ) (2)  D = Ql / (AH-p) (2)
但し、 D :铸型出口での凝固シェル厚み (m)  D: Thickness of the solidified shell at the vertical outlet (m)
Ql:総括熱流束 ClZm2) Ql: Overall heat flux ClZm 2 )
厶 H:铸型出口での凝固シェルの単位重量当たりのェンタルピー落差 (J/kg) P :铸型出口の凝固シェル密度 (kg/m3) 厶 H: enthalpy drop per unit weight of solidified shell at vertical outlet (J / kg) P: solidified shell density at vertical outlet (kg / m 3 )
34. 凝固シェル厚演算手段は、総括熱流束 Q2による再溶解によって生ずる凝固遅れを考慮し た凝固シェル厚みを D1として、 D1 = D (1— RS)とする請求項 33に記載の連続铸造における凝 固シェル厚み推定装置。 34. The solidification shell thickness calculation means includes: D1 = D (1—RS), where D1 is a solidification shell thickness in consideration of a solidification delay caused by remelting by the overall heat flux Q2, in the continuous forging according to claim 33. Solid shell thickness estimation device.
但し、 RS= 0 Χ (ν°'8· Δ 0 ) (3) RS = 0 Χ (ν ° ' 8 · Δ 0) (3)
J3 :凝固遅れ定数 (無単位) V :溶鋼流速 (m/S) J3: Solidification delay constant (no unit) V: Flow velocity of molten steel (m / S )
厶 Θ:溶銅過熱度 (°C)  厶 Θ: Molten copper superheat (° C)
RS :凝固遅れ度 (無単位)  RS: Coagulation delay (no unit)
ここで V= (Q2/ ( a -t ' A 0 ) ) 1·25 Where V = (Q2 / (a -t 'A 0)) 1 · 25
Q2 :総括熱流束 (j/m2) Q2: Overall heat flux (j / m 2 )
a:溶鋼流速定数 (無単位) , t :凝固シェルが熱流束プロファイルにおける極小点を通過して力ら铸型出口に至るま でに要する時間 (S)  a: Molten steel flow rate constant (unitless), t: Time required for the solidified shell to pass through the minimum point in the heat flux profile to reach the vertical outlet (S)
35. 铸型厚み方向に異なる深さの 2点に埋め込んだ一対の熱電対を、铸型铸造方向に複数設 置してなる熱電対群と、 35. A thermocouple group in which a plurality of pairs of thermocouples embedded in two points at different depths in the vertical thickness direction are arranged in the vertical direction,
該熱電対群からの温度情報を入力して各熱電対設置部位における局所熱流束 qlを求める 局所熱流束演算手段と、  Input the temperature information from the thermocouple group and obtain the local heat flux ql at each thermocouple installation site;
定常状態における铸型内の溶鋼流動による定常凝固界面入熱 q2regを下式(1)に基づいて 求めたデータを記憶する定常凝固界面入熱記憶手段と、 Steady solidification interface heat input storage means for storing the data obtained from steady solidification interface heat input q2 reg based on the following equation (1) due to molten steel flow in the mold in the steady state:
これら熱流束 q lと定常凝固界面入熱 q2regの差 (ql— q2reg)について溶鋼が湯面力 铸型 出口に至るまでの熱流束プロファイルを求めるプロファイル演算手段と、 A profile calculating means for calculating the heat flux profile to the difference between these heat fluxes ql and steady solidification interface heat input q2 reg (ql- q2 reg) molten steel for reaches the melt surface force铸型outlet,
該プロファイル演算手段によって求められた熱流束プロファイルに基づいて铸型出口におけ る凝固シェル厚み Dを演算する凝固シェル厚演算手段とを備えた凝固シェル厚み推定装置であ つて、  A solidified shell thickness estimation device comprising solidified shell thickness calculating means for calculating the solidified shell thickness D at the vertical outlet based on the heat flux profile obtained by the profile calculating means,
前記凝固シェル厚演算手段が、  The solidified shell thickness calculating means is
前記熱流束プロファイルにおいて極小値を示す極小点が存在しない場合は、請求項 33に 記載の方法で凝固シェル厚み Dを演算し、  If there is no local minimum point indicating the local minimum in the heat flux profile, the solidified shell thickness D is calculated by the method of claim 33, and
前記熱流束プロファイルにおいて極小値を示す極小点が存在する場合は、請求項 34に記 載の方法で凝固シェル厚み D1を演算する  If there is a minimum point indicating a minimum value in the heat flux profile, the solidified shell thickness D1 is calculated by the method described in claim 34.
演算手段である、  Is an arithmetic means,
連続鎳造における凝固シェル厚み推定装置。  Solidified shell thickness estimation device in continuous forging.
PCT/JP2009/054118 2008-02-28 2009-02-26 Method for detecting breakouts in continuous casting and an apparatus therefor, breakout prevention apparatus, method for estimating solidification shell thickness and an apparatus therefor, and a continuous casting method for steel WO2009107865A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-048778 2008-02-28
JP2008048778 2008-02-28
JP2008253363 2008-09-30
JP2008-253363 2008-09-30
JP2009-038855 2009-02-23
JP2009038855A JP2010194548A (en) 2009-02-23 2009-02-23 Method for estimating solidification shell thickness in continuous casting and apparatus therefor, and method for detecting breakout in continuous casting and apparatus therefor

Publications (1)

Publication Number Publication Date
WO2009107865A1 true WO2009107865A1 (en) 2009-09-03

Family

ID=41016234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054118 WO2009107865A1 (en) 2008-02-28 2009-02-26 Method for detecting breakouts in continuous casting and an apparatus therefor, breakout prevention apparatus, method for estimating solidification shell thickness and an apparatus therefor, and a continuous casting method for steel

Country Status (2)

Country Link
TW (1) TWI389749B (en)
WO (1) WO2009107865A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221283A (en) * 2009-03-25 2010-10-07 Jfe Steel Corp Method and apparatus for detecting breakout in continuous casting, continuous casting method of steel using the apparatus, and breakout preventing apparatus
JP2011079023A (en) * 2009-10-07 2011-04-21 Jfe Steel Corp Method for estimating solidification shell thickness in continuous casting and apparatus therefor, and method for detecting breakout in continuous casting and apparatus therefor
CN102806330A (en) * 2012-08-08 2012-12-05 中国科学院金属研究所 Method for improving inner quality of continuous casting billet with thick and large section
CN103273017A (en) * 2013-05-28 2013-09-04 东北大学 Method for measuring heat flux density of double-roller thin-strip continuous casting interface
WO2020119156A1 (en) * 2018-12-11 2020-06-18 大连理工大学 Casting mold breakout prediction method based on feature vectors and hierarchical clustering
KR20210127242A (en) * 2019-03-22 2021-10-21 제이에프이 스틸 가부시키가이샤 In-mold solidified shell thickness estimation device and in-mold solidified shell thickness estimation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI762264B (en) * 2021-04-01 2022-04-21 中國鋼鐵股份有限公司 Method for predicting temperature of molten steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002035908A (en) * 2000-07-31 2002-02-05 Nippon Steel Corp Method of detecting breakout in continuous casting equipment
JP2004034090A (en) * 2002-07-03 2004-02-05 Jfe Steel Kk Continuous casting method for steel
JP2007289977A (en) * 2006-04-21 2007-11-08 Jfe Steel Kk Method and instrument for estimating molten metal temperature in mold for continuous casting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002035908A (en) * 2000-07-31 2002-02-05 Nippon Steel Corp Method of detecting breakout in continuous casting equipment
JP2004034090A (en) * 2002-07-03 2004-02-05 Jfe Steel Kk Continuous casting method for steel
JP2007289977A (en) * 2006-04-21 2007-11-08 Jfe Steel Kk Method and instrument for estimating molten metal temperature in mold for continuous casting

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221283A (en) * 2009-03-25 2010-10-07 Jfe Steel Corp Method and apparatus for detecting breakout in continuous casting, continuous casting method of steel using the apparatus, and breakout preventing apparatus
JP2011079023A (en) * 2009-10-07 2011-04-21 Jfe Steel Corp Method for estimating solidification shell thickness in continuous casting and apparatus therefor, and method for detecting breakout in continuous casting and apparatus therefor
CN102806330A (en) * 2012-08-08 2012-12-05 中国科学院金属研究所 Method for improving inner quality of continuous casting billet with thick and large section
CN102806330B (en) * 2012-08-08 2015-02-04 中国科学院金属研究所 Method for improving inner quality of continuous casting billet with thick and large section
CN103273017A (en) * 2013-05-28 2013-09-04 东北大学 Method for measuring heat flux density of double-roller thin-strip continuous casting interface
CN103273017B (en) * 2013-05-28 2015-07-08 东北大学 Method for measuring heat flux density of double-roller thin-strip continuous casting interface
WO2020119156A1 (en) * 2018-12-11 2020-06-18 大连理工大学 Casting mold breakout prediction method based on feature vectors and hierarchical clustering
US11105758B2 (en) 2018-12-11 2021-08-31 Dalian University Of Technology Prediction method for mold breakout based on feature vectors and hierarchical clustering
KR20210127242A (en) * 2019-03-22 2021-10-21 제이에프이 스틸 가부시키가이샤 In-mold solidified shell thickness estimation device and in-mold solidified shell thickness estimation method
CN113573826A (en) * 2019-03-22 2021-10-29 杰富意钢铁株式会社 Device and method for estimating thickness of solidified shell in mold
EP3943213A4 (en) * 2019-03-22 2022-01-26 JFE Steel Corporation Device for estimating solidifying shell thickness in casting mold, and method for estimating solidifying shell thickness in casting mold
US11724307B2 (en) 2019-03-22 2023-08-15 Jfe Steel Corporation Device for estimating solidified shell thickness in mold, and method for estimating solidified shell thickness in mold
KR102619305B1 (en) 2019-03-22 2023-12-28 제이에프이 스틸 가부시키가이샤 Device for estimating solidification shell thickness within a mold and method for estimating the thickness of the solidification shell within a mold

Also Published As

Publication number Publication date
TW200946265A (en) 2009-11-16
TWI389749B (en) 2013-03-21

Similar Documents

Publication Publication Date Title
WO2009107865A1 (en) Method for detecting breakouts in continuous casting and an apparatus therefor, breakout prevention apparatus, method for estimating solidification shell thickness and an apparatus therefor, and a continuous casting method for steel
JP3386051B2 (en) Method for estimating flow pattern of molten steel in continuous casting, temperature measuring device for mold copper plate, method for determining surface defects of continuous cast slab, method for detecting molten steel flow, method for evaluating non-uniformity of heat removal in mold, method for controlling molten steel flow, Quality control method in continuous casting, continuous casting method of steel, estimation method of molten steel flow velocity
JP5092631B2 (en) Breakout detection method and apparatus in continuous casting, steel continuous casting method and breakout prevention apparatus using the apparatus
KR101477117B1 (en) Method for preventing breakout in continuous casting
JP5365459B2 (en) Solid shell thickness estimation method and apparatus in continuous casting, breakout detection method and apparatus in continuous casting
JP4259164B2 (en) Quality monitoring device and quality monitoring method for continuous cast slab
KR101257260B1 (en) Method for predicting quality of slab using defect index of impurities comeing off submerged entry nozzle
JP5779949B2 (en) Breakout detection method in continuous casting
CN105195701A (en) Method and device for measuring molten steel flow field distribution during continuous casting steel ladle pouring
JP6859919B2 (en) Breakout prediction method
JP7115240B2 (en) Breakout prediction method in continuous casting
Ito et al. Evaluation of solidified shell thickness by thermocouple in mold
JP2010194548A (en) Method for estimating solidification shell thickness in continuous casting and apparatus therefor, and method for detecting breakout in continuous casting and apparatus therefor
JP5412872B2 (en) Breakout detection method and apparatus in continuous casting, steel continuous casting method and breakout prevention apparatus using the apparatus
JP5387070B2 (en) Breakout detection method and apparatus in continuous casting, steel continuous casting method and breakout prevention apparatus using the apparatus
JP5707844B2 (en) Breakout detection method and apparatus in continuous casting
JP6435988B2 (en) Breakout prediction method, breakout prevention method, solidified shell thickness measurement method, breakout prediction device and breakout prevention device in continuous casting
JP3622422B2 (en) Tundish for continuous casting of steel
JP4745929B2 (en) Method for suppressing solidification delay in continuous casting.
KR100435430B1 (en) A method for monitoring the casting in the continuous slab caster
JP2010221283A (en) Method and apparatus for detecting breakout in continuous casting, continuous casting method of steel using the apparatus, and breakout preventing apparatus
JPH0790343B2 (en) Breakout prediction method in continuous casting
JP7014203B2 (en) Estimating method of crater end position of cast slab in continuous casting and its equipment
JPS619966A (en) Estimating method of amount of molten steel remaining in ladle
JP4209989B2 (en) Quality judgment method for continuous cast slabs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09716141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09716141

Country of ref document: EP

Kind code of ref document: A1