WO2009107838A1 - 光周波数領域反射測定方式の物理量計測装置及びこれを用いた温度と歪みの計測方法 - Google Patents

光周波数領域反射測定方式の物理量計測装置及びこれを用いた温度と歪みの計測方法 Download PDF

Info

Publication number
WO2009107838A1
WO2009107838A1 PCT/JP2009/053898 JP2009053898W WO2009107838A1 WO 2009107838 A1 WO2009107838 A1 WO 2009107838A1 JP 2009053898 W JP2009053898 W JP 2009053898W WO 2009107838 A1 WO2009107838 A1 WO 2009107838A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
fiber
polarization
strain
physical quantity
Prior art date
Application number
PCT/JP2009/053898
Other languages
English (en)
French (fr)
Inventor
大道 浩児
坂元 明
平船 俊一郎
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to CA2695587A priority Critical patent/CA2695587C/en
Priority to CN2009800003948A priority patent/CN101680782B/zh
Priority to EP09714275.6A priority patent/EP2166314A4/en
Priority to JP2009529463A priority patent/JP4474494B2/ja
Publication of WO2009107838A1 publication Critical patent/WO2009107838A1/ja
Priority to US12/700,506 priority patent/US7973914B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35303Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using a reference fibre, e.g. interferometric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K2007/166Electrical time domain reflectometry

Definitions

  • one or a plurality of fiber Bragg Grating (FBG) sensors are arranged in one Polarization Maintaining (PM) fiber, the position of the FBG sensor, the distortion of the FBG sensor,
  • the present invention relates to an optical frequency domain reflectometry (OFDR) type physical quantity measuring apparatus that measures a physical quantity such as temperature, and a temperature and strain measurement method using the physical quantity measuring apparatus.
  • the present application includes Japanese Patent Application No. 2008-51344 filed in Japan on February 29, 2008, Japanese Patent Application No. 2008-51345 filed in Japan on February 29, 2008, and December 12, 2008. Claiming priority based on Japanese Patent Application No. 2008-311286 filed in Japan on May 5 and Japanese Patent Application No. 2008-311287 filed on Japan on December 5, 2008 The contents are incorporated herein.
  • a sensor that measures a physical quantity such as temperature and strain using an optical fiber has a long life, light weight, a small diameter, and flexibility, and thus can be used in a narrow space.
  • this optical fiber has insulation properties, this sensor has a characteristic that it is resistant to electromagnetic noise. For this reason, this sensor is expected to be used for soundness evaluation of huge buildings such as bridges and buildings, and aerospace equipment such as passenger planes and artificial satellites.
  • the performance required for the sensor for evaluating the soundness of these structures is that the strain resolution is high, the spatial resolution is high, the strain distribution in the sensor can be measured, and there are multiple sensors (the detection range is Wide) and that it can be measured in real time.
  • optical fiber sensor using an FBG sensor and an OFDR analysis method uses a periodic change in interference intensity between a Bragg reflected light from the FBG sensor and a reflected light from a reference reflection end. Specify the position of.
  • this optical fiber sensor system measures the strain and temperature of the detection unit from the amount of change in the wavelength of the Bragg reflected light.
  • This optical fiber sensor system can measure strain distribution in the sensor with high strain resolution (see, for example, Non-Patent Document 1 and Patent Document 3), and has a high spatial resolution of 1 mm or less (for example, Non-Patent Document 2). ), 800 FBG sensors are arranged on an 8 m optical fiber, and strain measurement of a total of 3,000 points or more can be performed simultaneously with four optical fibers (for example, see Non-Patent Document 3). It is disclosed that the real-time property is excellent (for example, see Patent Document 1).
  • the strain distribution measurement in the sensor described in Non-Patent Document 1 and Patent Document 3 means that non-uniform strain generated along the longitudinal direction of the FBG sensor can be measured.
  • This method uses a PANDA fiber, which is a type of PM fiber, and measures the amount of temperature and strain by measuring the amount of change in the wavelength of Bragg reflected light from two orthogonal polarization axes in an FBG sensor comprising this PANDA fiber. It is a method that can be measured. That is, this method is a method capable of realizing a strain sensor that does not require a temperature compensation sensor.
  • an optical fiber sensor system using an FBG sensor made of PM fiber and an OFDR analysis method has not been proposed so far. This is because, in order to stably measure Bragg reflected light from two orthogonal polarization axes in an FBG sensor made of a PM fiber by an OFDR analysis method, measurement is performed on the FBG sensor and a reference reflection end. It is necessary to split the light with two controllable polarization axes and propagate it. However, the measurement light is usually emitted with a single polarization. For this reason, when the optical path from the FBG sensor to the reference reflection end is configured with a PM fiber, one of Bragg reflections from two orthogonal polarization axes in the FBG sensor can be measured, but the other cannot be measured. As a result, as described above, Bragg reflected light from two orthogonal polarization axes cannot be measured.
  • the present invention has been made in view of the above circumstances.
  • One or a plurality of FBG sensors are arranged in one PM fiber, and the position of the FBG sensor and physical quantities such as strain and temperature of the FBG sensor are determined by OFDR.
  • OFDR type physical quantity measuring apparatus capable of measuring temperature and strain, and capable of measuring temperature and strain with high spatial resolution, and the physical quantity measuring apparatus
  • An optical frequency domain reflection measurement type physical quantity measuring apparatus includes a tunable laser that emits measurement light; a first polarization maintaining fiber having one end connected to the tunable laser; A polarization maintaining coupler connected to the other end of the polarization maintaining fiber; a second polarization maintaining fiber having one end connected to the polarization maintaining coupler and the other end serving as a reference reflection end; A third polarization-maintaining fiber having one end connected to the holding coupler; a sensor comprising a fiber Bragg grating formed in the third polarization-maintaining fiber core; a first polarization end having one end connected to the polarization-maintaining coupler 4 polarization maintaining fibers; a photo that is connected to the polarization maintaining coupler via the fourth polarization maintaining fiber and detects Bragg reflected light from the sensor and reference light from the reference reflection end.
  • a control unit that detects modulation of interference intensity between the Bragg reflected light and the reference light based on a change in intensity of the combined light of the Bragg reflected light and the reference light detected by the photodiode;
  • An incident portion ⁇ that makes the measurement light incident on both of the two orthogonal polarization axes of the polarization maintaining fiber and the two orthogonal polarization axes of the third polarization maintaining fiber.
  • the part ⁇ is arranged in the first polarization maintaining fiber, or both the second polarization maintaining fiber and the third polarization maintaining fiber.
  • each of the wave-maintaining fiber and the third polarization-maintaining fiber is a fusion splicing portion formed with a polarization axis offset angle of 45 °.
  • a polarization beam splitter for demultiplexing the Bragg reflected light from the sensor is further disposed on the fourth polarization maintaining fiber.
  • An optical path length difference of Bragg reflected light from two orthogonal polarization axes in the sensor between the sensor and the polarization maintaining coupler of the third polarization maintaining fiber It is preferable that an extension fiber for further extending the length of the optical path corresponding to the length is further arranged.
  • the length of the extension fiber is L
  • the difference in effective refractive index between two orthogonal polarization axes in the third polarization maintaining fiber is (n slow ⁇ n fast )
  • the length of the sensor is l
  • the L satisfies the following formula (1).
  • the incident portion ⁇ further includes an incident portion ⁇ that makes the measurement light incident on one of two orthogonal polarization axes in the third polarization maintaining fiber. Is preferred.
  • an effective refractive index difference between at least two orthogonal polarization axes in the third polarization maintaining fiber is 4.4. It is preferably ⁇ 10 ⁇ 4 or more.
  • the temperature and strain measurement method using the optical frequency domain reflection measurement type physical quantity measuring apparatus of the present invention is the optical frequency domain reflection measurement system according to any one of (1) to (7) above.
  • the temperature and strain measurement method using the physical quantity measuring device of the optical frequency domain reflection measurement method of the present invention is the optical frequency domain reflection measurement method according to any one of (3) or (6) above.
  • the temperature and strain measurement method using the physical quantity measuring device of the optical frequency domain reflection measurement method of the present invention is the optical frequency domain reflection measurement method according to any one of (4) or (5) above.
  • the FBG sensor formed in the core of the polarization maintaining fiber and the orthogonal 2 of the polarization maintaining fiber on which the FBG sensor is formed Since the incident part ⁇ is incident on one polarization axis, the Bragg reflected light from the two orthogonal polarization axes in the FBG sensor can be measured, and the Bragg from the two orthogonal polarization axes in the FBG sensor. The amount of change in the wavelength of reflected light can be measured. As a result, temperature and strain can be measured, and temperature and strain can be measured with high spatial resolution.
  • the temperature and strain measurement method using the physical quantity measuring device of the optical frequency domain reflection measurement method described in (8) above it is possible to measure strain and temperature from one FBG sensor.
  • the temperature and strain measurement method using the physical quantity measuring device of the optical frequency domain reflection measurement method described in (9) above short-time Fourier transform analysis for specifying the position of the FBG sensor is performed, and the FBG sensor Since the effective refractive index of each polarization axis is substituted for each optical path length of the Bragg reflected light from two orthogonal polarization axes, the fiber position of the FBG sensor in each polarization axis is obtained.
  • the temperature and strain of the FBG sensor can be measured with a spatial resolution.
  • the fiber length corresponding to the optical path length to the FBG sensor obtained by the short-time Fourier transform analysis is obtained.
  • the fiber length corresponding to the optical path length to the FBG sensor obtained by the short-time Fourier transform analysis is obtained.
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of a physical quantity measuring apparatus of the optical frequency domain reflection measurement method of the present invention.
  • FIG. 2 is a schematic configuration diagram showing a modification of the embodiment.
  • FIG. 3 is a schematic perspective view showing polarization axis angle offset fusion splicing when a PANDA fiber is used as the PM fiber.
  • FIG. 4 is a schematic configuration diagram showing a second embodiment of the physical quantity measuring apparatus of the optical frequency domain reflection measurement method of the present invention.
  • FIG. 5 is a schematic configuration diagram showing a third embodiment of the physical quantity measuring apparatus of the optical frequency domain reflection measurement method of the present invention.
  • FIG. 6 is a schematic configuration diagram showing a fourth embodiment of the physical quantity measuring apparatus of the optical frequency domain reflectometry method of the present invention.
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of a physical quantity measuring apparatus of the optical frequency domain reflection measurement method of the present invention.
  • FIG. 2 is a schematic configuration diagram showing a modification of the embodiment.
  • FIG. 7 is a schematic configuration diagram illustrating a physical quantity measuring apparatus of an optical frequency domain reflection measurement method according to the first embodiment of the present invention.
  • FIG. 8 is a spectrogram showing the result of measuring the state of the sensor using the first embodiment.
  • the positional deviation amount ⁇ l of the Bragg reflected light from the slow axis and the fast Kosuke sensor is a graph illustrating the results of calculating the dependence on fiber length L 2 to the sensor.
  • FIG. 10 is a schematic configuration diagram illustrating a physical quantity measuring apparatus of an optical frequency domain reflection measurement method according to the second embodiment of the present invention.
  • FIG. 11 is a spectrogram showing the result of measuring the state of the sensor using the second embodiment.
  • FIG. 12 is a spectrogram showing the result of measuring the state of the sensor using the second embodiment.
  • FIG. 13 is a spectrogram showing the result of measuring the state of the sensor using the optical quantity domain reflection measurement type physical quantity measuring apparatus of Example 3 of the present invention.
  • FIG. 14 is a spectrogram showing the result of measuring the state of the sensor using the third embodiment.
  • FIG. 15 is a graph showing the results of simultaneous measurement of temperature and strain by increasing the number of measurement points in Example 3.
  • FIG. 16 is a graph showing the difference in shift characteristics of the Bragg wavelength with respect to the temperature change of the birefringence of the PANDA fiber and the sensor composed of the FBG composed of this fiber.
  • FIG. 17 is a diagram schematically showing an experimental system for measuring the temperature distribution and strain generated in the sensor in Example 4 of the present invention.
  • FIG. 18 is a graph showing the results of measuring the temperature change and strain at the position of the heater A and the position of the heater B in Example 4.
  • FIG. 19 is a spectrogram showing the result of measuring the state of the sensor using the physical quantity measuring apparatus of the optical frequency domain reflection measurement method of Comparative Example 1.
  • FIG. 20 is a spectrogram showing the results of measuring the state of the sensor using the comparative example 1.
  • FIG. 21 is a schematic configuration diagram illustrating a physical quantity measuring apparatus using an optical frequency domain reflection measurement method according to a fifth embodiment of the present invention.
  • FIG. 22 is a spectrogram showing the result of measuring the state of the sensor using the fifth embodiment.
  • FIG. 23 is a spectrogram showing the result of measuring the state of the sensor using the optical quantity domain reflection measurement type physical quantity measuring apparatus according to Example 6 of the present invention.
  • FIG. 24 is a spectrogram showing the result of measuring the state of the sensor using the physical quantity measuring device of the optical frequency domain reflection measurement method of Comparative Example 2.
  • FIG. 25 is a schematic configuration diagram illustrating an optical frequency domain reflection measurement type physical quantity measuring apparatus according to a seventh embodiment of the present invention.
  • FIG. 26 is a spectrogram showing the result of measuring the state of the sensor using the seventh embodiment.
  • FIG. 27 is a spectrogram showing the results of measuring the state of the sensor using the seventh embodiment.
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of a physical quantity measuring apparatus of an optical frequency domain reflection measurement (hereinafter abbreviated as “OFDR”) method of the present invention.
  • the OFDR physical quantity measuring apparatus 10A (10) of this embodiment includes a tunable laser (TLS) 12 that emits measurement light; a first polarization-maintaining fiber 18 having one end connected to the tunable laser 12; A polarization maintaining coupler 11 connected to the other end of the first polarization maintaining fiber 18; a second polarization having one end connected to the polarization maintaining coupler 11 and the other end serving as a reference reflecting end 16.
  • TLS tunable laser
  • a laser having a coherence length longer than the optical path length until the measurement light emitted from the tunable laser 12 is reflected by the sensor 17 and enters the photodiode 13 is preferably used.
  • the photodiode 13 can detect intensity modulation of optical interference obtained from two reflection points, that is, the reference reflection end 16 and the sensor 17 when the wavelength of the measurement light emitted from the tunable laser 12 is changed. Those having a cutoff frequency are preferably used.
  • the control unit 22 includes, for example, an A / D converter 75 that samples a signal from the photodiode 13 and a system controller 74 that analyzes the sampling data.
  • an A / D converter 75 having a sampling frequency capable of detecting the intensity modulation of optical interference detected by the photodiode 13 is preferably used.
  • the A / D converter 75 digitally samples the analog optical interference signal measured by the photodiode 13. This digital interference signal is transmitted to the system controller 74.
  • the system controller 74 performs STFT (Short Time Fourier Transform; STFT) analysis using this digital interference signal. The analysis method will be described later.
  • STFT Short Time Fourier Transform
  • the system controller 74 is not particularly limited as long as the digital interference signal obtained by the A / D converter 75 can be subjected to STFT analysis.
  • the system controller 74 is connected to the tunable laser 12 via a general-purpose interface bus (GPIB) and controls the tunable laser 12.
  • GPS general-purpose interface bus
  • the incident portion ⁇ is provided in the first PM fiber 18 and demultiplexes the measurement light emitted as a single polarization from the tunable laser 12 to two orthogonal polarization axes of the first PM fiber 18. To do.
  • the incident part ⁇ only needs to be able to allow the measurement light to enter both the two orthogonal polarization axes of the second PM fiber 20 and the two orthogonal polarization axes of the third PM fiber 21, as shown in FIG.
  • both the second PM fiber 20 and the third PM fiber 21 may be disposed.
  • the incident part ⁇ is only required to be provided at one place, and the incident part ⁇ is a front stage (that is, the first stage) of the branch part between the PM fiber 21 in which the sensor 17 is formed and the PM fiber 20 having the reference reflection end 16. 1 PM fiber 18). Further, as the incident portion ⁇ , a PM fiber is used for a method of inserting a ⁇ / 2 plate, a method of providing a polarization axis angle offset fusion splicing, or a single-polarized measurement light from the tunable laser 12.
  • the PM fiber is arranged such that the polarization axis of the optical fiber has an angular offset, and the measurement light of the single polarization is two orthogonal to the PM fiber, such as a method of coupling the emitted light from the tunable laser 12 to the PM fiber.
  • Any means can be used as long as it can demultiplex the polarization axis.
  • the incident part ⁇ has a 45 ° polarization axis offset angle in the first PM fiber 18 because it is simple and the measurement light can be equally split into two polarized waves. It is preferable that the fusion splicing portion is formed (hereinafter referred to as “45 ° offset fusion”).
  • the fusion splicing having the polarization axis angle offset means that two PM fibers are fusion spliced so that one polarization axis of the PM fiber has an offset angle that is a fusion point.
  • the fact that one polarization axis of a PM fiber has an offset angle that is a fusion point means that the other PM axis perpendicular to the other has a similar offset angle and two PM fibers are fused. Means.
  • FIG. 3 is a diagram schematically showing a state of 45 ° offset fusion when a PANDA (Polarization-maintaining and Absorption reducing) fiber is used as the PM fiber.
  • the PANDA fiber 80 is a fiber in which circular stress applying portions 82 are provided on the clad at both ends of the core 81 in order to give the fiber birefringence.
  • the stress applying portion 82 causes a propagation constant difference (effective refractive index difference) between two orthogonal polarization modes. Therefore, the coupling from each polarization mode to the other polarization mode can be suppressed.
  • the polarization axes through which the two orthogonal polarization modes propagate are called the slow axis and the fast axis, and the difference in effective refractive index between the slow axis and the fast axis is called birefringence.
  • a straight line connecting the two stress applying portions 82 and the core 81 that is, two stress applying portions 82A and 82a of the PANDA fiber 80A and a straight line 83A connecting the core 81A; two stresses of the PANDA fiber 80B By connecting the giving portions 82B and 82b and the straight line 83B connecting the core 81B;) between the two PANDA fibers 80A and 80B so as to have a desired polarization axis offset angle ⁇ , a desired offset is obtained.
  • a fusion splice can be realized.
  • measurement light emitted as a single polarization from the tunable laser 12 is transmitted between the tunable laser 12 and the PM coupler 11.
  • An incident portion ⁇ for branching to two orthogonal polarization axes is provided.
  • Bragg reflected light from two orthogonal polarization axes in the sensor 17 can be obtained.
  • the temperature and strain of the portion where the sensor 17 is disposed can be measured, and as a result, a strain sensor that does not require a temperature compensation sensor. Can be realized.
  • R slow and R fast are the intensity of interference light from two orthogonal polarization axes of the PANDA fiber, that is, interference light from the slow axis (X axis) and the fast axis (Y axis).
  • k represents the wave number
  • n slow and n fast represent the effective refractive indexes of the slow axis (X axis) and the fast axis (Y axis).
  • L 2 indicates the difference between the length from the PM coupler 11 to the reference reflection end 16 in the second PANDA fiber 20 and the length from the PM coupler 11 to the sensor 17 in the third PANDA fiber 21. That is, L 2 indicates the fiber length from the position corresponding to the length of the second PANDA fiber 20 having the reference reflection end 16 to the sensor 17 in the third PANDA fiber 21 as shown in FIG. ing.
  • the above-described D 1 is obtained using the OFDR physical quantity measuring apparatus 10 A of the present embodiment, and the obtained optical interference signal D 1 is subjected to a short time Fourier transform (Short Time Fourier Transform) by the system controller 74 provided in the control unit 22. ; STFT) analysis. Thereby, the optical path lengths n slow L 2 and n fast L 2 corresponding to L 2 in two orthogonal polarization axes of the third PANDA fiber 21 are obtained.
  • a short time Fourier transform Short Time Fourier Transform
  • an analog optical interference signal corresponding to the above equation (2) measured by the photodiode 13 is digitally sampled by the A / D converter 75 provided in the control unit 22,
  • This digital interference signal is subjected to STFT analysis by the system controller 74 provided in the control unit 22, but in this text, when the optical interference signal measured in the photodiode 13 is subjected to STFT analysis by the system controller 74 provided in the control unit 22.
  • it means that the same processing is performed.
  • the A / D converter 75 has a sampling frequency that can detect the intensity modulation of the optical interference detected by the photodiode 13, the analog optical interference signal and the sampled digital interference signal are the same in principle. Signal.
  • optical interference signals portions where the characteristics of the present invention can be more effectively described by using mathematical expressions indicating analog optical interference signals will be described using optical interference signals.
  • the physical quantity measuring apparatus 10A utilizing OFDR of the present embodiment with respect to the two optical path lengths n slow L 2 obtained and n fast L 2, by substituting one arbitrary effective refractive index, determine the L 2 .
  • the position of the sensor 17 can be specified.
  • the position of the sensor 17 is obtained using the Bragg reflected light obtained from two orthogonal polarization axes in the sensor 17 in this way.
  • the sensor 17 is arranged at a place where the sensor 17 is desired to be detected (hereinafter referred to as “detection unit”), and the wavelength of the Bragg reflected light from the two orthogonal polarization axes of the sensor 17 is measured in this detection unit. Subsequently, the wavelength difference (change amount) of the Bragg reflected light at the reference temperature and the reference strain is calculated. Next, the obtained wavelength difference is substituted into the following equation (3) to obtain the difference between the temperature at the detection unit and the reference temperature, the difference between the strain at the detection unit and the reference strain, and finally the known reference temperature and reference The actual temperature and actual strain in the detection unit are calculated from the strain.
  • ⁇ T represents the difference between the temperature in the detection unit and the reference temperature.
  • represents the difference between the strain at the detector and the reference strain.
  • T is the temperature at the detection unit, and ⁇ is the strain at the detection unit.
  • ⁇ slow and ⁇ fast indicate the wavelengths of Bragg reflected light from two orthogonal polarization axes of the sensor 17 in the detection unit.
  • ⁇ slow and ⁇ fast are the wavelengths of the Bragg reflected light from the two orthogonal polarization axes of the sensor 17 in the detection unit, and the Bragg reflected light from the two orthogonal polarization axes of the sensor 17 at the reference temperature and the reference strain. The difference from the wavelength is shown.
  • ⁇ slow / ⁇ and ⁇ fast / ⁇ shows Bragg wavelength shift amount of the slow axis and the fast axis per unit strain.
  • ⁇ slow / ⁇ T and ⁇ fast / ⁇ T shows Bragg wavelength shift amount of the slow axis and the fast axis per unit temperature.
  • the above-described unit distortion or the amount of shift of the Bragg wavelength per unit temperature is determined by using the OFDR physical quantity measuring apparatus 10A to give distortion to the sensor 17 at the reference temperature (20 ° C.). It is obtained by measuring, giving a temperature change to the sensor 17 at the reference strain (0 ⁇ ), and measuring the temperature dependence of the Bragg wavelength change in the sensor 17.
  • FIG. 4 is a schematic configuration diagram showing a second embodiment of the OFDR physical quantity measuring apparatus 10C of the present invention.
  • the present embodiment is different from the first embodiment in that the fourth PM fiber 19 is further provided with a polarization beam splitter 15 that demultiplexes the Bragg reflected light from the sensor 17, and this polarization beam splitter 15.
  • the first photodiode 13 and the second photodiode 14 are connected.
  • the incident part ⁇ may be provided in both the second PM fiber 20 and the third PM fiber 21 as in the first embodiment described above.
  • the polarization beam splitter 15 is composed of the same type of PM fiber as the first to fourth PM fibers. Interference light between the Bragg reflected light from the sensor 17 and the reflected light from the reference reflection end 16 enters the polarization beam splitter 15. The interference light is demultiplexed into two orthogonal polarization axes by the polarization beam splitter 15 and is incident on the first photodiode 13 and the second photodiode 14, respectively.
  • the tunable laser 12, the PM coupler 11, the first photodiode 13, the incident part ⁇ , the first to fourth PM fibers, and the control part 22 are the same as those in the first embodiment.
  • the second photodiode 14 can be the same type as the first photodiode 13.
  • interference light between the Bragg reflected light from the two orthogonal polarization axes in the sensor 17 and the reflected light from the reference reflection end 16 is converted into the polarization beam splitter 15.
  • the Bragg reflected light from two orthogonal polarization axes in the sensor 17 can be individually identified and measured without overlapping the wavelength axis.
  • the measurement accuracy of the temperature and strain of the detection unit is improved.
  • the optical interference signals obtained from the first photodiode 13 and the second photodiode 14 can be processed in parallel, the temperature and strain of the sensor 17 can be measured in a short time.
  • a sensor position specifying method using the OFDR physical quantity measuring apparatus 10C of the present embodiment will be described.
  • PANDA fibers are used as the first to fourth PM fibers.
  • the interference light between the Bragg reflected light from the sensor 17 and the reflected light from the reference reflecting end 16 has two polarization axes orthogonal to each other by the polarization beam splitter 15. After being demultiplexed, the light is incident on the first photodiode 13 and the second photodiode 14, respectively.
  • Optical interference signal D 2 that is incident on the first photodiode 13 is expressed by the following equation (4).
  • the optical interference signal D 3 that is incident on the second photodiode 14 is expressed by the following formula (5).
  • R slow and R fast are the intensity of interference light from two orthogonal polarization axes of the PANDA fiber, that is, the slow axis (X axis) and the fast axis (Y axis).
  • the interference light intensity from k represents the wave number
  • n slow and n fast represent the effective refractive indexes of the slow axis (X axis) and the fast axis (Y axis).
  • L 2 indicates the fiber length from the position corresponding to the length of the PANDA fiber 20 having the reference reflection end 16 to the sensor 17 in the PANDA fiber 21 as in the first embodiment.
  • the above-described D 2 and D 3 are obtained using the OFDR physical quantity measuring apparatus 10C of the present embodiment, and the obtained optical interference signals D 2 and D 3 are subjected to STFT analysis by the system controller 74, whereby the PANDA fiber
  • the optical path lengths n slow L 2 and n fast L 2 corresponding to L 2 in two orthogonal polarization axes are obtained.
  • n slow L 2 obtained and n fast L 2
  • n fast L 2 obtains the L 2 by substituting the known n slow and n fast .
  • the values of n slow and n fast include values obtained from the wavelength of the Bragg reflected light from the sensor 17 and the grating period calculated from the interval of the diffraction grating of the uniform phase mask used to fabricate the sensor 17. A value obtained from pattern measurement can be used.
  • the known n slow and the two obtained optical path lengths n slow L 2 and n fast L 2 are Since n fast is substituted to determine L 2 , the fiber length L 2 of the sensor 17 can be accurately specified. Therefore, measurement can be performed with high spatial resolution.
  • ⁇ Temperature and strain measurement method> a temperature and strain measurement method using the OFDR physical quantity measurement apparatus 10C of the present embodiment will be described. Even when the OFDR physical quantity measuring apparatus 10C of the present embodiment is used, the measurement can be performed in the same manner as in the first embodiment. As in the case of the first embodiment, the wavelength of Bragg reflected light from two orthogonal polarization axes of the sensor 17 at a predetermined reference temperature (for example, 20 ° C.) and reference strain (for example, 0 ⁇ ) is measured. Keep it.
  • a predetermined reference temperature for example, 20 ° C.
  • reference strain for example, 0 ⁇
  • the sensor 17 is arranged in the detection unit, and in this detection unit, the wavelength of the Bragg reflected light from two orthogonal polarization axes of the sensor 17 is measured. Subsequently, the wavelength difference (change amount) of the Bragg reflected light at the reference temperature and the reference strain is calculated. Next, the obtained wavelength difference is substituted into the above equation (3) to obtain the difference between the temperature at the detection unit and the reference temperature, the difference between the strain at the detection unit and the reference strain, and finally the known reference temperature, the reference The actual temperature and actual strain in the detection unit are calculated from the strain. Next, the D value described in the above equation (3) is obtained from these values.
  • ⁇ T and ⁇ are obtained by substituting the D value and ⁇ slow and ⁇ fast obtained from the measurement results into the above equation (3). Then, by subtracting the reference temperature and the reference strain from these values, the temperature and strain in the detection unit can be obtained.
  • the temperature and strain measurement method using the OFDR physical quantity measurement device 10C of the present embodiment it is possible to measure the amount of change due to temperature and strain in the wavelength of Bragg reflected light from two orthogonal polarization axes in the sensor 17. Therefore, the measurement accuracy of the temperature and strain of the detection unit is improved.
  • FIG. 5 is a schematic configuration diagram showing a third embodiment of the OFDR physical quantity measuring apparatus 10D of the present invention.
  • This embodiment is different from the first embodiment in that the Bragg reflected light from the two orthogonal polarization axes in the sensor 17 is between the sensor 17 and the PM coupler 11 of the third PM fiber 21.
  • the extension fiber 31 is arranged to make the optical path length difference longer than the optical path length corresponding to the length of the sensor 17.
  • the incident part ⁇ may be provided in both the second PM fiber 20 and the third PM fiber 21 as in the first embodiment described above. When the incident part ⁇ is provided in the third PM fiber, the incident part ⁇ is provided between the extension fiber 31 and the PM coupler 11.
  • the tunable laser 12, the PM coupler 11, the photodiode 13, the incident part ⁇ , the first to fourth PM fibers, and the control part 22 are the same as those in the first embodiment.
  • the extension fiber 31 it is preferable to use the same type of PM fiber as the third PM fiber 21 in which the sensor 17 is formed.
  • the length of the extension fiber 31 is L 1
  • the orthogonality of the third PM fiber 21 on which the sensor 17 is formed is (n slow ⁇ n fast ) and the length of the sensor 17 is l
  • the length L 1 of the extension fiber 31 satisfies the following formula (6): preferable.
  • the length l of the sensor 17 and the extra length fiber length between the extension fiber 31 and the sensor 17 are sufficiently shorter than the length L 1 of the extension fiber 31 and can be ignored.
  • the length of the extension fiber 31 is expressed by the above formula. (6) it is preferable that the length so as to have a long optical path length than the optical path length corresponding to L 1 of.
  • the measurement light emitted as a single polarization from the tunable laser 12 is transmitted between the tunable laser 12 and the PM coupler 11, and the second PM fiber 20 and An incident portion ⁇ for branching to two orthogonal polarization axes of the third PM fiber 21 is provided. Therefore, Bragg reflected light from two orthogonal polarization axes in the sensor 17 can be obtained, and the temperature and strain in the sensor 17 can be simultaneously changed by changing the wavelength of the Bragg reflected light from the two orthogonal polarization axes. As a result, a strain sensor that does not require a temperature compensation sensor can be realized.
  • Bragg reflected light from two orthogonal polarization axes in the sensor 17 does not overlap with the wavelength axis.
  • each change amount can be individually identified and measured, and the temperature and strain measurement accuracy of the detection unit can be improved.
  • ⁇ Sensor position identification method> a method for specifying the position of the sensor 17 using the OFDR physical quantity measuring apparatus 10D of the present embodiment will be described.
  • PANDA fibers are used as the first to fourth PM fibers.
  • interference light between the Bragg reflected light from the sensor 17 and the reflected light from the reference reflection end 16 enters the photodiode 13.
  • R slow and R fast are the intensity of interference light from two orthogonal polarization axes of the PANDA fiber, that is, interference light from the slow axis (X axis) and the fast axis (Y axis).
  • k represents the wave number
  • n slow and n fast represent the effective refractive indexes of the slow axis (X axis) and the fast axis (Y axis).
  • L 1 indicates the length of the extension fiber 31 (more precisely, the length from the PM coupler 11 to the reference reflection end 16 in the second PANDA fiber 20 and the sensor from the PM coupler 11 in the third PANDA fiber 21)
  • the extension fiber 31 is sufficiently longer than the second PANDA fiber 20 and the length of the third PANDA fiber 21 is substantially equal to that of the second PANDA fiber 20.
  • L 1 can be regarded as the length of the extension fiber 31).
  • the above-mentioned D 4 is obtained by using the OFDR physical quantity measuring device 10D of the present embodiment, and the obtained optical interference signal D 4 is subjected to STFT analysis by the system controller 74 of the control unit 22, whereby the PANDA fiber is orthogonalized.
  • Optical path lengths n slow L 1 and n fast L 1 corresponding to L 1 in the two polarization axes are obtained.
  • one arbitrary effective refractive index (for example, n slow ) is substituted for the obtained two optical path lengths n slow L 1 and n fast L 1 . to determine the L 1.
  • n slow an effective refractive index
  • a value obtained from the wavelength of the Bragg reflected light from the sensor 17 and the grating period calculated from the interval of the diffraction grating of the uniform phase mask used for producing the sensor 17 Values obtained from near field pattern measurement can be used.
  • one arbitrary effective value is obtained for the two obtained optical path lengths n slow L 1 and n fast L 1 .
  • L 1 is obtained by substituting a refractive index (for example, n slow ). Therefore, the extension fiber length L 1 on the analysis so that the different between the slow axis and the fast axis.
  • the position of the Bragg reflected light from each polarization axis is shifted and can be individually identified and measured without overlapping the wavelength axis. Therefore, the wavelength of each Bragg reflected light can be accurately measured.
  • ⁇ Temperature and strain measurement method> a temperature and strain measurement method using the OFDR physical quantity measurement apparatus 10D of the present embodiment will be described. Even when the OFDR physical quantity measuring device 10D of the present embodiment is used, the measurement can be performed in the same manner as in the first and second embodiments. As in the case of the first and second embodiments, the wavelength of Bragg reflected light from two orthogonal polarization axes of the sensor 17 at a certain reference temperature and reference strain is measured in advance.
  • the sensor 17 is arranged in the detection unit, and in this detection unit, the wavelength of the Bragg reflected light from two orthogonal polarization axes of the sensor 17 is measured.
  • the wavelength of the Bragg reflected light in the detection unit and the wavelength difference (change amount) of the Bragg reflected light at the reference temperature and the reference strain are calculated for each of the slow axis and the fast axis.
  • the obtained wavelength difference is substituted into the above equation (3) to obtain the difference between the temperature at the detection unit and the reference temperature, the difference between the strain at the detection unit and the reference strain, and finally the known reference temperature, the reference
  • the actual temperature and actual strain in the detection unit are calculated from the strain.
  • the D value described in the above equation (3) is obtained from these values.
  • ⁇ T and ⁇ are obtained by substituting the D value and ⁇ slow and ⁇ fast obtained from the measurement results into the above equation (3). Then, by subtracting the reference temperature and the reference strain from these values, the temperature and strain in the detection unit can be obtained.
  • the temperature and strain measurement method using the OFDR-type physical quantity measuring device 10D of the present embodiment one arbitrary effective for each optical path length of Bragg reflected light from two orthogonal polarization axes in the sensor 17.
  • the refractive index By substituting the refractive index, the Bragg reflected light from the two orthogonal polarization axes in the sensor 17 can be individually identified and measured without overlapping the wavelength axis.
  • the temperature and strain of the detection unit can be measured simultaneously.
  • the measurement accuracy of the temperature and strain of the detection unit can be improved.
  • FIG. 6 is a schematic configuration diagram showing a fourth embodiment of the OFDR physical quantity measuring apparatus 10E of the present invention. This embodiment is different from the first embodiment in that the measurement light is applied to one of the two orthogonal polarization axes in the third PM fiber 21 instead of the incident part ⁇ . It is a point provided with incident part ⁇ which enters.
  • the incident part ⁇ is not particularly limited as long as the measurement light can be incident on one of the two orthogonal polarization axes of the third PM fiber 21 on which the sensor 17 is formed, An example is a ⁇ / 2 plate.
  • This incident part ⁇ is a rear stage of the branch part of the third PM fiber 21 in which the sensor 17 is formed and the second PM fiber 20 having the reference reflection end 16 and a front stage of the sensor 17, that is, a first part.
  • the third PM fiber 21 it is preferably provided between the PM coupler 11 and the sensor 17.
  • the incident part ⁇ is provided at a position where the fiber length from the PM coupler 11 to the reference reflection end 16 is equal to the fiber length from the PM coupler 11 to the incident part ⁇ .
  • measurement light is incident on the incident part ⁇ ( ⁇ / 2 plate) by changing the angle of the incident part ⁇ ( ⁇ / 2 plate) by external control or manually.
  • the angle to be controlled can be freely controlled.
  • the measurement light emitted as a single polarization from the tunable laser 12 is incident on the incident part ⁇ ( ⁇ / 2 plate) at angles of 0 °, 90 °, 180 °, and 270 °
  • the measurement light is Without changing the polarization axis, it propagates along the original polarization axis and reaches the sensor 17.
  • the reflected light passes through the incident part ⁇ ( ⁇ / 2 plate)
  • it propagates along the original polarization axis without converting the polarization axis. That is, the measurement light propagating along the slow axis of the sensor 17 enters the photodiode 13 while maintaining the polarization axis. In the present embodiment, this is defined as a slow axis measurement mode.
  • the measurement light emitted as a single polarization from the tunable laser 12 is incident on the incident part ⁇ ( ⁇ / 2 plate) at angles of 45 °, 135 °, 225 °, and 315 °
  • the measurement light Is converted to the other polarization axis and reaches the sensor 17.
  • the reflected light passes through the incident part ⁇ ( ⁇ / 2 plate)
  • it is converted to the original polarization axis. That is, the measurement light propagating on the slow axis of the sensor 17 is converted to the fast axis and reaches the sensor 17.
  • the Bragg reflected light from the sensor 17 is converted into a slow axis and enters the photodiode 13 when passing through the incident portion ⁇ ( ⁇ / 2 plate). In the present embodiment, this is defined as a fast axis measurement mode.
  • the OFDR physical quantity measuring apparatus 10E of the present embodiment for example, two signals can be obtained by performing the first measurement in the slow axis measurement mode and performing the second measurement in the fast axis measurement mode, respectively. Therefore, each signal can be analyzed individually, and the measurement accuracy can be improved.
  • ⁇ Sensor position identification method> a sensor position specifying method using the OFDR physical quantity measuring apparatus 10E of the present embodiment will be described.
  • PANDA fibers are used as the first to fourth PM fibers.
  • interference light of the Bragg reflected light from the sensor 17 and the reflected light from the reference reflecting end 16 enters the photodiode 13.
  • Optical interference signal D 5 that is incident on the photodiode 13 is determined by the angle with respect to the measurement light incident portion beta (lambda / 2 plate) is represented by the respective following equations (8) and (9).
  • the optical interference signal D 5 incident on the photodiode 13 is Is represented by the following formula (8). Further, when the measurement light is incident on the incident part ⁇ ( ⁇ / 2 plate) at angles of 45 °, 135 °, 225 °, and 315 ° (fast axis measurement mode), the optical interference signal D that enters the photodiode 13 6 is represented by the following formula (9).
  • the above-described D 5 and D 6 are obtained using the OFDR physical quantity measuring apparatus 10E of the present embodiment, and the obtained optical interference signals D 5 and D 6 are subjected to STFT analysis by the system controller 74 of the control unit 22.
  • the optical path lengths n slow L 2 and n fast L 2 corresponding to L 2 in two orthogonal polarization axes of the PANDA fiber are obtained.
  • a known n slow is substituted into the optical path length n slow L 2 obtained from the optical interference signal D 5 obtained in the slow axis measurement mode, and L 2 calculated, with respect to the optical path length n fast L 2 obtained from the optical interference signal D 6 obtained by the fast axis measurement mode, obtains the L 2 by substituting the known n fast.
  • the first measurement can be performed in the slow axis measurement mode
  • the second measurement can be performed in the fast axis measurement mode. That is, two different signals are obtained by two measurements, and each signal is analyzed individually. For this reason, L 2 is obtained by substituting known n slow and n fast for the two optical path lengths n slow L 2 and n fast L 2 obtained in the respective measurements. Therefore, the fiber length L 2 of the sensor 17 can be accurately measured.
  • the OFDR physical quantity measuring apparatus 10E of the present embodiment Bragg reflected light from two orthogonal polarization axes of the sensor 17 can be obtained, so that temperature and strain can be measured.
  • a sensor for temperature compensation becomes unnecessary.
  • the Bragg reflected light from the two orthogonal polarization axes of the sensor 17 is acquired. The amount of change can be individually identified and measured. Thereby, the measurement accuracy of temperature and strain in the sensor 17 can be improved.
  • ⁇ Temperature and strain measurement method> a temperature and strain measurement method using the OFDR physical quantity measurement apparatus 10E of the present embodiment will be described. Even when the OFDR physical quantity measuring device 10E of the present embodiment is used, measurement can be performed in the same manner as in the first to third embodiments. As in the first to third embodiments, first, the wavelength of Bragg reflected light from two orthogonal polarization axes of the sensor 17 at a certain reference temperature and reference strain is measured in advance.
  • the sensor 17 is disposed in the detection unit, and in this detection unit, the wavelengths of the Bragg reflected light from the two orthogonal polarization axes of the sensor 17 are measured.
  • the wavelength of the Bragg reflected light in the detection unit and the wavelength difference (change amount) of the Bragg reflected light at the reference temperature and the reference strain are calculated for each of the slow axis and the fast axis.
  • the obtained wavelength difference is substituted into the above equation (3) to obtain the difference between the temperature at the detection unit and the reference temperature, the difference between the strain at the detection unit and the reference strain, and finally the known reference temperature, the reference
  • the actual temperature and actual strain in the detection unit are calculated from the strain.
  • the D value described in the above equation (3) is obtained from these values.
  • ⁇ T and ⁇ are obtained by substituting the D value and ⁇ slow and ⁇ fast obtained from the measurement results into the above equation (3). Then, by subtracting the reference temperature and the reference strain from these values, the temperature and strain in the detection unit can be obtained.
  • the amount of change due to temperature and strain in the wavelength of Bragg reflected light from two orthogonal polarization axes in the sensor 17 can be measured. Therefore, the measurement accuracy of the temperature and strain of the detection unit is improved.
  • the third PM fiber 21 in which the sensor is arranged has an effective refractive index difference (birefringence) between two orthogonal polarization axes.
  • Is preferably made of PM fiber.
  • the effective refractive index difference between two orthogonal polarization axes is preferably 4.4 ⁇ 10 ⁇ 4 or more.
  • the Bragg wavelength shift characteristic difference with respect to the temperature change of the sensor can be made larger than ⁇ 5.0 ⁇ 10 ⁇ 4 nm / ° C., as can be obtained from examples described later. As a result, extremely accurate temperature and strain measurement accuracy of 2 ° C. and strain accuracy of 20 ⁇ can be obtained.
  • FIG. 7 is a schematic configuration diagram illustrating an OFDR physical quantity measuring apparatus 10F according to the first embodiment. This example is configured based on the OFDR physical quantity measuring apparatus 10A of the first embodiment described above.
  • the OFDR physical quantity measuring device 10F according to the first embodiment is similar to the OFDR physical quantity measuring device 10A illustrated in FIG. 1 in addition to two PM couplers 51 and 52, a photodiode 55, and two reference reflection ends 59 and 60. And comprising. These are connected by PANDA fibers 63, 64, 65, 66, 69, and 70 which are one type of PM fiber.
  • PANDA fibers were used as the first to fourth PM fibers.
  • the tunable laser 12 is connected to the system controller 74 via a general-purpose interface bus (GPIB), and is controlled thereby. Signals from the two photodiodes (photodiode 13 and photodiode 55) are sampled by the A / D converter 75, and the sampling data is subjected to STFT analysis by the system controller 74. This analysis method is as described in the first embodiment.
  • PTAP-0150-2-B (model) manufactured by Fujikura Corporation was used.
  • tunable laser 12 8164A (model) manufactured by Agilent was used.
  • photodiodes 13 and 55 2117FC (model) manufactured by New Focus was used.
  • the tunable laser 12 emits single-polarized measurement light that is swept (monotonically increased or monotonically decreased) at a certain constant speed and in a certain wavelength range.
  • measurement light having a wavelength range of 1545 to 1555 nm was emitted at a speed of 10 nm / s.
  • Single-polarized measurement light emitted from the tunable laser 12 propagates through the slow axis of the PANDA fiber 63 and enters the fiber coupler 51, where the optical power is branched by the fiber coupler 51 and two optical interferometers. Is incident on.
  • One of the two optical interferometers is generally composed of a fiber coupler 52, reference reflection ends 59 and 60, and a first photodiode 55, and a PANDA fiber 69 having the reference reflection end 59. And a trigger corresponding to the fiber length difference (optical path length difference) with the PANDA fiber 70 having the reference reflection end 60 is generated.
  • the fiber length difference between the PANDA fiber 69 and the PANDA fiber 70 is 50 m.
  • This trigger is generated by the following method.
  • the measurement light swept from the tunable laser 12 at a certain speed and in a certain wavelength range enters the optical interferometer, the measurement light is reflected by the reference reflection ends 59 and 60, and the interference light is reflected by the photodiode 55. It is measured by.
  • the signal acquired by the photodiode 55 is sampled and converted into a voltage signal by the A / D converter 75, and this voltage signal is taken into the system controller 74. Since the wavelength of the measurement light emitted from the tunable laser 12 changes at a constant speed, the signal measured by the photodiode 55 is a sine function that varies at a constant light wave number interval.
  • a certain voltage value is set as a threshold value, and the system controller 74 generates a trigger at a timing exceeding this threshold value (timing exceeding a threshold value or exceeding a threshold value, or timing exceeding a threshold value and falling below the threshold value).
  • the generated trigger has a certain light wave number interval.
  • This trigger generation method is very effective in that the interval of light wave numbers generated by the trigger is always constant even when the sweep speed of the tunable laser 12 is not constant.
  • the other of the two optical interferometers is schematically configured from the first embodiment shown in FIG.
  • the sensor 17 is manufactured by a general exposure method using a KrF excimer laser and a uniform phase mask.
  • the grating length (sensor length) was 5 mm.
  • the distance L 2 from the position corresponding to the PANDA fiber 71 that has the referential reflecting end 16 to the sensor 17 was approximately 6.2 m.
  • FIG. 8 shows the result of measuring the state of the sensor 17 using the OFDR physical quantity measuring apparatus 10F of the present embodiment.
  • the Bragg reflected light from the sensor 17 is displayed as a spectrogram.
  • the horizontal axis indicates the wavelength
  • the vertical axis indicates the fiber position (fiber length L 2 from the position corresponding to the PANDA fiber 71 having the reference reflection end 16)
  • the color tone indicates the Bragg reflection intensity.
  • Example 1 since the sweeping tunable laser 12 at a speed of 10 nm / s, about 800pm distance in terms of wavelength) of the obtained optical interference signal D 1 about 80ms intervals window width corresponding to Analyzed. From the results of FIG.
  • Example 8 in Example 1, Bragg reflected light from the slow axis and fast axis of the sensor 17 was obtained. From this result, it was confirmed in principle that temperature and strain can be measured without using a separate sensor for temperature compensation. However, since the Bragg reflected light from the slow axis of the sensor 17 and the Bragg reflected light from the fast axis overlap with the wavelength axis, the Bragg reflected light from two orthogonal polarization axes in the sensor 17 is individually received. It became difficult to identify, and the wavelength analysis accuracy decreased. This means that the measurement accuracy of temperature and strain is lowered.
  • the fiber positions of the Bragg reflected light from the slow axis of the sensor 17 and the Bragg reflected light from the fast axis were slightly shifted. Specifically, the position of the Bragg reflected light from the slow axis was about 6.222 m, and the position of the Bragg reflected light from the fast axis was about 6.221 m. As a result of analyzing the effective refractive indexes of two orthogonal polarization axes that are different from each other by integrating them into n slow , the position of the Bragg reflected light from each polarization axis is shifted and measured. Because.
  • n slow and n fast are calculated from the wavelength of the Bragg reflected light of the sensor 17 and the distance between the diffraction gratings of the uniform phase mask used to manufacture the sensor 17 from the following equation (11).
  • ⁇ slow and ⁇ fast are the wavelengths of the Bragg reflected light from two orthogonal polarization axes of the sensor 17, and ⁇ is a grating period calculated from the distance between the diffraction gratings of the uniform phase mask. .
  • L 2 is the time of the 6.2 m
  • .DELTA.l is calculated to be 1.55 mm. That is, FIG. 8 showing the result of measuring the state of the sensor 17 using the OFDR type physical quantity measuring apparatus 10F of the present embodiment shows the positions where the Bragg reflected light from the slow axis and the Bragg reflected light from the fast axis appear. Is shifted by 1.55 mm. In view of this, Example 2 capable of individually identifying and measuring Bragg reflected light from two orthogonal polarization axes in the sensor 17 was produced and measured.
  • FIG. 10 is a schematic configuration diagram illustrating an OFDR physical quantity measuring apparatus 10G according to the second embodiment.
  • the second embodiment is different from the first embodiment in that the second embodiment is fabricated based on the above-described OFDR physical quantity measuring apparatus of the second embodiment. That is, this embodiment is different from the first embodiment in that the fourth PM fiber 19 is further provided with a polarization beam splitter 15 that demultiplexes the Bragg reflected light from the sensor 17, and this polarization beam splitter 15.
  • the first photodiode 13 and the second photodiode 14 are connected.
  • signals from the three photodiodes 13, 14, 55 are sampled by the A / D converter 75, and the sampling data is subjected to STFT analysis by the system controller 74.
  • FIG. 11 is a spectrogram showing the result of analyzing the optical interference signal D 2 incident on the first photodiode 13.
  • FIG. 12 is a spectrogram showing the result of analyzing the optical interference signal D 3 incident on the second photodiode 14.
  • the Bragg reflected light of 1550.6 nm is from the slow axis of the sensor 17.
  • the Bragg reflected light of 1550.2 nm is from the fast axis of the sensor 17.
  • the positions of these two Bragg reflected lights were both about 6.212 m.
  • the optical interference signal D 2 and the optical interference signal D 3 are individually analyzed, but this is obtained by parallel processing of two signals obtained by one measurement by the system controller 74.
  • Bragg reflected light from two orthogonal polarization axes of the sensor 17 is obtained, so that temperature and strain can be measured in principle.
  • a sensor for temperature compensation becomes unnecessary. Since the Bragg reflected light from the two orthogonal polarization axes of the sensor 17 is demultiplexed and the optical interference signal is acquired by each of the photodiodes 13 and 14, the two orthogonal polarization axes of the sensor 17 are obtained. The amount of change in the Bragg reflected light from can be individually identified and measured. Thereby, the wavelength analysis accuracy of the Bragg reflected light from two orthogonal polarization axes of the sensor 17 can be improved.
  • Example 3 An OFDR physical quantity measuring device 10H is manufactured in the same manner as in Example 2 except that the sensor 17 made of FBG is formed on a PANDA fiber having a large effective refractive index difference (birefringence) between the slow axis and the fast axis. This was designated as Example 3.
  • FIG. 13 is a spectrogram showing the result of analyzing the optical interference signal D 2 incident on the first photodiode 13.
  • FIG. 14 is a spectrogram showing the result of analyzing the optical interference signal D 3 incident on the second photodiode 14.
  • the Bragg reflected light of 1551.1 nm is composed of the slow axis of the sensor 17.
  • the Bragg reflected light of 1550.4 nm is composed of the fast axis of the sensor 17. The positions of these two Bragg reflected lights were both 6.2408 m.
  • the Bragg wavelength difference between the slow axis and the fast axis was 0.661 nm
  • the birefringence calculated from this Bragg wavelength difference was 6.19 ⁇ 10 6. -4 .
  • the Bragg wavelength difference obtained by analyzing the spectrogram of the sensor 17 obtained in Example 2 in more detail is 0.361 nm
  • the birefringence calculated from this Bragg wavelength difference is 3.37 ⁇ 10 ⁇ 4. Met. That is, the PANDA fiber constituting the sensor 17 of the third embodiment has a birefringence nearly twice as large as that of the PANDA fiber constituting the sensor 17 of the second embodiment.
  • the above formula (12) obtained in Example 2 is ⁇ 3.63 ⁇ 10 ⁇ 4 nm / ° C.
  • the above formula (13) obtained in Example 3 is ⁇ 6. 49 ⁇ 10 ⁇ 4 nm / ° C. That is, the sensor 17 according to the third embodiment has a Bragg wavelength shift characteristic difference with respect to a temperature change that is nearly twice that of the sensor 17 according to the second embodiment. This is due to the difference in birefringence of the PANDA fibers constituting each sensor. It is known that the PANDA fiber has a small birefringence generated in the core in proportion to a rise in temperature, and the birefringence becomes almost zero at about 800 to 900 ° C.
  • the sensor 17 of Example 3 has a Bragg wavelength shift characteristic difference with respect to a temperature change that is nearly twice that of the sensor 17 of Example 2.
  • Table 1 shows the results of measuring the temperature change and strain with the OFDR physical quantity measuring apparatus 10H of Example 3 by applying arbitrary temperature change and strain to the sensor 17 of Example 3.
  • the temperature change from the reference temperature (20 ° C.) is 20, 40, 100 ° C. (that is, the set temperature is 40, 60, 120 ° C.), and the strain from the reference strain (0 ⁇ ) is 250, 500, 1000 ⁇ .
  • the temperature and strain were measured under a total of nine conditions, a highly accurate temperature and strain measurement result with a temperature accuracy of 2 ° C. and a strain accuracy of 20 ⁇ was obtained.
  • FIG. 15 is a graph showing the results of simultaneous measurement with the number of measurement points increased from Table 1.
  • the intersection of the straight lines in the graph indicates the measurement condition, and the red plot indicates the measurement result. That is, the deviation between the plot and the intersection indicates a measurement error. From this result, it was confirmed that temperature change and strain could be measured simultaneously with high accuracy under any measurement condition.
  • the sensor made of FBG used in the OFDR type physical quantity measuring apparatus of the present invention is composed of a PANDA fiber having a large birefringence.
  • a detailed study of the relationship between the temperature change of FBG sensors and the accuracy of simultaneous measurement of strain shows that the difference in Bragg wavelength shift characteristics with respect to temperature changes of this sensor is greater than -5.0 ⁇ 10 -4 nm / ° C. It has been found desirable to have shift characteristics.
  • FIG. 16 is a graph showing the result of evaluating the shift characteristic difference of the Bragg wavelength with respect to the temperature change of the birefringence of the PANDA fiber and the temperature sensor of the FBG constituted by this fiber. From this result, when the birefringence of the PANDA fiber is 4.4 ⁇ 10 ⁇ 4 or more, the shift characteristic difference of the Bragg wavelength with respect to the temperature change of this sensor is larger than ⁇ 5.0 ⁇ 10 ⁇ 4 nm / ° C. Will have. That is, it is desirable that the birefringence of the PANDA fiber is 4.4 ⁇ 10 ⁇ 4 or more.
  • a PANDA fiber having a stress applying portion close to the core was used in order to make the shift characteristic difference of the Bragg wavelength with respect to the temperature change of the FBG sensor larger than ⁇ 5.0 ⁇ 10 ⁇ 4 nm / ° C.
  • a PANDA fiber having a stress applying portion having a low melting point can be cited. More specifically, when the melting point of the stress applying portion is 600 ° C. or less, the Bragg wavelength shift characteristic can be made larger than ⁇ 5.0 ⁇ 10 ⁇ 4 nm / ° C.
  • Example 4 An OFDR physical quantity measuring device 10I was produced in the same manner as in Example 3 except that the grating length (sensor length) of the sensor 17 was set to 100 mm.
  • the Bragg reflected light from the slow axis of the sensor 17 was 1549.4 nm
  • the Bragg reflected light from the fast axis of the sensor 17 was 1548. 0.7 nm.
  • the Bragg wavelength difference obtained by analyzing the spectrogram obtained at this time in more detail was 0.670 nm. Since this is a Bragg wavelength difference equivalent to that in Example 3, the birefringence of the sensor of this example is equivalent to that in Example 3.
  • FIG. 17 is a diagram schematically showing an experimental system for measuring the temperature distribution and strain generated in the sensor, using the OFDR physical quantity measuring apparatus 10I of the present embodiment.
  • the weight W gives a uniform strain along the longitudinal direction of the sensor
  • the heater A and the heater B capable of independently controlling the temperature give a non-uniform temperature change along the longitudinal direction of the sensor. be able to.
  • FIG. 17 shows the result of measuring the temperature change and strain at the position of heater A and the position of heater B by changing only the temperature change given to the sensor by heater B from 0 to 100 ° C.
  • the measured strain and temperature change were constant at 1000 ⁇ and 100 ° C.
  • the measured strain was constant at 1000 ⁇ , and the measured temperature change changed in correlation with the set temperature of the heater B. That is, the temperature distribution and distortion occurring at the position of the heater A and the position of the heater B can be measured with high accuracy.
  • the present invention can simultaneously measure the temperature distribution and strain along the longitudinal direction of the sensor made of FBG with high accuracy. Further, by using the present invention, even when a temperature distribution and a strain distribution are generated along the longitudinal direction of the sensor made of FBG, these can be measured simultaneously and with high accuracy.
  • Comparative Example 1 An OFDR physical quantity measuring apparatus was manufactured in the same manner as in Example 2 except that the polarization axis angle offset fusion splicing of the incident part ⁇ was set to 0 °, and this was designated as Comparative Example 1. Using this comparative example 1, the state of the sensor 17 was measured. The results are shown in FIGS. FIG. 19 is a spectrogram showing the result of analyzing the optical interference signal D 2 incident on the first photodiode 13.
  • FIG. 20 is a spectrogram showing the result of analyzing the optical interference signal D 3 incident on the second photodiode 14. From the results of FIGS. 19 and 20, in Comparative Example 1, only Bragg reflected light from the slow axis of the sensor 17 was obtained. It is impossible to measure the temperature and strain of the sensor 17 with only Bragg reflected light from one polarization axis. Therefore, when strain measurement is performed using the OFDR-type physical quantity measurement device of Comparative Example 1, a temperature compensation sensor is required.
  • Example 5 An extension fiber 31 for making the optical path length difference of Bragg reflected light from two orthogonal polarization axes in the sensor longer than the optical path length corresponding to the sensor length between the sensor 17 and the PM coupler 11.
  • An OFDR-type physical quantity measuring device was manufactured in the same manner as in Example 1 except that was provided as Example 5.
  • FIG. 21 is a schematic configuration diagram illustrating an OFDR physical quantity measuring apparatus 10J according to the present embodiment.
  • the length L 1 of the extension fiber 31 was about 20 m.
  • FIG. 22 shows the result of measuring the state of the sensor 17 using the OFDR physical quantity measuring apparatus 10J of this example.
  • the Bragg reflected light of 1550.6 nm is from the slow axis of the sensor 17
  • the Bragg reflected light of 1550.2 nm is from the fast axis of the sensor 17.
  • the position of the Bragg reflected light from each polarization axis is shifted and overlaps the wavelength axis. Without being able to identify and measure individually.
  • ⁇ l being longer than l means that the optical path length difference of the Bragg reflected light from two orthogonal polarization axes in the sensor 17 is longer than the optical path length corresponding to the sensor length.
  • the length L 1 of the extension fiber 31 that satisfies this condition is the above equation (1) obtained by modifying the above equation (10) by regarding ⁇ l as l.
  • Example 5 since Bragg reflected light from two orthogonal polarization axes of the sensor 17 was obtained, it was confirmed that temperature and strain could be measured simultaneously in principle. As a result, when the strain measurement is performed using the OFDR physical quantity measuring apparatus 10J of the present embodiment, a sensor for temperature compensation becomes unnecessary. Since the extension fiber 31 is provided so that the Bragg reflected light from the two orthogonal polarization axes of the sensor 17 does not overlap the wavelength axis, the Bragg reflected light from the two orthogonal polarization axes of the sensor 17 is provided. It was confirmed that the amount of change can be individually identified and measured. Thereby, the measurement accuracy of the temperature and strain in the sensor 17 can be improved.
  • Example 6 An OFDR-type physical quantity measuring device is manufactured in the same manner as in Example 5 except that the sensor 17 made of FBG is formed on a PANDA fiber having a large effective refractive index difference (birefringence) between the slow axis and the fast axis. This was taken as Example 6.
  • FIG. 23 shows the result of measuring the state of the sensor 17 by using the OFDR physical quantity measuring apparatus of the present embodiment. As a result, a Bragg wavelength difference equivalent to that in Example 3 was obtained. That is, the birefringence of the sensor 17 of the present embodiment is equivalent to that of the third embodiment.
  • Example 6 the same temperature and strain measurement results with the same accuracy as in Example 3 were obtained.
  • Comparative Example 2 An OFDR physical quantity measuring apparatus was manufactured in the same manner as in Example 5 except that the polarization axis angle offset fusion splicing of the incident part ⁇ was set to 0 °. And the state of the sensor 17 was measured using this comparative example 2. The results are shown in FIG. From the results of FIG. 24, in Comparative Example 2, only Bragg reflected light from the slow axis of the sensor 17 was obtained. It is impossible to measure the temperature and strain of the sensor 17 with only Bragg reflected light from one polarization axis. Therefore, when the strain measurement is performed using the OFDR-type physical quantity measuring apparatus of Comparative Example 2, a temperature compensation sensor is required.
  • Example 7 Example 1 except that in place of the incident part ⁇ , an incident part ⁇ for incident measurement light on one of two orthogonal polarization axes in the third polarization maintaining fiber is provided.
  • An OFDR-type physical quantity measuring device was produced in the same manner as in Example 7, and this was designated as Example 7.
  • FIG. 25 is a schematic configuration diagram illustrating an OFDR physical quantity measuring apparatus 10K according to the seventh embodiment. A ⁇ / 2 plate was used as the incident part ⁇ .
  • the state of the sensor 17 was measured using the OFDR physical quantity measuring device 10K of this example.
  • the results are shown in FIGS. Figure 26, in the slow axis measurement mode, a spectrogram showing the result of analyzing the optical interference signal D 5 that is incident on the photodiode 13.
  • the Bragg reflected light of 1550.6 nm is from the slow axis of the sensor 17.
  • the Bragg reflected light of 1550.2 nm is from the fast axis of the sensor 17.
  • the positions of these two Bragg reflected lights were both about 6.212 m.
  • Example 7 the first measurement was performed in the slow axis measurement mode, and the second measurement was performed in the fast axis measurement mode. That is, two different signals are obtained by two measurements, and each signal is analyzed individually.
  • Example 7 since Bragg reflected light from two orthogonal polarization axes of the sensor 17 was obtained, it was confirmed that temperature and strain could be measured in principle. As a result, when the strain measurement is performed using the OFDR physical quantity measuring apparatus 10K of the present embodiment, a sensor for temperature compensation becomes unnecessary. In addition, since only the optical interference signal from the Bragg reflected light on one of the two orthogonal polarization axes of the sensor 17 is obtained in one measurement, the Bragg reflected light from the two orthogonal polarization axes of the sensor 17 is acquired. The amount of change could be individually identified and measured. Thereby, the measurement accuracy of the temperature and strain in the sensor 17 can be improved. Further, since L 2 is obtained by substituting the known n slow and n fast for the two optical path lengths n slow L 2 and n fast L 2 obtained by the respective measurements, the fiber length L of the sensor 17 is obtained. 2 can be measured accurately.
  • Example 2 the above expression (4) indicating the optical interference signal D 2 that is acquired by the photodiode 13 and above indicating the optical interference signal D 3 that is acquired by the photodiode 14 expression (5) it and represented by the same formula; in example 7, obtained by the photodiode 14 in the above formula (8) and the fast axis measurement mode of an optical interference signal D 5 that is acquired by the photodiode 13 in the slow axis measurement mode is evident from; the above equation showing the optical interference signal D 6 is (9) that the represented by the same formula.
  • the optical interference signals obtained from the two photodiodes are processed in parallel, so that the temperature and strain measurement of the sensor 17 can be shortened.
  • the seventh embodiment has an advantage that an inexpensive OFDR physical quantity measuring device can be provided because it is not necessary to use a polarization beam splitter.
  • the OFDR physical quantity measuring device in which one FBG sensor is arranged in one PM fiber is exemplified, but the OFDR physical quantity measuring device of the present invention is not limited to this.
  • a plurality of FBG sensors may be provided in one PM fiber.
  • the OFDR physical quantity measuring apparatus of the present invention it is possible to provide an OFDR physical quantity measuring apparatus capable of measuring temperature and strain, and capable of measuring temperature and strain with high spatial resolution.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

 本発明の光周波数領域反射測定方式の物理量計測装置は、一端がチューナブルレーザに接続され、他端が偏波保持カプラに接続された第1の偏波保持ファイバと、一端が前記偏波保持カプラに接続され、他端が参照用反射端である第2の偏波保持ファイバと、コアにファイバブラッググレーティングからなるセンサが形成され、一端が前記偏波保持カプラに接続された第3の偏波保持ファイバと、一端が前記偏波保持カプラに接続された第4の偏波保持ファイバと、前記第2の偏波保持ファイバの直交する2つの偏波軸に及び前記第3の偏波保持ファイバの直交する2つの偏波軸の両方に測定光を入射する入射部を備え、前記入射部が、前記第1の偏波保持ファイバ、または、前記第2の偏波保持ファイバと前記第3の偏波保持ファイバとの両方に配されている。

Description

光周波数領域反射測定方式の物理量計測装置及びこれを用いた温度と歪みの計測方法
 本発明は、ファイバブラッググレーティング(Fiber Bragg Grating、FBG)センサを、1本の偏波保持(Polarization Maintaining、PM)ファイバに1つまたは複数配置し、このFBGセンサの位置と、FBGセンサの歪みや温度などの物理量とを計測する光周波数領域反射測定(Optical Frequency Domain Reflectometry、OFDR)方式の物理量計測装置と、この物理量計測装置を用いた温度と歪みの計測方法とに関する。
 本願は、2008年2月29日に、日本国に出願された特願2008-51344号と、2008年2月29日に、日本国に出願された特願2008-51345号と、2008年12月5日に、日本国に出願された特願2008-311286号と、2008年12月5日に、日本国に出願された特願2008-311287号とに基づき優先権を主張し、これらの内容をここに援用する。
 光ファイバを用いて温度や歪みなどの物理量を計測するセンサは、長寿命、軽量、細径かつ柔軟性があるため、狭い空間で使用可能である。また、このセンサは、光ファイバが絶縁性を有するため、電磁ノイズに強いといった特性を有している。そのため、このセンサを、橋梁やビルなどの巨大建築物や、旅客機や人工衛星などの航空・宇宙機器などの健全性評価に用いることが期待されている。
 これら構造物の健全性評価を行うためのセンサに求められる性能としては、歪み分解能が高いこと、空間分解能が高く、センサ内の歪み分布計測ができること、多点のセンサを有すること(検知範囲が広いこと)、及びリアルタイムで計測できることなどが挙げられる。
 これまでにも様々な光ファイバセンサシステムが提案されているが、上記の要求性能を十分に満たす最も有望な光ファイバセンサとしては、FBGセンサとOFDR方式の解析方法とを用いた光ファイバセンサが挙げられる。
 FBGセンサとOFDR方式の解析方法とを用いた光ファイバセンサシステムは、FBGセンサからのブラッグ反射光と参照用の反射端からの反射光との干渉強度の周期的変化を利用して、FBGセンサの位置を特定する。また、この光ファイバセンサシステムは、ブラッグ反射光の波長の変化量から検知部の歪みや温度を計測する。
 この光ファイバセンサシステムとしては、高い歪み分解能でセンサ内の歪み分布計測ができること(例えば、非特許文献1および特許文献3参照)、1mm以下の高い空間分解能を有すること(例えば、非特許文献2参照)、8mの光ファイバに800個のFBGセンサを配置して、4本の光ファイバで計3,000点以上もの歪み計測を同時に行えること(例えば、非特許文献3参照)、及び計測のリアルタイム性に優れていること(例えば、特許文献1参照)、などが開示されている。ここで、非特許文献1および特許文献3に記載されているセンサ内の歪み分布計測とは、FBGセンサの長手方向に沿って生じる不均一な歪みを計測できることを意味している。
 一方、光ファイバセンサシステムの一般的な問題点としては、温度や歪みなどの物理量が複数項目変化すると、それらの変化量を個別に識別して測定できないことが挙げられる。そのため、例えば、光ファイバセンサシステムを歪みセンサとして使用する場合、検知部の温度変化を歪みの変化として捉えないようにするために、別途、温度補償用のセンサを用いる必要がある。
 この問題を解決する手法としては、PMファイバからなるFBGセンサを用いる方法が挙げられる(例えば、特許文献2参照)。この手法は、PMファイバの一種であるPANDAファイバを用い、このPANDAファイバからなるFBGセンサにおける直交する2つの偏波軸からのブラッグ反射光の波長の変化量を測定することにより、温度と歪みを計測できる方法である。
 すなわち、この手法は、温度補償用のセンサが不要の歪みセンサを実現し得る方法である。
 以上説明した技術を組み合わせて、PMファイバからなるFBGセンサとOFDR方式の解析方法とを用いた光ファイバセンサシステムを使用すれば、高い歪み分解能、高い空間分解能、多点計測、リアルタイム計測、温度と歪みの計測を同時に達成することができると考えられる。
特許第3740500号公報 特許第3819119号公報 特許第4102291号公報 H. Igawa, H. Murayama, T. Kasai, I. Yamaguchi, K. Kageyama and K. Ohta, "Measurement of strain distributions with long gauge FBG sensor using optical frequency domain reflectometry" Proceedings OFS-17, pp. 547-550 (2005) H. Murayama, H. Igawa, K. Kageyama, K. Ohta, I. Ohsawa, K. Uzawa, M. Kanai, T. Kasai and I. Yamaguchi, "Distributed Strain Measurement with High Spatial Resolution Using Fiber Bragg Gratings and Optical Frequency Domain Reflectometry" Proceedings OFS-18, ThE40 (2006) B. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten and D. C. Jegley, "Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load test of a composite structure" Proceedings SPIE’s 8th International Symposium on Smart Structure and Materials, Vol. 4332, pp. 133-142 (2001)
 しかしながら、PMファイバからなるFBGセンサとOFDR方式の解析方法とを用いた光ファイバセンサシステムは、これまでに提案されていない。なぜならば、OFDR方式の解析方法により、PMファイバからなるFBGセンサにおける直交する2つの偏波軸からのブラッグ反射光を安定して測定するためには、FBGセンサおよび参照用の反射端に、測定光を、直交する2つの偏波軸に制御性良く分波して伝搬させる必要がある。しかしながら、通常、測定光は単一偏波で出射される。そのため、FBGセンサと参照用の反射端までの光路をPMファイバで構成すると、FBGセンサにおける直交する2つの偏波軸からのブラッグ反射のうち、一方は測定できるものの、他方は測定できない。この結果、上述したように直交する2つの偏波軸からのブラッグ反射光を測定することができない。
 単一偏波の測定光を、直交する2つの偏波軸に分波する方法としては、FBGセンサと参照用の反射端までの光路の少なくとも一部をシングルモードファイバで構成する方法が挙げられる。しかしながら、この方法では、単一偏波で出射された測定光を、直交する2つの偏波軸に制御性よく分波できないという問題がある。
 本発明は、上記事情に鑑みてなされたものであって、FBGセンサを1本のPMファイバに1つまたは複数配置し、このFBGセンサの位置と、FBGセンサの歪みや温度などの物理量をOFDR方式の解析方法で計測する光ファイバセンサシステムにおいて、特に温度と歪みの計測が可能で、かつ温度と歪みを高い空間分解能で計測することが可能なOFDR方式の物理量計測装置と、この物理量計測装置を用いた温度と歪みの計測方法との提供を目的とする。
 本発明は、上記課題を解決して係る目的を達成するために以下の手段を採用した。
(1)本発明の光周波数領域反射測定方式の物理量計測装置は、測定光を出射するチューナブルレーザと;このチューナブルレーザに一端が接続された第1の偏波保持ファイバと;この第1の偏波保持ファイバの他端に接続された偏波保持カプラと;この偏波保持カプラに一端が接続され、他端が参照用反射端である第2の偏波保持ファイバと;前記偏波保持カプラに一端が接続された第3の偏波保持ファイバと;この第3の偏波保持ファイバコアに形成されたファイバブラッググレーティングからなるセンサと;前記偏波保持カプラに一端が接続された第4の偏波保持ファイバと;この第4の偏波保持ファイバを介して前記偏波保持カプラと接続され、前記センサからのブラッグ反射光と前記参照用反射端からの参照光とを検出するフォトダイオードと;このフォトダイオードで検出された前記ブラッグ反射光と前記参照光との合波光強度変化に基づき、これらブラッグ反射光及び参照光間の干渉強度の変調を検知する制御部と;前記第2の偏波保持ファイバの直交する2つの偏波軸及び前記第3の偏波保持ファイバの直交する2つの偏波軸の両方に、前記測定光を入射する入射部αと;を備え、前記入射部αが、前記第1の偏波保持ファイバ、または、前記第2の偏波保持ファイバと前記第3の偏波保持ファイバとの両方に配されている。
(2)前記入射部αが、この入射部αが前記第1の偏波保持ファイバに配されている場合には、この第1の偏波保持ファイバに45°の偏波軸オフセット角度を有して形成された融着接続部であり;前記入射部αが前記第2の偏波保持ファイバ及び前記第3の偏波保持ファイバの両方に配されている場合には、これら第2の偏波保持ファイバ及び前記第3の偏波保持ファイバのそれぞれに45°の偏波軸オフセット角度を有して形成された融着接続部である;のが好ましい。
(3)前記第4の偏波保持ファイバに、前記センサからの前記ブラッグ反射光を分波する偏波ビームスプリッタが更に配されているのが好ましい。
(4)前記第3の偏波保持ファイバの、前記センサと前記偏波保持カプラとの間に、前記センサにおける直交する2つの偏波軸からのブラッグ反射光の光路長差を、前記センサの長さに相当する光路長よりも長くするための延長ファイバが更に配されているのが好ましい。
(5)前記延長ファイバの長さをL、前記第3の偏波保持ファイバにおける直交する2つの偏波軸の実効屈折率の差を(nslow-nfast)、前記センサの長さをlとした場合、前記Lが、下式(1)を満たすのが好ましい。
Figure JPOXMLDOC01-appb-I000002
(6)前記入射部αに換えて、前記第3の偏波保持ファイバにおける直交する2つの偏波軸のうちのいずれか一方の偏波軸に測定光を入射する入射部βをさらに備えるのが好ましい。
(7)前記第1の偏波保持ファイバから前記第4の偏波保持ファイバのうち、少なくとも前記第3の偏波保持ファイバにおける直交する2つの偏波軸の実効屈折率差が、4.4×10-4以上であるのが好ましい。
(8)本発明の、光周波数領域反射測定方式の物理量計測装置を用いた温度と歪みの計測方法は、上記(1)~(7)のいずれか1項に記載の光周波数領域反射測定方式の物理量計測装置を用いて、1つまたは複数の前記センサにおける直交する2つの偏波軸からの前記ブラッグ反射光の波長を計測する工程と;計測した前記ブラッグ反射光の波長に基づいて、前記センサにおける前記ブラッグ反射光の波長の温度と歪みによる変化量を計算する工程と;計算した前記変化量に基づいて、前記センサが配された部位の温度及び歪みを計算する工程と;を備える。
(9)本発明の、光周波数領域反射測定方式の物理量計測装置を用いた温度と歪みの計測方法は、上記(3)または(6)のいずれか1項に記載の光周波数領域反射測定方式の物理量計測装置を用いて前記制御部で検知した前記直交する2つの偏波軸それぞれの干渉信号に対して、前記センサの位置を特定するための短時間フーリエ変換解析を行う工程と;前記センサにおける直交する2つの偏波軸からの前記ブラッグ反射光の各々の光路長に対して、それぞれの偏波軸の実効屈折率を代入し、それぞれの偏波軸における前記センサの位置を求める工程と;を備える。
(10)本発明の、光周波数領域反射測定方式の物理量計測装置を用いた温度と歪みの計測方法は、上記(4)または(5)のいずれか1項に記載の光周波数領域反射測定方式の物理量計測装置を用いて前記制御部で検知した前記直交する2つの偏波軸からの干渉信号の和に対して、前記センサの位置を特定するための短時間フーリエ変換解析を行う工程と;前記センサにおける直交する2つの偏波軸からの前記ブラッグ反射光の各々の光路長に対して、1つの任意の実効屈折率を代入し、それぞれの偏波軸における基準となる位置から前記センサまでの距離を求める工程と;を備える。
(11)前記第3の偏波保持ファイバの、前記センサが配された部位長手方向に沿った温度分布および歪み分布を算出するのが好ましい。
 上記(1)に記載の光周波数領域反射測定方式の物理量計測装置によれば、偏波保持ファイバのコアに形成されたFBGセンサと、このFBGセンサが形成された偏波保持ファイバの直交する2つの偏波軸に測定光を入射する入射部αとを有するので、FBGセンサにおける直交する2つの偏波軸からのブラッグ反射光を計測でき、FBGセンサにおける直交する2つの偏波軸からのブラッグ反射光の波長の変化量を計測できる。その結果、温度と歪みの計測が可能で、かつ温度と歪みを高い空間分解能で計測することが可能となる。
 上記(8)に記載の光周波数領域反射測定方式の物理量計測装置を用いた温度と歪みの計測方法によれば、1つのFBGセンサから歪みと温度を計測することができる。
 上記(9)に記載の光周波数領域反射測定方式の物理量計測装置を用いた温度と歪みの計測方法によれば、FBGセンサの位置を特定するための短時間フーリエ変換解析を行い、FBGセンサにおける直交する2つの偏波軸からのブラッグ反射光の各々の光路長に対して、それぞれの偏波軸の実効屈折率を代入し、それぞれの偏波軸におけるFBGセンサのファイバ位置を求めるので、高い空間分解能でFBGセンサの温度と歪みの計測を行うことができる。
 上記(10)に記載の光周波数領域反射測定方式の物理量計測装置を用いた温度と歪みの計測方法によれば、短時間フーリエ変換解析で求めたFBGセンサまでの光路長に相当するファイバ長を求める際、FBGセンサの直交する2つの偏波軸からのブラッグ反射光の各々の光路長に対して1つの任意の実効屈折率を代入することにより、FBGセンサの直交する2つの偏波軸からのブラッグ反射光が波長軸に対して重なることなく、個別に識別して計測できる。その結果、FBGセンサの温度と歪みの計測精度を向上させることができる。
 さらに、FBGセンサの長手方向に沿った温度分布と歪み分布を同時に計測することができる。
図1は、本発明の光周波数領域反射測定方式の物理量計測装置の第一の実施形態を示す概略構成図である。 図2は、同実施形態の変形例を示す概略構成図である。 図3は、PMファイバとしてPANDAファイバを用いた場合の、偏波軸角度オフセット融着接続を示す概略斜視図である。 図4は、本発明の光周波数領域反射測定方式の物理量計測装置の第二の実施形態を示す概略構成図である。 図5は、本発明の光周波数領域反射測定方式の物理量計測装置の第三の実施形態を示す概略構成図である。 図6は、本発明の光周波数領域反射測定方式の物理量計測装置の第四の実施形態を示す概略構成図である。 図7は、本発明の実施例1の光周波数領域反射測定方式の物理量計測装置を示す概略構成図である。 図8は、同実施例1を用いて、センサの状態を計測した結果を示すスペクトログラムである。 図9は、同実施例1において、センサのスロー軸とファスト輔からのブラッグ反射光の位置ずれ量Δlの、センサまでのファイバ長Lに対する依存性を計算した結果を示すグラフである。 図10は、本発明の実施例2の光周波数領域反射測定方式の物理量計測装置を示す概略構成図である。 図11は、同実施例2を用いて、センサの状態を計測した結果を示すスペクトログラムである。 図12は、同実施例2を用いて、センサの状態を計測した結果を示すスペクトログラムである。 図13は、本発明の実施例3の光周波数領域反射測定方式の物理量計測装置を用いて、センサの状態を計測した結果を示すスペクトログラムである。 図14は、同実施例3を用いて、センサの状態を計測した結果を示すスペクトログラムである。 図15は、同実施例3において、測定点数を増やして温度と歪み同時計測した結果をグラフ化したものである。 図16は、PANDAファイバの複屈折とこのファイバにより構成されたFBGからなるセンサの温度変化に対するブラッグ波長のシフト特性差を示すグラフである。 図17は、本発明の実施例4において、センサに生じる温度分布と歪みを計測するための実験系を模式的に示した図である。 図18は、同実施例4において、ヒータAの位置およびヒータBの位置における温度変化と歪みを計測した結果を示すグラフである。 図19は、比較例1の光周波数領域反射測定方式の物理量計測装置を用いて、センサの状態を計測した結果を示すスペクトログラムである。 図20は、同比較例1を用いて、センサの状態を計測した結果を示すスペクトログラムである。 図21は、本発明の実施例5の光周波数領域反射測定方式の物理量計測装置を示す概略構成図である。 図22は、同実施例5を用いて、センサの状態を計測した結果を示すスペクトログラムである。 図23は、本発明の実施例6の光周波数領域反射測定方式の物理量計測装置を用いて、センサの状態を計測した結果を示すスペクトログラムである。 図24は、比較例2の光周波数領域反射測定方式の物理量計測装置を用いて、センサの状態を計測した結果を示すスペクトログラムである。 図25は、本発明の実施例7の光周波数領域反射測定方式の物理量計測装置を示す概略構成図である。 図26は、同実施例7を用いて、センサの状態を計測した結果を示すスペクトログラムである。 図27は、同実施例7を用いて、センサの状態を計測した結果を示すスペクトログラムである。
符号の説明
10A,10B,10C,10D,10E,10F,10G,10H,10I,10J,10K(10) 光周波数領域反射測定方式の物理量計測装置
11 偏波保持カプラ
12 チューナブルレーザ
13,14 フォトダイオード
15 偏波ビームスプリッタ
16 参照用反射端
17 センサ
18,19,20,21 偏波保持ファイバ
22 制御部
74 システムコントローラ
75 A/Dコンバータ
80(80A,80B) PANDAファイバ
81(81A,81B) コア
82(82A,82a,82B,82b) 応力付与部
α,β 入射部
 以下、図面を参照して本発明の光ファイバセンサシステムの実施形態を説明する。
(第一の実施形態)
 図1は、本発明の光周波数領域反射測定(以下、「OFDR」と略す)方式の物理量計測装置の第一の実施形態を示す概略構成図である。
 本実施形態のOFDR方式の物理量計測装置10A(10)は、測定光を出射するチューナブルレーザ(TLS)12と;このチューナブルレーザ12に一端が接続された第1の偏波保持ファイバ18と;この第1の偏波保持ファイバ18の他端に接続された偏波保持カプラ11と;この偏波保持カプラ11に一端が接続され、他端が参照用反射端16である第2の偏波保持ファイバ20と;偏波保持カプラ11に一端が接続された第3の偏波保持ファイバ21と;この第3の偏波保持ファイバのコアに形成されたファイバブラッググレーティングからなるセンサ17と;偏波保持カプラ11に一端が接続された第4の偏波保持ファイバ19と;この第4の偏波保持ファイバを介して偏波保持カプラ11と接続され、センサ17からのブラッグ反射光と参照用反射端16からの参照光とを検出するフォトダイオード13と;このフォトダイオード13で検出されたブラッグ反射光と参照光との合波光強度変化に基づき、これらブラッグ反射光及び参照光間の干渉強度の変調を検知する制御部22と;第2の偏波保持ファイバ20の直交する2つの偏波軸及び第3の偏波保持ファイバ21の直交する2つの偏波軸の両方に、測定光を入射する入射部αと;から概略構成されている。本実施形態において、偏波保持カプラ11は、第1~第4の偏波保持(以下、「PM」と略す)ファイバと同種のPMファイバで構成されている。
 チューナブルレーザ12としては、チューナブルレーザ12から出射した測定光がセンサ17で反射してフォトダイオード13に入射するまでの光路長よりも長いコヒーレンス長を有するものが好適に用いられる。
 フォトダイオード13としては、チューナブルレーザ12から出射する測定光の波長を変化させた時、2つの反射点、すなわち、参照用反射端16とセンサ17とから得られる光干渉の強度変調を検知できるカットオフ周波数を有するものが好適に用いられる。
 制御部22は、例えばフォトダイオード13からの信号をサンプリングするA/Dコンバータ75と、このサンプリングデータを解析するシステムコントローラ74とを備える。A/Dコンバータ75としては、フォトダイオード13で検知した光干渉の強度変調を検知できるサンプリング周波数を有するものが好適に用いられる。A/Dコンバータ75は、フォトダイオード13で計測したアナログの光干渉信号を、デジタル的にサンプリングする。このデジタル干渉信号は、システムコントローラ74へと伝送される。システムコントローラ74では、このデジタル干渉信号を用いて、STFT(Short Time Fourier Transform;STFT)解析が行なわれる。解析方法に関しては、後述する。このシステムコントローラ74としては、A/Dコンバータ75で得られたデジタル干渉信号をSTFT解析できるものであれば、特に限定されない。システムコントローラ74は、汎用インターフェイスバス(GPIB)を介してチューナブルレーザ12に接続され、チューナブルレーザ12の制御を行なっている。
 入射部αは、第1のPMファイバ18に設けられ、チューナブルレーザ12から単一偏波として出射された測定光を、この第1のPMファイバ18の直交する2つの偏波軸に分波する。入射部αは、第2のPMファイバ20の直交する2つの偏波軸及び第3のPMファイバ21の直交する2つの偏波軸の両方に、測定光を入射できればよく、図2に示すように、第2のPMファイバ20と第3のPMファイバ21との両方に配されていてもよい。入射部αを1箇所に設けるだけでよい点で、入射部αは、センサ17が形成されたPMファイバ21と、参照用反射端16を有するPMファイバ20との分岐部の前段(すなわち、第1のPMファイバ18)に設けられていることが好ましい。
 また、入射部αとしては、λ/2板を挿入する方法、偏波軸角度オフセット融着接続を設ける方法、あるいは、チューナブルレーザ12からの単―偏波の測定光に対して、PMファイバの偏波軸が角度オフセットを有するように、PMファイバを配置し、チューナブルレーザ12からの出射光をPMファイバに結合させる方法など、単一偏波の測定光をPMファイバの直交する2つの偏波軸に分波できる手段であれば、いかなるものでも用いられる。
 その中でも、簡便である点、測定光を均等に2偏波に分波できる点から、この入射部αとしては、この第1のPMファイバ18に45°の偏波軸オフセット角度を有して形成された融着接続部(以下、「45°オフセット融着」と言う)であるのが好ましい。
 ここで、偏波軸角度オフセットを有する融着接続とは、PMファイバの一方の偏波軸が、融着点であるオフセット角度を有するように、2つのPMファイバを融着接続することである。PMファイバの一方の偏波軸が、融着点であるオフセット角度を有するということは、直交する他方の偏波軸も同様のオフセット角度を有して2つのPMファイバが融着接続されることを意味する。
 図3は、PMファイバとしてPANDA(Polarization-maintaining and Absorption reducing)ファイバを用いた場合の45°オフセット融着の様子を模式的に示した図である。
 ここで、PANDAファイバ80とは、ファイバに複屈折を持たせるために、コア81両端のクラッドに、円形の応力付与部82を設けたファイバである。この応力付与部82により、直交する2つの偏波モード間に伝搬定数差(実効屈折率差)が生じる。そのため、それぞれの偏波モードからもう一方への偏波モードへの結合を抑制できる。この直交する2つの偏波モードが伝搬する偏波軸は、スロー軸、ファスト軸と呼ばれ、スロー軸とファスト軸の実効屈折率の差は、複屈折と呼ばれる。
 この2つの応力付与部82とコア81を結んだ直線(すなわち、PANDAファイバ80Aの、2つの応力付与部82A,82aと、コア81Aとを結んだ直線83Aと;PANDAファイバ80Bの、2つの応力付与部82B,82bと、コア81Bとを結んだ直線83Bと;)を、2つのPANDAファイバ80A,80Bの間で所望の偏波軸オフセット角度θとなるように接続することで、所望のオフセット融着接続を実現できる。
 本実施形態のOFDR方式の物理量計測装置10Aでは、チューナブルレーザ12とPMカプラ11との間に、チューナブルレーザ12から単一偏波として出射された測定光を、第1のPMファイバ18の直交する2つの偏波軸に分岐するための入射部αが設けられている。これにより、センサ17における直交する2つの偏波軸からのブラッグ反射光を得ることができる。この直交する2つの偏波軸からのブラッグ反射光の波長の変化を検出すれば、センサ17が配された部位の温度および歪みを計測でき、結果として、温度補償用のセンサが不要の歪みセンサを実現できる。
<センサの位置特定方法>
 次に、本実施形態のOFDR方式の物理量計測装置10Aを用いたセンサ17の位置特定方法について説明する。第1~第4のPMファイバとして、PANDAファイバを用いた場合を例示する。
 本実施形態のOFDR方式の物理量計測装置10Aでは、フォトダイオード13に、センサ17からのブラッグ反射光と、参照用反射端16からの反射光との干渉光が入射する。フォトダイオード13に入射するこの光干渉信号Dは、直交する2つの偏波軸の和となり、下記の式(2)で表される。
Figure JPOXMLDOC01-appb-I000003
 上記の式(2)において、RslowとRfastはPANDAファイバの直交する2つの偏波軸からの干渉光の強度、すなわち、スロー軸(X軸)とファスト軸(Y軸)からの干渉光強度を示す。kは波数、nslowとnfastはスロー軸(X軸)とファスト軸(Y軸)の実効屈折率を示す。Lは、第2のPANDAファイバ20におけるPMカプラ11から参照用反射端16までの長さと、第3のPANDAファイバ21におけるPMカプラ11からセンサ17までの長さとの差を示す。つまりLは、図1に示すように、第3のPANDAファイバ21において、参照用反射端16を有する第2のPANDAファイバ20の長さに相当する位置から、センサ17までのファイバ長を示している。
 本実施形態のOFDR方式の物理量計測装置10Aを用いて上記Dを求め、得られた光干渉信号Dを、制御部22に備えたシステムコントローラ74にて短時間フーリエ変換(Short Time Fourier Transform;STFT)解析する。これにより、第3のPANDAファイバ21の直交する2つの偏波軸におけるLに相当する光路長nslowとnfastが求められる。なお、本発明の物理量計測装置では、フォトダイオード13において計測した上記式(2)に相当するアナログの光干渉信号を、制御部22に備えたA/Dコンバータ75にてデジタル的にサンプリングし、このデジタル干渉信号を、制御部22に備えたシステムコントローラ74にてSTFT解析するが、本文においては、フォトダイオード13において計測した光干渉信号を制御部22に備えたシステムコントローラ74にてSTFT解析すると略記する場合も、同様の処理をおこなっていることを意味する。前記のとおり、A/Dコンバータ75は、フォトダイオード13で検知した光干渉の強度変調を検知できるサンプリング周波数を有するので、アナログの光干渉信号とサンプリングしたデジタル干渉信号とは、原理的には同じ信号である。また、アナログの光干渉信号を示す数式を用いることで、より効果的に本発明の特徴を説明できる箇所は、光干渉信号を用いて説明する。
 次いで、本実施形態のOFDR方式の物理量計測装置10Aでは、得られた2つの光路長nslowとnfastに対して、1つの任意の実効屈折率を代入し、Lを求める。以上で、センサ17の位置が特定できる。本実施形態では、このようにしてセンサ17における直交する2つの偏波軸から得られたブラッグ反射光を用いて、センサ17の位置が求められる。
<温度と歪みの計測方法>
 次に、本実施形態のOFDR方式の物理量計測装置10Aを用いた温度と歪みの計測方法について説明する。
 まず、予めある基準温度(例えば、20℃)、基準歪み(例えば、0με)におけるセンサ17の直交する2つの偏波軸からのブラッグ反射光の波長を計測しておく。
 次いで、センサ17を検知したい場所(以下、「検知部」と言う)に配置し、この検知部において、センサ17の直交する2つの偏波軸からのブラッグ反射光の波長を計測する。
 次いで、検知部におけるブラッグ反射光の波長と、基準温度、基準歪みでのブラッグ反射光の波長差(変化量)を計算する。
 次いで、得られた波長差を、下記の式(3)に代入して、検知部における温度と基準温度の差、検知部における歪みと基準歪みの差を求め、最後に既知の基準温度、基準歪みから検知部における実温度と実歪みを算出する。
Figure JPOXMLDOC01-appb-I000004
 上記の式(3)において、ΔTは検知部における温度と基準温度の差を示す。Δεは検知部における歪みと基準歪みの差を示す。Tは検知部における温度、εは検知部における歪みを示す。λslowとλfastは検知部におけるセンサ17の直交する2つの偏波軸からのブラッグ反射光の波長を示す。ΔλslowとΔλfastは検知部におけるセンサ17の直交する2つの偏波軸からのブラッグ反射光の波長と、基準温度、基準歪みにおけるセンサ17の直交する2つの偏波軸からのブラッグ反射光の波長との差を示す。∂λslow/∂εと∂λfast/∂εは、単位歪みあたりのスロー軸とファスト軸のブラッグ波長シフト量を示す。∂λslow/∂Tと∂λfast/∂Tは、単位温度あたりのスロー軸とファスト軸のブラッグ波長シフト量を示す。
 上記単位歪みあるいは単位温度あたりのブラッグ波長のシフト量は、OFDR方式の物理量計測装置10Aを用い、基準温度(20℃)においてセンサ17に歪みを与え、センサ17におけるブラッグ波長変化の歪み依存性を測定し、基準歪み(0με)においてセンサ17に温度変化を与え、センサ17におけるブラッグ波長変化の温度依存性を測定することで求められる。
 次いで、これら∂λslow/∂ε、∂λfast/∂ε、∂λslow/∂T、∂λfast/∂Tの値から、上記式(3)に記載のD値を求める。そして、このD値と、計測結果から得られたΔλslow及びΔλfastとを、上記の式(3)に代入して演算を行うことにより、ΔTおよびΔεが求められる。そして、これらの値から基準温度、基準歪みを差し引けば、検知部における温度および歪みを求められる。
 これらの演算は、システムコントローラ74を用いて簡単に行える。
(第二の実施形態)
 図4は、本発明のOFDR方式の物理量計測装置10Cの第二の実施形態を示す概略構成図である。本実施形態が第一の実施形態と異なる点は、第4のPMファイバ19には、センサ17からのブラッグ反射光を分波する偏波ビームスプリッタ15が更に配され、この偏波ビームスプリッタ15に、第1のフォトダイオード13と第2のフォトダイオード14とが接続されている点である。入射部αは、上述した第一の実施形態の際と同様に、第2のPMファイバ20と第3のPMファイバ21との両方に設けてもよい。
 偏波ビームスプリッタ15は、上記第1~第4のPMファイバと同種のPMファイバで構成されている。この偏波ビームスプリッタ15には、センサ17からのブラッグ反射光と参照用反射端16からの反射光との干渉光が入射する。この干渉光は、偏波ビームスプリッタ15にて、直交する2つの偏波軸に分波され、それぞれ第1のフォトダイオード13と第2のフォトダイオード14とに入射される。
 チューナブルレーザ12、PMカプラ11、第1のフォトダイオード13、入射部α、第1~第4のPMファイバ、制御部22に関しては第一の実施形態と同一である。また、第2のフォトダイオード14は、第1のフォトダイオード13と同種のものを用いることができる。
 本実施形態OFDR方式の物理量計測装置10Cによれば、センサ17における直交する2つの偏波軸からのブラッグ反射光と参照用反射端16からの反射光との干渉光を、偏波ビームスプリッタ15により各偏波軸の干渉光に分波して、第1のフォトダイオード13及び第2のフォトダイオード14にてそれぞれ計測できる。これにより、センサ17における直交する2つの偏波軸からのブラッグ反射光が波長軸に対して重なることなく、それぞれの変化量を個別に識別して計測できる。その結果、検知部の温度および歪みの計測精度が向上する。また、第1のフォトダイオード13と第2のフォトダイオード14とから得られた光干渉信号を並列処理できるため、センサ17の温度と歪みの計測を短時間で行える。
<センサの位置特定方法>
 次に、本実施形態のOFDR方式の物理量計測装置10Cを用いたセンサの位置特定方法について説明する。第1~第4のPMファイバとして、PANDAファイバを用いた場合を例示する。
 本実施形態のOFDR方式の物理量計測装置10Cでは、センサ17からのブラッグ反射光と参照用反射端16からの反射光との干渉光が、偏波ビームスプリッタ15で直交する2つの偏波軸に分波され、第1のフォトダイオード13と第2のフォトダイオード14にそれぞれ入射される。第1のフォトダイオード13に入射される光干渉信号Dは、下記の式(4)で表される。一方、第2のフォトダイオード14に入射される光干渉信号Dは、下記の式(5)で表される。
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
 上記の式(4)、(5)において、RslowとRfastはPANDAファイバの直交する2つの偏波軸からの干渉光の強度、すなわち、スロー軸(X軸)とファスト軸(Y軸)からの干渉光強度を示す。kは波数、nslowとnfastはスロー軸(X軸)とファスト軸(Y軸)の実効屈折率を示す。Lは、上記第一の実施形態と同様に、PANDAファイバ21において、参照用反射端16を有するPANDAファイバ20の長さに相当する位置からセンサ17までのファイバ長を示す。
 本実施形態のOFDR方式の物理量計測装置10Cを用いて上記D、Dを求め、得られた光干渉信号DおよびDを、システムコントローラ74にてSTFT解析することにより、PANDAファイバの直交する2つの偏波軸におけるLに相当する光路長nslowとnfastを求める。
 次いで、本実施形態のOFDR方式の物理量計測装置10Cでは、得られた2つの光路長nslowとnfastに対して、既知のnslowとnfastを代入してLを求める。
 このnslowとnfastとしては、センサ17からのブラッグ反射光の波長と、センサ17の作製に使用したユニフォーム位相マスクの回折格子の間隔から計算されるグレーティング周期とから求めた値や、ニアフィールドパターン測定から求めた値などを用いることができる。
 上記の通り、本実施形態のOFDR方式の物理量計測装置10Cを用いたセンサの位置特定方法では、得られた2つの光路長nslowとnfastに対して、既知のnslowとnfastを代入してLを求めるため、センサ17のファイバ長Lを正確に特定できる。そのため、高い空間分解能で計測を行える。
<温度と歪みの計測方法>
 次に、本実施形態のOFDR方式の物理量計測装置10Cを用いた温度と歪みの計測方法について説明する。本実施形態のOFDR方式の物理量計測装置10Cを用いた場合も、第一の実施形態と同様に測定できる。
 第一の実施形態の際と同様に、予めある基準温度(例えば、20℃)、基準歪み(例えば、0με)におけるセンサ17の直交する2つの偏波軸からのブラッグ反射光の波長を計測しておく。
 次いで、センサ17を検知部に配置し、この検知部において、センサ17の直交する2つの偏波軸からのブラッグ反射光の波長を計測する。
 次いで、検知部におけるブラッグ反射光の波長と、基準温度、基準歪みでのブラッグ反射光の波長差(変化量)を計算する。
 次いで、得られた波長差を、上記の式(3)に代入して、検知部における温度と基準温度の差、検知部における歪みと基準歪みの差を求め、最後に既知の基準温度、基準歪みから検知部における実温度と実歪みを算出する。
 次いで、これらの値から上記の式(3)に記載のD値を求める。そして、このD値と、計測結果から得られたΔλslow及びΔλfastとを、上記の式(3)に代入して演算を行うことにより、ΔTおよびΔεが求められる。そして、これらの値から基準温度、基準歪みを差し引けば、検知部における温度および歪みを求められる。
 本実施形態のOFDR方式の物理量の計測装置10Cを用いた温度と歪みの測定方法では、センサ17における直交する2つの偏波軸からのブラッグ反射光の波長における温度と歪みによる変化量を計測できるため、検知部の温度および歪みの計測精度が向上する。
(第三の実施形態)
 図5は、本発明のOFDR方式の物理量計測装置10Dの第三の実施形態を示す概略構成図である。
 本実施形態が第一の実施形態と異なる点は、第3のPMファイバ21の、センサ17とPMカプラ11との間には、センサ17における直交する2つの偏波軸からのブラッグ反射光の光路長差を、センサ17の長さに相当する光路長よりも長くするための延長ファイバ31が配されている点である。入射部αは、上述した第一の実施形態の際と同様に、第2のPMファイバ20と第3のPMファイバ21との両方に設けてもよい。入射部αを第3のPMファイバに設けるときは、入射部αは、延長ファイバ31とPMカプラ11との間に設ける。
 チューナブルレーザ12、PMカプラ11、フォトダイオード13、入射部α、第1~第4のPMファイバ及び制御部22に関しては、第一の実施形態と同一である。
 延長ファイバ31としては、センサ17が形成された第3のPMファイバ21と同種のPMファイバを用いることが好ましい。
 延長ファイバ31と、センサ17が形成された第3のPMファイバ21とが同種のファイバであるとき、延長ファイバ31の長さをL、センサ17が形成された第3のPMファイバ21の直交する2つの偏波軸の実効屈折率の差を(nslow-nfast)、センサ17の長さをlとすると、延長ファイバ31の長さLは下記の式(6)を満たすことが好ましい。
Figure JPOXMLDOC01-appb-I000007
 但し、このとき、センサ17の長さl、および、延長ファイバ31とセンサ17との間の余長ファイバ長は、延長ファイバ31の長さLに対して十分に短く、無視できるものとする。
 本実施形態のOFDR方式の物理量計測装置10Dにおいて、延長ファイバ31とセンサ17が形成された第3のPMファイバ21とが異種のファイバであるときは、延長ファイバ31の長さを、上記の式(6)のLに相当する光路長より長い光路長を有するような長さとすることが好ましい。
 本実施形態のOFDR方式の物理量計測装置10Dでは、チューナブルレーザ12とPMカプラ11との間に、チューナブルレーザ12から単一偏波として出射された測定光を、第2のPMファイバ20および第3のPMファイバ21の直交する2つの偏波軸に分岐するための入射部αが設けられている。そのため、センサ17における直交する2つの偏波軸からのブラッグ反射光を得ることができ、この直交する2つの偏波軸からのブラッグ反射光の波長の変化により、センサ17における温度および歪みを同時に計測でき、結果として、温度補償用のセンサが不要の歪みセンサを実現できる。
 また、延長ファイバ31を設けることにより、センサ17における直交する2つの偏波軸からのブラッグ反射光が、波長軸に対して重なることがない。その結果、それぞれの変化量を個別に識別して計測でき、検知部の温度および歪みの計測精度を向上できる。
<センサの位置特定方法>
 次に、本実施形態のOFDR方式の物理量計測装置10Dを用いたセンサ17の位置特定方法について説明する。第1~第4のPMファイバとして、PANDAファイバを用いた場合を例示する。
 本実施形態のOFDR方式の物理量計測装置10Dでは、フォトダイオード13に、センサ17からのブラッグ反射光と参照用反射端16からの反射光との干渉光が入射する。フォトダイオード13に入射するこの光干渉信号Dは、直交する2つの偏波軸の和となり、下記の式(7)で表される。
Figure JPOXMLDOC01-appb-I000008
 上記の式(7)において、RslowとRfastはPANDAファイバの直交する2つの偏波軸からの干渉光の強度、すなわち、スロー軸(X軸)とファスト軸(Y軸)からの干渉光強度を示す。kは波数、nslowとnfastはスロー軸(X軸)とファスト軸(Y軸)の実効屈折率を示す。Lは、延長ファイバ31の長さを示す(正確には、第2のPANDAファイバ20におけるPMカプラ11から参照用反射端16までの長さと、第3のPANDAファイバ21におけるPMカプラ11からセンサ17までの長さとの差であるが、延長ファイバ31が第2のPANDAファイバ20に対して十分に長く、かつ、第3のPANDAファイバ21の長さが第2のPANDAファイバ20とほぼ同等であるとき、Lは延長ファイバ31の長さとみなせる)。
 本実施形態のOFDR方式の物理量計測装置10Dを用いて上記Dを求め、得られた光干渉信号Dを、制御部22のシステムコントローラ74にてSTFT解析することにより、PANDAファイバの直交する2つの偏波軸におけるLに相当する光路長nslowとnfastが求められる。
 次いで、本実施形態のOFDR方式の物理量計測装置10Dでは、得られた2つの光路長nslowとnfastに対して、1つの任意の実効屈折率(例えば、nslow)を代入してLを求める。
 この1つの任意の実効屈折率としては、センサ17からのブラッグ反射光の波長と、センサ17の作製に使用したユニフォーム位相マスクの回折格子の間隔から計算されるグレーティング周期とから求めた値や、ニアフィールドパターン測定から求めた値などを用いることができる。
 上記の通り、本実施形態のOFDR方式の物理量計測装置10Dを用いた温度と歪みの計測方法では、得られた2つの光路長nslowとnfastに対して1つの任意の実効屈折率(例えば、nslow)を代入してLを求める。そのため、解析上の延長ファイバ長Lがスロー軸とファスト軸とで異なるようになっている。その結果、それぞれの偏波軸からのブラッグ反射光の位置がずれて、波長軸に対して重なることなく、個別に識別して計測できる。ゆえに、それぞれのブラッグ反射光の波長を精度よく計測することができる。
<温度と歪みの計測方法>
 次に、本実施形態のOFDR方式の物理量計測装置10Dを用いた温度と歪みの計測方法について説明する。本実施形態のOFDR方式の物理量計測装置10Dを用いた場合も、第一および二の実施形態と同様に測定できる。
 第一および二の実施形態の際と同様に、予めある基準温度、基準歪みにおけるセンサ17の直交する2つの偏波軸からのブラッグ反射光の波長を計測しておく。
 次いで、センサ17を検知部に配置し、この検知部において、センサ17の直交する2つの偏波軸からのブラッグ反射光の波長を計測する。
 次いで、検知部におけるブラッグ反射光の波長と、基準温度、基準歪みでのブラッグ反射光の波長差(変化量)を、スロー軸とファスト軸のそれぞれについて計算する。
 次いで、得られた波長差を、上記の式(3)に代入して、検知部における温度と基準温度の差、検知部における歪みと基準歪みの差を求め、最後に既知の基準温度、基準歪みから検知部における実温度と実歪みを算出する。
 次いで、これらの値から上記の式(3)に記載のD値を求める。そして、このD値と、計測結果から得られたΔλslow及びΔλfastとを、上記の式(3)に代入して演算を行うことにより、ΔTおよびΔεが求められる。そして、これらの値から基準温度、基準歪みを差し引けば、検知部における温度および歪みを求められる。
 本実施形態のOFDR方式の物理量計測装置10Dを用いた温度と歪みの測定方法では、センサ17における直交する2つの偏波軸からのブラッグ反射光の各々の光路長に対して1つの任意の実効屈折率を代入することにより、センサ17における直交する2つの偏波軸からのブラッグ反射光が波長軸に対して重なることなく、それぞれの変化量を個別に識別して計測できる。その結果、検知部の温度および歪みを同時に計測できる。また、検知部の温度および歪みの計測精度を向上できる。
(第四の実施形態)
 図6は、本発明のOFDR方式の物理量計測装置10Eの第四の実施形態を示す概略構成図である。
 本実施形態が第一の実施形態と異なる点は、入射部αに換えて、第3のPMファイバ21における直交する2つの偏波軸のうちのいずれか一方の偏波軸に、測定光を入射する入射部βを備える点である。
 入射部βとしては、センサ17が形成された第3のPMファイバ21の直交する2つの偏波軸のうち、いずれか一方の偏波軸に測定光を入射できれば特に限定されるものではなく、例えばλ/2板等が挙げられる。
 この入射部βは、センサ17が形成された第3のPMファイバ21と、参照用反射端16を有する第2のPMファイバ20との分岐部の後段、かつ、センサ17の前段、すなわち、第3のPMファイバ21において、PMカプラ11とセンサ17との間に設けられていることが好ましい。さらに、入射部βは、PMカプラ11から参照用反射端16までのファイバ長と、PMカプラ11から入射部βまでのファイバ長とが等しくなる位置に設けられていることが好ましい。この位置に入射部βを設けることで、後記するセンサの位置特定方法において、センサ17の位置を正確に求めることができる。
 本実施形態のOFDR方式の物理量計測装置10Eでは、外部コントロール、もしくは手動により、入射部β(λ/2板)の角度を変えることにより、測定光が入射部β(λ/2板)に入射する角度を自在に制御できる。
 チューナブルレーザ12から単一偏波として出射された測定光が、入射部β(λ/2板)に対して角度0°、90°、180°、270°で入射された際、測定光は偏波軸を変換することなく、元の偏波軸を伝搬してセンサ17に到達する。そして、その反射光が入射部β(λ/2板)を通過した際も、偏波軸を変換することなく、元の偏波軸を伝搬する。すなわち、センサ17のスロー軸を伝搬している測定光は、その偏波軸を保持したままフォトダイオード13に入射する。本実施形態では、これをスロー軸測定モードと定義する。
 一方、チューナブルレーザ12から単一偏波として出射された測定光が、入射部β(λ/2板)に対して角度45°、135°、225°、315°で入射した際、測定光は他方の偏波軸に変換されてセンサ17に到達する。そして、その反射光が入射部β(λ/2板)を通過した際、元の偏波軸に変換される。すなわち、センサ17のスロー軸を伝搬している測定光は、ファスト軸に変換されてセンサ17に到達する。そして、センサ17からのブラッグ反射光は、入射部β(λ/2板)を通過する際、スロー軸に変換されてフォトダイオード13に入射する。本実施形態では、これをファスト軸測定モードと定義する。
 したがって、本実施形態のOFDR方式の物理量計測装置10Eでは、例えば1回目の計測をスロー軸測定モードにより行い、2回目の計測をファスト軸測定モードにより行うことで、2つの信号がそれぞれ得られる。ゆえに、それぞれの信号を個別に解析でき、測定精度の向上が図れる。
<センサの位置特定方法>
 次に、本実施形態のOFDR方式の物理量計測装置10Eを用いたセンサの位置特定方法について説明する。第1~第4のPMファイバとして、PANDAファイバを用いた場合を例示する。
 本実施形態のOFDR方式の物理量計測装置10Eでは、フォトダイオード13に、センサ17からのブラッグ反射光と、参照用反射端16からの反射光との干渉光が入射する。このフォトダイオード13に入射する光干渉信号Dは、入射部β(λ/2板)の測定光に対する角度により決まり、それぞれ下記の式(8)および(9)で表される。
 測定光が入射部β(λ/2板)に対して角度0°、90°、180°、270°で入射したとき(スロー軸測定モード)、フォトダイオード13に入射する光干渉信号Dは、下記の式(8)で表される。また、測定光が入射部β(λ/2板)に対して角度45°、135°、225°、315°で入射したとき(ファスト軸測定モード)、フォトダイオード13に入射する光干渉信号Dは、下記の式(9)で表される。
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
 本実施形態のOFDR方式の物理量計測装置10Eを用いて上記D、Dをそれぞれ求め、得られた光干渉信号D、Dを、制御部22のシステムコントローラ74にてSTFT解析することにより、PANDAファイバの直交する2つの偏波軸におけるLに相当する光路長nslowとnfastを求める。
 次いで、本実施形態のOFDR方式の物理量計測装置10Eでは、スロー軸測定モードで得た光干渉信号Dから得られた光路長nslowに対して、既知のnslowを代入してLを求め、ファスト軸測定モードで得た光干渉信号Dから得られた光路長nfastに対して、既知のnfastを代入してLを求める。
 本実施形態では、例えば1回目の計測をスロー軸測定モードにより行い、2回目の計測をファスト軸測定モードにより行える。すなわち、2回の計測で異なる2つの信号を得て、それぞれの信号を個別に解析している。そのため、それぞれの計測で得られた2つの光路長nslowとnfastに対して、既知のnslowとnfastを代入してLを求められる。そのため、センサ17のファイバ長Lを正確に測定できる。
 本実施形態のOFDR方式の物理量計測装置10Eでは、センサ17の直交する2つの偏波軸からのブラッグ反射光が得られるため、温度と歪みを計測することが可能となる。これにより、OFDR方式の物理量計測装置10Eを用いて歪み計測を行う場合、温度補償用のセンサが不要となる。また、一度の測定で、センサ17の直交する2つの偏波軸の一方におけるブラッグ反射光からの光干渉信号のみを取得するので、センサ17の直交する2つの偏波軸からのブラッグ反射光の変化量を、個別に識別して計測できる。これにより、センサ17における温度および歪みの計測精度の向上が図れる。
<温度と歪みの計測方法>
 次に、本実施形態のOFDR方式の物理量計測装置10Eを用いた温度と歪みの計測方法について説明する。本実施形態のOFDR方式の物理量計測装置10Eを用いた場合も、第一から三の実施形態と同様に測定できる。
 第一から三の実施形態の際と同様に、まず、予めある基準温度、基準歪みにおけるセンサ17の直交する2つの偏波軸からのブラッグ反射光の波長を計測しておく。
 次いで、センサ17を検知部に配置し、この検知部において、センサ17の直交する2つの偏波軸からのブラッグ反射光の波長をそれぞれ計測する。
 次いで、検知部におけるブラッグ反射光の波長と、基準温度、基準歪みでのブラッグ反射光の波長差(変化量)を、スロー軸とファスト軸のそれぞれについて計算する。
 次いで、得られた波長差を、上記の式(3)に代入して、検知部における温度と基準温度の差、検知部における歪みと基準歪みの差を求め、最後に既知の基準温度、基準歪みから検知部における実温度と実歪みを算出する。
 次いで、これらの値から上記の式(3)に記載のD値を求める。そして、このD値と、計測結果から得られたΔλslow及びΔλfastとを、上記の式(3)に代入して演算を行うことにより、ΔTおよびΔεが求められる。そして、これらの値から基準温度、基準歪みを差し引けば、検知部における温度および歪みを求められる。
 本実施形態のOFDR方式の物理量計測装置10Eを用いた温度と歪みの測定方法では、センサ17における直交する2つの偏波軸からのブラッグ反射光の波長における温度と歪みによる変化量をそれぞれ計測できるため、検知部の温度および歪みの計測精度が向上する。
 上述した第一の実施形態~第四の実施形態に関するOFDR方式の物理量測定装置に関し、センサが配された第3のPMファイバ21が、直交する2つの偏波軸の実効屈折率差(複屈折)が大きいPMファイバで構成されているのが好ましい。これにより、直交する2つの偏波軸における温度と歪みに対する感度差が大きくなり、より高精度の温度と歪みの計測を実現できる。より具体的には、直交する2つの偏波軸の実効屈折率差が、4.4×10-4以上であるのが好ましい。この値を満たすことで、後述する実施例から得られるように、センサの温度変化に対するブラッグ波長のシフト特性差を-5.0×10-4nm/℃より大きくできる。その結果、温度精度2℃、歪み精度20μεという、極めて高精度の温度と歪みの計測精度が得られる。
 以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
「実施例1」
 図7は、実施例1のOFDR方式の物理量計測装置10Fを示す概略構成図である。本実施例は、上述した第一の実施形態のOFDR方式の物理量計測装置10Aを基に構成している。図7において、図1に示した実施例1のOFDR方式の物理量計測装置の構成要素と同じ構成要素には同一符号を付して、その説明を省略する。
 実施例1のOFDR方式の物理量計測装置10Fは、図1に示すOFDR方式の物理量計測装置10Aに、更に2つのPMカプラ51,52と、フォトダイオード55と、2つの参照用反射端59,60と、を備える。これらはPMファイバの1種であるPANDAファイバ63,64,65,66,69,70によって連設されている。また、第1~第4のPMファイバとしても、PANDAファイバを用いた。
 チューナブルレーザ12は、汎用インターフェイスバス(GPIB)を介して、システムコントローラ74に接続され、これによりにより制御されている。
 2つのフォトダイオード(フォトダイオード13及びフォトダイオード55)からの信号は、A/Dコンバータ75によりサンプリングされ、そのサンプリングデータはシステムコントローラ74にてSTFT解析される。この解析方法に関しては、上述した第一の実施形態で記載した通りである。
 PMカプラ11,51,52としては、フジクラ社製のPTAP-0150-2-B(型式)を用いた。
 チューナブルレーザ12としては、Agilent社製の8164A(型式)を用いた。
 フォトダイオード13,55としては、New Focus社製の2117FC(型式)を用いた。
 PANDAファイバ18,19,20,21,63,64,65,66,69,70としては、フジクラ社製のSM-15-PS-U25A(型式)を用いた。
 システムコントローラ74としては、National Instruments社製のPXI-8106(型式)を用いた。
 A/Dコンバータ75としては、National Instruments社製のPXI-6115(型式)を用いた。
 チューナブルレーザ12は、ある一定速度、ある一定波長範囲で掃引(単調増加もしくは単調減少)された単一偏波の測定光を出射する。
 この実施例1では、速度10nm/sで、波長範囲1545~1555nmを掃引した測定光を出射した。チューナブルレーザ12から出射された単―偏波の測定光は、PANDAファイバ63のスロー軸を伝搬してファイバカプラ51に入射し、このファイバカプラ51にて光パワー分岐されて2つの光干渉計に入射する。
 上記2つの光干渉計のうちの一方は、ファイバカプラ52と、参照用反射端59,60と、第1のフォトダイオード55とから概略構成されており、参照用反射端59を有するPANDAファイバ69と、参照用反射端60を有するPANDAファイバ70とのファイバ長差(光路長差)に応じたトリガを生成している。この実施例1では、PANDAファイバ69とPANDAファイバ70のファイバ長差を50mとした。
 なお、このトリガは以下の方法で生成される。
 チューナブルレーザ12からある一定速度、ある一定波長範囲で掃引された測定光が、この光干渉計に入射すると、測定光は参照用反射端59,60によって反射され、その干渉光がフォトダイオード55で計測される。フォトダイオード55で取得した信号は、A/Dコンバータ75によりサンプリングされて電圧信号に変換され、この電圧信号がシステムコントローラ74に取り込まれる。チューナブルレーザ12から出射された測定光は、―定速度で波長が変化しているので、フォトダイオード55で計測される信号は、一定の光波数間隔で変動する正弦関数となる。したがって、ある一定の電圧値を閾値とし、システムコントローラ74にて、この閾値を超えるタイミング(閾値以下の値から閾値を上回るタイミング、もしくは、閾値以上の値から閾値を下回るタイミング)でトリガを生成することにより、生成されたトリガはある一定の光波数間隔となる。
 このトリガの生成方法は、チューナブルレーザ12の掃引速度が一定でない場合でも、トリガが発生する光波数間隔は常に一定となる点で非常に効果的である。
 上記2つの光干渉計のうちの他方は、図1に示す第一の実施形態から概略構成されている。
 センサ17は、KrFエキシマレーザとユニフォーム位相マスクを用いた一般的な露光方法により作製したものである。実施例1では、グレーティング長(センサ長)を5mmとした。また、参照用反射端16を有するPANDAファイバ71に相当する位置からセンサ17までの距離Lは、約6.2mとした。
 本実施例のOFDR方式の物理量計測装置10Fを用いて、センサ17の状態を計測した結果を図8に示す。OFDR方式の物理量計測装置では、センサ17からのブラッグ反射光をスペクトログラムで表示する。このスペクトログラムは、横軸が波長、縦軸がファイバ位置(参照用反射端16を有するPANDAファイバ71に相当する位置からのファイバ長L)、色調がブラッグ反射強度を示す。この実施例1では、得られた光干渉信号Dを約80ms間隔(チューナブルレーザ12を10nm/sの速度で掃引しているので、波長に換算すると約800pm間隔)に相当するウィンドウ幅で解析した。
 図8の結果から、実施例1では、センサ17のスロー軸およびファスト軸からのブラッグ反射光が得られた。この結果より、原理的には、温度と歪みを、別途温度補償用のセンサを用いることなく計測できることが確認された。
 しかしながら、センサ17のスロー軸からのブラッグ反射光とファスト軸からのブラッグ反射光とが波長軸に対して重なっているため、センサ17における直交する2つの偏波軸からのブラッグ反射光を個別に識別することが困難となり、波長解析精度が低下した。これは、温度と歪みの計測精度が低下することを意味している。
 また、わずかではあるが、センサ17のスロー軸からのブラッグ反射光と、ファスト軸からのブラッグ反射光のファイバ位置がずれていることが確認できた。具体的には、スロー軸からのブラッグ反射光の位置が約6.222m、ファスト軸からのブラッグ反射光の位置が約6.221mであった。これは、本来であれば異なる直交する2つの偏波軸の実効屈折率を、nslowに統一して解析した結果、それぞれの偏波軸からのブラッグ反射光の位置がずれて計測されてしまうためである。
 次に、センサ17のスロー軸とファスト軸からのブラッグ反射光の位置ずれ量ΔlのLに対する依存性を計算した。結果を図9に示す。
 この図9は、下記の式(10)より求めた。
Figure JPOXMLDOC01-appb-I000011
 但し、このとき、センサ17の長さは、Lに対して十分に短く、無視できるものとする。
 上記の式(10)において、nslowとnfastは、下記の式(11)より、センサ17のブラッグ反射光の波長と、センサ17の作製に使用したユニフォーム位相マスクの回折格子の間隔から計算されるグレーティング周期とから求めた値、nslow=1.44756、nfast=1.44720を用いた。
Figure JPOXMLDOC01-appb-I000012
 上記の式(11)において、λslowとλfastはセンサ17の直交する2つの偏波軸からのブラッグ反射光の波長、Λはユニフォーム位相マスクの回折格子の間隔から計算されるグレーティング周期を示す。
 図9の結果から、Lが6.2mのとき、Δlは1.55mmと計算される。すなわち、本実施例のOFDR方式の物理量計測装置10Fを用いて、センサ17の状態を計測した結果を示す図8は、スロー軸からのブラッグ反射光と、ファスト軸からのブラッグ反射光の現れる位置が1.55mmずれていることとなる。
 そこで、センサ17における直交する2つの偏波軸からのブラッグ反射光を個別に識別して計測することが可能な実施例2を作製し、測定を行なった。
「実施例2」
 図10は、実施例2のOFDR方式の物理量計測装置10Gを示す概略構成図である。本実施例2が実施例1と異なる点は、上述した第二の実施形態のOFDR方式の物理量計測装置を基に作製した点である。すなわち、本実施例が実施例1と異なる点は、第4のPMファイバ19には、センサ17からのブラッグ反射光を分波する偏波ビームスプリッタ15が更に配され、この偏波ビームスプリッタ15に、第1のフォトダイオード13と第2のフォトダイオード14とが接続されている点である。本実施例では、3つのフォトダイオード13,14,55からの信号は、A/Dコンバータ75によりサンプリングされ、そのサンプリングデータはシステムコントローラ74にてSTFT解析される。
 本実施例のOFDR方式の物理量計測装置10Gを用いて、センサ17の状態を計測した結果を図11、12に示す。
 図11は、第1のフォトダイオード13に入射した光干渉信号Dを解析した結果を示すスペクトログラムである。図12は、第2のフォトダイオード14に入射した光干渉信号Dを解析した結果を示すスペクトログラムである。
 図11に示すスペクトログラムにおいて、1550.6nmのブラッグ反射光が、センサ17のスロー軸からのものである。図12に示すスペクトログラムにおいて、1550.2nmのブラッグ反射光が、センサ17のファスト軸からのものである。これら2つのブラッグ反射光の位置は、ともに約6.212mであった。
 この実施例2では、光干渉信号Dと光干渉信号Dを個別に解析しているが、これは一度の計測で得た2つの信号をシステムコントローラ74により並列処理したものである。
 この実施例2では、センサ17の直交する2つの偏波軸からのブラッグ反射光が得られたので、原理的に温度と歪みを計測することが可能となる。これにより、本実施例のOFDR方式の物理量計測装置10Gを用いて歪み計測を行う場合、温度補償用のセンサが不要となる。また、センサ17の直交する2つの偏波軸からのブラッグ反射光を分波して、フォトダイオード13,14のそれぞれにて光干渉信号を取得したので、センサ17の直交する2つの偏波軸からのブラッグ反射光の変化量を個別に識別して計測することができた。これにより、センサ17の直交する2つの偏波軸からのブラッグ反射光の波長解析精度を向上することができる。これは、温度および歪みの計測精度が向上することを意味している。さらに、それぞれの計測で得られた2つの光路長nslowとnfastに対して、既知のnslowとnfastを代入してLを求めたので、センサ17の位置を正確に特定でき、高い分解能で計測することができた。
 次に、本実施例のOFDR方式の物理量計測装置10Gを用い、基準温度(20℃)においてセンサ17に歪みを与え、センサ17におけるスロー軸とファスト軸のブラッグ波長変化の歪み依存性を測定した。また、本実施例のOFDR方式の物理量計測装置10Gを用いて、基準歪み(0με)においてセンサ17に温度変化を与え、センサ17におけるスロー軸とファスト軸のブラッグ波長変化の温度変化依存性を測定することで、センサ17における上記の式(3)の各項を求めたところ、下記の式(12)が得られた。この式(12)を用いて計算すると、上記の式(3)におけるD値は、D=-6.39×10-7(nm/με・℃)となった。
Figure JPOXMLDOC01-appb-I000013
 計測結果から得られたΔλslowとΔλfast、および上記のDを、上記の式(3)に代入して演算を行うことにより、ΔTおよびΔεが求められ、これらの値から基準温度、基準歪みを差し引けば検知部における温度および歪みを求めることができる。
 これらの演算は、OFDR方式の物理量計測装置のシステムコントローラ74を用いて簡単に行うことができる。
「実施例3」
 FBGからなるセンサ17が、スロー軸とファスト軸の実効屈折率差(複屈折)が大きいPANDAファイバに形成されていること以外は、実施例2と同様にしてOFDR方式の物理量計測装置10Hを作製し、これを実施例3とした。
 本実施例のOFDR方式の物理量計測装置10Hを用いて、センサ17の状態を計測した結果を図13、図14に示す。
 図13は、第1のフォトダイオード13に入射した光干渉信号Dを解析した結果を示すスペクトログラムである。図14は、第2のフォトダイオード14に入射した光干渉信号Dを解析した結果を示すスペクトログラムである。
 図13に示すスペクトログラムにおいて、1551.1nmのブラッグ反射光が、センサ17のスロー軸からなるものである。図14に示すスペクトログラムにおいて、1550.4nmのブラッグ反射光が、センサ17のファスト軸からなるものである。これら2つのブラッグ反射光の位置は、ともに6.2408mであった。
 実施例3において得られたセンサ17のスペクトログラムをより詳細に解析したところ、スロー軸とファスト軸のブラッグ波長差は0.661nmであり、このブラッグ波長差から計算した複屈折は6.19×10-4であった。一方、実施例2で得られたセンサ17のスペクトログラムをより詳細に解析して得られたブラッグ波長差は0.361nmであり、このブラッグ波長差から計算した複屈折は3.37×10-4であった。つまり、実施例3のセンサ17を構成するPANDAファイバは、実施例2のセンサ17を構成するPANDAファイバよりも2倍近く大きな複屈折を持っている。
 次に、本実施例のOFDR方式の物理量計測装置10Hを用い、基準温度(20℃)においてセンサ17に歪みを与え、センサ17におけるスロー軸とファスト軸のブラッグ波長変化の歪み依存性を測定した。また、本実施例のOFDR方式の物理量計測装置10Hを用いて、基準歪み(0με)においてセンサ17に温度変化を与え、センサ17におけるスロー軸とファスト軸のブラッグ波長変化の温度変化依存性を測定することで、センサ17における上記の式(3)の各項を求めたところ、下記の式(13)が得られた。これらを用いて計算すると、上記の式(3)におけるD値は、D=-10.02×10-7(nm/με・℃)となった。
Figure JPOXMLDOC01-appb-I000014
 上記の式(3)を用いて温度と歪みを算出する際、∂λslow/∂εと∂λfast/∂εの差(スロー軸とファスト軸の歪みに対するブラッグ波長のシフト特性差)、および、∂λslow/∂Tと∂λfast/∂Tの差(スロー軸とファスト軸の温度変化に対するブラッグ波長のシフト特性差)が大きいほど、温度と歪みの算出精度は向上する。上記の式(13)において注目すべき点は、上記の式(12)に比較してスロー軸とファスト軸の温度変化に対するブラッグ波長のシフト特性差が大きい点である。
 具体的には、実施例2で求めた上記の式(12)は-3.63×10-4nm/℃であるのに対し、実施例3で求めた上記の式(13)が-6.49×10-4nm/℃である。つまり、実施例3のセンサ17は、実施例2のセンサ17よりも2倍近い温度変化に対するブラッグ波長のシフト特性差を有する。これは、それぞれのセンサを構成するPANDAファイバの複屈折の差に起因している。
 PANDAファイバは、温度の上昇に比例してコアに生じる複屈折は小さくなり、800~900℃程度で複屈折がほぼ0になることが知られている。つまり、基準温度における複屈折が大きいほど、単位温度上昇あたりの複屈折の減少量が大きくなる。したがって、実施例3のセンサ17は、実施例2のセンサ17よりも2倍近い温度変化に対するブラッグ波長のシフト特性差を有する。
 次に、表1に、実施例3のセンサ17に任意の温度変化と歪みを与え、実施例3のOFDR方式の物理量計測装置10Hにより温度変化と歪みを計測した結果を示す。
Figure JPOXMLDOC01-appb-T000015
 表1の結果から、基準温度(20℃)からの温度変化を20、40、100℃(つまり、設定温度40、60、120℃)、基準歪み(0με)からの歪みを250、500、1000μεとし、合計9通りの条件で温度と歪みを計測したところ、温度精度2℃、歪み精度20μεという、極めて高精度の温度と歪みの同時計測結果を得た。
 図15は、表1から測定点数を増やして同時計測の結果をグラフ化したものである。グラフ中の直線の交点は計測条件を示し、赤のプロットは計測結果を示す。つまり、プロットと交点のずれが計測誤差を示している。この結果より、いずれの計測条件においても高い精度で温度変化と歪みを同時に計測できていることが確認できた。
 以上説明した実施例3によると、本発明のOFDR方式の物理量計測装置に用いるFBGからなるセンサは、複屈折の大きなPANDAファイバから構成されていることが望ましい。FBGからなるセンサの温度変化と歪みの同時計測精度の関係について詳細な検討を行ったとろ、このセンサの温度変化に対するブラッグ波長のシフト特性差が-5.0×10-4nm/℃より大きなシフト特性を有することが望ましいことが分かった。
 図16は、PANDAファイバの複屈折とこのファイバにより構成されたFBGからなるセンサの温度変化に対するブラッグ波長のシフト特性差を評価した結果を示すグラフである。
 この結果より、PANDAファイバの複屈折が4.4×10-4以上のとき、このセンサの温度変化に対するブラッグ波長のシフト特性差が-5.0×10-4nm/℃より大きなシフト特性を有することになる。つまり、PANDAファイバの複屈折が4.4×10-4以上であることが望ましい。
 本実施例では、FBGからなるセンサの温度変化に対するブラッグ波長のシフト特性差を-5.0×10-4nm/℃より大きくするために、応力付与部をコアに近付けたPANDAファイバを用いたが、本発明を実現しうる他のPANDAファイバとして、融点の低い応力付与部を備えたPANDAファイバが挙げられる。より具体的には、応力付与部の融点が600℃以下である場合、ブラッグ波長のシフト特性を-5.0×10-4nm/℃より大きくすることができる。
「実施例4」
 センサ17のグレーティング長(センサ長)を100mmとしたこと以外は実施例3と同様にOFDR方式の物理量測定装置10Iを作製し、これを実施例4とした。
 本実施例のOFDR方式の物理量測定装置10Iを用いて、センサの状態を測定したところ、センサ17のスロー軸からのブラッグ反射光は1549.4nm、センサ17のファスト軸からのブラッグ反射光は1548.7nmであった。
 このとき得られたスペクトログラムをより詳細に解析して得られたブラッグ波長差は、0.670nmであった。これは、実施例3と同等のブラッグ波長差であることから、本実施例のセンサの複屈折は、実施例3と同等である。
 図17は、本実施例のOFDR方式の物理量計測装置10Iを用いた、センサに生じる温度分布と歪みを計測するための実験系を模式的に示した図である。この実験系では、分銅Wによりセンサの長手方向に沿って均一な歪みを与えるとともに、独立して温度制御可能なヒータAおよびヒータBにより、センサの長手方向に沿って不均一な温度変化を与えることができる。
 図17に示す実験系において、分銅Wによりセンサに与えた歪みは1000μεで一定とした。また、ヒータAによりセンサに与えた温度変化は100℃で一定とした。ヒータBによりセンサに与えた温度変化のみを0~100℃に変化させ、ヒータAの位置およびヒータBの位置における温度変化と歪みを計測した結果を図18に示す。
 図18より、ヒータAの位置では、計測した歪みおよび温度変化は1000μεおよび100℃で一定であった。一方、ヒータBの位置では、計測した歪みは1000μεで一定あり、かつ計測した温度変化はヒータBの設定温度と相関して変化する結果が得られた。つまり、ヒータAの位置とヒータBの位置とに生じている温度分布と歪みを高精度に計測できている。
 以上説明したとおり、本実施例によると、本発明は、FBGからなるセンサの長手方向に沿った温度分布と歪みを同時にかつ高精度に計測できる。また、本発明を用いることで、FBGからなるセンサの長手方向に沿って温度分布と歪み分布が生じる場合でも、これらを同時にかつ高精度に計測できる。
「比較例1」
 入射部αの偏波軸角度オフセット融着接続を0°としたこと以外は、実施例2と同様にしてOFDR方式の物理量計測装置を作製し、これを比較例1とした。この比較例1を用いて、センサ17の状態を計測した。結果を図19、20に示す。
 図19は、第1のフォトダイオード13に入射した光干渉信号Dを解析した結果を示すスペクトログラムである。図20は、第2のフォトダイオード14に入射した光干渉信号Dを解析した結果を示すスペクトログラムである。
 図19及び図20の結果から、この比較例1では、センサ17のスロー軸からのブラッグ反射光しか得られなかった。一方の偏波軸からのブラッグ反射光だけでは、センサ17の温度と歪みを計測することは不可能である。したがって、比較例1のOFDR方式の物理量計測装置を用いて歪み計測を行う場合、温度補償用のセンサが必要となる。
「実施例5」
 センサ17とPMカプラ11との間に、センサにおける直交する2つの偏波軸からのブラッグ反射光の光路長差を、前記センサの長さに相当する光路長よりも長くするための延長ファイバ31を設けたこと以外は実施例1と同様にしてOFDR方式の物理量計測装置を作製し、これを実施例5とした。図21は、本実施例のOFDR方式の物理量計測装置10Jを示す概略構成図である。延長ファイバ31の長さLは、約20mとした。
 本実施例のOFDR方式の物理量計測装置10Jを用いて、センサ17の状態を計測した結果を図22に示す。
 図22に示すスペクトログラムにおいて、1550.6nmのブラッグ反射光がセンサ17のスロー軸からのものであり、1550.2nmのブラッグ反射光がセンサ17のファスト軸からのものである。本来であれば異なる直交する2つの偏波軸の実効屈折率を、nslowに統一して解析した結果、それぞれの偏波軸からのブラッグ反射光の位置がずれて、波長軸に対して重なることなく、個別に識別して計測することができた。
 本実施例においても、実施例1と同様にセンサ17のスロー軸とファスト軸からのブラッグ反射光の位置ずれ量Δlの、Lに対する依存性を計算すると、図9に示す結果が得られる。そこで、図9の横軸を、Lの長さからLの長さに置き換えると、Lが20mのとき、Δlは5.01mmと計算され、Δlが本実施例で用いたセンサ40の長さ(l)5mmよりも長くなる。Δlがlより長くなるとき、図22のスペクトログラムに示す通り、センサ17における直交する2つの偏波軸からのブラッグ反射光が波長軸に対して重なることなく、個別に識別して計測できる。
 ここで、Δlがlより長いということは、センサ17における直交する2つの偏波軸からのブラッグ反射光の光路長差が、センサ長に相当する光路長よりも長いということを意味している。この条件を満たす延長ファイバ31の長さLは、Δlをlとみなして上記の式(10)を変形した、上記の式(1)となる。
 この実施例5では、センサ17の直交する2つの偏波軸からのブラッグ反射光が得られたので、原理的に温度と歪みを同時に計測できることが確認された。これにより、本実施例のOFDR方式の物理量計測装置10Jを用いて歪み計測を行う場合、温度補償用のセンサが不要となる。また、センサ17の直交する2つの偏波軸からのブラッグ反射光が波長軸に対して重ならないように延長ファイバ31を設けたので、センサ17の直交する2つの偏波軸からのブラッグ反射光の変化量を個別に識別して計測できることが確認された。これにより、センサ17における温度および歪みの計測精度を向上することができる。
「実施例6」
 FBGからなるセンサ17が、スロー軸とファスト軸の実効屈折率差(複屈折)が大きいPANDAファイバに形成されていること以外は、実施例5と同様にしてOFDR方式の物理量計測装置を作製し、これを実施例6とした。本実施例のOFDR方式の物理量計測装置を用いて、センサ17の状態を計測した結果を図23に示す。その結果、実施例3と同等のブラッグ波長差が得られた。つまり本実施例のセンサ17の複屈折は、実施例3と同等である。この実施例6でも実施例3と同精度の温度と歪みの同時計測結果が得られた。
「比較例2」
 入射部αの偏波軸角度オフセット融着接続を0°としたこと以外は、実施例5と同様にしてOFDR方式の物理量計測装置を作製し、これを比較例2とした。そして、この比較例2を用いて、センサ17の状態を計測した。結果を、図24に示す。
 図24の結果から、この比較例2では、センサ17のスロー軸からのブラッグ反射光しか得られなかった。一方の偏波軸からのブラッグ反射光だけでは、センサ17の温度と歪みを計測するのは不可能である。したがって、比較例2のOFDR方式の物理量計測装置を用いて歪み計測を行なう場合、温度補償用のセンサが必要となる。
「実施例7」
 入射部αに換えて、第3の偏波保持ファイバにおける直交する2つの偏波軸のうちのいずれか一方の偏波軸に測定光を入射する入射部βを備えたこと以外は実施例1と同様にしてOFDR方式の物理量計測装置を作製し、これを実施例7とした。図25は、実施例7のOFDR方式の物理量計測装置10Kを示す概略構成図である。この入射部βとしては、λ/2板を用いた。
 本実施例のOFDR方式の物理量計測装置10Kを用いて、センサ17の状態を計測した。結果を図26、27に示す。
 図26は、スロー軸測定モードにおいて、フォトダイオード13に入射した光干渉信号Dを解析した結果を示すスペクトログラムである。図27は、ファスト軸測定モードにおいて、フォトダイオード13に入射した光干渉信号Dを解析した結果を示すスペクトログラムである。
 図26に示すスペクトログラムにおいて、1550.6nmのブラッグ反射光が、センサ17のスロー軸からのものである。図27に示すスペクトログラムにおいて、1550.2nmのブラッグ反射光が、センサ17のファスト軸からのものである。これら2つのブラッグ反射光の位置は、ともに約6.212mであった。
 この実施例7では、1回目の計測をスロー軸測定モードにより行い、2回目の計測をファスト軸測定モードにより行った。すなわち、2回の計測で異なる2つの信号を得て、それぞれの信号を個別に解析している。
 この実施例7では、センサ17の直交する2つの偏波軸からのブラッグ反射光が得られたので、原理的に温度と歪みを計測できることが確認された。これにより、本実施例のOFDR方式の物理量計測装置10Kを用いて歪み計測を行う場合、温度補償用のセンサが不要となる。また、一度の測定で、センサ17の直交する2つの偏波軸の一方におけるブラッグ反射光からの光干渉信号のみを取得したので、センサ17の直交する2つの偏波軸からのブラッグ反射光の変化量を、個別に識別して計測することができた。これにより、センサ17における温度および歪みの計測精度を向上することができる。さらに、それぞれの計測で得られた2つの光路長nslowとnfastに対して、既知のnslowとnfastを代入してLを求めたので、センサ17のファイバ長Lを正確に測定できる。
 以上説明したように、実施例2および7では、同様の作用効果を得ることができる。
 これは、実施例2において、フォトダイオード13で取得される光干渉信号Dを示す上記の式(4)及びフォトダイオード14で取得される光干渉信号Dを示す上記の式(5)が同じ式で表されることと;実施例7において、スロー軸測定モードにおけるフォトダイオード13で取得される光干渉信号Dを示す上記の式(8)及びファスト軸測定モードにおけるフォトダイオード14で取得される光干渉信号Dを示す上記の式(9)が同じ式で表されることと;からも明白である。
 また、実施例2および実施例7において、実施例2では2つのフォトダイオード(フォトダイオード13,14)から得られた光干渉信号を並列処理することにより、センサ17の温度と歪みの計測を短時間で行うことができるOFDR方式の物理量計測装置を提供できる利点がある。
 一方、実施例7では、偏波ビームスプリッタを用いる必要がないので、安価なOFDR方式の物理量計測装置を提供できる利点がある。
 実施例1から7では、1本のPMファイバに1つのFBGセンサを配置したOFDR方式の物理量計測装置を例示したが、本発明のOFDR方式の物理量計測装置は、これに限定されない。本発明のOFDR方式の物理量計測装置にあっては、1本のPMファイバに複数のFBGセンサを設けてもよい。
 本発明のOFDR方式の物理量計測装置によれば、特に温度と歪みの計測が可能で、かつ温度と歪みを高い空間分解能で計測することが可能なOFDR方式の物理量計測装置を提供できる。

Claims (11)

  1.  測定光を出射するチューナブルレーザと;
     このチューナブルレーザに一端が接続された第1の偏波保持ファイバと;
     この第1の偏波保持ファイバの他端に接続された偏波保持カプラと;
     この偏波保持カプラに一端が接続され、他端が参照用反射端である第2の偏波保持ファイバと;
     前記偏波保持カプラに一端が接続された第3の偏波保持ファイバと;
     この第3の偏波保持ファイバのコアに形成されたファイバブラッググレーティングからなるセンサと;
     前記偏波保持カプラに一端が接続された第4の偏波保持ファイバと;
     この第4の偏波保持ファイバを介して前記偏波保持カプラと接続され、前記センサからのブラッグ反射光と前記参照用反射端からの参照光とを検出するフォトダイオードと;
     このフォトダイオードで検出された前記ブラッグ反射光と前記参照光との合波光強度変化に基づき、これらブラッグ反射光及び参照光間の干渉強度の変調を検知する制御部と;
     前記第2の偏波保持ファイバの直交する2つの偏波軸及び前記第3の偏波保持ファイバの直交する2つの偏波軸の両方に、前記測定光を入射する入射部αと;
    を備え、
     前記入射部αは、前記第1の偏波保持ファイバ、または、前記第2の偏波保持ファイバと前記第3の偏波保持ファイバとの両方に配されている
    ことを特徴とする光周波数領域反射測定方式の物理量計測装置。
  2.  前記入射部αは、
     この入射部αが前記第1の偏波保持ファイバに配されている場合には、この第1の偏波保持ファイバに45°の偏波軸オフセット角度を有して形成された融着接続部であり;
     前記入射部αが前記第2の偏波保持ファイバ及び前記第3の偏波保持ファイバの両方に配されている場合には、これら第2の偏波保持ファイバ及び前記第3の偏波保持ファイバのそれぞれに45°の偏波軸オフセット角度を有して形成された融着接続部である;
    ことを特徴とする請求項1に記載の光周波数領域反射測定方式の物理量計測装置。
  3.  前記第4の偏波保持ファイバには、前記センサからの前記ブラッグ反射光を分波する偏波ビームスプリッタが更に配されていることを特徴とする請求項1または2のいずれか1項に記載の光周波数領域反射測定方式の物理量計測装置。
  4.  前記第3の偏波保持ファイバの、前記センサと前記偏波保持カプラとの間には、前記センサにおける直交する2つの偏波軸からのブラッグ反射光の光路長差を、前記センサの長さに相当する光路長よりも長くするための延長ファイバが更に配されていることを特徴とする請求項1~3のいずれか1項に記載の光周波数領域反射測定方式の物理量計測装置。
  5.  前記延長ファイバの長さをL、前記第3の偏波保持ファイバにおける直交する2つの偏波軸の実効屈折率の差を(nslow-nfast)、前記センサの長さをlとした場合、前記Lが、下式(1)を満たすことを特徴とする請求項4に記載の光周波数領域反射測定方式の物理量計測装置。
    Figure JPOXMLDOC01-appb-I000001
  6.  前記入射部αに換えて、前記第3の偏波保持ファイバにおける直交する2つの偏波軸のうちのいずれか一方の偏波軸に測定光を入射する入射部βをさらに備えることを特徴とする請求項1に記載の光周波数領域反射測定方式の物理量計測装置。
  7.  前記第1の偏波保持ファイバから前記第4の偏波保持ファイバのうち、少なくとも前記第3の偏波保持ファイバにおける直交する2つの偏波軸の実効屈折率差が、4.4×10-4以上であることを特徴とする請求項1~6のいずれか1項に記載の光周波数領域反射測定方式の物理量計測装置。
  8.  請求項1~7のいずれか1項に記載の光周波数領域反射測定方式の物理量計測装置を用いて、1つまたは複数の前記センサにおける直交する2つの偏波軸からの前記ブラッグ反射光の波長を計測する工程と;
     計測した前記ブラッグ反射光の波長に基づいて、前記センサにおける前記ブラッグ反射光の波長の温度と歪みによる変化量を計算する工程と;
     計算した前記変化量に基づいて、前記センサが配された部位の温度及び歪みを計算する工程と;
    を備えることを特徴とする温度と歪みの計測方法。
  9.  請求項3または6のいずれか1項に記載の光周波数領域反射測定方式の物理量計測装置を用いて前記制御部で検知した前記直交する2つの偏波軸それぞれの干渉信号に対して、前記センサの位置を特定するための短時間フーリエ変換解析を行う工程と;
     前記センサにおける直交する2つの偏波軸からの前記ブラッグ反射光の各々の光路長に対して、それぞれの偏波軸の実効屈折率を代入し、それぞれの偏波軸における前記センサの位置を求める工程と;
    を備えることを特徴とする温度と歪みの計測方法。
  10.  請求項4または5のいずれか1項に記載の光周波数領域反射測定方式の物理量計測装置を用いて前記制御部で検知した前記直交する2つの偏波軸からの干渉信号の和に対して、前記センサの位置を特定するための短時間フーリエ変換解析を行う工程と;
     前記センサにおける直交する2つの偏波軸からの前記ブラッグ反射光の各々の光路長に対して、1つの任意の実効屈折率を代入し、それぞれの偏波軸における基準となる位置から前記センサまでの距離を求める工程と;
    を備えることを特徴とする温度と歪みの計測方法。
  11.  前記第3の偏波保持ファイバの、前記センサが配された部位長手方向に沿った温度分布および歪み分布を算出することを特徴とする請求項8~10のいずれか1項に記載の温度と歪みの計測方法。
PCT/JP2009/053898 2008-02-29 2009-03-02 光周波数領域反射測定方式の物理量計測装置及びこれを用いた温度と歪みの計測方法 WO2009107838A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2695587A CA2695587C (en) 2008-02-29 2009-03-02 Physical quantity measuring apparatus utilizing optical frequency domain reflectometry and method for temperature and strain measurement using the apparatus
CN2009800003948A CN101680782B (zh) 2008-02-29 2009-03-02 光频域反射测定方式的物理量测量装置、使用其的温度和应变的测量方法及传感器位置的确定方法
EP09714275.6A EP2166314A4 (en) 2008-02-29 2009-03-02 Physical quantity measuring device of optical frequency range reflection measuring type, and temperature and strain measuring method using the device
JP2009529463A JP4474494B2 (ja) 2008-02-29 2009-03-02 光周波数領域反射測定方式の物理量計測装置及びこれを用いた温度と歪みの計測方法
US12/700,506 US7973914B2 (en) 2008-02-29 2010-02-04 Physical quantity measuring apparatus utilizing optical frequency domain reflectometry and method for temperature and strain measurement using the apparatus

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2008051345 2008-02-29
JP2008-051345 2008-02-29
JP2008051344 2008-02-29
JP2008-051344 2008-02-29
JP2008-311286 2008-12-05
JP2008311287 2008-12-05
JP2008311286 2008-12-05
JP2008-311287 2008-12-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/700,506 Continuation US7973914B2 (en) 2008-02-29 2010-02-04 Physical quantity measuring apparatus utilizing optical frequency domain reflectometry and method for temperature and strain measurement using the apparatus

Publications (1)

Publication Number Publication Date
WO2009107838A1 true WO2009107838A1 (ja) 2009-09-03

Family

ID=41016219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053898 WO2009107838A1 (ja) 2008-02-29 2009-03-02 光周波数領域反射測定方式の物理量計測装置及びこれを用いた温度と歪みの計測方法

Country Status (6)

Country Link
US (1) US7973914B2 (ja)
EP (1) EP2166314A4 (ja)
JP (1) JP4474494B2 (ja)
CN (1) CN101680782B (ja)
CA (1) CA2695587C (ja)
WO (1) WO2009107838A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153768A (ja) * 2015-02-20 2016-08-25 アンリツ株式会社 Ofdr装置および方法
JP2022100315A (ja) * 2016-06-29 2022-07-05 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Ofdr呼掛け監視及び最適化のための方法及び装置

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2696238C (en) * 2008-02-29 2013-04-16 Fujikura Ltd. Physical quantity measuring apparatus utilizing optical frequency domain reflectometry, and method for simultaneous measurement of temperature and strain using the apparatus
JPWO2012023219A1 (ja) 2010-08-18 2013-10-28 株式会社フジクラ 偏波保持ファイバおよびこれを用いた光ファイバセンサ
US8641274B2 (en) 2010-08-18 2014-02-04 Fujikura Ltd. Polarization-maintaining fiber and optical fiber sensor using same
CN102322880B (zh) * 2011-08-18 2013-06-05 天津大学 偏振敏感的分布式光频域反射扰动传感装置和解调方法
CN103134627B (zh) * 2011-11-30 2015-04-15 中国计量学院 一种基于低双折射pm-flm的温度不敏感应力传感器
US8705019B2 (en) 2012-07-23 2014-04-22 King Fahd University Of Petroleum And Minerals Structural material with embedded sensors
EP2720388A1 (en) * 2012-10-15 2014-04-16 Koninklijke Philips N.V. An optical frequency domain reflectometry (OFDR) system
US9488786B2 (en) 2012-11-16 2016-11-08 General Electric Company Fiber optic sensing apparatus including fiber gratings and method for sensing parameters involving different parameter modalities
CN103090813B (zh) * 2013-01-15 2016-04-06 电子科技大学 一种基于ofdr系统测量保偏光纤拍长及应变的高分辨率传感系统
US9151924B2 (en) 2013-08-16 2015-10-06 General Electric Company Fiber optic sensing apparatus and method for sensing parameters involving different parameter modalities
CN103776474A (zh) * 2014-01-10 2014-05-07 江苏昂德光电科技有限公司 一种3d矩阵式多通道光纤传感解调系统
CN104215197B (zh) * 2014-03-20 2019-07-30 哈尔滨工业大学 基于低反射率三芯光纤光栅阵列空间形状测量装置及方法
US9359910B2 (en) * 2014-05-29 2016-06-07 Siemens Energy, Inc. Method and apparatus for measuring operational gas turbine engine housing displacement and temperature by a distributed fiber optic sensing system utilizing optical frequency domain reflectometry
CN106575848B (zh) * 2014-07-04 2019-11-26 古河电气工业株式会社 光纤激光装置
EP3237833A4 (en) 2014-12-22 2018-06-13 Sikorsky Aircraft Corporation Fiber optic weight sensor optimization for landing gear
EP3070437A1 (en) * 2015-03-20 2016-09-21 FAZ Technology Limited Measurement system and method to interrogate birefringent optical sensors with a frequency swept source based interrogator
CN105066898B (zh) * 2015-08-16 2017-08-22 北京航空航天大学 一种表贴式光纤光栅应变传感器的标定方法
CN105066899B (zh) * 2015-08-28 2017-06-16 中国科学院半导体研究所 一种互参考的光纤激光静态应变传感解调系统
CN105737753B (zh) * 2016-02-03 2019-05-03 西安交通大学 一种光强度调制型信号解调系统及信号解调方法
US9784091B2 (en) 2016-02-19 2017-10-10 Baker Hughes Incorporated Systems and methods for measuring bending, weight on bit and torque on bit while drilling
US10732023B2 (en) 2016-03-24 2020-08-04 Sikorsky Aircraft Corporation Measurement system for aircraft, aircraft having the same, and method of measuring weight for aircraft
CN105698871B (zh) * 2016-03-29 2018-08-21 天津大学 基于光频域反射的分布式应变温度同时测量装置及方法
US10364663B2 (en) 2016-04-01 2019-07-30 Baker Hughes, A Ge Company, Llc Downhole operational modal analysis
CN105784270B (zh) * 2016-05-11 2019-01-22 中国工程物理研究院总体工程研究所 间接式全光路光谱检测系统的不确定度评估方法
US10066968B2 (en) 2016-06-01 2018-09-04 King Fahd University Of Petroleum And Minerals Structural element with branched optical fibers for parameter measurement
CN105953825B (zh) * 2016-06-29 2018-01-02 上海交通大学 用于温度与应变同时测量的光纤光栅式传感系统及方法
CN106338308A (zh) * 2016-08-25 2017-01-18 武汉理工大学 一种基于超短光纤光栅阵列的分布式多参数传感系统
DE102017201523A1 (de) * 2017-01-31 2018-08-02 Hochschule für angewandte Wissenschaften München Faseroptische Erfassungseinrichtung sowie Verfahren zum Betreiben einer solchen faseroptischen Erfassungseinrichtung
CN106931898B (zh) * 2017-05-18 2019-06-18 中国航空工业集团公司北京长城计量测试技术研究所 一种基于光纤传感器高温环境下的应变测量方法
CN107576341B (zh) * 2017-08-09 2021-06-04 武汉昊衡科技有限公司 Ofdr中消除偏振衰落的装置和方法
CN107764197B (zh) * 2017-10-16 2019-08-13 长春理工大学 一种光学系统轴向参数测量装置及方法
CN107991241B (zh) * 2017-10-30 2020-07-07 合肥通用机械研究院有限公司 一种复合材料层间失效模式的检验装置及判断方法
CN107917675A (zh) * 2017-12-28 2018-04-17 北京信息科技大学 一种基于超短fbg光谱线性区的应变传感系统
CN108252288A (zh) * 2018-01-12 2018-07-06 河海大学 一种基于ofdr技术的深基坑变形分布式监测系统
CN108240827A (zh) * 2018-02-09 2018-07-03 盐城工学院 一种基于拉锥保偏光纤光栅光电振荡器的多参量测量方法及装置
CN108547203A (zh) * 2018-04-23 2018-09-18 河海大学 基于ofdr的沥青路面变形监测系统及使用方法
CN111609819B (zh) * 2020-04-10 2022-03-25 桂林电子科技大学 一种超光滑表面粗糙度测量系统
CN111504951A (zh) * 2020-05-25 2020-08-07 中国计量大学 一种基于光杠杆修正原理的双干涉氢气传感器
CN112401814B (zh) * 2020-11-13 2022-11-11 太原理工大学 一种医用内窥镜形状光纤实时传感系统及一种医用内窥镜
CN113654580B (zh) * 2021-07-30 2023-06-13 太原理工大学 一种同时测量温度与应变的光频域反射系统
CN114383527A (zh) * 2022-03-23 2022-04-22 武汉奇测科技有限公司 一种频率复用和解复用的多通道光栅解调装置与方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164119A (ja) * 1997-08-11 1999-03-05 Fujikura Ltd 光ファイバ温度歪みセンサおよび温度歪み測定装置
JP2004205368A (ja) * 2002-12-25 2004-07-22 National Aerospace Laboratory Of Japan Ofdr方式の多点歪計測装置
WO2005015149A1 (ja) * 2003-08-12 2005-02-17 Bussan Nanotech Research Institute, Inc. 検出装置、光路長測定装置、測定用器具、光学部材評価方法、温度変化検出方法
JP2005147900A (ja) * 2003-11-17 2005-06-09 Japan Aerospace Exploration Agency Ofdr方式の歪連続分布計測装置
JP2008051344A (ja) 2006-08-22 2008-03-06 Daikin Ind Ltd 気液分離器及び該気液分離器を備えた冷凍装置
JP2008051345A (ja) 2006-08-22 2008-03-06 Yamauchi Fumio 接離動機構付フリーズドライ装置およびこれを用いるフリーズドライ方法
JP2008311287A (ja) 2007-06-12 2008-12-25 Canon Inc 薄膜トランジスタ及びその製造方法
JP2008311286A (ja) 2007-06-12 2008-12-25 Canon Inc 半導体薄膜及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218419A (en) * 1990-03-19 1993-06-08 Eli Lilly And Company Fiberoptic interferometric sensor
US6201237B1 (en) * 1998-12-18 2001-03-13 Corning Incorporated Fiber optic sensor
GB9828469D0 (en) * 1998-12-24 1999-02-17 British Aerospace A modulated fibre bragg grating strain gauge assembly for absolute gauging of strain
US6566648B1 (en) * 1999-03-25 2003-05-20 The United States Of America As Represented By The United States National Aeronautics And Space Administration Edge triggered apparatus and method for measuring strain in bragg gratings
GB0030289D0 (en) * 2000-12-12 2001-01-24 Optoplan As Fibre optic sensor systems
US6795599B2 (en) * 2001-05-11 2004-09-21 Vasilii V. Spirin Differential fiber optical sensor with interference energy analyzer
EP2035792B1 (en) * 2006-06-16 2018-05-23 Intuitive Surgical Operations, Inc. Distributed strain and temperature discrimination in polarization maintaining fiber

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164119A (ja) * 1997-08-11 1999-03-05 Fujikura Ltd 光ファイバ温度歪みセンサおよび温度歪み測定装置
JP3819119B2 (ja) 1997-08-11 2006-09-06 株式会社フジクラ 光ファイバ温度歪みセンサおよび温度歪み測定装置
JP2004205368A (ja) * 2002-12-25 2004-07-22 National Aerospace Laboratory Of Japan Ofdr方式の多点歪計測装置
JP3740500B2 (ja) 2002-12-25 2006-02-01 独立行政法人 宇宙航空研究開発機構 Ofdr方式の多点歪計測装置
WO2005015149A1 (ja) * 2003-08-12 2005-02-17 Bussan Nanotech Research Institute, Inc. 検出装置、光路長測定装置、測定用器具、光学部材評価方法、温度変化検出方法
JP2005147900A (ja) * 2003-11-17 2005-06-09 Japan Aerospace Exploration Agency Ofdr方式の歪連続分布計測装置
JP4102291B2 (ja) 2003-11-17 2008-06-18 独立行政法人 宇宙航空研究開発機構 Ofdr方式の歪連続分布計測装置
JP2008051344A (ja) 2006-08-22 2008-03-06 Daikin Ind Ltd 気液分離器及び該気液分離器を備えた冷凍装置
JP2008051345A (ja) 2006-08-22 2008-03-06 Yamauchi Fumio 接離動機構付フリーズドライ装置およびこれを用いるフリーズドライ方法
JP2008311287A (ja) 2007-06-12 2008-12-25 Canon Inc 薄膜トランジスタ及びその製造方法
JP2008311286A (ja) 2007-06-12 2008-12-25 Canon Inc 半導体薄膜及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B. CHILDERS; M. E. FROGGATT; S. G. ALLISON; T. C. MOORE; D. A. HARE; C. F. BATTEN; D. C. JEGLEY: "Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load test of a composite structure", PROCEEDINGS SPIE'S 8TH INTERNATIONAL SYMPOSIUM ON SMART STRUCTURE AND MATERIALS, vol. 4332, 2001, pages 133 - 142, XP055137874
H. IGAWA; H. MURAYAMA; T. KASAI; 1. YAMAGUCHI; K. KAGEYAMA; K. OHTA: "Measurement of strain distributions with long gauge FBG sensor using optical frequency domain reflectometry", PROCEEDINGS OFS-17, 2005, pages 547 - 550
H. MURAYAMA; H. IGAWA; K. KAGEYAMA; K. OHTA; I. OHSAWA; K. UZAWA; M. KANAI; T. KASAI; I. YAMAGUCHI: "Distributed Strain Measurement with High Spatial Resolution Using Fiber Bragg Gratings and Optical Frequency Domain Reflectometry", PROCEEDINGS OFS-18, THE40, 2006

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153768A (ja) * 2015-02-20 2016-08-25 アンリツ株式会社 Ofdr装置および方法
JP2022100315A (ja) * 2016-06-29 2022-07-05 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Ofdr呼掛け監視及び最適化のための方法及び装置
JP7265057B2 (ja) 2016-06-29 2023-04-25 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Ofdr呼掛け監視及び最適化のための方法及び装置
US11733031B2 (en) 2016-06-29 2023-08-22 Intuitive Surgical Operations, Inc. Methods and apparatus for OFDR interrogator monitoring and optimization

Also Published As

Publication number Publication date
CA2695587C (en) 2013-07-30
US20100134783A1 (en) 2010-06-03
CN101680782A (zh) 2010-03-24
CA2695587A1 (en) 2009-09-03
EP2166314A8 (en) 2011-09-14
US7973914B2 (en) 2011-07-05
CN101680782B (zh) 2012-09-12
EP2166314A1 (en) 2010-03-24
JP4474494B2 (ja) 2010-06-02
JPWO2009107838A1 (ja) 2011-07-07
EP2166314A4 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
JP4474494B2 (ja) 光周波数領域反射測定方式の物理量計測装置及びこれを用いた温度と歪みの計測方法
JP4420982B2 (ja) 光周波数領域反射測定方式の物理量計測装置、および、これを用いた温度と歪みの同時計測方法
CN105865752B (zh) 采用分布式偏振串扰分析仪全面评判保偏光纤特性的方法和装置
JP5413931B2 (ja) 光ファイバ位置特定のための光学マーキング部を備えた光ファイバセンサおよび光ファイバセンサの計測方法と光ファイバセンサ装置
JP5150445B2 (ja) 光ファイバセンサ装置および温度とひずみの計測方法と光ファイバセンサ
CN101871788B (zh) 测量保偏光纤和双折射介质的分布式偏振串扰方法及装置
US10724922B1 (en) Complete characterization of polarization-maintaining fibers using distributed polarization analysis
JP2010054366A (ja) 光ファイバ位置特定のための光学マーキング部を備えた光ファイバセンサおよび光ファイバセンサの計測方法と光ファイバセンサ装置
CN105115436B (zh) 传感装置及监测应力和温度的方法
US11391645B2 (en) Birefringent multi-peak optical reference element and birefringent sensor system
Vallan et al. Static characterization of curvature sensors based on plastic optical fibers
CN109374028B (zh) 一种基于级联长周期光纤光栅的分布式复用解调系统
Guan et al. Low-coherence interrogation scheme for multiplexed sensors based on long-period-grating Mach-Zehnder interferometers
Courteville et al. Contact-free on-axis metrology for the fabrication and testing of complex optical systems
Wilhelm et al. Dimensional metrology for the fabrication of imaging optics using a high accuracy low coherence interferometer
Maul et al. Sensing of surface strain with flexible fiber Bragg strain gages
Leduc et al. Experimental synthesis of fibre Bragg gratings index profiles: comparison of two inverse scattering algorithms
Ma et al. Intrinsic Fabry-Pérot interferometric (IFPI) fiber pressure sensor
Guan et al. Coherence multiplexing of sensors based on long-period fibre grating Mach-Zehnder interferometers
Giaccari et al. Micrometer-scale measurement of the local Bragg wavelength of fiber Bragg gratings

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000394.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2009529463

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09714275

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2695587

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009714275

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE