CN109374028B - 一种基于级联长周期光纤光栅的分布式复用解调系统 - Google Patents

一种基于级联长周期光纤光栅的分布式复用解调系统 Download PDF

Info

Publication number
CN109374028B
CN109374028B CN201811525710.0A CN201811525710A CN109374028B CN 109374028 B CN109374028 B CN 109374028B CN 201811525710 A CN201811525710 A CN 201811525710A CN 109374028 B CN109374028 B CN 109374028B
Authority
CN
China
Prior art keywords
fiber grating
cascade
period fiber
long period
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811525710.0A
Other languages
English (en)
Other versions
CN109374028A (zh
Inventor
胡兴柳
缪松岑
司海飞
王彦
杨忠
唐玉娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinling Institute of Technology
Original Assignee
Jinling Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinling Institute of Technology filed Critical Jinling Institute of Technology
Priority to CN201811525710.0A priority Critical patent/CN109374028B/zh
Publication of CN109374028A publication Critical patent/CN109374028A/zh
Application granted granted Critical
Publication of CN109374028B publication Critical patent/CN109374028B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29317Light guides of the optical fibre type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

一种基于级联长周期光纤光栅的分布式复用解调系统,本申请宽带光源与光纤耦合器的端口光信号连接,光纤耦合器与N个级联长周期光纤光栅传感器相连,N个级联长周期光纤光栅传感器与光纤耦合器光信号连接,光纤耦合器的另一接口与起偏器的输入端光连接,起偏器的输出光信号穿过双折射晶体光楔到达检偏器,光信号经过检偏器达到线阵CCD,线阵CCD和数据存储与处理设备相连。本发明提供一种基于级联长周期光纤光栅的分布式复用解调系统,本系统通过测量计算出传感器的谐振损耗峰波长位置,进而解调出待测量的信息,其通过并联布置一系列不同光程差的传感器,可实现多路传感器的复用,本发明系统具有系统空间分辨率高、可复用数目大、成本低廉的优点。

Description

一种基于级联长周期光纤光栅的分布式复用解调系统
技术领域
本发明涉及光纤传感技术领域,特别是涉及一种基于级联长周期光纤光栅的分布式复用解调系统。
背景技术
长周期光纤光栅
在光纤传感领域,长周期光纤光栅由于其对温度、应力和应变、环境折射率等变化的高度敏感性,而成为一种十分重要的传感器件。与布拉格光栅相比,长周期光纤光栅对温度、应力等具有更高的灵敏性,并且它的包层模式对外界环境折射率敏感,可以适用于液体折射率的高精度测量。虽然具有优秀的单点传感性能,长周期光纤光栅在应用领域的实用化进程远远落后于布拉格光栅。布拉格光栅由于其频域反射频宽很窄,一般小于1nm,可以很方便的构建成分布式的传感系统并用波分复用或时分复用技术来解调。长周期光纤光栅的频谱特征为多个透射损耗峰共存,且每个损耗峰的频谱带宽很大,对环境折射率灵敏度较高的高阶模的带宽至少有几十纳米,因此它的频域无法采用波分复用系统解调。长周期光纤光栅是同向传输的芯层模和包层模耦合,几乎没有反射频谱,因此无法采用目前技术成熟的时分复用系统解调。由于缺乏针对长周期光纤光栅分布式传感的复用和解调方法的研究,具有优良传感特性的长周期光纤光栅的实用化进程大受影响。
低相干干涉技术
低相干干涉技术是使用宽谱光作为光源,根据白光相干原理,利用零级干涉条纹作为参考位置,从而在较大的范围内获得精确测量绝对位置信息的一种干涉系统。低相干干涉系统用于获得探测信号的传感器结构为干涉仪,解调部分是扫描型的干涉仪,不同的传感器采用不同的光程差设计,可以实现多路传感复用。由于低相干系统中采用干涉仪方式来解调各个传感器信息量,可以避免光源不稳定等因素引入的环境噪声,具有较高的抗干扰性;充分利用干涉图的所有数据来评定被测信号,具有精密测量理论所青睐的平均效应的效果,获得较高的测量精度;构建光纤低相干干涉系统,不需要高相干干涉系统所使用的可调谐激光光源,信号分析处理也不需要光谱仪、网络分析仪、矢量分析仪等贵重精密设备,系统成本远远低于目前广泛使用的波分复用、时分复用等系统。基于低相干原理的复用解调系统是一个性能优良且成本低廉的复用系统,但是目前这个系统的应用研究还远远落后于时分复用系统、波分复用系统等。
发明内容
为了解决上述存在的问题,本发明提供一种基于级联长周期光纤光栅的分布式复用解调系统,本系统通过测量计算出传感器的谐振损耗峰波长位置,进而解调出待测量的信息,其通过并联布置一系列不同光程差的传感器,可实现多路传感器的复用,本发明系统具有系统空间分辨率高、可复用数目大、成本低廉的优点,为达此目的,本发明提供一种基于级联长周期光纤光栅的分布式复用解调系统,包括宽带光源、第一光纤耦合器、级联长周期光纤光栅传感器、第二光纤耦合器、起偏器、双折射晶体光楔、检偏器、线阵CCD和数据存储与处理设备,所述宽带光源与第一光纤耦合器的端口光信号相连接,所述第一光纤耦合器与至少2个级联长周期光纤光栅传感器相连,所述级联长周期光纤光栅传感器与第二光纤耦合器通过光信号连接,所述第二光纤耦合器的另一接口与起偏器的输入端光连接,所述起偏器的输出光信号穿过双折射晶体光楔到达检偏器,到达检偏器的输出光信号经过检偏器达到线阵CCD,所述线阵CCD和数据存储与处理设备相连;
所述级联长周期光纤光栅传感器中的两个长周期光纤光栅完全相同,但两个长周期光纤光栅之间的距离不同,在第一个长周期光纤光栅后的短的距离内设置另外一个相同的长周期光纤光栅,光波经过第一个长周期光纤光栅后会被耦合到光纤芯层传播,在光纤包层内传播的光波会被后一个长周期光纤光栅反耦合回光纤芯层,在光纤包层传播的光波会被这个长周期光纤光栅反耦合回光纤芯层,并与从光纤芯层直接传播的那部分残余光波进行干涉,其中一条级联长周期光纤光栅传感器的光路为参考臂,其余包含级联长周期光纤光栅传感器的光路皆用作传感臂,光波经过级联长周期光纤光栅传感器的两臂引入的相位差表示为:
其中表示光纤对应芯层导模的有效折射率,表示第j阶包层模的有效折射率,lc-c,j表示光栅中心距;
设进入每个级联长周期光纤光栅传感器前的光强为I0,则从级联长周期光纤光栅传感器传出后的光强为I1
I1=(τ0 2j 20τjcosΔΦ)I0 (2);
τ0表示长周期光纤光栅芯层的透射系数τj表示长周期光纤光栅第LP0j阶包层模的透射系数;
预设不同的级联长周期光纤光栅传感器中的光纤光栅间距离不同,则每个传感器中的光信号引入的光程差不同;
在解调模块中依次通过起偏器、双折射晶体光楔和检偏器,经过起偏器的线偏振光垂直入射双折射晶体的理想情况下,O光和E光在双折射晶体内的几何路径相同,但折射率不同,这就导致双折射晶体内O光和E光走过的光程不同,产生一个相位差
n0表示双折射晶体中O光折射率与E光折射率差值的绝对值,用光源中心波长处对应的折射率差值来表示,d表示双折射晶体光楔的厚度;
当双折射晶体光楔引起的光程差和级联长周期光纤光栅传感器引起的光程差相匹配时,会在线阵CCD相应的局部区域产生明显的低相干干涉条纹,产生的干涉条纹的光强为I2
光信号通过双折射晶体光楔形成空间低相干干涉条纹并被线阵CCD接收,线阵CCD将接收到的信号输出至信号处理系统,由信号处理系统对干涉条纹信号进行解调。
作为本发明进一步改进,所述宽带光源(1)的中心波长位置1565nm,光谱范围为60nm,覆盖长周期光纤光栅传感器的谐振损耗峰的带宽。
作为本发明进一步改进,所述级联长周期光纤光栅传感器的光栅由两个耦合强度3dB的相同的长周期光纤光栅组成。
作为本发明进一步改进,所述起偏器和检偏器的偏振轴向均与底面成45°夹角,在光源的中心波长处,起偏器(5)与检偏器(7)使用的晶体的折射率差为10-2
本发明一种基于级联长周期光纤光栅的分布式复用解调系统,具有如下特点:
1)本发明传感信息丰富;
由于级联长周期光纤光栅传感器对多种传感量敏感,如干涉强度对曲率敏感,长周期光纤光栅的耦合波长对温度、应力以及光纤外折射率敏感,而这些传感信息能被低相干查询技术充分读取,因而基于这两种技术构建的光纤传感网络有能力实现对多种物理量的传感。
2)本发明复用能力强;
本发明这种分布式传感系统基于相干复用技术,复用能力不受传感器件的光谱位置与分布的限制,所有采用的的光谱都可以重叠而不会在传感信号中出现串扰。
3)本发明解调速度快;
本发明双折射晶体光楔的厚度与线阵CCD的像元一样对应,解调机构可以直接获得干涉的光信息,直接进行解调。
4)本发明设备成本低;
多个传感点可以共用一个光源和一套解调系统,成本分摊到每个传感点上之后非常低。而且,本系统采用价格比半导体激光器低得多的低相干光源。
4)本发明采用干涉仪结构;
级联长周期光纤光栅必须要设定成光栅中心距离不同的干涉仪结构,这样才能达到复用且光谱互不串扰的情况。
附图说明
图1为本发明结构示意图;
图示说明:
1、宽带光源;2、第一光纤耦合器;3、级联长周期光纤光栅传感器;4、第二光纤耦合器;5、起偏器;6、双折射晶体光楔;7、检偏器;8、线阵CCD;9、数据存储与处理设备。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述:
本发明提供一种基于级联长周期光纤光栅的分布式复用解调系统,本系统通过测量计算出传感器的谐振损耗峰波长位置,进而解调出待测量的信息,其通过并联布置一系列不同光程差的传感器,可实现多路传感器的复用,本发明系统具有系统空间分辨率高、可复用数目大、成本低廉的优点。
如图1所示,宽带光源1与第一光纤耦合器2的端口光信号连接,第一光纤耦合器2与N个级联长周期光纤光栅传感器3相连,N个级联长周期光纤光栅传感器3与第二光纤耦合器4光信号连接,第二光纤耦合器4的另一接口与起偏器5的输入端光连接,起偏器5的输出光信号穿过双折射晶体光楔6到达检偏器7,光信号经过检偏器7达到线阵CCD8,线阵CCD8和数据存储与处理设备相连。
所述的级联长周期光纤光栅传感器中的两个长周期光纤光栅完全相同,但两个长周期光纤光栅之间的距离不同。在长周期光纤光栅后较短的光纤距离内设置另一个相同的长周期光纤光栅,则在光纤包层传播的光波会被这个长周期光纤光栅反耦合回光纤芯层,并与从光纤芯层直接传播的那部分残余光波进行干涉,形成了一个马赫泽德干涉仪,当长周期光纤光栅的耦合(分束)效率是50%的时候,干涉效果最强。由于光纤芯层与包层的有效折射率存在差异,这是一个非等臂的干涉仪,光波经过两臂引入的相位差可以被近似地表示为:
其中表示光纤对应芯层导模的有效折射率,表示第j阶包层模的有效折射率,lc-c,j表示光栅中心距。
设进入每个级联长周期光纤光栅传感器前的光强为I0,则从级联长周期光纤光栅传感器传出后的光强为I1
I1=(τ0 2j 20τjcosΔΦ)I0 (2)
τ0表示长周期光纤光栅芯层的透射系数τj表示长周期光纤光栅第LP0j阶包层模的透射系数。
预设不同的级联长周期光纤光栅传感器中的光纤光栅间距离不同,则每个传感器中的光信号引入的光程差不同。多路光在其中传输,其中一条级联长周期光纤光栅传感器的光路为参考臂,其余包含级联长周期光纤光栅传感器的光路皆用作传感臂,用于参量的测量。各个传感臂与参考臂有着不同的光程差,并且都大于光源的相干长度,因此各路光再通过光纤耦合器汇合时并不会发生干涉。
被级联长周期光纤光栅传感器调制过的光信号经过耦合器的出口传出,进入低相干干涉解调模块。在解调模块中依次通过起偏器、双折射晶体光楔和检偏器,经过起偏器的线偏振光垂直入射双折射晶体的理想情况下,O光和E光在双折射晶体内的几何路径相同,但折射率不同,这就导致双折射晶体内O光和E光走过的光程不同,产生一个相位差
n0表示双折射晶体中O光折射率与E光折射率差值的绝对值,用光源中心波长处对应的折射率差值来表示。d表示双折射晶体光楔的厚度。
当双折射晶体光楔引起的光程差和级联长周期光纤光栅传感器引起的光程差相匹配时,会在线阵CCD相应的局部区域产生明显的低相干干涉条纹。在双折射晶体光楔后面放置检偏器,其主要目的是将从双折射晶体光楔出射的两束相互垂直的线偏振光在检偏器偏振轴向上进行叠加,从而保证其满足干涉条件,产生低相干干涉条纹。产生的干涉条纹的光强为I2
光信号通过双折射晶体光楔形成空间低相干干涉条纹并被线阵CCD接收,CCD将接收到的信号输出至信号处理系统,由信号处理系统对干涉条纹信号进行解调。干涉图样位置信息与对应的相位信息之间存在联系,可用综合包络峰值法与相移法进行解调。
干涉光中心波长即是级联长周期光纤光栅透射损耗峰的中心波长。级联长周期光纤光栅的耦合损耗峰中心波长会随着待测参数变化发生漂移,波长飘移与待测参数的变化成正比关系,其比例系数可以通过实验定标获得。本系统通过测量计算出传感器的谐振损耗峰波长位置,进而解调出待测量的信息。系统中传感器的灵敏度与长周期光纤光栅的灵敏度一致。解调方案的空间分辨率取决于级联长周期光纤光栅损耗峰的相干长度。通过并联布置一系列不同光程差的传感器,可实现多路传感器的复用。本发明系统具有系统空间分辨率高、可复用数目大、成本低廉的优点。
实施例::采用长周期光纤光栅损耗峰的中心波长为1550nm,带宽为20nm,得到干涉长度为53μm,普通单模光纤芯层包层折射率差为10-2,因此相邻的长周期光纤光栅之间因保持5.3mm以上的距离。
实验选用了五根参数不同的级联长周期光纤光栅进行复用,可同时测量5组温度值,采用温控箱控制温度,根据该专利说明书所设计的级联长周期光纤光栅的分布式复用解调系统同时测量五组不同温度时确定的级联长周期光纤光栅谐振波长值如表1所示。
表1级联长周期光纤光栅的分布式复用解调系统温度检测数据
实验中用少量AB胶将级联长周期光纤光栅两端粘贴在标准试件铝板上,采用5组LY-5拉伸装置对块铝板进行拉伸,测力仪SX3501C,加力范围为0~2500N,根据该专利说明书所设计的级联长周期光纤光栅的分布式复用解调测得五组不同轴向应变时确定的级联长周期光纤光栅谐振波长值如表2所示。
表2级联长周期光纤光栅的分布式复用解调系统轴向应变检测数据
实验表明,专利说明书所阐述的级联长周期光纤光栅的分布式复用解调系统结构简明、设计合理,可有效地进行多参数的复用解调。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作任何其他形式的限制,而依据本发明的技术实质所作的任何修改或等同变化,仍属于本发明所要求保护的范围。

Claims (4)

1.一种基于级联长周期光纤光栅的分布式复用解调系统,包括宽带光源(1)、第一光纤耦合器(2)、级联长周期光纤光栅传感器(3)、第二光纤耦合器(4)、起偏器(5)、双折射晶体光楔(6)、检偏器(7)、线阵CCD(8)和数据存储与处理设备(9),其特征在于:所述宽带光源(1)与第一光纤耦合器(2)的端口光信号相连接,所述第一光纤耦合器(2)与至少2个级联长周期光纤光栅传感器(3)相连,所述级联长周期光纤光栅传感器(3)与第二光纤耦合器(4)通过光信号连接,所述第二光纤耦合器(4)的另一接口与起偏器(5)的输入端光连接,所述起偏器(5)的输出光信号穿过双折射晶体光楔(6)到达检偏器(7),到达检偏器(7)的输出光信号经过检偏器(7)达到线阵CCD(8),所述线阵CCD(8)和数据存储与处理设备(9)相连;
所述级联长周期光纤光栅传感器(3)中的两个长周期光纤光栅完全相同,但两个长周期光纤光栅之间的距离不同,在第一个长周期光纤光栅后的短的光纤距离内设置另外一个相同的长周期光纤光栅,在光纤包层传播的光波会被另外一个相同的长周期光纤光栅反耦合回光纤芯层,并与从光纤芯层直接传播的那部分残余光波进行干涉,其中一条级联长周期光纤光栅传感器的光路为参考臂,其余包含级联长周期光纤光栅传感器的光路皆用作传感臂,光波经过级联长周期光纤光栅传感器(3)的两臂引入的相位差表示为:
其中表示光纤对应芯层导模的有效折射率,表示第j阶包层模的有效折射率,lc-c,j表示光栅中心距;
设进入每个级联长周期光纤光栅传感器前的光强为I0,则从级联长周期光纤光栅传感器传出后的光强为I1
I1=(τ0 2j 20τjcosΔΦ)I0(2);
τ0表示长周期光纤光栅芯层的透射系数τj表示长周期光纤光栅第LP0j阶包层模的透射系数;
预设不同的级联长周期光纤光栅传感器(3)中的光纤光栅间距离不同,则每个传感器中的光信号引入的光程差不同;
在解调模块中依次通过起偏器、双折射晶体光楔和检偏器,经过起偏器的线偏振光垂直入射双折射晶体的理想情况下,O光和E光在双折射晶体内的几何路径相同,但折射率不同,这就导致双折射晶体内O光和E光走过的光程不同,产生一个相位差
n0表示双折射晶体中O光折射率与E光折射率差值的绝对值,用光源中心波长处对应的折射率差值来表示,d表示双折射晶体光楔的厚度;
当双折射晶体光楔引起的光程差和级联长周期光纤光栅传感器引起的光程差相匹配时,会在线阵CCD相应的局部区域产生明显的低相干干涉条纹,产生的干涉条纹的光强为I2
光信号通过双折射晶体光楔形成空间低相干干涉条纹并被线阵CCD接收,线阵CCD将接收到的信号输出至信号处理系统,由信号处理系统对干涉条纹信号进行解调。
2.根据权利要求1所述的一种基于级联长周期光纤光栅的分布式复用解调系统,其特征在于:所述宽带光源(1)的中心波长位置1565nm,光谱范围为60nm,覆盖长周期光纤光栅传感器的谐振损耗峰的带宽。
3.根据权利要求1所述的一种基于级联长周期光纤光栅的分布式复用解调系统,其特征在于:所述级联长周期光纤光栅传感器(3)的光栅由两个耦合强度3dB的相同的长周期光纤光栅组成。
4.根据权利要求1所述的一种基于级联长周期光纤光栅的分布式复用解调系统,其特征在于:所述起偏器(5)和检偏器(7)的偏振轴向均与底面成45°夹角,在光源的中心波长处,起偏器(5)与检偏器(7)使用的晶体的折射率差为10-2
CN201811525710.0A 2018-12-13 2018-12-13 一种基于级联长周期光纤光栅的分布式复用解调系统 Active CN109374028B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811525710.0A CN109374028B (zh) 2018-12-13 2018-12-13 一种基于级联长周期光纤光栅的分布式复用解调系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811525710.0A CN109374028B (zh) 2018-12-13 2018-12-13 一种基于级联长周期光纤光栅的分布式复用解调系统

Publications (2)

Publication Number Publication Date
CN109374028A CN109374028A (zh) 2019-02-22
CN109374028B true CN109374028B (zh) 2019-10-18

Family

ID=65373700

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811525710.0A Active CN109374028B (zh) 2018-12-13 2018-12-13 一种基于级联长周期光纤光栅的分布式复用解调系统

Country Status (1)

Country Link
CN (1) CN109374028B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113739853A (zh) * 2021-09-08 2021-12-03 金陵科技学院 基于长周期光纤光栅传感阵列的高炉智能监测系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945666A (en) * 1996-05-20 1999-08-31 The United States Of America As Represented By The Secretary Of The Navy Hybrid fiber bragg grating/long period fiber grating sensor for strain/temperature discrimination
CN100350219C (zh) * 2005-11-02 2007-11-21 浙江大学 基于长周期光纤光栅对传感器的复用和解调方法及其设备
US7801403B2 (en) * 2007-10-30 2010-09-21 Fei Luo Optical fiber grating tuning device and optical systems employing same
CN201716502U (zh) * 2009-09-15 2011-01-19 南京航空航天大学 基于级联长周期光纤光栅的Bragg光栅高速解调系统

Also Published As

Publication number Publication date
CN109374028A (zh) 2019-02-22

Similar Documents

Publication Publication Date Title
CN105698871B (zh) 基于光频域反射的分布式应变温度同时测量装置及方法
US7324714B1 (en) Multicore fiber curvature sensor
CN109238355A (zh) 光纤分布式动静态参量同时传感测量的装置及方法
EP0023345B1 (en) Optical sensing system
CN101963515B (zh) 分布式Michelson光纤白光干涉传感装置
CN100552520C (zh) 一种复用与解调长周期光纤光栅阵列的方法及设备
CN108168728A (zh) 非平衡保偏光纤双干涉仪温度应变同时测量装置及方法
CN102003944B (zh) 共路补偿的多尺度准分布式白光干涉应变测量装置及方法
CN106197492B (zh) 基于光纤复合法珀腔结构的法珀腔长与折射率计算方法
CA2695587A1 (en) Physical quantity measuring apparatus utilizing optical frequency domain reflectometry and method for temperature and strain measurement using the apparatus
CN105698831B (zh) 双芯光纤光栅阵列传感网络及分布式传感信息获取方法
CN105806380B (zh) 一种基于长周期光纤光栅反射型传感器的复用解调设备
CN202304891U (zh) 基于阵列波导光栅特性的分布式监测仪
CN112747848B (zh) 基于压力敏感的光学波导定向耦合器的光波导压力测量系统
EP1405043B1 (en) Differential measurement system based on the use of pairs of bragg gratings
CN104568019A (zh) 基于多模光纤的用于温度和应变同时测量的方法及系统
CN108844614A (zh) 基于相位谱测量的混沌布里渊光相关域分析系统及方法
CN105890799B (zh) 基于级联π相移光纤布拉格光栅的温度传感器
CN1760641A (zh) 基于长周期光纤光栅对传感器的复用和解调方法及其设备
CN103308086A (zh) 多路光纤杨氏低相干干涉光纤法珀传感器复用方法与装置
Sorin et al. Multiplexed sensing using optical low-coherence reflectometry
CN109374028B (zh) 一种基于级联长周期光纤光栅的分布式复用解调系统
CN110031139B (zh) 一种接触型线性应力传感器及其应力检测方法
CN111537010A (zh) 基于otdr的f-p干涉型传感头多点测量方法及装置
CN100399083C (zh) 可调谐双并联匹配光纤光栅解调系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant