WO2009107667A1 - 光ファイバ - Google Patents

光ファイバ Download PDF

Info

Publication number
WO2009107667A1
WO2009107667A1 PCT/JP2009/053417 JP2009053417W WO2009107667A1 WO 2009107667 A1 WO2009107667 A1 WO 2009107667A1 JP 2009053417 W JP2009053417 W JP 2009053417W WO 2009107667 A1 WO2009107667 A1 WO 2009107667A1
Authority
WO
WIPO (PCT)
Prior art keywords
twist
optical fiber
period
epmd
function
Prior art date
Application number
PCT/JP2009/053417
Other languages
English (en)
French (fr)
Inventor
長谷川 健美
林 哲也
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2010500721A priority Critical patent/JP5229313B2/ja
Priority to CN2009801071181A priority patent/CN101960344B/zh
Priority to US12/920,012 priority patent/US8483531B2/en
Priority to EP09715475.1A priority patent/EP2256527B1/en
Priority to DK09715475.1T priority patent/DK2256527T3/en
Publication of WO2009107667A1 publication Critical patent/WO2009107667A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02285Characterised by the polarisation mode dispersion [PMD] properties, e.g. for minimising PMD
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/10Non-chemical treatment
    • C03B37/12Non-chemical treatment of fibres or filaments during winding up
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/02External structure or shape details
    • C03B2203/06Axial perturbations, e.g. twist, by torsion, undulating, crimped
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/18Axial perturbations, e.g. in refractive index or composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/18Axial perturbations, e.g. in refractive index or composition
    • C03B2203/19Alternating positive/negative spins or twists
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/36Dispersion modified fibres, e.g. wavelength or polarisation shifted, flattened or compensating fibres (DSF, DFF, DCF)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/06Rotating the fibre fibre about its longitudinal axis

Definitions

  • the present invention relates to an optical fiber.
  • Optical fiber polarization mode dispersion is a difference in group delay between two fundamental waveguide modes of an optical fiber.
  • PMD is caused by the anisotropy of the optical properties of the optical fiber.
  • the cause of the anisotropy of the optical characteristics is not only the internal factors such as the structure and composition of the optical fiber and the anisotropy of internal stress, but also external factors such as the lateral pressure, bending and twist of the optical fiber. Since PMD is a factor that limits the transmission capacity of an optical fiber, various techniques for reducing PMD of an optical fiber have been developed.
  • Patent Document 1 discloses a method for reducing PMD of an optical fiber by imparting a twist to the optical fiber.
  • a device for twisting the optical fiber in the step of drawing an optical fiber from a glass preform, a device for twisting the optical fiber is installed between a device that pulls the optical fiber and a device that winds the optical fiber on a reel. A twist is imparted, and the optical fiber imparted with the twist is wound around a reel.
  • twisting is applied to the optical fiber by winding the optical fiber while twisting the optical fiber in a process of rewinding the optical fiber wound on the reel to another reel.
  • the PMD of the optical fiber can be reduced. For example, it is shown that the PMD can be reduced to 1/5 or less in any of optical fibers having a beat length of 5 to 50 m by giving a twist of 1 time / m or more to the optical fiber.
  • twist with stress is defined as twist
  • spin a twist without stress
  • Patent Document 2 discloses a method of imparting spin to an optical fiber by drawing the optical fiber from the preform while twisting the optical fiber in the step of drawing the optical fiber from the glass preform. According to this document, it is said that PMD can be reduced particularly well if a spin whose sign is inverted at a period of 1 m or more and changing in the longitudinal direction is applied to an optical fiber having a beat length longer than 0.5 m.
  • Non-Patent Document 1 describes the behavior of PMD due to external factors in an optical fiber provided with spin. According to this, PMD differs depending on the direction of the lateral pressure in the optical fiber without spin, whereas in the optical fiber with spin, PMD becomes independent with respect to the direction and PMD does not depend on the direction of lateral pressure. PMD is similarly increased regardless of the presence or absence.
  • US Patent Application Publication No. 2006/0133751 US Pat. No. 6,993,229 M. J. Li et al., Optics Letters, vol.24, no.19, pp.1325-1327 (1999).
  • RE Shuh et al. Electronics Letters, vol.31, no.20, pp.1772-1773, (1995).
  • the inventors have found the following problems as a result of examining the above-described conventional technology. That is, in the prior art, PMD due to internal factors could be reduced well, but PMD due to external factors could not be reduced well. There are two possible causes for this.
  • the first cause is that spin is used as a means for reducing PMD in many conventional techniques disclosed in Patent Document 2 and the like.
  • fundamental mode guided light propagates without greatly changing the polarization state. Therefore, when birefringence in a certain direction occurs due to lateral pressure or bending, the group delay difference between the two fundamental modes accumulates quickly and a large PMD is generated.
  • Patent Document 1 The second cause is that in Patent Document 1, the method of imparting the twist was not appropriate. PMD due to external factors cannot be reduced simply by applying a twist. In order to reduce PMD due to external factors, it is necessary to appropriately design the amount of twist and the inversion period. In the first place, the technique disclosed in Patent Document 1 is aimed at reducing PMD due to an internal factor, and is not intended to reduce PMD due to an external factor.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an optical fiber in which PMD does not increase greatly even when external factors such as lateral pressure and bending are applied.
  • the optical fiber which concerns on this invention is related with the optical fiber provided so that the twist which is an elastic twist accompanying a stress might satisfy
  • the angle and the twist rotation angle in the opposite direction are expressed by f (z) equal to each other, the proportionality coefficient representing the circular birefringence per twist rate is set to g, the angular frequency is set to ⁇ , the external frequency generated by bending and lateral pressure is generated.
  • the twist condition for the optical fiber is the twist error amount defined by the relational expression (1g) with the twist period being L.
  • the first condition is satisfied and the rectangularity parameter ⁇ defined by the relational expression (1f) is 0.59 or more.
  • the optical fiber according to the present invention preferably satisfies both the first condition and the second condition.
  • the average twist rate ⁇ av defined by the relational expression (1e) is It is preferable that it is 2 ⁇ th or more.
  • the optical fiber according to the present invention is coiled and has a bending diameter of D, a photoelastic constant of ⁇ C, a Young's modulus of E, a glass diameter of d, a light wavelength of ⁇ , and the following:
  • the twist threshold defined by the ratio ( ⁇ e / g) by the linear birefringence ⁇ e given by the relational expression is ⁇ th
  • the average twist rate ⁇ av defined by the relational expression (1e) is 2 ⁇ th or more. Is preferred.
  • the twist is a twist that reverses the twisting direction applied after the glass portion of the optical fiber is hardened, and the twist rate that is the number of rotations per unit length of the twist is the optical fiber. Is given as a function TP (z) of the axial position z, and the period of the function TP (z) changes in a predetermined pattern, a random pattern, or a combination thereof.
  • the twist is a twist that reverses the twisting direction applied after the glass portion of the optical fiber is hardened, and the twist rate that is the number of rotations per unit length of the twist is the optical fiber. Is given as a function TP (z) of the axial position z, and the amplitude of the function TP (z) varies in a predetermined pattern, a random pattern, or a combination thereof.
  • the twist is a twist that reverses the twisting direction applied after the glass portion of the optical fiber is hardened, and the twist rate that is the number of rotations per unit length of the twist is the optical fiber.
  • TP (z) of the axial position z
  • amplitude and period of the function TP (z) vary in a predetermined pattern, a random pattern, or a combination thereof.
  • PMD does not increase greatly even when external factors such as lateral pressure and bending are applied.
  • FIG. 12 is a plot and straight line showing AW-EPMD-RF derived from the envelopes of FIGS.
  • FIG. 27 is a diagram illustrating a relationship between f dev and EPMD-RF when the function TP (z) includes the random frequency modulation of FIG.
  • These are figures which show the relationship between twist amplitude (gamma) r and EPMD-RF in the case where there is a triangular wave amplitude modulation in function TP (z), respectively, and there is no.
  • These are graphs showing the relationship between m d , L am and EPMD-RF.
  • These show the random amplitude modulation waveform in function TP (z).
  • FIG. 33 is a diagram illustrating a relationship between m and EPMD-RF when the function TP (z) includes the random amplitude modulation of FIG. 32. These are graphs showing the relationship between L fm , L L and EPMD-RF. These are graphs showing the relationship between L fm , L L and EPMD-RF.
  • FIG. 1 is a diagram for explaining twisting in an optical fiber.
  • FIG. 1A shows a perspective view of the optical fiber 10 and also shows a reference line 11 and a lateral pressure direction 20 indicating a twist of the optical fiber 10.
  • FIG. 1B shows the axial distribution of the twist rate in the optical fiber 10.
  • the optical fiber 10 is provided with a twist that is an elastic twist accompanied by a stress.
  • the twist rate f (z) is represented by a rectangular wave having an amplitude ⁇ and a period L.
  • FIG. 2 is a diagram showing a method for manufacturing the optical fiber 10 to which the twist is applied. That is, as shown in FIG. 2A, one end B ⁇ b> 1 of the optical fiber 10 having the glass diameter d is fixed to the bobbin 100. The body diameter of the bobbin 100 is D, and the optical fiber 10 is wound around the body by rotating the bobbin 100 along the arrow S1 about the body axis AX. At this time, a desired twist is imparted to the optical fiber 10 by the twist imparting device 200.
  • the twist imparting device 200 includes a rotating die 210 that imparts twist to the optical fiber 10 and an optical fiber holding unit 220 that holds the optical fiber 10 in a rotatable state.
  • the twist state applied to the optical fiber 10 is fixed at the point C1. Accordingly, the rotating die 210 rotates along the arrow S2 (first twisting direction) with the point C1 as a fulcrum, whereby the optical fiber 10 is twisted.
  • the twist imparting to the optical fiber 10 by the twist imparting device 200 is performed while rotating the bobbin 100 along the arrow S1 about the trunk axis AX. Therefore, a predetermined twist is imparted to the trunk of the bobbin 100.
  • the optical fiber 10 is wound up. Thereby, the optical fiber 10 (after twisting) wound by the bending diameter D at the coil shape is obtained.
  • the twist imparting device 200 reverses the twisting direction of the rotary die 210 after a certain period of time (the direction indicated by the arrow S2 in FIG. 2B).
  • the point C2 functions as a fulcrum for applying the twist while the applied twist is maintained (even in this state)
  • the bobbin 100 rotates at a constant speed along the arrow S1 about the trunk axis AX). That is, the rotating die 210 rotates along the arrow S3 (second twisting direction) with the point C2 as a fulcrum, so that the optical fiber 10 is twisted in the opposite direction.
  • the other end B2 of the optical fiber 10 wound around the bobbin 100 while changing the twisting direction every predetermined time is also fixed to the bobbin 100 together with the one end B1.
  • an optical fiber 10 wound in a coil shape with a bending diameter D as shown in FIG. 2C is obtained.
  • the internal birefringence (birefringence due to internal factors) of the optical fiber 10 is sufficiently small and can be regarded as zero.
  • the anisotropy of the structure and internal stress may be made sufficiently small, or a sufficiently large spin may be given to the anisotropy.
  • the optical fiber 10 is subjected to external birefringence (birefringence due to external factors such as lateral pressure and bending) whose size and direction are constant in the axial direction.
  • PDV has a direction equal to the Stokes vector in the main polarization state (polarization state where the group velocity is maximum or minimum) and the size is equal to PMD. It is known that the spatial development of PDV follows a differential equation of the following formula (for example, see Non-Patent Document 2).
  • ⁇ e is external birefringence expressed by a propagation constant difference.
  • g is a physical property constant called a rotation coefficient, and represents a proportional coefficient of circular birefringence with respect to the twist.
  • the subscript ⁇ represents a partial differential with respect to the angular frequency ⁇ .
  • the function f (z) is a twist rate as described above, and is represented by the following expression in this embodiment.
  • matrix A in equation (6) is a rotation matrix.
  • the rotation matrix is expressed by the following equation.
  • e represents a unit vector in the direction of the rotation axis
  • represents a rotation angle
  • E represents a unit matrix
  • a superscript T represents a transpose matrix
  • a superscript x represents an outer product matrix.
  • A is a rotation matrix.
  • B represents a velocity vector.
  • FIG. 3 is a diagram schematically showing a locus of the polarization dispersion vector Omega n.
  • O represents the origin.
  • PMD is the magnitude of the polarization dispersion vector PDV
  • the linear distance from the start point (origin point) to the end point in the spiral representing the locus of PDV is PMD.
  • the coordinates are rotated so that the rotation axis becomes the z-axis, and the variable displayed with the coordinates after the rotation is attached with a tilde, it is expressed by the following equation (10).
  • this equation (10) is solved, it is expressed by the following equation (11). Therefore, polarization mode dispersion (PMD) ⁇ n is expressed by the following equation (12).
  • the first term represents the development in the direction of the helical axis
  • the second term represents the rotation around the helical axis.
  • the magnitude of the projection component of the velocity vector B in the spiral axis direction e represents the PMD per twist period.
  • the PMD per unit length is represented by the ⁇ parameter in the following equation (21). Since the vector e ′ in the equation (21c) is equal to the helical axis direction unit vector e in the equation (8a), B ′ in the equation (21a) corresponds to the velocity vector B of PDV evolution. Therefore, B ′ is called a pseudo velocity vector. Equation (21a) indicates that the PMD per unit length is determined by the magnitude of the projection component of the pseudo velocity vector B ′ in the spiral axis direction e ′.
  • the projection component of the pseudo velocity vector B ′ represented by the equation (21b) to the spiral axis vector e ′ represented by the equation (21c) is minimized.
  • the twist amplitude ⁇ and period L are selected, and if possible, the external birefringence ⁇ e is also selected.
  • the above parameters may be selected so as to minimize the polarization mode dispersion (PMD) ⁇ n expressed by the above equation (19).
  • the external PMD reduction coefficient EPMD-RF is obtained as the following equation (26).
  • EPMD-RF is expressed by the following equation (27).
  • This equation (27) is obtained by selecting the twist amplitude ⁇ and the twist period L so as to minimize the projection component of the normalized velocity vector C in the spiral axis direction e ′, and if possible, external It is shown that the external PMD can be reduced to a minimum by selecting the target birefringence ⁇ e .
  • the twist amplitude ⁇ and the period L can be adjusted using, for example, a known technique described in Patent Document 1. Further, the magnitude of the external birefringence ⁇ e can be adjusted by the bend diameter or the side pressure of the optical fiber. However, external birefringence may occur due to causes unintended by the designer or user (for example, meandering of an optical fiber in a cable, expansion / contraction of a reel, friction between adjacent optical fibers in a spool). There are many cases, and it is often difficult to adjust them to a constant value.
  • a method of intentionally giving external birefringence a method of applying an asymmetrical side pressure to the core wire due to heat shrinkage stress of the tape resin in the tape core wire, a method of bending by running the optical fiber in a spiral in the cable
  • a method such as a method of reducing a winding diameter in an optical fiber in a reel-wound state or a coiled coil without a core has high practicality because it is simple and highly reproducible.
  • the birefringence generated in the optical fiber due to bending or lateral pressure can be known from the equation disclosed in Non-Patent Document 3 and the like.
  • the birefringence ⁇ e when the optical fiber is bent with a diameter D is expressed by the following equation.
  • ⁇ C is the photoelastic constant
  • E is the Young's modulus
  • d is the glass diameter of the optical fiber
  • is the optical wavelength.
  • the above equation (33) takes the minimum value of zero when the following equation (34) holds.
  • the left side of the equation (34a) represents the total rotation angle over one twist period.
  • the right side q k is determined by the equation (34b).
  • (34b) is a physical property parameters determined g, by d e and d t Any material of the optical fiber in the equation. In the case of a communication optical fiber in which PMD is a problem, the material of the optical fiber is mostly silica glass.
  • Figure 4 is a diagram showing the values of q k calculated using the physical property parameters according to this document.
  • the external birefringence is independent of the magnitude of the external birefringence. Generation of PMD can be minimized.
  • FIG. 6 shows a three-dimensional plot of EPMD-RF with respect to the magnitude of external birefringence and the twist amplitude
  • FIG. 7 shows a contour display of this. 6 and 7 also show the twist threshold ⁇ th given by the above equation (29) and the optimum twist amplitude ⁇ opt given by the above equation (34). As shown in these figures, by equal to any of the optimum twist amplitude gamma opt with larger than the twist threshold value gamma th the twist amplitude gamma, externally regardless of the beat length L B of external birefringence PMD reduction rate EPMD-RF can be minimized.
  • PMD reduction performance when a twist waveform other than a rectangular wave is used will be described.
  • PMD and EPMD-RF can be calculated by numerically integrating the above equation (6).
  • FIG. 8 is a diagram showing a calculation result of EPMD-RF when the twist rate f (z) is expressed by a sine wave.
  • FIG. 9 is a diagram illustrating a calculation result of EPMD-RF when the twist rate f (z) is represented by a triangular wave.
  • FIG. 10 is a diagram illustrating a calculation result of EPMD-RF when the twist rate f (z) is represented by a trapezoidal wave with a duty ratio of 50%.
  • FIG. 11 is a diagram showing a calculation result of EPMD-RF when the twist rate f (z) is represented by a trapezoidal wave with a duty ratio of 80%.
  • the duty ratio of the trapezoidal wave is a ratio occupied by the flat part of the trapezoid and is defined by a variable p in FIG.
  • the twist cycle L is 20 m.
  • the external birefringence beat length L B is set to 155 m
  • FIGS. In each of b), FIG. 10B, and FIG. 11B, the beat length L B of the external birefringence is set to 15.5 m.
  • EPMD-RF obtained by numerical integration of the above equation (6) is plotted against the average twist amplitude.
  • the average twist amplitude ⁇ av is an absolute value average of the twist rate and is expressed by the following equation (36).
  • 8 to 11 show an approximate expression of EPMD-RF. This approximate expression is EPMD-RF eff given by the following expression (37).
  • EPMD-RF eff is above (27) on the right side and in each equation it depends, the frequency dispersion d t of the twist amplitude ⁇ and Rotational factor, the effective twist rate given by the following equation (38) (( EPMD-RF obtained by substituting the equation (38a) and effective dispersion (equation (38b)).
  • a variable with a hat on the right side of the equation (37) indicates a value calculated by performing the above replacement.
  • the parameter ⁇ given by equation (38c) is the ratio of the average amplitude of the waveform to the maximum amplitude, and is called a rectangularity parameter because it takes a maximum value of 1 for a rectangular wave.
  • the coefficients and multipliers (1.014, 0.42, 4) in the equations (38a) and (38b) are values empirically derived by the inventors from the numerical solutions in FIGS. The behavior of the numerical solution is faithfully reproduced as shown in the figure.
  • the following equation (40) is obtained when the following equation (39) is established based on the same discussion as the equations (27) to (34). It is guided to be established. Accordingly, the relational expressions for giving the optimum average twist amplitude and twist period are as shown in the following expressions (41a) and (41b).
  • the optimum conditions indicated by the equations (41a) and (41b) are satisfied regardless of the waveform such as a triangular wave, a sine wave, and a trapezoidal wave. In actual manufacturing conditions and usage conditions, the twist waveform may not exactly match the triangular wave, sine wave, or trapezoidal wave, but even in such a case, the above optimum conditions should be substantially satisfied. Thus, external PMD can be minimized.
  • an error A from the optimum twist rotation speed is defined as in the following equation (42), and an expected value of EPMD-RF that can occur when A is limited to a certain upper limit value or less ⁇ EPMD-RF> Is calculated as shown in FIG.
  • the expected value of EPMD-RF can be lowered by limiting A to a smaller range, but the upper limit of A is particularly preferably 4 times (8 ⁇ [rad]) or less. Can be kept low especially when EPMD-RF is less than twice (4 ⁇ [rad]).
  • the upper limit of A is increased, the expected value of EPMD-RF converges to a certain range, which is expected in the conventional technique (for example, Reference 1) that does not particularly restrict the twist rotational speed.
  • the upper limit of the error A from the optimum twist rotation speed is set to 4 times (8 ⁇ [rad]) or less, more preferably 2 times (4 ⁇ [rad]) or less, so that the expectation of EPMD-RF is higher than that of the prior art. The value can be kept low.
  • FIG. 13 is a diagram showing plots and straight lines of AW-EPMD-RF derived from the envelopes of FIGS. 8 to 11 and AW-EPMD-RF given by equation (44).
  • FIG. 13 also shows the rectangularity parameter of each waveform. As shown in FIG. 13, by making the twist waveform closer to a rectangular wave (making the rectangularity parameter closer to a value of 1), the twist amplitude may deviate from the optimum value (due to manufacturing errors or the like).
  • the worst value (AW-EPMD-RF) of EPMD-RF can be lowered. That is, external PMD can be reduced more reliably.
  • the period L of the twist waveform f (z) is constant in the longitudinal direction, and the twist angle in one direction and the angle of rotation in the opposite direction during this constant period are Were in balance with each other.
  • the twist period L indicates a length in which the twist rotation angle in one direction and the rotation angle in the opposite direction are balanced with each other, and the period of the periodic function in a mathematical sense. To distinguish.
  • FIG. 14 and FIG. 15 are diagrams showing a twist waveform f (z) of a trapezoidal wave with a duty of 50% having a twist period that changes in the longitudinal direction.
  • the twist period changes over two levels.
  • the twist period changes over three levels.
  • the change width of the twist period is ⁇ L
  • the average value is L av
  • the modulation degree m is defined by the following equation (45). Therefore, in the waveform of type 1 (FIG. 14), the twist period alternately changes at two levels of (1-m) L av and (1 + m) L av .
  • the twist period changes in the order of L av , (1 ⁇ m) L av , L av , and (1 + m) L av .
  • FIG. 16 is a diagram illustrating the twist amplitude dependence of EPMD-RF for a type 1 modulation waveform.
  • FIG. 17 is a diagram illustrating the twist amplitude dependence of EPMD-RF for a type 2 modulation waveform.
  • the external birefringence beat length L B is set to 155 m, and in each of FIGS. 16B and 17B, the external birefringence beat length L B is set.
  • the modulation degree m was set to 0, 0.15, 0.25, and 0.35, respectively.
  • EPMD-RF is minimized when the modulation degree m is 0, that is, when the average twist amplitude is about 1.8 times / m. This corresponds to the optimum twist condition of the above equation (34).
  • EPMD-RF increases.
  • the modulation degree m is increased from 0, the increase in EPMD-EF is smaller than when the modulation degree is 0 even when the twist amplitude deviates from the optimum value. That is, by using a mixture of a plurality of twist periods, EPMD-RF can be kept low in a wider range of twist amplitudes. This tendency is the same regardless of the number of twist periods (types 1 and 2) and the beat length L B (15.5 m, 155 m).
  • FIG. 18 is a diagram showing an expected value ⁇ EPMD-RF> of EPMD-RF when the average twist amplitude is a random variable that can change with a uniform probability within a range of ⁇ 20% around the optimum value.
  • 18A shows the case of type 1
  • FIG. 18B shows the case of type 2.
  • the expected value of EPMD-RF is reduced by increasing the modulation degree m from zero. In other words, external PMD can be more reliably reduced even when the twist amplitude has uncertainty due to, for example, manufacturing variations, or when the twist amplitude changes in a rewinding process or a cabling process after manufacturing. it can.
  • the twist period when the twist period is changed at two levels (type 1), when modulation is performed with a modulation degree in the range of 0.08 to 0.26, the expected value of EPMD-RF is smaller than that without modulation. This is preferable because it decreases by 25% or more.
  • the twist period is changed at 3 levels (type 2), if the modulation is performed with a modulation degree in the range of 0.18 to 0.49, the expected EPMD-RF value is compared with the case without modulation. Is preferable because it is reduced by 50% or more.
  • the twist period of 3 level is more preferable than 2 level because the EPMD-RF expected value can be kept lower. Furthermore, it can be inferred from the above results that the EPMD-RF expected value may be further reduced by increasing the number of levels or continuously changing the twist cycle.
  • the means is modulation (amplitude modulation, frequency modulation) of the periodic function TP (z).
  • EPMD-RF the above formula (22)
  • FIG. 21 is a diagram illustrating the relationship between the twist amplitude ⁇ r and EPMD-RF when the function TP (z) has and does not have triangular wave frequency modulation.
  • the solid line in the figure shows the simulation result in the case of no frequency modulation with both L S and L L being 20 m.
  • the broken line in the figure shows the simulation result in the case of triangular wave frequency modulation where L fm is 100 m, L S is 20 m, and L L is 30 m.
  • the external birefringence was 1 ⁇ 10 ⁇ 7 and the glass birefringence was zero. It can be seen that in the range where the twist amplitude is 2 times / m or more, both the average value and the maximum value of EPMD-RF are significantly smaller with modulation.
  • FIG. 22 is a diagram illustrating EPMD-RF when the function TP (z) includes various frequency modulations.
  • the frequency modulation waveform is a sine wave and a rectangular wave in addition to the triangular wave.
  • L fm was 100 m
  • L S was 20 m
  • L L was 30 m.
  • This figure shows the average value and the maximum value of EPMD-RF when the twist amplitude is 2.5 to 5 times / m.
  • the EPMD-RF also changes depending on the waveform. Among these, the EPMD-RF is smaller in the order of a triangular wave, a sine wave, and a rectangular wave.
  • FIG. 23 to FIG. 25 are graphs showing the relationship between f fm , f dev and EPMD-RF.
  • f fm 1 / L fm ”.
  • the modulation waveform is a triangular wave.
  • FIG. 23 shows a case where f av is set to 0.05 / m (period is 20 m).
  • FIG. 24 shows a case where f av is 0.033 / m (period is 30 m).
  • FIG. 25 shows a case where f av is 0.025 / m (period is 40 m).
  • FIG. 25 (a) shows the average value of EPMD-RF when the twist amplitude is 2.5 to 5 times / m.
  • FIG. 23 (b), FIG. 24 (b) and FIG. 25 (b) shows the maximum value of EPMD-RF when the twist amplitude is 2.5 to 5 times / m.
  • FIGS. 23 to 25 is a graph having a tendency similar to each other, but it is understood that the absolute value of EPMD-RF is smaller as f av is larger.
  • f av When f av is large, it means that the twist cycle is small as a whole, and resistance to release by rewinding becomes weak. Considering this, it is desirable that f av is about 0.025 to 0.1. Of course, when it is not necessary to rewind, it is preferable that f av is larger. Further, in order to make the EPMD-RF average 0.1 or less, it is desirable that f dev is 0.0025 / m or more.
  • f fm is not a value close to f av , 4 / 5f av , 2 / 3f av , 1 / 2f av , 2 / 5f av . Furthermore, f fm ⁇ 1 / 2f av is desirable. In the case of frequency modulation, even if the waveform is a sine wave or a rectangular wave, the absolute value of EPMD-RF is different, but the graphs have almost the same tendency.
  • FIG. 34 and FIG. 35 is a graph showing the relationship between L fm , L L and EPMD-RF.
  • FIG. 34 shows a case where L S is 20 m.
  • 35 shows a case where the L S was 15 m.
  • Each of FIG. 34 (a) and FIG. 35 (a) shows an average value of EPMD-RF when the twist amplitude is 2.5 to 5 times / m.
  • Each of FIG. 34 (b) and FIG. 35 (b) shows the maximum value of EPMD-RF when the twist amplitude is 2.5 to 5 times / m. If L S is approximately 20 m, as a range EPMD-RF face generally 0.04 or less in FIG.
  • (L L , L fm ) is preferably a region where L fm is large from a straight line passing through two points (30, 50) and (60, 600)).
  • L L ⁇ L S ⁇ 32 and L fm ⁇ ⁇ 55 (L L ⁇ L S ) ⁇ 400 ⁇ / 3 is desirable.
  • L S is approximately 15 m, as a range EPMD-RF face generally 0.04 or less in FIG. 35 (a)
  • the least, 25m ⁇ L L ⁇ 58m, and, L fm ⁇ 100 m is desirable.
  • FIG. 26 is a diagram illustrating a random frequency modulation waveform in the function TP (z).
  • FIG. 27 is a diagram illustrating the relationship between f dev and EPMD-RF when the function TP (z) includes the random frequency modulation of FIG. This figure shows the average value and the maximum value of EPMD-RF when the twist amplitude is 2.5 to 5 times / m. It can be seen that even when the modulation waveform is random, EPMD-RF may be significantly reduced as compared to the case without modulation.
  • EPMD-RF can be significantly reduced.
  • FIG. 28 is a diagram showing the relationship between twist amplitude ⁇ r and EPMD-RF when function TP (z) has and does not have triangular wave amplitude modulation.
  • the solid line in the figure indicates the simulation result when there is no amplitude modulation.
  • the broken lines in the figure show the simulation results in the case of triangular wave amplitude modulation with L p being 20 m, L am being 100 m, and md being 0.25 / 0.75. It can be seen that in the range where the twist amplitude is 2 times / m or more, both the average value and the maximum value of EPMD-RF are significantly smaller with modulation.
  • FIG. 29 (a), FIG. 30 (a), and FIG. 31 (a) shows an average value of EPMD-RF when the twist amplitude is 2.5 to 5 times / m.
  • FIG. 29 (b), FIG. 30 (b) and FIG. 31 (b) shows the maximum value of EPMD-RF when the twist amplitude is 2.5 to 5 times / m.
  • the modulation waveform is a periodic function other than a rectangular wave, and md is 0.2 or more and L am is 120 md or more. desirable.
  • the modulation waveform is a rectangular wave, it can be seen that the parameter range in which EPMD-RF is greatly reduced is narrow.
  • FIG. 32 is a diagram showing a random amplitude modulation waveform in the function TP (z).
  • Figure 33 is a diagram showing a relationship between m d and EPMD-RF in the case where the random amplitude modulation of Fig. 32 is in the function TP (z). This figure shows the average value and the maximum value of EPMD-RF when the twist amplitude is 2.5 to 5 times / m. It can be seen that even when the modulation waveform is random, EPMD-RF may be significantly reduced as compared to the case without modulation.
  • EPMD-RF can be significantly reduced by adding an appropriate amplitude modulation to the function TP (z).
  • the function TP (z) may be obtained by multiplying both frequency modulation and amplitude modulation using a sine wave as a carrier wave.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

 本発明は、側圧や曲げなどの外部的要因が加えられてもPMDが大きく上昇しない光ファイバに関する。当該光ファイバは、応力を伴う弾性的な捻れであるツイストが付与されている。そのツイストによる単位長当りの回転数であるツイストレートを、当該光ファイバの長手方向位置zの関数として、所定のツイスト周期を有し、かつ、そのツイスト周期の中では一方向へのツイスト回転角と反対方向へのツイスト回転角とが互いに等しいf(z)で表すとともに、ツイストレート当りの円複屈折を表す比例係数をgとし、角周波数をωとし、曲げおよび側圧によって生じる外部的な直線複屈折をβとしたとき、当該光ファイバにおける平均のツイスト周期Lおよび平均のツイストレートγavは、所定の関係式を満たしている。

Description

光ファイバ
 本発明は光ファイバに関するものである。
 光ファイバの偏波モード分散(PMD: Polarization Mode Dispersion)は、光ファイバが有する2つの基底導波モードの間の群遅延の差である。PMDは光ファイバの光学特性の異方性によって生じる。光学特性の異方性が生じる原因には、光ファイバの構造や組成や内部応力の異方性などの内部的要因の他に、光ファイバの側圧や曲げやツイストなどの外部的要因がある。PMDは光ファイバの伝送容量を制限する要因であるので、光ファイバのPMDを低減する様々な技術が開発されてきている。
 特許文献1には、光ファイバにツイストを付与することによって該光ファイバのPMDを低減する方法が開示されている。この方法では、光ファイバをガラスプリフォームから線引する工程において、光ファイバを牽引する装置と光ファイバをリールに巻き取る装置との間に光ファイバを捻る装置を設置することで該光ファイバにツイストを付与し、このツイストを付与した光ファイバをリールに巻き取る。または、リールに巻かれた光ファイバを別のリールに巻き替える工程において光ファイバを捻りながら巻き取ることによって該光ファイバにツイストを付与する。適切な大きさのツイストを光ファイバに付与することにより、該光ファイバのPMDを低減することができる。例えば、1回/m以上のツイストを光ファイバに与えることで、ビート長が5~50mの光ファイバのいずれにおいてもPMDを1/5以下に低減できることが示されている。
 なお、特許文献1では、応力を伴う捻れをツイストと定義し、応力を伴わない捻れをスピンと定義している。これと同じ定義を本明細書でも用いる。
 特許文献2には、光ファイバをガラスプリフォームから線引する工程において、光ファイバを捻りながらプリフォームから線引することによって該光ファイバにスピンを付与する方法が開示されている。同文献によれば、ビート長が0.5mより長い光ファイバに対して1m以上かつ長手方向に変化する周期で符号が反転するスピンを付与するとPMDを特に良く低減できるとされている。
 非特許文献1には、スピンを付与した光ファイバにおける外部的要因によるPMDの挙動が記載されている。それによると、スピンが無い光ファイバでは側圧の方向によってPMDが異なるのに対して、スピンの有る光ファイバでは方向に関して平均化されてPMDは側圧方向に依存しなくなるが、側圧が増大するとスピンの有無に関係無くPMDは同様に増大するとされている。
米国特許出願公開第2006/0133751号公報 米国特許第6993229号公報 M. J. Li et al., Optics Letters, vol.24, no.19, pp.1325-1327 (1999). C. D. Poole, et al.,Optics Letters vol.16, pp.372-374 (1991). J. Noda et al., J. Lightwave Technol. v.4, pp.1071-1089 (1986). R.E. Shuh et al.,Electronics Letters, vol.31, no.20, pp.1772-1773, (1995).
 発明者らは、上述の従来技術について検討した結果、以下のような課題を発見した。すなわち、従来技術では、内部的要因によるPMDに関しては良く低減することができたが、外部的要因によるPMDに関しては良く低減することができなかった。その原因としては以下の2つが考えられる。
 第1の原因は、特許文献2等に開示された多くの従来技術においてPMD低減の手段としてスピンが用いられたことである。スピンが付与された光ファイバでは、基底モードの導波光は偏波状態を大きく変えることなく伝搬する。それ故、側圧や曲げによって一定方向の複屈折が生じると、2つの基底モードの間の群遅延差が速く蓄積して大きなPMDが発生する。外部的要因によるPMDを低減するためには、基底モードの導波光が偏波状態を変えながら伝搬することが必要であり、そのためにはスピンではなくツイストを付与することが望ましい。
 第2の原因は、特許文献1ではツイストの付与の仕方が適切でなかったことである。単にツイストを付与するだけでは外部的要因によるPMDを低減できない。外部的要因によるPMDを低減するためには、ツイストの量や反転周期を適切に設計する必要がある。そもそも、特許文献1に開示されている技術は、内部的要因によるPMDを低減することを課題としており、外部的要因によるPMDを低減することを意図していない。
 本発明は上述のような課題を解決するためになされたものであり、側圧や曲げなどの外部的要因が加えられてもPMDが大きく上昇しない光ファイバを提供することを目的としている。
 本発明に係る光ファイバは、応力を伴う弾性的な捻れであるツイストが所定の条件を満たすよう付与された光ファイバに関する。すなわち、ツイストによる単位長当りの回転数であるツイストレートを、当該光ファイバの長手方向位置zの関数として、所定のツイスト周期を有し、かつ、そのツイスト周期の中では一方向へのツイスト回転角と反対方向へのツイスト回転角とが互いに等しいf(z)で表すとともに、ツイストレート当りの円複屈折を表す比例係数をgとし、角周波数をωとし、曲げおよび側圧によって生じる外部的な直線複屈折をβとし、下記の関係式(1a)~(1f)を満たすとしたとき、当該光ファイバに対するツイスト条件は、ツイスト周期をLとして関係式(1g)によって定義されるツイスト誤差量Aが8π(rad)以下である第1条件、および、関係式(1h)によって定義される最適周期Loptをまたいでツイスト周期が長手方向に変化する第2条件のうち、少なくとも一方を満たしている。
Figure JPOXMLDOC01-appb-M000005
 本発明に係る光ファイバは、第1条件が成立し、関係式(1f)で定義される矩形性パラメタρが0.59以上であるのが好適である。
 本発明に係る光ファイバは、第1条件および第2条件が共に満たされるのが好適である。
 本発明に係る光ファイバは、第1条件が成立し、比(β/g)で与えられるツイスト閾値をγthとしたとき、関係式(1e)で定義される平均のツイストレートγavが2γth以上であるのが好適である。
 また、本発明に係る光ファイバは、コイル状に巻かれていて曲げ直径をDとし、光弾性定数をΔCとし、ヤング率をEとし、ガラス直径をdとし、光波長をλとし、下記の関係式で与えられる直線複屈折βによって比(β/g)で定義されるツイスト閾値をγthとしたとき、関係式(1e)で定義される平均のツイストレートγavが2γth以上であるのが好適である。
Figure JPOXMLDOC01-appb-M000006
 本発明に係る光ファイバは、光ファイバのガラス部分が固まってから付与される捻回方向が反転する捻回であるツイストを、そのツイストの単位長さ当りの回転数であるツイストレートが光ファイバの軸方向位置zの関数TP(z)として与えられ、その関数TP(z)の周期が、所定のパターン、ランダムパターンまたはこれらの組合せで変化していることを特徴とする。
 本発明に係る光ファイバは、光ファイバのガラス部分が固まってから付与される捻回方向が反転する捻回であるツイストを、そのツイストの単位長さ当りの回転数であるツイストレートが光ファイバの軸方向位置zの関数TP(z)として与えられ、その関数TP(z)の振幅が、所定のパターン、ランダムパターンまたはこれらの組合せで変化していることを特徴とする。
 本発明に係る光ファイバは、光ファイバのガラス部分が固まってから付与される捻回方向が反転する捻回であるツイストを、そのツイストの単位長さ当りの回転数であるツイストレートが光ファイバの軸方向位置zの関数TP(z)として与えられ、その関数TP(z)の振幅および周期それぞれが、所定のパターン、ランダムパターンまたはこれらの組合せで変化していることを特徴とする。
 本発明に係る光ファイバは、側圧や曲げなどの外部的要因が加えられてもPMDが大きく上昇しない。
は、光ファイバにおけるツイスト付与を説明する図である。 は、光ファイバへのツイストが付与された光ファイバの製造方法を説明するための図である。 は、偏波分散ベクトルΩの軌跡を模式的に示す図である。 は、文献による物性パラメタを用いて計算されるqの値を示す図である。 は、ツイスト周期Lが20mである場合のEPMD-RFを示す図である。 は、外部的複屈折の大きさとツイスト振幅に対してEPMD-RFを3次元プロットした図である。 は、外部的複屈折の大きさとツイスト振幅に対してEPMD-RFを等高線表示した図である。 は、ツイストレートf(z)が正弦波で表される場合のEPMD-RFの計算結果を示す図である。 は、ツイストレートf(z)が三角波で表される場合のEPMD-RFの計算結果を示す図である。 は、ツイストレートf(z)がデューティ比50%台形波で表される場合のEPMD-RFの計算結果を示す図である。 は、ツイストレートf(z)がデューティ比80%台形波で表される場合のEPMD-RFの計算結果を示す図である。 は、台形波のデューティ比を説明する図である。 は、図8~図11の包絡線から導かれるAW-EPMD-RFおよび式によって与えられるAW-EPMD-RFをプロットおよび直線で示す図である。 は、長手方向に変化するツイスト周期を有するタイプ1のデューティ50%台形波のツイスト波形f(z)を示す図である。 は、長手方向に変化するツイスト周期を有するタイプ2のデューティ50%台形波のツイスト波形f(z)を示す図である。 は、タイプ1の変調波形についてEPMD-RFのツイスト振幅依存性を示す図である。 は、タイプ2の変調波形についてEPMD-RFのツイスト振幅依存性を示す図である。 は、平均ツイスト振幅が最適値の周りの±20%の範囲で一様確率で変化しうる確率変数である場合のEPMD-RFの期待値<EPMD-RF>を示す図である。 は、最適ツイスト回転数からの誤差Aを一定値以下に制限した場合に生じうるEPMD-RFの期待値<EPMD-RF>の計算結果を示す図である。 は、平均ツイスト振幅とツイスト閾値の比(γav/γth)を一定値以下に制限した場合に生じうるEPMD-RFの期待値<EPMD-RF>の計算結果を示す図である。 は、関数TP(z)に三角波の周波数変調が有る場合および無い場合それぞれにおけるツイスト振幅γrとEPMD-RFとの関係を示す図である。 は、関数TP(z)に様々な周波数変調が有る場合におけるEPMD-RFを示す図である。 は、ffm,fdevおよびEPMD-RFの関係を示すグラフである。 は、ffm,fdevおよびEPMD-RFの関係を示すグラフである。 fm,fdevおよびEPMD-RFの関係を示すグラフである。 は、関数TP(z)におけるランダムな周波数変調波形を示す図である。 は、関数TP(z)に図26のランダムな周波数変調が有る場合におけるfdevとEPMD-RFとの関係を示す図である。 は、関数TP(z)に三角波の振幅変調が有る場合および無い場合それぞれにおけるツイスト振幅γrとEPMD-RFとの関係を示す図である。 は、m,LamおよびEPMD-RFの関係を示すグラフである。 は、m,LamおよびEPMD-RFの関係を示すグラフである。 は、m,LamおよびEPMD-RFの関係を示すグラフである。 は、関数TP(z)におけるランダムな振幅変調波形を示す図である。 は、関数TP(z)に図32のランダムな振幅変調が有る場合におけるmとEPMD-RFとの関係を示す図である。 は、Lfm,LLおよびEPMD-RFの関係を示すグラフである。 は、Lfm,LLおよびEPMD-RFの関係を示すグラフである。
符号の説明
 10…光ファイバ、11…光ファイバ10のツイストを示す基準線、20…側圧方向、100…ボビン、200…ツイスト付与装置、210…回転ダイス、220…光ファイバ保持部。
 以下、この発明に係る光ファイバの各実施形態を、図1~35を参照して詳細に説明する。なお、図面の説明において、同一部位、同一要素には同一符号を付して詳細な説明を省略する。
 (第1実施形態)
  図1は、光ファイバにおけるツイスト付与を説明する図である。図1(a)は、光ファイバ10の斜視図を示し、また、この光ファイバ10のツイストを示す基準線11および側圧方向20を示す。図1(b)は、光ファイバ10におけるツイストレートの軸方向分布を示す。光ファイバ10は、応力を伴う弾性的な捻れであるツイストが付与されている。光ファイバ10の軸方向位置をzで表し、位置zにおける基準線11の回転位置をθで表すと、ツイストによる単位長当りの回転数であるツイストレートは、位置zの関数として「f(z)=dθ/dz」で表される。図1(b)に示されるように、ツイストレートf(z)は、振幅がγで周期がLの矩形波で表される。
 なお、図2は、ツイストが付与された光ファイバ10の製造方法を示す図である。すなわち、図2(a)に示されたように、ガラス径dを有する光ファイバ10の一端B1をボビン100に固定する。ボビン100の胴部外径はDであり、胴軸AXを中心に矢印S1に沿ってボビン100が回転することにより、この胴部に光ファイバ10が巻き取られる。このとき、光ファイバ10には、ツイスト付与装置200により所望のツイストが付与される。ツイスト付与装置200は、光ファイバ10にツイストを付与する回転ダイス210と、光ファイバ10を回転可能な状態で保持する光ファイバ保持部220を備える。光ファイバ10とボビン100とはC1点において接触しているため、このC1点において、光ファイバ10に付与されたツイスト状態が固定される。したがって、C1点を支点として回転ダイス210が矢印S2(第1捻回方向)に沿って回転することにより、光ファイバ10にツイストが付与される。ツイスト付与装置200による光ファイバ10へのツイスト付与は、ボビン100を胴軸AXを中心に矢印S1に沿って回転させながら行われるため、ボビン100の胴部には、所定のツイストが付与された光ファイバ10が巻き取られる。これにより、曲げ直径Dでコイル状に巻かれた光ファイバ10(ツイスト付与後)が得られる。
 一方、ツイスト付与装置200は、一定時間が経過すると、回転ダイス210の捻回方向を反転させる(図2(b)における矢印S2で示された方向)。このとき、ボビン100の胴部に巻き取られている光ファイバ10の一部は、付与されたツイストが維持された状態で、C2点がツイスト付与のための支点として機能する(この状態においても、ボビン100は、胴軸AXを中心に矢印S1に沿って一定速度で回転している)。すなわち、C2点を支点として回転ダイス210が矢印S3(第2捻回方向)に沿って回転することにより、光ファイバ10に逆方向のツイストが付与される。
 所定時間ごとに捻回方向を変更しながらボビン100に巻き取られた光ファイバ10の他端B2も、一端B1とともにボビン100に固定される。これにより、図2(c)に示されたような曲げ直径Dでコイル状に巻き取られた光ファイバ10が得られる。
 光ファイバ10の内部的複屈折(内部的要因による複屈折)は十分に小さく零と見なすことができる。内部的複屈折を十分に小さくするためには、構造や内部応力の異方性を十分に小さくしてもよいし、それらの異方性に対して十分に大きなスピンを付与してもよい。この光ファイバ10に、大きさおよび方向が軸方向に一定である外部的複屈折(側圧や曲げなどの外部的要因による複屈折)が加わる場合を想定する。
 光ファイバ10において一端(z=0)から位置zまでの間の区間の偏波分散ベクトル(PDV: Polarization Dispersion Vector)をΩ(z)と表す。PDVは、方向が主偏波状態(群速度が最大または最小となる偏波状態)のストークスベクトルに等しく、大きさがPMDに等しい。PDVの空間的発展は、下記式の微分方程式に従うことが知られている(例えば非特許文献2参照)。
Figure JPOXMLDOC01-appb-M000007
 ただし、βは伝搬定数差で表した外部的複屈折である。gは、rotation coefficientと呼ばれる物性定数であり、ツイストに対する円複屈折の比例係数を表す。また、下付添字ωは角周波数ωに関する偏微分を表す。関数f(z)は上述したようにツイストレートであり、本実施形態においては下記式で表される。
Figure JPOXMLDOC01-appb-M000008
 上記(3)式を解くことにより、PMDおよびPDVを位置zの関数として求めることができる。上記(3)式において下記(5)式のように表し、上記(4)式を上記(3)式に代入して、位置z=(n-1)L から 位置z=nLまでの範囲で積分すると、下記(6)式のようになる。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 上記(6)式の物理的意味は以下のように理解することができる。まず、(6)式における行列Aは回転行列である。一般に回転行列は下記式で表されることが知られている。ただし、eは回転軸方向の単位ベクトル、φは回転角、Eは単位行列、上付添字Tは転置行列、上付添字×は外積行列を表す。
Figure JPOXMLDOC01-appb-M000011
 上記(7)式において下記(8)式を代入したものは、上記(6a)式に一致する。従って、Aは回転行列である。また、Bは速度ベクトルを表す。
Figure JPOXMLDOC01-appb-M000012
 定義より Ω=0 であることから、上記(6)式の解は下記式で表される。この式は、方向が一定の速さで回転し、大きさが一定であるベクトル(B, AB, AB, AB, …)を積算することを表していることから、Ωの軌跡は螺旋となる。図3は、偏波分散ベクトルΩの軌跡を模式的に示す図である。図中で、Oは原点を表す。
Figure JPOXMLDOC01-appb-M000013
 次に、PMDは偏波分散ベクトルPDVの大きさであるから、PDVの軌跡を表す螺旋において始点(原点)から終点までの直線距離がPMDとなる。ここで、回転軸がz軸となるように座標を回転させて、回転後の座標で表示した変数にティルダを付けて表すと、下記(10)式で表される。この(10)式を解くと下記(11)式で表される。したがって、偏波モード分散(PMD)τは下記(12)式で表される。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 ここで、回転軸をz軸としていたので、速度ベクトルBを回転後の座標で表示したものは下記(13)式で表される。これを用いると、上記(12)式は下記(14)式のようになる。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 上記(14)式の右辺の根号内において、第1項は螺旋軸方向への発展を表し、第2項は螺旋軸の回りの回転を表す。光ファイバを通信伝送路として実用する場合、通常は、光ファイバ長がツイスト周期よりも十分に長く、上記(14)式の右辺の根号内の第1項が支配的となる。この場合、上記(14)式は下記(15)式のようになる。
Figure JPOXMLDOC01-appb-M000019
 上記(6c)式および上記(8a)式から下記(16)式が成り立つ。また、上記(6c)式から下記(17)式が成り立つ。これらから下記(18)式が導かれる。
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
 上記(14)式,(16)式および(18)式から、PMDは下記(19)式で表される。また、上記(14)式と同様に、十分に長い光ファイバでは右辺の根号内の分子の第1項が支配的となるので、下記(19)式は下記(20)式のようになる。
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
 すなわち、速度ベクトルBの螺旋軸方向eへの射影成分の大きさが、ツイスト1周期当りのPMDを表す。また、単位長さ当りのPMDは下記(21)式のαパラメタによって表される。(21c)式のベクトルe’ は上記(8a)式の螺旋軸方向単位ベクトルeに等しいので、(21a)式におけるB’ はPDV発展の速度ベクトルBに相当する。そこで、B’ を擬似速度ベクトルと呼ぶ。(21a)式は、螺旋軸方向e’ への擬似速度ベクトルB’ の射影成分の大きさによって単位長当りのPMDが決定されることを示している。
Figure JPOXMLDOC01-appb-M000025
 従って、PMDを最小化するためには、(21c)式で表される螺旋軸ベクトルe’への、(21b)式で表される擬似速度ベクトルB’ の射影成分を最小化するように、ツイストの振幅γおよび周期Lを選択することが好ましく、更に可能であれば外部的複屈折βをも選択することが好ましい。勿論、光ファイバの長さが十分に長くない場合は、上記(19)式で表される偏波モード分散(PMD)τを最小化するように上記パラメタを選択しても良い。
 次に、ツイストによる外部的PMD低減の効果を低減係数EPMD-RF(External PMD Reduction Factor)として下記(22)式で表す。ツイストがある場合のPMDは上記(20)式(厳密には上記(19)式)で表される。一方、ツイストが無い場合は、上記(6d)~(6f)式からb=1、b=0 となり、上記(6i)式から d=dとなるので、上記(6b)式および(6c)式が下記(23a)式(23b)式となり、上記(7)式からPDVは下記(24)式で表され、PMDが下記(25)式で表される。
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
 従って、上記(19)式および(25)式を(22)式に代入すると、外部的PMDの低減係数EPMD-RFが下記(26)式のように求められる。また、十分に長い光ファイバにおいては、EPMD-RFは、下記(27)式のように表される。この(27)式は、規格化された速度ベクトルCの螺旋軸方向e’ への射影成分を最小化するように、ツイスト振幅γおよびツイスト周期Lを選択することによって、更に可能であれば外部的複屈折βを選択することによって、外部的PMDを最小限に低減することができることを示している。
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000031
 ツイストの振幅γおよび周期Lは、例えば特許文献1に記載された既知の技術を用いて調整することができる。また、外部的複屈折βの大きさは、光ファイバの曲げ径や側圧によって調整することができる。ただし、外部的複屈折の中には設計者や使用者の意図しない原因(例えばケーブル内での光ファイバの蛇行やリールの膨張収縮やスプール内での隣接光ファイバ間の摩擦など)によって発生するものがあり、これらを一定値に調整することは困難な場合が多い。しかし、これらの意図しない外部的複屈折の予想される値の範囲よりも大きな複屈折を意図的に与えることにより、意図しない要因による外部的複屈折の値の変動を抑え、(27)式または(26)式に与えられる外部的PMDの最小化条件を安定的に成立させることができる。
 意図的に外部的複屈折を与える方法として、テープ心線においてテープ樹脂の熱収縮応力によって心線に非対称な側圧を加える方法、ケーブル内で光ファイバを螺旋状に走行させることによって曲げを加える方法、リール巻き状態や芯無しのコイル状態の光ファイバにおいて巻き径を小さくする方法、などの方法は簡便で再現性が高いので実用性が高い。曲げや側圧によって光ファイバに生じる複屈折に関しては、非特許文献3などに開示されている式から知ること
ができる。
 例えば、光ファイバに直径Dの曲げを与えた場合の複屈折βは下記式で表される。ただし、ΔCは光弾性定数であり、Eはヤング率であり、dは光ファイバのガラス直径であり、λは光波長である。
Figure JPOXMLDOC01-appb-M000032
 また、以下に示されたように、外部的複屈折に比べて十分に大きなツイストを光ファイバに与えることにより、外部的複屈折の値に関係なく外部的PMDを最小化することが可能である。すなわち、下記(29)式で与えられるツイスト閾値γthよりも十分に大きなツイスト(例えば3倍以上、より好ましくは10倍以上)を加える。このとき、下記(30)式で表される関係があり、下記(31)式および(32)式のようになるので、上記(27)式は下記(33)式のようになる。
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000037
 上記(33)式は、下記(34)式が成り立つときに、最小値である零をとる。(34a)式の左辺は、ツイスト一周期にわたる回転角の合計を表す。また、右辺qは(34b)式によって決まる。(34b)式におけるg,dおよびdはいずれも光ファイバの材料によって決まる物性パラメタである。PMDが問題とされる通信用光ファイバの場合、光ファイバの材料はシリカガラスである場合がほとんどである。シリカ系ガラスにおける上記物性パラメタの値は経験的にg=0.14,d=1.085,d=0.085 であることが非特許文献4に開示されている。図4は、この文献による物性パラメタを用いて計算されるqの値を示す図である。
Figure JPOXMLDOC01-appb-M000038
 従って、光ファイバを構成する材料(通常はシリカガラス)の物性パラメタ(通常は、g=0.14,d=1.085,d=0.085)を上記(34)式に代入することによって決定される値の集合qのいずれかが、ツイスト一周期にわたる合計回転角γLに等しくなるように、ツイスト条件を調整することにより、外部的複屈折の大きさによらず、外部的PMDの発生を最小限に抑えることができる。
 次に、数値例として、ツイスト周期Lが20mである場合について上記(27)式によって与えられるEPMD-RFを図5に示す。図5において、外部的複屈折の大きさは、ビート長L=2π/βによって示されている。また、上記(34)式によって与えられる最適ツイスト振幅γoptについても図5に示されている。この図5に示されたように、(34)式の最適ツイスト振幅を選択することにより、外部的複屈折の大きさによらず、外部的PMDを最小限に抑制することが可能である。また、図5にはビート長L=15.5[m]の場合について、EPMD-RFの包絡線が示されている。この包絡線は、上記(27)式から、下記(35)式で表される。この包絡線は、ツイスト振幅γおよび周期Lが上記(34)式の最適条件から外れた場合に生じうるEPMD-RFの最悪値を表
している。
Figure JPOXMLDOC01-appb-M000039
 また、別の数値例として、外部的複屈折の大きさとツイスト振幅に対してEPMD-RFを3次元プロットしたものを図6に示し、また、これを等高線表示したものを図7に示す。また、図6および図7には、上記(29)式によって与えられるツイスト閾値γthと、上記(34)式によって与えられる最適ツイスト振幅γoptも、併せて示されている。これらの図に示されるように、ツイスト振幅γをツイスト閾値γthよりも大きくすると共に最適ツイスト振幅γoptのいずれかに等しくすることにより、外部的複屈折のビート長Lによらず外部的PMD低減率EPMD-RFを最小化することができる。
 (第2実施形態)
  次に、第2実施形態として、矩形波以外のツイスト波形を用いた場合のPMD低減性能について説明する。非矩形波のツイスト波形の場合には、上記(6)式を数値的に積分することによってPMDおよびEPMD-RFを計算することができる。
 図8は、ツイストレートf(z)が正弦波で表される場合のEPMD-RFの計算結果を示す図である。図9は、ツイストレートf(z)が三角波で表される場合のEPMD-RFの計算結果を示す図である。図10は、ツイストレートf(z)がデューティ比50%台形波で表される場合のEPMD-RFの計算結果を示す図である。また、図11は、ツイストレートf(z)がデューティ比80%台形波で表される場合のEPMD-RFの計算結果を示す図である。なお、台形波のデューティ比は、台形の平坦部分が占める比率であり、図12における変数pで定義される。
 図8~図11で、ツイスト周期Lを20mとした。また、図8(a)、図9(a)、図10(a)および図11(a)のそれぞれでは外部的複屈折のビート長Lを155mとし、図8(b)、図9(b)、図10(b)および図11(b)のそれぞれでは外部的複屈折のビート長Lを15.5mとした。上記(6)式を数値積分して得られるEPMD-RFを平均ツイスト振幅に対してプロットして示した。ここで、平均ツイスト振幅γavは、ツイストレートの絶対値平均であり、下記(36)式で表される。また、図8~図11では、EPMD-RFの近似式が示されている。この近似式とは、下記(37)式で与えられるEPMD-RFeffである。
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000041
 ただし、EPMD-RFeffは、上記(27)式の右辺およびそれが依存する各式において、ツイスト振幅γおよびrotational factorの周波数分散dを、下記(38)式で与えられる実効ツイストレート((38a)式)および実効分散((38b)式)に置き換えることによって得られるEPMD-RFである。(37)式の右辺においてハットを付けた変数は、上記の置き換えを行って計算される値であることを示す。(38c)式で与えられるパラメタρは、波形の平均振幅の最大振幅に対する比であり、矩形波の時に最大値1をとることから矩形性パラメタと呼ぶ。(38a)式および(38b)式における係数および乗数(1.014, 0.42, 4)は、図8~図11の数値解から発明者によって経験的に導かれた値であるが、これら図に示されたように数値解の挙動を忠実に再現している。
Figure JPOXMLDOC01-appb-M000042
 また、EPMD-RFが最小となる最適ツイスト条件については、(27)式~(34)式に至るのと同様の議論により、下記(39)式が成立する場合に、下記(40)式が成立することが導かれる。従って、最適な平均ツイスト振幅およびツイスト周期を与える関係式は下記(41a)および(41b)式のようになる。この(41a)および(41b)式が示す最適条件は、三角波、正弦波、台形波などの波形によらず成立する。実際の製造条件や使用条件においては、ツイスト波形は、三角波や正弦波や台形波と厳密には一致しない場合が生じうるが、そのような場合においても上記の最適条件を実質的に満足させることにより、外部的PMDを最小化することができる。
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-M000044
Figure JPOXMLDOC01-appb-M000045
 具体的には、最適ツイスト回転数からの誤差Aを下記(42)式のように定義し、Aを一定の上限値以下に制限した場合に生じうるEPMD-RFの期待値<EPMD-RF>を計算すると、図19のようになる。図19に示されているように、Aをより小さい範囲に制限することによってEPMD-RFの期待値を下げることができるが、特にAの上限を4回(8π[rad])以下、より好ましくは2回(4π[rad])以下にすると、特にEPMD-RFの期待値を低く抑えることができる。一方、Aの上限を大きくしていくと、EPMD-RFの期待値は一定の範囲に収束していくが、これはツイスト回転数を特に制約しない従来の技術(例えば文献1)において予想されるEPMD-RFの期待値に相当する。従って、最適ツイスト回転数からの誤差Aの上限を4回(8π[rad])以下、より好ましくは2回(4π[rad])以下にすることによって、従来技術に比べてEPMD-RFの期待値を低く抑えることができる。
Figure JPOXMLDOC01-appb-M000046
 また、(39)式に示されるように、外部的複屈折によって決まるツイスト閾値γthよりも平均ツイスト振幅γavを大きくすることが好ましいが、これを以下に具体的に示す。すなわち、(γav/γth)の比を一定の下限値以上に制限した場合に予想されるEPMD-RFの期待値<EPMD-RF>を計算すると、図20のような結果となる。図20において、(a)は最適ツイスト回転数からの誤差Aを4回(8π[rad])以下に制限した場合、(b)は2回(4π[rad])以下に制限した場合である。図から分かるように、(γav/γth)の比を2以上、より好ましくは4以上とすることにより、EPMD-RFの期待値を下げることができる。
 また、図8~図11にはEPMD-RFeffの包絡線も示されている。包絡線についても同様に上記(35)式に実効ツイストレート((38a)式)および実効分散((38b)式)を代入することにより、下記(43)式が得られる。特に、ツイスト振幅が十分に大きく、上記(39)式が成立するときの漸近値(グラフ右方での収束値)は、十分に大きな振幅のツイストを与えた場合に生じうるEPMD-RFの最悪値(最大値)に相当することから、これをAW-EPMD-RF(Asymptotic Worst EPMD-RF)と呼ぶと、下記(44)式で与えられる。
Figure JPOXMLDOC01-appb-M000047
Figure JPOXMLDOC01-appb-M000048
 図13は、図8~図11の包絡線から導かれるAW-EPMD-RFおよび(44)式によって与えられるAW-EPMD-RFをプロットおよび直線で示す図である。また、図13は、各波形の矩形性パラメタについても示す。この図13に示されたように、ツイスト波形を矩形波に近づける(矩形性パラメタを値1に近づける)ことにより、ツイスト振幅が(製造時の誤差などによって)最適値から外れた場合に生じうるEPMD-RFの最悪値(AW-EPMD-RF)を低くすることができる。すなわち、より確実に外部的PMDを低減することができる。具体的には、矩形性パラメタを0.59以上にすることにより、AW-EPMD-RFを最悪値から10%以上低下させることができるので好ましい。さらに、矩形性パラメタを0.71以上にすることにより、AW-EPMD-RFを最悪値から20%以上低下させることができるので好ましい。
 (第3実施形態)
  次に、第3実施形態について説明する。第1実施形態および第2実施形態では、ツイスト波形f(z)の周期Lは長手方向に一定であり、この一定周期の間で一つの方向へのツイスト回転角と反対方向への回転角とが互いに釣り合っていた。第3実施形態では、ツイスト周期Lを長手方向に変えることにより、ツイスト振幅γが不確実性を持つ場合においても期待されるEPMD-RFをより低くでき、従ってより確実に外部的PMDを低減できることを示す。ただし、ツイスト周期Lとは、その長さの中で一つの方向へのツイスト回転角と反対方向への回転角とが互いに釣り合う長さを指すこととし、数学的な意味での周期関数の周期と区別する。
 図14および図15それぞれは、長手方向に変化するツイスト周期を有するデューティ50%台形波のツイスト波形f(z)を示す図である。図14に示されるタイプ1ではツイスト周期が2水準に渡って変化する。図15に示されるタイプ2ではツイスト周期が3水準に渡って変化する。また、ツイスト周期の変化幅をΔLとし、平均値をLavとして、変調度mを下記(45)式で定義する。従って、タイプ1の波形(図14)では、ツイスト周期が(1-m)Lav,(1+m)Lavの2水準で交互に変化する。また、タイプ2の波形(図15)では、ツイスト周期がLav,(1-m)Lav,Lav,(1+m)Lavの順で変化する。
Figure JPOXMLDOC01-appb-M000049
 図16は、タイプ1の変調波形についてEPMD-RFのツイスト振幅依存性を示す図である。図17は、タイプ2の変調波形についてEPMD-RFのツイスト振幅依存性を示す図である。図16(a)および図17(a)のそれぞれでは外部的複屈折のビート長Lを155mとし、図16(b)および図17(b)のそれぞれでは外部的複屈折のビート長Lを15.5mとした。また、変調度mを 0,0.15,0.25 および0.35 それぞれとした。
 図16および図17それぞれにおいて、変調度mが0であるとき、すなわち、平均ツイスト振幅が約1.8回/mであるときにEPMD-RFは最小となる。これは、上記(34)式の最適ツイスト条件に相当する。一方、ツイスト振幅が最適値から外れるとEPMD-RFは上昇する。これに対し、変調度mを0から増大させていくと、ツイスト振幅が最適値から外れた場合でも、EPMD-EFの上昇は、変調度が0である場合よりも小さい。すなわち、複数のツイスト周期を混合して用いることにより、より広い範囲のツイスト振幅においてEPMD-RFを低く抑えることができる。この傾向は、ツイスト周期の水準数(タイプ1,2)およびビート長L(15.5m,155m)によらず同じである。
 図18は、平均ツイスト振幅が最適値の周りの±20%の範囲において一様確率で変化しうる確率変数である場合のEPMD-RFの期待値<EPMD-RF>を示す図である。図18(a)はタイプ1の場合を示し、図18(b)はタイプ2の場合を示す。この図18に示されたように、変調度mを0から増大させていくことにより、EPMD-RF期待値は低減する。すなわち、ツイスト振幅が例えば製造バラツキなどによる不確実性を持つ場合や、製造後の巻き替え工程やケーブル化工程などでツイスト振幅が変化した場合においても、外部的PMDをより確実に低減することができる。
 特に、ツイスト周期を2水準で変化させた場合(タイプ1)には、0.08から0.26までの範囲の変調度で変調を行うと、EPMD-RF期待値が変調無しの場合に比べて25%以上低下するので好ましい。また、ツイスト周期を3水準で変化させた場合(タイプ2)には、0.18から0.49までの範囲の変調度で変調を行うと、EPMD-RF期待値が変調無しの場合に比べて50%以上低下するので好ましい。また、ツイスト周期は2水準よりも3水準の方がEPMD-RF期待値をより低く抑えることができるので好ましい。さらに、水準数を増やしたり連続的にツイスト周期を変化させたりすることで、さらにEPMD-RF期待値を低減できる可能性があることも以上の結果から推察される。
 以上のように、ツイストレートを長手位置zの関数としてTP(z)で表したとき、関数TP(z)を単純な周期関数にすることで、外部的複屈折に起因する偏波モード分散(PMD)を低減することができる。しかし、それでは不十分である。何故なら、関数TP(z)の振幅を最適値に制御することでPMDを十分に低減することができるものの、そのような制御は現実には困難であるからである。
 そこで、以下では、現実的に制御が可能なパラメータで外部的複屈折に起因したPMDを十分に低減する手段について説明する。その手段は周期関数TP(z)の変調(振幅変調、周波数変調)である。ここでは、搬送波を正弦波として、この正弦波を変調した場合にEPMD-RF(上記(22)式)が改善することを示す。
 まず、関数TP(z)が正弦波を搬送波として周波数変調を掛けたものである場合を考える。すなわち、下記(46)式および(47)式が成り立つ場合を考える。ここで、関数TP(z)を三角波で変調した場合、下記(48)式~(51)式が成り立つ。ここで、Lは最長ツイスト周期であり、Lは最短ツイスト周期であり、Lfmはツイスト周波数(周期)変調周期であり、γrはツイスト振幅である。また、TW(φ)は周期2πで振幅1の三角波の関数である。
Figure JPOXMLDOC01-appb-M000050
Figure JPOXMLDOC01-appb-M000051
Figure JPOXMLDOC01-appb-M000052
Figure JPOXMLDOC01-appb-M000053
Figure JPOXMLDOC01-appb-M000054
Figure JPOXMLDOC01-appb-M000055
 図21は、関数TP(z)に三角波の周波数変調が有る場合および無い場合それぞれにおけるツイスト振幅γrとEPMD-RFとの関係を示す図である。図中の実線は、LおよびLを共に20mとした周波数変調無しの場合のシミュレーション結果を示す。図中の破線は、Lfmを100mとし、Lを20mとし、Lを30mとした三角波の周波数変調ありの場合のシミュレーション結果を示す。このシミュレーションでは、外部的複屈折を1×10-7とし、ガラス複屈折を0とした。ツイスト振幅が2回/m以上の範囲では、EPMD-RFの平均値および最大値の何れも、変調ありの方が大幅に小さくなっていることが分かる。
 図22は、関数TP(z)に様々な周波数変調が有る場合におけるEPMD-RFを示す図である。ここでは、周波数変調波形を三角波以外に正弦波および矩形波にした。何れの変調の場合にも、Lfmを100mとし、Lを20mとし、Lを30mとした。この図には、ツイスト振幅を2.5~5回/mとした場合のEPMD-RFの平均値および最大値を示す。波形によってもEPMD-RFが変化しており、この中では三角波、正弦波、矩形波の順でEPMD-RFが小さい。
 また、変調周期LfmによってもEPMD-RFは変化する。図23~図25それぞれは、ffm,fdevおよびEPMD-RFの関係を示すグラフである。ここで、「ffm=1/Lfm」とおいた。変調波形は三角波である。図23は、favを0.05/m(周期を20m)とした場合を示す。図24は、favを0.033/m(周期を30m)とした場合を示す。図25は、favを0.025/m(周期を40m)とした場合を示す。図23(a)、図24(a)および図25(a)のそれぞれは、ツイスト振幅を2.5~5回/mとした場合のEPMD-RFの平均値を示す。図23(b)、図24(b)および図25(b)のそれぞれは、ツイスト振幅を2.5~5回/mとした場合のEPMD-RFの最大値を示す。
 図23~図25それぞれは、互いに似た傾向を有するグラフであるが、favが大きい方がEPMD-RFの絶対値が小さくなっていることが分かる。favが大きいということは全体としてツイスト周期が小さいということであるので、巻き替えによる解放に耐性が弱くなってしまう。このことを考えると、favは0.025~0.1程度であるのが望ましい。勿論巻き替えをする必要がない場合は、favはより大きい方が好ましい。また、EPMD-RFが平均的に0.1以下になるようにするには、fdevは0.0025/m以上であることが望ましい。更に、ffmがfav、4/5fav、2/3fav、1/2fav、2/5favに近い値でないことが望ましい。更に、ffm<1/2favが望ましい。周波数変調の場合は、波形が正弦波や矩形波の場合もEPMD-RFの絶対値は異なるが、概ね同様の傾向のグラフとなる。
 図34および図35それぞれは、Lfm,LLおよびEPMD-RFの関係を示すグラフである。図34は、Lを20mとした場合を示す。図35は、Lを15mとした場合を示す。図34(a)および図35(a)のそれぞれは、ツイスト振幅を2.5~5回/mとした場合のEPMD-RFの平均値を示す。図34(b)および図35(b)のそれぞれは、ツイスト振幅を2.5~5回/mとした場合のEPMD-RFの最大値を示す。Lが約20mの場合、図34(a)でEPMD-RFが概ね0.04以下になる範囲として、少なくとも、32m≦L≦52m、且つ、Lfm≧55/3・L-500(すなわち、(L,Lfm)で(30,50)と(60,600)の2点を通る直線からLfmの大きい領域)が望ましい。或いは、12≦L-L≦32、且つ、Lfm≧{55(L-L)-400}/3が望ましいと表すこともできる。Lが約15mの場合、図35(a)でEPMD-RFが概ね0.04以下になる範囲として、少なくとも、25m≦L≦58m、且つ、Lfm≧100mが望ましい。或いは、10m≦L-L≦43m、且つ、Lfm≧100mが望ましいと表すこともできる。
 ここまで、正弦波、三角波および矩形波などの周期関数を変調波形とした場合を考えてきたが、次に、変調波形をランダム波形にした場合について説明する。図26は、関数TP(z)におけるランダムな周波数変調波形を示す図である。図27は、関数TP(z)に図26のランダムな周波数変調が有る場合におけるfdevとEPMD-RFとの関係を示す図である。この図には、ツイスト振幅を2.5~5回/mとした場合のEPMD-RFの平均値および最大値を示す。変調波形がランダムである場合でも、変調無しの場合よりEPMD-RFが大幅に低減する場合があることが分かる。
 このように関数TP(z)に適切な周波数変調を加えることで、すなわち、関数TP(z)の周期に適切な変調を加えることで、EPMD-RFが大幅に低減することができる。
 つぎに、関数TP(z)が正弦波を搬送波として振幅変調を掛けたものである場合を考える。このとき、下記(52)式が成り立つ。A(z)は振幅1の関数であり、Lはツイスト周期である。γmaxは、最大ツイスト振幅であって、下記(53)式で表される。ここでまた、三角波で変調した場合を考えると、下記(54)式が成り立つ。ただし、Lamはツイスト振幅変調周期である。また、変調度mを下記(55)式のように定める。
Figure JPOXMLDOC01-appb-M000056
Figure JPOXMLDOC01-appb-M000057
Figure JPOXMLDOC01-appb-M000058
Figure JPOXMLDOC01-appb-M000059
 図28は、関数TP(z)に三角波の振幅変調が有る場合および無い場合それぞれにおけるツイスト振幅γrとEPMD-RFとの関係を示す図である。図中の実線は、振幅変調無しの場合のシミュレーション結果を示す。図中の破線は、Lを20mとし、Lamを100mとし、mを0.25/0.75とした三角波の振幅変調ありの場合のシミュレーション結果を示す。ツイスト振幅が2回/m以上の範囲では、EPMD-RFの平均値および最大値の何れも、変調ありの方が大幅に小さくなっていることが分かる。
 振幅変調の場合も、mやLamによってEPMD-RFは影響を受ける。図29~図31それぞれは、m,LamおよびEPMD-RFの関係を示すグラフである。図29は、変調波形を三角波(L=20m)とした場合を示す。図30は、変調波形を正弦波(L=20m)とした場合を示す。図31は、変調波形を矩形波(L=20m)とした場合を示す。図29(a)、図30(a)および図31(a)のそれぞれは、ツイスト振幅を2.5~5回/mとした場合のEPMD-RFの平均値を示す。図29(b)、図30(b)および図31(b)のそれぞれは、ツイスト振幅を2.5~5回/mとした場合のEPMD-RFの最大値を示す。
 図31の矩形波の場合以外は概ね同様の傾向であることが分かる。このとき、EPMD-RFが平均的に0.1以下になるようにするには、変調波形は矩形波以外の周期関数でmが0.2以上かつLamが120m以上であることが望ましい。変調波形が矩形波である場合は、EPMD-RFが大きく低減するパラメータの範囲が狭いことが分かる。
 ここまで、正弦波、三角波および矩形波などの周期関数を変調波形とした場合を考えてきたが、次に、変調波形をランダム波形にした場合について説明する。図32は、関数TP(z)におけるランダムな振幅変調波形を示す図である。図33は、関数TP(z)に図32のランダムな振幅変調が有る場合におけるmとEPMD-RFとの関係を示す図である。この図には、ツイスト振幅を2.5~5回/mとした場合のEPMD-RFの平均値および最大値を示す。変調波形がランダムである場合でも、変調無しの場合よりEPMD-RFが大幅に低減する場合があることが分かる。
 このように関数TP(z)に適切な振幅変調を加えることで、EPMD-RFが大幅に低減することができる。
 なお、関数TP(z)は、正弦波を搬送波として周波数変調および振幅変調の双方を掛けたものであってもよい。

Claims (10)

  1. 応力を伴う弾性的な捻れであるツイストが付与された光ファイバであって、
     ツイストによる単位長当りの回転数であるツイストレートを、当該光ファイバの長手方向位置zの関数として、所定のツイスト周期を有し、かつ、そのツイスト周期の中では一方向へのツイスト回転角と反対方向へのツイスト回転角とが互いに等しいf(z)で表すとともに、
     ツイストレート当りの円複屈折を表す比例係数をgとし、角周波数をωとし、曲げおよび側圧によって生じる外部的な直線複屈折をβとし、関係式(1a)~(1f)を満たすとしたとき、
     当該光ファイバに対するツイスト条件は、ツイスト周期をLとして関係式(1g)によって定義されるツイスト誤差量Aが8π(rad)以下である第1条件を満たしている光ファイバ。
    Figure JPOXMLDOC01-appb-M000001
  2. 請求項1記載の光ファイバにおいて、
     当該光ファイバに対するツイスト条件は、関係式(1h)によって定義される最適周期Loptをまたいでツイスト周期が当該光ファイバの長手方向に変化する第2条件を満たしている。
  3. 請求項1または2記載の光ファイバにおいて、
     前記第1条件の成立下における前記関係式(1f)で定義される矩形性パラメタρは、0.59以上である。
  4. 請求項1または2記載の光ファイバにおいて、
     前記第1条件が成立するとともに比(β/g)で与えられるツイスト閾値をγthとするとき、前記関係式(1e)で定義される平均のツイストレートγavは、2γth以上である。
  5. 請求項1または2記載の光ファイバにおいて、
     当該光ファイバがコイル状に巻かれた状態における前記関係式(1e)で定義される平均のツイストレートγavは、曲げ直径をDとし、光弾性定数をΔCとし、ヤング率をEとし、ガラス直径をdとし、光波長をλとし、下記の関係式で与えられる直線複屈折βによって比(β/g)で定義されるツイスト閾値をγthとするとき、2γth以上である。
    Figure JPOXMLDOC01-appb-M000002
  6. 応力を伴う弾性的な捻れであるツイストが付与された光ファイバであって、
     ツイストによる単位長当りの回転数であるツイストレートを、当該長手方向位置zの関数として、所定のツイスト周期を有し、かつ、そのツイスト周期の中では一方向へのツイスト回転角と反対方向へのツイスト回転角とが互いに等しいf(z)で表すとともに、
     ツイストレート当りの円複屈折を表す比例係数をgとし、角周波数をωとし、曲げおよび側圧によって生じる外部的な直線複屈折をβとし、関係式(1a)~(1f)を満たすとしたとき、
     当該光ファイバに対するツイスト条件は、関係式(1h)によって定義される最適周期Loptをまたいでツイスト周期が当該光ファイバの長手方向に変化する第2条件を満たしている光ファイバ。
    Figure JPOXMLDOC01-appb-M000003
  7. 請求項5記載の光ファイバにおいて、
     当該光ファイバがコイル状に巻かれた状態における前記関係式(1e)で定義される平均のツイストレートγavは、曲げ直径をDとし、光弾性定数をΔCとし、ヤング率をEとし、ガラス直径をdとし、光波長をλとし、下記の関係式で与えられる直線複屈折βによって比(β/g)で定義されるツイスト閾値をγthとするとき、2γth以上である。
    Figure JPOXMLDOC01-appb-M000004
  8. 主にガラス材料からなり、そのガラス材料が固まった後に捻回方向が反転するツイストが付与された光ファイバであって、
     当該光ファイバに付与されるツイストの単位長さ当りの回転数であるツイストレートを、当該光ファイバの長手方向位置zの関数TP(z)として与えるとき、
     前記関数TP(z)の周期は、所定のパターン、ランダムパターンまたはこれらの組合せで変化している光ファイバ。
  9. 主にガラス材料からなり、そのガラス材料が固まった後に捻回方向が反転するツイストが付与された光ファイバであって、
     当該光ファイバに付与されるツイストの単位長さ当りの回転数であるツイストレートを、当該光ファイバの長手方向位置zの関数TP(z)として与えるとき、
     前記関数TP(z)の振幅は、所定のパターン、ランダムパターンまたはこれらの組合せで変化している光ファイバ。
  10. 主にガラス材料からなり、そのガラス材料が固まった後に捻回方向が反転するツイストが付与された光ファイバであって、
     当該光ファイバに付与されるツイストの単位長さ当りの回転数であるツイストレートを、当該光ファイバの長手方向位置zの関数TP(z)として与えるとき、
     前記関数TP(z)の振幅および周期それぞれは、所定のパターン、ランダムパターンまたはこれらの組合せで変化している光ファイバ。
PCT/JP2009/053417 2008-02-28 2009-02-25 光ファイバ WO2009107667A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010500721A JP5229313B2 (ja) 2008-02-28 2009-02-25 光ファイバ
CN2009801071181A CN101960344B (zh) 2008-02-28 2009-02-25 光纤
US12/920,012 US8483531B2 (en) 2008-02-28 2009-02-25 Optical fiber
EP09715475.1A EP2256527B1 (en) 2008-02-28 2009-02-25 Optical fiber
DK09715475.1T DK2256527T3 (en) 2008-02-28 2009-02-25 Optical fiber

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008048498 2008-02-28
JP2008-048498 2008-02-28
JP2008-227190 2008-09-04
JP2008227190 2008-09-04

Publications (1)

Publication Number Publication Date
WO2009107667A1 true WO2009107667A1 (ja) 2009-09-03

Family

ID=41016054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053417 WO2009107667A1 (ja) 2008-02-28 2009-02-25 光ファイバ

Country Status (6)

Country Link
US (1) US8483531B2 (ja)
EP (1) EP2256527B1 (ja)
JP (1) JP5229313B2 (ja)
CN (1) CN101960344B (ja)
DK (1) DK2256527T3 (ja)
WO (1) WO2009107667A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077699A1 (ja) * 2010-12-09 2012-06-14 株式会社フジクラ マルチコアファイバ
WO2013161825A1 (ja) 2012-04-26 2013-10-31 住友電気工業株式会社 マルチコア光ファイバ、マルチコア光ファイバケーブル、および、マルチコア光ファイバ伝送システム
US8838797B2 (en) 2009-07-10 2014-09-16 Empire Technology Development Llc Dynamic computation allocation
US8857221B2 (en) 2011-02-14 2014-10-14 Fujikura Ltd. Optical fiber and method and apparatus for manufacturing optical fiber
JP2015199622A (ja) * 2014-04-07 2015-11-12 株式会社フジクラ 光ファイバ素線の製造方法および製造装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885825B2 (en) * 2016-04-18 2018-02-06 Chiral Photonics, Inc. Pitch reducing optical fiber array and multicore fiber comprising at least one chiral fiber grating
CN110746110A (zh) * 2019-12-10 2020-02-04 普天线缆集团有限公司 改进的1550低损耗光纤制造设备及操作方法
CN112833928B (zh) * 2020-12-31 2022-12-06 桂林电子科技大学 级联宏弯曲和交替单模-多模光纤结构温度折射率传感器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07168070A (ja) * 1993-09-30 1995-07-04 At & T Corp 光ファイバ・ケーブルの製造方法
JPH0850208A (ja) * 1994-08-08 1996-02-20 Furukawa Electric Co Ltd:The 分散補償器
US6993229B2 (en) 2003-09-30 2006-01-31 Corning Incorporated Method of making spun optical fiber with low PMD
US20060133751A1 (en) * 2004-12-16 2006-06-22 Xin Chen Method of imparting twist to optical fiber

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03226283A (ja) 1990-01-31 1991-10-07 Nippondenso Co Ltd サーボアンプの保護方法
JP3860237B2 (ja) * 1995-07-26 2006-12-20 富士通株式会社 偏波分散の抑圧特性を持つ光ファイバ及びその製造方法
US5704960A (en) * 1995-12-20 1998-01-06 Corning, Inc. Method of forming an optical fiber for reduced polarization effects in amplifiers
CN1113823C (zh) 1996-01-22 2003-07-09 康宁股份有限公司 用于减小极化模式色散的调制旋转的光纤
JPWO2002063354A1 (ja) * 2001-01-30 2004-06-10 住友電気工業株式会社 光ファイバの製造方法及び製造装置
US6859596B2 (en) * 2002-07-23 2005-02-22 Fitel Usa Corp. Systems and methods for forming ultra-low PMD optical fiber using amplitude and frequency keyed fiber spin functions
WO2004050573A1 (en) * 2002-09-25 2004-06-17 Giacomo Stefano Roba Process for producing an optical fiber having a low polarization mode dispersion
JP2004161572A (ja) * 2002-11-15 2004-06-10 Sumitomo Electric Ind Ltd 光ファイバの巻取り方法及び光ファイバコイル
CN1209308C (zh) * 2003-03-28 2005-07-06 长飞光纤光缆有限公司 低偏振模色散单模光纤的制造方法及用该方法制备的光纤
WO2005100274A1 (ja) * 2004-04-07 2005-10-27 Fujikura Ltd. 光ファイバの製造方法、光ファイバ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07168070A (ja) * 1993-09-30 1995-07-04 At & T Corp 光ファイバ・ケーブルの製造方法
JPH0850208A (ja) * 1994-08-08 1996-02-20 Furukawa Electric Co Ltd:The 分散補償器
US6993229B2 (en) 2003-09-30 2006-01-31 Corning Incorporated Method of making spun optical fiber with low PMD
US20060133751A1 (en) * 2004-12-16 2006-06-22 Xin Chen Method of imparting twist to optical fiber

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
C. D. POOLE ET AL., OPTICS LETTERS, vol. 16, 1991, pages 372 - 374
J. NODA ET AL., J. LIGHTWAVE TECHNOL., vol. 4, 1986, pages 1071 - 1089
M. J. LI ET AL., OPTICS LETTERS, vol. 24, no. 19, 1999, pages 1325 - 1327
R. E. SHUH ET AL., ELECTRONICS LETTERS, vol. 31, no. 20, 1995, pages 1772 - 1773
See also references of EP2256527A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8838797B2 (en) 2009-07-10 2014-09-16 Empire Technology Development Llc Dynamic computation allocation
WO2012077699A1 (ja) * 2010-12-09 2012-06-14 株式会社フジクラ マルチコアファイバ
JP2012123247A (ja) * 2010-12-09 2012-06-28 Fujikura Ltd マルチコアファイバ
US9008479B2 (en) 2010-12-09 2015-04-14 Fujikura Ltd. Multicore fiber
US8857221B2 (en) 2011-02-14 2014-10-14 Fujikura Ltd. Optical fiber and method and apparatus for manufacturing optical fiber
WO2013161825A1 (ja) 2012-04-26 2013-10-31 住友電気工業株式会社 マルチコア光ファイバ、マルチコア光ファイバケーブル、および、マルチコア光ファイバ伝送システム
US9031368B2 (en) 2012-04-26 2015-05-12 Sumitomo Electric Industries, Ltd. Multi-core optical fiber, multi-core optical fiber cable, and multi-core optical fiber transmission system
EP3144709A1 (en) 2012-04-26 2017-03-22 Sumitomo Electric Industries, Ltd. Multi-core optical fiber, multi-core optical fiber cable, and multi-core optical fiber transmission system
JP2015199622A (ja) * 2014-04-07 2015-11-12 株式会社フジクラ 光ファイバ素線の製造方法および製造装置

Also Published As

Publication number Publication date
JPWO2009107667A1 (ja) 2011-07-14
EP2256527A4 (en) 2013-02-20
EP2256527B1 (en) 2017-01-04
CN101960344A (zh) 2011-01-26
EP2256527A1 (en) 2010-12-01
US8483531B2 (en) 2013-07-09
JP5229313B2 (ja) 2013-07-03
CN101960344B (zh) 2013-06-05
DK2256527T3 (en) 2017-02-13
US20110002580A1 (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP5229313B2 (ja) 光ファイバ
Schermer et al. Improved bend loss formula verified for optical fiber by simulation and experiment
US8718429B2 (en) Multicore optical fiber
US8923678B2 (en) Techniques for manipulating crosstalk in multicore fibers
JP4053947B2 (ja) 振幅および周波数調整ファイバ・スピン関数を使用して超低pmd光ファイバを形成するシステムおよび方法
WO2013099555A1 (ja) マルチコア光ファイバ
JPH11508221A (ja) 偏光モード分散を減少させるためにスピンを変調させた光ファイバ並びにその製造方法および装置
US20170205575A1 (en) Multicore optical fiber and method for manufacturing multicore optical fiber
JP2015184371A (ja) 偏波保持光ファイバ
Velamuri et al. Investigation of planar and helical bend losses in single-and few-mode optical fibers
Zairmi et al. Birefringence and polarization mode dispersion phenomena of commercial optical fiber in telecommunication networks
JP2009168465A (ja) 位相変調子、位相変調子組体及び光センサ
JP7165674B2 (ja) 中空コア光ファイバー用のケーブル化構成
JP5229319B2 (ja) 被覆光ファイバ製造装置および被覆光ファイバ製造方法
JP2016175800A (ja) 光ファイバの製造方法
JP3952949B2 (ja) 光ファイバ及びその製造方法
JP4388018B2 (ja) 光ファイバおよび光ファイバの偏波モード分散測定方法
Su et al. A compact strain sensor based on M-shaped-core long-period fiber grating
JP5734443B2 (ja) マルチコアファイバにおけるクロストークを低減するための技術
US10921512B2 (en) Multi-mode optical fiber and methods for manufacturing the same
JP2007506980A (ja) 等方的特性の光ファイバセンシングコイル
JP2007025400A (ja) 光ケーブル
WO2017014195A1 (ja) モードスクランブラ
JP3584619B2 (ja) 光ケーブルおよびその製造方法
Kurbatov et al. Comparative theoretical study of polarising Panda-type and microstructured fibres for fibre-optic gyroscope

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107118.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09715475

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010500721

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12920012

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009715475

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009715475

Country of ref document: EP