WO2009107599A1 - Manufacturing method for a laminated body - Google Patents

Manufacturing method for a laminated body Download PDF

Info

Publication number
WO2009107599A1
WO2009107599A1 PCT/JP2009/053254 JP2009053254W WO2009107599A1 WO 2009107599 A1 WO2009107599 A1 WO 2009107599A1 JP 2009053254 W JP2009053254 W JP 2009053254W WO 2009107599 A1 WO2009107599 A1 WO 2009107599A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
heat
drying
heat treatment
superheated steam
Prior art date
Application number
PCT/JP2009/053254
Other languages
French (fr)
Japanese (ja)
Inventor
剛志 八塚
潤一郎 大西
Original Assignee
東洋紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡績株式会社 filed Critical 東洋紡績株式会社
Priority to JP2010500687A priority Critical patent/JP5447365B2/en
Publication of WO2009107599A1 publication Critical patent/WO2009107599A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/04Treatment by energy or chemical effects using liquids, gas or steam
    • B32B2310/049Treatment by energy or chemical effects using liquids, gas or steam using steam or damp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2379/00Other polymers having nitrogen, with or without oxygen or carbon only, in the main chain
    • B32B2379/08Polyimides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0358Resin coated copper [RCC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0756Uses of liquids, e.g. rinsing, coating, dissolving
    • H05K2203/0759Forming a polymer layer by liquid coating, e.g. a non-metallic protective coating or an organic bonding layer

Definitions

  • the present invention relates to a method for producing a laminate by directly applying, drying, and heat-treating a polyimide resin solution on a metal foil, and more particularly to a method for producing a laminate including a drying / heat treatment step using superheated steam. Is.
  • printed wiring boards are used in which laminated boards made of insulating materials and conductive materials are processed.
  • Printed wiring boards can be broadly classified into plate-shaped rigid printed wiring boards and flexible printed wiring boards with great flexibility.
  • the three-layer flexible substrate is obtained by bonding a base film such as polyimide and a copper foil using an adhesive such as an epoxy resin, an acrylic resin, or a polyester resin.
  • the two-layer flexible substrate is obtained by providing a heat-resistant insulating layer directly on a copper foil without using an adhesive.
  • an adhesive such as epoxy resin, acrylic resin or polyester resin.
  • thermoplastic heat-resistant resin layer is provided on at least one side of a heat-resistant film such as a polyimide film, and the thermoplastic resin layer and a metal foil such as a copper foil are bonded together.
  • Plating such as copper plating is applied to a heat-resistant film such as a polyimide film.
  • a method of applying a polyimide-based heat-resistant resin solution to a metal foil such as a copper foil, drying it, and subjecting it to a heat treatment if necessary is called a casting method. Since the flexible wiring board obtained by the casting method has excellent dimensional stability, it is a material corresponding to the recent increase in density and fine pitch of printed wiring boards.
  • the flexible substrate is manufactured, hot air drying, hot roll contact drying, infrared heating drying, far infrared heating drying, or the like is used as a drying method used for drying the solvent of the heat-resistant resin solution.
  • the heat resistant resin used at this time include a polyimide precursor resin, a solvent-soluble polyimide resin, and a polyamideimide resin.
  • these solvents N-methyl-2-pyrrolidone, N, N-dimethylacetamide, ⁇ -butyrolactone, phenol, cresol, and the like are used, but these solvents have a high boiling point and thus have poor drying properties.
  • amide solvents such as N-methyl-2-pyrrolidone and N, N-dimethylacetamide have low vapor pressure due to intermolecular hydrogen bonding, and the diffusion of the solvent is poor due to the high glass transition temperature of the heat-resistant resin. Yes, it tends to remain in the coating film. Residual solvent causes a decrease in heat resistance and a decrease in dimensional stability. If the drying temperature or heat treatment temperature is too high in order not to leave the solvent, the discoloration or characteristic change of the copper foil, the adhesive strength is reduced due to the deterioration of the resin, or the mechanical characteristics are deteriorated. Drying and heat treatment are performed over time in order to avoid adverse effects caused by an increase in drying and heat treatment temperature and prevent the solvent from remaining. Therefore, there is a problem in productivity.
  • Superheated steam refers to steam that has been heated by heating saturated steam without increasing the pressure. Since superheated steam has a radiant heat energy significantly higher than that of normal steam at a temperature of 150 ° C. or higher, the substance can be heated in a short time. Superheated steam is used for cooking food, washing resin products and metal products, sterilizing food containers, or treating soil. The use of superheated steam as a heating heat source is not very popular except for cooking food. However, when superheated steam is compared with general heated air, it has the following characteristics. (1) Since the heat capacity is larger than that of heated air, rapid heating is possible. (2) Since it has a constant-pressure specific heat about twice that of heated air, it has excellent heating capacity.
  • Patent Documents 1 to 6 propose a method of drying the moisture of wet paper mainly composed of cellulose fibers with superheated steam.
  • Patent Document 6 proposes application of superheated steam to a polyolefin film, a polyamide film, a coating film on a polyester film, or a wet cellophane film.
  • the object of the present invention is to increase the heating and drying efficiency by using superheated steam when producing a laminate by the casting method. Furthermore, it is providing the manufacturing method of a laminated body which does not have the harmful
  • the present invention includes a step of applying a heat treatment using superheated steam in a method of manufacturing a laminate having an insulating resin layer by applying and drying a resin solution containing a polyimide resin on a metal foil. It is the manufacturing method of the laminated body to perform.
  • a laminate comprising a metal foil and a heat-resistant insulating layer can be produced efficiently.
  • the laminate obtained by the present invention can improve the adverse effects caused by the solvent remaining in the heat-resistant insulating layer, such as a decrease in heat resistance and a deterioration in dimensional stability.
  • adverse effects caused by excessive heating such as a decrease in peel strength between the metal and the resin layer and a deterioration in the physical properties of the resin, can be improved at the same time.
  • Examples of the polyimide resin used in the present invention include a polyimide precursor resin, a solvent-soluble polyimide resin, and a polyamideimide resin.
  • the polyimide resin can be polymerized by a usual method. For example, a method of obtaining a polyimide precursor solution by reacting tetracarboxylic dianhydride and diamine in a solution at low temperature, and a method of obtaining a solvent-soluble polyimide solution by reacting tetracarboxylic dianhydride and diamine in a high temperature solution. There are a method using isocyanate as a raw material and a method using acid chloride as a raw material.
  • Examples of raw materials used for the polyimide precursor resin and the solvent-soluble polyimide resin include the following.
  • Examples of acid components include pyromellitic acid, benzophenone-3,3 ', 4,4'-tetracarboxylic acid, biphenyl-3,3', 4,4'-tetracarboxylic acid, diphenylsulfone-3,3 ', 4, 4'-tetracarboxylic acid, diphenyl ether-3,3 ', 4,4'-tetracarboxylic acid, naphthalene-2,3,6,7-tetracarboxylic acid, naphthalene-1,2,4,5-tetracarboxylic acid , Monoanhydrides, dianhydrides, esterified products such as naphthalene-1,4,5,8-tetracarboxylic acid, hydrogenated pyromellitic acid, hydrogenated biphenyl-3,3 ', 4,4'-tetracarboxylic acid Etc.
  • amine component p-phenylenediamine, m-phenylenediamine, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfone, 3,3′-diaminodiphenyl sulfone, 3,4'-diaminobiphenyl, 3,3-diaminobiphenyl, 3,3'-diaminobenzanilide, 4,4'-diaminobenzanilide, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 3 , 4'-diaminobenzophenone, 2,6-tolylenediamine, 2,4-tolylenediamine, 4,4'-diaminodiphenyl sulfide, 3,3'-diamino
  • Raw materials used for polyamideimide resins include trimellitic anhydride, diphenyl ether-3,3 ', 4'-tricarboxylic acid anhydride, diphenylsulfone-3,3', 4'-tricarboxylic acid anhydride, benzophenone as acid components
  • Tricarboxylic acid anhydrides such as -3,3 ′, 4′-tricarboxylic acid anhydride, naphthalene-1,2,4-tricarboxylic acid anhydride, and hydrogenated trimellitic acid anhydride may be used alone or as a mixture.
  • tetracarboxylic acids mentioned in the polyimide resin their anhydrides, dicarboxylic acids and the like can also be used in combination.
  • the amine component include diamines mentioned for polyimide resins, or diisocyanates alone or as a mixture.
  • a resin separately polymerized by a combination of these acid component and amine component can be mixed and used.
  • the solvent of the polyimide resin solution used in the present invention is that the solubility of the polyimide resin is good, the formation of water and an azeotropic compound in the gas layer, and the compatibility with water is the effect of superheated steam To increase. Further, if the solvent is compatible with water, the evaporated solvent can be easily recovered, which is industrially advantageous. Specifically, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, tetramethylurea, sulfolane, dimethyl sulfoxide, ⁇ -butyrolactone, cyclohexanone, cyclopentanone and the like can be mentioned.
  • N-methyl-2-pyrrolidone and N, N-dimethylacetamide are preferred.
  • a solvent such as toluene, xylene, diglyme, tetrahydrofuran, methyl ethyl ketone, etc. may be added as long as the solubility is not inhibited.
  • the concentration of the polyimide resin in the polyimide resin solution can be selected from a wide range, but is generally preferably about 5 to 60% by weight, particularly preferably about 8 to 30% by weight from the viewpoint of processability.
  • Examples of the metal foil used in the present invention include copper foil, aluminum foil, stainless steel foil, steel foil, and nickel foil. You may use the composite metal foil which compounded these metal foils, and the metal foil processed with other metals, such as zinc and chromium. Moreover, you may perform the surface treatment of metal foil with a silane coupling agent or a titanium coupling agent.
  • the thickness of the metal foil is not particularly limited, but a 1 mm metal sheet can be used from an ultrathin copper foil with a carrier of 2 ⁇ m.
  • other resins and various additives may be blended or reacted for the purpose of improving various properties of the metal laminate, such as mechanical properties, electrical properties, slipperiness, and flame retardancy.
  • the lubricant include silica, talc, and silicone compounds.
  • the flame retardant include phosphorus-containing compounds, triazine compounds, aluminum hydroxide, and magnesium hydroxide.
  • stabilizers such as antioxidants and UV absorbers, plating activators, and organic and inorganic fillers.
  • curing agents such as an isocyanate compound, an epoxy resin, and a phenol resin, a polyester resin, a polyurethane resin, and a polyamide resin.
  • the method for producing the laminate of the present invention will be described. It is desirable to apply a polyimide resin solution to a metal foil and perform primary drying, followed by drying and heat treatment at a higher temperature.
  • the polyimide resin solution is preferably applied so that the thickness after coating, drying and heat treatment is 5 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 50 ⁇ m.
  • the primary drying conditions are preferably 60 to 150 ° C. and 1 to 10 minutes. Superheated steam may be used during the primary drying.
  • the next heat treatment (secondary heat treatment) is performed.
  • the polyimide resin is a polyimide precursor resin
  • a heat treatment involving an imidization reaction is performed.
  • the polyimide resin is a solvent-soluble polyimide resin or polyamideimide resin
  • the solvent is removed by heating.
  • the secondary heat treatment always includes heat treatment with superheated steam.
  • the treatment with superheated steam may be used in combination with hot air drying or infrared or far infrared drying.
  • the temperature of the superheated steam used is preferably 150 to 400 ° C, more preferably 200 to 350 ° C.
  • the residual solvent concentration in the polyimide resin layer after the secondary heat treatment is preferably 0.7% by weight or less, more preferably 0.5% by weight or less. If it is less than 150 ° C., sufficient effects may not be obtained. If it exceeds 400 ° C., the solvent may suddenly boil and a good laminate may not be obtained, and the resin may be deteriorated. Since the temperature is higher than 150 ° C. during the secondary heat treatment, discoloration of metal foil and changes in physical properties may occur. If necessary, it is necessary to lower the oxygen concentration. When copper foil is used, it is desirable to reduce the oxygen concentration to 5% or less, preferably 0.5% or less.
  • the laminate may be heat-treated or solvent-removed in a roll shape.
  • the heat treatment in the form of a scroll is preferably performed under reduced pressure or in an inert gas.
  • Residual solvent Residue in polyimide resin layer due to weight reduction from 150 ° C to 350 ° C (heating rate 30 ° C / min) using differential thermal and thermogravimetric simultaneous measurement device EXSTAR6000TG / DTA manufactured by Seiko Instruments Inc.
  • the solvent concentration was determined. It is preferably 0.7% by weight or less, particularly preferably 0.5% by weight or less.
  • Solder heat resistance The copper foil of the copper foil laminate was etched by a subtractive method to create a circuit pattern having a width of 1 mm. After humidity conditioning at 40 ° C. and 65% RH for 24 hours and flux cleaning, the sample was immersed in a jet solder bath at 320 ° C. for 20 seconds, and the presence or absence of peeling or swelling was observed with a microscope. The thing in which abnormality was not seen was set as (circle), and the thing in which peeling or swelling was seen was set as x.
  • Adhesive strength The above-mentioned sample having a 1 mm wide circuit pattern was measured at a pulling speed of 50 mm / min, a measurement temperature of 20 ° C., and a peeling angle of 90 degrees.
  • Synthesis example 1 In a reaction vessel, 192 g of trimellitic anhydride, 211 g of 3,3′-dimethyl-4,4′-biphenyl diisocyanate, 35 g of 2,4-tolylene diisocyanate, 0.5 g of sodium methylate and N-methyl-2-pyrrolidone 5 kg was added, and the temperature was raised to 150 ° C. over 1 hour, and further reacted at 150 ° C. for 5 hours.
  • the obtained polyamideimide resin had a logarithmic viscosity of 1.6 dl / g and a glass transition temperature of 320 ° C.
  • Synthesis example 2 850 g of N, N-dimethylacetamide, 47.7 g of 4,4′-diamino-2,2′-dimethylbiphenyl and 20.7 g of 4,4′-bis (3-aminophenoxy) biphenyl are put into a reaction vessel and stirred. And dissolved. Next, 80.4 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride was added, and stirring was continued at room temperature for 5 hours to obtain a polyimide precursor.
  • Example 1 Using an applicator, the polyamideimide solution prepared in Synthesis Example 1 is applied by hand to a copper foil (35 ⁇ m electrolytic copper foil manufactured by Mitsui Mining & Mining Co., Ltd.) so that the thickness after drying is 25 ⁇ m. Primary dried. Further, a steam superheater (“DHF Super-Hi 10” manufactured by Daiichi High Frequency Industrial Co., Ltd.) was used as a generator for generating normal pressure superheated steam, and heat treatment was performed with superheated steam. As evaluation of the obtained copper-clad laminate, the amount of residual solvent, solder heat resistance, adhesive strength, and dimensional stability were measured. The results are shown in Table-1.
  • DHF Super-Hi 10 manufactured by Daiichi High Frequency Industrial Co., Ltd.
  • Example 2 Using an applicator, the polyimide precursor solution prepared in Synthesis Example 2 was applied by hand to a copper foil (35 ⁇ m electrolytic copper foil manufactured by Mitsui Mining & Mining Co., Ltd.) so that the thickness after dry ring closure was 25 ⁇ m. Primary drying for 5 minutes. Further, heat treatment was performed for 30 minutes from 100 ° C. to 310 ° C. at a heating rate of 7 ° C./min. Further, a steam superheater (“DHF Super-Hi 10” manufactured by Daiichi High Frequency Industrial Co., Ltd.) was used as a generator for generating normal pressure superheated steam, and heat treatment was performed with superheated steam. As evaluation of the obtained copper-clad laminate, the amount of residual solvent, solder heat resistance, adhesive strength, and dimensional stability were measured. The results are shown in Table-1.
  • the present invention relates to a simple method for producing a metal laminate, and by using this production method, the productivity can be improved, and a metal laminate excellent in heat resistance, durability and dimensional stability is provided. be able to.

Abstract

Provided is a simple manufacturing method for a laminated metal body. The method allows efficient production of a laminated body comprising metal foil and a heat-resistant insulating layer. Also, the laminated body obtained using this method is capable of ameliorating adverse effects caused by solvent remaining on the heat-resistant insulating layer, such as lower heat resistance or decreased dimensional stability. Furthermore, adverse effects due to excessive heating, such as decreased peel strength between the metal and the resin layer or compromised resin properties, can be simultaneously ameliorated. This method for manufacturing a laminated body having an insulating resin layer, by coating metal foil with a resin solution containing a polyimide resin and drying the result, is characterized by including a heat treatment process using superheated steam.

Description

積層体の製造方法Manufacturing method of laminate
 本発明はポリイミド系樹脂溶液を直接、金属箔上に塗布・乾燥・熱処理をすることによる積層体の製造方法に関し、より詳しくは過熱水蒸気を用いた乾燥・熱処理工程を含む積層体の製造方法に関するものである。 The present invention relates to a method for producing a laminate by directly applying, drying, and heat-treating a polyimide resin solution on a metal foil, and more particularly to a method for producing a laminate including a drying / heat treatment step using superheated steam. Is.
 電子機器の電子回路には、絶縁材料と導電材料からなる積層板を回路加工したプリント配線板が使われている。プリント配線板は板状のリジットプリント配線板と柔軟性に富んだフレキシブルプリント配線板に大別できる。 In the electronic circuits of electronic devices, printed wiring boards are used in which laminated boards made of insulating materials and conductive materials are processed. Printed wiring boards can be broadly classified into plate-shaped rigid printed wiring boards and flexible printed wiring boards with great flexibility.
 フレキシブルプリント配線板の材料となるフレキシブル基板には、3層フレキシブル基板と2層フレキシブル基板がある。3層フレキシブル基板はポリイミドなどのベースフィルムと銅箔をエポキシ樹脂、アクリル樹脂あるいはポリエステル樹脂等の接着剤を使って貼り合せたものである。一方、2層フレキシブル基板は接着剤を介することなく直接、銅箔の上に耐熱性の絶縁層を設けたものである。エポキシ樹脂、アクリル樹脂あるいはポリエステル樹脂等の接着剤を使わずに、フレキシブル基板を得る方法には下記の3つの方法がある。
(1)銅箔等の金属箔にポリイミド系等の耐熱樹脂溶液を塗布し、乾燥、必要により熱処理を施す。
(2)ポリイミドフィルム等の耐熱フィルムの少なくとも片側に、熱可塑性の耐熱樹脂層を設けて、該熱可塑性樹脂層と銅箔等の金属箔とを貼り合せる。
(3)ポリイミドフィルム等の耐熱フィルムに銅めっき等のめっきを施す。
 銅箔等の金属箔にポリイミド系等の耐熱樹脂溶液を塗布し、乾燥、必要により熱処理を施す方法はキャスト法といわれている。キャスト法により得られたフレキシブル配線板は寸法安定性が優れるため、近年のプリント配線板の高密度化、ファインピッチ化に対応した材料である。
There are a three-layer flexible substrate and a two-layer flexible substrate as flexible substrates used as the material of the flexible printed wiring board. The three-layer flexible substrate is obtained by bonding a base film such as polyimide and a copper foil using an adhesive such as an epoxy resin, an acrylic resin, or a polyester resin. On the other hand, the two-layer flexible substrate is obtained by providing a heat-resistant insulating layer directly on a copper foil without using an adhesive. There are the following three methods for obtaining a flexible substrate without using an adhesive such as epoxy resin, acrylic resin or polyester resin.
(1) A polyimide-based heat-resistant resin solution is applied to a metal foil such as a copper foil, dried, and heat-treated as necessary.
(2) A thermoplastic heat-resistant resin layer is provided on at least one side of a heat-resistant film such as a polyimide film, and the thermoplastic resin layer and a metal foil such as a copper foil are bonded together.
(3) Plating such as copper plating is applied to a heat-resistant film such as a polyimide film.
A method of applying a polyimide-based heat-resistant resin solution to a metal foil such as a copper foil, drying it, and subjecting it to a heat treatment if necessary is called a casting method. Since the flexible wiring board obtained by the casting method has excellent dimensional stability, it is a material corresponding to the recent increase in density and fine pitch of printed wiring boards.
 キャスト法フレキシブル基板の製造時、耐熱樹脂溶液の溶剤を乾燥するために用いられる乾燥方法には熱風乾燥、熱ロール接触乾燥、赤外線加熱乾燥あるいは遠赤外線加熱乾燥等が用いられている。この際用いられる耐熱性樹脂としてはポリイミド前駆体樹脂、溶剤可溶ポリイミド樹脂、ポリアミドイミド樹脂等が挙げられる。これらの溶剤としてはN-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、γ―ブチロラクトン、フェノール、クレゾール等が使われるが、これらの溶剤は高沸点のため乾燥性が悪い。特にN-メチル-2-ピロリドン、N,N-ジメチルアセトアミド等のアミド系溶剤は分子間水素結合により蒸気圧が低いこと、また耐熱性樹脂のガラス転移温度が高いため溶剤の拡散が乏しいこともあり、塗膜中に残留しやすい。残留溶剤は耐熱性の低下や寸法安定性の低下の原因になる。溶剤を残留させないために、乾燥温度や熱処理温度を高くしすぎると、銅箔の変色や特性変化、樹脂の劣化による接着力低下や機械的特性の悪化が起こる。乾燥や熱処理温度が高くなることによる弊害を避けて、溶剤を残留させないために、時間をかけて乾燥や熱処理が行われている。そのため、生産性に問題がある。 Casting method When the flexible substrate is manufactured, hot air drying, hot roll contact drying, infrared heating drying, far infrared heating drying, or the like is used as a drying method used for drying the solvent of the heat-resistant resin solution. Examples of the heat resistant resin used at this time include a polyimide precursor resin, a solvent-soluble polyimide resin, and a polyamideimide resin. As these solvents, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, γ-butyrolactone, phenol, cresol, and the like are used, but these solvents have a high boiling point and thus have poor drying properties. In particular, amide solvents such as N-methyl-2-pyrrolidone and N, N-dimethylacetamide have low vapor pressure due to intermolecular hydrogen bonding, and the diffusion of the solvent is poor due to the high glass transition temperature of the heat-resistant resin. Yes, it tends to remain in the coating film. Residual solvent causes a decrease in heat resistance and a decrease in dimensional stability. If the drying temperature or heat treatment temperature is too high in order not to leave the solvent, the discoloration or characteristic change of the copper foil, the adhesive strength is reduced due to the deterioration of the resin, or the mechanical characteristics are deteriorated. Drying and heat treatment are performed over time in order to avoid adverse effects caused by an increase in drying and heat treatment temperature and prevent the solvent from remaining. Therefore, there is a problem in productivity.
 過熱水蒸気とは、圧力を上げずにさらに飽和水蒸気を加熱して温度を上げた水蒸気のことをいう。過熱水蒸気は温度が150℃以上では放射熱エネルギーが通常の水蒸気と比較して著しく大きくなるため、短時間で物質を加熱することができる。過熱水蒸気は食品の調理、樹脂製品や金属製品の洗浄、食品容器の殺菌、あるいは土壌処理等に用いられている。過熱水蒸気を加熱熱源として用いることは、食品の調理以外ではあまり普及していない。
 しかし、過熱水蒸気を一般的な加熱空気と比較すると下記の特徴がある。
(1)加熱空気に比べて熱容量が大きいので、急速加熱が可能。
(2)加熱空気に比べて約2倍の定圧比熱を有するため、加熱能力に優れている。
(3)潜熱のエネルギーを有するので、加熱空気に比べエンタルピーが大きい。
(4)空気による伝熱は対流伝熱に限られるが、過熱水蒸気では対流伝熱、放射伝熱、凝縮伝熱からの複合伝熱作用によるので、熱効率が良い。
 過熱水蒸気を加熱熱源として乾燥させることは特許文献1~6で知られている。特許文献1~5はセルロース繊維を主成分とする湿紙の水分を過熱水蒸気によって乾燥させる方法が提案されている。特許文献6はポリオレフィンフィルム、ポリアミドフィルム、ポリエステルフィルムへの塗工フィルムやセロハンの湿潤フィルムへの過熱水蒸気の適用が提案されている。
Superheated steam refers to steam that has been heated by heating saturated steam without increasing the pressure. Since superheated steam has a radiant heat energy significantly higher than that of normal steam at a temperature of 150 ° C. or higher, the substance can be heated in a short time. Superheated steam is used for cooking food, washing resin products and metal products, sterilizing food containers, or treating soil. The use of superheated steam as a heating heat source is not very popular except for cooking food.
However, when superheated steam is compared with general heated air, it has the following characteristics.
(1) Since the heat capacity is larger than that of heated air, rapid heating is possible.
(2) Since it has a constant-pressure specific heat about twice that of heated air, it has excellent heating capacity.
(3) Since it has latent heat energy, its enthalpy is larger than that of heated air.
(4) Although heat transfer by air is limited to convection heat transfer, superheated steam has a high heat efficiency because of the combined heat transfer action from convection heat transfer, radiant heat transfer, and condensation heat transfer.
It is known in Patent Documents 1 to 6 to dry superheated steam as a heating heat source. Patent Documents 1 to 5 propose a method of drying the moisture of wet paper mainly composed of cellulose fibers with superheated steam. Patent Document 6 proposes application of superheated steam to a polyolefin film, a polyamide film, a coating film on a polyester film, or a wet cellophane film.
特許第2907265号公報Japanese Patent No. 2907265 特許第2907266号公報Japanese Patent No. 2907266 特許第3007542号公報Japanese Patent No. 3007542 特許公開2003-41495号公報Japanese Patent Publication No. 2003-41495 特許公開2005-15924号公報Japanese Patent Publication No. 2005-15924 特許公開2007-276283号公報Japanese Patent Publication No. 2007-276283
 本発明の課題は、キャスト法による積層体を製造するに当たり、過熱水蒸気を用いることにより加熱乾燥効率を高めること。さらに残留溶剤やオーバーヒートによる弊害のない積層体の製造方法を提供することにある。 The object of the present invention is to increase the heating and drying efficiency by using superheated steam when producing a laminate by the casting method. Furthermore, it is providing the manufacturing method of a laminated body which does not have the harmful | toxic effect by a residual solvent or overheating.
 本発明者等は、キャスト法積層体の製造方法について鋭意研究を重ねた結果、本発明に到達した。すなわち、本発明はポリイミド系樹脂を含む樹脂溶液を金属箔上に塗布乾燥して、絶縁樹脂層を有する積層体を製造する方法において、過熱水蒸気を用いて加熱熱処理する工程を含むことを特徴とする積層体の製造方法である。 The inventors of the present invention have arrived at the present invention as a result of earnest research on the production method of the cast laminate. That is, the present invention includes a step of applying a heat treatment using superheated steam in a method of manufacturing a laminate having an insulating resin layer by applying and drying a resin solution containing a polyimide resin on a metal foil. It is the manufacturing method of the laminated body to perform.
 本発明により金属箔と耐熱性絶縁層からなる積層体を効率よく生産できる。また、本発明により得られた積層体は耐熱絶縁層に溶剤が残留することにより起こる弊害、たとえば耐熱性の低下や寸法安定性の悪化等が改善できる。さらに、加熱しすぎによる弊害、たとえば金属と樹脂層間の剥離強度の低下や樹脂物性の悪化も同時に改善できる。 According to the present invention, a laminate comprising a metal foil and a heat-resistant insulating layer can be produced efficiently. In addition, the laminate obtained by the present invention can improve the adverse effects caused by the solvent remaining in the heat-resistant insulating layer, such as a decrease in heat resistance and a deterioration in dimensional stability. Furthermore, adverse effects caused by excessive heating, such as a decrease in peel strength between the metal and the resin layer and a deterioration in the physical properties of the resin, can be improved at the same time.
 本発明で用いるポリイミド系樹脂はポリイミド前駆体樹脂、溶剤可溶ポリイミド樹脂、ポリアミドイミド樹脂が挙げられる。ポリイミド系樹脂は通常の方法で重合することができる。例えば、テトラカルボン酸二無水物とジアミンを低温で溶液中で反応させポリイミド前躯体溶液を得る方法、テトラカルボン酸二無水物とジアミンを高温の溶液中で反応させ溶剤可溶性のポリイミド溶液を得る方法、原料としてイソシアネートを用いる方法、原料として酸クロリドを用いる方法などがある。 Examples of the polyimide resin used in the present invention include a polyimide precursor resin, a solvent-soluble polyimide resin, and a polyamideimide resin. The polyimide resin can be polymerized by a usual method. For example, a method of obtaining a polyimide precursor solution by reacting tetracarboxylic dianhydride and diamine in a solution at low temperature, and a method of obtaining a solvent-soluble polyimide solution by reacting tetracarboxylic dianhydride and diamine in a high temperature solution. There are a method using isocyanate as a raw material and a method using acid chloride as a raw material.
 ポリイミド前躯体樹脂や溶剤可溶ポリイミド樹脂に用いる原料としては、以下に示すような物がある。酸成分としてはピロメリット酸、ベンゾフェノン-3,3’,4,4’-テトラカルボン酸、ビフェニル-3,3’,4,4’-テトラカルボン酸、ジフェニルスルフォン-3,3’,4,4’-テトラカルボン酸、ジフェニルエーテル-3,3’,4,4’-テトラカルボン酸、ナフタレン-2,3,6,7-テトラカルボン酸、ナフタレン-1,2,4,5-テトラカルボン酸、ナフタレン-1,4,5,8-テトラカルボン酸,水素添加ピロメリット酸、水素添加ビフェニル-3,3’,4,4’-テトラカルボン酸等の一無水物、二無水物、エステル化物などを単独、あるいは2種以上の混合物として用いることができる。また、アミン成分としてはp-フェニレンジアミン、m-フェニレンジアミン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフォン、3,3’-ジアミノジフェニルスルフォン、3,4’-ジアミノビフェニル、3,3-ジアミノビフェニル、3,3’-ジアミノベンズアニリド、4,4’-ジアミノベンズアニリド、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、2,6-トリレンジアミン、2,4-トリレンジアミン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルプロパン、3,3’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルヘキサフルオロプロパン、3,3’-ジアミノジフェニルヘキサフルオロプロパン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルヘキサフルオロイソプロピリデン、p-キシレンジアミン、m-キシレンジアミン、1,4-ナフタレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、2,7-ナフタレンジアミン、o-トリジン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルフォン、ビス[4-(3-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルフォン、ビス[4-(3-アミノフェノキシ)フェニル]ヘキサフロロプロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、シクロヘキシル-1,4-ジアミン、イソフォロンジアミン、水素添加4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-2,2’-ジメチルビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル等、あるいはこれらに対応するジイソシアネート化合物等の単独あるいは2種以上の混合物を用いることができる。また、これら酸成分、アミン成分の組み合わせで別途重合した樹脂を混合して使用することもできる。 Examples of raw materials used for the polyimide precursor resin and the solvent-soluble polyimide resin include the following. Examples of acid components include pyromellitic acid, benzophenone-3,3 ', 4,4'-tetracarboxylic acid, biphenyl-3,3', 4,4'-tetracarboxylic acid, diphenylsulfone-3,3 ', 4, 4'-tetracarboxylic acid, diphenyl ether-3,3 ', 4,4'-tetracarboxylic acid, naphthalene-2,3,6,7-tetracarboxylic acid, naphthalene-1,2,4,5-tetracarboxylic acid , Monoanhydrides, dianhydrides, esterified products such as naphthalene-1,4,5,8-tetracarboxylic acid, hydrogenated pyromellitic acid, hydrogenated biphenyl-3,3 ', 4,4'-tetracarboxylic acid Etc. can be used alone or as a mixture of two or more. As the amine component, p-phenylenediamine, m-phenylenediamine, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfone, 3,3′-diaminodiphenyl sulfone, 3,4'-diaminobiphenyl, 3,3-diaminobiphenyl, 3,3'-diaminobenzanilide, 4,4'-diaminobenzanilide, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 3 , 4'-diaminobenzophenone, 2,6-tolylenediamine, 2,4-tolylenediamine, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4'-diaminodiphenylpropane, 3,3'-diaminodiphenylpropane, 4,4'-diaminodiphenylhexafluoropropane, 3,3'-diaminodiphenylhexafluoropropane, 4,4 ' -Diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenylhexafluoroisopropylidene, p-xylenediamine, m-xylenediamine, 1,4-naphthalenediamine, 1,5-naphthalenediamine, 2, 6-naphthalenediamine, 2,7-naphthalenediamine, o-tolidine, 2,2'-bis (4-aminophenyl) propane, 2,2'-bis (4-aminophenyl) hexafluoropropane, 1,3- Bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl ] Propane, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] propane, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- ( 3-aminofe Noxy) phenyl] hexafluoropropane, 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'-bis (3-aminophenoxy) biphenyl, 2,2-bis [4- (4-aminophenoxy) Phenyl] hexafluoropropane, cyclohexyl-1,4-diamine, isophoronediamine, hydrogenated 4,4'-diaminodiphenylmethane, 4,4'-diamino-2,2'-dimethylbiphenyl, 3,3'-dimethyl- 4,4'-diaminobiphenyl or the like, or a diisocyanate compound corresponding to these, or a mixture of two or more thereof can be used. In addition, a resin separately polymerized by a combination of these acid component and amine component can be mixed and used.
 ポリアミドイミド樹脂に用いる原料としては、酸成分としてトリメリット酸無水物、ジフェニルエーテル-3,3’,4’-トリカルボン酸無水物、ジフェニルスルフォン-3,3’,4’-トリカルボン酸無水物、ベンゾフェノン-3,3’,4’-トリカルボン酸無水物、ナフタレン-1,2,4-トリカルボン酸無水物、水素添加トリメリット酸無水物等のトリカルボン酸無水物類が単独あるいは混合物として挙げられる。また、トリカルボン酸無水物の他に、ポリイミド樹脂であげたテトラカルボン酸、それらの無水物やジカルボン酸等を併用して用いることもできる。アミン成分としてはポリイミド樹脂であげたジアミン、あるいはジイソシアネートの単独あるいは混合物が挙げられる。また、これら酸成分、アミン成分の組み合わせで別途重合した樹脂を混合して使用することもできる。 Raw materials used for polyamideimide resins include trimellitic anhydride, diphenyl ether-3,3 ', 4'-tricarboxylic acid anhydride, diphenylsulfone-3,3', 4'-tricarboxylic acid anhydride, benzophenone as acid components Tricarboxylic acid anhydrides such as -3,3 ′, 4′-tricarboxylic acid anhydride, naphthalene-1,2,4-tricarboxylic acid anhydride, and hydrogenated trimellitic acid anhydride may be used alone or as a mixture. In addition to tricarboxylic acid anhydrides, tetracarboxylic acids mentioned in the polyimide resin, their anhydrides, dicarboxylic acids and the like can also be used in combination. Examples of the amine component include diamines mentioned for polyimide resins, or diisocyanates alone or as a mixture. In addition, a resin separately polymerized by a combination of these acid component and amine component can be mixed and used.
 本発明で用いるポリイミド系樹脂溶液の溶剤はポリイミド系樹脂の溶解性が良好であること以外に、水と共沸化合物を気層において形成することや、水と相溶することが過熱水蒸気の効果を高める。さらに水と相溶するような溶剤であれば、蒸発させた溶剤を簡易的に回収することもでき工業的にも有利である。 具体的には、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、テトラメチルウレア、スルフォラン、ジメチルスルフォキシド、γ-ブチロラクトン、シクロヘキサノン、シクロペンタノン等を挙げることができる。これらのなかでN-メチル-2-ピロリドン、N,N-ジメチルアセトアミドが好ましい。また、トルエン、キシレン、ジグライム、テトラヒドロフラン、メチルエチルケトン等の溶剤を、溶解性を阻害しない範囲で加えてもかまわない。 The solvent of the polyimide resin solution used in the present invention is that the solubility of the polyimide resin is good, the formation of water and an azeotropic compound in the gas layer, and the compatibility with water is the effect of superheated steam To increase. Further, if the solvent is compatible with water, the evaporated solvent can be easily recovered, which is industrially advantageous. Specifically, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, tetramethylurea, sulfolane, dimethyl sulfoxide, γ-butyrolactone, cyclohexanone, cyclopentanone and the like can be mentioned. Of these, N-methyl-2-pyrrolidone and N, N-dimethylacetamide are preferred. Further, a solvent such as toluene, xylene, diglyme, tetrahydrofuran, methyl ethyl ketone, etc. may be added as long as the solubility is not inhibited.
 ポリイミド系樹脂溶液中のポリイミド系樹脂の濃度は広い範囲から選択できるが、加工性の点から一般には5~60重量%程度が好ましく、特に8~30重量%程度とすることが好ましい。 The concentration of the polyimide resin in the polyimide resin solution can be selected from a wide range, but is generally preferably about 5 to 60% by weight, particularly preferably about 8 to 30% by weight from the viewpoint of processability.
 本発明で用いる金属箔としては銅箔、アルミニウム箔、ステンレス箔、スチール箔、ニッケル箔などが挙げられる。これらの金属箔を複合した複合金属箔や亜鉛やクロムなど他の金属で処理した金属箔を用いても良い。また、シランカップリング剤やチタンカップリング剤で金属箔の表面処理を行っても良い。金属箔の厚みは特に限定はないが2μmのキャリア付き極薄銅箔から1mmの金属シートを用いることができる。 Examples of the metal foil used in the present invention include copper foil, aluminum foil, stainless steel foil, steel foil, and nickel foil. You may use the composite metal foil which compounded these metal foils, and the metal foil processed with other metals, such as zinc and chromium. Moreover, you may perform the surface treatment of metal foil with a silane coupling agent or a titanium coupling agent. The thickness of the metal foil is not particularly limited, but a 1 mm metal sheet can be used from an ultrathin copper foil with a carrier of 2 μm.
 本発明において金属積層体の諸特性、たとえば、機械的特性、電気的特性、滑り性、難燃性などを改良する目的で他の樹脂や各種添加剤を配合あるいは反応させてもかまわない。例としては、滑剤としてはシリカ、タルク、シリコーン化合物等が挙げられる。難燃剤としては含リン化合物、トリアジン系化合物、水酸化アルミニウム、水酸化マグネシウム等が挙げられる。酸化防止剤や紫外線吸収剤等の安定剤、めっき活性剤、有機や無機の充填剤も挙げられる。また、イソシアネート化合物、エポキシ樹脂、フェノール樹脂等の硬化剤やポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂等の他樹脂を配合してもかまわない。 In the present invention, other resins and various additives may be blended or reacted for the purpose of improving various properties of the metal laminate, such as mechanical properties, electrical properties, slipperiness, and flame retardancy. Examples of the lubricant include silica, talc, and silicone compounds. Examples of the flame retardant include phosphorus-containing compounds, triazine compounds, aluminum hydroxide, and magnesium hydroxide. Also included are stabilizers such as antioxidants and UV absorbers, plating activators, and organic and inorganic fillers. Moreover, you may mix | blend other resins, such as hardening | curing agents, such as an isocyanate compound, an epoxy resin, and a phenol resin, a polyester resin, a polyurethane resin, and a polyamide resin.
 本発明の積層体の製造方法について説明する。ポリイミド系樹脂溶液を金属箔に塗布し一次乾燥したのち、さらにより高温での乾燥・熱処理を行うことが望ましい。ポリイミド系樹脂溶液は、塗布・乾燥・熱処理後の厚みが5μm~100μmになるように塗布することが好ましく、より好ましくは10μm~50μmである。一次乾燥後のコート層中の残存溶剤率を好ましくは5~35重量%、より好ましくは15~30重量%の範囲に調整することで溶剤の蒸発に伴う体積収縮の影響を小さくすることができ、剥離強度やカールの改善に効果がある。一次乾燥条件は60~150℃で1~10分が望ましい。この一次乾燥時に過熱水蒸気を使ってもかまわない。 The method for producing the laminate of the present invention will be described. It is desirable to apply a polyimide resin solution to a metal foil and perform primary drying, followed by drying and heat treatment at a higher temperature. The polyimide resin solution is preferably applied so that the thickness after coating, drying and heat treatment is 5 μm to 100 μm, more preferably 10 μm to 50 μm. By adjusting the residual solvent ratio in the coating layer after primary drying to preferably 5 to 35% by weight, more preferably 15 to 30% by weight, the effect of volume shrinkage due to solvent evaporation can be reduced. Effective in improving peel strength and curl. The primary drying conditions are preferably 60 to 150 ° C. and 1 to 10 minutes. Superheated steam may be used during the primary drying.
 一次乾燥後、次工程の加熱処理(二次加熱処理)を行う。ポリイミド系樹脂がポリイミド前躯体樹脂の場合には、イミド化反応を伴う加熱処理を行う。ポリイミド系樹脂が溶剤可溶ポリイミド樹脂やポリアミドイミド樹脂の場合には加熱により溶剤を除去する。二次加熱処理時には必ず、過熱水蒸気による熱処理を含む。過熱水蒸気による処理は熱風乾燥や赤外線や遠赤外線乾燥と併用してもかまわない。用いる過熱水蒸気の温度は150~400℃が好ましく、より好ましくは200~350℃の範囲である。二次加熱処理後のポリイミド系樹脂層中の残存溶剤濃度が好ましくは0.7重量%以下、より好ましくは0.5重量%以下となるよう処理時間を調整することが好ましい。150℃未満では十分な効果が得られない恐れがある。400℃を超えると溶剤が突沸し良好な積層体が得られない恐れがあり、また樹脂の劣化の恐れもある。二次加熱処理時には150℃以上の高温になるため、金属箔の変色や、物性の変化が起こることがある。必要により酸素濃度を下げることが必要となる。銅箔を用いる場合には酸素濃度を5%以下、好ましくは0.5%以下に下げることが望ましい。
 一次乾燥と二次加熱処理を別個に行うことが接着力やカール等から望ましいが、ポリイミド系樹脂層の厚みが15μm以下の場合には、両工程を分けずに連続的に行うことができる。
 二次加熱処理後、積層体を巻物状で熱処理や脱溶剤処理を行ってもかまわない。この巻物状での熱処理は減圧下、あるいは不活性ガス下で行うことが好ましい。
After the primary drying, the next heat treatment (secondary heat treatment) is performed. When the polyimide resin is a polyimide precursor resin, a heat treatment involving an imidization reaction is performed. When the polyimide resin is a solvent-soluble polyimide resin or polyamideimide resin, the solvent is removed by heating. The secondary heat treatment always includes heat treatment with superheated steam. The treatment with superheated steam may be used in combination with hot air drying or infrared or far infrared drying. The temperature of the superheated steam used is preferably 150 to 400 ° C, more preferably 200 to 350 ° C. It is preferable to adjust the treatment time so that the residual solvent concentration in the polyimide resin layer after the secondary heat treatment is preferably 0.7% by weight or less, more preferably 0.5% by weight or less. If it is less than 150 ° C., sufficient effects may not be obtained. If it exceeds 400 ° C., the solvent may suddenly boil and a good laminate may not be obtained, and the resin may be deteriorated. Since the temperature is higher than 150 ° C. during the secondary heat treatment, discoloration of metal foil and changes in physical properties may occur. If necessary, it is necessary to lower the oxygen concentration. When copper foil is used, it is desirable to reduce the oxygen concentration to 5% or less, preferably 0.5% or less.
Although it is desirable to perform primary drying and secondary heat treatment separately from the adhesive force and curling, etc., when the thickness of the polyimide resin layer is 15 μm or less, it can be continuously performed without dividing both steps.
After the secondary heat treatment, the laminate may be heat-treated or solvent-removed in a roll shape. The heat treatment in the form of a scroll is preferably performed under reduced pressure or in an inert gas.
 本発明をさらに詳細に説明するために以下に実施例を挙げるが、本発明は実施例になんら限定されるものではない。なお、実施例に記載された測定値は以下の方法によって測定したものである。 In order to describe the present invention in more detail, examples are given below, but the present invention is not limited to the examples. In addition, the measured value described in the Example is measured by the following method.
 残留溶剤:セイコーインスツル社製、示差熱熱重量同時測定装置EXSTAR6000TG/DTAを用いて、150℃~350℃(昇温速度30℃/分)までの重量減少により、ポリイミド系樹脂層中の残留溶剤濃度を求めた。0.7重量%以下が好ましく、特に好ましくは0.5重量%以下である。 Residual solvent: Residue in polyimide resin layer due to weight reduction from 150 ° C to 350 ° C (heating rate 30 ° C / min) using differential thermal and thermogravimetric simultaneous measurement device EXSTAR6000TG / DTA manufactured by Seiko Instruments Inc. The solvent concentration was determined. It is preferably 0.7% by weight or less, particularly preferably 0.5% by weight or less.
 はんだ耐熱:銅箔積層板の銅箔をサブトラクティブ法によりエッチング加工し、幅1mmの回路パターンを作成した。40℃、65%RHで24時間調湿し、フラックス洗浄した後、20秒間320℃の噴流はんだ浴に浸漬し、顕微鏡により剥がれや膨れの有無を観察した。異常が見られなかった物を○、剥がれや膨れが見られた物を×とした。 Solder heat resistance: The copper foil of the copper foil laminate was etched by a subtractive method to create a circuit pattern having a width of 1 mm. After humidity conditioning at 40 ° C. and 65% RH for 24 hours and flux cleaning, the sample was immersed in a jet solder bath at 320 ° C. for 20 seconds, and the presence or absence of peeling or swelling was observed with a microscope. The thing in which abnormality was not seen was set as (circle), and the thing in which peeling or swelling was seen was set as x.
 接着力:上記、幅1mmの回路パターンを作成したサンプルを引っ張り速度50mm/分、測定温度20℃、引き剥がし角度90度で測定した。 Adhesive strength: The above-mentioned sample having a 1 mm wide circuit pattern was measured at a pulling speed of 50 mm / min, a measurement temperature of 20 ° C., and a peeling angle of 90 degrees.
 寸法安定性:IPC-FC241(IPC-TM-650,2.2.4(c))により150℃30分の熱処理によるMD,TD方向の寸法変化率を求めた。表中にはMDとTD方向の平均値を記載した。 Dimensional stability: The dimensional change rate in the MD and TD directions by heat treatment at 150 ° C. for 30 minutes was determined by IPC-FC241 (IPC-TM-650, 2.2.4 (c)). The average values in the MD and TD directions are shown in the table.
 合成例1
 反応容器に無水トリメリット酸192g、3,3’-ジメチル-4,4’-ビフェニルジイソシアネート211g、2,4-トリレンジイソシアネート35g、ナトリウムメチラート0.5gおよびN-メチル-2-ピロリドン2.5kgを加え、150℃まで1時間かけて昇温し、さらに150℃で5時間反応させた。得られたポリアミドイミド樹脂の対数粘度は1.6dl/gでガラス転移温度は320℃であった。
Synthesis example 1
In a reaction vessel, 192 g of trimellitic anhydride, 211 g of 3,3′-dimethyl-4,4′-biphenyl diisocyanate, 35 g of 2,4-tolylene diisocyanate, 0.5 g of sodium methylate and N-methyl-2-pyrrolidone 5 kg was added, and the temperature was raised to 150 ° C. over 1 hour, and further reacted at 150 ° C. for 5 hours. The obtained polyamideimide resin had a logarithmic viscosity of 1.6 dl / g and a glass transition temperature of 320 ° C.
 合成例2
 N,N-ジメチルアセトアミド850g、4,4’-ジアミノ-2,2’-ジメチルビフェニル47.7gおよび4,4’-ビス(3-アミノフェノキシ)ビフェニル20.7gを反応容器に投入し、攪拌し溶解させた。ついで、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物80.4g加え、室温にて5時間攪拌を続けポリイミド前躯体を得た。
Synthesis example 2
850 g of N, N-dimethylacetamide, 47.7 g of 4,4′-diamino-2,2′-dimethylbiphenyl and 20.7 g of 4,4′-bis (3-aminophenoxy) biphenyl are put into a reaction vessel and stirred. And dissolved. Next, 80.4 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride was added, and stirring was continued at room temperature for 5 hours to obtain a polyimide precursor.
<実施例 1>
 合成例1で調整したポリアミドイミド溶液をアプリケーターを用いて銅箔(三井金属鉱山社製電解銅箔35μm)に、乾燥後の厚みが25μmになるように、手塗り塗布し、100℃で5分間一次乾燥した。さらに常圧過熱水蒸気の発生装置として蒸気過熱装置(第一高周波工業株式会社製「DHF Super-Hi 10」)を用い、過熱水蒸気で加熱処理を行った。得られた銅張積層体の評価として、残留溶剤量、はんだ耐熱性、接着力、寸法安定性を測定した。結果を表―1に示す。
<Example 1>
Using an applicator, the polyamideimide solution prepared in Synthesis Example 1 is applied by hand to a copper foil (35 μm electrolytic copper foil manufactured by Mitsui Mining & Mining Co., Ltd.) so that the thickness after drying is 25 μm. Primary dried. Further, a steam superheater (“DHF Super-Hi 10” manufactured by Daiichi High Frequency Industrial Co., Ltd.) was used as a generator for generating normal pressure superheated steam, and heat treatment was performed with superheated steam. As evaluation of the obtained copper-clad laminate, the amount of residual solvent, solder heat resistance, adhesive strength, and dimensional stability were measured. The results are shown in Table-1.
<実施例 2>
 合成例2で調整したポリイミド前躯体溶液をアプリケーターを用いて銅箔(三井金属鉱山社製電解銅箔35μm)に、乾燥閉環後の厚みが25μmになるように、手塗り塗布し、100℃で5分間一次乾燥した。さらに100℃から昇温速度7℃/分で310℃まで30分の熱処理を行った。さらに常圧過熱水蒸気の発生装置として蒸気過熱装置(第一高周波工業株式会社製「DHF Super-Hi 10」)を用い、過熱水蒸気で加熱処理を行った。得られた銅張積層体の評価として、残留溶剤量、はんだ耐熱性、接着力、寸法安定性を測定した。結果を表―1に示す。
<Example 2>
Using an applicator, the polyimide precursor solution prepared in Synthesis Example 2 was applied by hand to a copper foil (35 μm electrolytic copper foil manufactured by Mitsui Mining & Mining Co., Ltd.) so that the thickness after dry ring closure was 25 μm. Primary drying for 5 minutes. Further, heat treatment was performed for 30 minutes from 100 ° C. to 310 ° C. at a heating rate of 7 ° C./min. Further, a steam superheater (“DHF Super-Hi 10” manufactured by Daiichi High Frequency Industrial Co., Ltd.) was used as a generator for generating normal pressure superheated steam, and heat treatment was performed with superheated steam. As evaluation of the obtained copper-clad laminate, the amount of residual solvent, solder heat resistance, adhesive strength, and dimensional stability were measured. The results are shown in Table-1.
<比較例 1>
 合成例1で調整したポリアミドイミド溶液をアプリケーターを用いて銅箔(三井金属鉱山社製電解銅箔35μm)に、乾燥後の厚みが25μmになるように、手塗り塗布し、100℃で5分間一次乾燥した。二次加熱処理として熱風乾燥だけを行った。得られた銅張積層体の評価として、残留溶剤量、はんだ耐熱性、接着力、寸法安定性を測定した。結果を表―1に示す。
<Comparative Example 1>
Using an applicator, the polyamideimide solution prepared in Synthesis Example 1 is applied by hand to a copper foil (35 μm electrolytic copper foil manufactured by Mitsui Mining & Mining Co., Ltd.) so that the thickness after drying is 25 μm. Primary dried. Only hot air drying was performed as the secondary heat treatment. As evaluation of the obtained copper-clad laminate, the amount of residual solvent, solder heat resistance, adhesive strength, and dimensional stability were measured. The results are shown in Table-1.
<比較例 2>
 合成例2で調整したポリイミド前躯体溶液をアプリケーターを用いて銅箔(三井金属鉱山社製電解銅箔35μm)に、乾燥閉環後の厚みが25μmになるように、手塗り塗布し、100℃で5分間一次乾燥した。さらに100℃から昇温速度7℃/分で310℃まで30分の熱処理を行った。さらに続けて熱風乾燥を行った。過熱水蒸気による加熱処理は実施しなかった。得られた銅張積層体の評価として、残留溶剤量、はんだ耐熱性、接着力、寸法安定性を測定した。結果を表―1に示す。
<Comparative Example 2>
Using an applicator, the polyimide precursor solution prepared in Synthesis Example 2 was applied by hand to a copper foil (electrolytic copper foil made by Mitsui Mining & Mining Co., Ltd. 35 μm) so that the thickness after dry ring closure would be 25 μm. Primary drying for 5 minutes. Further, heat treatment was performed for 30 minutes from 100 ° C. to 310 ° C. at a heating rate of 7 ° C./min. Subsequently, hot air drying was performed. No heat treatment with superheated steam was performed. As evaluation of the obtained copper-clad laminate, the amount of residual solvent, solder heat resistance, adhesive strength, and dimensional stability were measured. The results are shown in Table-1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明は金属積層体の簡便な製造方法に関するものであり、該製造方法を用いることにより、生産性の改善ができ、さらに耐熱性、耐久性や寸法安定性に優れた金属積層体を提供することができる。 The present invention relates to a simple method for producing a metal laminate, and by using this production method, the productivity can be improved, and a metal laminate excellent in heat resistance, durability and dimensional stability is provided. be able to.

Claims (1)

  1.  ポリイミド系樹脂溶液を金属箔上に塗布乾燥して絶縁樹脂層を有する積層体を製造する方法において、過熱水蒸気を用いて加熱処理する工程を含むことを特徴とする積層体の製造方法。 A process for producing a laminate comprising applying a polyimide resin solution onto a metal foil and drying to produce a laminate having an insulating resin layer, the method comprising a heat treatment using superheated steam.
PCT/JP2009/053254 2008-02-28 2009-02-24 Manufacturing method for a laminated body WO2009107599A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010500687A JP5447365B2 (en) 2008-02-28 2009-02-24 Manufacturing method of laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008047443 2008-02-28
JP2008-047443 2008-02-28

Publications (1)

Publication Number Publication Date
WO2009107599A1 true WO2009107599A1 (en) 2009-09-03

Family

ID=41015993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053254 WO2009107599A1 (en) 2008-02-28 2009-02-24 Manufacturing method for a laminated body

Country Status (3)

Country Link
JP (1) JP5447365B2 (en)
TW (1) TW200945988A (en)
WO (1) WO2009107599A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060653A (en) * 2009-09-11 2011-03-24 Toyobo Co Ltd Manufacturing method for metallic thin film, and metallic thin film
JP2011076789A (en) * 2009-09-29 2011-04-14 Fujifilm Corp Method for producing conductive film
WO2016006264A1 (en) * 2014-07-10 2016-01-14 太陽インキ製造株式会社 Resin insulation layer formation method, resin insulation layer and printed circuit board
WO2019043952A1 (en) * 2017-09-04 2019-03-07 シライ電子工業株式会社 Ink drying method and ink drying device
JP2020158743A (en) * 2019-03-28 2020-10-01 日鉄ケミカル&マテリアル株式会社 Method for producing polyimide film and method for producing metal-clad laminate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080630A (en) * 2001-09-11 2003-03-19 Mitsui Chemicals Inc Polyimide metallic foil laminate
JP2004292793A (en) * 2003-03-13 2004-10-21 Jsr Corp Treatment process of film or sheet
JP2007163639A (en) * 2005-12-12 2007-06-28 Shin Etsu Polymer Co Ltd Endless belt and its manufacturing method, and electrophotographic device equipped with same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148987A (en) * 1980-04-18 1981-11-18 Modookemechitsukusu Ab Purification of cellulose pulp
JP2006245286A (en) * 2005-03-03 2006-09-14 Shin Etsu Chem Co Ltd Flexible printed circuit board and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080630A (en) * 2001-09-11 2003-03-19 Mitsui Chemicals Inc Polyimide metallic foil laminate
JP2004292793A (en) * 2003-03-13 2004-10-21 Jsr Corp Treatment process of film or sheet
JP2007163639A (en) * 2005-12-12 2007-06-28 Shin Etsu Polymer Co Ltd Endless belt and its manufacturing method, and electrophotographic device equipped with same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060653A (en) * 2009-09-11 2011-03-24 Toyobo Co Ltd Manufacturing method for metallic thin film, and metallic thin film
JP2011076789A (en) * 2009-09-29 2011-04-14 Fujifilm Corp Method for producing conductive film
WO2016006264A1 (en) * 2014-07-10 2016-01-14 太陽インキ製造株式会社 Resin insulation layer formation method, resin insulation layer and printed circuit board
JPWO2016006264A1 (en) * 2014-07-10 2017-04-27 太陽インキ製造株式会社 Method for forming resin insulation layer, resin insulation layer and printed wiring board
WO2019043952A1 (en) * 2017-09-04 2019-03-07 シライ電子工業株式会社 Ink drying method and ink drying device
JP2020158743A (en) * 2019-03-28 2020-10-01 日鉄ケミカル&マテリアル株式会社 Method for producing polyimide film and method for producing metal-clad laminate
JP7277208B2 (en) 2019-03-28 2023-05-18 日鉄ケミカル&マテリアル株式会社 Method for producing polyimide film and method for producing metal-clad laminate

Also Published As

Publication number Publication date
JP5447365B2 (en) 2014-03-19
JPWO2009107599A1 (en) 2011-06-30
TW200945988A (en) 2009-11-01

Similar Documents

Publication Publication Date Title
JP7469383B2 (en) Metal-clad laminates and circuit boards
JP7301495B2 (en) Metal-clad laminates and circuit boards
JP5168009B2 (en) Polyimide and process for producing the same
JP2020056011A (en) Resin film, coverlay film, circuit board, copper foil with resin, metal-clad laminate, multilayer circuit board, polyimide and adhesive resin composition
CN111132456A (en) Metal-clad laminate, circuit board, multilayer circuit board, and method for manufacturing same
JP5447365B2 (en) Manufacturing method of laminate
KR20240049536A (en) Metal-clad laminate, adhesive sheet, adhesive polyimide resin composition, and circuit board
JP4941407B2 (en) Copper-clad laminate and method for producing copper-clad laminate
JP7381185B2 (en) Circuit boards and multilayer circuit boards
JP5339038B2 (en) Processing method for long objects
JP4183765B2 (en) Manufacturing method of flexible printed wiring board
JP2008149549A (en) Method for producing metal laminate
JP2022017273A (en) Metal-clad laminate and circuit board
JP5176696B2 (en) Method for producing polyimide film
JP7195848B2 (en) Polyamic acid, polyimide, resin film, metal-clad laminate and manufacturing method thereof
JP2010083094A (en) Surface treated metal foil and metal foil/polyimide resin laminate
JP5152028B2 (en) Polymer blend composition, film, and metal laminate
JP2006305966A (en) Laminate and printed wiring board
JP6767751B2 (en) Polyamic acid, polyimide, resin film and metal-clad laminate
JP7413489B2 (en) Method for manufacturing circuit board with adhesive layer and method for manufacturing multilayer circuit board
JP5297573B2 (en) Polyimide film with high adhesiveness
KR102445910B1 (en) Polyimide film with high dimensional stability and manufacturing method thereof
JP2009286093A (en) Method for manufacturing laminate
JP2009061447A (en) Method of treating long object
JP2023149765A (en) Polyamide acid, polyimide, metal-clad laminate board, and circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09713785

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010500687

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09713785

Country of ref document: EP

Kind code of ref document: A1