WO2009107208A1 - 浮体構造物 - Google Patents

浮体構造物 Download PDF

Info

Publication number
WO2009107208A1
WO2009107208A1 PCT/JP2008/053434 JP2008053434W WO2009107208A1 WO 2009107208 A1 WO2009107208 A1 WO 2009107208A1 JP 2008053434 W JP2008053434 W JP 2008053434W WO 2009107208 A1 WO2009107208 A1 WO 2009107208A1
Authority
WO
WIPO (PCT)
Prior art keywords
floating
outer peripheral
peripheral surface
floating body
floating structure
Prior art date
Application number
PCT/JP2008/053434
Other languages
English (en)
French (fr)
Inventor
太田 真
南浦 純一
亮 西垣
谷垣 信吉
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2008/053434 priority Critical patent/WO2009107208A1/ja
Priority to BRPI0815733-2A2A priority patent/BRPI0815733A2/pt
Priority to CN2008801042038A priority patent/CN101918270A/zh
Publication of WO2009107208A1 publication Critical patent/WO2009107208A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/06Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B2001/044Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull with a small waterline area compared to total displacement, e.g. of semi-submersible type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/06Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water
    • B63B2039/065Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water the foils being pivotal about an axis substantially parallel to the longitudinal axis of the vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/06Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water
    • B63B2039/067Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water effecting motion dampening by means of fixed or movable resistance bodies, e.g. by bilge keels

Definitions

  • the present invention relates to a floating structure such as a marine resource excavation base, a floating-type leisure facility, or a hotel.
  • Patent Documents 1 and 2 Japanese Patent No. 2772109 International Publication Number WO2005 / 080189 A1
  • VIM Vertical Motion Induced Motion
  • the present invention has been made in view of the above circumstances, and the fluctuation of the floating structure is within a range suitable for, for example, a marine resource drilling base, a floating-type leisure facility, a hotel, etc. It is an object of the present invention to provide a floating structure capable of reducing the roll motion to within 3 ° to 5 ° within a range that does not hinder work or walking.
  • a floating structure according to the present invention includes a floating body and a plate-like enclosure that continuously surrounds the periphery of the floating structure provided around the lower end of the floating body or the extended structure provided at the lower end of the floating body along the circumferential direction.
  • a floating structure comprising a wall, wherein an area of a gap formed between an upper end or a lower end of the surrounding wall and an outer peripheral surface of the floating body or an outer peripheral surface of the projecting structure portion is The enclosure wall is provided so as to be 20% or less of the area of the gap formed between the lower end of the floating body and the outer peripheral surface of the floating body or the outer peripheral surface of the projecting structure portion.
  • the floating structure according to the present invention is a plate body that continuously surrounds the floating body and the lower end of the floating body or the projecting structure provided at the lower end of the floating body along the circumferential direction. And a slit structure provided between the upper end of the surrounding wall and the outer peripheral surface of the floating body or the outer peripheral surface of the overhanging structure portion.
  • the enclosure is formed so that it is 20% or less of the area of the gap formed between the lower end of the surrounding wall and the outer peripheral surface of the floating body or the outer peripheral surface of the projecting structure portion.
  • the floating structure when the floating structure is shaken, the floating structure stays in the space formed between the outer peripheral surface of the floating body or the outer peripheral surface of the overhang structure portion and the inner peripheral surface of the enclosure wall.
  • the water that is flowing is a gap formed between the upper end of the enclosure wall and the outer peripheral surface of the floating body or the outer peripheral surface of the overhanging structure part, or the lower end of the enclosure wall and the outer peripheral surface of the floating body or the outer peripheral surface of the overhanging structure part Will be ejected to the outside through a gap formed between them or a slit provided in the enclosure wall.
  • gaps or slits have gaps between the lower end of the surrounding wall and the outer peripheral surface of the floating body or the outer peripheral surface of the overhanging structure, and the upper end of the surrounding wall and the outer peripheral surface or overhang of the floating body. Since it is provided to be 20% or less of the area of the gap formed between the outer peripheral surface of the structure part and the area of the slit, the outer peripheral surface of the floating body or the outer peripheral surface of the overhanging structure part and the enclosure When the water staying in the space formed between the wall and the inner peripheral surface is ejected to the outside through these gaps or slits, a large vortex loss is generated. Thereby, the swinging of the floating structure (especially, roll motion or pitch motion due to wind) can be reduced.
  • the floating structure a plurality of sheets that divide a space formed between an outer peripheral surface of the floating body or an outer peripheral surface of the projecting structure portion and an inner peripheral surface of the enclosure wall into a plurality of spaces in the circumferential direction.
  • the partition wall is provided. According to such a floating structure, it is possible to prevent the water mass from escaping in the circumferential direction of the floating body by the partition wall, and it is possible to efficiently generate vortex loss when ejected to the outside through the gap or the slit. . Thereby, the shaking of the floating structure (especially, roll motion or pitch motion due to wind) can be further reduced.
  • an opening having an area corresponding to 20% or less of the area of the partition wall is provided in the partition wall.
  • water staying in one space partitioned by the partition wall is adjacent to the opening of the partition wall. Will erupt inside the space.
  • this opening part is provided so that the area may become 20% or less of the area of the whole partition, the water which stays in the inside of a space is the space of an adjacent space from the opening part of a partition. When ejected into the interior, a large vortex loss is generated.
  • each partition wall can be reduced in weight, and the entire floating structure can be reduced in weight.
  • a floating structure according to the present invention is a floating structure including a floating body and an overhanging structure provided at a lower end of the floating body, and includes an outer peripheral surface of the floating body and / or an outer periphery of the overhanging structure.
  • the surface is provided with sway reduction means for reducing the motion generated in the direction orthogonal to the flow.
  • the floating structure according to the present invention is a floating structure provided with a floating body, and is provided with a vibration reduction means for reducing a motion generated in a direction orthogonal to the flow below the floating body. Yes.
  • the floating structure according to the present invention is a floating structure having a floating body and an overhanging structure provided at the lower end of the floating body.
  • the motion reducing means for reducing the motion generated in the orthogonal direction is provided.
  • These floating structures can prevent (reduce) the movement of the floating structure in the lateral direction (direction orthogonal to the flow). Further, the motion (VIM (Vortex Induced Motion)) generated in the direction orthogonal to the flow can be reduced.
  • VIM Vortex Induced Motion
  • the sway reduction means is configured to be housed inside the floating body or the projecting structure.
  • the fluctuation reducing means that becomes a resistor can be accommodated inside the floating body or the overhang structure portion. The resistance during towing can be reduced.
  • the floating structure since it is possible to accommodate the fluctuation reducing means that is obstructive when trying to dock the floating structure into a floating dock or the like, the floating structure can be docked in smoothly. be able to.
  • the floating structure is shaken within a range suitable for, for example, a marine resource excavation base, a floating-type leisure facility, a hotel, etc. (for example, a range that does not interfere with work such as writing characters or walking) Of these, generally, the roll motion can be reduced to within 3 ° to 5 °).
  • FIG. 1B is a cross-sectional view taken along the arrow II in FIG. 1B. It is a graph which shows the relationship between a loss coefficient (vertical axis) and flow-path cross-sectional area ratio (S0 / S1: horizontal axis). It is the perspective view which notched the one part while showing the schematic structure of the floating body structure which concerns on 2nd Embodiment of this invention.
  • FIG. 1C It is a figure which shows the schematic structure of the floating body structure which concerns on other embodiment of this invention, and is a figure similar to FIG. 1C. It is a figure which shows the structure of the outline of the floating body structure which concerns on another embodiment of this invention, and is a figure similar to FIG. 1C. It is a figure which shows the structure of the outline of the floating body structure which concerns on another embodiment of this invention, and is a figure similar to FIG. 1C. It is a figure which shows the structure of the outline of the floating body structure which concerns on another embodiment of this invention, and is a figure similar to FIG. 1C. It is a figure which shows the structure of the outline of the floating body structure which concerns on another embodiment of this invention, and is a figure similar to FIG. 1C.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG. 5.
  • FIG. 1 It is a side view which shows the structure of the outline of the floating body structure which concerns on 4th Embodiment of this invention, and is a figure which shows the installation state in case the wind which does not become a problem of VIM has arisen. It is a side view which shows the structure of the outline of the floating body structure which concerns on 4th Embodiment of this invention, and is a figure which shows the installation state in case the wind which causes a VIM has arisen. It is a top view which shows the structure of the outline of the floating body structure which concerns on 5th Embodiment of this invention, and is a figure similar to FIG.
  • FIG. 9B is a cross-sectional view taken along arrow IX-IX in FIG. 9A. It is the perspective view which notched the part while showing the schematic structure of the floating body structure which concerns on 7th Embodiment of this invention. It is a principal part expanded sectional view of FIG.
  • FIG. 12B is a cross-sectional view taken along arrow XII-XII in FIG. 12A.
  • FIG. 12B is a cross-sectional view taken along arrow XII-XII in FIG. 12A.
  • FIG. 16B It is sectional drawing which shows the structure of the outline of the floating body structure which concerns on 13th Embodiment of this invention. It is a principal part enlarged view which shows the schematic structure of the floating body structure which concerns on 13th Embodiment of this invention.
  • FIG. 18B It is a figure which shows the schematic structure of the floating body structure which concerns on other embodiment of this invention, and is a figure similar to FIG. 18B. It is a figure which shows the structure of the outline of the floating body structure which concerns on another embodiment of this invention, and is a figure similar to FIG. 18B. It is a side view showing the composition of the outline of the floating structure concerning a 14th embodiment of the present invention. It is a top view which shows the structure of the outline of the floating body structure which concerns on 14th Embodiment of this invention. It is a figure which shows the schematic structure of the floating body structure which concerns on other embodiment of this invention, and is a figure similar to FIG. 19A.
  • FIG. 21B is a cross-sectional view taken along arrow XXI-XXI in FIG. 21A. It is a principal part expanded sectional view which shows the structure of the outline of the floating body structure which concerns on another embodiment of this invention.
  • FIG. 1A is a longitudinal sectional view showing a schematic configuration of a floating structure according to the present embodiment
  • FIG. 1B is a plan view
  • FIG. 1C is a sectional view taken along the line II in FIG. 1B
  • FIG. 2 is a graph showing the relationship between the loss factor (vertical axis) and the flow path cross-sectional area ratio (S0 / S1: horizontal axis).
  • symbol WL in FIG. 1A is a water surface.
  • the floating structure 1 includes a column (floating body main body) 2 and a lower hull (projecting structure portion) 3 as main elements.
  • the column 2 is a cylindrical structure made of, for example, a steel plate, and a plurality of sealed floating chambers (not shown) are provided therein.
  • the lower hull 3 is configured with a lower hull main body 4, an enclosure wall 5, and a partition wall 6 as main elements, and is provided at the lower end of the column 2 positioned below the water surface WL.
  • the lower hull main body 4 extends from the outer peripheral surface located at the lower end portion of the column 2 to the outer side in the radial direction of the column 2 and has an annular shape in a plan view polygonal shape (octagonal shape in this embodiment) provided along the circumferential direction. It is a structure.
  • the upper surface 7 and the lower surface 8 of the lower hull body 4 extend along a direction orthogonal to the outer peripheral surface of the column 2, and the outer peripheral end of the upper surface 7 is outward (radially outward) from the outer peripheral end of the lower surface 8. It is formed to be located.
  • the side surface 9 of the lower hull body 4 includes a first vertical surface 10 located above, a second vertical surface 11 located below, one end (lower end) of the first vertical surface 10 and a second vertical surface.
  • An inclined surface 12 that connects (connects) one end (upper end) of the surface 11 is provided.
  • the other end (upper end) of the first vertical surface 10 is connected (connected) to the outer peripheral end of the upper surface 7 of the lower hull body 4, and the other end (lower end) of the second vertical surface 11 is connected to the lower hull body.
  • 4 is connected (connected) to the outer peripheral end of the lower surface 8 of the base plate 4.
  • the enclosure wall 5 is a vertical wall portion disposed along the outer peripheral end of the lower hull body 4 (that is, the side surface 9 of the lower hull body 4), and is formed between the first vertical surface 10 and the inner circumferential surface of the enclosure wall 5.
  • the second vertical surface 11 and the inner peripheral surface of the surrounding wall 5 are disposed so as to be separated by a predetermined distance d2. That is, the surrounding wall 5 is formed with a gap having a width d1 between its inner peripheral surface and the other end of the first vertical surface 10, and between the inner peripheral surface and one end of the second vertical surface 11. It arrange
  • the surrounding wall 5 has an area S1 of a gap formed between the inner peripheral surface and the other end of the first vertical surface 10 between the inner peripheral surface and one end of the second vertical surface 11. For example, 20% or less, that is, S1 / S0 ⁇ 0.2.
  • the partition wall 6 is a plurality of (20 in the present embodiment) plate-like members that connect (connect) the side surface 9 of the lower hull body 4 and the inner peripheral surface of the surrounding wall 5, and an opening portion is provided at the center thereof. 13 is provided.
  • the opening 13 has an area S3 that is, for example, 20% or less of the total area S2 of the partition wall 6 located between the side surface 9 of the lower hull body 4 and the inner peripheral surface of the surrounding wall 5, that is, S3 / It is formed so that S2 ⁇ 0.2.
  • a plurality of (20 in the present embodiment) water storage compartments A are formed by the side surface 9 of the lower hull body 4, the inner peripheral surface of the surrounding wall 5, and the partition wall 6. Will be formed. Because it is placed under the surface of the water, a large amount of water (seawater or fresh water) is stagnating inside each water storage section A (the inside of each water storage section A is a large amount of water (seawater or fresh water).
  • the floating structure 1 is shaken, the water staying in the water storage section A is prevented from promptly moving to the adjacent section, and the mass that suppresses the swing of the floating structure 1 is suppressed. Acts as Thereby, the shaking of the floating structure 1 (especially roll motion or pitch motion due to wind) can be reduced.
  • this gap has an area S0 that is 20% or less of the area S0 of the gap formed between the inner peripheral surface of the surrounding wall 5 and one end of the second vertical surface 11, that is, S1 / S0 ⁇ It is provided to be 0.2. That is, as shown in FIG. 2, this gap is formed between the inner peripheral surface of the enclosure wall 5 and the other end of the first vertical surface 10 by the water staying inside each water storage section A. It is formed so that a large vortex loss is generated when it is ejected to the outside through the formed gap. Thereby, the shaking (especially roll motion and pitch motion by wind) of the floating structure 1 can be further reduced.
  • the opening 13 has an area S3 that is 20% or less of the total area S2 of the partition wall 6 located between the side surface 9 of the lower hull body 4 and the inner peripheral surface of the enclosure wall 5, that is, S3 / S2. It is provided so that ⁇ 0.2. That is, as shown in FIG. 2, when the water staying in each water storage section A is ejected from the opening 13 of the partition wall 6 into the adjacent water storage section A, as shown in FIG. It is formed so that a large vortex loss occurs. As a result, the swinging of the floating structure 1 (particularly yaw movement due to wind) can be reduced, and the movement of the floating structure 1 in the lateral direction can be prevented (reduced).
  • FIG. 3 is a perspective view showing a schematic structure of the floating structure according to the present embodiment and a part of which is cut away.
  • the floating structure 21 includes a column (floating body main body) 22 and a lower hull (projecting structure portion) 23 as main elements.
  • the column 22 is a hollow cylindrical structure made of, for example, a steel plate, and a plurality of sealed floating chambers F are provided therein.
  • the lower hull 23 is composed mainly of a lower hull main body 24, an enclosure wall 25, and a partition wall 26, and is provided at the lower end of the column 22 located below the water surface WL (see FIG. 1A). Yes.
  • the lower hull main body 24 has a ring shape (donut shape) in a plan view extending along the circumferential direction and extending radially inward and radially outward of the column 22 from the inner peripheral surface and the outer peripheral surface located at the lower end of the column 22. It is a structure.
  • the upper surface 27 and the lower surface 28 of the lower hull main body 24 extend along the direction orthogonal to the inner peripheral surface and the outer peripheral surface of the column 22, respectively, and the outer peripheral end of the upper surface 27 is more outward (radius) than the outer peripheral end of the lower surface 28. It is formed so as to be located on the outer side in the direction.
  • the inner peripheral end of the upper surface 27 is formed to be located immediately above the inner peripheral end of the lower surface 28, and the inner peripheral end of the upper surface 27 and the inner peripheral end of the lower surface 28 are the first side surfaces 29. It is connected (connected), and the radially inner side of the first side surface 29 is a water inlet 30 that penetrates in the height direction (thickness direction) of the lower hull body 24.
  • the second side surface 31 located on the radially outer side of the lower hull body 24 connects (connects) the outer peripheral end of the upper surface 27 and the outer peripheral end of the lower surface 28 and decreases in diameter from the upper surface 27 toward the lower surface 28. It is an inclined surface.
  • the surrounding wall 25 is a vertical wall portion disposed along the outer peripheral end of the lower hull main body 24 (that is, the second side surface 31 of the lower hull main body 24), and the outer peripheral end of the upper surface 27 and the inner peripheral surface of the surrounding wall 25. Are spaced apart by a predetermined distance d1 (see FIG. 1A), and the outer peripheral end of the lower surface 28 and the inner peripheral surface of the surrounding wall 25 are separated by a predetermined distance d2 (see FIG. 1A). .
  • a gap with a width d 1 is formed between the inner peripheral surface of the enclosure wall 25 and the outer peripheral end of the upper surface 27, and a gap with a width d 2 is formed between the inner peripheral surface and the outer peripheral end of the lower surface 28. It is arranged so that. Further, in the surrounding wall 25, the area S1 of the gap formed between the inner peripheral surface and the outer peripheral end of the upper surface 27 is the area of the gap formed between the inner peripheral surface and the outer peripheral end of the lower surface 28. It is arranged so that S0 is, for example, 20% or less, that is, S1 / S0 ⁇ 0.2.
  • the partition wall 26 is a plurality of (for example, 40) plate-like members that connect (connect) the second side surface 31 of the lower hull body 24 and the inner peripheral surface of the surrounding wall 25, and an opening is provided at the center thereof.
  • a part 32 is provided.
  • the opening 32 has an area S3 of, for example, 20% or less of the area S2 of the entire partition wall 26 located between the second side surface 31 of the lower hull body 24 and the inner peripheral surface of the surrounding wall 25, that is, , S3 / S2 ⁇ 0.2.
  • the water storage section B different from the water storage section A described above is formed by the inner peripheral surface of the column 22 and the upper surface 27 of the lower hull body 24.
  • a large amount of water (seawater or fresh water) is stored in the water storage section B (the inside of the water storage section B is filled with a large amount of water (seawater or fresh water)), and the floating structure 21 is shaken.
  • the water staying inside the water storage section B cannot flow quickly and acts as a drag against the moving direction of the floating structure, and acts as a mass that suppresses the shaking of the floating structure 21. Thereby, the shaking (especially roll motion and pitch motion due to wind) of the floating structure 21 can be further reduced.
  • the floating structure 21 when the floating structure 21 is shaken, the water staying inside the water storage section B is ejected from the water inlet 30 to the outside. That is, as shown in FIG. 2, the water inlet 30 is formed so that a large vortex loss occurs when water staying in the water storage section B is ejected from the water inlet 30 to the outside. Yes. Thereby, the swinging of the floating structure 21 (particularly, roll motion or pitch motion due to wind) can be further reduced.
  • Other functions and effects are the same as those of the above-described first embodiment, and thus description thereof is omitted here.
  • the cross-sectional view shape of the outer hull body 4, 24 on the outer peripheral portion is as shown in FIGS. 4A to 4H
  • the surrounding walls 5, 25 have the cross-sectional view shape. 4A to 4H and the surrounding walls 5 and 25 so that the positional relationship between the lower hull bodies 4 and 24 and the surrounding walls 5 and 25 is the positional relationship shown in FIGS. 4A to 4H.
  • a broken line is a reference line for clarifying the size of the surrounding wall 25 and the positional relationship between the lower hull body 4 and 24 and the surrounding walls 5 and 25.
  • FIG. 5 is a perspective view showing a schematic configuration of the floating structure according to the present embodiment
  • FIG. 6 is a cross-sectional view taken along arrows VI-VI in FIG.
  • the floating structure 41 is configured with a column (floating body main body) 42 and a lower hull (projecting structure portion) 43 as main elements.
  • the column 42 is a hollow cylindrical structure made of, for example, a steel plate, and a plurality of sealed floating chambers (not shown) are provided therein.
  • a plurality of (four in the present embodiment) convex portions (sway reduction means) 44 extending along the height (axis) direction of the column 42 and the height of the column 42 are also provided.
  • a plurality (four in this embodiment) of recesses (sway reduction means) 45 extending along the (axis) direction are provided.
  • the convex portion 44 and the concave portion 45 are streak-like protrusions and dimples (dents) each having a substantially hemispherical shape in cross section, and are equally spaced along the circumferential direction of the column 42 (in this embodiment, (90 ° intervals).
  • the lower hull 43 extends from the inner peripheral surface and the outer peripheral surface located at the lower end of the column 42 to the inner side and the outer side in the radial direction of the column 42 and has a ring-like (donut-like) structure provided along the peripheral direction. It is a thing.
  • the upper surface 46 and the lower surface 47 of the lower hull 43 extend along the direction orthogonal to the inner peripheral surface and the outer peripheral surface of the column 42, respectively, and the inner peripheral end of the upper surface 46 is located immediately above the inner peripheral end of the lower surface 47.
  • the outer peripheral edge of the upper surface 46 is formed to be located immediately above the outer peripheral edge of the lower surface 47.
  • the inner peripheral end of the upper surface 46 and the inner peripheral end of the lower surface 47 are connected (connected) by the first side surface 29, and the radially inner side of the first side surface 29 is the height direction of the lower hull 43.
  • the water inlet 30 penetrates in the (thickness direction). Since the water inlet 30 has been described in the second embodiment, the description thereof is omitted here.
  • the outer peripheral end of the upper surface 46 and the outer peripheral end of the lower surface 47 are connected (connected) by the second side surface 48.
  • the wind flowing along the outer peripheral surface of the column 42 passes through the convex portion 44 and the concave portion 45 provided on the outer peripheral surface of the column 42, and thus the outer peripheral surface of the column 42. It will flow away (so as to peel off).
  • VIM Vortex Induced Motion
  • the water storage section B different from the water storage section A described above is formed by the inner peripheral surface of the column 42 and the upper surface 46 of the lower hull 43.
  • a large amount of water (seawater or fresh water) is stored in the water storage section B (the interior of the water storage section B is filled with a large amount of water (seawater or fresh water)), and the floating structure 41 is shaken.
  • the water staying in the water storage section B cannot flow quickly and acts as a drag against the moving direction of the floating structure, and acts as a mass that suppresses the shaking of the floating structure 41. Thereby, the shaking (especially roll motion and pitch motion by wind) of the floating structure 41 can be further reduced.
  • the floating structure 41 when the floating structure 41 is shaken, the water staying inside the water storage section B is ejected from the water inlet 30 to the outside. That is, as shown in FIG. 2, the water inlet 30 is formed so that a large vortex loss occurs when water staying in the water storage section B is ejected from the water inlet 30 to the outside. Yes. Thereby, the shaking (especially roll motion and pitch motion by wind) of the floating structure 41 can be further reduced.
  • FIG. 7A is a side view showing a schematic configuration of the floating structure according to the present embodiment, and shows a state of installation when there is a wind that does not cause a problem with VIM.
  • FIG. 7B shows a wind that causes a problem with VIM. It is a figure which shows the installation state in the case of being.
  • reference numeral WL denotes a water surface
  • reference numeral G denotes a sea bottom
  • reference numeral M denotes a mooring line.
  • the convex portion 44 and the concave portion 45 described in the third embodiment are located above the water surface WL when there is a wind that does not cause a problem with the VIM. Is different from that of the third embodiment described above in that it is arranged to be located below the water surface WL when a wind that causes a problem occurs. Since other components are the same as those of the third embodiment described above, description of these components is omitted here. In addition, the same code
  • the convex portion 44 projecting radially outward from the outer peripheral surface of the column 42 is positioned above the water surface WL.
  • the tension applied to the mooring line M can be reduced, and the life of the mooring line M can be extended. it can.
  • the floating structure 51 when a wind wave that causes a problem with VIM occurs, the entire floating structure 51 is pushed down to the leeward side (or downstream side), and also to the sea bottom G. It sinks toward the bottom, and the convex part 44 and the concave part 45 are located under the water surface WL (submerged).
  • the wind flowing along the outer peripheral surface of the column 42 moves away from the outer peripheral surface of the column 42 (so as to peel off) when passing through the convex portion 44 and the concave portion 45 provided on the outer peripheral surface of the column 42. ) It will flow.
  • VIM Vortex Induced Motion
  • the amount of ups and downs of the floating structure 51 is determined by, for example, injecting ballast water into the floating chamber provided in the column 42 or using the ballast water stored in the floating chamber. It is more preferable that adjustment is possible by draining outside.
  • FIG. 8 is a plan view showing a schematic configuration of the floating structure according to the present embodiment, and is the same diagram as FIG.
  • the floating structure 61 includes a column (floating body main body) 62 and a lower hull (projecting structure portion) 63 as main elements.
  • the column 62 is a hollow cylindrical structure made of, for example, a steel plate, and a plurality of sealed floating chambers (not shown) are provided therein.
  • the lower hull 63 extends from the inner peripheral surface and the outer peripheral surface located at the lower end portion of the column 62 to the inner side in the radial direction and the outer side in the radial direction of the column 62 and is provided in a polygonal shape in plan view (in the present embodiment). It is an annular structure exhibiting an octagonal shape.
  • the outer peripheral end of the lower hull 63 is formed such that the contour of the lower hull 63 in plan view is asymmetric (so as not to be line symmetric when viewed from the entire circumferential direction).
  • the four (linear) short sides 63a and the four (linear) long sides 63b are alternately arranged.
  • the contour of the lower hull 63 in plan view is one vertex (a point where one short side 63a and one long side 63b intersect (contact))
  • the center point of the lower hull 63 is sandwiched between the center points. It is formed so as to be asymmetrical between the left side and the right side of a straight line connecting one vertex and the other vertex located on the opposite side.
  • An upper surface 64 and a lower surface (not shown) of the lower hull 63 extend along a direction orthogonal to the inner peripheral surface and the outer peripheral surface of the column 62, and the inner peripheral end of the upper surface 64 is directly above the inner peripheral end of the lower surface.
  • the outer peripheral end of the upper surface 64 is formed so as to be positioned immediately above the outer peripheral end of the lower surface. Further, the inner peripheral end of the upper surface 64 and the inner peripheral end of the lower surface are connected (connected) by the first side surface 29, and the radially inner side of the first side surface 29 is in the height direction of the lower hull 63 ( The water inlet 30 penetrates in the thickness direction. Since the water inlet 30 has been described in the second embodiment, the description thereof is omitted here.
  • the outer peripheral end of the upper surface 64 and the outer peripheral end of the lower surface are connected (connected) by the second side surface 65.
  • the floating structure 61 since it is asymmetric with respect to the wind from any direction, the generation of VIM is suppressed. For example, when a flow such as a tidal current or an ocean current flowing along the outer peripheral surface of the lower hull 63 of the present embodiment passes through the second side surface 65 of the lower hull 63, it is separated from the second side surface 65 of the lower hull 63 at the apex. Since the two flows that are separated are asymmetrical, different vibrations are applied to the floating structure 61.
  • a flow such as a tidal current or an ocean current flowing along the outer peripheral surface of the lower hull 63 of the present embodiment passes through the second side surface 65 of the lower hull 63, it is separated from the second side surface 65 of the lower hull 63 at the apex. Since the two flows that are separated are asymmetrical, different vibrations are applied to the floating structure 61.
  • VIM Vortex Induced Motion
  • a water storage section B different from the water storage section A described above is formed by the inner peripheral surface of the column 62 and the upper surface 64 of the lower hull 63.
  • a large amount of water (seawater or fresh water) is stored in the water storage section B (the inside of the water storage section B is filled with a large amount of water (seawater or fresh water)), and the floating structure 61 is shaken.
  • the water staying inside the water storage section B acts as a mass that suppresses the shaking of the floating structure 61. Thereby, the swinging of the floating structure 61 (especially, roll motion or pitch motion due to wind) can be reduced.
  • the floating structure 61 when the floating structure 61 is shaken, the water staying inside the water storage section B is ejected from the water inlet 30 to the outside. That is, as shown in FIG. 2, the water inlet 30 is formed so that a large vortex loss occurs when water staying in the water storage section B is ejected from the water inlet 30 to the outside. Yes. Thereby, the swinging of the floating body structure 61 (particularly, roll motion or pitch motion due to wind) can be further reduced.
  • FIG. 9A is a diagram showing a schematic configuration of the floating structure according to the present embodiment, and is a side view showing a state in which the overhang structure portion is contracted
  • FIG. 9B is a side view showing a state in which the overhang structure portion is expanded
  • FIG. 9C is a cross-sectional view taken along arrow IX-IX in FIG. 9A.
  • the floating structure 71 is composed of a column (floating body main body) 72 and an overhang structure portion (sway reduction means) 73 as main elements.
  • the column 72 is a hollow cylindrical structure made of, for example, a steel plate, and a plurality of sealed floating chambers (not shown) are provided therein.
  • the overhang structure portion 73 is composed mainly of a plurality of (in this embodiment, nine) support columns and a plurality of (three in this embodiment) plate-like members. It is provided on the end face.
  • Each plate-like member is a disk-like member having a diameter substantially the same as the diameter of the column 72, and among these plate-like members, the first plate-like member 74 located on the uppermost side (the column 72 side) is:
  • the column 72 is fixed to the lower end surface of the column 72 via a plurality of (three in this embodiment) first support columns 75.
  • the second plate 77 is attached to the first plate-like member 74.
  • the third plate-like member 78 located on the lowermost side is a third (three in this embodiment) third. It is attached to the second plate-like member 76 via the post 79.
  • One end (lower end) of the second column 77 is fixed to the upper surface of the second plate-like member 76, the other end (upper end) is a free end, and the peripheral end of the first plate-like member 74.
  • the first through hole 80 is formed so as to penetrate the first plate member 74 in the thickness direction.
  • pillar 77 moves to the plate
  • the third support column 79 is fixed to the upper surface of the third plate-like member 78, the other end (upper end) is a free end, and the peripheral end of the first plate-like member 74.
  • the second plate-shaped member 76 is formed in the peripheral end portion of the second through-hole 81 and the second plate-shaped member 76 that are formed in the portion and penetrates the first plate-shaped member 74 in the plate thickness direction. It arrange
  • the third support column 79 is moved in the plate thickness direction (vertical direction) of the second plate member 76 by a second drive mechanism (not shown) provided on the second plate member 76. It is configured to be able to.
  • the first drive mechanism and the second drive mechanism are operated to send the second support column 77 and the third support column 79 downward.
  • the second plate-like member 76 and the third plate-like member 78 can be lowered to bring the overhanging structure 73 into the expanded state shown in FIG. 9B.
  • the first driving mechanism and the second driving mechanism are operated to send the second support column 77 and the third support column 79 upward.
  • the overhanging structure 73 can be brought into the contracted state shown in FIG. 9A by raising the second plate-like member 76 and the third plate-like member 78.
  • the floating structure 71 when the floating structure 71 tries to shake (move) in the vertical (vertical) direction due to wind or the like, the extended plate-like members 74, 76, 78 are It acts (works) as a resistance plate that suppresses (suppresses) the vertical swing of the floating structure 71. Thereby, the swinging of the floating structure 71 (in particular, roll motion, pitch motion, and heave motion due to wind) can be reduced.
  • the support columns 75, 77, and 79 that support the plate-like members 74, 76, and 78 are disposed so as to be asymmetric when viewed from the side.
  • VIM Vortex Induced Motion
  • FIG. 10 is a perspective view showing a schematic structure of the floating structure according to the present embodiment, with a part thereof cut away
  • FIG. 11A is an enlarged cross-sectional view of a main part of FIG.
  • symbol WL in FIG. 11A is a water surface.
  • the floating structure 81 includes a column (floating body main body) 82 and a lower hull (projecting structure portion) 83 as main elements.
  • the column 82 is a hollow cylindrical structure made of, for example, a steel plate, and communicates with the outside through a plurality of sealed floating chambers F and openings (sway reduction means) 84 inside the column 82.
  • a plurality of spaces (sway reduction means) 85 are provided.
  • Each of the spaces 85 is a space formed so as to taper in both the width direction (lateral direction) and the height direction (vertical direction) from the outer peripheral surface of the column 82 inward (radially inward). It is arranged at equal intervals along the circumferential direction of 82.
  • the opening 84 has a rectangular shape when viewed from the side, and the width thereof is formed to be smaller than the width at any position in the space 85. That is, the opening 84 is provided so that a baffle plate (wave-dissipating plate: shaking reduction means) 86 is formed between the opening 84 and the opening 84.
  • a baffle plate wave-dissipating plate: shaking reduction means
  • the lower hull 83 extends from the inner circumferential surface and the outer circumferential surface located at the lower end of the column 82 to the inner side in the radial direction and the outer side in the radial direction of the column 82 and has a ring-like structure (doughnut shape) provided along the circumferential direction. It is a thing.
  • An upper surface 87 and a lower surface 88 of the lower hull 83 extend along a direction orthogonal to the inner peripheral surface and the outer peripheral surface of the column 82, and the inner peripheral end of the upper surface 87 is located immediately above the inner peripheral end of the lower surface 88.
  • the outer peripheral end of the upper surface 87 is formed to be located immediately above the outer peripheral end of the lower surface 88.
  • the inner peripheral end of the upper surface 87 and the inner peripheral end of the lower surface 88 are connected (connected) by a first side surface 29 (see, for example, FIG. 3).
  • the water hull opening 30 penetrates in the height direction (thickness direction) of the lower hull 83 (see, for example, FIG. 3). Since the water inlet 30 has been described in the second embodiment, the description thereof is omitted here.
  • the outer peripheral end of the upper surface 87 and the outer peripheral end of the lower surface 88 are connected (connected) by the second side surface 89.
  • the wind wave incident on the outer peripheral surface of the column 82 enters the inside of the space 85 through the opening 84 as shown in FIG. After being reflected (bounced back) against the wall surface (vertical surface) located inward (radially inner side), it proceeds toward the wall surface (vertical surface) located inward (radially inner side) of the baffle plate 86, The light hits the wall surface located inward of the baffle plate 86 and is further reflected. At this time, the wave that has entered the interior of the space 85 through the opening 84 hits the wave pressure acting on the wall surface located inside (radially inside) the space 85 and the wall surface located inside the space 85.
  • the reflected wave acts on the wall surface located on the inner side (radially inside) of the baffle plate 86, and the wave reflected on the wall surface located on the inner side of the baffle plate 86 is reflected on the inner side (radius) of the space 85.
  • the wave pressure acting on the wall surface located on the inner side in the direction cancels each other. Thereby, the swinging of the floating structure 81 (particularly, the roll motion due to wind) can be reduced.
  • a water storage section B different from the water storage section A described above is formed by the inner peripheral surface of the column 82 and the upper surface 87 of the lower hull 83.
  • a large amount of water (seawater or fresh water) is stored in the water storage section B (the inside of the water storage section B is filled with a large amount of water (seawater or fresh water)), and the floating structure 81 is shaken.
  • the water staying inside the water storage section B acts as a mass that suppresses the shaking of the floating structure 81. Thereby, the swinging of the floating structure 81 (especially, roll motion or pitch motion due to wind) can be reduced.
  • the floating structure 81 when the floating structure 81 is shaken, the water staying inside the water storage section B is ejected from the water inlet 30 to the outside. That is, as shown in FIG. 2, the water inlet 30 is formed so that a large vortex loss occurs when water staying in the water storage section B is ejected from the water inlet 30 to the outside. Yes. Thereby, the shaking (especially roll motion and pitch motion by wind) of the floating structure 81 can be further reduced.
  • the cross-sectional shape of the baffle plate (wave absorbing plate) 86 is as shown in FIG. 11B, and the baffle plate 86 is outward (radially outward) from the outer peripheral surface of the lower hull 82. It is good also as a form which protrudes, and the cross-sectional view shape of the space 85 is good also as a shape like FIG. 11C. Moreover, the code
  • FIG. 12A is a side view showing a schematic configuration of the floating structure according to the present embodiment
  • FIGS. 12B and 12C are cross-sectional views taken along line XII-XII in FIG. 12A.
  • the floating body structure 91 is composed mainly of a column (floating body main body) 92, a lower hull (overhang structure portion) 93, and a VIM reduction means (swing reduction means) 94.
  • symbol WL in FIG. 12A is a water surface.
  • the column 92 is a hollow cylindrical structure made of, for example, a steel plate, and a plurality of sealed floating chambers (not shown) are provided therein.
  • the lower hull 93 extends from the inner peripheral surface and the outer peripheral surface located at the lower end of the column 92 to the inner side and the outer side in the radial direction of the column 92 and is provided in a substantially rectangular shape in plan view provided along the peripheral direction (this embodiment) Is a ring-shaped structure having a substantially square shape.
  • An upper surface 95 and a lower surface 96 of the lower hull 93 extend along directions orthogonal to the inner peripheral surface and the outer peripheral surface of the column 92, respectively, and the inner peripheral end of the upper surface 95 is located immediately above the inner peripheral end of the lower surface 96.
  • the outer peripheral end of the upper surface 95 is formed so as to be positioned immediately above the outer peripheral end of the lower surface 96. Further, the inner peripheral end of the upper surface 95 and the inner peripheral end of the lower surface 96 are connected (connected) by the first side surface 29, and the radially inner side of the first side surface 29 is the height direction of the lower hull 93.
  • the water inlet 30 penetrates in the (thickness direction). Since the water inlet 30 has been described in the second embodiment, the description thereof is omitted here.
  • the outer peripheral end of the upper surface 95 and the outer peripheral end of the lower surface 96 are connected (connected) by the second side surface 48.
  • the VIM reducing means 94 is erected between the deck 97 placed on the column 92 and the lower hull 93, and is rotatably attached around the vertical axis (relative to the deck 97 and the lower hull 93). And a lift generating plate 99 having a cross-sectional airfoil shape attached to the column 98 positioned below the water surface WL, one at each corner (corner) of the floating structure 91. A total of four are arranged. Then, as shown in FIGS. 12B and 12C, each of the columns 98 of the VIM reducing means 94 reduces VIM (Vortex Induced Motion) in which the lift generated by the lift generating plate 99 is generated in the direction orthogonal to the flow. It is driven by a drive mechanism (not shown) (for example, an electric motor, a hydraulic motor, or the like) so as to be generated in the direction to be generated.
  • a drive mechanism not shown
  • a drive mechanism for example, an electric motor, a hydraulic motor, or
  • the VIM generated in the direction orthogonal to the flow and the lift generated in the lift generating plate 99 are generated in directions opposite to each other.
  • the fluid force that causes VIM (Vortex Induced Motion) generated in the direction orthogonal to the flow is induced by vortices (Kalman vortices) that occur alternately in the wake of the object at the left and right positions with respect to the flow. It is.
  • This fluid force is a force that periodically fluctuates in a direction orthogonal to the flow, and generates a motion, that is, VIM that fluctuates periodically in the positive and negative directions in the floating body. As shown in FIG.
  • FIG. 12B shows the case of the movement direction opposite to that of FIG. 12B.
  • a water storage section B different from the water storage section A described above is formed by the inner peripheral surface of the column 92 and the upper surface 95 of the lower hull 93.
  • a large amount of water (seawater or fresh water) is stored in the water storage section B (the inside of the water storage section B is filled with a large amount of water (seawater or fresh water)), and the floating structure 91 is shaken.
  • the water staying inside the water storage section B acts as a mass that suppresses the shaking of the floating structure 91. Thereby, the swinging of the floating structure 91 (particularly, roll motion or pitch motion due to wind) can be reduced.
  • the floating structure 91 when the floating structure 91 is shaken, the water staying inside the water storage section B is ejected from the water inlet 30 to the outside. That is, as shown in FIG. 2, the water inlet 30 is formed so that a large vortex loss occurs when water staying in the water storage section B is ejected from the water inlet 30 to the outside. Yes. Thereby, the shaking (especially roll motion and pitch motion by wind) of the floating structure 91 can be further reduced.
  • the sectional shape of the lift generating plate 99 may be as shown in FIGS. 13A to 13C. Since the operational effects of the floating structure according to each of the present embodiments are the same as those of the eighth embodiment described above, description thereof is omitted here.
  • FIG. 14A is a side view showing a schematic configuration of the floating structure according to the present embodiment.
  • the floating body structure 101 is constituted by a column (floating body body) 102, a lower hull (overhang structure portion) 103, and a VIM reduction means (sway reduction means) 104 as main elements.
  • symbol WL in FIG. 14A is a water surface.
  • the column 102 is a hollow cylindrical structure made of, for example, a steel plate, and a plurality of sealed floating chambers (not shown) are provided therein.
  • the lower hull 103 extends from the inner peripheral surface and the outer peripheral surface located at the lower end of the column 102 to the inner side in the radial direction and the outer side in the radial direction of the column 102 and has a substantially rectangular shape in plan view provided along the peripheral direction (see FIG. It is a cyclic
  • An upper surface 105 and a lower surface 106 of the lower hull 103 extend along a direction perpendicular to the inner peripheral surface and the outer peripheral surface of the column 102, and the inner peripheral end of the upper surface 105 is located immediately above the inner peripheral end of the lower surface 106.
  • the outer peripheral end of the upper surface 105 is formed so as to be located immediately above the outer peripheral end of the lower surface 106.
  • the inner peripheral end of the upper surface 105 and the inner peripheral end of the lower surface 106 are connected (connected) by a first side surface 29 (see FIGS. 12A to 12C), and the inner side in the radial direction of the first side surface 29. Is a water inlet 30 (see FIGS.
  • the outer peripheral end of the upper surface 105 and the outer peripheral end of the lower surface 106 are connected (connected) by the second side surface 48.
  • the VIM reduction means 104 is vertically installed from the upper surface 105 of the lower hull 103 and is attached to the support column 107 and a support column 107 that is rotatably attached to the vertical axis (relative to the lower hull 103).
  • the lift generating plate 99 having a cross-sectional airfoil shape is provided, and a total of four lift generating plates 99 are arranged, one at each corner (corner) of the floating structure 101. 12B and 12C, each of the columns 107 of the VIM reduction means 104 has a VIM (Vortex Induced Motion) in which the lift generated by the lift generating plate 99 is generated in a direction orthogonal to the flow. ) Is generated by a driving mechanism (for example, an electric motor, a hydraulic motor, etc.) (not shown) so as to be generated in a direction in which the above is reduced.
  • a driving mechanism for example, an electric motor, a hydraulic motor, etc.
  • FIG. 14B is a side view showing a schematic configuration of the floating structure according to the present embodiment.
  • the floating body structure 111 is constituted mainly by a column (floating body body) 112, a lower hull (overhang structure portion) 113, and a VIM reduction means (swing reduction means) 114.
  • symbol WL in FIG. 14B is a water surface.
  • the column 112 is a hollow cylindrical structure made of, for example, a steel plate, and a plurality of sealed floating chambers (not shown) are provided therein.
  • the lower hull 113 extends from the inner peripheral surface and the outer peripheral surface located at the upper end of the column 112 to the inner side and the outer side in the radial direction of the column 112 and is provided with a substantially rectangular shape in plan view (FIG. 12B and FIG. 12B). It is a cyclic
  • the upper surface 115 and the lower surface 116 of the lower hull 113 extend along the direction orthogonal to the inner peripheral surface and the outer peripheral surface of the column 112, respectively, so that the outer peripheral end of the upper surface 115 is located immediately above the outer peripheral end of the lower surface 116. Is formed.
  • the outer peripheral end of the upper surface 115 and the outer peripheral end of the lower surface 116 are connected (connected) by the second side surface 48.
  • the VIM reduction means 114 is vertically installed from the lower surface 116 of the lower hull 113 and is attached to the support 117 and the support 117 that is rotatably attached to the lower hull 113 (relative to the lower hull 113).
  • the lift generating plate 99 having a cross-sectional airfoil shape is provided, and a total of four lift generating plates 99 are arranged, one at each corner (corner) of the floating structure 111. 12B and 12C, each of the pillars 117 of the VIM reducing means 114 has a VIM (Vortex Induced Motion) in which the lift generated by the lift generating plate 99 is generated in a direction orthogonal to the flow. ) Is generated by a driving mechanism (for example, an electric motor, a hydraulic motor, etc.) (not shown) so as to be generated in a direction in which the above is reduced.
  • a driving mechanism for example, an electric motor, a hydraulic motor, etc.
  • FIG. 15 is a side view showing a schematic configuration of the floating structure according to the present embodiment.
  • the floating structure 121 according to the present embodiment is different from that of the eighth embodiment described above in that VIM reduction means (sway reduction means) 124 is provided instead of the VIM reduction means 94. Since other components are the same as those of the eighth embodiment described above, description of these components is omitted here.
  • symbol is attached
  • symbol WL in FIG. 15 is a water surface.
  • the VIM reducing unit 124 is vertically installed from the upper surface 95 of the lower hull 123 and is attached to the support 127 and the support 127 that is rotatably attached around the vertical axis (relative to the lower hull 123).
  • the lift generating plate 99 having a cross-sectional airfoil shape is provided, and a total of four lift generating plates 99 are arranged, one at each corner (corner) of the floating structure 121. 12B and 12C, the struts 127 of the VIM reduction means 124 each have a VIM (Vortex Induced Motion) in which the lift generated by the lift generating plate 99 is generated in a direction orthogonal to the flow.
  • VIM Vector Induced Motion
  • VIM reducing unit 124 Is generated by a driving mechanism (for example, an electric motor, a hydraulic motor, etc.) (not shown) so as to be generated in a direction in which the above is reduced.
  • a driving mechanism for example, an electric motor, a hydraulic motor, etc.
  • the support column 127 of the VIM reducing unit 124 is configured to be rotatable around the horizontal axis (relative to the lower hull 123), and the entire VIM reducing unit 124 is a recess (not shown) provided at the upper end of the lower hull 123. It can be accommodated (stored) in a place (recess).
  • the VIM reduction means 124 is accommodated in the recess, or the VIM reduction means 124 accommodated in the recess. Can be extended.
  • a drive mechanism for example, an electric motor or a hydraulic motor
  • the floating structure 121 for example, when the floating structure 121 is towed to the installation location, the VIM reducing means 124 serving as a resistor is provided at the upper end of the lower hull 123. It can be accommodated in the station, and resistance during towing can be reduced. Further, since the VIM reduction means 124 that becomes a hindrance when trying to dock the floating structure 121 into the floating dock or the like can be accommodated in the recess provided at the upper end of the lower hull 123, the floating structure 121 is It can be docked smoothly. Other functions and effects are the same as those of the above-described eighth embodiment, and thus description thereof is omitted here.
  • FIG. 16A is a side view showing a schematic configuration of a floating structure according to the present embodiment
  • FIG. 16B is an enlarged cross-sectional view of a main part.
  • the floating body structure 131 is configured with a column (floating body body) 132 and VIM reduction means (sway reduction means) 133 as main elements.
  • symbol WL in FIG. 16A is a water surface.
  • the column 132 is a cylindrical structure made of, for example, a steel plate, and a plurality of sealed floating chambers (not shown) are provided therein.
  • the VIM reduction means 133 is vertically installed from the lower surface 134 of the column 132 and is attached to the support column 135 and the support column 135 rotatably attached to the vertical axis (relative to the column 132).
  • a lift generating plate 99 having a cross-sectional airfoil shape, and each one is arranged at regular intervals (90 ° intervals in the present embodiment) along the circumferential direction (four in the present embodiment are arranged). ing).
  • the pillars 135 of the VIM reduction means 133 are each VIM (Vortex) in which the lift generated by the lift generating plate 99 is generated in a direction orthogonal to the flow. It is driven by a drive mechanism (not shown) (for example, an electric motor, a hydraulic motor, etc.) so as to generate in a direction to reduce Induced Motion.
  • a drive mechanism for example, an electric motor, a hydraulic motor, etc.
  • the support column 135 of the VIM reduction unit 133 is configured to be able to advance and retreat with respect to the column 132 along the vertical axis direction, and the entire VIM reduction unit 133 is arranged at the lower end portion of the column 132. It can be accommodated (stored) in the provided recess (recess) 136.
  • the VIM reduction means 133 is accommodated in the recess 136 or is accommodated in the recess 136.
  • the VIM reduction means 133 can be extended.
  • the VIM reduction means 133 and the recess 136 may be configured as shown in FIG. That is, the entire VIM reducing unit 133 can be configured to be rotatable around the horizontal axis. Since the operational effects of the floating structure according to the present embodiment are the same as those of the twelfth embodiment described above, description thereof is omitted here.
  • FIG. 18A is a cross-sectional view showing a schematic configuration of a floating structure according to the present embodiment
  • FIG. 18B is an enlarged view of a main part.
  • the floating structure 141 according to the present embodiment is different from that of the eighth embodiment described above in that a VIM reduction means (sway reduction means) 144 is provided instead of the VIM reduction means 94. Since other components are the same as those of the eighth embodiment described above, description of these components is omitted here.
  • symbol is attached
  • the VIM reducing unit 144 is a cylindrical member that has a circular shape in a bottom view, and is disposed in the water inlet 30. Further, as shown in FIG. 18A, the VIM reduction means 144 is configured to be able to advance and retreat with respect to the water inlet 30 along the vertical axis direction, and the entire VIM reduction means 144 is accommodated in the water inlet 30 ( Storage). That is, by operating a drive mechanism (for example, an electric motor or a hydraulic motor), the VIM reduction means 144 is accommodated in the water inlet 30 or the VIM reduction means 144 accommodated in the water inlet 30 is expanded. Be able to. Further, when the VIM reducing means 144 is extended (see FIG.
  • the outer surface of the VIM reducing means 144 that protrudes downward from the lower surface 96 of the lower hull 93 has projections (or dimples (dents) having a substantially hemispherical shape in cross section. )) 145 or a plurality of through holes 145 having a substantially circular shape in cross section.
  • the tidal current flowing along the outer surface of the VIM reducing unit 144 is a protrusion (or dimple (dent)) 145 or a through hole provided on the outer peripheral surface of the VIM reducing unit 144.
  • VIM Vortex Induced Motion
  • the floating structure 141 for example, when the floating structure 141 is towed to the installation location, the VIM reducing means 144 that becomes a resistor is accommodated in the water inlet 30. And the resistance during towing can be reduced. Furthermore, since the VIM reducing means 144 that becomes a hindrance when trying to dock the floating structure 141 to a floating dock or the like can be accommodated in the water inlet 30, the floating structure 141 can be docked smoothly. .
  • the VIM reduction means 144 may be shaped as shown in FIG. 18C or FIG. 18D.
  • the lift generating plate 99 having one (see FIG. 18C) or two (see FIG. 18D) sectional view airfoil shape is provided below the lower surface 96 of the lower hull 93. It can also be.
  • the VIM reduction means 144 is a VIM (Vortex Induced Motion) in which the lift generated by the lift generating plate 99 is generated in a direction orthogonal to the flow.
  • a drive mechanism for example, an electric motor, a hydraulic motor, etc.
  • a drive mechanism for example, an electric motor, a hydraulic motor, etc.
  • FIG. 19A is a side view showing a schematic configuration of a floating structure according to the present embodiment
  • FIG. 19B is a plan view.
  • the floating structure 151 according to this embodiment is different from that of the eighth embodiment described above in that a VIM reduction means (sway reduction means) 154 is provided instead of the VIM reduction means 94. Since other components are the same as those of the eighth embodiment described above, description of these components is omitted here.
  • symbol is attached
  • symbol WL in FIG. 19A is a water surface.
  • the VIM reducing means 154 includes a film-like member 155 having a fan shape in plan view, and a column 156 for contracting or expanding the film-like member 155 along a vertical plane, and as shown in FIG. 19B, along the circumferential direction. Are arranged one by one at regular intervals (60 ° in this embodiment) (six in this embodiment). One side of the film-like member 155 is attached to the outer peripheral surface of the column 92 positioned below the water surface WL, and the other side of the film-like member 155 is attached to the outer peripheral surface of the column 156.
  • One end of the column 156 is located near the joint between the column 92 and the lower hull 93 via a drive shaft (not shown) that is rotated around a horizontal axis by a drive mechanism (not shown) (for example, an electric motor or a hydraulic motor).
  • a drive mechanism for example, an electric motor or a hydraulic motor.
  • the other end of the support column 156 is a free end.
  • the VIM reduction means 154 that is expanded in a direction substantially parallel to the flow is automatically selected and operated (for example, via a tidal current sensor and a controller). Will be.
  • the floating structure 151 when the floating structure 151 is to be shaken (moved) in the horizontal direction (direction perpendicular to the flow) due to wind or the like, the stretched membrane member 155 is expanded. However, it acts as a resistance plate that suppresses (suppresses) the lateral shaking of the floating structure 151. Thereby, VIM (Vortex Induced Motion) generated in a direction orthogonal to the flow can be reduced, and movement of the floating structure 151 in the lateral direction (direction orthogonal to the flow) is prevented ( Can be reduced).
  • VIM Vortex Induced Motion
  • the VIM reduction means 155 can be attached to the position shown in FIG. 20, that is, the lower surface of the lower hull 93. Since the operational effects of the floating structure according to the present embodiment are the same as those of the thirteenth embodiment described above, description thereof is omitted here.
  • FIGS. 21A and 21B a boat shape as shown in FIGS. 21A and 21B may be used.
  • VIM Vortex Induced Motion
  • FIG. 21B is a cross-sectional view taken along arrow XXI-XXI in FIG. 21A
  • reference numerals 165 and 166 in the drawing denote the first embodiment and the second embodiment, respectively.
  • the internal space of the water storage section A is, for example, rubber or fiber. It is more preferable that the watertight member 167 made of is closed. Thereby, the resistance of the floating structure during towing can be reduced.
  • the gap having the area S1 is between the surrounding walls 5 and 25 and the lower hulls 4 and 24 (or columns 2 and 22).
  • the present invention is not limited to this, and a gap having an area S1 can be formed in the surrounding walls 5 and 25 in a slit shape. In this case, the gap between the surrounding walls 5 and 25 and the lower hulls 4 and 24 (or columns 2 and 22) is closed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Wind Motors (AREA)
  • Bridges Or Land Bridges (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

浮体構造物の動揺を、例えば、海洋資源掘削基地、浮体方式のレジャー施設やホテル等に適した範囲内(例えば、文字を書くなどの作業、あるいは歩行に支障がなくなる範囲内、一般的には、ロール運動が3°~5°以内)にまで低減させること。浮体本体(2)と、該浮体本体(2)の下端に設けられた張り出し構造部(4)の周りを周方向に沿って連続的に取り囲む板状の囲い壁(5)とを備えた浮体構造物(1)であって、前記囲い壁(5)の上端または下端と、前記張り出し構造部(4)の外周面との間に形成される隙間の面積が、前記囲い壁(5)の下端と、前記張り出し構造部(4)の外周面との間に形成される隙間の面積の20%以下となるように前記囲い壁(5)が設けられている。

Description

浮体構造物
 本発明は、浮体構造物、例えば、海洋資源掘削基地、浮体方式のレジャー施設やホテル等の浮体構造物に関するものである。
 このような浮体構造物としては、例えば、特許文献1,2に開示されたものが知られている。
特許第2772109号公報 国際公開番号 WO2005/080189 A1
 しかしながら、上記特許文献1,2に開示された浮体構造物を、海洋資源掘削基地、浮体方式のレジャー施設やホテル等に適用した場合、浮体構造物の動揺を所定の範囲内にまで低減させることができず、さらなる改良が求められていた。
 ここで、動揺を励起する外乱は、風波によって浮体構造物に作用する変動風圧及び変動水圧で励起される比較的短い周期(数秒~30秒)の動揺(6自由度方向)、及び潮流や海流などの流れによりカルマン渦が発生して励起される流れと直交方向の比較的長い周期(数十秒;浮体構造物の固有周期)の水平運動(VIM(Vortex Induced Motion))がある。
 本発明は、上記の事情に鑑みてなされたもので、浮体構造物の動揺を、例えば、海洋資源掘削基地、浮体方式のレジャー施設やホテル等に適した範囲内(例えば、文字を書くなどの作業、あるいは歩行に支障がなくなる範囲内、一般的には、ロール運動が3°~5°以内)にまで低減させることができる浮体構造物を提供することを目的とする。
 本発明は、上記課題を解決するため、以下の手段を採用した。
 本発明による浮体構造物は、浮体本体と、該浮体本体の下端部の周り、または前記浮体本体の下端に設けられた張り出し構造部の周りを周方向に沿って連続的に取り囲む板状の囲い壁とを備えた浮体構造物であって、前記囲い壁の上端又は下端と、前記浮体本体の外周面または前記張り出し構造部の外周面との間に形成される隙間の面積が、前記囲い壁の下端と、前記浮体本体の外周面または前記張り出し構造部の外周面との間に形成される隙間の面積の20%以下となるように前記囲い壁が設けられている。
 また、本発明による浮体構造物は、浮体本体と、該浮体本体の下端部の周り、または前記浮体本体の下端に設けられた張り出し構造部の周りを周方向に沿って連続的に取り囲む板状の囲い壁とを備えた浮体構造物であって、前記囲い壁に設けられたスリットの面積が、前記囲い壁の上端と、前記浮体本体の外周面または前記張り出し構造部の外周面との間に形成される隙間の面積、または前記囲い壁の下端と、前記浮体本体の外周面または前記張り出し構造部の外周面との間に形成される隙間の面積の20%以下となるように前記囲い壁が設けられている。
 これらの浮体構造物によれば、当該浮体構造物の動揺時において、浮体本体の外周面または張り出し構造部の外周面と、囲い壁の内周面との間に形成される空間の内部に滞留している水は、囲い壁の上端と浮体本体の外周面または張り出し構造部の外周面との間に形成される隙間、または囲い壁の下端と浮体本体の外周面または張り出し構造部の外周面との間に形成される隙間、もしくは囲い壁に設けられたスリットから外部に噴出することとなる。そして、これら隙間またはスリットは、その面積が、囲い壁の下端と浮体本体の外周面または張り出し構造部の外周面との間に形成される隙間、囲い壁の上端と浮体本体の外周面または張り出し構造部の外周面との間に形成される隙間の面積、またはスリットの面積の、20%以下となるように設けられているため、浮体本体の外周面または張り出し構造部の外周面と、囲い壁の内周面との間に形成される空間の内部に滞留している水が、これら隙間またはスリットから外部に噴出する際、大きな渦損失が発生するように形成されることとなる。
 これにより、浮体構造物の動揺(特に、風浪によるロール運動やピッチ運動)を低減させることができる。
 上記浮体構造物において、前記浮体本体の外周面または前記張り出し構造部の外周面と、前記囲い壁の内周面との間に形成される空間を、周方向に複数の空間に区画する複数枚の隔壁を備えているとさらに好適である。
 このような浮体構造物によれば、隔壁により水塊が浮体周方向へ逃げるのを防止することができ、隙間またはスリットから外部に噴出する際の渦損失の発生を効率的にすることができる。
 これにより、浮体構造物の動揺(特に、風浪によるロール運動やピッチ運動)をさらに低減させることができる。
 上記浮体構造物において、前記隔壁の面積の20%以下に相当する面積を有する開口部が前記隔壁に設けられているとさらに好適である。
 このような浮体構造物によれば、当該浮体構造物の動揺時または横方向への移動時において、隔壁で区画された1つの空間の内部に滞留している水は、隔壁の開口部から隣の空間の内部に噴出することとなる。そして、この開口部は、その面積が、隔壁全体の面積の、20%以下となるように設けられているため、空間の内部に滞留している水が、隔壁の開口部から隣の空間の内部に噴出する際、大きな渦損失が発生するように形成されることとなる。このように隣の空間への速やかな水の移動がなされず、浮体本体の外周面または張り出し構造部の外周面と、囲い壁の内周面との間に形成される空間の内部に滞留している水が、これら隙間またはスリットから外部に噴出する際の大きな渦損失を効率的に行われる。
 これにより、浮体構造物の動揺(特に、風浪によるヨー運動)を低減させることができるとともに、浮体構造物の横方向への移動を防止する(低減させる)ことができる。
 また、隔壁それぞれに開口部を設けることにより、隔壁それぞれの軽量化を図ることができるとともに、浮体構造物全体の軽量化を図ることができる。
 本発明による浮体構造物は、浮体本体と、該浮体本体の下端に設けられた張り出し構造部とを備えた浮体構造物であって、前記浮体本体の外周面および/または前記張り出し構造部の外周面に、流れに対して直交する方向に発生する運動を低減させる動揺低減手段が設けられている。
 また、本発明による浮体構造物は、浮体本体を備えた浮体構造物であって、前記浮体本体の下方に、流れに対して直交する方向に発生する運動を低減させる動揺低減手段が設けられている。
 さらに、本発明による浮体構造物は、浮体本体と、該浮体本体の下端に設けられた張り出し構造部とを備えた浮体構造物であって、前記張り出し構造部の上面または下面に、流れに対して直交する方向に発生する運動を低減させる動揺低減手段が設けられている。
 これらの浮体構造物によれば、浮体構造物の横方向(流れに対して直交する方向)への移動を防止する(低減させる)ことができる。また、流れに対して直交する方向に発生する運動(VIM(Vortex Induced Motion))を低減させることもできる。
 上記浮体構造物において、前記動揺低減手段が、前記浮体本体または前記張り出し構造部の内部に収容可能に構成されているとさらに好適である。
 このような浮体構造物によれば、例えば、当該浮体構造物を設置場所まで曳航しようとした場合に、抵抗体となる動揺低減手段を浮体本体または張り出し構造部の内部に収容することができて、曳航時における抵抗を低減させることができる。
 また、当該浮体構造物を浮きドック等にドックインさせようとした場合に邪魔となる動揺低減手段を浮体本体または張り出し構造部の内部に収容することができるので、当該浮体構造物を円滑にドックインさせることができる。
 本発明によれば、浮体構造物の動揺を、例えば、海洋資源掘削基地、浮体方式のレジャー施設やホテル等に適した範囲内(例えば、文字を書くなどの作業、あるいは歩行に支障がなくなる範囲内、一般的には、ロール運動が3°~5°以内)にまで低減させることができるという効果を奏する。
本発明の第1実施形態に係る浮体構造物の概略の構成を示す縦断面図である。 本発明の第1実施形態に係る浮体構造物の概略の構成を示す平面図である。 図1BのI-I矢視断面図である。 損失係数(縦軸)と流路断面積比(S0/S1:横軸)との関係を示すグラフである。 本発明の第2実施形態に係る浮体構造物の概略の構成を示すとともに、その一部を切り欠いた斜視図である。 本発明の他の実施形態に係る浮体構造物の概略の構成を示す図で、図1Cと同様の図である。 本発明の別の実施形態に係る浮体構造物の概略の構成を示す図で、図1Cと同様の図である。 本発明のさらに別の実施形態に係る浮体構造物の概略の構成を示す図で、図1Cと同様の図である。 本発明のさらに別の実施形態に係る浮体構造物の概略の構成を示す図で、図1Cと同様の図である。 本発明のさらに別の実施形態に係る浮体構造物の概略の構成を示す図で、図1Cと同様の図である。 本発明のさらに別の実施形態に係る浮体構造物の概略の構成を示す図で、図1Cと同様の図である。 本発明のさらに別の実施形態に係る浮体構造物の概略の構成を示す図で、図1Cと同様の図である。 本発明のさらに別の実施形態に係る浮体構造物の概略の構成を示す図で、図1Cと同様の図である。 本発明の第3実施形態に係る浮体構造物の概略の構成を示す斜視図である。 図5のVI-VI矢視断面図である。 本発明の第4実施形態に係る浮体構造物の概略の構成を示す側面図で、VIMが問題とならない風浪が生じている場合の設置状態を示す図である。 本発明の第4実施形態に係る浮体構造物の概略の構成を示す側面図で、VIMが問題となる風浪が生じている場合の設置状態を示す図である。 本発明の第5実施形態に係る浮体構造物の概略の構成を示す平面図で、図6と同様の図である。 本発明の第6実施形態に係る浮体構造物の概略の構成を示す図で、張り出し構造部を収縮させた状態を示す側面図である。 本発明の第6実施形態に係る浮体構造物の概略の構成を示す図で、張り出し構造部を展張させた状態を示す側面図である。 図9AのIX-IX矢視断面図である。 本発明の第7実施形態に係る浮体構造物の概略の構成を示すとともに、その一部を切り欠いた斜視図である。 図10の要部拡大断面図である。 本発明の他の実施形態に係る浮体構造物の概略の構成を示す図で、図11Aと同様の図である。 本発明の別の実施形態に係る浮体構造物の概略の構成を示す図で、図11Aと同様の図である。 本発明の第8実施形態に係る浮体構造物の概略の構成を示す側面図である。 図12AのXII-XII矢視断面図である。 図12AのXII-XII矢視断面図である。 本発明の他の実施形態に係る浮体構造物の概略の構成を示す要部拡大図である。 本発明の別の実施形態に係る浮体構造物の概略の構成を示す要部拡大図である。 本発明のさらに別の実施形態に係る浮体構造物の概略の構成を示す要部拡大図である。 本発明の第9実施形態に係る浮体構造物の概略の構成を示す側面図である。 本発明の第10実施形態に係る浮体構造物の概略の構成を示す側面図である。 本発明の第11実施形態に係る浮体構造物の概略の構成を示す側面図である。 本発明の第12実施形態に係る浮体構造物の概略の構成を示す側面図である。 本発明の第12実施形態に係る浮体構造物の概略の構成を示す要部拡大断面図である。 本発明の他の実施形態に係る浮体構造物の概略の構成を示す図で、図16Bと同様の図である。 本発明の第13実施形態に係る浮体構造物の概略の構成を示す断面図である。 本発明の第13実施形態に係る浮体構造物の概略の構成を示す要部拡大図である。 本発明の他の実施形態に係る浮体構造物の概略の構成を示す図で、図18Bと同様の図である。 本発明の別の実施形態に係る浮体構造物の概略の構成を示す図で、図18Bと同様の図である。 本発明の第14実施形態に係る浮体構造物の概略の構成を示す側面図である。 本発明の第14実施形態に係る浮体構造物の概略の構成を示す平面図である。 本発明の他の実施形態に係る浮体構造物の概略の構成を示す図で、図19Aと同様の図である。 本発明の別の実施形態に係る浮体構造物の概略の構成を示す平面図である。 図21AのXXI-XXI矢視断面図である。 本発明のさらに別の実施形態に係る浮体構造物の概略の構成を示す要部拡大断面図である。
 以下、本発明に係る浮体構造物の第1実施形態を、図1および図2を参照しながら説明する。
 図1Aは本実施形態に係る浮体構造物の概略の構成を示す縦断面図、図1Bは平面図、図1Cは図1BのI-I矢視断面図である。また、図2は、損失係数(縦軸)と流路断面積比(S0/S1:横軸)との関係を示すグラフである。
 なお、図1A中の符号WLは水面である。
 図1Aおよび図1Bに示すように、浮体構造物1は、コラム(浮体本体)2と、ロワーハル(張り出し構造部)3とを主たる要素として構成されたものである。
 コラム2は、例えば、鋼板によって構成された円筒形状の構造物であり、その内部には、密閉された複数の浮き室(図示せず)が設けられている。
 ロワーハル3は、ロワーハル本体4と、囲い壁5と、隔壁6とを主たる要素として構成されたものであり、水面WLよりも下方に位置するコラム2の下端部に設けられている。
 ロワーハル本体4は、コラム2の下端部に位置する外周面から、コラム2の半径方向外側に延びるとともに周方向に沿って設けられた平面視多角形状(本実施形態では八角形状)を呈する環状の構造物である。ロワーハル本体4の上面7および下面8はそれぞれ、コラム2の外周面と直交する方向に沿って延びており、上面7の外周端は、下面8の外周端よりも外方(半径方向外側)に位置するように形成されている。
 一方、ロワーハル本体4の側面9は、上方に位置する第1の垂直面10と、下方に位置する第2の垂直面11と、第1の垂直面10の一端(下端)と第2の垂直面11の一端(上端)とを連結(接続)する傾斜面12とを備えている。なお、第1の垂直面10の他端(上端)は、ロワーハル本体4の上面7の外周端と連結(接続)されており、第2の垂直面11の他端(下端)は、ロワーハル本体4の下面8の外周端と連結(接続)されている。
 囲い壁5は、ロワーハル本体4の外周端(すなわち、ロワーハル本体4の側面9)に沿って配置された垂直な壁部であり、第1の垂直面10と囲い壁5の内周面との間が所定距離d1だけ離間し、第2の垂直面11と囲い壁5の内周面との間が所定距離d2だけ離間するように配置されている。すなわち、囲い壁5は、その内周面と第1の垂直面10の他端との間に幅d1の隙間が形成され、その内周面と第2の垂直面11の一端との間に幅d2の隙間が形成されるように配置されている。
 また、囲い壁5は、その内周面と第1の垂直面10の他端との間に形成される隙間の面積S1が、その内周面と第2の垂直面11の一端との間に形成される隙間の面積S0の、例えば、20%以下、すなわち、S1/S0≦0.2となるように配置されている。
 隔壁6は、ロワーハル本体4の側面9と囲い壁5の内周面とを連結(接続)する複数枚(本実施形態では20枚)の板状の部材であり、その中央部には開口部13が設けられている。また、開口部13は、その面積S3が、ロワーハル本体4の側面9と囲い壁5の内周面との間に位置する隔壁6全体の面積S2の、例えば、20%以下、すなわち、S3/S2≦0.2となるように形成されている。
 本実施形態に係る浮体構造物1によれば、ロワーハル本体4の側面9と、囲い壁5の内周面と、隔壁6とで、複数個(本実施形態では20個)の水貯溜区画Aが形成されることとなる。水面下に配置されるために、各水貯溜区画Aの内部には多量の水(海水または淡水)が滞溜しており(各水貯溜区画Aの内部は多量の水(海水または淡水)で満たされており)、浮体構造物1の動揺時において、水貯溜区画Aの内部に滞留している水は、隣接区画への速やかな移動が妨げられ、浮体構造物1の動揺を抑制するマスとして作用する。
 これにより、浮体構造物1の動揺(特に、風浪によるロール運動やピッチ運動)を低減させることができる。
 また、浮体構造物1の動揺時において、各水貯溜区画Aの内部に滞留している水は、囲い壁5の内周面と第1の垂直面10の他端との間に形成された隙間から外部に噴出することとなる。そして、この隙間は、その面積S0が、囲い壁5の内周面と第2の垂直面11の一端との間に形成された隙間の面積S0の、20%以下、すなわち、S1/S0≦0.2となるように設けられている。すなわち、この隙間は、図2に示すように、各水貯溜区画Aの内部に滞留している水が、囲い壁5の内周面と第1の垂直面10の他端との間に形成された隙間から外部に噴出する際、大きな渦損失が発生するように形成されている。
 これにより、浮体構造物1の動揺(特に、風浪によるロール運動やピッチ運動)をさらに低減させることができる。
 さらに、浮体構造物1の動揺時または横方向への移動時において、各水貯溜区画Aの内部に滞留している水は、隔壁6の開口部13から隣の水貯溜区画Aの内部に噴出することとなる。そして、この開口部13は、その面積S3が、ロワーハル本体4の側面9と囲い壁5の内周面との間に位置する隔壁6全体の面積S2の、20%以下、すなわち、S3/S2≦0.2となるように設けられている。すなわち、この開口部13は、図2に示すように、各水貯溜区画Aの内部に滞留している水が、隔壁6の開口部13から隣の水貯溜区画Aの内部に噴出する際、大きな渦損失が発生するように形成されている。
 これにより、浮体構造物1の動揺(特に、風浪によるヨー運動)を低減させることができるとともに、浮体構造物1の横方向への移動を防止する(低減させる)ことができる。
 さらにまた、隔壁6それぞれの中央部に開口部13を設けることにより、隔壁6それぞれの軽量化を図ることができるとともに、浮体構造物1全体の軽量化を図ることができる。
 本発明に係る浮体構造物の第2実施形態を、図3を用いて説明する。
 図3は本実施形態に係る浮体構造物の概略の構成を示すとともに、その一部を切り欠いた斜視図である。
 図3に示すように、浮体構造物21は、コラム(浮体本体)22と、ロワーハル(張り出し構造部)23とを主たる要素として構成されたものである。
 コラム22は、例えば、鋼板によって構成された中空円筒形状の構造物であり、その内部には、密閉された複数の浮き室Fが設けられている。
 ロワーハル23は、ロワーハル本体24と、囲い壁25と、隔壁26とを主たる要素として構成されたものであり、水面WL(図1A参照)よりも下方に位置するコラム22の下端部に設けられている。
 ロワーハル本体24は、コラム22の下端部に位置する内周面および外周面から、コラム22の半径方向内側および半径方向外側に延びるとともに周方向に沿って設けられた平面視輪状(ドーナツ状)の構造物である。ロワーハル本体24の上面27および下面28はそれぞれ、コラム22の内周面および外周面と直交する方向に沿って延びており、上面27の外周端は、下面28の外周端よりも外方(半径方向外側)に位置するように形成されている。また、上面27の内周端は、下面28の内周端の直上に位置するように形成されており、上面27の内周端と下面28の内周端とは、第1の側面29で連結(接続)されており、第1の側面29の半径方向内側は、ロワーハル本体24の高さ方向(厚み方向)に貫通する導水口30となっている。
 一方、ロワーハル本体24の半径方向外側に位置する第2の側面31は、上面27の外周端と下面28の外周端とを連結(接続)するとともに、上面27から下面28に向かって縮径する傾斜面となっている。
 囲い壁25は、ロワーハル本体24の外周端(すなわち、ロワーハル本体24の第2の側面31)に沿って配置された垂直な壁部であり、上面27の外周端と囲い壁25の内周面との間が所定距離d1(図1A参照)だけ離間し、下面28の外周端と囲い壁25の内周面との間が所定距離d2(図1A参照)だけ離間するように配置されている。すなわち、囲い壁25は、その内周面と上面27の外周端との間に幅d1の隙間が形成され、その内周面と下面28の外周端との間に幅d2の隙間が形成されるように配置されている。
 また、囲い壁25は、その内周面と上面27の外周端との間に形成される隙間の面積S1が、その内周面と下面28の外周端との間に形成される隙間の面積S0の、例えば、20%以下、すなわち、S1/S0≦0.2となるように配置されている。
 隔壁26は、ロワーハル本体24の第2の側面31と囲い壁25の内周面とを連結(接続)する複数枚(例えば、40枚)の板状の部材であり、その中央部には開口部32が設けられている。また、開口部32は、その面積S3が、ロワーハル本体24の第2の側面31と囲い壁25の内周面との間に位置する隔壁26全体の面積S2の、例えば、20%以下、すなわち、S3/S2≦0.2となるように形成されている。
 本実施形態に係る浮体構造物21によれば、コラム22の内周面と、ロワーハル本体24の上面27とで、前述した水貯溜区画Aとは別の水貯溜区画Bが形成されることとなる。水貯溜区画Bの内部には多量の水(海水または淡水)が貯溜されており(水貯溜区画Bの内部は多量の水(海水または淡水)で満たされており)、浮体構造物21の動揺時において、水貯溜区画Bの内部に滞留している水は、速く流動できず浮体構造物の運動方向に対して抗力として作用し、浮体構造物21の動揺を抑制するマスとして作用する。
 これにより、浮体構造物21の動揺(特に、風浪によるロール運動やピッチ運動)をさらに低減させることができる。
 また、浮体構造物21の動揺時において、水貯溜区画Bの内部に滞留している水は、導水口30から外部に噴出することとなる。すなわち、この導水口30は、図2に示すように、水貯溜区画Bの内部に滞留している水が、導水口30から外部に噴出する際、大きな渦損失が発生するように形成されている。
 これにより、浮体構造物21の動揺(特に、風浪によるロール運動やピッチ運動)をより一層低減させることができる。
 その他の作用効果は、前述した第1実施形態のものと同じであるので、ここではその説明を省略する。
 なお、上述した第1実施形態および第2実施形態において、ロワーハル本体4,24の外周部における断面視形状を図4Aないし図4Hに示すような形状とし、囲い壁5,25の断面視形状を図4Aないし図4Hに示すような形状とするとともに、ロワーハル本体4,24と囲い壁5,25との位置関係が図4Aないし図4Hに示すような位置関係となるように囲い壁5,25を配置してもよい。また、図4Aないし図4H中において、破線は、囲い壁25の大きさおよびロワーハル本体4,24と囲い壁5,25との位置関係を明確化するための基準線であり、隔壁6,26は、図面を簡略化するために省略している。
 各本実施形態に係る浮体構造物の作用効果は、前述した第1実施形態または第2実施形態のものと同じであるので、ここではその説明を省略する。
 本発明に係る浮体構造物の第3実施形態を、図5および図6を用いて説明する。
 図5は本実施形態に係る浮体構造物の概略の構成を示す斜視図で、図6は図5のVI-VI矢視断面図である。
 図5および図6に示すように、浮体構造物41は、コラム(浮体本体)42と、ロワーハル(張り出し構造部)43とを主たる要素として構成されたものである。
 コラム42は、例えば、鋼板によって構成された中空円筒形状の構造物であり、その内部には、密閉された複数の浮き室(図示せず)が設けられている。また、コラム42の外周面には、コラム42の高さ(軸線)方向に沿って延びる複数本(本実施形態では4本)の凸部(動揺低減手段)44と、同じくコラム42の高さ(軸線)方向に沿って延びる複数本(本実施形態では4本)の凹部(動揺低減手段)45とが設けられている。図6に示すように、凸部44および凹部45はそれぞれ、断面視略半球形状を呈する筋状の突起およびディンプル(窪み)であり、コラム42の周方向に沿って等間隔(本実施形態では90°間隔)になるように配置されている。
 ロワーハル43は、コラム42の下端部に位置する内周面および外周面から、コラム42の半径方向内側および半径方向外側に延びるとともに周方向に沿って設けられた平面視輪状(ドーナツ状)の構造物である。ロワーハル43の上面46および下面47はそれぞれ、コラム42の内周面および外周面と直交する方向に沿って延びており、上面46の内周端は、下面47の内周端の直上に位置するように形成されているとともに、上面46の外周端は、下面47の外周端の直上に位置するように形成されている。また、上面46の内周端と下面47の内周端とは、第1の側面29で連結(接続)されており、この第1の側面29の半径方向内側は、ロワーハル43の高さ方向(厚み方向)に貫通する導水口30となっている。この導水口30については第2実施形態のところで説明したので、ここではその説明を省略する。
 一方、上面46の外周端と下面47の外周端とは、第2の側面48で連結(接続)されている。
 本実施形態に係る浮体構造物41によれば、コラム42の外周面に沿って流れる風浪は、コラム42の外周面に設けられた凸部44および凹部45を通過する際、コラム42の外周面から離れていくように(剥離するように)流れていくこととなる。
 これにより、流れに対して直交する方向に発生するVIM(Vortex Induced Motion)を低減させることができるとともに、浮体構造物41の横方向(流れに対して直交する方向)への移動を防止する(低減させる)ことができる。
 また、コラム42の内周面と、ロワーハル43の上面46とで、前述した水貯溜区画Aとは別の水貯溜区画Bが形成されることとなる。水貯溜区画Bの内部には多量の水(海水または淡水)が貯溜されており(水貯溜区画Bの内部は多量の水(海水または淡水)で満たされており)、浮体構造物41の動揺時において、水貯溜区画Bの内部に滞留している水は、速く流動できず浮体構造物の運動方向に対して抗力として作用し、浮体構造物41の動揺を抑制するマスとして作用する。
 これにより、浮体構造物41の動揺(特に、風浪によるロール運動やピッチ運動)をさらに低減させることができる。
 さらに、浮体構造物41の動揺時において、水貯溜区画Bの内部に滞留している水は、導水口30から外部に噴出することとなる。すなわち、この導水口30は、図2に示すように、水貯溜区画Bの内部に滞留している水が、導水口30から外部に噴出する際、大きな渦損失が発生するように形成されている。
 これにより、浮体構造物41の動揺(特に、風浪によるロール運動やピッチ運動)をより一層低減させることができる。
 本発明に係る浮体構造物の第4実施形態を、図7Aおよび図7Bを用いて説明する。
 図7Aは本実施形態に係る浮体構造物の概略の構成を示す側面図で、VIMが問題とならない風浪が生じている場合の設置状態を示す図、図7BはVIMが問題となる風浪が生じている場合の設置状態を示す図である。
 なお、図7Aおよび図7B中の符号WLは水面、符号Gは海底面、符号Mは係留索である。
 本実施形態に係る浮体構造物51は、第3実施形態のところで説明した凸部44および凹部45が、VIMが問題とならない風浪が生じている場合には水面WLよりも上方に位置し、VIMが問題となる風浪が生じている場合には水面WLよりも下方に位置するように配置されているという点で前述した第3実施形態のものと異なる。その他の構成要素については前述した第3実施形態のものと同じであるので、ここではそれら構成要素についての説明は省略する。
 なお、前述した第3実施形態と同一の部材には同一の符号を付している。また、図7Aおよび図7B中において、凹部45は、図面を簡略化するために省略している。
 本実施形態に係る浮体構造物51によれば、VIMが問題とならない場合、コラム42の外周面から半径方向外側に張り出す凸部44が水面WLよりも上方に位置することとなる。
 これにより、水面WL下で生じる流れ(潮流)に対する抵抗を低減させることができるとともに、係留索Mにかかる(加わる)張力を低減させることができて、係留索Mの長寿命化を図ることができる。
 また、本実施形態に係る浮体構造物51によれば、VIMが問題となるような風浪が生じた場合、浮体構造物51全体が風下側(あるいは下流側)に押し流されるとともに、海底面Gに向かって沈み込んで、凸部44および凹部45が水面WL下に位置する(没水する)こととなる。そして、コラム42の外周面に沿って流れる風浪は、コラム42の外周面に設けられた凸部44および凹部45を通過する際、コラム42の外周面から離れていくように(剥離するように)流れていくこととなる。
 これにより、流れに対して直交する方向に発生するVIM(Vortex Induced Motion)を低減させることができるとともに、浮体構造物51の横方向(流れに対して直交する方向)への移動を防止する(低減させる)ことができる。
 なお、本実施形態において、浮体構造物51の浮き沈みの量が、例えば、コラム42の内部に設けられた浮き室の内部にバラスト水を注水したり、浮き室の内部に貯められたバラスト水を外部に排水したりすることにより調整可能とされているとさらに好適である。
 本発明に係る浮体構造物の第5実施形態を、図8を用いて説明する。
 図8は本実施形態に係る浮体構造物の概略の構成を示す平面図で、図6と同様の図である。
 図8に示すように、浮体構造物61は、コラム(浮体本体)62と、ロワーハル(張り出し構造部)63とを主たる要素として構成されたものである。
 コラム62は、例えば、鋼板によって構成された中空円筒形状の構造物であり、その内部には、密閉された複数の浮き室(図示せず)が設けられている。
 ロワーハル63は、コラム62の下端部に位置する内周面および外周面から、コラム62の半径方向内側および半径方向外側に延びるとともに周方向に沿って設けられた平面視多角形状(本実施形態では八角形状)を呈する環状の構造物である。
 ロワーハル63の外周端は、ロワーハル63の平面視における輪郭が、非対称となるように(全周囲方向からみて線対称とならないように)形成されている。本実施形態では、4本の(直線状の)短辺63aと、4本の(直線状の)長辺63bとが交互に配置されることにより形成されている。すなわち、ロワーハル63の平面視における輪郭が、一頂点(1本の短辺63aと1本の長辺63bとが交わる(接する)点)と、ロワーハル63の中心点と、この中心点を挟んで一頂点と反対の側に位置する他頂点とを結んだ直線の左側と右側とで非対称となるよう形成されている。
 ロワーハル63の上面64および下面(図示せず)はそれぞれ、コラム62の内周面および外周面と直交する方向に沿って延びており、上面64の内周端は、下面の内周端の直上に位置するように形成されているとともに、上面64の外周端は、下面の外周端の直上に位置するように形成されている。また、上面64の内周端と下面の内周端とは、第1の側面29で連結(接続)されており、この第1の側面29の半径方向内側は、ロワーハル63の高さ方向(厚み方向)に貫通する導水口30となっている。この導水口30については第2実施形態のところで説明したので、ここではその説明を省略する。
 一方、上面64の外周端と下面の外周端とは、第2の側面65で連結(接続)されている。
 本実施形態に係る浮体構造物61によれば、どの方向からの風浪に対しても非対称であるため、VIMの発生が抑制されることとなる。例えば、本実施形態のロワーハル63の外周面に沿って流れる潮流あるいは海流などの流れが、ロワーハル63の第2の側面65を通過する際、頂点のところでロワーハル63の第2の側面65から離れていくように(剥離するように)流れていくこととなり、剥離した両方の流れは非対称であるためそれぞれ異なる振動を浮体構造物61に与えることとなる。
 これにより、流れに対して直交する方向に発生するVIM(Vortex Induced Motion)がロワ-ハル63の外周面で相殺されるため、浮体構造物61に対するVIMを低減させることができるとともに、浮体構造物61の横方向(流れに対して直交する方向)への移動を防止する(低減させる)ことができる。
 また、コラム62の内周面と、ロワーハル63の上面64とで、前述した水貯溜区画Aとは別の水貯溜区画Bが形成されることとなる。水貯溜区画Bの内部には多量の水(海水または淡水)が貯溜されており(水貯溜区画Bの内部は多量の水(海水または淡水)で満たされており)、浮体構造物61の動揺時において、水貯溜区画Bの内部に滞留している水は、浮体構造物61の動揺を抑制するマスとして作用する。
 これにより、浮体構造物61の動揺(特に、風浪によるロール運動やピッチ運動)を低減させることができる。
 さらに、浮体構造物61の動揺時において、水貯溜区画Bの内部に滞留している水は、導水口30から外部に噴出することとなる。すなわち、この導水口30は、図2に示すように、水貯溜区画Bの内部に滞留している水が、導水口30から外部に噴出する際、大きな渦損失が発生するように形成されている。
 これにより、浮体構造物61の動揺(特に、風浪によるロール運動やピッチ運動)をさらに低減させることができる。
 本発明に係る浮体構造物の第6実施形態を、図9Aから図9Cを用いて説明する。
 図9Aは本実施形態に係る浮体構造物の概略の構成を示す図で、張り出し構造部を収縮させた状態を示す側面図、図9Bは張り出し構造部を展張させた状態を示す側面図、図9Cは図9AのIX-IX矢視断面図である。
 図9Aおよび図9Bに示すように、浮体構造物71は、コラム(浮体本体)72と、張り出し構造部(動揺低減手段)73とを主たる要素として構成されたものである。
 コラム72は、例えば、鋼板によって構成された中空円筒形状の構造物であり、その内部には、密閉された複数の浮き室(図示せず)が設けられている。
 張り出し構造部73は、複数本(本実施形態では9本)の支柱と、複数枚(本実施形態では3枚)の板状部材とを主たる要素として構成されたものであり、コラム72の下端面に設けられている。
 各板状部材は、コラム72の直径と略同じ直径を有する円盤状の部材であり、これら板状部材のうち、最も上方(コラム72の側)に位置する第1の板状部材74は、複数本(本実施形態では3本)の第1の支柱75を介してコラム72の下端面に固定されている。また、板状部材のうち、中間(第1の板状部材74と第3の板状部材78との間)に位置する第2の板状部材76は、複数本(本実施形態では3本)の第2の支柱77を介して第1の板状部材74に取り付けられている。さらに、板状部材のうち、最も下方(海底面G(図7Aおよび図7B参照)の側)に位置する第3の板状部材78は、複数本(本実施形態では3本)の第3の支柱79を介して第2の板状部材76に取り付けられている。
 第2の支柱77は、その一端(下端)が第2の板状部材76の上面に固定され、その他端(上端)が自由端とされているとともに、第1の板状部材74の周端部に形成され、第1の板状部材74を板厚方向に貫通する第1の貫通孔80を貫通するように配置されている。そして、この第2の支柱77は、第1の板状部材74に設けられた第1の駆動機構(図示せず)により、第1の板状部材74の板厚方向(鉛直方向)に移動できるように構成されている。
 第3の支柱79は、その一端(下端)が第3の板状部材78の上面に固定され、その他端(上端)が自由端とされているとともに、第1の板状部材74の周端部に形成され、第1の板状部材74を板厚方向に貫通する第2の貫通孔81と、第2の板状部材76の周端部に形成され、第2の板状部材76を板厚方向に貫通する第3の貫通孔(図示せず)とを貫通するように配置されている。そして、この第3の支柱79は、第2の板状部材76に設けられた第2の駆動機構(図示せず)により、第2の板状部材76の板厚方向(鉛直方向)に移動できるように構成されている。
 すなわち、図9Aに示す張り出し構造部73が収縮した状態から、第1の駆動機構および第2の駆動機構を作動させて、第2の支柱77および第3の支柱79を下方に送り出すことにより、第2の板状部材76および第3の板状部材78を降下させて、張り出し構造部73を図9Bに示す展張した状態にすることができる。また、図9Bに示す張り出し構造部73が展張した状態から、第1の駆動機構および第2の駆動機構を作動させて、第2の支柱77および第3の支柱79を上方に送り出すことにより、第2の板状部材76および第3の板状部材78を上昇させて、張り出し構造部73を図9Aに示す収縮した状態にすることができる。
 本実施形態に係る浮体構造物71によれば、この浮体構造物71が風浪等により鉛直(上下)方向に動揺(移動)しようとした場合、展張された板状部材74,76,78が、浮体構造物71の鉛直方向の動揺を抑える(抑制する)抵抗板として作用する(働く)。
 これにより、浮体構造物71の動揺(特に、風浪によるロール運動やピッチ運動、ヒーブ運動)を低減させることができる。
 また、図9Bに示すように、板状部材74,76,78を支持する支柱75,77,79が側方から見て非対称となるように配置されており、これら支柱75,77,79の外周面に沿って流れる潮流は、これら支柱75,77,79の外周面を通過する際、これら支柱75,77,79の外周面から離れていくように(剥離するように)流れていくこととなる。
 これにより、流れに対して直交する方向に発生するVIM(Vortex Induced Motion)を低減させることができるとともに、浮体構造物71の横方向(流れに対して直交する方向)への移動を防止する(低減させる)ことができる。
 本発明に係る浮体構造物の第7実施形態を、図10および図11Aを用いて説明する。
 図10は本実施形態に係る浮体構造物の概略の構成を示すとともに、その一部を切り欠いた斜視図で、図11Aは図10の要部拡大断面図である。
 なお、図11A中の符号WLは水面である。
 図10に示すように、浮体構造物81は、コラム(浮体本体)82と、ロワーハル(張り出し構造部)83とを主たる要素として構成されたものである。
 コラム82は、例えば、鋼板によって構成された中空円筒形状の構造物であり、その内部には、密閉された複数の浮き室Fと、開口部(動揺低減手段)84を介して外部と連通する複数の空間(動揺低減手段)85が設けられている。
 空間85はそれぞれ、コラム82の外周面から内方(半径方向内側)に向かって、幅方向(横方向)および高さ方向(縦方向)ともに先細となるように形成された空間であり、コラム82の周方向に沿って等間隔に配置されている。
 開口部84は、側方から見て矩形形状を呈しており、その幅は、空間85のどの位置における幅よりも小さくなるように形成されている。すなわち、開口部84は、開口部84と開口部84との間に、邪魔板(消波板:動揺低減手段)86が形成されるように設けられている。
 ロワーハル83は、コラム82の下端部に位置する内周面および外周面から、コラム82の半径方向内側および半径方向外側に延びるとともに周方向に沿って設けられた平面視輪状(ドーナツ状)の構造物である。ロワーハル83の上面87および下面88はそれぞれ、コラム82の内周面および外周面と直交する方向に沿って延びており、上面87の内周端は、下面88の内周端の直上に位置するように形成されているとともに、上面87の外周端は、下面88の外周端の直上に位置するように形成されている。また、上面87の内周端と下面88の内周端とは、第1の側面29(例えば、図3参照)で連結(接続)されており、この第1の側面29の半径方向内側は、ロワーハル83の高さ方向(厚み方向)に貫通する導水口30(例えば、図3参照)となっている。この導水口30については第2実施形態のところで説明したので、ここではその説明を省略する。
 一方、上面87の外周端と下面88の外周端とは、第2の側面89で連結(接続)されている。
 本実施形態に係る浮体構造物81によれば、コラム82の外周面に向かって入射してきた風波は、図11Aに示すように、開口部84を通って空間85の内部に進入し、空間85の内方(半径方向内側)に位置する壁面(垂直面)に当たって反射した(跳ね返された)後、邪魔板86の内方(半径方向内側)に位置する壁面(垂直面)に向かって進み、邪魔板86の内方に位置する壁面に当たってさらに反射することとなる。このとき、開口部84を通って空間85の内部に進入してきた波が空間85の内方(半径方向内側)に位置する壁面に作用する波圧と、空間85の内方に位置する壁面に当たって反射された波が邪魔板86の内方(半径方向内側)に位置する壁面に作用する波圧と、邪魔板86の内方に位置する壁面に当たって反射された波が空間85の内方(半径方向内側)に位置する壁面に作用する波圧とが互いに相殺される。
 これにより、浮体構造物81の動揺(特に、風浪によるロール運動)を低減させることができる。
 また、コラム82の内周面と、ロワーハル83の上面87とで、前述した水貯溜区画Aとは別の水貯溜区画Bが形成されることとなる。水貯溜区画Bの内部には多量の水(海水または淡水)が貯溜されており(水貯溜区画Bの内部は多量の水(海水または淡水)で満たされており)、浮体構造物81の動揺時において、水貯溜区画Bの内部に滞留している水は、浮体構造物81の動揺を抑制するマスとして作用する。
 これにより、浮体構造物81の動揺(特に、風浪によるロール運動やピッチ運動)を低減させることができる。
 さらに、浮体構造物81の動揺時において、水貯溜区画Bの内部に滞留している水は、導水口30から外部に噴出することとなる。すなわち、この導水口30は、図2に示すように、水貯溜区画Bの内部に滞留している水が、導水口30から外部に噴出する際、大きな渦損失が発生するように形成されている。
 これにより、浮体構造物81の動揺(特に、風浪によるロール運動やピッチ運動)をさらに低減させることができる。
 なお、上述した第7実施形態において、邪魔板(消波板)86の断面視形状を図11Bに示すような形状とし、邪魔板86がロワーハル82の外周面から外方(半径方向外側)に突出するような形態としてもよいし、空間85の断面視形状を図11Cのような形状としてもよい。また、図11Bおよび図11C中の符号WLは水面である。
 本実施形態に係る浮体構造物の作用効果は、前述した第7実施形態のものと同じであるので、ここではその説明を省略する。
 本発明に係る浮体構造物の第8実施形態を、図12Aから図12Cを用いて説明する。
 図12Aは本実施形態に係る浮体構造物の概略の構成を示す側面図、図12Bおよび図12Cは図12AのXII-XII矢視断面図である。
 図12Aに示すように、浮体構造物91は、コラム(浮体本体)92と、ロワーハル(張り出し構造部)93と、VIM低減手段(動揺低減手段)94とを主たる要素として構成されたものである。
 なお、図12A中の符号WLは水面である。
 コラム92は、例えば、鋼板によって構成された中空円筒形状の構造物であり、その内部には、密閉された複数の浮き室(図示せず)が設けられている。
 ロワーハル93は、コラム92の下端部に位置する内周面および外周面から、コラム92の半径方向内側および半径方向外側に延びるとともに周方向に沿って設けられた平面視略矩形形状(本実施形態では略正方形状)を呈する環状の構造物である。ロワーハル93の上面95および下面96はそれぞれ、コラム92の内周面および外周面と直交する方向に沿って延びており、上面95の内周端は、下面96の内周端の直上に位置するように形成されているとともに、上面95の外周端は、下面96の外周端の直上に位置するように形成されている。また、上面95の内周端と下面96の内周端とは、第1の側面29で連結(接続)されており、この第1の側面29の半径方向内側は、ロワーハル93の高さ方向(厚み方向)に貫通する導水口30となっている。この導水口30については第2実施形態のところで説明したので、ここではその説明を省略する。
 一方、上面95の外周端と下面96の外周端とは、第2の側面48で連結(接続)されている。
 VIM低減手段94は、コラム92の上に載置されたデッキ97とロワーハル93との間に立設されるとともに、垂直軸線周りに(デッキ97およびロワーハル93に対して)回動可能に取り付けられた支柱98と、水面WLよりも下方に位置する支柱98に取り付けられた、断面視翼型形状を呈する揚力発生板99とを備え、浮体構造物91の角部(隅部)にそれぞれ1つずつ、計4つ配置されている。そして、図12Bおよび図12Cに示すように、VIM低減手段94の支柱98はそれぞれ、揚力発生板99で発生する揚力が、流れに対して直交する方向に発生するVIM(Vortex Induced Motion)を低減させる方向に発生するように、図示しない駆動機構(例えば、電動モータや油圧モータ等)により駆動される。
 本実施形態に係る浮体構造物91によれば、流れに対して直交する方向に発生するVIMと、揚力発生板99で発生する揚力とが、互いに反対の方向に発生することとなる。
 流れに対して直交する方向に発生するVIM(Vortex Induced Motion)の原因となる流体力は、流れに対して左右の位置の物体後流に交互に発生する渦(カルマン渦)によって誘起されるものである。この流体力は流れに対して直交する方向に周期的に変動する力となって、浮体本体を正負の方向に周期的に変動する運動すなわちVIMを発生させる。図12Bに示すように、断面視翼の揚力発生板99を流れの方向の平行に向けて回転を固定させた状態にすると、揚力発生板99には浮体本体の運動方向によって迎角をもった相対的な流れが流入し、揚力発生板99に揚力が発生する。この揚力の方向は、浮体本体の運動方向とは逆の方向に作用するため、VIMを防止、低減する効果を発揮する。
 図12Cは図12Bとは逆方向の運動方向の場合を表しており、流れの方向に対して平行に揚力発生板99の向きを固定しておくことによって、自動的に浮体本体の運動とは逆方向の揚力が発生する。
これにより、流れに対して直交する方向に発生するVIMを低減させることができるとともに、浮体構造物91の横方向(流れに対して直交する方向)への移動を防止する(低減させる)ことができる。
 また、コラム92の内周面と、ロワーハル93の上面95とで、前述した水貯溜区画Aとは別の水貯溜区画Bが形成されることとなる。水貯溜区画Bの内部には多量の水(海水または淡水)が貯溜されており(水貯溜区画Bの内部は多量の水(海水または淡水)で満たされており)、浮体構造物91の動揺時において、水貯溜区画Bの内部に滞留している水は、浮体構造物91の動揺を抑制するマスとして作用する。
 これにより、浮体構造物91の動揺(特に、風浪によるロール運動やピッチ運動)を低減させることができる。
 さらに、浮体構造物91の動揺時において、水貯溜区画Bの内部に滞留している水は、導水口30から外部に噴出することとなる。すなわち、この導水口30は、図2に示すように、水貯溜区画Bの内部に滞留している水が、導水口30から外部に噴出する際、大きな渦損失が発生するように形成されている。
 これにより、浮体構造物91の動揺(特に、風浪によるロール運動やピッチ運動)をさらに低減させることができる。
 なお、上述した第8実施形態において、揚力発生板99の断面視形状を図13Aないし図13Cに示すような形状としてもよい。
 各本実施形態に係る浮体構造物の作用効果は、前述した第8実施形態のものと同じであるので、ここではその説明を省略する。
 本発明に係る浮体構造物の第9実施形態を、図14Aを用いて説明する。
 図14Aは本実施形態に係る浮体構造物の概略の構成を示す側面図である。
 図14Aに示すように、浮体構造物101は、コラム(浮体本体)102と、ロワーハル(張り出し構造部)103と、VIM低減手段(動揺低減手段)104とを主たる要素として構成されたものである。
 なお、図14A中の符号WLは水面である。
 コラム102は、例えば、鋼板によって構成された中空円筒形状の構造物であり、その内部には、密閉された複数の浮き室(図示せず)が設けられている。
 ロワーハル103は、コラム102の下端部に位置する内周面および外周面から、コラム102の半径方向内側および半径方向外側に延びるとともに周方向に沿って設けられた平面視略矩形形状(図12Bおよび図12C参照)を呈する環状の構造物である。ロワーハル103の上面105および下面106はそれぞれ、コラム102の内周面および外周面と直交する方向に沿って延びており、上面105の内周端は、下面106の内周端の直上に位置するように形成されているとともに、上面105の外周端は、下面106の外周端の直上に位置するように形成されている。また、上面105の内周端と下面106の内周端とは、第1の側面29(図12Aないし図12C参照)で連結(接続)されており、この第1の側面29の半径方向内側は、ロワーハル103の高さ方向(厚み方向)に貫通する導水口30(図12Aないし図12C参照)となっている。この導水口30については第2実施形態のところで説明したので、ここではその説明を省略する。
 一方、上面105の外周端と下面106の外周端とは、第2の側面48で連結(接続)されている。
 VIM低減手段104は、ロワーハル103の上面105から鉛直上方に向かって立設されるとともに、垂直軸線周りに(ロワーハル103に対して)回動可能に取り付けられた支柱107と、支柱107に取り付けられ、断面視翼型形状を呈する揚力発生板99とを備え、浮体構造物101の角部(隅部)にそれぞれ1つずつ、計4つ配置されている。そして、図12Bおよび図12Cを用いて説明したように、VIM低減手段104の支柱107はそれぞれ、揚力発生板99で発生する揚力が、流れに対して直交する方向に発生するVIM(Vortex Induced Motion)を低減させる方向に発生するように、図示しない駆動機構(例えば、電動モータや油圧モータ等)により駆動される。
 本実施形態に係る浮体構造物101の作用効果は、前述した第8実施形態のものと同じであるので、ここではその説明を省略する。
 本発明に係る浮体構造物の第10実施形態を、図14Bを用いて説明する。
 図14Bは本実施形態に係る浮体構造物の概略の構成を示す側面図である。
 図14Bに示すように、浮体構造物111は、コラム(浮体本体)112と、ロワーハル(張り出し構造部)113と、VIM低減手段(動揺低減手段)114とを主たる要素として構成されたものである。
 なお、図14B中の符号WLは水面である。
 コラム112は、例えば、鋼板によって構成された中空円筒形状の構造物であり、その内部には、密閉された複数の浮き室(図示せず)が設けられている。
 ロワーハル113は、コラム112の上端部に位置する内周面および外周面から、コラム112の半径方向内側および半径方向外側に延びるとともに周方向に沿って設けられた平面視略矩形形状(図12Bおよび図12C参照)を呈する環状の構造物である。ロワーハル113の上面115および下面116はそれぞれ、コラム112の内周面および外周面と直交する方向に沿って延びており、上面115の外周端は、下面116の外周端の直上に位置するように形成されている。また、上面115の外周端と下面116の外周端とは、第2の側面48で連結(接続)されている。
 VIM低減手段114は、ロワーハル113の下面116から鉛直下方に向かって立設されるとともに、垂直軸線周りに(ロワーハル113に対して)回動可能に取り付けられた支柱117と、支柱117に取り付けられ、断面視翼型形状を呈する揚力発生板99とを備え、浮体構造物111の角部(隅部)にそれぞれ1つずつ、計4つ配置されている。そして、図12Bおよび図12Cを用いて説明したように、VIM低減手段114の支柱117はそれぞれ、揚力発生板99で発生する揚力が、流れに対して直交する方向に発生するVIM(Vortex Induced Motion)を低減させる方向に発生するように、図示しない駆動機構(例えば、電動モータや油圧モータ等)により駆動される。
 本実施形態に係る浮体構造物111の作用効果は、前述した第8実施形態のものと同じであるので、ここではその説明を省略する。
 本発明に係る浮体構造物の第11実施形態を、図15を用いて説明する。図15は本実施形態に係る浮体構造物の概略の構成を示す側面図である。
 本実施形態に係る浮体構造物121は、VIM低減手段94の代わりに、VIM低減手段(動揺低減手段)124が設けられているという点で前述した第8実施形態のものと異なる。その他の構成要素については前述した第8実施形態のものと同じであるので、ここではそれら構成要素についての説明は省略する。
 なお、前述した第8実施形態と同一の部材には同一の符号を付している。また、図15中の符号WLは水面である。
 VIM低減手段124は、ロワーハル123の上面95から鉛直上方に向かって立設されるとともに、垂直軸線周りに(ロワーハル123に対して)回動可能に取り付けられた支柱127と、支柱127に取り付けられ、断面視翼型形状を呈する揚力発生板99とを備え、浮体構造物121の角部(隅部)にそれぞれ1つずつ、計4つ配置されている。そして、図12Bおよび図12Cを用いて説明したように、VIM低減手段124の支柱127はそれぞれ、揚力発生板99で発生する揚力が、流れに対して直交する方向に発生するVIM(Vortex Induced Motion)を低減させる方向に発生するように、図示しない駆動機構(例えば、電動モータや油圧モータ等)により駆動される。
 また、VIM低減手段124の支柱127は、水平軸線周りに(ロワーハル123に対して)回動可能に構成されており、VIM低減手段124全体が、ロワーハル123の上端部に設けられた図示しない凹所(凹部)内に収容(格納)できるようになっている。すなわち、前述した駆動機構と別の駆動機構(例えば、電動モータや油圧モータ等)を作動させることにより、VIM低減手段124を凹所内に収容したり、あるいは凹所内に収容されたVIM低減手段124を展張することができるようになっている。
 本実施形態に係る浮体構造物121によれば、例えば、この浮体構造物121を設置場所まで曳航しようとした場合に、抵抗体となるVIM低減手段124をロワーハル123の上端部に設けられた凹所内に収容することができて、曳航時における抵抗を低減させることができる。
 また、浮体構造物121を浮きドック等にドックインさせようとした場合に邪魔となるVIM低減手段124をロワーハル123の上端部に設けられた凹所内に収容することができるので、浮体構造物121を円滑にドックインさせることができる。
 その他の作用効果は、前述した第8実施形態のものと同じであるので、ここではその説明を省略する。
 本発明に係る浮体構造物の第12実施形態を、図16Aおよび図16Bを用いて説明する。図16Aは本実施形態に係る浮体構造物の概略の構成を示す側面図、図16Bは要部拡大断面図である。
 図16Aに示すように、浮体構造物131は、コラム(浮体本体)132と、VIM低減手段(動揺低減手段)133とを主たる要素として構成されたものである。
 なお、図16A中の符号WLは水面である。
 コラム132は、例えば、鋼板によって構成された円筒形状の構造物であり、その内部には、密閉された複数の浮き室(図示せず)が設けられている。
 VIM低減手段133は、コラム132の下面134から鉛直下方に向かって立設されるとともに、垂直軸線周りに(コラム132に対して)回動可能に取り付けられた支柱135と、支柱135に取り付けられ、断面視翼型形状を呈する揚力発生板99とを備え、周方向に沿って等間隔(本実施形態では90°間隔)にそれぞれ1つずつ配置されている(本実施形態では4つ配置されている)。そして、図12Bおよび図12Cを用いて説明したように、VIM低減手段133の支柱135はそれぞれ、揚力発生板99で発生する揚力が、流れに対して直交する方向に発生するVIM(Vortex
Induced Motion)を低減させる方向に発生するように、図示しない駆動機構(例えば、電動モータや油圧モータ等)により駆動される。
 また、図16Bに示すように、VIM低減手段133の支柱135は、垂直軸線方向に沿ってコラム132に対して進退可能に構成されており、VIM低減手段133全体が、コラム132の下端部に設けられた凹所(凹部)136内に収容(格納)できるようになっている。すなわち、前述した駆動機構と別の駆動機構(例えば、電動モータや油圧モータ等)を作動させることにより、VIM低減手段133を凹所136内に収容したり、あるいは凹所136内に収容されたVIM低減手段133を展張することができるようになっている。
 本実施形態に係る浮体構造物131の作用効果は、前述した第11実施形態のものと同じであるので、ここではその説明を省略する。
 なお、上述した第12実施形態において、VIM低減手段133および凹所136を図17に示すような形態としてもよい。すなわち、VIM低減手段133全体が水平軸線周りに回動可能に構成することもできる。
 本実施形態に係る浮体構造物の作用効果は、前述した第12実施形態のものと同じであるので、ここではその説明を省略する。
 本発明に係る浮体構造物の第13実施形態を、図18Aおよび図18Bを用いて説明する。図18Aは本実施形態に係る浮体構造物の概略の構成を示す断面図、図18Bは要部拡大図である。
 本実施形態に係る浮体構造物141は、VIM低減手段94の代わりに、VIM低減手段(動揺低減手段)144が設けられているという点で前述した第8実施形態のものと異なる。その他の構成要素については前述した第8実施形態のものと同じであるので、ここではそれら構成要素についての説明は省略する。
 なお、前述した第8実施形態と同一の部材には同一の符号を付している。
 VIM低減手段144は、図18Bに示すように、底面視円形状を呈する円筒形状の部材であり、導水口30内に配置されている。
 また、図18Aに示すように、このVIM低減手段144は、垂直軸線方向に沿って導水口30に対して進退可能に構成されており、VIM低減手段144全体が、導水口30内に収容(格納)できるようになっている。すなわち、駆動機構(例えば、電動モータや油圧モータ等)を作動させることにより、VIM低減手段144を導水口30内に収容したり、あるいは導水口30内に収容されたVIM低減手段144を展張することができるようになっている。
 さらに、VIM低減手段144が展張されたとき(図18B参照)にロワーハル93の下面96から下方に突出するVIM低減手段144の外表面には、断面視略半球形状を呈する突起(またはディンプル(窪み))145もしくは断面視略円形状を呈する貫通穴145が複数設けられている。
 本実施形態に係る浮体構造物141によれば、VIM低減手段144の外表面に沿って流れる潮流は、VIM低減手段144の外周面に設けられた突起(またはディンプル(窪み))145もしくは貫通穴145を通過する際、VIM低減手段144の外周面から離れていくように(剥離するように)流れていくこととなる。
 これにより、流れに対して直交する方向に発生するVIM(Vortex Induced Motion)を低減させることができるとともに、浮体構造物141の横方向(流れに対して直交する方向)への移動を防止する(低減させる)ことができる。
 また、本実施形態に係る浮体構造物141によれば、例えば、この浮体構造物141を設置場所まで曳航しようとした場合に、抵抗体となるVIM低減手段144を導水口30内に収容することができて、曳航時における抵抗を低減させることができる。
 さらに、浮体構造物141を浮きドック等にドックインさせようとした場合に邪魔となるVIM低減手段144を導水口30内に収容することができるので、浮体構造物141を円滑にドックインさせることができる。
 なお、上述した第13実施形態において、VIM低減手段144を図18Cまたは図18Dに示すような形状としてもよい。すなわち、VIM低減手段144が展張されたときにロワーハル93の下面96から下方に1枚(図18C参照)または2枚(図18D参照)の断面視翼型形状を呈する揚力発生板99を設けるようにすることもできる。そして、この場合、図12Bおよび図12Cを用いて説明したように、VIM低減手段144は、揚力発生板99で発生する揚力が、流れに対して直交する方向に発生するVIM(Vortex Induced Motion)を低減させる方向に発生するように、図示しない駆動機構(例えば、電動モータや油圧モータ等)により駆動されることとなる。
 本実施形態に係る浮体構造物の作用効果は、前述した第13実施形態のものと同じであるので、ここではその説明を省略する。
 本発明に係る浮体構造物の第14実施形態を、図19Aおよび図19Bを用いて説明する。
 図19Aは本実施形態に係る浮体構造物の概略の構成を示す側面図、図19Bは平面図である。
 本実施形態に係る浮体構造物151は、VIM低減手段94の代わりに、VIM低減手段(動揺低減手段)154が設けられているという点で前述した第8実施形態のものと異なる。その他の構成要素については前述した第8実施形態のものと同じであるので、ここではそれら構成要素についての説明は省略する。
 なお、前述した第8実施形態と同一の部材には同一の符号を付している。また、図19A中の符号WLは水面である。
 VIM低減手段154は、平面視扇形状を呈する膜状部材155と、この膜状部材155を垂直面に沿って収縮または展張させる支柱156とを備え、図19Bに示すように、周方向に沿って等間隔(本実施形態では60°間隔)にそれぞれ1つずつ配置されている(本実施形態では6つ配置されている)。
 膜状部材155の一辺は、水面WLよりも下方に位置するコラム92の外周面に取り付けられており、膜状部材155の他辺は、支柱156の外周面に取り付けられている。
 支柱156の一端部は、図示しない駆動機構(例えば、電動モータや油圧モータ等)によって水平軸線周りに回動する駆動軸(図示せず)を介して、コラム92およびロワーハル93の接合部近傍に取り付けられており、支柱156の他端部は自由端とされている。また、本実施形態においては、図19Bに示すように、流れと略平行となる方向に展張されるVIM低減手段154が(例えば、潮流センサーおよび制御器を介して)自動的に選択され、作動することとなる。
 本実施形態に係る浮体構造物151によれば、この浮体構造物151が風浪等により横方向(流れに対して直交する方向)に動揺(移動)しようとした場合、展張された膜状部材155が、浮体構造物151の横方向の動揺を抑える(抑制する)抵抗板として作用する(働く)。
 これにより、流れに対して直交する方向に発生するVIM(Vortex Induced Motion)を低減させることができるとともに、浮体構造物151の横方向(流れに対して直交する方向)への移動を防止する(低減させる)ことができる。
 なお、上述した第14実施形態において、VIM低減手段155を図20に示すような位置、すなわち、ロワーハル93の下面に取り付けるようにすることもできる。
 本実施形態に係る浮体構造物の作用効果は、前述した第13実施形態のものと同じであるので、ここではその説明を省略する。
 さて、上述した各実施形態では、浮体本体として円筒形状の構造物または中空円筒形状の構造物を具体例として挙げて説明したが、本発明の浮体本体はこれらのものに限定されるものではなく、例えば、図21Aおよび図21Bに示すような船型形状とすることもできる。
 浮体本体を船型形状とすることにより、流れに対して直交する方向に発生するVIM(Vortex Induced Motion)を低減させることができるとともに、浮体構造物の横方向(流れに対して直交する方向)への移動を防止する(低減させる)ことができる。
 なお、図21Aは浮体構造物の平面図、図21Bは図21AのXXI-XXI矢視断面図であり、図中の符号165および符号166はそれぞれ、第1実施形態および第2実施形態のところで説明した囲い壁5,25および隔壁6,26に相当する囲い壁および隔壁である。
 また、第1実施形態および第2実施形態のところで説明した浮体構造物1,21を、例えば、設置場所まで曳航しようとした場合に、水貯溜区画Aの内部空間を、例えば、ゴムや繊維等でできた水密部材167で塞ぐようにするとさらに好適である。
 これにより、曳航時における浮体構造物の抵抗を低減させることができる。
 さらに、第1実施形態および第2実施形態のところで説明した浮体構造物1,21では、面積S1を有する隙間が、囲い壁5,25とロワーハル4,24(またはコラム2,22)との間に形成されているが、本発明はこれに限定されるものではなく、面積S1を有する隙間を、囲い壁5,25にスリット状に形成することもできる。この場合、囲い壁5,25とロワーハル4,24(またはコラム2,22)との間の隙間は塞がれることとなる。

Claims (8)

  1.  浮体本体と、該浮体本体の下端部の周り、または前記浮体本体の下端に設けられた張り出し構造部の周りを周方向に沿って連続的に取り囲む板状の囲い壁とを備えた浮体構造物であって、
     前記囲い壁の上端または下端と、前記浮体本体の外周面または前記張り出し構造部の外周面との間に形成される隙間の面積が、前記囲い壁の下端と、前記浮体本体の外周面または前記張り出し構造部の外周面との間に形成される隙間の面積の20%以下となるように前記囲い壁が設けられていることを特徴とする浮体構造物。
  2.  浮体本体と、該浮体本体の下端部の周り、または前記浮体本体の下端に設けられた張り出し構造部の周りを周方向に沿って連続的に取り囲む板状の囲い壁とを備えた浮体構造物であって、
     前記囲い壁に設けられたスリットの面積が、前記囲い壁の上端と、前記浮体本体の外周面または前記張り出し構造部の外周面との間に形成される隙間の面積、または前記囲い壁の下端と、前記浮体本体の外周面または前記張り出し構造部の外周面との間に形成される隙間の面積の20%以下となるように前記囲い壁が設けられていることを特徴とする浮体構造物。
  3.  前記浮体本体の外周面または前記張り出し構造部の外周面と、前記囲い壁の内周面との間に形成される空間を、周方向に複数の空間に区画する複数枚の隔壁を備えていることを特徴とする請求項1又は2に記載の浮体構造物。
  4.  前記隔壁の面積の20%以下に相当する面積を有する開口部が前記隔壁に設けられていることを特徴とする請求項3に記載の浮体構造物。
  5.  浮体本体と、該浮体本体の下端に設けられた張り出し構造部とを備えた浮体構造物であって、
     前記浮体本体の外周面および/または前記張り出し構造部の外周面に、流れに対して直交する方向に発生する運動を低減させる動揺低減手段が設けられていることを特徴とする浮体構造物。
  6.  浮体本体を備えた浮体構造物であって、
     前記浮体本体の下方に、流れに対して直交する方向に発生する運動を低減させる動揺低減手段が設けられていることを特徴とする浮体構造物。
  7.  浮体本体と、該浮体本体の下端に設けられた張り出し構造部とを備えた浮体構造物であって、 前記張り出し構造部の上面または下面に、流れに対して直交する方向に発生する運動を低減させる動揺低減手段が設けられていることを特徴とする浮体構造物。
  8.  前記動揺低減手段が、前記浮体本体または前記張り出し構造部の内部に収容可能に構成されていることを特徴とする請求項6または7に記載の浮体構造物。
PCT/JP2008/053434 2008-02-27 2008-02-27 浮体構造物 WO2009107208A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2008/053434 WO2009107208A1 (ja) 2008-02-27 2008-02-27 浮体構造物
BRPI0815733-2A2A BRPI0815733A2 (pt) 2008-02-27 2008-02-27 Estrutura flutuante.
CN2008801042038A CN101918270A (zh) 2008-02-27 2008-02-27 浮体结构物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/053434 WO2009107208A1 (ja) 2008-02-27 2008-02-27 浮体構造物

Publications (1)

Publication Number Publication Date
WO2009107208A1 true WO2009107208A1 (ja) 2009-09-03

Family

ID=41015622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053434 WO2009107208A1 (ja) 2008-02-27 2008-02-27 浮体構造物

Country Status (3)

Country Link
CN (1) CN101918270A (ja)
BR (1) BRPI0815733A2 (ja)
WO (1) WO2009107208A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015038003A1 (en) * 2013-09-13 2015-03-19 Sevan Marine Asa A floating hull with a stabilizing portion

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029109A1 (ja) * 2013-08-26 2015-03-05 株式会社利川プラスチック 合成樹脂製フロートユニット及びフロート、並びに浮体構造物
US20150298775A1 (en) 2014-04-17 2015-10-22 Floatec, Llc Low Heave Semi-Submersible Offshore Structure
WO2016004847A1 (zh) * 2014-07-07 2016-01-14 吴植融 直筒式浮式平台
CN106394819A (zh) * 2016-09-30 2017-02-15 南通中远船务工程有限公司 圆筒型浮式生活平台
CN106428446A (zh) * 2016-09-30 2017-02-22 吴植融 带延伸筒体的直筒式浮式平台
CN110803263A (zh) * 2018-08-06 2020-02-18 吴植融 一种直筒式浮式平台的减动结构

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50142403A (ja) * 1974-02-19 1975-11-17
JPS6274100U (ja) * 1985-10-30 1987-05-12
JPS63215490A (ja) * 1987-03-04 1988-09-07 Zeniraito V:Kk 灯浮標
JPH10244989A (ja) * 1997-03-06 1998-09-14 Mitsubishi Heavy Ind Ltd 低動揺型浮体構造物
JP2000501043A (ja) * 1995-12-06 2000-02-02 オルセン,フレッド 浮遊構造物用波減衰装置
JP2000168676A (ja) * 1998-10-02 2000-06-20 Mitsubishi Heavy Ind Ltd 海洋構造物
JP2004161051A (ja) * 2002-11-11 2004-06-10 Mitsubishi Heavy Ind Ltd 浮体の動揺低減装置及びこれを備えた浮体
WO2005080189A1 (ja) * 2004-02-24 2005-09-01 Mitsubishi Heavy Industries, Ltd. 海洋構造物の動揺低減装置
JP2008074297A (ja) * 2006-09-22 2008-04-03 Mitsubishi Heavy Ind Ltd 浮体構造物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50142403A (ja) * 1974-02-19 1975-11-17
JPS6274100U (ja) * 1985-10-30 1987-05-12
JPS63215490A (ja) * 1987-03-04 1988-09-07 Zeniraito V:Kk 灯浮標
JP2000501043A (ja) * 1995-12-06 2000-02-02 オルセン,フレッド 浮遊構造物用波減衰装置
JPH10244989A (ja) * 1997-03-06 1998-09-14 Mitsubishi Heavy Ind Ltd 低動揺型浮体構造物
JP2000168676A (ja) * 1998-10-02 2000-06-20 Mitsubishi Heavy Ind Ltd 海洋構造物
JP2004161051A (ja) * 2002-11-11 2004-06-10 Mitsubishi Heavy Ind Ltd 浮体の動揺低減装置及びこれを備えた浮体
WO2005080189A1 (ja) * 2004-02-24 2005-09-01 Mitsubishi Heavy Industries, Ltd. 海洋構造物の動揺低減装置
JP2008074297A (ja) * 2006-09-22 2008-04-03 Mitsubishi Heavy Ind Ltd 浮体構造物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015038003A1 (en) * 2013-09-13 2015-03-19 Sevan Marine Asa A floating hull with a stabilizing portion

Also Published As

Publication number Publication date
BRPI0815733A2 (pt) 2015-02-10
CN101918270A (zh) 2010-12-15

Similar Documents

Publication Publication Date Title
JP4781954B2 (ja) 浮体構造物
WO2009107208A1 (ja) 浮体構造物
KR102440200B1 (ko) 부유 해양 플랫폼(floating offshore platform)
ES2866937T3 (es) Estructura de plataforma de turbina eólica flotante con transferencia optimizada de cargas de viento y oleaje
US20050206168A1 (en) Float type base structure for wind power generationon the ocean
ES2654602T3 (es) Estructura flotante de tipo mástil
US6953308B1 (en) Offshore platform stabilizing strakes
EP1719697B1 (en) Device for reducing motion of marine structure
JP6607867B2 (ja) 海上風力タービンまたは他のデバイスのための浮動可能支持構造
JP7128211B2 (ja) 浮体式設備のためのフレーム構造体
BR0209526B1 (pt) plataforma situada ao largo para perfuração em busca de ou produção de hidrocarbonetos.
WO2013084632A1 (ja) 浮体式風力発電装置および該浮体式風力発電装置の浮設方法
ES2754576T3 (es) Soporte flotante de sección horizontal variable con la profundidad
JP6949103B2 (ja) フロートと開口列を有する減衰板とを有する浮体式洋上風車
KR101019051B1 (ko) 해양 플랫폼의 동요 감쇠장치
US20170313390A1 (en) Semi-submersible with triangular columns
TWI791451B (zh) 包含浮子之浮動支撐結構及具有隨深度改變之截面的起伏板
KR20240066807A (ko) 부유식 해상공항
WO2023234287A1 (ja) 洋上風力発電用浮体構造物
KR102495853B1 (ko) 파일형 유동방지유닛을 가지는 다기능 부유체
KR20140017796A (ko) 부력함
JP2024011377A (ja) 動揺抑制部材および水上構造物の施工方法
JPH11229363A (ja) 油回収装置および油回収方法
KR20150033487A (ko) 개량형 폰툰
KR20240043407A (ko) 해상플랫폼 일체형 부유식 파력발전 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880104203.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08712056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08712056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

ENP Entry into the national phase

Ref document number: PI0815733

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100223