WO2009103406A1 - Scr-katalysator mit kohlenwasserstoffspeicherfunktion und katalysatoranordnung - Google Patents

Scr-katalysator mit kohlenwasserstoffspeicherfunktion und katalysatoranordnung Download PDF

Info

Publication number
WO2009103406A1
WO2009103406A1 PCT/EP2009/000623 EP2009000623W WO2009103406A1 WO 2009103406 A1 WO2009103406 A1 WO 2009103406A1 EP 2009000623 W EP2009000623 W EP 2009000623W WO 2009103406 A1 WO2009103406 A1 WO 2009103406A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
scr
scr catalyst
exhaust gas
purification system
Prior art date
Application number
PCT/EP2009/000623
Other languages
English (en)
French (fr)
Inventor
Martin Paulus
Andreas Bentele
Original Assignee
Süd-Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Süd-Chemie AG filed Critical Süd-Chemie AG
Publication of WO2009103406A1 publication Critical patent/WO2009103406A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9436Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9481Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start
    • B01D53/9486Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start for storing hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • B01J35/19
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0835Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • B01D2255/502Beta zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • B01D2255/504ZSM 5 zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/40Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a hydrolysis catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an SCR catalyst which combines an SCR active component and a hydrocarbon storage component in one component.
  • the invention further relates to a catalyst arrangement which comprises the SCR catalyst according to the invention.
  • An exhaust system for diesel internal combustion engines usually consists of the following components:
  • Blocking catalyst as ammonia oxidation catalyst • Blocking catalyst as ammonia oxidation catalyst.
  • DOC Diesel Oxidation Catalyst
  • DPF Diesel Particulate Filter
  • TM IOLors soot particles from the exhaust gas of internal combustion engines
  • SCR Selective catalytic reduction
  • ADB lue ® which is an approximately 32.5% eutectic solution of urea in water.
  • H-Kat hydrolysis catalyst
  • ammonia must first be formed from urea. This is done in two reaction steps, collectively referred to as the hydrolysis reaction. First, NH 3 and isocyanic acid are formed in a thermolysis reaction. Isocyanic acid is then reacted with water to form ammonia and carbon dioxide in the actual hydrolysis reaction.
  • reaction (2) At low temperatures ( ⁇ 300 0 C), the conversion proceeds predominantly via reaction (2). For a good low-temperature conversion, it is therefore necessary to set a NO 2 : NO ratio of about 1: 1. Under these circumstances, the reaction (2) already at temperatures from 170-200 0 C take place.
  • NH 3 slip may occur.
  • the removal of the NH 3 can be achieved by an additional oxidation catalyst downstream of the SCR catalyst. This barrier catalyst oxidizes the ammonia which may be present to form N 2 and H 2 O. In addition, careful application of the urea dosing is indispensable.
  • feed ratio ⁇ defined as the molar ratio of metered NH 3 to the NO x present in the exhaust gas.
  • the dosing strategy is of great importance in catalysts with high NH 3 storage capacity, since the NH 3 -
  • SCR catalysts based on titanium dioxide, vanadium pentaoxide and tungsten oxide are predominantly used both in the power plant sector and in the automotive sector.
  • the use of SCR catalysts based on zeolites is known in the art. In this case, however, the zeolite acts only as an SCR-active component.
  • an ammonia trap catalyst is often used which oxidizes excess ammonia from the SCR catalyst because ammonia is very harmful to health and the environment.
  • a modern exhaust system includes a plurality of components which are usually integrated on the vehicle floor in the exhaust line. Since the available space is limited there, it would be desirable if the available space could be used more effectively.
  • the object of the present invention was thus to provide a catalyst or exhaust system which has a reduced space requirement.
  • an SCR catalytic converter which comprises an SCR-active component and a hydrocarbon storage component.
  • DPF soot particle filter
  • the SCR catalyst comprises an SCR active component and a hydrocarbon storage component.
  • the SCR active component and the hydrocarbon storage component are present as a coating on a catalyst support.
  • Suitable catalyst supports may be metallic or ceramic supports.
  • the catalyst support is a monolithic support.
  • the SCR catalyst according to the invention comprises a hydrocarbon storage component, which is preferably a zeolite component.
  • the hydrocarbon storage component may be a zeolite in H-form or a metal-exchanged one Include zeolites.
  • the production processes for metal-exchanged zeolites, for example via solid or liquid phase exchange. as well as for zeolites in the H-form are known to the skilled man.
  • Metal exchanged zeolites also have the advantage of being bi-functional, i. H. that they have both an SCR activity and a hydrocarbon storage activity.
  • the SCR-active component preferably further comprises a catalyst based on vanadium, tungsten, titanium and / or a Fe zeolite.
  • Suitable zeolites are selected from the group comprising AEL, BEA, CHA, EUO, FAO, FER, KFI, LTA, LTL, MAZ, MOR, MEL, MTW, LEV, OFF, TON and MFI.
  • zeolite in the context of the present invention as defined by the International Mineralical Association (DS Coombs et al., Canadian Mineralogist, 35, 1979, 1571) is a crystalline substance from the group of aluminum silicates having a network structure of the general formula M. x / n [(AlO 2 ) x (SiO 2 ) y ] x (H 2 O) 2
  • the zeolite structure contains voids, channels that are characteristic of each zeolite.
  • the zeolites are classified into different structures according to their topology.
  • the zeolite framework contains open cavities in the form of channels and cages that are normally filled with water molecules and additional framework cations that can be exchanged.
  • An aluminum atom has an excess negative charge which is compensated by these cations.
  • the interior of the pore system represents the catalytically active surface. The more aluminum and the less silicon a zeolite contains, the denser the negative charge in its lattice and the more polar its internal surface.
  • the pore size and structure in addition to the parameters of manufacture, i. Use or type of template, pH, pressure, temperature, presence of seed crystals, determined by the Si / Al ratio, which accounts for most of the catalytic character of a zeolite.
  • the presence of divalent or trivalent cations as a tetrahedral center in the zeolite framework gives the zeolite a negative charge in the form of so-called anion sites, in the vicinity of which the corresponding cation sites are located.
  • the negative charge is compensated by the incorporation of cations in the pores of the zeolite material.
  • the zeolites are distinguished mainly by the geometry of the cavities formed by the rigid network of the Si ⁇ 4 / AlO 4 tetrahedra. The entrances to the cavities are formed by 8, 10 or 12 rings, the expert speaks here of narrow, medium and large pore zeolites. Certain zeolites show a uniform structure structure, e.g.
  • the zeolite material of the hydrocarbon storage component is at the catalyst entry side.
  • the catalyst can thus also assume the function of an H catalyst (hydrolysis catalyst), since zeolites are also known as good hydrolysis catalysts.
  • a further catalytic function can be integrated into the SCR catalyst, eliminating the need for an optional hydrolysis catalyst.
  • the SCR catalytic converter is intended to be arranged between the soot particle filter
  • the oxidation catalyst is a separate component.
  • the oxidation catalyst should be a component of the SCR catalyst. That is to say, the SCR catalyst additionally comprises, in addition to the SCR-active component and the hydrocarbon storage component, an oxidation catalyst component. All these components are thus combined in one component, the SCR catalytic converter.
  • the oxidation catalyst is present as a coating on the catalyst support of the SCR catalyst. The coating is preferably located on the exit side of the SCR catalyst. It is further preferred that about 15-25%, more preferably about 20% of the area of the SCR catalyst is coated with the oxidation catalyst. Accordingly, the object of the invention is preferably achieved by an exhaust gas purification system, which
  • the SCR catalyst comprises an SCR active component, a hydrocarbon storage component and an oxidation catalyst component.
  • the oxidation catalyst at the end of the exhaust system performs two tasks. On the one hand, the oxidation of the unburned hydrocarbons (HC) and carbon monoxide (CO) and on the other the oxidation of NH 3 , which was not implemented in the SCR reaction (NH 3 -slip).
  • the unburned hydrocarbons of the cold start phase are desorbed at elevated temperature and then hit the oxidation catalyst and are converted to CO 2 .
  • the ammonia barrier catalyst can be integrated into the oxidation catalyst, which in turn brings a space saving.
  • the DPF, the SCR catalyst and the oxidation catalyst are preferably in the form of coating catalysts.
  • catalysts can be classified into full-strength catalysts and coating catalysts. While full catalysts consist of more than 50% of a catalytically active material, coating catalysts consist of a catalyst carrier body, which may consist of a metal or a ceramic, wherein the surface of the catalyst carrier body is provided with a coating. The coating is applied to the catalyst support by means of a so-called washcoat suspension, ie a slurry in a fluid medium. Usually then the applied washcoat suspension is dried and calcined.
  • the coating can subsequently be impregnated with a further catalytically active component, wherein the active components can also be dissolved in the washcoat suspension or have been previously applied to the metal oxide particles.
  • the advantage of coating catalysts is the ease of production, which is associated with a low procedural effort. In emission control systems, several individual catalysts can be combined by parallel connection to large catalysts. Another advantage of coating catalysts is that smaller amounts of expensive active components are required.
  • the coating of the coating catalyst comprises an iron-doped zeolite and a metal oxide, wherein the amount of iron-doped zeolites in the dry mass of the coating between 3 and 80 wt .-%, preferably between 5 and 75% by weight, and most preferably between 10 and 70% by weight.
  • the metal oxide is preferably selected from the group consisting of aluminum oxide, silicon oxide, iron oxide, cerium oxide, zirconium oxide and a mixed oxide selected from metal oxides. These metal oxides ensure the production of a high surface area catalyst. Furthermore, the selected metal oxides are particularly inexpensive.
  • the oxidation catalyst comprises a catalytically active component comprising noble metals, in particular palladium, platinum, rhodium, iridium, silver, gold, or metal oxides of iron, manganese, copper and / or combinations thereof.
  • a catalytically active component comprising noble metals, in particular palladium, platinum, rhodium, iridium, silver, gold, or metal oxides of iron, manganese, copper and / or combinations thereof.
  • the oxidation catalyst comprises rhodium as the catalytically active component.
  • the particle filter should be arranged as the first component of the exhaust gas purification system.
  • the catalytically active layers are selected from aluminum, cerium, tungsten, titanium and zirconium oxide, which additionally catalytically active precious metals for the oxidation of hydrocarbons, for the oxidation of CO and deposited organic particles, such as eg Soot and the like included.
  • the catalytically active metal oxides or their hydroxides are essentially water-insoluble. It is therefore preferred to apply aluminum oxides as an aqueous slurry with water-soluble salts of oxides, in particular nitrates, chlorides, hydroxides, sulfites, acetates or complex compounds of the catalytically active metals on substrates or to impregnate them with these and then decompose these salts at high temperatures, wherein their oxides are formed.
  • a continuous regeneration of the particulate filter is preferred, without z.
  • a periodic post-injection of fuel to increase the exhaust gas temperature is required.
  • a large surface should be provided so that the catalytically active centers may come into contact with the soot particles.
  • the large surface area required for this is produced, for example, by using a layer of a catalyst support, such as, for example, a surface-rich gamble.
  • ma alumina or titanium oxide is deposited on a filter material and a metal, in particular a platinum group metal, known as active species for the oxidation of particulate material, is integrated into the filter by means of a metal salt solution or metal complex compound.
  • washcoats which usually usually understood aqueous sludge of solids
  • preferred “washcoats” may comprise a multiplicity of oxides which are catalytically active, for example La 2 Os, CO 2 O 3 , Nd 2 O 3 , TiO 2 , ZrO 2 , CeO 2 etc., alone or in Combination.
  • a high surface area alumina further zinc oxide, and at least one noble metal selected from the group consisting of palladium, platinum, rhodium, or a combination thereof, which are also applied to a monolithic carrier by means of a washcoat.
  • Rhodium is particularly preferably used here.
  • washcoat metals such as the metals of the platinum group, z. B. by solution, total absorption or by drowning with precious metal-containing solutions or by incorporation into the washcoat prior to coating integrated.
  • the surface available for the particle oxidation has a considerable influence on the catalytic conversion and in particular on the long-term stability of the catalyst. It is known that to increase the Stabxlitat the Aluiniumoxidoberflache the washcoats often stabilizing elements such. As cerium or lanthanum, can be added.
  • an SCR-active component a hydrocarbon storage component and, in addition, a hydrolytically active component (H-Cat) in one component (SCR catalyst) could be summarized.
  • H-Cat hydrolytically active component
  • oxidation catalyst and the ammonia barrier catalyst could be summarized in one component (oxidation catalyst).
  • an SCR-active component a hydrocarbon storage component and an oxidation catalyst could be combined in one component.
  • the inventive SCR catalyst and the exhaust gas purification system can be used for the exhaust gas treatment of exhaust gases of internal combustion engines.
  • Internal combustion engines in the context of this invention are, for example, diesel engines or stationary engines.
  • FIG. 1 shows an inventive arrangement of an exhaust gas purification system, wherein an SCR catalyst is used with an HC storage component.
  • Figure 2 shows an inventive arrangement exnes catalyst system, wherein the SCR catalyst comprises three functions, namely the SCR active component, an HC storage component and additionally still the oxidation component.
  • the DPF (10) used is a coated wall-flow filter with a coating (30 g / L) consisting of 70 mol% CeO 2 and 30 mol% ZrO 2 .
  • a coated honeycomb body made of cordierite (cell size 400 cpsi, Wall thickness 6 mils) with a coating (200 g / L) consisting of 60 wt .-% TiO 2 , 7 wt .-% WO 3 , 3 wt .-% V 2 O 5 , 15 wt .-% SiO 2 , 15 Wt% Fe-ZSM-5 (1 wt% Fc).
  • the oxidation catalyst (30) is a coated honeycomb body made of cordierite (cell size 400 epsi, wall thickness 6 mils) with a coating consisting of 80 wt .-% TiO 2 , 5 wt .-% WO 3 , 15 wt .-% SiO 2 + Pt in a concentration of 1.5 g / L, based on the substrate volume.
  • the urea dosing device (50) is disposed between the DPF (10) and the SCR catalyst (20).
  • the SCR catalyst (20) carries three functions, namely the SCR active component (20), a HC
  • the DPF (10) used is an uncoated open filter system (PM catalyst from the company Emitec).
  • SCR catalyst (20) with HC storage function (40) and oxidation function (30) is a coated honeycomb body Cordierite (600 cpsi, wall thickness 3.5 mils) with a coating (300 g / L) consisting of 60 wt .-% Fe-ZSM-5 (3 wt -% Fe), - 20 wt .-% SiO 2 , 20 wt .-% H-B ⁇ + Pt impregnation at the end of the catalyst to 20% of the length of the honeycomb body with a concentration of 1.3 g / L based on the substrate volume used.
  • the urea dosing device (50) is disposed between the DPF (10) and the SCR catalyst (20).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

Die vorliegende Erfindung betrifft einen SCR-Katalysator, welcher eine SCR-aktive Komponenten und eine Kohlenwasserstoffspeicherkomponente in einem Bauteil vereint. Die Erfindung betrifft ferner eine Katalysatoranordnung, welche den erfindungsgemäßen SCR-Katalysator enthält.

Description

Anmelderin: Süd-Chemie AG
SCR-Katalysator mit KohlenwasserstoffSpeicherfunktion und Katalysatoranordnung
Die vorliegende Erfindung betrifft einen SCR-Katalysator, welcher eine SCR-aktive Komponenten und eine Kohlenwasserstoffspeicherkomponente in einem Bauteil vereint. Die Erfindung betrifft ferner eine Katalysatoranordnung, welche den erfindungsgemäßen SCR-Katalysator umfasst.
Ein Abgassystem für Dieselverbrennungsmotoren besteht in der Regel aus den folgenden Komponenten:
• DOC zur Oxidation von Kohlenwasserstoffen und als Kohlen- WasserstoffSpeicher im Kaltstart;
• DPF zur Verminderung der Partikelemissionen;
• optional ein H-Katalysator zur Harnstoffaufbereitung;
• SCR-Katalysator zur Reduktion der Stickoxide;
• Sperrkatalysator als Ammoniak-Oxidationskatalysator .
Unter DOC (Diesel-Oxidationskatalysator) versteht der Fachmann einen Katalysator, welcher einerseits im Kaltstart eine Kohlenwasserstoff-Speicherfunktion erfüllt und im Normalbetrieb unverbrannte Kohlenwasserstoffe oxidiert. Die Behandlung der Abgase von Dieselverbrennungsmotoren mit Katalysatoren erfordert konzeptionelle Änderungen an den Katalysatormaterialien, da ein Dieselmotor im Gegensatz zu einem Benzinmotor immer unter Sauerstoffüberschuss betrieben wird und der Katalysator somit nie reduktiven Bedingungen ausgesetzt ist. Partikelfilter (DPF, Dieselpartikelfilter) werden eingesetzt, um Rußpartikel aus dem Abgas von Verbrennungsmotoren, speziell DI656J.™IOLoren, nerauszuj-ij-tern uπυ so uSicπ Ausstou m uis nt~ mosphäre zu vermindern. Dabei kommen verschiedene Filterkon- zepte, wie z. B. so genannte „Wall-flow-Filter" oder Filter aus keramischen oder metallischen Schäumen zur Anwendung. Die eigentliche Schwierigkeit besteht aber nicht in der Filtration der Rußpartikel, sondern in der Regeneration der eingesetzten Filter. Kohlenstoffruß verbrennt je nach betriebsbedingter Zu- sammensetzung der Partikel spontan erst bei Temperaturen zwischen 5000C und 700°C. Diese Temperaturen werden aber z. B. von modernen Dieselmotoren im Allgemeinen nur bei Volllast erreicht .
Daher sind zusätzliche unterstützende Maßnahmen, beispielsweise zur Oxidation der aus dem Abgas abgetrennten Rußpartikel, notwendig. Dies kann durch Zusatz von Additiven oder durch eine katalytische Beschichtung der Filter oder Katalysatoren geschehen. Aus dem Stand der Technik sind Abgasreinigungskataly- satoren mit einer hohen Oxidationswirkung bekannt, so dass die Partikel bei einer tiefen Temperatur verbrannt werden können. Die Oberfläche der Filterkammer weist deshalb oft eine kataly- tisch aktive Beschichtung zur Beschleunigung der Verbrennung der auf dem Filter gesammelten Rußpartikel auf. Die kataly- tisch aktive Beschichtung oxidiert das im Abgas enthaltene Stickstoffmonoxid zu Stickstoffdioxid. Das entstandene Stickstoffdioxid verbessert dann die Oxidation der abgelagerten Partikel .
Mit SCR (selective catalytic reduction) wird die selektive katalytische Reduktion von Stickoxiden aus Abgasen von Verbrennungsmotoren (und auch Kraftwerken) bezeichnet. Mit einem SCR- Katalysator werden nur die Stickoxide NO und NO2 selektiv reduziert, wobei für die Reaktion gewöhnlich NH3 (Ammoniak) zuge- mischt wird. Als Reaktionsprodukt entstehen nur die unbedenklichen Stoffe Wasser und Stickstoff. Für den Einsatz in Kraftfahrzeugen ist das Mitführen von Ammoniak in Druckgasflaschen ein Sicherheitsrisiko. Deshalb werden gewöhnlich Vorlauferver- bindungen des Ammoniaks eingesetzt, die im Abgasstrang der Fahrzeuge unter Ammoniakbildung zersetzt werden. Bekannt in diesem Zusammenhang ist beispielsweise die Verwendung von AdB- lue®, welches eine etwa 32,5 %-ige eutektische Lösung von Harnstoff in Wasser ist. Andere Ammoniakquellen sind beispielswei- se Ammoniumcarbamat , Ammoniumformiat oder Harnstoffpellets. Oftmals wird deshalb auch noch ein Hydrolysekatalysator (H- Kat) eingesetzt, welcher aus den Vorläufersubstanzen NH3 generiert .
Vor der eigentlichen SCR-Reaktion muss aus Harnstoff zunächst Ammoniak gebildet werden. Dies geschieht in zwei Reaktionsschritten, die zusammengefasst als Hydrolysereaktion bezeichnet werden. Zunächst werden in einer Thermolysereaktion NH3 und Isocyansäure gebildet. Anschließend wird in der eigentlichen Hydrolysereaktion Isocyansäure mit Wasser zu Ammoniak und Kohlendioxid umgesetzt.
Zur Vermeidung von festen Ausscheidungen ist es erforderlich, dass die zweite Reaktion durch die Wahl geeigneter Katalysato- ren und genügend hoher Temperaturen (ab 250 0C) ausreichend schnell erfolgt. Moderne SCR-Reaktoren übernehmen gleichzeitig die Funktion des Hydrolysekatalysators.
Das durch die Thermohydrolyse entstandene Ammoniak reagiert am SCR-Katalysator nach den folgenden Gleichungen: 4NO + 4NH3 + O2 → 4N2 + 6H2O (1) NO + NO2 + 2MH3 > 2N2 + 3H2O (2)
6NO2 + 8NH3 → 7N2 + 12H2O (3)
Bei niedrigen Temperaturen (<300 0C) läuft der Umsatz überwiegend über Reaktion (2) ab. Für einen guten Niedertemperaturumsatz ist es deshalb erforderlich, ein NO2 : NO-Verhältnis von etwa 1:1 einzustellen. Unter diesen Umständen kann die Reaktion (2) bereits bei Temperaturen ab 170-200 0C erfolgen.
Die Oxidation von NO zu NOx erfolgt in einem vorgelagerten Oxi- dationskatalysator der für einen optimalen Wirkungsgrad erforderlich ist.
Wird mehr Reduktionsmittel dosiert, als bei der Reduktion mit NOx umgesetzt wird, so kann es zu einem unerwünschten NH3- Schlupf kommen. Die Entfernung des NH3 kann durch einen zusätzlichen Oxidationskatalysator hinter dem SCR-Katalysator er- zielt werden. Dieser Sperrkatalysator oxidiert das gegebenenfalls auftretende Ammoniak zu N2 und H2O. Darüber hinaus ist eine sorgfältige Applikation der Harnstoffdosierung unerläss- lich.
Eine für die SCR-Katalyse wichtige Kenngröße ist das so genannte Feedverhältnis α, definiert als das molare Verhältnis von zudosiertem NH3 zu dem im Abgas vorhandenen NOx. Bei idealen Betriebsbedingungen (kein NH3-Schlupf, keine Nebenreaktionen, keine NH3-Oxidation) ist α direkt proportional zur NOx- Reduktionsrate:
Bei α = 1 wird theoretisch eine einprozentige NOx-Reduktion erreicht. Im praktischen Einsatz kann bei einem NH3-Schlupf von <20 ppm eine NOx-Reduktion von 90% im stationären und instationären Betrieb erzielt werden.
Durch die vorgelagerte Hydrolysereaktion wird bei den heutigen SCR-Katalysatoren ein NOx-Umsatz >50% erst bei Temperaturen oberhalb von ca. 250 °C erreicht, optimale Umsatzraten werden im Temperaturfenster von 250 - 450 0C erzielt.
Die Dosierstrategie ist bei Katalysatoren mit hohem NH3- Speichervermögen von großer Wichtigkeit, da die NH3-
Speicherfähigkeit von SCR-Katalysatoren des Standes der Technik typischerweise mit steigender Temperatur abnimmt.
Derzeit werden sowohl im Kraftwerksbereich als auch im Automo- bilbereich überwiegend SCR-Katalysatoren auf Basis von Titandioxid, Vanadiumpentaoxid und Wolframoxid eingesetzt. Auch ist die Verwendung von SCR-Katalysatoren auf Basis von Zeolithen im Stand der Technik bekannt. In diesem Fall fungiert der Zeo- lith jedoch lediglich als SCR-aktive Komponente.
Ferner wird gemäß Stand der Technik häufig zusätzlich zu dem oben angeführten Oxidationskatalysator für die Oxidation von nicht verbrannten Kohlenwasserstoffverbindungen ein Ammoniak- Sperrkatalysator verwendet, welcher überschüssiges Ammoniak aus dem SCR-Katalysator oxidiert, da Ammoniak sehr schädlich für die Gesundheit und die Umwelt ist.
Wie zu erkennen ist, umfasst ein modernes Abgassystem eine Vielzahl von Komponenten welche gewöhnlich am Fahrzeugboden im Abgasstrang integriert sind. Da dort der zur Verfügung stehende Raum begrenzt ist, wäre es somit wünschenswert, wenn der zur Verfügung stehende Raum effektiver genutzt werden könnte. Die Aufgabe der vorliegenden Erfindung bestand somit darin, ein Katalysator- bzw. Abgassystem bereit zu stellen, das einen reduzierten Raumbedarf aufweist.
Die Aufgabe wird gelöst durch einen SCR-Katalysator, welcher eine SCR-aktive Komponente und eine Kohlenwasserstoffspeicher- komponente umfasst.
Die Aufgabe wird ferner gelöst durch ein Abgasreinigungssystem welches
• einen Rußpartikelfilter (DPF) ,
• einen SCR-Katalysator, und
• einen Oxidationskatalysator umfasst
und dadurch gekennzeichnet ist, dass der SCR-Katalysator eine SCR-aktive Komponente und eine Kohlenwasserstoffspeicherkompo- nente umfasst.
Überaschend konnte gefunden werden, dass mehrere Katalysatorfunktionen in einzelnen Katalysatorbauteilen kombiniert werden können, wodurch eine enorme Verringerung des Raumbedarfs resultiert.
Bevorzugt liegen die SCR-aktive Komponente und die KohlenwasserstoffSpeicherkomponente als Beschichtung auf einem Katalysatorträger vor. Geeignete Katalysatorträger können metallische oder keramische Träger sein. Bevorzugt ist der Katalysatorträger ein monolithischer Träger.
Der erfindungsgemäße SCR-Katalysator umfasst eine KohlenwasserstoffSpeicherkomponente, welche vorzugsweise eine Zeolith- komponente ist. Die KohlenwasserstoffSpeicherkomponente kann einen Zeolithen in der H-Form oder einen metallausgetauschten Zeolithen umfassen. Die Herstellungsverfahren für metallausgetauschte Zeolithe, beispielsweise über Fest- oder Flüssigpha- senaustausch. sowie für Zeolithe in der H-Form sind dem Fach mann bekannt.
Metallausgetauschte Zeolithe haben ferner den Vorteil, dass diese bi-funktionell sind, d. h. dass sie sowohl eine SCR- Aktivität als auch eine KohlenwasserstoffSpeicheraktivität besitzen.
Die SCR-aktive Komponente umfasst weiterhin vorzugsweise einen Katalysator auf Basis von Vanadium, Wolfram, Titan und/oder einen Fe-Zeolith.
Geeignete Zeolithe sind ausgewählt aus der Gruppe umfassend AEL, BEA, CHA, EUO, FAO, FER, KFI, LTA, LTL, MAZ, MOR, MEL, MTW, LEV, OFF, TON und MFI.
Unter dem Begriff „Zeolith" wird im Rahmen der vorliegenden Erfindung gemäß der Definition der International Mineralical Association (D.S. Coombs et al . , Canadian Mineralogist, 35, 1979, 1571) eine kristalline Substanz aus der Gruppe der Aluminiumsilikate mit einer Raumnetzstruktur der allgemeinen Formel Mx/n[ (AlO2) x (SiO2) y] x (H2O)2
verstanden, die aus SiO4/Alθ4-Tetraeder bestehen, die durch gemeinsame Sauerstoffatome zu einem regelmäßigen dreidimensionalen Netzwerk verknüpft sind.
Das Verhältnis von Si/Al=y/x beträgt immer > 1 gemäß der sog. „Löwenstein-Regel", die das benachbarte Auftreten zweier benachbarter negativ geladener A104-Tetraeder verbietet. Dabei stehen bei einem geringen Si/Al-Verhältnis zwar mehr Aus- tauschplätze für Metall zur Verfügung, der Zeolith wird jedoch zunehmend thermisch instabiler.
Die Zeolithstruktur enthält Hohlräume, Kanäle, die für jeden Zeolithen charakteristisch sind. Die Zeolithe werden gemäß ihrer Topologie in verschiedene Strukturen eingeteilt. Das Zeo- lithgerüst enthält offene Hohlräume in Form von Kanälen und Käfigen, die normalerweise mit Wassermolekülen und zusätzlichen Gerüstkationen besetzt sind, die ausgetauscht werden kön- nen. Auf ein Aluminiumatom kommt eine überschüssige negative Ladung, die durch diese Kationen kompensiert wird. Das Innere des Porensystems stellt die katalytisch aktive Oberfläche dar. Je mehr Aluminium und je weniger Silizium ein Zeolith enthält, desto dichter ist die negative Ladung in seinem Gitter und desto polarer seine innere Oberfläche. Die Porengröße und Struktur wird neben den Parametern bei der Herstellung, d.h. Verwendung bzw. Art von Templaten, pH, Druck, Temperatur, Anwesenheit von Impfkristallen, durch das Si/Al-Verhältnis bestimmt, das den größten Teil des katalytischen Charakters ei- nes Zeolithen ausmacht.
Durch Anwesenheit von zwei- oder dreiwertigen Kationen als Tetraederzentrum im Zeolithgerüst erhält der Zeolith eine negative Ladung in Form von sog. Anionenstellen, in deren Nach- barschaft sich die entsprechenden Kationenpositionen befinden. Die negative Ladung wird durch den Einbau von Kationen in die Poren des Zeolithmaterials kompensiert. Die Zeolithe unterscheidet man hauptsächlich nach der Geometrie der Hohlräume, die durch das starre Netzwerk der Siθ4/AlO4-Tetraeder gebildet werden. Die Eingänge zu den Hohlräumen werden von 8, 10 oder 12 Ringen gebildet, der Fachmann spricht hier von eng-, mittel- und weitporigen Zeolithen. Bestimmte Zeolithe zeigen einen gleichförmigen Strukturaufbau, z. B. die ZSM-5- oder die MFI-Topologie, mit linearen oder zickzack-förmig verlaufenden Kanälen, bei anderen schließen sich hinter den Porenöffnungen größere Hohlräume an, z. B. bei den Y- oder A-Zeolithen, mit den Topologien FAO und T,TA1
Vorzugsweise befindet sich das Zeolithmaterial der KohlenwasserstoffSpeicherkomponente an der Katalysatoreintrittsseite. Dies hat den Vorteil, dass der Katalysator damit auch die Funktion eines H-Katalysators (Hydrolyse-Katalysator) übernehmen kann, da Zeolithe auch als gute Hydrolyse-Katalysatoren bekannt sind. Dadurch kann eine weitere Katalysatorfunktion in den SCR-Katalysator integriert werden, wodurch die Notwendigkeit eines optionalen Hydrolyse-Katalysators entfällt.
Gemäß der Anordnung des erfindungsgemäßen Abgasreinigungssys- tems soll der SCR-Katalysator zwischen dem Rußpartikelfilter
(DPF) und dem Oxidationskatalysator angeordnet sein. In dieser Anordnung stellt der Oxidationskatalysator ein eigenes Bauteil dar .
Gemäß einer weiteren bevorzugten Anordnung des erfindungsgemäßen Abgasreinigungssystems soll der Oxidationskatalysator ein Bestandteil des SCR-Katalysators sein. D.h. der SCR- Katalysator umfasst neben der SCR-aktiven Komponente und der KohlenwasserstoffSpeicherkomponente noch eine Oxidationskata- lysatorkomponente . Alle diese Komponenten befinden sich somit in einem Bauteil, dem SCR-Katalysator, vereint. Dazu ist es bevorzugt, dass der Oxidationskatalysator als Beschichtung auf dem Katalysatorträger des SCR-Katalysators vorliegt. Die Beschichtung befindet sich bevorzugt an der Austrittsseite des SCR-Katalysators. Es ist ferner bevorzugt, dass etwa 15-25 %, besonders bevorzugt etwa 20 % der Fläche des SCR-Katalysators mit dem Oxidationskatalysator beschichtet ist. Demnach wird die erfindungsgemäße Aufgabe vorzugsweise durch ein Abgasreinigungssystem gelöst, welches
• einen Rußpartikelfilter (DPF) und • einen SCR-Katalysator, umfasst
und dadurch gekennzeichnet ist, dass der SCR-Katalysator eine SCR-aktive Komponente, eine Kohlenwasserstoffspeicherkomponen- te und eine Oxidationskatalysatorkomponente umfasst.
Der Oxidationskatalysator am Ende des Abgassystems übernimmt zwei Aufgaben. Zum einen die Oxidation der unverbrannten Kohlenwasserstoffe (HC) und Kohlemonoxide (CO) und zum anderen die Oxidation von NH3, der nicht bei der SCR-Reaktion umgesetzt wurde (NH3-Schlupf ) . Die unverbrannten Kohlenwasserstoffe der Kaltstartphase werden bei erhöhter Temperatur desorbiert und treffen dann auf den Oxidationskatalysator und werden zu CO2 umgesetzt. Durch diese Kombination kann der Ammoniak- Sperrkatalysator in den Oxidationskatalysator integriert wer- den, was wiederum eine Raumeinsparung mit sich bringt.
Bevorzugt im Sinne dieser Erfindung sind der DPF, der SCR- Katalysator und der Oxidationskatalysator als Beschichtungska- talysator ausgebildet. Allgemein können Katalysatoren in VoIl- katalysatoren und Beschichtungskatalysatoren eingeteilt werden. Während Vollkatalysatoren zu über 50% aus einem kataly- tisch aktiven Material bestehen, bestehen Beschichtungskatalysatoren aus einem Katalysatorträgerkörper, der aus einem Metall oder einer Keramik bestehen kann, wobei die Oberfläche des Katalysatorträgerkörpers mit einer Beschichtung versehen ist. Die Beschichtung wird mittels einer sog. Washcoat- Suspension, d.h. einer Aufschlämmung in einem fluiden Medium auf den Katalysatorträger aufgetragen. Gewöhnlich wird anschließend die aufgetragene Washcoat-Suspension getrocknet und kalziniert. Die Beschichtung kann anschließend mit einer weiteren katalytisch aktiven Komponente imprägniert werden, wobei die aktiven Komponenten auch in der Washcoat-Suspcnsion gelöst sein können oder zuvor auf den Metalloxidpartikeln aufgebracht worden sein. Der Vorteil von Beschichtungskatalysatoren besteht in der einfachen Herstellung, die mit einem geringen verfahrenstechnischen Aufwand verbunden ist. In Abgasreinigungsanlagen können mehrere einzelne Katalysatoren durch Parallelschaltung zu großen Katalysatoren kombiniert werden. Ein weiterer Vorteil von Beschichtungskatalysatoren ist, dass geringere Mengen an teuren Aktivkomponenten erforderlich sind.
In einer bevorzugten Ausführungsform umfasst die Beschichtung des Beschichtungskatalysators (SCR und/oder Oxidationskataly- sator) einen mit Eisen dotierten Zeolithen und ein Metalloxid, wobei die Menge an eisendotierten Zeolithen in der Trockenmasse der Beschichtung zwischen 3 und 80 Gew.-%, bevorzugt zwischen 5 und 75 Gew.-% und am meisten bevorzugt zwischen 10 und 70 Gew.-% liegt.
Bevorzugt ist das Metalloxid ausgewählt aus der Gruppe bestehend aus Aluminiumoxid, Siliziumoxid, Eisenoxid, Ceroxid, Zirkoniumoxid und einem aus den Metalloxiden ausgewählten Mischoxid. Diese Metalloxide gewährleisten die Herstellung eines Katalysators mit einer hohen Oberfläche. Ferner sind die ausgewählten Metalloxide besonders kostengünstig.
Gemäß einer weiteren bevorzugten Ausführungsform umfasst der Oxidationskatalysator eine katalytisch aktive Komponente um- fassend Edelmetalle, insbesondere Palladium, Platin, Rhodium, Iridium, Silber, Gold, oder Metalloxide von Eisen, Mangan, Kupfer und/oder Kombinationen davon. Im Sinne der kombinierten Eigenschaften des Oxidationskatalysators, nämlich sowohl Koh¬ lenwasserstoffe, Kohlemonoxide und überschüssiges NH3 zu oxi- dieren, ist es besonders vorteilhaft, dass der Oxidationskata- lysator als katalytisch aktive Komponente Rhodium umfasst.
Gemäß der erfindungsgemäßen Katalysatoranordnung soll der Par- tikelfilter (DPF) als erste Komponente des Abgasreinigungssystems angeordnet sein.
Für einen DPF sind eine Vielzahl von mit katalytisch aktiven Materialien beschichteten Trägern für Abgasfilter bzw. Abgas- katalysatoren bekannt. Vorzugsweise sind die katalytisch aktiven Schichten (geträgerter Katalysator) ausgewählt aus Aluminium-, Cer-, Wolfram-, Titan- und Zirkonoxid, die noch zusätzlich katalytisch aktive Edelmetalle zur Oxidation von Kohlenwasserstoffen, zur Oxidation von CO und von abgelagerten orga- nischen Partikeln, wie z.B. Ruß und dergleichen enthalten.
Die Katalytisch aktiven Metalloxide oder ihre Hydroxide sind im Wesentlichen wasserunlöslich. Bevorzugt ist es daher, Aluminiumoxide als wässrige Aufschlämmung mit wasserlöslichen Salzen der Oxide, insbesondere Nitrate, Chloride, Hydroxide, Sulfite, Acetate oder Komplexverbindungen der katalytisch aktiven Metalle auf Substrate aufzubringen bzw. diese damit zu imprägnieren und diese Salze anschließend bei hohen Temperaturen zu zersetzen, wobei deren Oxide entstehen.
Bevorzugt ist ferner eine kontinuierliche Regeneration des Partikelfilters, ohne dass z. B. eine periodische Nacheinspritzung von Kraftstoff zur Erhöhung der Abgastemperatur erforderlich ist. Um die Effizienz des Katalysators zu erhöhen, sollte daher eine große Oberfläche bereitgestellt werden, damit die katalytisch aktiven Zentren mit den Rußpartikeln in Berührung kommen können. Die dabei notwendige große Oberfläche wird beispielsweise dadurch erzeugt, dass eine Schicht eines Katalysatorträgers, wie beispielsweise oberflächenreiches gam- ma-Aluminiumoxid oder Titanoxid, auf einem Filtermaterial abgelagert wird und ein Metall, insbesondere ein Metall der Platingruppe, das als aktive Spezies für die Oxidation von Partikelmaterial bekannt ist, mittels einer Metallsalzlosung oder Metallkomplexverbindung in den Filter integriert wird.
Für die katalytische Beschichtung von derartigen Substraten, insbesondere mit innerer Oberflache, d. h. also poröse Substrate bzw. Metallmonolithe mit im Wesentlichen durchgehenden Kanälen, werden wie vorstehend schon ausgeführt unterschiedliche Beschichtungsverfahren und Beschichtungsmaterialien unter Verwendung von so genannten „washcoats" (worunter üblicherweise meist wassrige Aufschlammungen von Feststoffen verstanden werden) verwendet.
Bevorzugte „Washcoats" im Sinne dieser Erfindung können eine Vielzahl von Oxiden umfassen, die katalytisch aktiv sind, wie beispielsweise La2Os, C02O3, Nd2O3, TiO2, ZrO2, CeO2 etc., allein oder in Kombination.
Weitere bevorzugte Kombinationen umfassen beispielsweise ein Aluminiumoxid mit hoher Oberflache, des Weiteren Zinkoxid und wenigstens ein Edelmetall aus der Gruppe bestehend aus Palladium, Platin, Rhodium oder einer Kombination davon, die eben- falls auf einem monolithischen Trager mittels eines Washcoats aufgebracht werden. Besonders bevorzugt wird hier Rhodium verwendet.
Weitere einfache Verfahren, wie das Eintauchen des Katalysa- tortragers in einen Washcoat und das Entfernen von überschüssigem Washcoat durch Ausblasen mit Luft, sind ebenfalls aus dem Stand der Technik bekannt, wie auch Beschichtungsverfahren unter Einsatz von Zentrifugen. Ebenso ist auch die Möglichkeit des Bespruhens poröser Formkorper mit einem Washcoat vorge- schlagen worden. Als Beschichtung werden zumeist in der Regel auf Aluminiumoxid basierende Washcoats eingesetzt, die durch ihre große Oberflache charakterisiert sind.
Dabei werden in dem auf beispielsweise Aluminiumoxid basierenden Washcoat Metalle wie die Metalle der Platingruppe, z. B. durch Losung, Totalabsorption oder durch Tranken mit Edelmetall-haltigen Losungen oder durch Einarbeiten in den Washcoat vor der Beschichtung, integriert.
Die für die Partikeloxidation zur Verfugung stehende Oberflache hat einen erheblichen Einfluss auf den katalytischen Umsatz und insbesondere auf die Langzeitstabilitat des Katalysators. Es ist bekannt, dass zur Erhöhung der Stabxlitat der Aluiniumoxidoberflache den Washcoats oft stabilisierende Elemente, wie z. B. Cer oder Lanthan, beigemischt werden können.
Durch die erfindungsgemaße Katalysatoranordnung, wobei verschiedene katalytische Funktionen in einzelnen Bauteilen kom- biniert wurden, konnte ersichtlich eine Verringerung des Raumbedarfs für ein Abgassystem erreicht werden.
Zusammengefasst werden konnte insbesondere eine SCR-aktive Komponente, eine KohlenwasserstoffSpeicherkomponente und zu- satzlich noch eine hydrolytisch aktive Komponente (H-Kat) in einem Bauteil (SCR-Katalysator) .
Zusammengefasst werden konnten ferner der Oxidationskatalysa- tor und der Ammoniak-Sperrkatalysator in einem Bauteil (Oxida- tionskatalysator) .
Darüber hinaus konnte eine SCR-aktive Komponente, eine KohlenwasserstoffSpeicherkomponente und ein Oxidationskatalysator in einem Bauteil zusammengefasst werden. Der erfindungsgemaße SCR-Katalysator und das Abgasreinigungssystem können zur Abgasbehandlung von Abgasen von Verbrennungsmotoren verwendet werden. Verbrennungsmotoren im Sinne dieser Erfindung sind beispielsweise Dieselmotoren oder Sta- tionarmotoren .
Die Erfindung soll nun anhand einiger Beispiele, welche nicht als einschränkend auf den Umfang der Erfindung zu verstehen sind, unter Bezugnahme auf die Figuren naher erläutert werden.
Dabei zeigt Figur 1 eine erfindungsgemaße Anordnung eines Abgasreinigungssystems, wobei ein SCR-Katalysator mit einer HC- Speicherkomponente verwendet wird.
Figur 2 zeigt eine erfindungsgemaße Anordnung exnes Katalysatorsystems, wobei der SCR-Katalysator drei Funktionen, nämlich die SCR-aktive Komponente, eine HC-Speicherkomponente und zusatzlich noch die Oxidationskomponente umfasst.
Ausfuhrungsbeispiele
Anordnung 1 (siehe Figur 1) :
DPF (10) :
Als DPF (10) wird ein beschichteter Wall-Flow-Filter mit einer Beschichtung (30 g/L) bestehend aus 70 Mol-% CeO2 und 30 Mol-% ZrO2 verwendet.
SCR-Katalysator (20) mit HC-Speicherfunktion (40) :
Als SCR-Katalysator (20) mit HC-Speicherfunktion (40) wird ein beschichteter Wabenkorper aus Cordierit (Zelligkeit 400 cpsi, Wandstärke 6 mils) mit einer Beschichtung (200 g/L) bestehend aus 60 Gew.-% TiO2, 7 Gew.-% WO3, 3 Gew.-% V2O5, 15 Gew.-% SiO2, 15 Gew.-% Fe-ZSM-5 (1 Gew.-% Fc) verwendet.
Oxidationskatalysator (30) :
Als Oxidationskatalysator (30) wird ein beschichteter Wabenkörper aus Cordierit (Zelligkeit 400 epsi, Wandstärke 6 mils) mit einer Beschichtung bestehend aus 80 Gew.-% TiO2, 5 Gew.-% WO3, 15 Gew.-% SiO2 + Pt in einer Konzentration von 1,5 g/L, bezogen auf das Substratvolumen, verwendet.
Harnstoffdosierung (50) :
Die Einrichtung zur Harnstoffdosierung (50) ist zwischen dem DPF (10) und dem SCR-Katalysator (20) angeordnet.
Anordnung 2 (siehe Figur 2) :
In diesem Fall trägt der SCR-Katalysator (20) drei Funktionen, nämlich die SCR-aktive Komponente (20), eine HC-
Speicherkomponente (40) und zusätzlich noch eine Oxidations- komponente (30) .
DPF (10) :
Als DPF (10) wird ein unbeschichtetes offenes Filtersystem (PM-Katalysator der Firma Emitec) verwendet.
SCR-Katalysator (20) mit HC-Speicherfunktion (40) und Oxidati- onsfunktion (30) :
Für den SCR-Katalysator (20) mit HC-Speicherfunktion (40) und Oxidationsfunktion (30) wird ein beschichteter Wabenkörper aus Cordierit (Zelligkeit 600 cpsi, Wandstärke 3,5 mils) mit einer Beschichtung (300 g/L) bestehend aus 60 Gew.-% Fe-ZSM-5 (3 Gew,-% Fe),- 20 Gew.-% SiO2, 20 Gew.-% H-BΞΛ + Pt-Imprägnierung am Katalysatorende auf 20 % der Länge des Wabenkörpers mit ei- ner Konzentration von 1,3 g/L bezogen auf das Substratvolumen, verwendet .
Harnstoffdosierung (50) :
Die Einrichtung zur Harnstoffdosierung (50) ist zwischen dem DPF (10) und dem SCR-Katalysator (20) angeordnet.

Claims

Patentansprüche
1. SCR-Katalysator, umfassend eine SCR-aktive Komponente und eine KohlenwasserstoffSpeicherkomponente .
2. SCR-Katalysator nach Anspruch 1, dadurch gekennzeichnet, dass die SCR-aktive Komponente und die Kohlenwasserstoffspeicherkomponente als Beschichtung auf einem Katalysatorträger vorliegt.
3. SCR-Katalysator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die KohlenwasserstoffSpeicherkomponente eine Zeolithkomponente umfasst.
4. SCR-Katalysator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kohlenwasserstoffspei- cherkomponente einen Zeolith in der H-Form oder einen metallausgetauschten Zeolith umfasst.
5. SCR-Katalysator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die SCR-aktive Komponente einen Katalysator auf Basis von Vanadium, Wolfram, Titan und/oder einen Fe-Zeolith umfasst.
6. SCR-Katalysator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kohlenwasserstoffspei- cherkomponente im Eintrittsbereich des SCR-Katalysators aufgebracht ist.
7. SCR-Katalysator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der SCR-Katalysator zusätzlich einen Oxidationskatalysator umfasst.
8. SCR-Katalysator nach Anspruch 7, dadurch gekennzeichnet, dass der Oxidationskatalysator als Beschichtung im Austrittsbereich des SCR-Katalysators vorliegt.
9. SCR-Katalysator nach Anspruch 8, dadurch gekennzeichnet, dass 15-25 % der Fläche des SCR-Katalysators mit dem Oxidationskatalysator beschichtet ist.
10. Verwendung eines SCR-Katalysators nach einem der Ansprü- che 1 bis 9 zur Abgasbehandlung von Abgasen aus Verbrennungsmotoren .
11. Verwendung nach Anspruch 10, dadurch gekennzeichnet, dass der Verbrennungsmotor ein Dieselmotor oder ein Stationär- motor ist.
12. Verwendung nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, dass der SCR-Katalysator Bestandteil eines Abgasreinigungssystems ist.
13. Abgasreinigungssystem umfassend
• einen Rußpartikelfilter,
• einen SCR-Katalysator, und • einen Oxidationskatalysator,
dadurch gekennzeichnet, dass der SCR-Katalysator eine SCR- aktive Komponente und eine Kohlenwasserstoffspeicherkompo- nente umfasst.
14. Abgasreinigungssystem nach Anspruch 13, dadurch gekennzeichnet, dass die SCR-aktive Komponente und die KohlenwasserstoffSpeicherkomponente als Beschichtung auf einem Katalysatorträger vorliegt
15. Abgasreinigungssystem nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass die Kohlenwasserstoffspeicherkompo- nente eine Zeolithkomponente umfasst.
16. Abgasreinigungssystem nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass die Kohlenwasserstoffspei- cherkomponente einen Zeolith in der H-Form oder einen metallausgetauschten Zeolith umfasst.
17. Abgasreinigungssystem nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, dass die Kohlenwasserstoffspei- cherkomponente an der Abgaseintrittsseite des SCR- Katalysators angeordnet ist.
18. Abgasreinigungssystem nach einem der Ansprüche 13 bis 17, dadurch gekennzeichnet, dass die SCR-aktive Komponente einen Katalysator auf Basis von Vanadium, Wolfram, Titan und/oder einen Fe-Zeolith umfasst.
19. Abgasreinigungssystem nach einem der Ansprüche 13 bis 18, dadurch gekennzeichnet, dass der SCR-Katalysator zwischen dem Rußpartikelfilter und dem Oxidationskatalysator angeordnet ist.
20. Abgasreinigungssystem nach einem der Ansprüche 13 bis 19, dadurch gekennzeichnet, dass der Oxidationskatalysator als Beschichtung auf dem Katalysatorträger des SCR- Katalysators aufgebracht ist.
21. Abgasreinigungssystem nach einem der Ansprüche 13 bis 20, dadurch gekennzeichnet, dass der SCR-Katalysator einen Hydrolyse-Katalysator umfasst.
22. Abgasreinigungssystem nach einem der Ansprüche 13 bis 21, dadurch gekennzeichnet, dass der Oxidationskatalysator
23. Verwendung eines Abgasreinigungssystems nach einem der Ansprüche 13 bis 22 zur Abgasbehandlung von Abgasen aus Verbrennungsmotoren .
24. Verwendung nach Anspruch 23, dadurch gekennzeichnet, dass der Verbrennungsmotor ein Dieselmotor oder ein Stationärmotor ist.
PCT/EP2009/000623 2008-02-18 2009-01-30 Scr-katalysator mit kohlenwasserstoffspeicherfunktion und katalysatoranordnung WO2009103406A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008009672.5A DE102008009672B4 (de) 2008-02-18 2008-02-18 SCR-Katalysator mit Kohlenwasserstoffspeicherfunktion, dessen Verwendung und Abgasreinigungssystem und dessen Verwendung
DE102008009672.5 2008-02-18

Publications (1)

Publication Number Publication Date
WO2009103406A1 true WO2009103406A1 (de) 2009-08-27

Family

ID=40467046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/000623 WO2009103406A1 (de) 2008-02-18 2009-01-30 Scr-katalysator mit kohlenwasserstoffspeicherfunktion und katalysatoranordnung

Country Status (2)

Country Link
DE (1) DE102008009672B4 (de)
WO (1) WO2009103406A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012059423A1 (de) * 2010-11-03 2012-05-10 Süd-Chemie AG Ammoniak-oxidationskatalysator mit geringer n2o nebenproduktbildung
CN105658327A (zh) * 2013-07-26 2016-06-08 庄信万丰股份有限公司 钨/二氧化钛氧化催化剂
CN108786783A (zh) * 2018-06-11 2018-11-13 上海电力学院 一种用于烟气脱硝的抗钾毒化的scr催化剂及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011061841A1 (ja) * 2009-11-19 2011-05-26 イビデン株式会社 ハニカム構造体及び排ガス浄化装置
DE102010047415A1 (de) * 2010-10-02 2012-04-05 Volkswagen Ag Verfahren zum Betreiben einer Verbrennungskraftmaschine sowie zur Ausführung des Verfahrens eingerichtetes Steuergerät
DE102012209852A1 (de) 2012-06-12 2013-12-12 Robert Bosch Gmbh Abgasreinigungssystem zur Anordnung in einem Abgasstrang eines Kraftfahrzeuges, insbesondere eines Dieselkraftfahrzeugs
KR102245483B1 (ko) 2012-08-17 2021-04-29 존슨 맛쎄이 퍼블릭 리미티드 컴파니 제올라이트 촉진된 V/Tⅰ/W 촉매
DE102015205843A1 (de) * 2015-03-31 2016-10-06 Johnson Matthey Catalysts (Germany) Gmbh Katalysator insbesondere zur Abgasreinigung
KR101703624B1 (ko) 2015-09-30 2017-02-07 현대자동차 주식회사 배기가스 후처리 시스템
KR101896334B1 (ko) * 2016-11-28 2018-09-07 현대자동차 주식회사 배기가스 정화장치
CN116440945B (zh) * 2023-03-02 2024-04-30 昆明贵研催化剂有限责任公司 一种氢内燃机用多效催化剂及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0393905A2 (de) * 1989-04-20 1990-10-24 Engelhard Corporation Zeolithkatalysatoren und ihre Anwendung in der Reduktion von Stickoxiden
WO1998050151A1 (en) * 1997-05-07 1998-11-12 Engelhard Corporation Four-way diesel exhaust catalyst and method of use
WO2004076829A1 (en) * 2003-02-26 2004-09-10 Umicore Ag & Co. Kg Exhaust-gas purification system for the selective catalytic reduction of nitrogen oxides in the lean exhaust gas of internal combustion engines and method of exhaust-gas purification
WO2006023932A1 (en) * 2004-08-23 2006-03-02 Engelhard Corporation ZONE COATED CATALYST TO SIMULTANEOUSLY REDUCE NOx AND UNREACTED AMMONIA
DE102005061713A1 (de) * 2005-12-22 2007-07-05 Süd-Chemie AG Adsorbereinheit für flüchtige Kohlenwasserstoffe, enthaltend ein Adsorbermaterial aus Eisen-enthaltendem Molekularsieb
DE102006031650A1 (de) * 2006-07-08 2008-01-10 Man Nutzfahrzeuge Ag Anordnung zur Verminderung von Stickoxiden in Abgasen
WO2008026002A1 (en) * 2006-08-30 2008-03-06 Johnson Matthey Public Limited Company Low temperature hydrocarbon scr
WO2008089957A1 (de) * 2007-01-22 2008-07-31 Süd-Chemie AG Katalysatorzusammensetzung zur reduktion von stickoxiden
EP1959108A1 (de) * 2005-12-08 2008-08-20 Isuzu Motors Limited Verfahren zur steuerung eines abgasreinigungssystems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120695A (en) * 1989-07-28 1992-06-09 Degusaa Aktiengesellschaft (Degussa Ag) Catalyst for purifying exhaust gases from internal combustion engines and gas turbines operated at above the stoichiometric ratio
EP1264628A1 (de) * 2001-06-09 2002-12-11 OMG AG & Co. KG Redox-Katalysator für die selektive katalytische Reduktion der im Abgas von Dieselmotoren enthaltenen Stickoxide mittels Ammoniak sowie Verfahren zu seiner Herstellung
WO2008006427A1 (de) * 2006-07-08 2008-01-17 Umicore Ag & Co. Kg Strukturierter scr-katalysator zur reduktion von stickoxiden im abgas von magermotoren unter verwendung von ammoniak als reduktionsmittel

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0393905A2 (de) * 1989-04-20 1990-10-24 Engelhard Corporation Zeolithkatalysatoren und ihre Anwendung in der Reduktion von Stickoxiden
WO1998050151A1 (en) * 1997-05-07 1998-11-12 Engelhard Corporation Four-way diesel exhaust catalyst and method of use
WO2004076829A1 (en) * 2003-02-26 2004-09-10 Umicore Ag & Co. Kg Exhaust-gas purification system for the selective catalytic reduction of nitrogen oxides in the lean exhaust gas of internal combustion engines and method of exhaust-gas purification
WO2006023932A1 (en) * 2004-08-23 2006-03-02 Engelhard Corporation ZONE COATED CATALYST TO SIMULTANEOUSLY REDUCE NOx AND UNREACTED AMMONIA
EP1959108A1 (de) * 2005-12-08 2008-08-20 Isuzu Motors Limited Verfahren zur steuerung eines abgasreinigungssystems
DE102005061713A1 (de) * 2005-12-22 2007-07-05 Süd-Chemie AG Adsorbereinheit für flüchtige Kohlenwasserstoffe, enthaltend ein Adsorbermaterial aus Eisen-enthaltendem Molekularsieb
DE102006031650A1 (de) * 2006-07-08 2008-01-10 Man Nutzfahrzeuge Ag Anordnung zur Verminderung von Stickoxiden in Abgasen
WO2008026002A1 (en) * 2006-08-30 2008-03-06 Johnson Matthey Public Limited Company Low temperature hydrocarbon scr
WO2008089957A1 (de) * 2007-01-22 2008-07-31 Süd-Chemie AG Katalysatorzusammensetzung zur reduktion von stickoxiden

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012059423A1 (de) * 2010-11-03 2012-05-10 Süd-Chemie AG Ammoniak-oxidationskatalysator mit geringer n2o nebenproduktbildung
US20130343975A1 (en) * 2010-11-03 2013-12-26 Clariant Produkte(Deutschland) Gmbh Ammonia oxidation catalyst having low n2o by-product formation
US9573097B2 (en) 2010-11-03 2017-02-21 Clariant Produkte (Deutschland) Gmbh Ammonia oxidation catalyst having low N2O by-product formation
CN105658327A (zh) * 2013-07-26 2016-06-08 庄信万丰股份有限公司 钨/二氧化钛氧化催化剂
CN108786783A (zh) * 2018-06-11 2018-11-13 上海电力学院 一种用于烟气脱硝的抗钾毒化的scr催化剂及其制备方法

Also Published As

Publication number Publication date
DE102008009672B4 (de) 2016-02-25
DE102008009672A1 (de) 2009-08-27

Similar Documents

Publication Publication Date Title
DE102008009672B4 (de) SCR-Katalysator mit Kohlenwasserstoffspeicherfunktion, dessen Verwendung und Abgasreinigungssystem und dessen Verwendung
WO2010051983A1 (de) Partikelminderung mit kombiniertem scr- und nh3- schlupf - katalysator
DE102015112465B4 (de) System und verfahren zum behandeln von abgas
EP3103979B1 (de) Katalysator zur entfernung von stickoxiden aus dem abgas von dieselmotoren
CN107051574B (zh) 用于选择性氨氧化的双金属催化剂
DE102017116461A1 (de) Katalysator-bindemittel für filtersubstrate
DE102012222807A1 (de) Abgassystem für einen mager verbrennenden Verbrennungsmotor, das einen SCR-Katalysator umfasst
DE102015107647A1 (de) Katalytischer Gegenstand zum Behandeln vom Abgas
EP2498898A1 (de) Verbesserter dieseloxidationskatalysator
DE102012025746A1 (de) Katalysierter Substratmonolith
DE102012218254A1 (de) Oxidationskatalysator für eine Behandlung von Abgas eines Verbrennungsmotors
DE102014112413A1 (de) Zeolithmischkatalysatoren zur behandlung von abgas
DE112009000160T5 (de) Katalysiertes Filter
EP2382042B1 (de) Diesel-oxidationskatalysator mit guter tieftemperaturaktivität
WO2010112431A1 (de) Alterungsstabiler katalysator zur oxidation von no zu no2 in abgasströmen
WO2009103549A1 (de) Scr-katalysator mit ammoniak-speicherfunktion
EP3576865A1 (de) Katalysator zur reinigung der abgase von dieselmotoren
DE102011012799A1 (de) Katalysator zur Entfernung von Stickoxiden aus dem Abgas von Dieselmotoren
DE102015104348A1 (de) Katalysator zum behandeln von abgas
EP2653681A1 (de) Beschichtetes Dieselpartikelfilter
DE102008016177A1 (de) Harnstoffhydrolysekatalysator
EP2623183A1 (de) Katalytisch aktives Partikelfilter und dessen Verwendung
WO2020169600A1 (de) Katalysator zur reduktion von stickoxiden
EP2090352B1 (de) Vorrichtung zur Verminderung von Dibenzo-Dioxin- und Dibenzo-Furan-Emissionen aus übergangsmetallhaltigen Katalysatoren
DE102007027677B4 (de) Abgasreinigungssystem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09712270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09712270

Country of ref document: EP

Kind code of ref document: A1