WO2009101855A1 - Tire - Google Patents

Tire Download PDF

Info

Publication number
WO2009101855A1
WO2009101855A1 PCT/JP2009/051267 JP2009051267W WO2009101855A1 WO 2009101855 A1 WO2009101855 A1 WO 2009101855A1 JP 2009051267 W JP2009051267 W JP 2009051267W WO 2009101855 A1 WO2009101855 A1 WO 2009101855A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
tire
mass
natural rubber
tread
Prior art date
Application number
PCT/JP2009/051267
Other languages
French (fr)
Japanese (ja)
Inventor
Daigo Yonemoto
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Publication of WO2009101855A1 publication Critical patent/WO2009101855A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/14Anti-skid inserts, e.g. vulcanised into the tread band
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • B60C2011/0025Modulus or tan delta
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a tire, in particular, a tire having good performance on ice, high wear resistance, and low rolling resistance.
  • Heavy duty pneumatic tires used for trucks and buses must have sufficient performance on ice from the viewpoint of safety and sufficient wear resistance from the viewpoint of economy.
  • an object of the present invention is to provide a tire that solves the above-mentioned problems of the prior art, has good performance on ice, has high wear resistance, and has low rolling resistance.
  • the inventor of the present invention (1) reduces the rolling resistance of the tire by setting ⁇ E ′ of the tread rubber under a specific condition to a specific value or less, and (2) The ratio between the ten-point average roughness (Rz) and the centerline average roughness (Ra) is not less than a specific value while keeping the centerline average roughness (Ra) of the tread rubber worn surface after traveling a certain distance within a specific range. It is possible to improve the on-ice performance of the tire, and further satisfy (1) and (2) at the same time to obtain a tire having high on-ice performance and low rolling resistance while having high wear resistance.
  • the headline and the present invention have been completed.
  • the tire of the present invention is particularly suitable as a heavy load studless tire.
  • ⁇ E ′ defined by the above formula (I) is preferably 4.0 ⁇ M or less. In this case, the rolling resistance of the tire is further reduced.
  • the rubber composition used for the tread rubber is preferably a rubber composition in which 3 to 30 parts by mass of silica is blended with 100 parts by mass of the rubber component.
  • the tread rubber has closed cells.
  • the tread rubber preferably has a foaming ratio in the range of 5 to 30%.
  • the rubber composition used for the tread rubber is preferably a rubber composition obtained by blending 0.1 to 10 parts by mass of polyethylene short fibers with 100 parts by mass of the rubber component.
  • the rubber component of the tread rubber is composed of natural rubber and a diene synthetic rubber, and the mass ratio (natural rubber / diene synthetic rubber) is 80/20 to 40/60. is there.
  • the natural rubber the total nitrogen content obtained from the latex obtained by partially deproteinizing the protein in the natural rubber latex by a mechanical separation technique is more than 0.1 mass% and 0.4 mass% or less.
  • Natural rubber and modified natural rubber containing a polar group in the natural rubber molecule are preferred.
  • the diene synthetic rubber is preferably a modified polybutadiene rubber having a nitrogen-containing functional group, and the nitrogen-containing functional group is preferably derived from hexamethyleneimine.
  • (1) ⁇ E ′ of the tread rubber under a specific condition is not more than a specific value
  • (2) the center line average roughness (Ra) of the tread rubber worn surface after traveling a certain distance is in a specific range.
  • the ratio of the ten-point average roughness (Rz) to the centerline average roughness (Ra) is equal to or higher than a specific value, providing excellent on-ice performance, high wear resistance, and low rolling resistance. can do.
  • the tire according to the present invention includes a tread rubber having ⁇ E ′ defined by the above formula (I) of 7.0 ⁇ MPa or less in a tread portion, and an average center line of the wear surface of the tread rubber after running on an asphalt road surface for 8,000 km.
  • the roughness (Ra) is 12 to 40 ⁇ m, and the ratio (Rz / Ra) of ten-point average roughness (Rz) to centerline average roughness (Ra) is 15 or more.
  • the ⁇ E ′ of the tread rubber is 7.0 ⁇ M or less
  • the low loss property is improved (that is, the hysteresis loss is reduced), and the tire rolling resistance can be reduced.
  • the ratio of the 10-point average roughness Rz to the centerline average roughness (Ra) (with the centerline average roughness (Ra) of the tread rubber wear surface after traveling 8000 km on the asphalt road surface being 12-40 ⁇ m)
  • Rz / Ra By setting Rz / Ra) to 15 or more, the maximum wear is larger than the average wear, the ground contact area of the tire and the drainage volume are balanced, and the performance on ice can be improved. Furthermore, by combining these characteristics, it is possible to simultaneously achieve high wear resistance, good on-ice performance, and low rolling resistance.
  • ⁇ E ′ of the tread rubber exceeds 7.0 ⁇ Ma, the low loss property is deteriorated (that is, the hysteresis loss is increased), and the rolling resistance of the tire is increased.
  • ⁇ E ′ of the tread rubber is preferably 4.0 MPa or less, and more preferably 3.5 MPa or less.
  • ⁇ E ′ is an index of dispersibility, it is preferably as low as possible. Also, as ⁇ E ′ is low, the low loss property is favorable.
  • Ra is preferably in the range of 20 to 40 ⁇ m, and more preferably in the range of 25 to 35 ⁇ m.
  • the tread surface is worn by about 1 mm and the foam surface is exposed.
  • Rz / Ra the ratio (Rz / Ra) of the ten-point average roughness (Rz) to the centerline average roughness (Ra) of the worn surface of the tread rubber after traveling 8000 km on the asphalt road surface.
  • the performance on ice is good. descend. That is, even if the surface is too rough, the contact area is small, so the performance on ice is reduced. Also, if the surface is too small, the drainage volume is small, so the performance on ice is reduced. When / Ra is small, the drainage volume becomes small for the surface roughness, so the performance on ice is degraded.
  • Rz / Ra is preferably 40 or less, and from the viewpoint of drainage volume, running water resistance, and wear resistance, Rz / Ra is in the range of 15-20. Is more preferable.
  • the tread rubber of the tire of the present invention preferably has closed cells.
  • the drainage volume of the tire is increased and the performance on ice is improved.
  • the expansion ratio of the tread rubber having closed cells is preferably in the range of 5 to 30%.
  • the density of the tread rubber and the density of the solid phase portion of the tread rubber are calculated from the mass in ethanol and the mass in air.
  • the foaming rate can be changed as appropriate depending on the type and amount of the foaming agent and foaming aid.
  • the foaming agent include azodicarbonamide (ADCA), dinitrosopentamethylenetetramine (DPT), and dinitrosopentastyrene.
  • Tetramine and benzenesulfonylhydrazide derivatives Tetramine and benzenesulfonylhydrazide derivatives, p, p'-oxybisbenzenesulfonylhydrazide (OBSH), ammonium bicarbonate that generates carbon dioxide, sodium bicarbonate, ammonium carbonate, nitrososulfonylazo compounds that generate nitrogen, N, N ' -Dimethyl-N, N′-dinitrosophthalamide, toluenesulfonyl hydrazide, p-toluenesulfonyl semicarbazide, p, p′-oxybisbenzenesulfonyl semicarbazide and the like, and foaming aids include urea, zinc stearate, Zinc benzenesulfinate and zinc Hana, and the like.
  • OBSH p, p'-oxybisbenzenesulfonylhydrazi
  • the rubber component of the tread rubber is preferably composed of natural rubber and diene synthetic rubber, and the mass ratio (natural rubber / diene synthetic rubber) is preferably 80/20 to 40/60. In this case, it is easy to achieve both on-ice performance and wear resistance of the tire. In addition, when the ratio of natural rubber exceeds 80% by mass of the rubber component (when the ratio of diene synthetic rubber is less than 20% by mass of the rubber component), there is a tendency that the wear resistance and the performance on ice tend to be reduced. When the ratio of rubber is less than 40% by mass of the rubber component (when the ratio of diene synthetic rubber exceeds 60% by mass of the rubber component), workability tends to decrease.
  • the natural rubber examples include natural rubber having a total nitrogen content of more than 0.1% by mass and 0.4% by mass or less obtained from latex obtained by partially deproteinizing protein in natural rubber latex by mechanical separation technique. preferable.
  • the partially deproteinized natural rubber can improve the dispersibility of fillers such as carbon black, and can improve the flexibility of the tread rubber at low temperatures.
  • the content of the partially deproteinized natural rubber in the rubber component is preferably in the range of 40 to 80% by mass.
  • the partially deproteinized natural rubber is obtained by converting the latex after tapping and before coagulation into a solid component in a general natural rubber production process, that is, in the order of latex tapping, coagulation, washing, dehydration, drying, and packing.
  • a mechanical separation method preferably, centrifugal concentration method, so that the total nitrogen content in the above range
  • the obtained natural rubber latex is coagulated, washed, It can be obtained by drying using a normal dryer such as a vacuum dryer, air dryer, drum dryer or the like.
  • the natural rubber latex used as a raw material is not particularly limited, and a field latex, a commercially available latex, or the like can be used.
  • a deproteinization treatment method a degradation treatment method using a proteolytic enzyme, a method of repeatedly washing with a surfactant, a method of using an enzyme and a surfactant in combination, and the like are known.
  • active ingredients such as tocotrienol having an anti-aging action are lost, so that the natural aging resistance inherent in natural rubber is lowered.
  • the mechanical separation method since the active ingredient such as tocotrienol is hardly lost, the heat resistance can be maintained almost equal to that of the conventional natural rubber.
  • the total nitrogen content in the natural rubber is an index of protein content, and can be controlled by adjusting the centrifugation conditions (rotation speed, time, etc.) of the raw natural rubber latex.
  • the conditions for the centrifugation are not particularly limited, but it is preferable that the centrifugation is repeated several times at a rotational speed of about 7500 rpm.
  • the total nitrogen content in the natural rubber is preferably in the range of 0.2 to 0.4% by mass.
  • a modified natural rubber containing a polar group in the natural rubber molecule is also preferable.
  • the modified natural rubber can also improve the dispersibility of fillers such as carbon black, and can improve the flexibility of the tread rubber at low temperatures.
  • the content of the modified natural rubber in the rubber component is preferably in the range of 40 to 80% by mass.
  • the modified natural rubber was obtained by adding a polar group-containing monomer to natural rubber latex, graft-polymerizing the polar group-containing monomer to natural rubber molecules in the natural rubber latex, and further coagulating and drying. Modified natural rubber is preferred.
  • the natural rubber latex used for the production of the modified natural rubber is not particularly limited. For example, field latex, ammonia-treated latex, centrifugal concentrated latex, deproteinized latex treated with a surfactant or an enzyme, and combinations thereof are combined. A thing etc. can be used.
  • the graft amount of the polar group-containing monomer is preferably in the range of 0.01 to 5.0% by mass, more preferably in the range of 0.1 to 3.0% by mass with respect to the rubber component in the natural rubber latex.
  • the range of 0.2 to 1.0% by mass is even more preferable.
  • the polar group-containing monomer added to the natural rubber latex is not particularly limited as long as it has at least one polar group in the molecule and can be graft-polymerized with the natural rubber molecule.
  • the polar group-containing monomer preferably has a carbon-carbon double bond in the molecule for graft polymerization with a natural rubber molecule, and is preferably a polar group-containing vinyl monomer.
  • Specific examples of the polar group include amino group, imino group, nitrile group, ammonium group, imide group, amide group, hydrazo group, azo group, diazo group, hydroxyl group, carboxyl group, carbonyl group, epoxy group, and oxycarbonyl.
  • Preferred examples include groups, sulfide groups, disulfide groups, sulfonyl groups, sulfinyl groups, thiocarbonyl groups, nitrogen-containing heterocyclic groups, oxygen-containing heterocyclic groups, alkoxysilyl groups, and tin-containing groups.
  • These monomers containing a polar group may be used singly or in combination of two or more.
  • Examples of the monomer containing an amino group include N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dipropylaminoethyl (meth) acrylate, N, N N-dioctylaminoethyl (meth) acrylate and the like can be mentioned.
  • Examples of the monomer containing a nitrile group include (meth) acrylonitrile and vinylidene cyanide.
  • Examples of the monomer containing a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and the like.
  • Examples of the monomer containing a carboxyl group include (meth) acrylic acid and maleic acid.
  • Examples of the monomer containing an epoxy group include (meth) allyl glycidyl ether, glycidyl (meth) acrylate, and 3,4-oxycyclohexyl (meth) acrylate.
  • Examples of the monomer containing the nitrogen-containing heterocyclic group include 2-vinylpyridine, 3-vinylpyridine, 4-vinylpyridine, 5-methyl-2-vinylpyridine, 5-ethyl-2-vinylpyridine, and the like. Is mentioned.
  • Examples of the monomer having a tin-containing group include allyltri-n-butyltin and allyltrimethyltin.
  • the graft polymerization of the polar group-containing monomer onto the natural rubber molecule is preferably carried out by emulsion polymerization.
  • the polar group-containing monomer is added to a solution obtained by adding water and, if necessary, an emulsifier to a natural rubber latex, and a polymerization initiator is further added. It is preferable to polymerize the polar group-containing monomer by stirring at the temperature.
  • a nonionic surfactant such as polyoxyethylene lauryl ether can be used.
  • the polymerization initiator is preferably a redox polymerization initiator such as benzoyl peroxide, hydrogen peroxide, cumene hydroperoxide, tert-butyl hydroperoxide, or di-tert-butyl peroxide. It is preferable to use a combination of a peroxide and a reducing agent such as tetraethylenepentamine, mercaptans, acidic sodium sulfite, reducing metal ions, ascorbic acid or the like. Each component described above is charged into a reaction vessel and reacted at 30 to 80 ° C. for 10 minutes to 7 hours to obtain a modified natural rubber latex in which the polar group-containing monomer is graft copolymerized with natural rubber molecules.
  • a redox polymerization initiator such as benzoyl peroxide, hydrogen peroxide, cumene hydroperoxide, tert-butyl hydroperoxide, or di-tert-butyl peroxide. It is preferable
  • the modified natural rubber latex is coagulated, washed, and then dried using a dryer such as a vacuum dryer, an air dryer, a drum dryer or the like to obtain a modified natural rubber.
  • a dryer such as a vacuum dryer, an air dryer, a drum dryer or the like.
  • the coagulant used for coagulating the modified natural rubber latex is not particularly limited, and examples thereof include acids such as formic acid and sulfuric acid, and salts such as sodium chloride.
  • a modified polybutadiene rubber having a nitrogen-containing functional group is preferable.
  • the modified polybutadiene rubber can improve the dispersibility of fillers such as carbon black, and can improve the flexibility of the tread rubber at low temperatures. Further, the modified polybutadiene rubber can improve the wear resistance of the tire.
  • the content of the modified polybutadiene rubber in the rubber component is preferably in the range of 20 to 60% by mass.
  • the modified polybutadiene rubber has a nitrogen-containing functional group at the active end after polymerizing 1,3-butadiene or synthesizing polybutadiene having an active end using a polymerization initiator having a nitrogen-containing functional group. It can be synthesized by a known method such as modification with a modifying agent.
  • the nitrogen-containing functional group is preferably a functional group derived from hexamethyleneimine (for example, a hexamethyleneimino group).
  • the above-mentioned polymerization initiator having a nitrogen-containing functional group may be used in a polymerization reaction by preliminarily preparing lithium hexamethyleneimide or the like from a lithium compound such as n-butyllithium and a secondary amine such as hexamethyleneimine. May be produced in the polymerization system.
  • the modifying agent include tin-containing compounds such as tin tetrachloride, N, N′-dimethylimidazolidinone, N-methylpyrrolidone, 4-dimethylaminobenzylideneaniline, and 4,4′-bis (N, N-dimethyl).
  • Nitrogen-containing compounds such as amino) benzophenone, silicon tetrachloride, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, N- (1-methylpropylidene) -3- (triethoxysilyl) -1-propanamine, N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine, N- (3-triethoxysilylpropyl) -4,5-dihydroimidazole, 3 Examples include silicon-containing compounds such as 3-methacryloyloxypropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, and 3-triethoxysilylpropyl succinic anhydride. That.
  • the tire tread rubber of the present invention it is preferable to use a rubber composition in which 3 to 30 parts by mass of silica is blended with 100 parts by mass of the rubber component.
  • a rubber composition containing silica as a tread rubber, it is possible to achieve both on-ice performance (flexibility at low temperatures) and wear resistance while reducing rolling resistance of the tire. If the amount of silica is less than 3 parts by mass, it is difficult to achieve both of the above while reducing rolling resistance. On the other hand, if it exceeds 30 parts by mass, the wear resistance is reduced.
  • the tread rubber of the tire of the present invention it is also preferable to use a rubber composition in which 0.1 to 10 parts by mass of polyethylene short fibers are blended with 100 parts by mass of the rubber component.
  • a rubber composition containing polyethylene short fibers is used for a tread rubber, the polyethylene short fibers melt or soften during vulcanization, while the gas generated during vulcanization in the rubber matrix melts or softens.
  • long bubbles are generated where the polyethylene short fibers were present.
  • the long air bubbles exist independently (as independent air bubbles) in the tread rubber and can function as a micro drainage groove, so that the on-ice performance of the tire can be improved.
  • the blending amount of the polyethylene short fiber is less than 0.1 parts by mass, sufficient drainage effect may not be obtained.
  • it exceeds 10 parts by mass the elastic modulus may increase and the performance on ice may be deteriorated. .
  • the tire of the present invention is a rubber composition
  • a rubber component made of natural rubber and a diene synthetic rubber and a compounding agent such as a filler such as carbon black or silica, a short polyethylene fiber, a foaming agent, and a foaming aid.
  • the rubber composition can be used as a tread rubber and vulcanized according to a conventional method.
  • the tire of the present invention has low rolling resistance, excellent performance on ice and wear resistance, and can be used as a studless tire for various vehicles, but is particularly suitable as a heavy duty studless tire. .
  • the natural rubber latex (CT-1) added with 0.4% by mass of ammonia was concentrated by centrifuging at a rotational speed of 7500 rpm for 15 minutes using a latex separator SLP-3000 (manufactured by Saito Centrifuge Co., Ltd.).
  • the concentrated latex was further centrifuged at 7500 rpm for 15 minutes.
  • the resulting concentrated latex is diluted to about 20% as a solid content, then formic acid is added, and after standing overnight, the rubber content obtained by coagulation is dried at 110 ° C. for 210 minutes to partially deproteinize natural rubber Manufactured. It was 0.15 mass% when the total nitrogen content of the obtained natural rubber was measured by the Kjeldahl method.
  • Example of production of modified natural rubber The field latex was centrifuged at a rotational speed of 7500 rpm using a latex separator (manufactured by Saito Centrifugal Industries) to obtain a concentrated latex having a dry rubber concentration of 60%. 1000 g of this concentrated latex is put into a stainless steel reaction vessel equipped with a stirrer and a temperature control jacket, and 10 mL of water and 90 mg of emulsifier [Emulgen 1108, manufactured by Kao Corporation] are added in advance to N, N-diethylaminoethyl methacrylate.
  • a latex separator manufactured by Saito Centrifugal Industries
  • the emulsion added in addition to 3.0 g was added with 990 mL of water, and these were stirred at room temperature for 30 minutes while purging with nitrogen.
  • 1.2 g of tert-butyl hydroperoxide and 1.2 g of tetraethylenepentamine were added as polymerization initiators and reacted at 40 ° C. for 30 minutes to obtain a modified natural rubber latex.
  • Formic acid was added to the modified natural rubber latex to adjust the pH to 4.7 to coagulate the modified natural rubber latex.
  • the solid thus obtained was treated five times with a creper, passed through a shredder and crushed, and then dried at 110 ° C. for 210 minutes with a hot air dryer to obtain a modified natural rubber.
  • the modified natural rubber From the mass of the modified natural rubber thus obtained, it was confirmed that the conversion rate of N, N-diethylaminoethyl methacrylate added as a monomer was 100%.
  • the modified natural rubber was extracted with petroleum ether and further extracted with a 2: 1 mixed solvent of acetone and methanol, but when the extract was analyzed, the homopolymer was not detected. It was confirmed that 100% of the added monomer was introduced into the natural rubber molecule. Accordingly, the polar group content of the resulting modified natural rubber is 0.027 mmol / g with respect to the rubber component in the natural rubber latex.
  • modified polybutadiene rubber In a 800 mL pressure-resistant glass container that has been dried and purged with nitrogen, cyclohexane solution of 1,3-butadiene (16%), cyclohexane solution of styrene (21%), 40 g of 1,3-butadiene and 10 g of styrene Then, 0.12 mmol of 2,2-ditetrahydrofurylpropane was injected, and 0.4 mmol of lithium hexamethyleneimide was added thereto, followed by polymerization reaction in a warm water bath at 50 ° C. for 1.5 hours. The polymerization conversion rate at this time was almost 100%.
  • modified BR modified polybutadiene rubber
  • Rubber compositions having the formulations shown in Tables 1 and 2 were prepared according to a conventional method.
  • the resulting rubber composition was vulcanized at 145 ° C. for 33 minutes to prepare a sample having a width of 4.7 mm, a thickness of 2 mm, and a length of 40 mm, and an initial load of 1.57 N using a spectrometer made by Kamijima.
  • the dynamic storage elastic modulus (E ′) was measured at a temperature of 26 ° C., a frequency of 52 Hz, and a tensile dynamic strain of 0.1% or 2%, and the difference ( ⁇ E ′) was calculated.
  • Rolling resistance The rolling resistance was measured by running on a drum at a speed of 80 km / h.
  • the rolling resistance of the tire of Comparative Example 1 was indicated as 100 and indicated as an index. It shows that rolling resistance of a tire is so small that an index value is small.
  • Abrasion resistance Measure the groove depth of the tire when the above test tire is mounted on a vehicle and run for 50,000 km, and the travel distance / (groove depth of the tire before running minus the tire after running) The value of the groove depth) was calculated, and indexed with Comparative Example 1 as 100. It shows that it is excellent in abrasion resistance, so that an index value is large.
  • the tire of Comparative Example 5 in which the ratio of Rz to Ra (Rz / Ra) of the worn surface of the tread rubber after traveling 8000 km on the asphalt road surface is less than 15 is higher on the ice than the tire of Comparative Example 1.
  • the performance was deteriorated and the wear resistance was greatly deteriorated.
  • ⁇ E ′ of the tread rubber is 4.0 MPa or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Tires In General (AREA)

Abstract

Disclosed is a tire, which is excellent in on-ice performance, high in wear-resistance and low in rolling resistance. The tire is characterized in that its tread portion is made of tread rubber, in which ΔE' defined by the following formula (1) is 7.0 MPa or less: Δ E' = 0.1 %E' - 2 %E' (1), [wherein 0.1 %E' and 2 %E' indicate the dynamic storage elastic moduli which were measured for a frequency of 52 Hz and a tensile dynamic strain of 0.1 % or 2 % under the conditions of an initial load of 1.57 N and a temperature of 26 ºC]. The tire is characterized in that the average center-line roughness (Ra) of the worn face of the tread rubber after a run of 8000 Km on the asphalt road surface is 12 to 40 μm, and in that the ratio (Rz/Ra) between an average ten-point roughness (Rz) and the average center-line roughness (Ra) is 15 or more.

Description

タイヤtire
 本発明は、タイヤ、特には、氷上性能が良好で且つ耐摩耗性が高い上、転がり抵抗が小さいタイヤに関するものである。 The present invention relates to a tire, in particular, a tire having good performance on ice, high wear resistance, and low rolling resistance.
 トラックやバスに用いられる重荷重用空気入りタイヤは、安全性の観点から、十分な氷上性能を有することが、また、経済性の観点から、十分な耐摩耗性を有することが必要である。 Heavy duty pneumatic tires used for trucks and buses must have sufficient performance on ice from the viewpoint of safety and sufficient wear resistance from the viewpoint of economy.
 また、近年、上記重荷重用タイヤとして、氷上性能や耐摩耗性を損なうことなく、転がり抵抗を低減させたタイヤが求められている。ここで、タイヤの中でもトレッドゴムは、走行中に大きな変形を繰り返すことによって発熱するため、タイヤの転がり抵抗に対する影響が特に大きい。 In recent years, tires with reduced rolling resistance have been demanded as the above heavy duty tires without impairing on-ice performance and wear resistance. Here, among the tires, the tread rubber generates heat by repeatedly undergoing a large deformation during traveling, and therefore has a particularly large influence on the rolling resistance of the tire.
 従来、タイヤの氷上性能を向上させる手法としては、トレッドパターンのエッヂ成分を向上させる手法が知られているが、この場合、ブロックの動きが大きくなるため、低ロス性能が損なわれ(即ち、ヒステリシスロスが大きくなり)、タイヤの転がり抵抗が大きくなる問題があり、氷上性能の向上と、転がり抵抗の低減とを両立することができない(特開2004-238619号公報参照)。 Conventionally, as a technique for improving the on-ice performance of a tire, a technique for improving the edge component of the tread pattern is known, but in this case, the movement of the block is increased, so that the low loss performance is impaired (that is, hysteresis). There is a problem that the rolling resistance of the tire increases and the improvement of the performance on ice and the reduction of the rolling resistance cannot be achieved at the same time (see Japanese Patent Application Laid-Open No. 2004-238619).
 そこで、本発明の目的は、上記従来技術の問題を解決し、氷上性能が良好で且つ耐摩耗性が高い上、転がり抵抗が小さいタイヤを提供することにある。 Therefore, an object of the present invention is to provide a tire that solves the above-mentioned problems of the prior art, has good performance on ice, has high wear resistance, and has low rolling resistance.
 本発明者は、上記目的を達成するために鋭意検討した結果、(1)特定条件でのトレッドゴムのΔE'を特定値以下とすることでタイヤの転がり抵抗が減少し、また、(2)一定距離走行後のトレッドゴム摩耗面の中心線平均粗さ(Ra)を特定の範囲にしつつ十点平均粗さ(Rz)と中心線平均粗さ(Ra)との比を特定値以上とすることでタイヤの氷上性能が向上し、更に、(1)及び(2)を同時に満たすことで、高い耐摩耗性を有しつつ、氷上性能が良好で、転がり抵抗の小さいタイヤが得られることを見出し、本発明を完成させるに至った。 As a result of intensive studies to achieve the above object, the inventor of the present invention (1) reduces the rolling resistance of the tire by setting ΔE ′ of the tread rubber under a specific condition to a specific value or less, and (2) The ratio between the ten-point average roughness (Rz) and the centerline average roughness (Ra) is not less than a specific value while keeping the centerline average roughness (Ra) of the tread rubber worn surface after traveling a certain distance within a specific range. It is possible to improve the on-ice performance of the tire, and further satisfy (1) and (2) at the same time to obtain a tire having high on-ice performance and low rolling resistance while having high wear resistance. The headline and the present invention have been completed.
 即ち、本発明のタイヤは、下記式(I):
   ΔE'=0.1%E'-2%E' ・・・ (I)
[式中、0.1%E'及び2%E'は、それぞれ初期荷重1.57 N、温度26℃の条件下で周波数52 Hz、引張動歪0.1%又は2%で測定した動的貯蔵弾性率を示す]で定義されるΔE'が7.0 MPa以下であるトレッドゴムをトレッド部に具え、
 アスファルト路面を8000 km走行した後の前記トレッドゴムの摩耗面の中心線平均粗さ(Ra)が12~40μmで且つ及び十点平均粗さ(Rz)と中心線平均粗さ(Ra)との比(Rz/Ra)が15以上であることを特徴とする。なお、本発明のタイヤは、重荷重用スタッドレスタイヤとして特に好適である。
That is, the tire of the present invention has the following formula (I):
ΔE '= 0.1% E'-2% E' (I)
[Where 0.1% E ′ and 2% E ′ represent the dynamic storage modulus measured at an initial load of 1.57 N, a temperature of 26 ° C., a frequency of 52 Hz, and a tensile dynamic strain of 0.1% or 2%, respectively. The tread rubber having ΔE ′ defined by
The centerline average roughness (Ra) of the worn surface of the tread rubber after traveling 8000 km on the asphalt road surface is 12 to 40 μm, and the 10-point average roughness (Rz) and the centerline average roughness (Ra) The ratio (Rz / Ra) is 15 or more. The tire of the present invention is particularly suitable as a heavy load studless tire.
 本発明のタイヤのトレッドゴムは、上記式(I)で定義されるΔE'が4.0 MPa以下であることが好ましい。この場合、タイヤの転がり抵抗が更に小さくなる。 In the tread rubber of the tire of the present invention, ΔE ′ defined by the above formula (I) is preferably 4.0 μM or less. In this case, the rolling resistance of the tire is further reduced.
 本発明のタイヤにおいて、前記トレッドゴムに用いるゴム組成物としては、ゴム成分100質量部に対してシリカ3~30質量部を配合してなるゴム組成物が好ましい。 In the tire of the present invention, the rubber composition used for the tread rubber is preferably a rubber composition in which 3 to 30 parts by mass of silica is blended with 100 parts by mass of the rubber component.
 本発明のタイヤの好適例においては、前記トレッドゴムが独立気泡を有する。ここで、該トレッドゴムは、発泡率が5~30%の範囲にあることが好ましい。また、該トレッドゴムに用いるゴム組成物としては、ゴム成分100質量部に対してポリエチレン短繊維0.1~10質量部を配合してなるゴム組成物が好ましい。 In a preferred example of the tire of the present invention, the tread rubber has closed cells. Here, the tread rubber preferably has a foaming ratio in the range of 5 to 30%. The rubber composition used for the tread rubber is preferably a rubber composition obtained by blending 0.1 to 10 parts by mass of polyethylene short fibers with 100 parts by mass of the rubber component.
 本発明のタイヤの他の好適例においては、前記トレッドゴムのゴム成分が天然ゴム及びジエン系合成ゴムよりなり、その質量比(天然ゴム/ジエン系合成ゴム)が80/20~40/60である。ここで、前記天然ゴムとしては、天然ゴムラテックス中のタンパク質を機械的分離手法により部分脱タンパク処理してなるラテックスから得られた総窒素含有量が0.1質量%を超え且つ0.4質量%以下である天然ゴム、及び天然ゴム分子中に極性基を含有する変性天然ゴムが好ましい。また、前記ジエン系合成ゴムとしては、含窒素官能基を有する変性ポリブタジエンゴムが好ましく、該含窒素官能基は、ヘキサメチレンイミンに由来することが好ましい。 In another preferred embodiment of the tire of the present invention, the rubber component of the tread rubber is composed of natural rubber and a diene synthetic rubber, and the mass ratio (natural rubber / diene synthetic rubber) is 80/20 to 40/60. is there. Here, as the natural rubber, the total nitrogen content obtained from the latex obtained by partially deproteinizing the protein in the natural rubber latex by a mechanical separation technique is more than 0.1 mass% and 0.4 mass% or less. Natural rubber and modified natural rubber containing a polar group in the natural rubber molecule are preferred. The diene synthetic rubber is preferably a modified polybutadiene rubber having a nitrogen-containing functional group, and the nitrogen-containing functional group is preferably derived from hexamethyleneimine.
 本発明によれば、(1)特定条件でのトレッドゴムのΔE'が特定値以下であり、(2)一定距離走行後のトレッドゴム摩耗面の中心線平均粗さ(Ra)が特定の範囲にあり且つ十点平均粗さ(Rz)と中心線平均粗さ(Ra)との比が特定値以上であり、氷上性能が良好で且つ耐摩耗性が高い上、転がり抵抗が小さいタイヤを提供することができる。 According to the present invention, (1) ΔE ′ of the tread rubber under a specific condition is not more than a specific value, and (2) the center line average roughness (Ra) of the tread rubber worn surface after traveling a certain distance is in a specific range. In addition, the ratio of the ten-point average roughness (Rz) to the centerline average roughness (Ra) is equal to or higher than a specific value, providing excellent on-ice performance, high wear resistance, and low rolling resistance. can do.
 以下に、本発明を詳細に説明する。本発明のタイヤは、上記式(I)で定義されるΔE'が7.0 MPa以下であるトレッドゴムをトレッド部に具え、アスファルト路面を8000 km走行した後の前記トレッドゴムの摩耗面の中心線平均粗さ(Ra)が12~40μmで且つ及び十点平均粗さ(Rz)と中心線平均粗さ(Ra)との比(Rz/Ra)が15以上であることを特徴とする。 Hereinafter, the present invention will be described in detail. The tire according to the present invention includes a tread rubber having ΔE ′ defined by the above formula (I) of 7.0 μMPa or less in a tread portion, and an average center line of the wear surface of the tread rubber after running on an asphalt road surface for 8,000 km. The roughness (Ra) is 12 to 40 μm, and the ratio (Rz / Ra) of ten-point average roughness (Rz) to centerline average roughness (Ra) is 15 or more.
 上記トレッドゴムのΔE'を7.0 MPa以下とすることで、低ロス性が向上し(即ち、ヒステリシスロスが小さくなり)、タイヤの転がり抵抗を減少させることができる。また、アスファルト路面を8000 km走行した後のトレッドゴム摩耗面の中心線平均粗さ(Ra)を12~40μmとしつつ、十点平均粗さRzと中心線平均粗さ(Ra)との比(Rz/Ra)を15以上とすることで、平均摩耗に比べて最大摩耗が大きくなり、タイヤの接地面積と排水体積とがバランス化され、氷上性能を向上させることができる。更に、これらの特徴事項を組み合わせることで、高い耐摩耗性と、良好な氷上性能と、低い転がり抵抗とを同時に達成することが可能となる。 When the ΔE ′ of the tread rubber is 7.0 μM or less, the low loss property is improved (that is, the hysteresis loss is reduced), and the tire rolling resistance can be reduced. Also, the ratio of the 10-point average roughness Rz to the centerline average roughness (Ra) (with the centerline average roughness (Ra) of the tread rubber wear surface after traveling 8000 km on the asphalt road surface being 12-40 μm) By setting Rz / Ra) to 15 or more, the maximum wear is larger than the average wear, the ground contact area of the tire and the drainage volume are balanced, and the performance on ice can be improved. Furthermore, by combining these characteristics, it is possible to simultaneously achieve high wear resistance, good on-ice performance, and low rolling resistance.
 ここで、上記トレッドゴムのΔE'が7.0 MPaを超えると、低ロス性が悪化し(即ち、ヒステリシスロスが大きくなり)、タイヤの転がり抵抗が増加してしまう。なお、タイヤの転がり抵抗を更に減少させる観点から、上記トレッドゴムのΔE'は、4.0 MPa以下であることが好ましく、3.5 MPa以下であることが更に好ましい。なお、ΔE'は、分散性の指標であるため、低い程好ましく、また、ΔE'が低い程、低ロス性が良好となる。 Here, when ΔE ′ of the tread rubber exceeds 7.0 μMa, the low loss property is deteriorated (that is, the hysteresis loss is increased), and the rolling resistance of the tire is increased. From the viewpoint of further reducing the rolling resistance of the tire, ΔE ′ of the tread rubber is preferably 4.0 MPa or less, and more preferably 3.5 MPa or less. In addition, since ΔE ′ is an index of dispersibility, it is preferably as low as possible. Also, as ΔE ′ is low, the low loss property is favorable.
 また、アスファルト路面を8000 km走行した後のトレッドゴムの摩耗面の中心線平均粗さ(Ra)が12μm未満では、氷上性能が低下し、一方、40μmを超えても、氷上性能が低下する。なお、タイヤの氷上性能を更に向上させる観点から、Raは、20~40μmの範囲が好ましく、25~35μmの範囲が更に好ましい。なお、アスファルト路面を8000 km走行すると、トレッド表面が1 mm程度摩耗して、発泡面が露出してくる。 Also, if the centerline average roughness (Ra) of the tread rubber wear surface after traveling 8000 km on an asphalt road surface is less than 12 μm, the performance on ice will decrease, and if it exceeds 40 μm, the performance on ice will decrease. From the viewpoint of further improving the on-ice performance of the tire, Ra is preferably in the range of 20 to 40 μm, and more preferably in the range of 25 to 35 μm. In addition, when traveling on an asphalt road surface for 8,000 km, the tread surface is worn by about 1 mm and the foam surface is exposed.
 更に、アスファルト路面を8000 km走行した後のトレッドゴムの摩耗面の十点平均粗さ(Rz)と中心線平均粗さ(Ra)との比(Rz/Ra)が15未満でも、氷上性能が低下する。即ち、表面が粗過ぎても、接地面積が小さくなるため、氷上性能が低下し、また、表面の粗さが小さ過ぎても、排水体積が小さくなるため、氷上性能が低下し、更に、Rz/Raが小さいと、表面の粗さの割りに排水体積が小さくなるため、氷上性能が低下する。なお、氷上性能(表面の流水抵抗)の観点から、Rz/Raは、40以下であることが好ましく、排水体積、流水抵抗、耐摩耗性の観点から、Rz/Raは、15~20の範囲が更に好ましい。 Furthermore, even if the ratio (Rz / Ra) of the ten-point average roughness (Rz) to the centerline average roughness (Ra) of the worn surface of the tread rubber after traveling 8000 km on the asphalt road surface is less than 15, the performance on ice is good. descend. That is, even if the surface is too rough, the contact area is small, so the performance on ice is reduced. Also, if the surface is too small, the drainage volume is small, so the performance on ice is reduced. When / Ra is small, the drainage volume becomes small for the surface roughness, so the performance on ice is degraded. From the viewpoint of performance on ice (surface running water resistance), Rz / Ra is preferably 40 or less, and from the viewpoint of drainage volume, running water resistance, and wear resistance, Rz / Ra is in the range of 15-20. Is more preferable.
 本発明のタイヤのトレッドゴムは、独立気泡を有することが好ましい。トレッドゴムが独立気泡を有する場合、タイヤの排水体積が増加して、氷上性能が向上する。また、該独立気泡を有するトレッドゴムの発泡率は、5~30%の範囲が好ましい。トレッドゴムの発泡率が5%未満では、氷上性能の向上効果が小さく、一方、30%を超えると、耐摩耗性が低下する傾向がある。なお、発泡率(Vs)は、次式により算出できる。
   Vs=(ρ0/ρ1-1)×100(%)
[式中、ρ1はトレッドゴムの密度(g/cm3)を表し、ρ0はトレッドゴムの固相部の密度(g/cm3)表す]。なお、トレッドゴムの密度及びトレッドゴムの固相部の密度は、エタノール中の質量と空気中の質量を測定し、これから算出される。また、発泡率は、発泡剤や発泡助剤の種類、量等により適宜変化させることができ、発泡剤としては、アゾジカルボンアミド(ADCA)、ジニトロソペンタメチレンテトラミン(DPT)、ジニトロソペンタスチレンテトラミンやベンゼンスルホニルヒドラジド誘導体、p,p'-オキシビスベンゼンスルホニルヒドラジド(OBSH)、二酸化炭素を発生する重炭酸アンモニウム、重炭酸ナトリウム、炭酸アンモニウム、窒素を発生するニトロソスルホニルアゾ化合物、N,N'-ジメチル-N,N'-ジニトロソフタルアミド、トルエンスルホニルヒドラジド、p-トルエンスルホニルセミカルバジド、p,p'-オキシビスベンゼンスルホニルセミカルバジド等が挙げられ、発泡助剤としては、尿素、ステアリン酸亜鉛、ベンゼンスルフィン酸亜鉛や亜鉛華等が挙げられる。
The tread rubber of the tire of the present invention preferably has closed cells. When the tread rubber has closed cells, the drainage volume of the tire is increased and the performance on ice is improved. Further, the expansion ratio of the tread rubber having closed cells is preferably in the range of 5 to 30%. When the foaming ratio of the tread rubber is less than 5%, the effect on improving the performance on ice is small, whereas when it exceeds 30%, the wear resistance tends to be lowered. The foaming rate (Vs) can be calculated by the following formula.
Vs = (ρ 0 / ρ 1 −1) × 100 (%)
Wherein, [rho 1 represents the density of the tread rubber (g / cm 3), ρ 0 represents the density of the solid phase portion of the tread rubber (g / cm 3)]. The density of the tread rubber and the density of the solid phase portion of the tread rubber are calculated from the mass in ethanol and the mass in air. The foaming rate can be changed as appropriate depending on the type and amount of the foaming agent and foaming aid. Examples of the foaming agent include azodicarbonamide (ADCA), dinitrosopentamethylenetetramine (DPT), and dinitrosopentastyrene. Tetramine and benzenesulfonylhydrazide derivatives, p, p'-oxybisbenzenesulfonylhydrazide (OBSH), ammonium bicarbonate that generates carbon dioxide, sodium bicarbonate, ammonium carbonate, nitrososulfonylazo compounds that generate nitrogen, N, N ' -Dimethyl-N, N′-dinitrosophthalamide, toluenesulfonyl hydrazide, p-toluenesulfonyl semicarbazide, p, p′-oxybisbenzenesulfonyl semicarbazide and the like, and foaming aids include urea, zinc stearate, Zinc benzenesulfinate and zinc Hana, and the like.
 上記トレッドゴムのゴム成分は、天然ゴム及びジエン系合成ゴムよりなり、その質量比(天然ゴム/ジエン系合成ゴム)が80/20~40/60であることが好ましい。この場合、タイヤの氷上性能と耐摩耗性とを両立し易い。なお、天然ゴムの比率がゴム成分の80質量%を超えると(ジエン系合成ゴムの比率がゴム成分の20質量%未満では)、耐摩耗性と氷上性能が低下する傾向があり、一方、天然ゴムの比率がゴム成分の40質量%未満では(ジエン系合成ゴムの比率がゴム成分の60質量%を超えると)、作業性が低下する傾向がある。 The rubber component of the tread rubber is preferably composed of natural rubber and diene synthetic rubber, and the mass ratio (natural rubber / diene synthetic rubber) is preferably 80/20 to 40/60. In this case, it is easy to achieve both on-ice performance and wear resistance of the tire. In addition, when the ratio of natural rubber exceeds 80% by mass of the rubber component (when the ratio of diene synthetic rubber is less than 20% by mass of the rubber component), there is a tendency that the wear resistance and the performance on ice tend to be reduced. When the ratio of rubber is less than 40% by mass of the rubber component (when the ratio of diene synthetic rubber exceeds 60% by mass of the rubber component), workability tends to decrease.
 上記天然ゴムとしては、天然ゴムラテックス中のタンパク質を機械的分離手法により部分脱タンパク処理してなるラテックスから得られた総窒素含有量が0.1質量%を超え且つ0.4質量%以下である天然ゴムが好ましい。該部分脱タンパク天然ゴムは、カーボンブラック等の充填剤の分散性を向上させることができ、トレッドゴムの低温での柔軟性を向上させることができる。ここで、ゴム成分中の部分脱タンパク天然ゴムの含有率は、40~80質量%の範囲が好ましい。 Examples of the natural rubber include natural rubber having a total nitrogen content of more than 0.1% by mass and 0.4% by mass or less obtained from latex obtained by partially deproteinizing protein in natural rubber latex by mechanical separation technique. preferable. The partially deproteinized natural rubber can improve the dispersibility of fillers such as carbon black, and can improve the flexibility of the tread rubber at low temperatures. Here, the content of the partially deproteinized natural rubber in the rubber component is preferably in the range of 40 to 80% by mass.
 上記部分脱タンパク天然ゴムは、一般的な天然ゴム製造工程、即ち、ラテックスのタッピング、凝固、洗浄、脱水、乾燥、パッキングの順で行われる工程において、タッピング後且つ凝固前のラテックスを、固形成分中の総窒素含有量が上記の範囲となるように、機械的分離手法、好ましくは、遠心分離濃縮法により部分脱タンパク処理を行った後、得られた天然ゴムラテックスを凝固し、洗浄後、真空乾燥機、エアドライヤー、ドラムドライヤー等の通常の乾燥機を用いて乾燥処理することにより得られる。なお、原料となる天然ゴムラテックスは、特に限定されず、フィールドラテックスや市販のラテックス等を用いることができる。 The partially deproteinized natural rubber is obtained by converting the latex after tapping and before coagulation into a solid component in a general natural rubber production process, that is, in the order of latex tapping, coagulation, washing, dehydration, drying, and packing. After the partial deproteinization treatment by a mechanical separation method, preferably, centrifugal concentration method, so that the total nitrogen content in the above range, the obtained natural rubber latex is coagulated, washed, It can be obtained by drying using a normal dryer such as a vacuum dryer, air dryer, drum dryer or the like. In addition, the natural rubber latex used as a raw material is not particularly limited, and a field latex, a commercially available latex, or the like can be used.
 なお、脱タンパク処理法としては、タンパク質分解酵素を用いた分解処理方法、界面活性剤を用い繰り返し洗浄する方法、酵素と界面活性剤とを併用する方法等が知られているが、これらの方法では、固形ゴム中のタンパク質が減少するものの、同時に老化防止作用を有するトコトリエノール等の有効成分も失われるため、天然ゴム本来の耐老化性が低下してしまう。一方、機械的分離手法では、トコトリエノール等の有効成分が殆ど失われないため、耐熱性を従来の天然ゴムとほぼ同等に維持することができる。 In addition, as a deproteinization treatment method, a degradation treatment method using a proteolytic enzyme, a method of repeatedly washing with a surfactant, a method of using an enzyme and a surfactant in combination, and the like are known. However, although the protein in the solid rubber is reduced, at the same time, active ingredients such as tocotrienol having an anti-aging action are lost, so that the natural aging resistance inherent in natural rubber is lowered. On the other hand, in the mechanical separation method, since the active ingredient such as tocotrienol is hardly lost, the heat resistance can be maintained almost equal to that of the conventional natural rubber.
 上記天然ゴム中の総窒素含有量は、タンパク質含量の指標となるもので、原料天然ゴムラテックスの遠心分離条件(回転数、時間等)を調整してコントロールすることができる。ここで、遠心分離の条件としては、特に制限されるものではないが、例えば7500 rpm程度の回転数で数回繰り返し行うことが好ましい。なお、総窒素含有量が0.1質量%以下では、耐熱老化性が低下し、一方、0.4質量%を超えると、充分な低発熱性が得られないことがある。また、上記天然ゴム中の総窒素含有量は、0.2~0.4質量%の範囲が好ましい。 The total nitrogen content in the natural rubber is an index of protein content, and can be controlled by adjusting the centrifugation conditions (rotation speed, time, etc.) of the raw natural rubber latex. Here, the conditions for the centrifugation are not particularly limited, but it is preferable that the centrifugation is repeated several times at a rotational speed of about 7500 rpm. When the total nitrogen content is 0.1% by mass or less, the heat aging resistance is lowered. On the other hand, when the total nitrogen content exceeds 0.4% by mass, a sufficiently low exothermic property may not be obtained. The total nitrogen content in the natural rubber is preferably in the range of 0.2 to 0.4% by mass.
 また、上記天然ゴムとしては、天然ゴム分子中に極性基を含有する変性天然ゴムも好ましい。該変性天然ゴムも、カーボンブラック等の充填剤の分散性を向上させることができ、トレッドゴムの低温での柔軟性を向上させることができる。ここで、ゴム成分中の変性天然ゴムの含有率は、40~80質量%の範囲が好ましい。 As the natural rubber, a modified natural rubber containing a polar group in the natural rubber molecule is also preferable. The modified natural rubber can also improve the dispersibility of fillers such as carbon black, and can improve the flexibility of the tread rubber at low temperatures. Here, the content of the modified natural rubber in the rubber component is preferably in the range of 40 to 80% by mass.
 上記変性天然ゴムとしては、天然ゴムラテックスに極性基含有単量体を添加し、該極性基含有単量体を天然ゴムラテックス中の天然ゴム分子にグラフト重合させ、更に凝固及び乾燥して得た変性天然ゴムが好ましい。該変性天然ゴムの製造に用いる天然ゴムラテックスとしては、特に限定されず、例えば、フィールドラテックス、アンモニア処理ラテックス、遠心分離濃縮ラテックス、界面活性剤や酵素で処理した脱タンパク質ラテックス、及びこれらを組み合わせたもの等を用いることができる。また、上記変性天然ゴムにおいて、上記極性基含有単量体のグラフト量は、天然ゴムラテックス中のゴム成分に対して0.01~5.0質量%の範囲が好ましく、0.1~3.0質量%の範囲が更に好ましく、0.2~1.0質量%の範囲がより一層好ましい。 The modified natural rubber was obtained by adding a polar group-containing monomer to natural rubber latex, graft-polymerizing the polar group-containing monomer to natural rubber molecules in the natural rubber latex, and further coagulating and drying. Modified natural rubber is preferred. The natural rubber latex used for the production of the modified natural rubber is not particularly limited. For example, field latex, ammonia-treated latex, centrifugal concentrated latex, deproteinized latex treated with a surfactant or an enzyme, and combinations thereof are combined. A thing etc. can be used. In the modified natural rubber, the graft amount of the polar group-containing monomer is preferably in the range of 0.01 to 5.0% by mass, more preferably in the range of 0.1 to 3.0% by mass with respect to the rubber component in the natural rubber latex. The range of 0.2 to 1.0% by mass is even more preferable.
 上記天然ゴムラテックスに添加される極性基含有単量体は、分子内に少なくとも一つの極性基を有し、天然ゴム分子とグラフト重合できる限り特に制限されるものでない。ここで、該極性基含有単量体は、天然ゴム分子とグラフト重合するために、分子内に炭素-炭素二重結合を有することが好ましく、極性基含有ビニル系単量体であることが好ましい。上記極性基の具体例としては、アミノ基、イミノ基、ニトリル基、アンモニウム基、イミド基、アミド基、ヒドラゾ基、アゾ基、ジアゾ基、ヒドロキシル基、カルボキシル基、カルボニル基、エポキシ基、オキシカルボニル基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、含窒素複素環基、含酸素複素環基、アルコキシシリル基及びスズ含有基等を好適に挙げることができる。これら極性基を含有する単量体は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The polar group-containing monomer added to the natural rubber latex is not particularly limited as long as it has at least one polar group in the molecule and can be graft-polymerized with the natural rubber molecule. Here, the polar group-containing monomer preferably has a carbon-carbon double bond in the molecule for graft polymerization with a natural rubber molecule, and is preferably a polar group-containing vinyl monomer. . Specific examples of the polar group include amino group, imino group, nitrile group, ammonium group, imide group, amide group, hydrazo group, azo group, diazo group, hydroxyl group, carboxyl group, carbonyl group, epoxy group, and oxycarbonyl. Preferred examples include groups, sulfide groups, disulfide groups, sulfonyl groups, sulfinyl groups, thiocarbonyl groups, nitrogen-containing heterocyclic groups, oxygen-containing heterocyclic groups, alkoxysilyl groups, and tin-containing groups. These monomers containing a polar group may be used singly or in combination of two or more.
 上記アミノ基を含有する単量体としては、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジプロピルアミノエチル(メタ)アクリレート、N,N-ジオクチルアミノエチル(メタ)アクリレート等が挙げられる。また、上記ニトリル基を含有する単量体としては、(メタ)アクリロニトリル、シアン化ビニリデン等が挙げられる。また、上記ヒドロキシル基を含有する単量体としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート等が挙げられる。また、上記カルボキシル基を含有する単量体としては、(メタ)アクリル酸、マレイン酸等が挙げられる。また、上記エポキシ基を含有する単量体としては、(メタ)アリルグリシジルエーテル、グリシジル(メタ)アクリレート、3,4-オキシシクロヘキシル(メタ)アクリレート等が挙げられる。また、上記含窒素複素環基を含有する単量体としては、2-ビニルピリジン、3-ビニルピリジン、4-ビニルピリジン、5-メチル-2-ビニルピリジン、5-エチル-2-ビニルピリジン等が挙げられる。また、上記スズ含有基を有する単量体としては、アリルトリ-n-ブチルスズ、アリルトリメチルスズ等が挙げられる。 Examples of the monomer containing an amino group include N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dipropylaminoethyl (meth) acrylate, N, N N-dioctylaminoethyl (meth) acrylate and the like can be mentioned. Examples of the monomer containing a nitrile group include (meth) acrylonitrile and vinylidene cyanide. Examples of the monomer containing a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and the like. Examples of the monomer containing a carboxyl group include (meth) acrylic acid and maleic acid. Examples of the monomer containing an epoxy group include (meth) allyl glycidyl ether, glycidyl (meth) acrylate, and 3,4-oxycyclohexyl (meth) acrylate. Examples of the monomer containing the nitrogen-containing heterocyclic group include 2-vinylpyridine, 3-vinylpyridine, 4-vinylpyridine, 5-methyl-2-vinylpyridine, 5-ethyl-2-vinylpyridine, and the like. Is mentioned. Examples of the monomer having a tin-containing group include allyltri-n-butyltin and allyltrimethyltin.
 上記極性基含有単量体の天然ゴム分子へのグラフト重合は、乳化重合で行われることが好ましい。ここで、該乳化重合においては、一般的に、天然ゴムラテックスに水及び必要に応じて乳化剤を加えた溶液中に、上記極性基含有単量体を加え、更に重合開始剤を加えて、所定の温度で撹拌して極性基含有単量体を重合させることが好ましい。なお、上記乳化剤としては、ポリオキシエチレンラウリルエーテル等のノニオン系の界面活性剤を使用することができる。また、上記重合開始剤としては、レドックス系の重合開始剤を用いることが好ましく、過酸化ベンゾイル、過酸化水素、クメンハイドロパーオキサイド、tert-ブチルハイドロパーオキサイド、ジ-tert-ブチルパーオキサイド等の過酸化物と、テトラエチレンペンタミン、メルカプタン類、酸性亜硫酸ナトリウム、還元性金属イオン、アスコルビン酸等の還元剤を組み合わせて使用することが好ましい。上述した各成分を反応容器に仕込み、30~80℃で10分~7時間反応させることで、天然ゴム分子に上記極性基含有単量体がグラフト共重合した変性天然ゴムラテックスが得られる。また、該変性天然ゴムラテックスを凝固させ、洗浄後、真空乾燥機、エアドライヤー、ドラムドライヤー等の乾燥機を用いて乾燥することで変性天然ゴムが得られる。ここで、変性天然ゴムラテックスを凝固するのに用いる凝固剤としては、特に限定されるものではないが、ギ酸、硫酸等の酸や、塩化ナトリウム等の塩が挙げられる。 The graft polymerization of the polar group-containing monomer onto the natural rubber molecule is preferably carried out by emulsion polymerization. Here, in the emulsion polymerization, generally, the polar group-containing monomer is added to a solution obtained by adding water and, if necessary, an emulsifier to a natural rubber latex, and a polymerization initiator is further added. It is preferable to polymerize the polar group-containing monomer by stirring at the temperature. As the emulsifier, a nonionic surfactant such as polyoxyethylene lauryl ether can be used. The polymerization initiator is preferably a redox polymerization initiator such as benzoyl peroxide, hydrogen peroxide, cumene hydroperoxide, tert-butyl hydroperoxide, or di-tert-butyl peroxide. It is preferable to use a combination of a peroxide and a reducing agent such as tetraethylenepentamine, mercaptans, acidic sodium sulfite, reducing metal ions, ascorbic acid or the like. Each component described above is charged into a reaction vessel and reacted at 30 to 80 ° C. for 10 minutes to 7 hours to obtain a modified natural rubber latex in which the polar group-containing monomer is graft copolymerized with natural rubber molecules. The modified natural rubber latex is coagulated, washed, and then dried using a dryer such as a vacuum dryer, an air dryer, a drum dryer or the like to obtain a modified natural rubber. Here, the coagulant used for coagulating the modified natural rubber latex is not particularly limited, and examples thereof include acids such as formic acid and sulfuric acid, and salts such as sodium chloride.
 上記ジエン系合成ゴムとしては、含窒素官能基を有する変性ポリブタジエンゴムが好ましい。該変性ポリブタジエンゴムは、カーボンブラック等の充填剤の分散性を向上させることができ、トレッドゴムの低温での柔軟性を向上させることができる。また、該変性ポリブタジエンゴムは、タイヤの耐摩耗性を向上させることができる。ここで、ゴム成分中の変性ポリブタジエンゴムの含有率は、20~60質量%の範囲が好ましい。 As the diene synthetic rubber, a modified polybutadiene rubber having a nitrogen-containing functional group is preferable. The modified polybutadiene rubber can improve the dispersibility of fillers such as carbon black, and can improve the flexibility of the tread rubber at low temperatures. Further, the modified polybutadiene rubber can improve the wear resistance of the tire. Here, the content of the modified polybutadiene rubber in the rubber component is preferably in the range of 20 to 60% by mass.
 上記変性ポリブタジエンゴムは、含窒素官能基を有する重合開始剤を使用して、1,3-ブタジエンを重合させたり、活性末端を有するポリブタジエンを合成した後、該活性末端を含窒素官能基を有する変性剤で変性する等の公知の方法で合成することができる。ここで、上記含窒素官能基としては、ヘキサメチレンイミンに由来する官能基(例えば、ヘキサメチレンイミノ基)が好ましい。上記含窒素官能基を有する重合開始剤は、n-ブチルリチウム等のリチウム化合物と、ヘキサメチレンイミン等の二級アミンとから、リチウムヘキサメチレンイミド等を予備調製して重合反応に用いてもよいが、重合系中で生成させてもよい。また、変性剤としては、四塩化スズ等のスズ含有化合物、N,N'-ジメチルイミダゾリジノン、N-メチルピロリドン、4-ジメチルアミノベンジリデンアニリン、4,4'-ビス(N,N-ジメチルアミノ)ベンゾフェノン等の窒素含有化合物、四塩化ケイ素、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、N-(1-メチルプロピリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾール、3-メタクリロイロキシプロピルトリメトキシシラン、3-イソシアナトプロピルトリエトキシシラン、3-トリエトキシシリルプロピルコハク酸無水物等のケイ素含有化合物が挙げられる。 The modified polybutadiene rubber has a nitrogen-containing functional group at the active end after polymerizing 1,3-butadiene or synthesizing polybutadiene having an active end using a polymerization initiator having a nitrogen-containing functional group. It can be synthesized by a known method such as modification with a modifying agent. Here, the nitrogen-containing functional group is preferably a functional group derived from hexamethyleneimine (for example, a hexamethyleneimino group). The above-mentioned polymerization initiator having a nitrogen-containing functional group may be used in a polymerization reaction by preliminarily preparing lithium hexamethyleneimide or the like from a lithium compound such as n-butyllithium and a secondary amine such as hexamethyleneimine. May be produced in the polymerization system. Examples of the modifying agent include tin-containing compounds such as tin tetrachloride, N, N′-dimethylimidazolidinone, N-methylpyrrolidone, 4-dimethylaminobenzylideneaniline, and 4,4′-bis (N, N-dimethyl). Nitrogen-containing compounds such as amino) benzophenone, silicon tetrachloride, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, N- (1-methylpropylidene) -3- (triethoxysilyl) -1-propanamine, N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine, N- (3-triethoxysilylpropyl) -4,5-dihydroimidazole, 3 Examples include silicon-containing compounds such as 3-methacryloyloxypropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, and 3-triethoxysilylpropyl succinic anhydride. That.
 本発明のタイヤのトレッドゴムには、ゴム成分100質量部に対してシリカ3~30質量部を配合してなるゴム組成物を用いることが好ましい。シリカを配合したゴム組成物をトレッドゴムに用いることで、タイヤの転がり抵抗を低減しつつ、氷上性能(低温でのしなやかさ)と耐摩耗性とを両立できる。なお、シリカの配合量が3質量部未満では、転がり抵抗を低減しつつ、上記の両立を達成することが困難であり、一方、30質量部を超えると、耐摩耗性が低下する。 In the tire tread rubber of the present invention, it is preferable to use a rubber composition in which 3 to 30 parts by mass of silica is blended with 100 parts by mass of the rubber component. By using a rubber composition containing silica as a tread rubber, it is possible to achieve both on-ice performance (flexibility at low temperatures) and wear resistance while reducing rolling resistance of the tire. If the amount of silica is less than 3 parts by mass, it is difficult to achieve both of the above while reducing rolling resistance. On the other hand, if it exceeds 30 parts by mass, the wear resistance is reduced.
 本発明のタイヤのトレッドゴムには、ゴム成分100質量部に対してポリエチレン短繊維0.1~10質量部を配合してなるゴム組成物を用いることも好ましい。ポリエチレン製の短繊維を配合したゴム組成物をトレッドゴムに用いた場合、加硫中にポリエチレン短繊維が溶融又は軟化し、一方、ゴムマトリックス中で加硫中に発生したガスは溶融又は軟化したポリエチレンの内部に留まる結果、ポリエチレン短繊維が存在していた場所に長尺状の気泡が生成する。該長尺状の気泡は、トレッドゴム内において独立して(独立気泡として)存在し、ミクロな排水溝として機能し得るため、タイヤの氷上性能を向上させることができる。なお、ポリエチレン短繊維の配合量が0.1質量部未満では、十分な排水効果が得られないことがあり、一方、10質量部を超えると、弾性率が上昇して氷上性能が低下することがある。 In the tread rubber of the tire of the present invention, it is also preferable to use a rubber composition in which 0.1 to 10 parts by mass of polyethylene short fibers are blended with 100 parts by mass of the rubber component. When a rubber composition containing polyethylene short fibers is used for a tread rubber, the polyethylene short fibers melt or soften during vulcanization, while the gas generated during vulcanization in the rubber matrix melts or softens. As a result of staying inside the polyethylene, long bubbles are generated where the polyethylene short fibers were present. The long air bubbles exist independently (as independent air bubbles) in the tread rubber and can function as a micro drainage groove, so that the on-ice performance of the tire can be improved. In addition, when the blending amount of the polyethylene short fiber is less than 0.1 parts by mass, sufficient drainage effect may not be obtained. On the other hand, when it exceeds 10 parts by mass, the elastic modulus may increase and the performance on ice may be deteriorated. .
 本発明のタイヤは、例えば、天然ゴム及びジエン系合成ゴムよりなるゴム成分に、カーボンブラックやシリカ等の充填剤、ポリエチレン短繊維、発泡剤、発泡助剤等の配合剤を配合してゴム組成物を調製し、該ゴム組成物をトレッドゴムとして使用し、常法に従って加硫することで製造することができる。なお、本発明のタイヤは、上述のように、転がり抵抗が小さく、氷上性能及び耐摩耗性に優れ、各種車両用のスタッドレスタイヤとして使用することができるが、重荷重用スタッドレスタイヤとして特に好適である。 The tire of the present invention is a rubber composition comprising, for example, a rubber component made of natural rubber and a diene synthetic rubber and a compounding agent such as a filler such as carbon black or silica, a short polyethylene fiber, a foaming agent, and a foaming aid. The rubber composition can be used as a tread rubber and vulcanized according to a conventional method. As described above, the tire of the present invention has low rolling resistance, excellent performance on ice and wear resistance, and can be used as a studless tire for various vehicles, but is particularly suitable as a heavy duty studless tire. .
<<実施例>>
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
<< Example >>
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
<部分脱タンパク天然ゴムの製造例>
 アンモニア0.4質量%を添加した天然ゴムラテックス(CT-1)を、ラテックスセパレーターSLP-3000[斉藤遠心機工業製]を用いて回転数7500 rpmで15分間遠心分離することにより濃縮した。濃縮したラテックスをさらに回転数7500 rpmで15分間遠心分離した。得られた濃縮ラテックスを固形分として約20%に希釈した後、ギ酸を添加し、一晩放置後、凝固して得られたゴム分を、110℃で210分間乾燥して部分脱タンパク天然ゴムを製造した。得られ天然ゴムの総窒素含有量を、ケルダール法によって測定したところ、0.15質量%であった。
<Example of production of partially deproteinized natural rubber>
The natural rubber latex (CT-1) added with 0.4% by mass of ammonia was concentrated by centrifuging at a rotational speed of 7500 rpm for 15 minutes using a latex separator SLP-3000 (manufactured by Saito Centrifuge Co., Ltd.). The concentrated latex was further centrifuged at 7500 rpm for 15 minutes. The resulting concentrated latex is diluted to about 20% as a solid content, then formic acid is added, and after standing overnight, the rubber content obtained by coagulation is dried at 110 ° C. for 210 minutes to partially deproteinize natural rubber Manufactured. It was 0.15 mass% when the total nitrogen content of the obtained natural rubber was measured by the Kjeldahl method.
<変性天然ゴムの製造例>
 フィールドラテックスをラテックスセパレーター[斎藤遠心工業製]を用いて回転数7500 rpmで遠心分離して、乾燥ゴム濃度60%の濃縮ラテックスを得た。この濃縮ラテックス1000gを、撹拌機及び温調ジャケットを備えたステンレス製反応容器に投入し、予め10 mLの水と90 mgの乳化剤[エマルゲン1108,花王株式会社製]をN,N-ジエチルアミノエチルメタクリレート 3.0 gに加えて乳化したものを990 mLの水と共に添加し、これらを窒素置換しながら常温で30分間撹拌した。次に、重合開始剤としてtert-ブチルハイドロパーオキサイド 1.2 gとテトラエチレンペンタミン 1.2 gとを加え、40℃で30分間反応させることにより、変性天然ゴムラテックスを得た。該変性天然ゴムラテックスにギ酸を加えpHを4.7に調整し、変性天然ゴムラテックスを凝固させた。このようにして得られた固形物をクレーパーで5回処理し、シュレッダーに通してクラム化した後、熱風式乾燥機により110℃で210分間乾燥して変性天然ゴムを得た。このようにして得られた変性天然ゴムの質量から、単量体として加えたN,N-ジエチルアミノエチルメタクリレートの転化率が100%であることが確認された。また、該変性天然ゴムを石油エーテルで抽出し、更にアセトンとメタノールの2:1混合溶媒で抽出することによりホモポリマーの分離を試みたが、抽出物を分析したところホモポリマーは検出されず、添加した単量体の100%が天然ゴム分子に導入されていることが確認された。従って、得られた変性天然ゴムの極性基含有量は、天然ゴムラテックス中のゴム成分に対して0.027 mmol/gである。
<Example of production of modified natural rubber>
The field latex was centrifuged at a rotational speed of 7500 rpm using a latex separator (manufactured by Saito Centrifugal Industries) to obtain a concentrated latex having a dry rubber concentration of 60%. 1000 g of this concentrated latex is put into a stainless steel reaction vessel equipped with a stirrer and a temperature control jacket, and 10 mL of water and 90 mg of emulsifier [Emulgen 1108, manufactured by Kao Corporation] are added in advance to N, N-diethylaminoethyl methacrylate. The emulsion added in addition to 3.0 g was added with 990 mL of water, and these were stirred at room temperature for 30 minutes while purging with nitrogen. Next, 1.2 g of tert-butyl hydroperoxide and 1.2 g of tetraethylenepentamine were added as polymerization initiators and reacted at 40 ° C. for 30 minutes to obtain a modified natural rubber latex. Formic acid was added to the modified natural rubber latex to adjust the pH to 4.7 to coagulate the modified natural rubber latex. The solid thus obtained was treated five times with a creper, passed through a shredder and crushed, and then dried at 110 ° C. for 210 minutes with a hot air dryer to obtain a modified natural rubber. From the mass of the modified natural rubber thus obtained, it was confirmed that the conversion rate of N, N-diethylaminoethyl methacrylate added as a monomer was 100%. In addition, the modified natural rubber was extracted with petroleum ether and further extracted with a 2: 1 mixed solvent of acetone and methanol, but when the extract was analyzed, the homopolymer was not detected. It was confirmed that 100% of the added monomer was introduced into the natural rubber molecule. Accordingly, the polar group content of the resulting modified natural rubber is 0.027 mmol / g with respect to the rubber component in the natural rubber latex.
<変性ポリブタジエンゴムの製造例>
 乾燥し、窒素置換された800 mLの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液(16%)、スチレンのシクロヘキサン溶液(21%)を、1,3-ブタジエン 40 g、スチレン 10 gとなるように注入し、2,2-ジテトラヒドロフリルプロパン 0.12 mmolを注入し、これに、リチウムヘキサメチレンイミド 0.4 mmolを加えた後、50℃の温水浴中で1.5時間重合反応を行った。この際の重合転化率は、ほぼ100%であった。次に、重合反応系に、変性剤として四塩化スズを0.1 mmol加え、更に50℃で30分間変性反応を行った。その後、重合反応系に、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール溶液(BHT濃度:5質量%)0.5 mLを加えて、重合反応を停止させ、更に常法に従って乾燥して変性ポリブタジエンゴム(変性BR)を得た。得られた変性BRは、結合スチレン量が20質量%で、ビニル結合量が58%で、変性停止なしの状態での重量平均分子量(Mw)が290,000であった。
<Production example of modified polybutadiene rubber>
In a 800 mL pressure-resistant glass container that has been dried and purged with nitrogen, cyclohexane solution of 1,3-butadiene (16%), cyclohexane solution of styrene (21%), 40 g of 1,3-butadiene and 10 g of styrene Then, 0.12 mmol of 2,2-ditetrahydrofurylpropane was injected, and 0.4 mmol of lithium hexamethyleneimide was added thereto, followed by polymerization reaction in a warm water bath at 50 ° C. for 1.5 hours. The polymerization conversion rate at this time was almost 100%. Next, 0.1 mmol of tin tetrachloride was added as a modifier to the polymerization reaction system, and a modification reaction was further performed at 50 ° C. for 30 minutes. Thereafter, 0.5 mL of an isopropanol solution (BHT concentration: 5 mass%) of 2,6-di-t-butyl-p-cresol (BHT) was added to the polymerization reaction system to stop the polymerization reaction, and further according to a conventional method. By drying, a modified polybutadiene rubber (modified BR) was obtained. The obtained modified BR had a bound styrene content of 20% by mass, a vinyl bond content of 58%, and a weight average molecular weight (Mw) without modification termination of 290,000.
<ゴム組成物の調製及び評価>
 表1~2に示す配合のゴム組成物を常法に従って調製した。得られたゴム組成物を145℃で33分間加硫して、幅:4.7mm、厚さ:2mm、長さ:40mmのサンプルを作製し、上島製のスペクトロメーターを用い、初期荷重1.57 N、温度26℃、周波数52 Hz、引張動歪0.1%又は2%で動的貯蔵弾性率(E')を測定し、その差(ΔE')を計算した。また、上記サンプルに対して、上記スペクトロメーターを用い、初期荷重1.57 N、温度26℃、周波数52 Hz、引張動歪2%の条件下で、損失正接(tanδ)を測定した。結果を表1~2に示す。
<Preparation and evaluation of rubber composition>
Rubber compositions having the formulations shown in Tables 1 and 2 were prepared according to a conventional method. The resulting rubber composition was vulcanized at 145 ° C. for 33 minutes to prepare a sample having a width of 4.7 mm, a thickness of 2 mm, and a length of 40 mm, and an initial load of 1.57 N using a spectrometer made by Kamijima. The dynamic storage elastic modulus (E ′) was measured at a temperature of 26 ° C., a frequency of 52 Hz, and a tensile dynamic strain of 0.1% or 2%, and the difference (ΔE ′) was calculated. Further, the loss tangent (tan δ) of the sample was measured under the conditions of an initial load of 1.57 N, a temperature of 26 ° C., a frequency of 52 Hz, and a tensile dynamic strain of 2% using the spectrometer. The results are shown in Tables 1-2.
<タイヤの作製及び評価>
 上記ゴム組成物をトレッドゴムに用いて、サイズ11R22.5の重荷重用スタッドレスタイヤを作製し、アスファルト路面を8000 km走行した後、JIS B0601に従ってトレッドゴムの摩耗面の中心線平均粗さ(Ra)及び十点平均粗さ(Rz)を測定した。更に、下記の方法で、タイヤの転がり抵抗、氷上性能及び耐摩耗性を評価した。結果を表1~2に示す。
<Production and evaluation of tire>
Using the above rubber composition as a tread rubber, a heavy duty studless tire having a size of 11R22.5 was manufactured, and after running on an asphalt road surface for 8000 km, the centerline average roughness (Ra) of the wear surface of the tread rubber according to JIS B0601 And ten-point average roughness (Rz) was measured. Furthermore, the rolling resistance, performance on ice and wear resistance of the tire were evaluated by the following methods. The results are shown in Tables 1-2.
(1)転がり抵抗
 時速80 kmでドラム上を走行させて転がり抵抗を測定し、比較例1のタイヤの転がり抵抗を100として指数表示した。指数値が小さい程、タイヤの転がり抵抗が小さいことを示す。
(1) Rolling resistance The rolling resistance was measured by running on a drum at a speed of 80 km / h. The rolling resistance of the tire of Comparative Example 1 was indicated as 100 and indicated as an index. It shows that rolling resistance of a tire is so small that an index value is small.
(2)氷上性能
 氷上平坦路にて、車輌が静止している状態から加速し、100 m進むまでのラップタイムを測定し、比較例1を100として指数表示した。指数値が大きい程、到達時間が短く氷上での加速に優れることを示す。
(2) Performance on ice On a flat surface on ice, the vehicle was accelerated from a stationary state, and the lap time until 100 m traveled was measured. The larger the index value, the shorter the arrival time, and the better the acceleration on ice.
(3)耐摩耗性
 上記供試タイヤを車両に装着し、5万km走行した時点でのタイヤの溝深さを測定し、走行距離/(走行前のタイヤの溝深さ-走行後のタイヤの溝深さ)の値を算出して、比較例1を100として指数表示した。指数値が大きい程、耐摩耗性に優れることを示す。
(3) Abrasion resistance Measure the groove depth of the tire when the above test tire is mounted on a vehicle and run for 50,000 km, and the travel distance / (groove depth of the tire before running minus the tire after running) The value of the groove depth) was calculated, and indexed with Comparative Example 1 as 100. It shows that it is excellent in abrasion resistance, so that an index value is large.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
*1 上記の方法で製造した部分脱タンパク天然ゴム
*2 上記の方法で製造した変性天然ゴム
*3 宇部興産製, BR150L
*4 上記の方法で製造した変性ポリブタジエンゴム
*5 日本シリカ工業製, ニップシールAQ
*6 アゾジカルボンアミド
*7 タイレ製, 融点=125℃, 繊維径=3.6 d, 平均径=0.023 mm, 平均長さ=2 mm
*8 日本ウォルネット製, Soft Grip#46
* 1 Partially deproteinized natural rubber produced by the above method
* 2 Modified natural rubber produced by the above method
* 3 Made by Ube Industries, BR150L
* 4 Modified polybutadiene rubber produced by the above method
* 5 NIPSEAL AQ made by Nippon Silica Industry
* 6 Azodicarbonamide
* 7 Made of Tile, Melting point = 125 ° C, Fiber diameter = 3.6 d, Average diameter = 0.023 mm, Average length = 2 mm
* 8 Made by Nippon Walnet, Soft Grip # 46
 表1の結果から、実施例のタイヤは、氷上性能が良好で、耐摩耗性が高く、転がり抵抗が小さいことが分かる。 From the results in Table 1, it can be seen that the tires of the examples have good performance on ice, high wear resistance, and low rolling resistance.
 一方、トレッドゴムのΔE'が7.0 MPaを超えている比較例2のタイヤは、比較例1のタイヤに比べて、転がり抵抗が増大しており、また、耐摩耗性も悪化していた。 On the other hand, the tire of Comparative Example 2 in which ΔE ′ of the tread rubber exceeded 7.0 kg MPa had increased rolling resistance and deteriorated wear resistance as compared with the tire of Comparative Example 1.
 また、アスファルト路面を8000 km走行した後のトレッドゴムの摩耗面のRaが12μm未満である比較例3及び4のタイヤは、比較例1のタイヤに比べて、氷上性能が悪化していた。 Also, the tires of Comparative Examples 3 and 4 in which the Ra of the wear surface of the tread rubber after traveling 8000 km on the asphalt road surface was less than 12 μm had deteriorated performance on ice as compared with the tire of Comparative Example 1.
 更に、アスファルト路面を8000 km走行した後のトレッドゴムの摩耗面のRzとRaとの比(Rz/Ra)が15未満である比較例5のタイヤは、比較例1のタイヤに比べて、氷上性能が悪化している上、耐摩耗性が大幅に悪化していた。 Further, the tire of Comparative Example 5 in which the ratio of Rz to Ra (Rz / Ra) of the worn surface of the tread rubber after traveling 8000 km on the asphalt road surface is less than 15 is higher on the ice than the tire of Comparative Example 1. The performance was deteriorated and the wear resistance was greatly deteriorated.
 なお、トレッドゴムのΔE'が4.0 MPa以下である実施例5~8のタイヤは、転がり抵抗が非常に小さいことから、トレッドゴムのΔE'を4.0 MPa以下とすることが好ましいことが分かる。 In addition, since the rolling resistance of the tires of Examples 5 to 8 in which ΔE ′ of the tread rubber is 4.0 MPa or less is very small, it is understood that ΔE ′ of the tread rubber is preferably 4.0 MPa or less.

Claims (11)

  1.  下記式(I):
       ΔE'=0.1%E'-2%E' ・・・ (I)
    [式中、0.1%E'及び2%E'は、それぞれ初期荷重1.57 N、温度26℃の条件下で周波数52 Hz、引張動歪0.1%又は2%で測定した動的貯蔵弾性率を示す]で定義されるΔE'が7.0 MPa以下であるトレッドゴムをトレッド部に具え、
     アスファルト路面を8000 km走行した後の前記トレッドゴムの摩耗面の中心線平均粗さ(Ra)が12~40μmで且つ及び十点平均粗さ(Rz)と中心線平均粗さ(Ra)との比(Rz/Ra)が15以上であることを特徴とするタイヤ。
    Formula (I) below:
    ΔE '= 0.1% E'-2% E' (I)
    [Where 0.1% E ′ and 2% E ′ represent the dynamic storage modulus measured at an initial load of 1.57 N, a temperature of 26 ° C., a frequency of 52 Hz, and a tensile dynamic strain of 0.1% or 2%, respectively. The tread rubber having ΔE ′ defined by
    The centerline average roughness (Ra) of the worn surface of the tread rubber after traveling 8000 km on the asphalt road surface is 12 to 40 μm, and the 10-point average roughness (Rz) and the centerline average roughness (Ra) A tire having a ratio (Rz / Ra) of 15 or more.
  2.  前記トレッドゴムは、上記式(I)で定義されるΔE'が4.0 MPa以下であることを特徴とする請求項1に記載のタイヤ。 The tire according to claim 1, wherein the tread rubber has a ΔE 'defined by the above formula (I) of 4.0 MPa or less.
  3.  前記トレッドゴムが独立気泡を有することを特徴とする請求項1に記載のタイヤ。 The tire according to claim 1, wherein the tread rubber has closed cells.
  4.  前記トレッドゴムは、発泡率が5~30%の範囲にあることを特徴とする請求項3に記載のタイヤ。 The tire according to claim 3, wherein the tread rubber has a foaming ratio in the range of 5 to 30%.
  5.  前記トレッドゴムのゴム成分が天然ゴム及びジエン系合成ゴムよりなり、その質量比(天然ゴム/ジエン系合成ゴム)が80/20~40/60であることを特徴とする請求項1に記載のタイヤ。 The rubber component of the tread rubber is composed of natural rubber and diene-based synthetic rubber, and the mass ratio (natural rubber / diene-based synthetic rubber) is 80/20 to 40/60. tire.
  6.  前記天然ゴムが、天然ゴムラテックス中のタンパク質を機械的分離手法により部分脱タンパク処理してなるラテックスから得られた総窒素含有量が0.1質量%を超え且つ0.4質量%以下である天然ゴム、又は天然ゴム分子中に極性基を含有する変性天然ゴムであることを特徴とする請求項5に記載のタイヤ。 The natural rubber is a natural rubber having a total nitrogen content of more than 0.1% by mass and 0.4% by mass or less obtained from a latex obtained by subjecting a protein in natural rubber latex to partial deproteinization by a mechanical separation method, or The tire according to claim 5, wherein the tire is a modified natural rubber containing a polar group in a natural rubber molecule.
  7.  前記ジエン系合成ゴムが、含窒素官能基を有する変性ポリブタジエンゴムであることを特徴とする請求項5に記載のタイヤ。 The tire according to claim 5, wherein the diene-based synthetic rubber is a modified polybutadiene rubber having a nitrogen-containing functional group.
  8.  前記含窒素官能基がヘキサメチレンイミンに由来することを特徴とする請求項7に記載のタイヤ。 The tire according to claim 7, wherein the nitrogen-containing functional group is derived from hexamethyleneimine.
  9.  ゴム成分100質量部に対してシリカ3~30質量部を配合してなるゴム組成物を、前記トレッドゴムに用いたことを特徴とする請求項1に記載のタイヤ。 The tire according to claim 1, wherein a rubber composition obtained by blending 3 to 30 parts by mass of silica with 100 parts by mass of a rubber component is used for the tread rubber.
  10.  ゴム成分100質量部に対してポリエチレン短繊維0.1~10質量部を配合してなるゴム組成物を、前記トレッドゴムに用いたことを特徴とする請求項3に記載のタイヤ。 The tire according to claim 3, wherein a rubber composition comprising 0.1 to 10 parts by mass of polyethylene short fibers per 100 parts by mass of the rubber component is used for the tread rubber.
  11.  重荷重用スタッドレスタイヤであることを特徴とする請求項1~10のいずれかに記載のタイヤ。 The tire according to any one of claims 1 to 10, wherein the tire is a heavy load studless tire.
PCT/JP2009/051267 2008-02-12 2009-01-27 Tire WO2009101855A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008030355A JP2009190437A (en) 2008-02-12 2008-02-12 Tire
JP2008-030355 2008-02-12

Publications (1)

Publication Number Publication Date
WO2009101855A1 true WO2009101855A1 (en) 2009-08-20

Family

ID=40956885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051267 WO2009101855A1 (en) 2008-02-12 2009-01-27 Tire

Country Status (2)

Country Link
JP (1) JP2009190437A (en)
WO (1) WO2009101855A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196825A (en) * 2014-04-03 2015-11-09 住友ゴム工業株式会社 pneumatic tire

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5517721B2 (en) * 2010-04-21 2014-06-11 株式会社ブリヂストン Pneumatic tire
CN105899375B (en) * 2014-05-27 2017-10-13 株式会社普利司通 Heavy duty pneumatic tire
JP7392367B2 (en) * 2019-10-02 2023-12-06 住友ゴム工業株式会社 Heavy load tires

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182905A (en) * 2002-12-04 2004-07-02 Sumitomo Rubber Ind Ltd Rubber composition for tire tread and pneumatic tire produced by using the same
JP2004238619A (en) * 2003-01-17 2004-08-26 Bridgestone Corp Rubber composition and studless tire using the same
JP2006152211A (en) * 2004-12-01 2006-06-15 Bridgestone Corp Pneumatic tire for heavy load
JP2007326990A (en) * 2006-06-09 2007-12-20 Bridgestone Corp Rubber composition and tire using the same
JP2008095094A (en) * 2006-09-14 2008-04-24 Bridgestone Corp Rubber composition and heavy-duty pneumatic tire using the composition
JP2008149934A (en) * 2006-12-19 2008-07-03 Bridgestone Corp Studless tire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182905A (en) * 2002-12-04 2004-07-02 Sumitomo Rubber Ind Ltd Rubber composition for tire tread and pneumatic tire produced by using the same
JP2004238619A (en) * 2003-01-17 2004-08-26 Bridgestone Corp Rubber composition and studless tire using the same
JP2006152211A (en) * 2004-12-01 2006-06-15 Bridgestone Corp Pneumatic tire for heavy load
JP2007326990A (en) * 2006-06-09 2007-12-20 Bridgestone Corp Rubber composition and tire using the same
JP2008095094A (en) * 2006-09-14 2008-04-24 Bridgestone Corp Rubber composition and heavy-duty pneumatic tire using the composition
JP2008149934A (en) * 2006-12-19 2008-07-03 Bridgestone Corp Studless tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196825A (en) * 2014-04-03 2015-11-09 住友ゴム工業株式会社 pneumatic tire

Also Published As

Publication number Publication date
JP2009190437A (en) 2009-08-27

Similar Documents

Publication Publication Date Title
JP2008149934A (en) Studless tire
US7741399B2 (en) Rubber composition and tire using the same
JP4518750B2 (en) Rubber composition and pneumatic tire
EP2666815B1 (en) Natural rubber and method for producing the same, rubber composition and pneumatic tire using the same, modified natural rubber and method for producing the same, and rubber composition for tread or for covering carcass cord and pneumatic tire using the same
JP4204856B2 (en) Rubber composition for tire tread and pneumatic tire using the same
EP1426409B1 (en) Rubber composition for tire tread and pneumatic tire using the same
RU2429251C2 (en) Rubber mixture for lateral rubber and high-strength pneumatic radial tyre
EP2223945B1 (en) Rubber composition and pneumatic tire
WO2009104555A1 (en) Modified diene rubber, method for producing the same, rubber composition using the same, and tire
WO2010055919A1 (en) Rubber compositions and tires
WO2009101855A1 (en) Tire
JP4302547B2 (en) Modified natural rubber latex, modified natural rubber and method for producing them
JP4663207B2 (en) Rubber composition for tire tread and pneumatic tire using the same
JP4784081B2 (en) Tread rubber composition for tire and pneumatic tire
JP4617853B2 (en) Pneumatic tire
JP5474324B2 (en) Rubber composition and pneumatic tire
JP4944451B2 (en) Heavy duty pneumatic tire
WO2010143633A1 (en) Rubber composition and tire obtained using same
JP2006151259A (en) Pneumatic tire
JP5019752B2 (en) Modified natural rubber and method for producing the same, rubber composition and tire
JP5735845B2 (en) Modified natural rubber and method for producing the same, and rubber composition and tire using the modified natural rubber
JP4815792B2 (en) Pneumatic tire
JP2007204550A (en) Modified natural rubber, and rubber composition and tire obtained using the same
JP5517721B2 (en) Pneumatic tire
JP2006151260A (en) Run-flat pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09710935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09710935

Country of ref document: EP

Kind code of ref document: A1