WO2010055919A1 - Rubber compositions and tires - Google Patents

Rubber compositions and tires Download PDF

Info

Publication number
WO2010055919A1
WO2010055919A1 PCT/JP2009/069376 JP2009069376W WO2010055919A1 WO 2010055919 A1 WO2010055919 A1 WO 2010055919A1 JP 2009069376 W JP2009069376 W JP 2009069376W WO 2010055919 A1 WO2010055919 A1 WO 2010055919A1
Authority
WO
WIPO (PCT)
Prior art keywords
natural rubber
rubber composition
rubber
carbon black
compound
Prior art date
Application number
PCT/JP2009/069376
Other languages
French (fr)
Japanese (ja)
Inventor
基之 間宮
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2010055919A1 publication Critical patent/WO2010055919A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/24Derivatives of hydrazine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3437Six-membered rings condensed with carbocyclic rings

Definitions

  • the present invention relates to a rubber composition suitable for use in a tire tread, and more particularly, a low heat generation suitable for use in a tire having improved wear resistance and improved tread heat generation, particularly a large tire such as an off-road tire.
  • the present invention relates to a rubber composition having excellent wear resistance and a tire using the same.
  • the most common technique is to use a material having lower heat generation as the rubber composition.
  • modified rubbers that interact with fillers such as carbon black and silica.
  • synthetic rubber a method in which the polymerization active terminal of a conjugated diene polymer is modified with an alkoxysilane derivative containing a functional group that interacts with a filler has been proposed (for example, Patent Documents 7 and 8).
  • modified natural rubber is obtained by graft polymerizing a polar group-containing simple substance to natural rubber molecules in natural rubber latex, improving affinity with fillers and improving low loss and wear resistance.
  • the present invention may further contain other additives and / or various rubber components and resulting rubber compositions.
  • This is a rubber composition that has been processed such as In general, it is known that the product of the specific surface area and the filling amount of a filler such as carbon black or silica is inversely proportional to the resilience of the rubber composition.
  • carbon black or carbon black and silica are used as the filler, and any filler can be appropriately selected from those usually used in the rubber industry as long as the above conditions are satisfied.
  • carbon black include SAF, HAF, and ISAF.
  • silica include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, aluminum silicate, and the like. And commercially available products can be used. Of these, wet silica is particularly preferred.
  • Natural rubber masterbatch natural rubber can be used as a masterbatch as a natural rubber component.
  • the masterbatch of natural rubber used in the present invention is a mixture of natural rubber latex and carbon black.
  • the production method is preferably such that after decomposing the amide bond in the latex, natural rubber latex and carbon black in water are mixed. And a step of mixing, coagulating and drying a water slurry solution in which is dispersed.
  • a slurry solution in which carbon black is previously dispersed in water Prior to mixing the natural rubber latex and the water-dispersed slurry solution, a slurry solution in which carbon black is previously dispersed in water is produced.
  • the manufacturing method of this slurry can use a well-known method, and is not specifically limited.
  • the water dispersion slurry of carbon black can be prepared, for example, by putting a predetermined amount of carbon black and water in a homomixer and stirring for a certain time.
  • the concentration of carbon black in the slurry solution is preferably from 0.5 to 30% by weight, particularly preferably from 1 to 15% by weight, based on the slurry.
  • Carbon black has a cetyltrimethylammonium bromide (CTAB) adsorption specific surface area (m 2 / g) in the range of more than 70 and less than 150. If the CTAB specific surface area is 70 or less, sufficient abrasion resistance is not ensured, and if it is 150 or more, the heat generation deteriorates.
  • the compressed DBP oil absorption (24M4DBP, ml / 100g) is more than 50 and less than 100. If it is 50 or less, the effect of improving the wear resistance cannot be obtained, and if it is 100 or more, the wear resistance is lowered. Preferably it is 55 to 95, more preferably 70 to 95.
  • the volume average particle size (mv) is preferably 25 ⁇ m or less and the 90% by volume particle size (D90) is preferably 30 ⁇ m or less.
  • the volume average particle size is 25 ⁇ m or less and the 90% by volume particle size is 30 ⁇ m or less, the carbon black dispersion in the rubber is further improved, and the reinforcing property and wear resistance are further improved. If excessive shearing force is applied to the slurry to reduce the particle size of the carbon black, the structure of the carbon black is destroyed and the reinforcing property is lowered.
  • 24M4DBP oil absorption of the carbon black recovered by drying from the aqueous dispersion slurry solution The amount is preferably mixed so as to maintain 93% or more, more preferably 96% or more of the 24M4DBP oil absorption before being dispersed in water.
  • the mixing amount of the carbon black when mixing the natural rubber latex and the water-dispersed slurry solution is 10 to 100 parts by mass with respect to 100 parts by mass of the natural rubber component in the natural rubber latex. If it is less than 10 parts by mass, sufficient wear resistance cannot be obtained, and if it exceeds 100 parts by mass, the low heat build-up is reduced.
  • the mixing amount of carbon black is preferably 20 to 80 parts by mass, and more preferably 30 to 60 parts by mass. Through this mixing step, a natural rubber wet masterbatch is obtained.
  • drying process It is preferable to perform a drying process as the final step of master batch production.
  • ordinary dryers such as vacuum dryers, air dryers, drum dryers, band dryers, etc. can be used, but in order to further improve the dispersibility of carbon black, while applying mechanical shearing force It is preferable to dry. Thereby, rubber excellent in processability and reinforcement can be obtained.
  • this drying can be performed using a general kneader, it is preferable to use a continuous kneader. Furthermore, it is more preferable to use a multi-axis kneading extruder that rotates in the same direction or in different directions.
  • the moisture in the masterbatch before the drying step is preferably 10% or more. This is because when the water content is less than 10%, the dispersion improvement width of the carbon black in the drying process is reduced.
  • the natural rubber latex used in the mixing step may be subjected to a step of decomposing the amide bond in the latex. If the amide bond is decomposed in advance, molecules are entangled by the hydrogen bondability of the amide bond, the viscosity increase of the rubber is small, and the processability can be improved.
  • a protease and / or an aromatic polycarboxylic acid derivative it is preferable to use a protease and / or an aromatic polycarboxylic acid derivative.
  • Proteases have the property of hydrolyzing amide bonds present in the surface layer components of natural rubber latex particles, and examples include acidic proteases, neutral proteases, and alkaline proteases.
  • alkaline protease is particularly preferred from the viewpoint of effect.
  • the amide bond is decomposed by a protease, it may be carried out under conditions suitable for the enzyme to be mixed.
  • the enzyme for example, when mixing Alvarase 2.5L type DX manufactured by Novozyme with natural rubber latex, it is usually 20 to 80 ° C. It is desirable to process with a range.
  • the pH at this time is usually in the range of 6.0 to 12.0.
  • the amount of protease added is usually in the range of 0.01 to 2% by mass, preferably 0.02 to 1% by mass, based on the natural rubber latex.
  • the addition amount of the aromatic polycarboxylic acid derivative is preferably 0.01 to 30% by mass with respect to the natural rubber latex. If the addition amount is less than 0.01% by mass, the Mooney viscosity may not be sufficiently reduced. On the other hand, if it exceeds 30% by mass, not only the effect corresponding to the increase is obtained but also the vulcanized rubber is destroyed. May adversely affect properties.
  • the addition amount varies within the above range depending on the type and grade of the natural rubber latex used, but it is preferably in the range of 0.05 to 20% by mass from the physical properties and cost.
  • the aromatic polycarboxylic acid derivative is preferably a derivative of phthalic acid, trimellitic acid, pyromellitic acid and its anhydride, specifically, monostearyl phthalate, monodecyl phthalate, monophthalic acid Examples include octylamide, polyoxyethylene lauryl phthalate, monodecyl trimellitic acid, monostearyl trimellitic acid, monostearyl pyromellitic acid, and distearyl pyromellitic acid.
  • a surfactant for the purpose of improving the stability of the latex.
  • anionic, cationic, nonionic and amphoteric surfactants can be used, and anionic and nonionic surfactants are particularly preferable.
  • the addition amount of the surfactant can be appropriately adjusted according to the properties of the natural rubber latex, but is usually 0.01 to 2% by mass, preferably 0.02 to 1% by mass with respect to the natural rubber latex. .
  • the addition of the surfactant is preferably performed in the amide bond decomposition step, but is not particularly limited as long as it is at least before the mixing step.
  • a modified natural rubber containing a polar group in a natural rubber molecule can be used as a natural rubber component.
  • Modified natural rubber has a higher affinity for reinforcing fillers than unmodified natural rubber.
  • polar groups to be introduced include amino group, imino group, nitrile group, ammonium group, imide group, amide group, hydrazo group, azo group, diazo group, hydroxyl group, carboxyl group, carbonyl group, epoxy group, oxycarbonyl group, It is at least one selected from the group consisting of sulfide groups, disulfide groups, sulfonyl groups, sulfinyl groups, thiocarbonyl groups, nitrogen-containing heterocyclic groups, oxygen-containing heterocyclic groups, alkoxysilyl groups, and tin-containing groups.
  • a natural rubber modification method for example, a modification method described in JP-A-2007-326990 can be applied.
  • natural rubber latex may be used as a raw material, or at least one solid natural rubber raw material selected from the group consisting of natural rubber, natural rubber latex coagulum and natural rubber cup lamp is used. May be.
  • the natural rubber latex is not particularly limited, and for example, a field latex, an ammonia-treated latex, a centrifugal concentrated latex, a deproteinized latex treated with a surfactant or an enzyme, and a combination thereof can be used.
  • a polar group-containing modified natural rubber can be obtained by producing a polar group-containing modified natural rubber latex and further coagulating and drying.
  • the production method of the polar group-containing modified natural rubber latex is not particularly limited, for example, 1) A method of adding a polar group-containing monomer to natural rubber latex and graft polymerizing the polar group-containing monomer to natural rubber molecules in natural rubber latex, 2) A method of adding a polar group-containing mercapto compound to natural rubber latex and adding the polar group-containing mercapto compound to natural rubber molecules in the natural rubber latex, 3) A method of adding a polar group-containing olefin and a metathesis catalyst to natural rubber latex and reacting the polar group-containing olefin with a natural rubber molecule in the natural rubber latex using the metathesis catalyst.
  • the polar group-containing monomer added to the natural rubber latex is not particularly limited as long as it has at least one polar group in the molecule and can be graft-polymerized with the natural rubber molecule.
  • the polar group-containing monomer preferably has a carbon-carbon double bond in the molecule for graft polymerization with a natural rubber molecule, and is preferably a polar group-containing vinyl monomer. .
  • These monomers containing polar groups may be used alone or in combination of two or more.
  • polymerization initiator for various emulsion polymerization can be used, and there is no restriction
  • generally used polymerization initiators include benzoyl peroxide, hydrogen peroxide, cumene hydroperoxide, tert-butyl hydroperoxide, ditert-butyl peroxide, 2,2-azobisisobutyronitrile, , 2-azobis (2-diaminopropane) hydrochloride, 2,2-azobis (2-diaminopropane) dihydrochloride, 2,2-azobis (2,4-dimethylvaleronitrile), potassium persulfate, sodium persulfate, Examples thereof include ammonium persulfate.
  • a redox polymerization initiator In order to lower the polymerization temperature, it is preferable to use a redox polymerization initiator.
  • the reducing agent to be combined with the peroxide in the redox polymerization initiator include tetraethylenepentamine, mercaptans, acidic sodium sulfite, reducing metal ions, ascorbic acid and the like.
  • a preferred combination of a peroxide and a reducing agent in the redox polymerization initiator includes a combination of tert-butyl hydroperoxide and tetraethylenepentamine.
  • the addition amount of the polymerization initiator is preferably in the range of 1 to 100 mol%, more preferably in the range of 10 to 100 mol% with respect to the polar group-containing monomer.
  • the polar group-containing mercapto compound When the polar group-containing mercapto compound is added to the natural rubber molecule in the natural rubber latex, the polar group-containing mercapto compound is generally added to a solution obtained by adding water and, if necessary, an emulsifier to the natural rubber latex. By stirring at a temperature of 1, the polar group-containing mercapto compound is subjected to an addition reaction with the double bond of the main chain of the natural rubber molecule in the natural rubber latex.
  • an emulsifier may be added to the natural rubber latex in advance, or the polar group-containing mercapto compound may be added to the natural rubber latex after emulsifying with the emulsifier. .
  • an organic peroxide can also be added as needed.
  • it does not specifically limit as an emulsifier which can be used for emulsification of natural rubber latex and / or a polar group containing mercapto compound Nonionic surfactants, such as polyoxyethylene lauryl ether, are mentioned.
  • the polar group-containing mercapto compound is introduced in a small amount and uniformly into each natural rubber molecule.
  • the modification reaction is preferably carried out with stirring.
  • the above components such as natural rubber latex and polar group-containing mercapto compound are charged in a reaction vessel and reacted at 30 to 80 ° C. for 10 minutes to 24 hours.
  • a modified natural rubber latex in which the polar group-containing mercapto compound is added to the molecule is obtained.
  • the polar group-containing olefin added to the natural rubber latex has at least one polar group in the molecule, and also has a carbon-carbon double bond for cross-metathesis reaction with the natural rubber molecule.
  • a polar group containing olefin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the polar group-containing olefin When a polar group-containing olefin is reacted with a natural rubber molecule in a natural rubber latex by a metathesis catalyst, the polar group-containing olefin is generally added to a solution obtained by adding water and, if necessary, an emulsifier to a natural rubber latex. A metathesis catalyst is added and stirred at a predetermined temperature to cause a metathesis reaction between the natural rubber molecule and the polar group-containing olefin.
  • an emulsifier may be added to the natural rubber latex in advance, or the polar group-containing olefin may be added to the natural rubber latex after emulsification with the emulsifier.
  • an emulsifier which can be used for emulsification of natural rubber latex and / or a polar group containing olefin, Nonionic surfactants, such as polyoxyethylene lauryl ether, are mentioned.
  • the metathesis catalyst is not particularly limited as long as it has a catalytic action on the metathesis reaction between the natural rubber molecule and the polar group-containing olefin, and various metathesis catalysts can be used.
  • the metathesis catalyst contains a transition metal, but since it is used in a natural rubber latex, it is preferable that the stability to water is high. Therefore, the transition metal constituting the metathesis catalyst is preferably any one of ruthenium, osmium, and iridium.
  • metathesis catalyst examples include bis (tricyclohexylphosphine) benzylideneruthenium dichloride [RuCl 2 ( ⁇ CHPh) (PCy 3 ) 2 ], and RuCl 2 ( ⁇ CH—CH ⁇ CPh 2 ) (PPh 3 ) 2.
  • RuCl 2 ( CHPh) (PCp 3 ) 2
  • RuCl 2 ( CHPh) (PPh 3 ) 2
  • RuCl 2 ( CHPh) [Cy 2 PCH 2 CH 2 N (CH 3 ) 3 + Cl] 2 etc.
  • Cy represents a cyclohexyl group
  • Cp represents a cyclopentyl group.
  • the addition amount of the metathesis catalyst is preferably in the range of 1 to 500 mol%, more preferably in the range of 10 to 100 mol% with respect to the polar group-containing olefin.
  • the above-mentioned components are charged into a reaction vessel and reacted at 30 to 80 ° C. for 10 minutes to 24 hours to obtain a modified natural rubber latex in which the polar group is introduced into natural rubber molecules.
  • the polar group-containing compound is given a mechanical shearing force
  • a modified natural rubber can be obtained by graft polymerization or addition to a rubber raw material.
  • a twin-screw extrusion kneader and a dry prebreaker are preferable.
  • the polar group-containing compound is graft-polymerized to the natural rubber molecule in the natural rubber raw material
  • the natural rubber raw material and the polar group-containing compound are contained in an apparatus capable of applying mechanical shearing force.
  • a polar group-containing compound when subjected to an addition reaction with a natural rubber molecule in a natural rubber raw material, the natural rubber raw material and the polar group-containing compound (preferably, a polar group-containing compound are contained in the apparatus capable of applying the mechanical shearing force. Mercapto compound), and if necessary, organic peroxide, etc., is added to provide mechanical shearing force, so that polar groups are contained in the double bond of the main chain of natural rubber molecules in natural rubber raw materials.
  • the compound can be subjected to an addition reaction.
  • the polar group-containing compound used here include the above-described polar group-containing monomers, polar group-containing mercapto compounds, polar group-containing olefins, and the like.
  • the modified natural rubber in which the above polar group-containing compound is graft-polymerized or added to the natural rubber molecule is obtained by charging the above-described components into an apparatus that can be applied with a mechanical shearing force and applying the mechanical shearing force.
  • the modification reaction of the natural rubber molecule may be carried out by heating, and preferably at 30 to 160 ° C., more preferably 50 to 130 ° C., the modified natural rubber with sufficient reaction efficiency. Can be obtained.
  • the polar group content of the modified natural rubber is preferably in the range of 0.001 to 0.5 mmol / g, more preferably in the range of 0.002 to 0.3 mmol / g, based on the rubber component in the modified natural rubber.
  • the range of 0.003 to 0.2 mmol / g is even more preferable. If the polar group content of the modified natural rubber is less than 0.001 mmol / g, the low loss and wear resistance of the rubber composition may not be sufficiently improved. Also, if the polar group content of the modified natural rubber exceeds 0.5 mmol / g, the physical properties inherent to natural rubber such as viscoelasticity and SS characteristics (stress-strain curve in a tensile testing machine) will be greatly changed. In addition, the physical properties inherent to natural rubber are impaired, and the processability of the rubber composition may be greatly deteriorated.
  • dipolar nitrogen and the compound having a nitrogen-containing heterocyclic ring containing oxygen or sulfur include 4- (2-oxazolyl) -phenyl-N-methyl-nitrone, 4- (2-thiazolyl)- Phenyl-N-methyl-nitrone, 4- (2-oxazolyl) -phenyl-N-phenyl-nitrone, 4- (2-thiazolyl) -phenyl-N-phenyl-nitrone, phenyl-N-4- (2-oxazolyl) ) -Phenyl-nitrone, phenyl-N-4- (2-thiazolyl) -phenyl-nitrone, 4-tolyl-N-4- (2-oxazolyl) -phenyl-nitrone, 4-tolyl-N-4- (2-Thiazolyl) -phenyl-nitrone, 4-methoxyphenyl-N-4- (2-oxazolyl) -phenyl-nitrone
  • the method for producing the above compound can be produced without undue experimentation.
  • a manufacturing method thereof will be shown in an example described later.
  • other compounds can be produced by typical production methods by appropriately selecting other starting materials and intermediate materials.
  • the method for producing the tire rubber composition of the present invention is not particularly limited, and can be prepared by adding a compounding agent to the rubber component and kneading by a commonly performed method. Moreover, when using a masterbatch as a rubber component, this compounding agent can be added in the process of manufacturing a masterbatch.
  • the tire of the present invention can be manufactured by vulcanization molding using the rubber composition as a tread rubber.
  • the tire of the present invention is excellent in low heat buildup and has high wear resistance.
  • air or inert gas, such as nitrogen, is used for the gas with which the tire of the present invention is filled.
  • the natural rubber component is used in an amount corresponding to the amount of natural rubber shown in Table 1.
  • the modified natural rubber From the mass of the modified natural rubber thus obtained, it was confirmed that the conversion rate of N, N-diethylaminoethyl methacrylate added as a monomer was 100%.
  • the modified natural rubber was extracted with petroleum ether and further extracted with a 2: 1 mixed solvent of acetone and methanol, but when the extract was analyzed, the homopolymer was not detected. It was confirmed that 100% of the added monomer was introduced into the natural rubber molecule. Accordingly, the polar group content of the resulting modified natural rubber is 0.027 mmol / g with respect to the rubber component in the natural rubber latex.
  • the modified natural rubber is used in an amount corresponding to the amount of natural rubber shown in Table 1.
  • Rubber composition (parts by mass) Natural rubber 100 Carbon black variable silica variable wax 2 Stearic acid 2 (normal), 4 (when increased) Anti-aging agent 6C 1 Zinc flower 3 Vulcanization accelerator CZ 1.4 (N-cyclohexyl-2-benzothiazylsulfenamide) Sulfur 1.8 Compounds 1-3 3 1.0
  • Tables 1 and 2 show the types and properties of the rubber components, carbon black, and silica used, the treatments performed, and the evaluation results of the resilience and tire performance of each rubber composition. In Tables 1 and 2, ⁇ indicates that the processing was performed.
  • the rubber composition of the present invention can be suitably used for tire treads.

Abstract

The rubber compositions comprise natural rubber and a reinforcing filler made of carbon black or carbon black and silica, and the product of the specific surface area expressed as the specific surface area of the filler to which cetyltrimethylammonium bromide is adsorbed (CTAB: m2/g), and the parts by mass of the filler B (phr) per 100 parts by mass of the natural rubber component satisfies equation (1) relative to the rebound resilience of the rubber composition. A master batch, obtained from natural rubber latex and carbon black, and a polar group-containing modified natural rubber are preferably used for the natural rubber component. Blending of agents that confer low heat build-up and processing to improve low heat build-up or abrasion resistance are also performed. (1) Rebound resistance > -0.0019 x A + 77.5 Herein, A = CTAB x B

Description

ゴム組成物及びタイヤRubber composition and tire
 本発明は、タイヤトレッド用として好適なゴム組成物、詳しくは、耐摩耗性を向上させると共にトレッドの発熱性を改善したタイヤ、特にオフロードタイヤのような大型タイヤへの使用に好適な低発熱性で耐摩耗性に優れたゴム組成物及びそれを使用したタイヤに関する。 The present invention relates to a rubber composition suitable for use in a tire tread, and more particularly, a low heat generation suitable for use in a tire having improved wear resistance and improved tread heat generation, particularly a large tire such as an off-road tire. The present invention relates to a rubber composition having excellent wear resistance and a tire using the same.
 近年、省エネルギーの社会的な要請及び環境問題への関心の高まりに伴う世界的な二酸化炭素排出規制の動きに関連して、自動車の低燃費化に対する要求はより過酷なものとなりつつある。このような要求に対応するため、タイヤ性能についても転がり抵抗を減らした低発熱性のタイヤが求められてきている。特にトラック、バス等に用いられる重荷重用空気入りタイヤにあってはより改善された低発熱化が求められる。更にオフロードタイヤのような大型タイヤでは、トレッドの体積が大きいため内部ゴムが蓄熱しやすく、劣化が著しいため、トレッドゴムの低ヒステリシスロス性(低転がり抵抗性)及び耐摩耗性が求められる。
 タイヤの転がり抵抗を下げる手法としては、タイヤ構造の最適化による手法についても検討されてきたものの、ゴム組成物としてより発熱性の低い材料を用いることが最も一般的な手法として行われている。一般に、低発熱性向上のためにはトレッドゴムの変形を抑え、高温域でのtanδを下げることが好ましい。
In recent years, demands for reducing the fuel consumption of automobiles are becoming more severe in connection with the movement of global carbon dioxide emission regulations due to the social demand for energy saving and the increasing interest in environmental problems. In order to meet such demands, tires with low heat build-up with reduced rolling resistance have been demanded. In particular, for heavy-duty pneumatic tires used for trucks, buses, etc., improved heat generation is required to be reduced. Further, in a large tire such as an off-road tire, the tread rubber has a large volume so that the internal rubber is likely to store heat and deteriorates remarkably. Therefore, low hysteresis loss (low rolling resistance) and wear resistance of the tread rubber are required.
As a technique for reducing the rolling resistance of the tire, although a technique by optimizing the tire structure has been studied, the most common technique is to use a material having lower heat generation as the rubber composition. In general, in order to improve low heat buildup, it is preferable to suppress deformation of the tread rubber and lower tan δ in a high temperature range.
 特にオフロードタイヤでは、従来、耐摩耗性を向上させるために、トレッドゴム用組成物にSBR等の合成ゴム成分を使用し、カット性の向上や耐疲労性の向上を図ってきた。また、低ヒステリシスロス性及び低発熱性化を良くするため、変性スチレン-ブタジエン共重合体等の変性共役ジエン系重合体などを添加することも提案されている(例えば、特許文献1を参照)。しかし、変性共役ジエン系重合体の配合量が増えすぎると、耐摩耗性を十分に向上させることができず、また耐破壊特性が悪化する。 Especially for off-road tires, in order to improve the wear resistance, synthetic rubber components such as SBR have been used in the tread rubber composition to improve the cutting performance and the fatigue resistance. In order to improve low hysteresis loss and low heat generation, it has also been proposed to add a modified conjugated diene polymer such as a modified styrene-butadiene copolymer (see, for example, Patent Document 1). . However, if the amount of the modified conjugated diene polymer is excessively increased, the wear resistance cannot be sufficiently improved, and the fracture resistance is deteriorated.
 これまで、低発熱性のゴム組成物を得る方法として、補強用充填剤を改良すること及びゴム成分を改良することが行われている。
 従来からゴム用補強充填剤としては、カーボンブラックが使用されている。これは、カーボンブラックが、ゴム組成物に高い耐摩耗性を付与し得るからである。低発熱化を図ろうとする場合には、カーボンブラックの充填量を減らす、粒径の大きいものを使用するなどの方法があるが、大粒径のカーボンブラックを使用すると転がり抵抗は改善されるが、耐摩耗性が低下するのを避けられない。一方、耐摩耗性を向上させるにはカーボンブラックを微粒化する、充填量を増やす、あるいは、カーボンブラックを高ストラクチャにしたり、細孔を持たせることにより、ポリマーとの相互作用を強くして耐摩耗性を向上させることが行われるが、タイヤの転がり抵抗が大きくなるという問題がある。そこで、これらの問題を解決するため、天然ゴム及び/又はジエン系合成ゴムにコロイダル特性が特定の関係にあるカーボンブラックを配合したゴム組成物が提案されている(例えば、特許文献2)。
Up to now, as a method for obtaining a rubber composition having low exothermic properties, improvement of a reinforcing filler and improvement of a rubber component have been performed.
Conventionally, carbon black has been used as a reinforcing filler for rubber. This is because carbon black can impart high wear resistance to the rubber composition. When trying to reduce heat generation, there are methods such as reducing the carbon black filling amount and using a large particle size, but rolling resistance is improved when using a large particle size carbon black. Inevitably, wear resistance is reduced. On the other hand, in order to improve the wear resistance, carbon black is atomized, the filling amount is increased, or the carbon black is made to have a high structure or have pores, thereby strengthening the interaction with the polymer and increasing the resistance. Although wear resistance is improved, there is a problem that the rolling resistance of the tire increases. Therefore, in order to solve these problems, a rubber composition in which carbon black having colloidal characteristics in a specific relationship is combined with natural rubber and / or diene synthetic rubber has been proposed (for example, Patent Document 2).
 また、低発熱性を向上させるために充填剤としてシリカが知られているが(例えば、特許文献3~6)、シリカは、粒子同士が凝集する傾向にあり、また、ゴムとのぬれ性も劣り、ゴム中への分散は良くない。ゴム中へのシリカの分散が不十分であるとゴム組成物のムーニー粘度が高くなり、押出しなどの加工性に劣るという問題もある。 Further, silica is known as a filler for improving low heat build-up (for example, Patent Documents 3 to 6), but silica tends to aggregate particles and has wettability with rubber. Inferior, not well dispersed in rubber. If the silica is not sufficiently dispersed in the rubber, the rubber composition has a high Mooney viscosity, and there is a problem that the processability such as extrusion is poor.
 一方、ゴム成分を改良する方法として、カーボンブラックやシリカなどの充填剤と相互作用する変性ゴムの技術開発が多くなされてきた。合成ゴムでは、共役ジエン系重合体の重合活性末端を充填剤と相互作用する官能基を含有するアルコキシシラン誘導体で変性する方法が有効なものとして提案されている(例えば、特許文献7、8)。また、天然ゴムに関しては、天然ゴムラテックス中の天然ゴム分子に極性基含有単体をグラフト重合させた変性天然ゴムにして、充填剤との親和性を向上させ、低ロス性、耐摩耗性を改良する技術が提案されている(例えば、特許文献9)が、昨今、トレッド用ゴムの低ロス性及び耐摩耗性をさらに向上させることが要求されている。 On the other hand, as a method for improving the rubber component, many technological developments have been made on modified rubbers that interact with fillers such as carbon black and silica. For synthetic rubber, a method in which the polymerization active terminal of a conjugated diene polymer is modified with an alkoxysilane derivative containing a functional group that interacts with a filler has been proposed (for example, Patent Documents 7 and 8). . As for natural rubber, modified natural rubber is obtained by graft polymerizing a polar group-containing simple substance to natural rubber molecules in natural rubber latex, improving affinity with fillers and improving low loss and wear resistance. However, recently, there is a demand for further improving the low loss and wear resistance of the rubber for treads.
特開平9-316132号公報JP-A-9-316132 特開平6-157822号公報JP-A-6-157822 特開平6-248116号公報JP-A-6-248116 特開平7-70369号公報Japanese Patent Laid-Open No. 7-70369 特開平8-245838号公報JP-A-8-245838 特開平3-252431号公報JP-A-3-252431 特公平6-57767号公報Japanese Patent Publication No. 6-57767 特公平6-53763号公報Japanese Examined Patent Publication No. 6-53763 国際公開第2004/106397号パンフレットInternational Publication No. 2004/106397 Pamphlet
 本発明は、かかる実情に鑑みなされたもので、補強用充填剤のコロイダル特性により耐摩耗性を確保した上で、さらに転がり抵抗が小さく、低発熱性を実現できる処理方法を適用することにより調製したゴム組成物及びそれをトレッドに使用した低発熱性、耐摩耗性ともに優れたタイヤを提供するものである。 The present invention has been made in view of such circumstances, and is prepared by applying a treatment method that can achieve low heat resistance and low rolling resistance while ensuring wear resistance by the colloidal characteristics of the reinforcing filler. It is an object of the present invention to provide a rubber composition and a tire excellent in both low heat buildup and wear resistance using the rubber composition.
 本発明は、特定条件に合う補強用充填剤を使用したゴム組成物、さらに他の処理法を適用して、低発熱性及び耐摩耗性を改善したゴム組成物である。
 従来、一般にカーボンブラックやシリカ等の充填剤の比表面積と充填量との積は、ゴム組成物の反発弾性(レジリエンス)に反比例することが知られている。
 本発明は、充填剤としてセチルトリメチルアンモニウムブロミド吸着比表面積で表した比表面積(以下、CTABという)(m/g)とゴム成分100質量部当たりの充填剤の充填質量部B(phr)との積が、下記の式を満たす充填剤を使用したゴム組成物である。
     反発弾性 > -0.0019×A+77.5   (1)
     ここで、A=CTAB×B
The present invention is a rubber composition using a reinforcing filler that meets specific conditions, and further a rubber composition that is improved in low heat buildup and wear resistance by applying another treatment method.
Conventionally, it is generally known that the product of the specific surface area and the filling amount of a filler such as carbon black or silica is inversely proportional to the resilience of the rubber composition.
The present invention relates to a specific surface area (hereinafter referred to as CTAB) (m 2 / g) expressed as a cetyltrimethylammonium bromide adsorption specific surface area as a filler and a filler mass part B (phr) of the filler per 100 parts by mass of a rubber component. Is a rubber composition using a filler satisfying the following formula.
Rebound resilience> −0.0019 × A + 77.5 (1)
Where A = CTAB × B
 本発明は、また上記特性の充填剤を使用した上で、さらに下記の処理法の1種又は2種以上を組み合わせて処理したゴム組成物である。
 1.天然ゴムのマスターバッチを使用する。
 2.変性天然ゴムを使用する。
 3.低発熱性付与剤を使用する。
 4.ヒドラジド化合物を使用する。
 5.ダイポーラー窒素及び酸素又は硫黄を含む窒素含有複素環を有する化合物を使用する。
 6.ステアリン酸を増量する。
 7.リミルを実施する。
 8.低温で加硫する。
The present invention is also a rubber composition which is processed by using one or more of the following processing methods in combination with the filler having the above characteristics.
1. Use natural rubber masterbatch.
2. Use modified natural rubber.
3. Use a low heat build-up agent.
4). A hydrazide compound is used.
5). Dipolar nitrogen and a compound having a nitrogen-containing heterocyclic ring containing oxygen or sulfur are used.
6). Increase the amount of stearic acid.
7). Perform a remill.
8). Vulcanize at low temperature.
 本発明のゴム組成物をトレッドゴムに適用すれば、低発熱性、耐摩耗性を両立したタイヤが得られ、特にオフロードタイヤなどの大型タイヤに好適である。 When the rubber composition of the present invention is applied to tread rubber, a tire having both low heat buildup and wear resistance can be obtained, and is particularly suitable for large tires such as off-road tires.
 本発明は、特定条件のカーボンブラック、又はカーボンブラックとシリカを補強用充填剤として使用することに加えて、さらに他の添加物を配合する、及び/又はゴム成分や得られるゴム組成物に種々の加工を施す等の処理をしたゴム組成物である。
 一般に、カーボンブラックやシリカ等の充填剤の比表面積と充填量との積は、ゴム組成物の反発弾性(レジリエンス)に反比例することが知られている。
 本発明は、充填剤としてセチルトリメチルアンモニウムブロミド吸着比表面積で表した比表面積(CTAB)(m/g)とゴム成分100質量部当たりの充填剤の充填質量部B(phr)との積が下記の式を満たす充填剤を使用したゴム組成物である。
     反発弾性 > -0.0019×A+77.5   (1)
     ここで、A=CTAB×B
 ここで、CTABはISO6810に準拠して測定される値であり、反発弾性(レジリエンス)はJIS K6255(25℃)に準拠して測定される値である。
In addition to using carbon black of specific conditions, or carbon black and silica as a reinforcing filler, the present invention may further contain other additives and / or various rubber components and resulting rubber compositions. This is a rubber composition that has been processed such as
In general, it is known that the product of the specific surface area and the filling amount of a filler such as carbon black or silica is inversely proportional to the resilience of the rubber composition.
In the present invention, the product of a specific surface area (CTAB) (m 2 / g) expressed as an adsorption specific surface area of cetyltrimethylammonium bromide as a filler and a filler mass part B (phr) of the filler per 100 parts by mass of the rubber component It is a rubber composition using a filler satisfying the following formula.
Rebound resilience> −0.0019 × A + 77.5 (1)
Where A = CTAB × B
Here, CTAB is a value measured according to ISO6810, and rebound resilience is a value measured according to JIS K6255 (25 ° C.).
 本発明では、充填剤としてはカーボンブラック、又はカーボンブラックとシリカが使用されるが、上記の条件を満たすものであれば、通常ゴム業界で用いられるものから適宜選択することができる。カーボンブラックとしては、例えば、SAF、HAF、ISAF等を挙げることができ、また、シリカとしては、例えば湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウムなどが挙げられ、市販品が使用できる。なかでも湿式シリカが特に好適である。 In the present invention, carbon black or carbon black and silica are used as the filler, and any filler can be appropriately selected from those usually used in the rubber industry as long as the above conditions are satisfied. Examples of carbon black include SAF, HAF, and ISAF. Examples of silica include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, aluminum silicate, and the like. And commercially available products can be used. Of these, wet silica is particularly preferred.
 次に、ゴム組成物に対して行う処理、及び添加物について説明する。
(1)天然ゴムマスターバッチ
 本発明では、天然ゴム成分として、天然ゴムをマスターバッチにして使用することができる。
 本発明で使用する天然ゴムのマスターバッチは、天然ゴムラテックスにカーボンブラックを混合したもので、その製造方法は、好ましくはラテックス中のアミド結合を分解した後、天然ゴムラテックスと、水中にカーボンブラックが分散されてなる水スラリー溶液とを混合、凝固、乾燥する工程を含む。
Next, treatments performed on the rubber composition and additives will be described.
(1) Natural rubber masterbatch In the present invention, natural rubber can be used as a masterbatch as a natural rubber component.
The masterbatch of natural rubber used in the present invention is a mixture of natural rubber latex and carbon black. The production method is preferably such that after decomposing the amide bond in the latex, natural rubber latex and carbon black in water are mixed. And a step of mixing, coagulating and drying a water slurry solution in which is dispersed.
(水分散スラリー溶液の調製)
 天然ゴムラテックスと水分散スラリー溶液とを混合するに先立って、予め水中にカーボンブラックが分散したスラリー溶液を製造する。このスラリーの製造方法は公知の方法を用いることができ、特に限定されない。
 カーボンブラックの水分散スラリーの製造は、例えばホモミキサーに所定量のカーボンブラックと水を入れ、一定時間攪拌することで調製することができる。スラリー溶液中のカーボンブラックの濃度は、スラリーに対して0.5~30重量%が好ましく、特に好ましくは1~15重量%である。
(Preparation of aqueous dispersion slurry solution)
Prior to mixing the natural rubber latex and the water-dispersed slurry solution, a slurry solution in which carbon black is previously dispersed in water is produced. The manufacturing method of this slurry can use a well-known method, and is not specifically limited.
The water dispersion slurry of carbon black can be prepared, for example, by putting a predetermined amount of carbon black and water in a homomixer and stirring for a certain time. The concentration of carbon black in the slurry solution is preferably from 0.5 to 30% by weight, particularly preferably from 1 to 15% by weight, based on the slurry.
 カーボンブラックは、セチルトリメチルアンモニウムブロミド(CTAB)吸着比表面積(m/g)を70超、150未満の範囲とする。CTAB比表面積が70以下であると十分な耐摩耗性か確保されず、150以上であると発熱性が悪化する。また、圧縮DBP吸油量(24M4DBP、ml/100g)は、50超、100未満とする。50以下であると耐摩耗性の改良効果が得られず、100以上であると耐摩耗性が低下する。好ましくは55~95、より好ましくは70~95である。 Carbon black has a cetyltrimethylammonium bromide (CTAB) adsorption specific surface area (m 2 / g) in the range of more than 70 and less than 150. If the CTAB specific surface area is 70 or less, sufficient abrasion resistance is not ensured, and if it is 150 or more, the heat generation deteriorates. The compressed DBP oil absorption (24M4DBP, ml / 100g) is more than 50 and less than 100. If it is 50 or less, the effect of improving the wear resistance cannot be obtained, and if it is 100 or more, the wear resistance is lowered. Preferably it is 55 to 95, more preferably 70 to 95.
 水分散スラリー溶液中のカーボンブラックの粒度分布は、体積平均粒子径(mv)が25μm以下、90体積%粒径(D90)が30μm以下であることが好ましい。体積平均粒子径が25μm以下であり、90体積%粒径が30μm以下であるとゴム中のカーボンブラック分散がさらに良好となり、補強性、耐摩耗性がさらに向上する。
 カーボンブラックの粒径を小さくするために、スラリーに過度の剪断力をかけると、カーボンブラックのストラクチャが破壊され、補強性の低下を引き起こすので、水分散スラリー溶液から乾燥回収したカーボンブラックの24M4DBP吸油量は、水中に分散させる前の24M4DBP吸油量の93%以上、さらに好ましくは96%以上保持するように混合することが好ましい。
Regarding the particle size distribution of the carbon black in the water-dispersed slurry solution, the volume average particle size (mv) is preferably 25 μm or less and the 90% by volume particle size (D90) is preferably 30 μm or less. When the volume average particle size is 25 μm or less and the 90% by volume particle size is 30 μm or less, the carbon black dispersion in the rubber is further improved, and the reinforcing property and wear resistance are further improved.
If excessive shearing force is applied to the slurry to reduce the particle size of the carbon black, the structure of the carbon black is destroyed and the reinforcing property is lowered. Therefore, 24M4DBP oil absorption of the carbon black recovered by drying from the aqueous dispersion slurry solution The amount is preferably mixed so as to maintain 93% or more, more preferably 96% or more of the 24M4DBP oil absorption before being dispersed in water.
(混合工程)
 天然ゴムラテックスと水分散スラリー溶液とを混合する時のカーボンブラックの混合量は、天然ゴムラテックス中の天然ゴム成分100質量部に対して10~100質量部とする。10質量部未満では、十分な耐摩耗性が得られず、100質量部を超えると低発熱性が低下する。カーボンブラックの混合量は、20~80質量部であることが好ましく、30~60質量部であることがより好ましい。
 この混合工程を経て、天然ゴムウエットマスターバッチが得られる。
(Mixing process)
The mixing amount of the carbon black when mixing the natural rubber latex and the water-dispersed slurry solution is 10 to 100 parts by mass with respect to 100 parts by mass of the natural rubber component in the natural rubber latex. If it is less than 10 parts by mass, sufficient wear resistance cannot be obtained, and if it exceeds 100 parts by mass, the low heat build-up is reduced. The mixing amount of carbon black is preferably 20 to 80 parts by mass, and more preferably 30 to 60 parts by mass.
Through this mixing step, a natural rubber wet masterbatch is obtained.
(凝固工程)
 混合工程を経て得られた天然ゴムウエットマスターバッチは、凝固工程で凝固させることが好ましい。
 ウエットマスターバッチの凝固方法としては、通常と同様、蟻酸、硫酸等の酸や、塩化ナトリウム等の塩の凝固剤を用いて行う。あるいは、凝固剤を添加せず、天然ゴムラテックスと上記スラリー溶液とを混合することによって、凝固がなされる場合もある。
(Coagulation process)
The natural rubber wet masterbatch obtained through the mixing step is preferably coagulated in the coagulation step.
As a method for coagulating the wet masterbatch, an acid such as formic acid or sulfuric acid or a salt coagulant such as sodium chloride is used as usual. Alternatively, coagulation may be performed by adding natural rubber latex and the slurry solution without adding a coagulant.
(乾燥工程)
 マスターバッチ製造の最終工程として、乾燥処理を行うことが好ましい。乾燥機としては、真空乾燥機、エアドライヤー、ドラムドライヤー、バンドドライヤー等の通常の乾燥機を用いることができるが、さらにカーボンブラックの分散性を向上させるためには、機械的剪断力をかけながら乾燥することが好ましい。これにより、加工性、補強性に優れたゴムを得ることができる。この乾燥は、一般的な混練機を用いて行うことができるが、連続混練機を用いることが好ましい。さらに、同方向回転、あるいは異方向回転の多軸混練押出機を用いることがより好ましい。
 剪断力をかけながら乾燥する工程においては、乾燥工程前のマスターバッチ中の水分は10%以上であることが好ましい。水分が10%未満であると、乾燥工程でのカーボンブラックの分散改良幅が小さくなってしまうからである。
(Drying process)
It is preferable to perform a drying process as the final step of master batch production. As the dryer, ordinary dryers such as vacuum dryers, air dryers, drum dryers, band dryers, etc. can be used, but in order to further improve the dispersibility of carbon black, while applying mechanical shearing force It is preferable to dry. Thereby, rubber excellent in processability and reinforcement can be obtained. Although this drying can be performed using a general kneader, it is preferable to use a continuous kneader. Furthermore, it is more preferable to use a multi-axis kneading extruder that rotates in the same direction or in different directions.
In the step of drying while applying a shearing force, the moisture in the masterbatch before the drying step is preferably 10% or more. This is because when the water content is less than 10%, the dispersion improvement width of the carbon black in the drying process is reduced.
(アミド結合分解工程)
 混合工程に用いられる天然ゴムラテックスは、ラテックス中のアミド結合を分解する工程を経ていてもよい。アミド結合を予め分解しておけば、アミド結合の水素結合性によって分子同士が絡み合い、ゴムの粘度上昇が小さく、加工性を改善できる。
 アミド結合分解工程においては、プロテアーゼ及び/又は芳香族ポリカルボン酸誘導体を用いることが好ましい。プロテアーゼとは、天然ゴムラテックス粒子の表面層成分中に存在するアミド結合を加水分解する性質を有するものであり、酸性プロテアーゼ、中性プロテアーゼ、アルカリ性プロテアーゼなどが挙げられる。本発明では、特にアルカリ性プロテアーゼが効果の点から好ましい。プロテアーゼによってアミド結合の分解を行う場合は、混合する酵素に適した条件で行えばよく、例えば天然ゴムラテックスにノボザイム社製アルカラーゼ2.5LタイプDXを混合する場合には、通常20~80℃の範囲で処理することが望ましい。この際のpHは、通常6.0~12.0の範囲で行う。プロテアーゼの添加量は、天然ゴムラテックスに対して、通常0.01~2質量%、好ましくは0.02~1質量%の範囲である。
(Amide bond decomposition process)
The natural rubber latex used in the mixing step may be subjected to a step of decomposing the amide bond in the latex. If the amide bond is decomposed in advance, molecules are entangled by the hydrogen bondability of the amide bond, the viscosity increase of the rubber is small, and the processability can be improved.
In the amide bond decomposition step, it is preferable to use a protease and / or an aromatic polycarboxylic acid derivative. Proteases have the property of hydrolyzing amide bonds present in the surface layer components of natural rubber latex particles, and examples include acidic proteases, neutral proteases, and alkaline proteases. In the present invention, alkaline protease is particularly preferred from the viewpoint of effect. When the amide bond is decomposed by a protease, it may be carried out under conditions suitable for the enzyme to be mixed. For example, when mixing Alvarase 2.5L type DX manufactured by Novozyme with natural rubber latex, it is usually 20 to 80 ° C. It is desirable to process with a range. The pH at this time is usually in the range of 6.0 to 12.0. The amount of protease added is usually in the range of 0.01 to 2% by mass, preferably 0.02 to 1% by mass, based on the natural rubber latex.
 芳香族ポリカルボン酸誘導体を用いる方法では、芳香族ポリカルボン酸誘導体の添加量は、天然ゴムラテックスに対して、0.01~30質量%配合することが好ましい。添加量が0.01質量%未満では、ムーニー粘度を十分に低下できないことがあり、一方、30質量%を超えると、その増量に見合った効果が得られないばかりでなく、加硫ゴムの破壊特性などに悪影響を与えることがある。使用する天然ゴムラテックスの種類やグレードなどにより、添加量は上記範囲内で変動するが、物性、コストなどから0.05~20質量%の範囲が望ましい。
 芳香族ポリカルボン酸誘導体としては、好ましくはフタル酸、トリメリット酸、ピロメリット酸およびその無水物のいずれかの誘導体が好ましく、具体的には、フタル酸モノステアリル、フタル酸モノデシル、フタル酸モノオクチルアミド、フタル酸ポリオキシエチレンラウリルエステル、トリメリット酸モノデシル、トリメリット酸モノステアリル、ピロメリット酸モノステアリル、ピロメリット酸ジステアリルが挙げられる。
In the method using an aromatic polycarboxylic acid derivative, the addition amount of the aromatic polycarboxylic acid derivative is preferably 0.01 to 30% by mass with respect to the natural rubber latex. If the addition amount is less than 0.01% by mass, the Mooney viscosity may not be sufficiently reduced. On the other hand, if it exceeds 30% by mass, not only the effect corresponding to the increase is obtained but also the vulcanized rubber is destroyed. May adversely affect properties. The addition amount varies within the above range depending on the type and grade of the natural rubber latex used, but it is preferably in the range of 0.05 to 20% by mass from the physical properties and cost.
The aromatic polycarboxylic acid derivative is preferably a derivative of phthalic acid, trimellitic acid, pyromellitic acid and its anhydride, specifically, monostearyl phthalate, monodecyl phthalate, monophthalic acid Examples include octylamide, polyoxyethylene lauryl phthalate, monodecyl trimellitic acid, monostearyl trimellitic acid, monostearyl pyromellitic acid, and distearyl pyromellitic acid.
 アミド結合分解工程においては、ラテックスの安定性を向上させる目的で、界面活性剤を加えることが望ましい。界面活性剤は、アニオン系、カチオン系、ノニオン系、両性界面活性剤を使用できるが、特にアニオン系、ノニオン系界面活性剤が好ましい。界面活性剤の添加量は、天然ゴムラテックスの性状に応じて適宜調整しうるが、通常は天然ゴムラテックスに対して、0.01~2質量%、好ましくは0.02~1質量%である。界面活性剤の添加は、アミド結合分解工程で行うことが好ましいが、少なくとも混合工程の前であれば特に限定されない。 In the amide bond decomposition step, it is desirable to add a surfactant for the purpose of improving the stability of the latex. As the surfactant, anionic, cationic, nonionic and amphoteric surfactants can be used, and anionic and nonionic surfactants are particularly preferable. The addition amount of the surfactant can be appropriately adjusted according to the properties of the natural rubber latex, but is usually 0.01 to 2% by mass, preferably 0.02 to 1% by mass with respect to the natural rubber latex. . The addition of the surfactant is preferably performed in the amide bond decomposition step, but is not particularly limited as long as it is at least before the mixing step.
(2)変性天然ゴム
 本発明では、天然ゴム成分として、天然ゴム分子中に極性基を含有する変性天然ゴムを使用することができる。変性天然ゴムは、未変性の天然ゴムに比べて補強用充填剤に対する親和性が高い。
 導入する極性基としては、アミノ基、イミノ基、ニトリル基、アンモニウム基、イミド基、アミド基、ヒドラゾ基、アゾ基、ジアゾ基、ヒドロキシル基、カルボキシル基、カルボニル基、エポキシ基、オキシカルボニル基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、含窒素複素環基、含酸素複素環基、アルコキシシリル基、及びスズ含有基からなる群から選ばれる少なくとも一つである。
 天然ゴムの変性方法としては、例えば特開2007-326990に記載の変性方法を適用することができる。
(2) Modified natural rubber In the present invention, a modified natural rubber containing a polar group in a natural rubber molecule can be used as a natural rubber component. Modified natural rubber has a higher affinity for reinforcing fillers than unmodified natural rubber.
Examples of polar groups to be introduced include amino group, imino group, nitrile group, ammonium group, imide group, amide group, hydrazo group, azo group, diazo group, hydroxyl group, carboxyl group, carbonyl group, epoxy group, oxycarbonyl group, It is at least one selected from the group consisting of sulfide groups, disulfide groups, sulfonyl groups, sulfinyl groups, thiocarbonyl groups, nitrogen-containing heterocyclic groups, oxygen-containing heterocyclic groups, alkoxysilyl groups, and tin-containing groups.
As a natural rubber modification method, for example, a modification method described in JP-A-2007-326990 can be applied.
 変性天然ゴムの製造には、原料として、天然ゴムラテックスを用いてもよいし、天然ゴム、天然ゴムラテックス凝固物及び天然ゴムカップランプからなる群から選択される少なくとも一種の固形天然ゴム原材料を用いてもよい。
 天然ゴムラテックスとしては、特に限定されず、例えば、フィールドラテックス、アンモニア処理ラテックス、遠心分離濃縮ラテックス、界面活性剤や酵素で処理した脱タンパク質ラテックス、及びこれらを組み合せたもの等を用いることができる。
 天然ゴムラテックスを原料とする場合は、極性基含有変性天然ゴムラテックスを製造し、更に凝固及び乾燥させることで、極性基含有変性天然ゴムを得ることができる。
In the production of modified natural rubber, natural rubber latex may be used as a raw material, or at least one solid natural rubber raw material selected from the group consisting of natural rubber, natural rubber latex coagulum and natural rubber cup lamp is used. May be.
The natural rubber latex is not particularly limited, and for example, a field latex, an ammonia-treated latex, a centrifugal concentrated latex, a deproteinized latex treated with a surfactant or an enzyme, and a combination thereof can be used.
When natural rubber latex is used as a raw material, a polar group-containing modified natural rubber can be obtained by producing a polar group-containing modified natural rubber latex and further coagulating and drying.
 極性基含有変性天然ゴムラテックスの製造方法としては、特に限定されず、例えば、
1)天然ゴムラテックスに極性基含有単量体を添加し、該極性基含有単量体を天然ゴムラテックス中の天然ゴム分子にグラフト重合させる方法、
2)天然ゴムラテックスに極性基含有メルカプト化合物を添加し、該極性基含有メルカプト化合物を天然ゴムラテックス中の天然ゴム分子に付加させる方法、
3)天然ゴムラテックスに極性基含有オレフィン及びメタセシス触媒を加え、該メタセシス触媒によって天然ゴムラテックス中の天然ゴム分子に極性基含有オレフィンを反応させる方法が挙げられる。
The production method of the polar group-containing modified natural rubber latex is not particularly limited, for example,
1) A method of adding a polar group-containing monomer to natural rubber latex and graft polymerizing the polar group-containing monomer to natural rubber molecules in natural rubber latex,
2) A method of adding a polar group-containing mercapto compound to natural rubber latex and adding the polar group-containing mercapto compound to natural rubber molecules in the natural rubber latex,
3) A method of adding a polar group-containing olefin and a metathesis catalyst to natural rubber latex and reacting the polar group-containing olefin with a natural rubber molecule in the natural rubber latex using the metathesis catalyst.
 天然ゴムラテックスに添加される極性基含有単量体は、分子内に少なくとも一つの極性基を有し、天然ゴム分子とグラフト重合できる限り特に制限されるものでない。ここで、該極性基含有単量体は、天然ゴム分子とグラフト重合するために、分子内に炭素-炭素二重結合を有することが好ましく、極性基含有ビニル系単量体であることが好ましい。これら極性基を含有する単量体は、一種単独で用いてもよく、二種以上を組み合せて用いてもよい。 The polar group-containing monomer added to the natural rubber latex is not particularly limited as long as it has at least one polar group in the molecule and can be graft-polymerized with the natural rubber molecule. Here, the polar group-containing monomer preferably has a carbon-carbon double bond in the molecule for graft polymerization with a natural rubber molecule, and is preferably a polar group-containing vinyl monomer. . These monomers containing polar groups may be used alone or in combination of two or more.
 上記極性基含有単量体を天然ゴムラテックス中の天然ゴム分子にグラフト重合させる場合は、極性基含有単量体の天然ゴム分子へのグラフト重合を、乳化重合で行う。乳化重合においては、一般的に、天然ゴムラテックスに水及び必要に応じて乳化剤を加えた溶液中に、極性基含有単量体を加え、更に重合開始剤を加えて、所定の温度で撹拌して極性基含有単量体を重合させることが好ましい。なお、極性基含有単量体の天然ゴムラテックスへの添加においては、予め天然ゴムラテックス中に乳化剤を加えてもよいし、極性基含有単量体を乳化剤で乳化した後に天然ゴムラテックス中に加えてもよい。天然ゴムラテックス及び/又は極性基含有単量体の乳化に使用できる乳化剤としては、特に限定されず、ポリオキシエチレンラウリルエーテル等のノニオン系の界面活性剤が挙げられる。 When the polar group-containing monomer is graft-polymerized to the natural rubber molecule in the natural rubber latex, the graft polymerization of the polar group-containing monomer to the natural rubber molecule is performed by emulsion polymerization. In emulsion polymerization, in general, a polar group-containing monomer is added to a solution of natural rubber latex with water and, if necessary, an emulsifier, a polymerization initiator is added, and the mixture is stirred at a predetermined temperature. It is preferable to polymerize the polar group-containing monomer. In addition, in the addition of the polar group-containing monomer to the natural rubber latex, an emulsifier may be added to the natural rubber latex in advance, or the polar group-containing monomer is emulsified with the emulsifier and then added to the natural rubber latex. May be. The emulsifier that can be used for emulsifying the natural rubber latex and / or the polar group-containing monomer is not particularly limited, and examples thereof include nonionic surfactants such as polyoxyethylene lauryl ether.
 重合開始剤としては、特に制限はなく、種々の乳化重合用の重合開始剤を用いることができ、その添加方法についても特に制限はない。一般に用いられる重合開始剤の例としては、過酸化ベンゾイル、過酸化水素、クメンハイドロパーオキサイド、tert-ブチルハイドロパーオキサイド、ジtert-ブチルパーオキサイド、2,2-アゾビスイソブチロニトリル、2,2-アゾビス(2-ジアミノプロパン)ヒドロクロライド、2,2-アゾビス(2-ジアミノプロパン)ジヒドロクロライド、2,2-アゾビス(2,4-ジメチルバレロニトリル)、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等が挙げられる。なお、重合温度を低下させるためには、レドックス系の重合開始剤を用いることが好ましい。かかるレドックス系重合開始剤において、過酸化物と組み合せる還元剤としては、例えば、テトラエチレンペンタミン、メルカプタン類、酸性亜硫酸ナトリウム、還元性金属イオン、アスコルビン酸等が挙げられる。レドックス系重合開始剤における過酸化物と還元剤との好ましい組み合せとしては、tert-ブチルハイドロパーオキサイドとテトラエチレンペンタミンとの組み合せ等が挙げられる。
 変性天然ゴムを用いて、ゴム組成物の加工性を低下させることなく低ロス性及び耐摩耗性を向上させるには、各天然ゴム分子に極性基含有単量体が少量且つ均一に導入されることが重要であるため、重合開始剤の添加量は、上記極性基含有単量体に対し1~100mol%の範囲が好ましく、10~100mol%の範囲が更に好ましい。
There is no restriction | limiting in particular as a polymerization initiator, The polymerization initiator for various emulsion polymerization can be used, and there is no restriction | limiting in particular also about the addition method. Examples of generally used polymerization initiators include benzoyl peroxide, hydrogen peroxide, cumene hydroperoxide, tert-butyl hydroperoxide, ditert-butyl peroxide, 2,2-azobisisobutyronitrile, , 2-azobis (2-diaminopropane) hydrochloride, 2,2-azobis (2-diaminopropane) dihydrochloride, 2,2-azobis (2,4-dimethylvaleronitrile), potassium persulfate, sodium persulfate, Examples thereof include ammonium persulfate. In order to lower the polymerization temperature, it is preferable to use a redox polymerization initiator. Examples of the reducing agent to be combined with the peroxide in the redox polymerization initiator include tetraethylenepentamine, mercaptans, acidic sodium sulfite, reducing metal ions, ascorbic acid and the like. A preferred combination of a peroxide and a reducing agent in the redox polymerization initiator includes a combination of tert-butyl hydroperoxide and tetraethylenepentamine.
In order to improve the low loss and wear resistance without reducing the processability of the rubber composition using a modified natural rubber, a small amount and a uniform amount of a polar group-containing monomer is introduced into each natural rubber molecule. Therefore, the addition amount of the polymerization initiator is preferably in the range of 1 to 100 mol%, more preferably in the range of 10 to 100 mol% with respect to the polar group-containing monomer.
 上述した各成分を反応容器に仕込み、30~80℃で10分~7時間反応させることで、天然ゴム分子に極性基含有単量体がグラフト共重合した変性天然ゴムラテックスが得られる。該変性天然ゴムラテックスを凝固させ、洗浄後、真空乾燥機、エアドライヤー、ドラムドライヤー等の乾燥機を用いて乾燥することで変性天然ゴムが得られる。ここで、変性天然ゴムラテックスを凝固するのに用いる凝固剤としては、特に限定されるものではないが、ギ酸、硫酸等の酸や、塩化ナトリウム等の塩が挙げられる。 Each component described above is charged into a reaction vessel and reacted at 30 to 80 ° C. for 10 minutes to 7 hours to obtain a modified natural rubber latex in which a polar group-containing monomer is graft copolymerized with a natural rubber molecule. The modified natural rubber latex is coagulated, washed, and then dried using a dryer such as a vacuum dryer, air dryer, drum dryer or the like to obtain a modified natural rubber. Here, the coagulant used for coagulating the modified natural rubber latex is not particularly limited, and examples thereof include acids such as formic acid and sulfuric acid, and salts such as sodium chloride.
 次に、天然ゴムラテックスに添加されて、天然ゴムラテックス中の天然ゴム分子に付加反応する極性基含有メルカプト化合物は、分子内に少なくとも一つのメルカプト基とメルカプト基以外の前記極性基とを有する限り特に制限されるものでない。極性基を含有するメルカプト化合物は、一種単独で用いてもよく、二種以上を組み合せて用いてもよい。 Next, the polar group-containing mercapto compound which is added to the natural rubber latex and undergoes an addition reaction with the natural rubber molecule in the natural rubber latex has at least one mercapto group and the polar group other than the mercapto group in the molecule. There is no particular limitation. The mercapto compound containing a polar group may be used alone or in combination of two or more.
 上記極性基含有メルカプト化合物を天然ゴムラテックス中の天然ゴム分子に付加させる場合は、一般に、天然ゴムラテックスに水および必要に応じて乳化剤を加えた溶液中に、極性基含有メルカプト化合物を加え、所定の温度で撹拌することで、極性基含有メルカプト化合物を天然ゴムラテックス中の天然ゴム分子の主鎖の二重結合に付加反応させる。なお、極性基含有メルカプト化合物の天然ゴムラテックスヘの添加においては、予め天然ゴムラテックス中に乳化剤を加えてもよいし、極性基含有メルカプト化合物を乳化剤で乳化した後に天然ゴムラテックスに加えてもよい。また、必要に応じて、更に有機過酸化物を添加することもできる。なお、天然ゴムラテックス及び/又は極性基含有メルカプト化合物の乳化に使用できる乳化剤としては、特に限定されず、ポリオキシエチレンラウリルエーテル等のノニオン系の界面活性剤が挙げられる。 When the polar group-containing mercapto compound is added to the natural rubber molecule in the natural rubber latex, the polar group-containing mercapto compound is generally added to a solution obtained by adding water and, if necessary, an emulsifier to the natural rubber latex. By stirring at a temperature of 1, the polar group-containing mercapto compound is subjected to an addition reaction with the double bond of the main chain of the natural rubber molecule in the natural rubber latex. In addition, in the addition of the polar group-containing mercapto compound to the natural rubber latex, an emulsifier may be added to the natural rubber latex in advance, or the polar group-containing mercapto compound may be added to the natural rubber latex after emulsifying with the emulsifier. . Moreover, an organic peroxide can also be added as needed. In addition, it does not specifically limit as an emulsifier which can be used for emulsification of natural rubber latex and / or a polar group containing mercapto compound, Nonionic surfactants, such as polyoxyethylene lauryl ether, are mentioned.
 ゴム組成物の加工性を低下させることなく低ロス性及び耐摩耗性を向上させるには、各天然ゴム分子に極性基含有メルカプト化合物が少量且つ均一に導入されることが重要であるため、上記変性反応は、撹拌しながら行うことが好ましく、例えば、天然ゴムラテックス及び極性基含有メルカプト化合物等の上記成分を反応容器に仕込み、30~80℃で10分~24時間反応させることで、天然ゴム分子に上記極性基含有メルカプト化合物が付加した変性天然ゴムラテックスが得られる。 In order to improve the low loss and wear resistance without reducing the processability of the rubber composition, it is important that the polar group-containing mercapto compound is introduced in a small amount and uniformly into each natural rubber molecule. The modification reaction is preferably carried out with stirring. For example, the above components such as natural rubber latex and polar group-containing mercapto compound are charged in a reaction vessel and reacted at 30 to 80 ° C. for 10 minutes to 24 hours. A modified natural rubber latex in which the polar group-containing mercapto compound is added to the molecule is obtained.
 次に、天然ゴムラテックスに添加される極性基含有オレフィンは、分子内に少なくとも一つの極性基を有し、また、天然ゴム分子とクロスメタセシス反応するために炭素-炭素二重結合を有する。極性基含有オレフィンは、一種単独で用いてもよく、二種以上を組み合せて用いてもよい。 Next, the polar group-containing olefin added to the natural rubber latex has at least one polar group in the molecule, and also has a carbon-carbon double bond for cross-metathesis reaction with the natural rubber molecule. A polar group containing olefin may be used individually by 1 type, and may be used in combination of 2 or more type.
 メタセシス触媒によって天然ゴムラテックス中の天然ゴム分子に極性基含有オレフィンを反応させる場合は、一般に、天然ゴムラテックスに水及び必要に応じて乳化剤を加えた溶液中に、極性基含有オレフィンを加え、更にメタセシス触媒を加えて、所定の温度で撹拌して天然ゴム分子と極性基含有オレフィンをメタセシス反応させる。ここで、極性基含有オレフィンの天然ゴムラテックスへの添加においては、予め天然ゴムラテックス中に乳化剤を加えてもよいし、極性基含有オレフィンを乳化剤で乳化した後に天然ゴムラテックス中に加えてもよい。なお、天然ゴムラテックス及び/又は極性基含有オレフィンの乳化に使用できる乳化剤としては、特に限定されず、ポリオキシエチレンラウリルエーテル等のノニオン系の界面活性剤が挙げられる。 When a polar group-containing olefin is reacted with a natural rubber molecule in a natural rubber latex by a metathesis catalyst, the polar group-containing olefin is generally added to a solution obtained by adding water and, if necessary, an emulsifier to a natural rubber latex. A metathesis catalyst is added and stirred at a predetermined temperature to cause a metathesis reaction between the natural rubber molecule and the polar group-containing olefin. Here, in the addition of the polar group-containing olefin to the natural rubber latex, an emulsifier may be added to the natural rubber latex in advance, or the polar group-containing olefin may be added to the natural rubber latex after emulsification with the emulsifier. . In addition, it does not specifically limit as an emulsifier which can be used for emulsification of natural rubber latex and / or a polar group containing olefin, Nonionic surfactants, such as polyoxyethylene lauryl ether, are mentioned.
 メタセシス触媒としては、天然ゴム分子と極性基含有オレフィンとのメタセシス反応に対して触媒作用を有する限り特に制限されず、種々のメタセシス触媒を用いることができる。該メタセシス触媒は、遷移金属を含有するが、天然ゴムラテックス中で使用するため、水に対する安定性が高いことが好ましい。そのため、メタセシス触媒を構成する遷移金属は、ルテニウム、オスミウム及びイリジウムのいずれかであることが好ましい。メタセシス触媒として、具体的には、ビス(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロライド[RuCl2(=CHPh)(PCy3)2]の他、RuCl2(=CH-CH=CPh2)(PPh3)2、RuCl2(=CHPh)(PCp3)2、RuCl2(=CHPh)(PPh3)2、RuCl2(=CHPh)[Cy2PCH2CH2N(CH3)3 +Cl]2等を挙げることができる。なお、化学式中、Cyはシクロヘキシル基を示し、Cpはシクロペンチル基を示す。上記メタセシス触媒の添加量は、上記極性基含有オレフィンに対し1~500mol%の範囲が好ましく、10~100mol%の範囲が更に好ましい。 The metathesis catalyst is not particularly limited as long as it has a catalytic action on the metathesis reaction between the natural rubber molecule and the polar group-containing olefin, and various metathesis catalysts can be used. The metathesis catalyst contains a transition metal, but since it is used in a natural rubber latex, it is preferable that the stability to water is high. Therefore, the transition metal constituting the metathesis catalyst is preferably any one of ruthenium, osmium, and iridium. Specific examples of the metathesis catalyst include bis (tricyclohexylphosphine) benzylideneruthenium dichloride [RuCl 2 (═CHPh) (PCy 3 ) 2 ], and RuCl 2 (═CH—CH═CPh 2 ) (PPh 3 ) 2. RuCl 2 (= CHPh) (PCp 3 ) 2 , RuCl 2 (= CHPh) (PPh 3 ) 2 , RuCl 2 (= CHPh) [Cy 2 PCH 2 CH 2 N (CH 3 ) 3 + Cl] 2 etc. Can be mentioned. In the chemical formula, Cy represents a cyclohexyl group, and Cp represents a cyclopentyl group. The addition amount of the metathesis catalyst is preferably in the range of 1 to 500 mol%, more preferably in the range of 10 to 100 mol% with respect to the polar group-containing olefin.
 上述した各成分を反応容器に仕込み、30~80℃で10分~24時間反応させることで、天然ゴム分子に上記極性基が導入された変性天然ゴムラテックスが得られる。 The above-mentioned components are charged into a reaction vessel and reacted at 30 to 80 ° C. for 10 minutes to 24 hours to obtain a modified natural rubber latex in which the polar group is introduced into natural rubber molecules.
 また、原料として、天然ゴム、天然ゴムラテックス凝固物及び天然ゴムカップランプからなる群から選択される少なくとも一種の天然ゴム原材料を用いる場合は、極性基含有化合物を機械的剪断力を与えて、天然ゴム原材料にグラフト重合又は付加させることにより変性天然ゴムが得られる。 Further, when using at least one natural rubber raw material selected from the group consisting of natural rubber, natural rubber latex coagulum and natural rubber cup lamp as a raw material, the polar group-containing compound is given a mechanical shearing force, A modified natural rubber can be obtained by graft polymerization or addition to a rubber raw material.
 天然ゴム原材料と極性基含有化合物の混合物に機械的剪断力を与える手段としては、二軸押出混練装置及びドライプリブレーカーが好ましい。ここで、極性基含有化合物を天然ゴム原材料中の天然ゴム分子にグラフト重合させる場合は、機械的剪断力を与えることができる装置内に天然ゴム原材料及び極性基含有化合物(好ましくは、極性基含有ビニル系単量体)と共に重合開始剤を投入し、機械的剪断力を与えることで、天然ゴム原材料中の天然ゴム分子に極性基含有化合物をグラフト重合により導入することができる。また、極性基含有化合物を天然ゴム原材料中の天然ゴム分子に付加反応させる場合は、上記機械的剪断力を与えることができる装置内に天然ゴム原材料及び極性基含有化合物(好ましくは、極性基含有メルカプト化合物)を投入し、さらに必要に応じて有機過酸化物等を投入して、機械的剪断力を与えることで、天然ゴム原材料中の天然ゴム分子の主鎖の二重結合に極性基含有化合物を付加反応させることができる。ここで使用する極性基含有化合物としては、上述した極性基含有単量体、極性基含有メルカプト化合物、極性基含有オレフィン等が挙げられる。 As a means for applying a mechanical shearing force to the mixture of the natural rubber raw material and the polar group-containing compound, a twin-screw extrusion kneader and a dry prebreaker are preferable. Here, in the case where the polar group-containing compound is graft-polymerized to the natural rubber molecule in the natural rubber raw material, the natural rubber raw material and the polar group-containing compound (preferably, the polar group-containing compound are contained in an apparatus capable of applying mechanical shearing force. By introducing a polymerization initiator together with a vinyl monomer) and applying a mechanical shearing force, a polar group-containing compound can be introduced into the natural rubber molecule in the natural rubber raw material by graft polymerization. In addition, when a polar group-containing compound is subjected to an addition reaction with a natural rubber molecule in a natural rubber raw material, the natural rubber raw material and the polar group-containing compound (preferably, a polar group-containing compound are contained in the apparatus capable of applying the mechanical shearing force. Mercapto compound), and if necessary, organic peroxide, etc., is added to provide mechanical shearing force, so that polar groups are contained in the double bond of the main chain of natural rubber molecules in natural rubber raw materials. The compound can be subjected to an addition reaction. Examples of the polar group-containing compound used here include the above-described polar group-containing monomers, polar group-containing mercapto compounds, polar group-containing olefins, and the like.
 上述した各成分を機械的せん断力を与えられる装置内に仕込み、機械的剪断力を与えることで、天然ゴム分子に上記極性基含有化合物がグラフト重合又は付加した変性天然ゴムが得られる。なお、この際、天然ゴム分子の変性反応を加温して行ってもよく、好ましくは30~160℃、より好ましくは50~130℃の温度で行うことで、十分な反応効率で変性天然ゴムを得ることができる。 The modified natural rubber in which the above polar group-containing compound is graft-polymerized or added to the natural rubber molecule is obtained by charging the above-described components into an apparatus that can be applied with a mechanical shearing force and applying the mechanical shearing force. At this time, the modification reaction of the natural rubber molecule may be carried out by heating, and preferably at 30 to 160 ° C., more preferably 50 to 130 ° C., the modified natural rubber with sufficient reaction efficiency. Can be obtained.
 変性天然ゴムの極性基含有量は、変性天然ゴム中のゴム成分に対して0.001~0.5mmol/gの範囲が好ましく、0.002~0.3mmol/gの範囲が更に好ましく、0.003~0.2mmol/gの範囲がより一層好ましい。変性天然ゴムの極性基含有量が0.001mmol/g未満では、ゴム組成物の低ロス性及び耐摩耗性を十分に改良できないことがある。また、変性天然ゴムの極性基含有量が0.5mmol/gを超えると、粘弾性、S-S特性(引張試験機における応力-歪曲線)等の天然ゴム本来の物理特性を大きく変えてしまい、天然ゴム本来の優れた物理特性が損なわれると共に、ゴム組成物の加工性が大幅に悪化するおそれがある。 The polar group content of the modified natural rubber is preferably in the range of 0.001 to 0.5 mmol / g, more preferably in the range of 0.002 to 0.3 mmol / g, based on the rubber component in the modified natural rubber. The range of 0.003 to 0.2 mmol / g is even more preferable. If the polar group content of the modified natural rubber is less than 0.001 mmol / g, the low loss and wear resistance of the rubber composition may not be sufficiently improved. Also, if the polar group content of the modified natural rubber exceeds 0.5 mmol / g, the physical properties inherent to natural rubber such as viscoelasticity and SS characteristics (stress-strain curve in a tensile testing machine) will be greatly changed. In addition, the physical properties inherent to natural rubber are impaired, and the processability of the rubber composition may be greatly deteriorated.
(3)低発熱性付与剤
 低発熱性付与剤とは、トレッドゴムの低発熱、高補強を実現させるためにゴム組成物に配合するものである。そのような代表的な化合物として、ニトロソキノリン化合物が知られている(例えば、特開昭60-82406参照)。具体的には、5-ニトロソ-8-ヒドロキシキノリン、7-ニトロソ-8-ヒドロキシ-5-メチルキノリン、5-ニトロソ-8-ヒドロキシ-6-メチルキノリン、8-ニトロソ-5-ヒドロキシ-6-メチルキノリン、5-ニトロソ-8-ヒドロキシ-7-メチルキノリン、6-ニトロソ-5-ヒドロキシ-8-メチルキノリンがあげられ、中でも5-ニトロソ-8-ヒドロキシキノリンが好ましい。
 低発熱性付与剤は、ゴム成分100質量部に対して、0.1~10質量部配合する。
(3) Low exothermic property imparting agent The low exothermic property imparting agent is blended in the rubber composition in order to realize low heat generation and high reinforcement of the tread rubber. As such a representative compound, a nitrosoquinoline compound is known (for example, see JP-A-60-82406). Specifically, 5-nitroso-8-hydroxyquinoline, 7-nitroso-8-hydroxy-5-methylquinoline, 5-nitroso-8-hydroxy-6-methylquinoline, 8-nitroso-5-hydroxy-6- Examples thereof include methylquinoline, 5-nitroso-8-hydroxy-7-methylquinoline, and 6-nitroso-5-hydroxy-8-methylquinoline. Among them, 5-nitroso-8-hydroxyquinoline is preferable.
The low heat build-up agent is blended in an amount of 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component.
(4)ヒドラジド化合物
 ヒドラジド化合物は、特に重荷重用空気入りタイヤのトレッドゴムに好適なゴム組成物に配合すると、加硫戻りによる過加硫に起因する弾性率の低下を抑え、低発熱性,耐摩耗性の低下を抑制する作用を有していることが知られている(例えば、特開2002-146102参照)。
(4) Hydrazide compound When a hydrazide compound is blended in a rubber composition suitable for a tread rubber of a heavy duty pneumatic tire, it suppresses a decrease in elastic modulus caused by overvulcanization due to reversion, thereby reducing low heat buildup and resistance. It is known to have an action of suppressing a decrease in wear (see, for example, JP-A-2002-146102).
 本発明で用いることができるヒドラジド化合物は、例えば1-ヒドロキシ-N’-(1-メチルエチリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(1-メチルプロピリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(1-メチルブチリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(2,6-ジメチル-4-ヘプチリデン)-2-ナフトエ酸ヒドラジド、2-ヒドロキシ-N’-(1-メチルエチリデン)-3-ナフトエ酸ヒドラジド、2-ヒドロキシ-N’-(1-メチルプロピリデン)-3-ナフトエ酸ヒドラジド、2-ヒドロキシ-N’-(1-メチルブチリデン)-3-ナフトエ酸ヒドラジド、2-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-3-ナフトエ酸ヒドラジド、2-ヒドロキシ-N’-(2,6-ジメチル-4-ヘプチリデン)-3-ナフトエ酸ヒドラジド、イソフタル酸ジ(1-メチルエチリデン)ヒドラジド、イソフタル酸ジ(1-メチルプロピリデン)ヒドラジド、イソフタル酸ジ(1-メチルブチリデン)ヒドラジド、イソフタル酸ジ(1,3-ジメチルブチリデン)ヒドラジド、イソフタル酸ジ(2,6-ジメチル-4-ヘプチリデン)ヒドラジド、イソニコチン酸(1-メチルエチリデン)ヒドラジド、イソニコチン酸(1-メチルプロピリデン)ヒドラジド、イソニコチン酸(1-メチルブチリデン)ヒドラジド、イソニコチン酸(2,6-ジメチル-4-ヘプチリデン)ヒドラジド、イソニコチン酸(1,3-ジメチルブチリデン)ヒドラジド、N’-(1-メチルエチリデン)-サリチル酸ヒドラジド、N’-(1-メチルプロピリデン)-サリチル酸ヒドラジド、N’-(1-メチルブチリデン)-サリチル酸ヒドラジド、N’-(1,3-ジメチルブチリデン)-サリチル酸ヒドラジド、N’-(2,6-ジメチル-4-ヘプチリデン)-サリチル酸ヒドラジドなどが挙げられる。 Examples of the hydrazide compound that can be used in the present invention include 1-hydroxy-N ′-(1-methylethylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N ′-(1-methylpropylidene) -2-naphthoyl. Acid hydrazide, 1-hydroxy-N ′-(1-methylbutylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N ′-(1,3-dimethylbutylidene) -2-naphthoic acid hydrazide, 1-hydroxy -N '-(2,6-dimethyl-4-heptylidene) -2-naphthoic acid hydrazide, 2-hydroxy-N'-(1-methylethylidene) -3-naphthoic acid hydrazide, 2-hydroxy-N '-( 1-methylpropylidene) -3-naphthoic acid hydrazide, 2-hydroxy-N ′-(1-methylbutylidene) -3-naphthoic acid hydrazide 2-hydroxy-N ′-(1,3-dimethylbutylidene) -3-naphthoic acid hydrazide, 2-hydroxy-N ′-(2,6-dimethyl-4-heptylidene) -3-naphthoic acid hydrazide, isophthal Di (1-methylethylidene) hydrazide, di (1-methylpropylidene) hydrazide, isophthalic acid di (1-methylbutylidene) hydrazide, di (1,3-dimethylbutylidene) hydrazide, isophthalic acid Di (2,6-dimethyl-4-heptylidene) hydrazide, isonicotinic acid (1-methylethylidene) hydrazide, isonicotinic acid (1-methylpropylidene) hydrazide, isonicotinic acid (1-methylbutylidene) hydrazide, iso Nicotinic acid (2,6-dimethyl-4-heptylidene) hydrazide, isoni Tinic acid (1,3-dimethylbutylidene) hydrazide, N ′-(1-methylethylidene) -salicylic acid hydrazide, N ′-(1-methylpropylidene) -salicylic acid hydrazide, N ′-(1-methylbutylidene) -Salicylic acid hydrazide, N '-(1,3-dimethylbutylidene) -salicylic acid hydrazide, N'-(2,6-dimethyl-4-heptylidene) -salicylic acid hydrazide and the like.
 中でも、好ましいヒドラジド化合物は、2-ヒドロキシ-N’-(1-メチルエチリデン)-3-ナフトエ酸ヒドラジド、2-ヒドロキシ-N’-(1-メチルプロピリデン)-3-ナフトエ酸ヒドラジド、2-ヒドロキシ-N’-(1-メチルブチリデン)-3-ナフトエ酸ヒドラジド、2-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-3-ナフトエ酸ヒドラジド、2-ヒドロキシ-N’-(2,6-ジメチル-4-ヘプチリデン)-3-ナフトエ酸ヒドラジド、N’-(1-メチルエチリデン)-サリチル酸ヒドラジド、N’-(1-メチルプロピリデン)-サリチル酸ヒドラジド、N’-(1-メチルブチリデン)-サリチル酸ヒドラジド、N’-(1,3-ジメチルブチリデン)-サリチル酸ヒドラジド、N’-(2,6-ジメチル-4-ヘプチリデン)-サリチル酸ヒドラジドなどである。
 ヒドラジッド化合物は、ゴム成分100質量部に対して、0.05~5質量部配合する。
Among them, preferred hydrazide compounds are 2-hydroxy-N ′-(1-methylethylidene) -3-naphthoic acid hydrazide, 2-hydroxy-N ′-(1-methylpropylidene) -3-naphthoic acid hydrazide, 2- Hydroxy-N ′-(1-methylbutylidene) -3-naphthoic acid hydrazide, 2-hydroxy-N ′-(1,3-dimethylbutylidene) -3-naphthoic acid hydrazide, 2-hydroxy-N ′-( 2,6-dimethyl-4-heptylidene) -3-naphthoic acid hydrazide, N ′-(1-methylethylidene) -salicylic acid hydrazide, N ′-(1-methylpropylidene) -salicylic acid hydrazide, N ′-(1- Methylbutylidene) -salicylic acid hydrazide, N ′-(1,3-dimethylbutylidene) -salicylic acid hydrazide, N ′-(2,6-dimethyl-4) -Heptylidene) -salicylic acid hydrazide and the like.
The hydrazide compound is blended in an amount of 0.05 to 5 parts by mass with respect to 100 parts by mass of the rubber component.
(5)ダイポーラー窒素及び酸素又は硫黄を含む窒素含有複素環を有する化合物
 本発明において、カーボンブラックの分散性を改良して低発熱性を与え、ポリマー間の相互作用を強固なものとすることで、耐摩耗性を向上させる作用を有するダイポーラー窒素を含む部分及び酸素又は硫黄を含む4~6員の窒素含有複素環部分を有する化合物を配合することができる。
(5) Compound having dipolar nitrogen and nitrogen-containing heterocycle containing oxygen or sulfur In the present invention, the dispersibility of carbon black is improved to give low heat build-up, and the interaction between polymers is strengthened. Thus, a compound having a dipolar nitrogen-containing portion having an effect of improving wear resistance and a 4- to 6-membered nitrogen-containing heterocyclic portion containing oxygen or sulfur can be blended.
 上記化合物は、ダイポーラー窒素部分を含む限り、本発明で使用する化合物に含まれるものである。特に好ましいダイポーラー窒素部分の具体的なものとしては、A1-C(A2)=N(A3)→O(ニトロン系)、A1-C≡N→O(ニトリルオキサイド系)、及びA1-C≡N→N-A4(ニトリルイミン系)の3つが挙げられる。これらのダイポーラー窒素部分は、ゴム成分等のポリマー中の二重結合部分と結合するものである。 The above compound is included in the compound used in the present invention as long as it contains a dipolar nitrogen moiety. Specific examples of particularly preferred dipolar nitrogen moieties include A1-C (A2) = N (A3) → O (nitrone system), A1-C≡N → O (nitrile oxide system), and A1-C≡. N → N—A4 (nitrile imine type) can be mentioned. These dipolar nitrogen portions are bonded to double bond portions in a polymer such as a rubber component.
 上述のニトロン系、ニトリルオキサイド系、及びニトリルイミン系のダイポーラー窒素部分における各A1~A4の基は、水素、又は炭素数が20以下の基或いは連結鎖であることが望ましい。炭素数が20を超えると、化合物自体の分子量が嵩み、ゴム成分との反応性が悪くなる。 The groups A1 to A4 in the nitrone, nitrile oxide, and nitrileimine dipolar nitrogen moieties are preferably hydrogen, a group having 20 or less carbon atoms, or a connecting chain. When the number of carbon atoms exceeds 20, the molecular weight of the compound itself increases, and the reactivity with the rubber component becomes worse.
 上記化合物は窒素含有複素環部分を有していることから、A1~A4はこの窒素含有複素環部分を連結する連結鎖となり得る。上記の化合物のA1~A4の具体的な基又は連結鎖としては、水素、炭素数が1~20の範囲にあるアルキル基、及び炭素数が6~20の範囲にあるアリール基(但し、芳香族環にはニトロ基、シアノ基、クロロ基、ブロモ基、アシル基、カルボニルアルキル基、アルキル基及びアルコキシル基を有してよい)の何れか1つから選択される基、又は連結鎖である。アルキル基、アシル基、カルボニルアルキル基及びアルコキシル基は、分岐鎖を有していても良く、またシクロ環があっても良い。またA1~A4はそれぞれ異なっても良い。 Since the above compound has a nitrogen-containing heterocyclic moiety, A1 to A4 can be a connecting chain connecting the nitrogen-containing heterocyclic moieties. Specific groups or linking chains of A1 to A4 of the above compound include hydrogen, an alkyl group having 1 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms (provided that aromatic The group ring may be a group selected from any one of nitro group, cyano group, chloro group, bromo group, acyl group, carbonylalkyl group, alkyl group and alkoxyl group), or a connecting chain. . The alkyl group, acyl group, carbonylalkyl group and alkoxyl group may have a branched chain and may have a cyclo ring. A1 to A4 may be different from each other.
 上記の化合物の窒素含有複素環部分は、オキゼチン系、チオゼチン系、オキサゾリン系、チアゾリン系、テトラヒドロオキサジン系及びテトラヒドロチオキサジン系等の酸素または硫黄を有する窒素含有複素環、特に4~6員の窒素含有複素環からなる。中でも、オキサゾリン及びチオゾリンが望ましい。窒素含有複素環部分は、カーボンブラック及びホワイトカーボン(シリカ)と結合反応が起こり、これらをゴム成分のポリマー中に均一に取り込むことができる。 The nitrogen-containing heterocyclic moiety of the above compound is an oxetine-type, thiozetin-type, oxazoline-type, thiazoline-type, tetrahydrooxazine-type or tetrahydrothoxazine-type nitrogen-containing heterocycle, particularly a 4- to 6-membered nitrogen. Containing heterocycle. Of these, oxazoline and thiozoline are preferable. The nitrogen-containing heterocyclic moiety undergoes a binding reaction with carbon black and white carbon (silica), and these can be uniformly incorporated into the polymer of the rubber component.
 上記のダイポーラー窒素及び酸素又は硫黄を含む窒素含有複素環を有する化合物の具体的なものとしては、4-(2-オキサゾリル)-フェニル-N-メチル-ニトロン、4-(2-チアゾリル)-フェニル-N-メチル-ニトロン、4-(2-オキサゾリル)-フェニル-N-フェニル-ニトロン、4-(2-チアゾリル)-フェニル-N-フェニル-ニトロン、フェニル-N-4-(2-オキサゾリル)-フェニル-ニトロン、フェニル-N-4-(2-チアゾリル)-フェニル-ニトロン、4-トリル-N-4-(2-オキサゾリル)-フェニル-ニトロン、4-トリル-N-4-(2-チアゾリル)-フェニル-ニトロン、4-メトキシフェニル-N-4-(2-オキサゾリル)-フェニル-ニトロン、4-メトキシフェニル-N-4-(2-チアゾリル)-フェニル-ニトロン、4-(2-オキサゾリル)-フェニル-ニトリルオキシド、4-(2-チアゾリル)-フェニル-ニトリルオキシド、4-(2-オキサゾリル)-フェニル-N-メチル-ニトリルイミン、4-(2-チアゾリル)-フェニル-N-メチル-ニトリルイミン、4-(2-オキサゾリル)-フェニル-N-フェニル-ニトリルイミン、4-(2-チアゾリル)-フェニル-N-フェニル-ニトリルイミン、フェニル-N-4-(2-オキサゾリル)-フェニル-ニトリルイミン、フェニル-N-4-(2-チアゾリル)-フェニル-ニトリルイミン等を挙げることができる。 Specific examples of the dipolar nitrogen and the compound having a nitrogen-containing heterocyclic ring containing oxygen or sulfur include 4- (2-oxazolyl) -phenyl-N-methyl-nitrone, 4- (2-thiazolyl)- Phenyl-N-methyl-nitrone, 4- (2-oxazolyl) -phenyl-N-phenyl-nitrone, 4- (2-thiazolyl) -phenyl-N-phenyl-nitrone, phenyl-N-4- (2-oxazolyl) ) -Phenyl-nitrone, phenyl-N-4- (2-thiazolyl) -phenyl-nitrone, 4-tolyl-N-4- (2-oxazolyl) -phenyl-nitrone, 4-tolyl-N-4- (2 -Thiazolyl) -phenyl-nitrone, 4-methoxyphenyl-N-4- (2-oxazolyl) -phenyl-nitrone, 4-methoxyphenyl-N-4- (2-thi Azolyl) -phenyl-nitrone, 4- (2-oxazolyl) -phenyl-nitrile oxide, 4- (2-thiazolyl) -phenyl-nitrile oxide, 4- (2-oxazolyl) -phenyl-N-methyl-nitrileimine, 4- (2-thiazolyl) -phenyl-N-methyl-nitrileimine, 4- (2-oxazolyl) -phenyl-N-phenyl-nitrileimine, 4- (2-thiazolyl) -phenyl-N-phenyl-nitrileimine And phenyl-N-4- (2-oxazolyl) -phenyl-nitrileimine, phenyl-N-4- (2-thiazolyl) -phenyl-nitrileimine, and the like.
 このような化合物において、4-(2-オキサゾリル)-フェニル-N-メチル-ニトロン〔以下、「4OPMN」という〕及び4-(2-オキサゾリル)-フェニル-N-フェニル-ニトロン〔以下、「4OPPN」という〕が好ましく使用できる。 In such compounds, 4- (2-oxazolyl) -phenyl-N-methyl-nitrone (hereinafter referred to as “4OPMN”) and 4- (2-oxazolyl) -phenyl-N-phenyl-nitrone (hereinafter referred to as “4OPPN”). Can be preferably used.
 上記の化合物の製造方法は、過度の実験をしなくても製造できる。例えば、4OPPNに関しては後述する実施例においてその製造方法を示す。
 また、他の化合物についても、他の開始物質及び中間物質を適宜選択することにより代表的な製造方法で製造することができる。
The method for producing the above compound can be produced without undue experimentation. For example, with respect to 4OPPN, a manufacturing method thereof will be shown in an example described later.
Also, other compounds can be produced by typical production methods by appropriately selecting other starting materials and intermediate materials.
 上記の化合物は、ゴム成分100質量部に対して、0.1~30質量部の範囲で配合する。特に、0.1~5質量部の範囲で含めることが好ましい。化合物の配合量が0.1未満では、低発熱化及び低ヒステリシスロス性の効果が十分でない。化合物の配合量が30質量部を超えると、著しいコストアップになり好ましくない。
 なお、本発明において、天然ゴムのマスターバッチを使用する場合、ダイポーラー窒素及び酸素又は硫黄を含む窒素含有複素環有する化合物を天然ゴムウエットマスターバッチの製造工程中のカーボンブラックと共に、または、該ウエットマスターバッチの乾燥工程中に配合してもよい。
(6)ステアリン酸の増量
 ステアリン酸は、カーボンブラックの分散性を向上させ、ゴムの耐摩耗性を高めるという機能を有して、配合剤として多くのゴムに使用されているが、これを通常より多く使用するもので、4phrまで増量して配合する。
The above compound is blended in the range of 0.1 to 30 parts by mass with respect to 100 parts by mass of the rubber component. In particular, it is preferably included in the range of 0.1 to 5 parts by mass. If the compounding amount is less than 0.1, the effects of low heat generation and low hysteresis loss are not sufficient. When the compounding amount of the compound exceeds 30 parts by mass, the cost is significantly increased, which is not preferable.
In the present invention, when a natural rubber masterbatch is used, a compound having a nitrogen-containing heterocyclic ring containing dipolar nitrogen and oxygen or sulfur is used together with carbon black in the production process of the natural rubber wet masterbatch or the wet rubber. You may mix | blend during the drying process of a masterbatch.
(6) Increased amount of stearic acid Stearic acid has the functions of improving the dispersibility of carbon black and increasing the wear resistance of rubber, and is used in many rubbers as a compounding agent. It is used more frequently and is added to 4 phr.
(7)リミル
 通常加硫剤、加硫促進剤をゴムに加えずにゴムと充填剤との補強性を確保し、充填剤の分散を促進するノンプロ練り、ノンプロ練りで得られたノンプロゴムに加硫剤、加硫促進剤も配合するプロ練りがあるが、リミルとは、ノンプロ練りを行った後、プロ練りする前にノンプロ練りの効果、即ち充填剤の補強性を強め、分散をよりよくするため、練りのみを行う工程をいう。
(7) Remill Usually, vulcanizing agents and vulcanization accelerators are added to the non-pro rubber obtained by non-pro kneading and non-pro kneading to ensure the reinforcing property of the rubber and the filler without adding the rubber to the rubber and to promote the dispersion of the filler. There is a professional kneading that also contains a vulcanizing agent and a vulcanization accelerator, but remilling is a non-pro kneading and before the pro kneading before non-pro kneading, that is, strengthening the reinforcing property of the filler to improve dispersion. Therefore, it refers to the process of only kneading.
(8)低温加硫
 ゴム組成物の加硫を低い温度で行い、加硫戻りを抑制し、物性の低下を防止する。通常加硫は130~200℃程度の範囲で行われるが、この加硫温度を80~120℃の範囲の低温にし、長い時間加硫を行う。
(8) Low-temperature vulcanization The rubber composition is vulcanized at a low temperature to suppress reversion and prevent deterioration of physical properties. Usually, vulcanization is performed in the range of about 130 to 200 ° C., but the vulcanization temperature is set to a low temperature in the range of 80 to 120 ° C. and vulcanization is performed for a long time.
 本発明のゴム組成物には、上記処理に使用する成分以外にもゴム工業で通常使用されている硫黄等の加硫剤、各種加硫促進剤、軟化剤、老化防止剤、酸化亜鉛、ステアリン酸等の配合剤を配合することができる。 In addition to the components used for the above treatment, the rubber composition of the present invention includes vulcanizing agents such as sulfur, vulcanization accelerators, softeners, anti-aging agents, zinc oxide, stearin, which are usually used in the rubber industry. A compounding agent such as an acid can be blended.
 本発明のタイヤ用ゴム組成物の製造方法は、特に限定されず、通常行なわれる方法により、配合剤をゴム成分に添加して混練し、調製することができる。また、ゴム成分としてマスターバッチを使用する場合、マスターバッチを製造する工程で該配合剤を加えることができる。 The method for producing the tire rubber composition of the present invention is not particularly limited, and can be prepared by adding a compounding agent to the rubber component and kneading by a commonly performed method. Moreover, when using a masterbatch as a rubber component, this compounding agent can be added in the process of manufacturing a masterbatch.
 本発明のタイヤは、上記ゴム組成物をトレッドゴムとして用い、加硫成形することにより製造することができる。本発明のタイヤは、低発熱性に優れると共に、耐摩耗性が高い。なお、本発明のタイヤに充填する気体には、空気、又は窒素等の不活性ガスが用いられる。 The tire of the present invention can be manufactured by vulcanization molding using the rubber composition as a tread rubber. The tire of the present invention is excellent in low heat buildup and has high wear resistance. In addition, air or inert gas, such as nitrogen, is used for the gas with which the tire of the present invention is filled.
 以下実施例により本発明を更に詳しく説明するが、本発明は、下記実施例に何ら限定されるものではない。
 以下の実施例、比較例において、充填剤のCTAB、ゴム組成物のレジリエンス(反発弾性)、タイヤ性能として耐摩耗性を下記の方法により測定、評価した。
The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to the following examples.
In the following examples and comparative examples, wear resistance was measured and evaluated by the following methods as CTAB as a filler, resilience (rebound resilience) as a rubber composition, and tire performance.
(1)CTAB
 ISO 6810に準拠して測定した。
(2)レジリエンス
 JIS K6255-1996(室温25℃)に準拠して測定した。
(3)耐摩耗性
 各ゴム組成物をタイヤトレッドに適用して、それぞれサイズ1000R20 14PRのタイヤを作製し、悪路を6000km走行させた後、タイヤの摩耗1mm当たりの走行距離により、下記の式から耐摩耗性指数を算出した。値が大きい程、耐摩耗性がよい。
 耐摩耗性指数=100×(走行距離/摩耗量)(各タイヤ)/(走行距離/摩耗量)(比較例1)
(1) CTAB
Measured according to ISO 6810.
(2) Resilience Measured according to JIS K6255-1996 (room temperature 25 ° C.).
(3) Abrasion resistance Each rubber composition was applied to a tire tread to produce tires each having a size of 1000R20 14PR. After running on a rough road for 6000 km, the following formula was calculated according to the running distance per 1 mm of tire wear. From this, the wear resistance index was calculated. The higher the value, the better the wear resistance.
Abrasion resistance index = 100 × (travel distance / amount of wear) (each tire) / (travel distance / amount of wear) (Comparative Example 1)
 実施例のゴム組成物に対して行った各種処理方法は下記の通りである。
 (A)マスターバッチの製造
 天然ゴムのフィールドラテックス(ゴム分24.2%)を脱イオン水で希釈し、ゴム分20%とした。この天然ゴムラテックス100質量部に、アニオン系界面活性剤(花王株式会社製デモールN)を0.5質量部、アルカリ性プロテアーゼ(ノボザイム社製アルカラーゼ2.5LタイプDX)を0.1質量部加え、40℃で8時間攪拌することにより、天然ゴム中のアミド結合を分解した。
 一方、ローター径50mmのコロイドミルに脱イオン水1425gと、カーボンブラック75gを投入し、ローター・ステーター間隔0.3mm、回転数5000rpmで10分間攪拌し、水分散スラリーを製造した。
 次に、天然ゴムラテックスと、水分散スラリーとを天然ゴム成分とカーボンブラックとの質量比が表1に示す比率になるように混合し、天然ゴムウエットマスターバッチを製造した。得られた天然ゴムウエットマスターバッチを攪拌しながら、蟻酸をpH4.5になるまで加え、天然ゴムウエットマスターバッチを凝固させた。凝固後の天然ゴムウエットマスターバッチを回収、水洗し、水分が約40%になるまで脱水を行った。その後、2軸混練押出し機(神戸製鋼製:同方向回転スクリュー径 30mm、L/D=35、ベントホール3ケ所)を用いて、バレル温度120℃、回転数100rpmで乾燥し、天然ゴムマスターバッチを製造した。
 以下の実施例では、天然ゴム成分が表1に示す天然ゴムの配合量となる量使用する。
The various processing methods performed with respect to the rubber composition of an Example are as follows.
(A) Production of Master Batch Natural rubber field latex (rubber content 24.2%) was diluted with deionized water to give a rubber content of 20%. To 100 parts by weight of this natural rubber latex, 0.5 part by weight of an anionic surfactant (Demol N made by Kao Corporation) and 0.1 part by weight of alkaline protease (Alkalase 2.5L type DX made by Novozyme) were added, By stirring at 40 ° C. for 8 hours, the amide bond in the natural rubber was decomposed.
On the other hand, 1425 g of deionized water and 75 g of carbon black were put into a colloid mill with a rotor diameter of 50 mm, and stirred for 10 minutes at a rotor-stator interval of 0.3 mm and a rotational speed of 5000 rpm to produce an aqueous dispersion slurry.
Next, natural rubber latex and water-dispersed slurry were mixed so that the mass ratio of the natural rubber component and carbon black was the ratio shown in Table 1 to produce a natural rubber wet masterbatch. While stirring the obtained natural rubber wet masterbatch, formic acid was added until the pH reached 4.5 to coagulate the natural rubber wet masterbatch. The natural rubber wet masterbatch after coagulation was collected, washed with water, and dehydrated until the water content was about 40%. Then, using a twin-screw kneading extruder (Kobe Steel: Co-directional rotating screw diameter 30 mm, L / D = 35, 3 vent holes), dried at a barrel temperature of 120 ° C. and a rotation speed of 100 rpm, and a natural rubber master batch Manufactured.
In the following examples, the natural rubber component is used in an amount corresponding to the amount of natural rubber shown in Table 1.
 (B)変性天然ゴムの製造
 フィールドラテックスをラテックスセパレーター(斎藤遠心工業製)を用いて回転数7500rpmで遠心分離して、乾燥ゴム濃度60%の濃縮ラテックスを得た。この濃縮ラテックス1000gを、撹拌機及び温調ジャケットを備えたステンレス製反応容器に投入し、予め10mlの水と90mgの乳化剤(エマルゲン1108、花王株式会社製)をN,N-ジエチルアミノエチルメタクリレート3.0gに加えて乳化したものを990mlの水と共に添加し、これらを窒素置換しながら常温で30分間撹拌した。次に、重合開始剤としてtert-ブチルハイドロパーオキサイド1.2gとテトラエチレンペンタミン1.2gとを加え、40℃で30分間反応させることにより、変性天然ゴムラテックスを得た。
 次に、上記変性天然ゴムラテックスに蟻酸を加えpHを4.7に調整して、変性天然ゴムラテックスを凝固させた。このようにして得られた固形物をクレーパーで5回処理し、シュレッダーに通してクラム化した後、熱風式乾燥機により110℃で210分間乾燥して変性天然ゴムを得た。このようにして得られた変性天然ゴムの質量から、単量体として加えたN,N-ジエチルアミノエチルメタクリレートの転化率が100%であることが確認された。また、該変性天然ゴムを石油エーテルで抽出し、更にアセトンとメタノールの2:1混合溶媒で抽出することによりホモポリマーの分離を試みたが、抽出物を分析したところホモポリマーは検出されず、添加した単量体の100%が天然ゴム分子に導入されていることが確認された。従って、得られた変性天然ゴムの極性基含有量は、天然ゴムラテックス中のゴム成分に対して0.027mmol/gである。
 以下の実施例では、変性天然ゴムが表1に示す天然ゴムの配合量となる量使用する。
(B) Production of modified natural rubber The field latex was centrifuged at a rotational speed of 7500 rpm using a latex separator (manufactured by Saito Centrifugal Co., Ltd.) to obtain a concentrated latex having a dry rubber concentration of 60%. 1000 g of this concentrated latex is put into a stainless steel reaction vessel equipped with a stirrer and a temperature control jacket, and 10 ml of water and 90 mg of emulsifier (Emulgen 1108, manufactured by Kao Corporation) are added in advance to N, N-diethylaminoethyl methacrylate. What was emulsified in addition to 0 g was added together with 990 ml of water, and these were stirred at room temperature for 30 minutes while purging with nitrogen. Next, 1.2 g of tert-butyl hydroperoxide and 1.2 g of tetraethylenepentamine were added as polymerization initiators and reacted at 40 ° C. for 30 minutes to obtain a modified natural rubber latex.
Next, the modified natural rubber latex was coagulated by adding formic acid to adjust the pH to 4.7. The solid material thus obtained was treated with a creper five times, passed through a shredder and crushed, and then dried at 110 ° C. for 210 minutes with a hot air dryer to obtain a modified natural rubber. From the mass of the modified natural rubber thus obtained, it was confirmed that the conversion rate of N, N-diethylaminoethyl methacrylate added as a monomer was 100%. In addition, the modified natural rubber was extracted with petroleum ether and further extracted with a 2: 1 mixed solvent of acetone and methanol, but when the extract was analyzed, the homopolymer was not detected. It was confirmed that 100% of the added monomer was introduced into the natural rubber molecule. Accordingly, the polar group content of the resulting modified natural rubber is 0.027 mmol / g with respect to the rubber component in the natural rubber latex.
In the following examples, the modified natural rubber is used in an amount corresponding to the amount of natural rubber shown in Table 1.
 (C)ヒドラジド化合物の添加
 天然ゴム分100質量部につき、2-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-3-ナフトエ酸ヒドラジド(BMH)1.0質量部添加する。
 (D)低発熱性付与剤の添加
 天然ゴム分100質量部につき、5-ニトロソ-8-ヒドロキシキノリン(NQ58)1.0質量部添加する。
 (E)ダイポーラー窒素を含む窒素含有複素環化合物の添加
(C) Addition of hydrazide compound 1.0 part by mass of 2-hydroxy-N '-(1,3-dimethylbutylidene) -3-naphthoic acid hydrazide (BMH) is added per 100 parts by mass of the natural rubber.
(D) Addition of low exothermic property-imparting agent 1.0 part by mass of 5-nitroso-8-hydroxyquinoline (NQ58) is added per 100 parts by mass of natural rubber.
(E) Addition of a nitrogen-containing heterocyclic compound containing dipolar nitrogen
 4-(2-オキサゾリル)-フェニル-N-フェニル-ニトロン(4OPPN)の製造
 クロロホルム300mlに15.0gの4-ホルミル-ベンゾイルクロライド(1当量)を攪拌混合した溶液に、クロロホルム200mlに10.9gの2-アミノエタノール(2当量)を加えた溶液を-10℃下で滴下して加えた。この溶液を25℃に2時間おいた後、白色沈殿物を濾過により除いた。濾液をロータリーエバポレータにより乾燥させ、17.4gの黄色液である4-ホルミル-N-(2-ヒドロキシエチル)-ベンザミドを得た。
 次いで、濃硫酸50mlに4-ホルミル-N-(2-ヒドロキシエチル)-ベンザミド17.4gを攪拌しながら滴下し、混合物を100℃で1時間加熱した。この溶液に20%水酸化ナトリウム及びクロロホルムの各500mlを攪拌混合しながら滴下し、温度を15℃以下に維持した。生成層が分離され、これを乾燥して6.3gの4-(2-オキサゾリル)-ベンズアルデヒドを得た。
 4-(2-オキサゾリル)-ベンズアルデヒド(1当量、6.3g)とN-フェニル-ヒドロキシアミン(1当量、3.9g)との混合物を100mlのエタノール中で30分間還流して、50ml量に濃縮した。水50mlの同量を添加して、混合物を冷蔵庫で5℃にて一昼夜冷却した。濾過分離及び乾燥により白色結晶が得られ、6.7gの4-(2-オキサゾリル)-フェニル-N-フェニル-ニトロン(4OPPN)を生成した。
 こうして得た4-(2-オキサゾリル)-フェニル-N-フェニル-ニトロンを天然ゴム分100質量部につき、1.0質量部添加する。
Preparation of 4- (2-oxazolyl) -phenyl-N-phenyl-nitrone (4OPPN) 10.9 g of 4-formyl-benzoyl chloride (1 equivalent) in 300 ml of chloroform was stirred and mixed with 10.9 g of 200 ml of chloroform. A solution of 2-aminoethanol (2 equivalents) was added dropwise at -10 ° C. The solution was placed at 25 ° C. for 2 hours and then the white precipitate was removed by filtration. The filtrate was dried on a rotary evaporator to give 17.4 g of yellow liquid 4-formyl-N- (2-hydroxyethyl) -benzamide.
Subsequently, 17.4 g of 4-formyl-N- (2-hydroxyethyl) -benzamide was added dropwise to 50 ml of concentrated sulfuric acid with stirring, and the mixture was heated at 100 ° C. for 1 hour. To this solution, 500 ml of 20% sodium hydroxide and chloroform were added dropwise with stirring and mixing, and the temperature was maintained at 15 ° C. or lower. The product layer was separated and dried to give 6.3 g of 4- (2-oxazolyl) -benzaldehyde.
A mixture of 4- (2-oxazolyl) -benzaldehyde (1 eq, 6.3 g) and N-phenyl-hydroxyamine (1 eq, 3.9 g) was refluxed in 100 ml ethanol for 30 min to a volume of 50 ml. Concentrated. An equal amount of 50 ml of water was added and the mixture was cooled overnight at 5 ° C. in a refrigerator. Filtration and drying gave white crystals, yielding 6.7 g of 4- (2-oxazolyl) -phenyl-N-phenyl-nitrone (4OPPN).
The 4- (2-oxazolyl) -phenyl-N-phenyl-nitrone thus obtained is added in an amount of 1.0 part by mass per 100 parts by mass of the natural rubber.
 (F)ステアリン酸増量
 ゴム組成物中のステアリン酸をこの処理をしない場合は、天然ゴム分100質量部につき、2.0質量部であるものを4.0質量部に増量する。
 (G)リミル
 天然ゴムに補強用充填剤(カーボンブラック、シリカ)の分散を促進するノンプロ練りを行った後、プロ練りする前に充填剤の補強性を強め、分散をよりよくするため、さらにノンプロ練りを1回3分間行う。
 (H)低温加硫
 加硫を通常150℃/30分で行うところ、120℃/120分行う。
(F) Stearic acid increase When stearic acid in the rubber composition is not subjected to this treatment, the amount of 2.0 parts by mass is increased to 4.0 parts by mass per 100 parts by mass of the natural rubber.
(G) Remill After non-pro-kneading to promote the dispersion of reinforcing fillers (carbon black, silica) on natural rubber, before reinforcing the pro-kneading, to enhance the reinforcing properties of the filler and improve dispersion, Non-pro-kneading once for 3 minutes.
(H) Low-temperature vulcanization The vulcanization is usually carried out at 150 ° C./30 minutes, but at 120 ° C./120 minutes.
 実施例1~8及び比較例1~8
 ゴム成分として、実施例では天然ゴムマスターバッチ又は変性天然ゴムを、比較例では天然コムラテックスを凝固、乾燥させた天然ゴムを使用し、各種天然ゴムにカーボンブラック、又はカーボンブラックとシリカ、及び配合剤を加え、バンバリーミキサーで混練りして、ゴム組成物を作製した。
   ゴム組成物(質量部)
    天然ゴム      100
    カーボンブラック  変量
    シリカ       変量
    ワックス      2
    ステアリン酸    2(通常)、4(増量時)
    老化防止剤6C   1
    亜鉛華       3
    加硫促進剤CZ   1.4
    (N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド)
    硫黄        1.8
    化合物1~3    1.0
 表1及び2に使用したゴム成分、カーボンブラック、シリカの種類、性状及び行った処理と、各ゴム組成物のレジリエンス及びタイヤ性能の評価結果を示す。
 表1及び2において、○はその処理を行ったことを示す。
Examples 1 to 8 and Comparative Examples 1 to 8
As rubber components, natural rubber masterbatch or modified natural rubber is used in the examples, and natural rubber obtained by coagulating and drying natural comb latex is used in the comparative examples. Carbon black or carbon black and silica are added to various natural rubbers. A rubber composition was prepared by adding an agent and kneading with a Banbury mixer.
Rubber composition (parts by mass)
Natural rubber 100
Carbon black variable silica variable wax 2
Stearic acid 2 (normal), 4 (when increased)
Anti-aging agent 6C 1
Zinc flower 3
Vulcanization accelerator CZ 1.4
(N-cyclohexyl-2-benzothiazylsulfenamide)
Sulfur 1.8
Compounds 1-3 3 1.0
Tables 1 and 2 show the types and properties of the rubber components, carbon black, and silica used, the treatments performed, and the evaluation results of the resilience and tire performance of each rubber composition.
In Tables 1 and 2, ◯ indicates that the processing was performed.
 表1
Figure JPOXMLDOC01-appb-I000001
Table 1
Figure JPOXMLDOC01-appb-I000001
 表2
Figure JPOXMLDOC01-appb-I000002
  注
 CB:カーボンブラック
1)天然ゴムラテックスを凝固、乾燥して得た天然ゴム、カーボンブラックとの天然ゴムマスターバッチ又は変性天然ゴム
2)ニプシールAQ:東ソー・シリカ社製
3)Y=-0.0019×CTAB×充填剤の量+77.5
4)5-ニトロソ-8-ヒドロキシキノリン
5)2-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-3-ナフトエ酸ヒドラジド
6)4-(2-オキサゾリル)-フェニル-N-フェニル-ニトロン
Table 2
Figure JPOXMLDOC01-appb-I000002
Note CB: Carbon black 1) Natural rubber obtained by coagulating and drying natural rubber latex, natural rubber masterbatch with carbon black or modified natural rubber 2) Nipseal AQ: manufactured by Tosoh Silica Co. 3) Y = -0. 0019 × CTAB × filler amount + 77.5
4) 5-nitroso-8-hydroxyquinoline 5) 2-hydroxy-N '-(1,3-dimethylbutylidene) -3-naphthoic acid hydrazide 6) 4- (2-oxazolyl) -phenyl-N-phenyl- Nitron
 本発明の要件である レジリエンス>Yの値 を満たさず、しかもA~Hのいずれの処理も行わない比較例に比べ、実施例1~8では、レジリエンスが大きく、また、タイヤの耐摩耗性は同等または大幅に向上している。 In comparison with the comparative examples that do not satisfy the value of resilience> Y, which is a requirement of the present invention, and in which none of the treatments A to H is performed, the resilience is higher in Examples 1 to 8 and the tire wear resistance is higher. Equivalent or significantly improved.
 本発明のゴム組成物は、タイヤトレッドに好適に使用できる。
 
The rubber composition of the present invention can be suitably used for tire treads.

Claims (9)

  1.  天然ゴムとカーボンブラック、又はカーボンブラックとシリカからなる補強用充填剤を含むゴム組成物において、充填剤のISO6810に準拠して測定されるセチルトリメチルアンモニウムブロミド吸着比表面積で表した比表面積(CTAB:m/g)と天然ゴム成分100質量部当たりの充填剤の充填質量部B(phr)との積がJIS K6255(25℃)に準拠して測定されるゴム組成物の反発弾性に対して下記式(1)を満たすゴム組成物。
        反発弾性 > -0.0019×A+77.5  (1)
        ここで、A=CTAB×B
    In a rubber composition containing a reinforcing filler made of natural rubber and carbon black, or carbon black and silica, the specific surface area (CTAB) represented by the cetyltrimethylammonium bromide adsorption specific surface area measured according to ISO 6810 of the filler. m 2 / g) and the impact resilience of the rubber composition in which the product of the filler mass part B (phr) of the filler per 100 parts by mass of the natural rubber component is measured according to JIS K6255 (25 ° C.) A rubber composition satisfying the following formula (1).
    Rebound resilience> −0.0019 × A + 77.5 (1)
    Where A = CTAB × B
  2.  天然ゴム成分とカーボンブラックを天然ゴムラテックスとカーボンブラックから製造された天然ゴムマスターバッチとして使用する請求項1に記載のゴム組成物。 The rubber composition according to claim 1, wherein the natural rubber component and carbon black are used as a natural rubber masterbatch produced from natural rubber latex and carbon black.
  3.  天然ゴム成分が、極性基含有変性天然ゴムである請求項1に記載のゴム組成物。 The rubber composition according to claim 1, wherein the natural rubber component is a polar group-containing modified natural rubber.
  4.  請求項1~3のいずれかのゴム組成物に、ヒドラジド化合物、ニトロソキノリン化合物及びダイポーラー窒素及び酸素又は硫黄を含む窒素含有複素環を有する化合物のいずれか1つの化合物を配合したゴム組成物。 A rubber composition obtained by blending any one of the hydrazide compound, the nitrosoquinoline compound, and a compound having a nitrogen-containing heterocyclic ring containing oxygen or sulfur with a hydrazide compound, a nitrosoquinoline compound, or the rubber composition according to any one of claims 1 to 3.
  5.  ヒドラジド化合物を配合した請求項4に記載のゴム組成物。 The rubber composition according to claim 4, wherein a hydrazide compound is blended.
  6.  ニトロソキノリン化合物を配合した請求項4に記載のゴム組成物。 The rubber composition according to claim 4, wherein a nitrosoquinoline compound is blended.
  7.  ダイポーラー窒素及び酸素又は硫黄を含む窒素含有複素環を有する化合物を配合した請求項4に記載のゴム組成物。 The rubber composition according to claim 4, wherein a compound having a nitrogen-containing heterocyclic ring containing dipolar nitrogen and oxygen or sulfur is blended.
  8.  請求項2~7のいずれかに記載のゴム組成物において、ステアリン酸の配合量を天然ゴム成分100質量部につき、2.0質量部以上添加する、ノンプロ練り後にさらに練りを加える及び低温加硫の少なくとも1つの処理を行ったゴム組成物。 The rubber composition according to any one of claims 2 to 7, wherein a blending amount of stearic acid is added by 2.0 parts by mass or more per 100 parts by mass of the natural rubber component, further kneading is added after non-pro kneading, and low temperature vulcanization The rubber composition which performed at least 1 process of these.
  9.  請求項1~8に記載のいずれかのゴム組成物をトレッドゴムに用いたタイヤ。 A tire using the rubber composition according to any one of claims 1 to 8 as a tread rubber.
PCT/JP2009/069376 2008-11-13 2009-11-13 Rubber compositions and tires WO2010055919A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-290466 2008-11-13
JP2008290466 2008-11-13

Publications (1)

Publication Number Publication Date
WO2010055919A1 true WO2010055919A1 (en) 2010-05-20

Family

ID=42170049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069376 WO2010055919A1 (en) 2008-11-13 2009-11-13 Rubber compositions and tires

Country Status (1)

Country Link
WO (1) WO2010055919A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100442267C (en) * 2002-01-22 2008-12-10 三菱重工业株式会社 Nuclear emergency measure system and nuclear emergency measure training system
WO2010143633A1 (en) * 2009-06-10 2010-12-16 株式会社ブリヂストン Rubber composition and tire obtained using same
JP2012121967A (en) * 2010-12-07 2012-06-28 Sumitomo Rubber Ind Ltd Rubber composition for breaker cushion and heavy duty tire
CN103509209A (en) * 2012-06-27 2014-01-15 住友橡胶工业株式会社 Rubber composition for tire, and pneumatic tire
JP2014501827A (en) * 2010-12-21 2014-01-23 コンパニー ゼネラール デ エタブリッスマン ミシュラン Compositions based on natural rubber and carbon black containing hydrazide, hydrazone or polyamine
WO2015170669A1 (en) * 2014-05-08 2015-11-12 株式会社ブリヂストン Rubber composition and tire obtained using same
JP2018062621A (en) * 2016-10-14 2018-04-19 東洋ゴム工業株式会社 Tire member, tire, method for manufacturing tire member and method for producing tire
EP3636707A4 (en) * 2017-06-07 2020-12-16 Bridgestone Corporation Rubber composition for tire and tire

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082406A (en) * 1983-10-14 1985-05-10 Bridgestone Corp Pneumatic radial tire
JPS60215402A (en) * 1984-04-10 1985-10-28 Bridgestone Corp Low fuel consumption tire with all weather running performance
JP2004051774A (en) * 2002-07-19 2004-02-19 Shiraishi Kogyo Kaisha Ltd Rubber composition for tire tread and pneumatic tire using it
JP2004217726A (en) * 2003-01-10 2004-08-05 Bridgestone Corp Rubber composition and pneumatic radial tire using the same
JP2005272734A (en) * 2004-03-25 2005-10-06 Asahi Carbon Kk Carbon black for use in blending into tire tread rubber
JP2006088890A (en) * 2004-09-24 2006-04-06 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2007224074A (en) * 2006-02-21 2007-09-06 Bridgestone Corp Rubber composition and pneumatic tire using the same
JP2007224067A (en) * 2006-02-21 2007-09-06 Bridgestone Corp Rubber composition and pneumatic tire using the same
JP2007291205A (en) * 2006-04-24 2007-11-08 Bridgestone Corp Wet natural rubber masterbatch and rubber composition using the same
JP2007308609A (en) * 2006-05-19 2007-11-29 Bridgestone Corp Modified natural rubber masterbatch, method for producing the same, rubber composition, and tire
JP2007326990A (en) * 2006-06-09 2007-12-20 Bridgestone Corp Rubber composition and tire using the same
WO2008142926A1 (en) * 2007-05-22 2008-11-27 The Yokohama Rubber Co., Ltd. Method for production of natural rubber
JP2008285577A (en) * 2007-05-17 2008-11-27 Toyo Tire & Rubber Co Ltd Rubber composition

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082406A (en) * 1983-10-14 1985-05-10 Bridgestone Corp Pneumatic radial tire
JPS60215402A (en) * 1984-04-10 1985-10-28 Bridgestone Corp Low fuel consumption tire with all weather running performance
JP2004051774A (en) * 2002-07-19 2004-02-19 Shiraishi Kogyo Kaisha Ltd Rubber composition for tire tread and pneumatic tire using it
JP2004217726A (en) * 2003-01-10 2004-08-05 Bridgestone Corp Rubber composition and pneumatic radial tire using the same
JP2005272734A (en) * 2004-03-25 2005-10-06 Asahi Carbon Kk Carbon black for use in blending into tire tread rubber
JP2006088890A (en) * 2004-09-24 2006-04-06 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2007224074A (en) * 2006-02-21 2007-09-06 Bridgestone Corp Rubber composition and pneumatic tire using the same
JP2007224067A (en) * 2006-02-21 2007-09-06 Bridgestone Corp Rubber composition and pneumatic tire using the same
JP2007291205A (en) * 2006-04-24 2007-11-08 Bridgestone Corp Wet natural rubber masterbatch and rubber composition using the same
JP2007308609A (en) * 2006-05-19 2007-11-29 Bridgestone Corp Modified natural rubber masterbatch, method for producing the same, rubber composition, and tire
JP2007326990A (en) * 2006-06-09 2007-12-20 Bridgestone Corp Rubber composition and tire using the same
JP2008285577A (en) * 2007-05-17 2008-11-27 Toyo Tire & Rubber Co Ltd Rubber composition
WO2008142926A1 (en) * 2007-05-22 2008-11-27 The Yokohama Rubber Co., Ltd. Method for production of natural rubber

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100442267C (en) * 2002-01-22 2008-12-10 三菱重工业株式会社 Nuclear emergency measure system and nuclear emergency measure training system
WO2010143633A1 (en) * 2009-06-10 2010-12-16 株式会社ブリヂストン Rubber composition and tire obtained using same
JP2012121967A (en) * 2010-12-07 2012-06-28 Sumitomo Rubber Ind Ltd Rubber composition for breaker cushion and heavy duty tire
JP2014501827A (en) * 2010-12-21 2014-01-23 コンパニー ゼネラール デ エタブリッスマン ミシュラン Compositions based on natural rubber and carbon black containing hydrazide, hydrazone or polyamine
CN103509209A (en) * 2012-06-27 2014-01-15 住友橡胶工业株式会社 Rubber composition for tire, and pneumatic tire
WO2015170669A1 (en) * 2014-05-08 2015-11-12 株式会社ブリヂストン Rubber composition and tire obtained using same
JP2015214626A (en) * 2014-05-08 2015-12-03 株式会社ブリヂストン Rubber composition and tire using the same
US9834658B2 (en) 2014-05-08 2017-12-05 Bridgestone Corporation Rubber composition and tire obtained using same
JP2018062621A (en) * 2016-10-14 2018-04-19 東洋ゴム工業株式会社 Tire member, tire, method for manufacturing tire member and method for producing tire
EP3636707A4 (en) * 2017-06-07 2020-12-16 Bridgestone Corporation Rubber composition for tire and tire

Similar Documents

Publication Publication Date Title
JP5429320B2 (en) Use of S- (3-aminopropyl) thiosulfuric acid and / or a metal salt thereof for improving viscoelastic properties of vulcanized rubber
WO2010055919A1 (en) Rubber compositions and tires
JP5639121B2 (en) Rubber composition for tire and pneumatic tire
JP5582786B2 (en) Modified diene rubber, method for producing the same, rubber composition and tire using the same
JP5667547B2 (en) Method for producing vulcanized rubber composition
JP4746989B2 (en) Silica-containing conjugated diene rubber composition and molded article
WO2006057343A1 (en) Modified natural rubber latex and method for producing same, modified natural rubber and method for producing same, rubber composition and tire
WO2011001990A1 (en) Vulcanized rubber and process for manufaturing same
WO2007066689A1 (en) Rubber composition and tire using same
WO2015190519A1 (en) Modified rubber for tyre, rubber composition for tyre using said modified rubber and tyre
JPWO2008047582A1 (en) Rubber composition for side rubber and pneumatic radial tire for heavy load using the same
JP2010261002A (en) Modified diene rubber wet masterbatch, method for producing the same, and rubber composition and tire
WO2007088771A1 (en) Oil-extended natural rubber, method for producing same, rubber composition using same and tire
JP5232364B2 (en) Modified natural rubber masterbatch and method for producing the same, rubber composition and tire
JP2012012458A (en) Method of manufacturing vulcanized rubber composition
JP2006152117A (en) Radial tire for large-sized vehicle
WO2010143633A1 (en) Rubber composition and tire obtained using same
JP2008044992A (en) Rubber composition and tire using the same
JP2010254931A (en) Rubber composition and tire using the same
JP4944451B2 (en) Heavy duty pneumatic tire
JP5607320B2 (en) tire
JP2012116813A (en) Thiosulfuric acid compound or salt thereof, and rubber composition containing the same
JP6687324B2 (en) Modified conjugated diene polymer and rubber composition containing the same
JP6552058B2 (en) Method for producing silica-filled rubber composition and composition thereof
WO2016125596A1 (en) Modified conjugated diene-based polymer and rubber composition containing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09826165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP