WO2009100649A1 - 太阳能电池光接收装置及具有该装置的全光通量检测系统 - Google Patents

太阳能电池光接收装置及具有该装置的全光通量检测系统 Download PDF

Info

Publication number
WO2009100649A1
WO2009100649A1 PCT/CN2009/000127 CN2009000127W WO2009100649A1 WO 2009100649 A1 WO2009100649 A1 WO 2009100649A1 CN 2009000127 W CN2009000127 W CN 2009000127W WO 2009100649 A1 WO2009100649 A1 WO 2009100649A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
receiving device
light receiving
solar cell
tested
Prior art date
Application number
PCT/CN2009/000127
Other languages
English (en)
French (fr)
Inventor
I-Shih Tseng
Frank Wang
Jeff Lee
Original Assignee
Chroma Electronics (Shenzhen) Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chroma Electronics (Shenzhen) Co., Ltd filed Critical Chroma Electronics (Shenzhen) Co., Ltd
Publication of WO2009100649A1 publication Critical patent/WO2009100649A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J2001/0481Preset integrating sphere or cavity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4247Photometry, e.g. photographic exposure meter using electric radiation detectors for testing lamps or other light sources
    • G01J2001/4252Photometry, e.g. photographic exposure meter using electric radiation detectors for testing lamps or other light sources for testing LED's

Definitions

  • the present invention is a light source full light flux detecting system, and more particularly to a solar cell light receiving device and a full light flux detecting system having the same. Background technique
  • the total Luminous Flux of the light source (unit: lumen) is an important parameter in the application, especially when the light-emitting diode (LED) is used as a white LED light source with blue or violet LEDs. .
  • the measurement of the total luminous flux size must be placed in a sufficiently large integrating sphere (Optical Integrating Sphere) 1 as shown in Fig. 1, so that it is placed inside.
  • the light emitted by the light source such as the LED 2 is evenly distributed inside the integrating sphere 1, and the light is outputted to the spectral energy analyzer (Spectrometer) 5 via the optical fiber 4 at the output portion B of the integrating sphere 1 to obtain the LED 2 to be tested.
  • the spectral energy of light responds to ILH in).
  • a standard light source 6 of known brightness ⁇ ( ⁇ ) is used to pass the illuminated beam through a diaphragm 7, the opening size of which is ⁇ 0 .
  • the illuminating beam is incident on the integrating sphere 1 through the input portion of the integrating sphere 1, and the light energy homogenized in the integrating sphere 1 is also transmitted to the spectral energy analyzer 5 via the output portion B and the optical fiber 4, thereby obtaining a standard light source.
  • the spectral energy response is I ext ( ) 0.
  • the total luminous flux of the source to be tested can be obtained (pLED is / ⁇ ⁇ 0 ⁇ ( ⁇ )I LED ( ⁇ ) / I ext ( ⁇ ) d ⁇ ⁇ .. (1)
  • k is a correction coefficient that takes into consideration the unevenness of the integrating sphere 1 and the asymmetry caused by the internal shutter 3.
  • the known all-optical flux test equipment used in the production line and detecting the light-emitting elements to be tested as shown in FIG. 2 will select the light source to be tested, such as LED 2', to be placed outside the integrating sphere. Further, a light input portion A is formed, which is called a double-opening integrating sphere. This input section must be sized to incorporate all of the light emitted by the LED 2 to be tested into the integrating sphere.
  • an internal shutter 3' is provided between the input portion A' and the output portion B', and the light overflowed from the output portion B' is the same
  • the spectral energy analyzer 5 is introduced via the optical fiber 4'.
  • the spectral response R(A) is compensated by using the corrected integrating sphere. Calculate the spectral energy response of the LED I LED ( ⁇ ) to obtain the full luminous flux of the LED 2'
  • k is the correction factor, including the passing ratio of the integrating sphere 1 ' (the unevenness of the throughputs of the integrating sphere and the ratio of the integral sphere ⁇ opening not included).
  • the luminous flux input from the input unit A is output from the output unit B and the input unit A', respectively, and the area ratio of the two is considered.
  • the definitions A" and B" are the cross-sectional areas of the input and output parts respectively. Since the cross-sectional area A" of the input part A" is much larger than the cross-sectional area B" of the output part B", it is assumed that the reflection coefficient of the integrating sphere is 100%.
  • the ratio of ⁇ "/( ⁇ "+ ⁇ ") in the luminous flux ⁇ of the light source LED 2 will be reflected from the input portion A' back to the LED 2' side of the object to be tested, and the amount of reflection is roughly estimated to be more than 90%.
  • the part of the luminous flux that is reflected back to the component will be reflected back into the integrating sphere, but it will vary depending on the surface condition of the LED 2' component to be tested, even if only the variation is assumed to be 10%.
  • the measurement of LED luminous flux causes a 9% variation, which causes a major difficulty in measurement accuracy.
  • Another object of the present invention is to provide a plenoptic flux detecting system that can correctly compensate for the measurement error of the spectral response and reduce the detection error value.
  • Still another object of the present invention is to provide a good coverage ratio for an illuminating solid angle, And a light receiving device with a solar cell for the all-light flux speculating system in which the light source to be tested is easy to enter and exit.
  • the all-light flux speculating system of the light receiving device with a solar cell of the present invention is configured to measure a total luminous flux of a set of light sources to be tested, the light source to be tested has a luminous solid angle, wherein the solar cell has a light receiving surface
  • the detection system includes: a placement seat for arranging and illuminating the light source to be tested; a set comprising at least one light receiving surface facing the placement seat, and configured to cover the illuminating solid angle to a predetermined ratio a solar cell, a light receiving device for converting light energy of the light source to be tested to the at least one solar cell into electrical energy; and a set of processing devices for receiving electrical energy converted from the light receiving device.
  • a solar cell photovoltaic is used as a light receiving device.
  • the solar cell has a simple structure and an appropriate price, so that the manufactured device has market competitiveness; on the other hand, it has low reflection and high absorption.
  • solar cells currently have single crystal type, polycrystalline type, thin-film amorphous silicon, compound semiconductor solar cells, and organic/inorganic solar cells, which can be used as both
  • the light receiving device of the invention is more capable of designing different structures in accordance with the respective characteristics to provide the adaptability of the detection.
  • FIG. 1 is a top view of a known full-light flux testing device for detecting an LED component to be tested;
  • FIG. 2 is a side view of another known full-light flux testing device for detecting an LED component to be tested;
  • FIG. 3 is a partially enlarged schematic view of FIG.
  • FIG. 4 is a solar cell light receiving device for a full light flux detecting system of the present invention.
  • FIG. 5 is a side cross-sectional view showing a solar cell light receiving device and a first preferred embodiment of the system for the all-optical flux detecting system of the present invention
  • Figure 6 is a rear elevational view of a solar cell light receiving device and a first preferred embodiment of the system for use in a full light flux detecting system of the present invention
  • FIG. 7 is a side cross-sectional view showing a solar cell light receiving device and a second preferred embodiment of the system for the all-optical flux detecting system of the present invention
  • FIGS. 8 to 10 are schematic diagrams showing the operation state of the solar cell light receiving device and the third preferred embodiment of the system for the all-optical flux detecting system of the present invention.
  • both the detection system of the present invention and the light source to be tested in the light receiving device are exemplified by LEDs.
  • other light-emitting elements such as bulbs and lamps can also be detected by the structure disclosed in the present invention.
  • each solar cell must be independently calibrated and tested by a spectroscopic energy analyzer to obtain individual spectral response coefficients R n , m ( A ) for each solar cell (in units of Amp/Watt, ie, per watt of light can be injected The resulting photoelectric flow rate).
  • R n , m ( A ) the spectral response coefficients for each solar cell (in units of Amp/Watt, ie, per watt of light can be injected The resulting photoelectric flow rate).
  • n represents the mth photocell on the nth face. Because of the structure, the energy obtained by each solar cell will be individually compensated and calibrated, and the space-uniformity of each solar cell is also screened to provide correct measurement results.
  • FIG. 4 is a perspective view of a solar cell light receiving device and a first preferred embodiment of the system for the all-optical flux detecting system of the present invention, wherein the light receiving device is, for example, six pieces located at the top, the right, the left, the front, the back, and the bottom.
  • the solar cells 102, 104, 106, 108, 110, 112 collectively form an accommodating space.
  • a light bar having a plurality of LED dies is used as the object to be tested, and is transported by the transport device so that the light bar to be tested is transported to the center point of the accommodating space. Can shine.
  • the size of a single solar cell may not cover a single side, and each side requires more solar cells to be combined.
  • the light receiving device is described.
  • the short-circuit photocurrents of the solar cells 102, 104, 106, 108, 110, 112 are each independently output to the processor 60 via the transmission device 70 for measurement and comparison operations.
  • the receiving surface of one optical fiber 40 is fixedly connected to the output portion C toward the accommodating space, and the other end is connected to the spectral energy analyzer 50.
  • a very small portion of the luminous flux is introduced into the spectral energy analyzer 50 by the optical fiber 40 placed at the output portion C, and the spectral energy distribution SL ED (A) of the LED 30 to be tested is obtained, and the short-circuit photocurrent of each solar cell is obtained.
  • the transfer device 90 between the energy analyzer 50 and the processor 60 directs the spectral energy distribution into the processor 60 and integrates the LED partial light flux measured by each solar cell into the total luminous flux of the LED to be tested.
  • Rn,m( X )' is stored in the processor 60, and is input to the processor 60 according to the spectrum SL ED ( ⁇ ) of the LED in the light bar 32 to be tested obtained in real time by the spectral energy analyzer 50.
  • the corresponding luminous flux is subjected to a compensation weighting operation, and finally, the total luminous flux of the light rod 32 to be measured is obtained, and the unit is watt:.
  • FIGS. 5 and 6 are a cross-sectional view and a rear view of the embodiment of FIG. 4, due to the light receiving device 10 A vacant area 80 is formed in the running portion of the corresponding conveying device, so that the conveying device can be operated. As described above, when the light rod 32 to be tested is located in the light receiving device 10, the light to be tested 32 is sent from the placing base 202 on the conveying device 20 to cause it to emit light for testing.
  • FIG. 7 is a side view of a second preferred embodiment of the present invention.
  • the light source to be tested such as an LED
  • the spectral stability of each of the light-emitting elements is improved, and for products that are less demanding.
  • the spectral energy analyzer in the foregoing embodiment may be omitted and the spectrum of the predetermined reference element may be fixed for calculation. On the one hand, it reduces the cost of the detection system, and at the same time makes it simpler in structure and takes up less space.
  • the light receiving device 10 is a single-plate flat-type solar cell, and the light-receiving device 10' and the placement base 202 are at a distance such that when the LED 30 to be tested emits light, the light-receiving device 10' is irradiated.
  • the light energy is much larger than the light energy irradiated to the light receiving surface of the light receiving device 10'. Since the light receiving device 10' is in a planar state, it is only necessary to fix the same position without changing the direction.
  • the transport device 20 moves the LEDs 30 to be tested, which are powered by the plurality of transmissive mounts 202', to the lower side of the light-receiving device 10' for light flux detection, at this time, the light energy is converted into light via the light-receiving device 10'.
  • the electric energy is transmitted to the processor 60 at the other end through a transmission device 70' installed at the end of the light receiving device 10'.
  • FIGS. 8 to 10 are schematic views showing the operational state of the third preferred embodiment of the all-optical flux detecting system of the present invention.
  • the present embodiment is exemplified by three sets of light receiving devices 10", which respectively include: a housing 11 having an arc portion and a thin film type solar cell 12" disposed inside the housing 11", using a film type
  • the plasticity of the solar cell 12" constitutes a shape of a light receiving device that meets specific needs.
  • the conveying device 20" moves the placement seat 202" carrying the LED 30 to be tested to the light receiving device
  • the light receiving device 10" that can cover the light source to be tested and the placement seat 202" will move toward the placement seat 202" to a fixed height to cover the illuminating solid angle of the LED 30 to be tested.
  • the placement seat 202" energizes the LED 30 to be tested to emit light.
  • the light receiving device 10" receives the light and converts the light energy using the thin film type solar photovoltaic cell 12 attached to the inside of the casing 11. For electrical energy, it is "transmitted to the processor 60" by the transmission device 70.
  • the optical fiber 40" installed at the "terminal" of the light receiving device 10 has conducted local light energy to the spectral energy analyzer 50", and after the analysis by the spectral energy analyzer 50, the obtained information is transmitted.
  • the method of wireless transmission is transmitted to the processor 60" and compared with the power received just before, producing the total luminous flux required for detection.
  • the light receiving device 10" returns to the starting position with the conveying device 20" by a predetermined distance.
  • the conveying device 20" Move to the original predetermined direction, send the next batch of LEDs to be tested to the position to be detected, and repeat.
  • the size and price of the solar cell can make the light receiving device of the present application greatly superior to the common integrating sphere in terms of manufacturing cost and convenience of the structure production line; in addition, the solar cell actively receives light energy, and almost completely absorbs the light.
  • Light energy as long as it can cover a certain proportion of the light-emitting stereoscopic angle of the light source to be tested, it can correctly estimate the total luminous flux of the light source to be tested, and improve the accuracy of the detection result without worrying about the change of the reflection coefficient of the object to be tested; It is quite versatile, and it can change the shape design according to the customer's needs, thus increasing the flexibility of customization.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

太阳能电池光接收装置及具有该装置的全光通量检测系统
技术领域
本发明为一种光源全光通量检测系统, 特别是一种太阳能电池光接收 装置及具有该装置的全光通量检测系统。 背景技术
光源的全光通量 (Total Luminous Flux, 单位: lumen)是应用时的一个重 要参数, 尤其是在例如发光二极管 (LED)以蓝光或紫光 LED作为白光 LED 光源的应用时, 更是必须考虑的重要数值。 按照 CIE的标准, 其全光通量 大小的测量,必须如图 1所示,将待测 LED 2置于一个足够大积分球 (Optical Integrating Sphere) 1内的某一处, 使得置于其内部的待测光源如 LED 2所 发出的光均匀地分布在积分球 1内部, 让所发光经由积分球 1输出部 B处 的光纤 4输出至光谱能量分析仪 (Spectrometer)5中, 从而得到 LED 2待测 光的光谱能量响应 ILH 入)。
撤除待测光源后, 另外利用一个已知亮度为 Ε( λ )的标准光源 6, 将所 发光束通过一个光栏 7, 其开口大小为 Α0。 所发光束经由积分球 1的输入 部 Α射入积分球 1, 同样经输出部 B与光纤 4将积分球 1内所均匀化的光 能传送至光谱能量分析仪 5 中, 从而得到标准光源的光谱能量响应为 Iext( )0 经过此种校正过的标准光源比对, 才能得到待测光源的全光通量 (pLED为 / λ Α0Ε( λ )ILED( λ )/Iext( λ )d λ · ..(1) 式(1 )中 k为考量积分球 1不均勾度、及内部遮板 3所引起的不对称性的 校正系数。
此种量测结构, 不管如何将待测光源置放进积分球, 以及每次量测完 毕, 如何将测毕的光源取出, 都会造成量测速度的门槛限制; 此夕卜, 积分 球 1内, 还需要额外设置遮板 3, 又使得结构相对复杂; 而积分球 1的尺 寸有限制, 也使得整体检测系统体积无法缩减, 造成此方法一般只在实验 室中量测使用, 并不适用于一般生产线。
为简化结构、 提升测试效率, 如图 2所示的真正用于生产线上、 检测 待测发光元件的公知全光通量测试设备, 会选择将待测光源, 例如 LED 2' 置于积分球 Γ外, 并且另形成一光输入部 A,, 故被称为双开口积分球 Γ。 此输入部 Α,的尺寸必须足够将待测 LED 2,朝各方向发出的光能全部纳入 积分球 Γ中。此外, 为防止由输入部 A'进入的光直接入射到输出部 B',在 输入部 A'与输出部 B'间设置有内部遮板 3', 由输出部 B'溢出的光, 则同 样经由光纤 4'导入光谱能量分析仪 5,内。
其中,如图 3的放大示意图所示,输入部 A'将待测 LED 2'的光有效纳 入积分球 Γ的纳入角为: Θ =tan_ 1(r/h), 其中 h为 LED 2,与积分球 Γ的距 离, r为输入部 A,的半径。 假设 LED的光场呈 cos Θ分布, 则当纳入角 Θ =78.69° 时, 纳入积分球的总能量占总发光能量的 (1-cos2 Θ )=96Λ % , 也就 是说有 3.9%的能量未被纳入。 依照上式计算, 此时 r/ =5, 亦即当 h=2 cm 时, r至少为 10 cm, 使得积分球 1,的直径大小至少必须为 60 cm以上; 最 好直径能有一米左右, 才能让待测 LED 2'发光均匀分布。
如上所述,若待测 LED 2,所发的光,大部分经由输入部 A'射入积分球 V , 并且均勾分布, 则利用已经校正好的积分球反射频谱响应 R( A ), 加权 计算 LED的光谱能量响应 ILED( λ ), 即可得到 LED 2'的全光通量
9LED=k / R( A )lLED( A )d ...(2)
式 (2)中 k为校正系数, 其中包括积分球 1 '的通过比率 (throughputs 积分球 的不均勾度及积分球 Γ开口未纳入量比例等修正因子。
然而, 利用此方法量测, 仍将面临下列两个棘手问题-
1. 积分球 Γ开口的未纳入量, 如果待测光源的光场并不是 cos Θ分布, 则其校正值将有较大的误差值; 尤其当待测光源是例如白炽灯或萤光 灯等发光角度朝向四面八方者, 误差更是无法忽视。
2. 由输入部 A,输入的光通量,将分别由输出部 B,与输入部 A'输出, 且 考虑两者的面积比。定义 A"、 B"分别为输入及输出部的截面积, 因输 入部 A'截面积 A"远大于输出部 B'截面积 B",假设积分球 Γ的反射系 数为 100%,则待测光源 LED 2,的光通量 φ中的 Α"/(Α"+Β")比率部分, 将由输入部 A'处反射回到 LED 2'待测物组件侧,粗略估计其反射量几 乎达 90%以上。 而此反射回到组件的光通量, 部分将再反射回到积分 球 Γ内, 但需视待测 LED 2'组件的表面状况不同而有所差异, 即使仅 假设变异量为 10%, 都将对 LED光通量的量测造成 9%的变异, 造成 量测精度的重大难点。
换言之, 要正确量测待测发光元件的全光通量, 又要考虑生产线的迅 速与待测发光元件的出入便利, 而使用现行光传感器, 又受限于其尺寸大 小而组合不易, 且价格因而大幅提高; 因此, 无疑造成生产制造发光元件 与使用发光元件厂商的两难困境。 发明内容
因此, 本发明的一个目的, 在于提供一种结构简单、 占用空间有限的 全光通量检测系统。
本发明的另一个目的,在于提供一种可正确补偿频谱响应的量测误差, 使检测误差值降低的全光通量检测系统。
本发明的再一个目的, 在于提供一种制造成本低廉、 降低发光元件测 试成本的全光通量检测系统。
本发明的又一个目的, 在于提供一种可根据不同待测物的需求, 提供 不同结构的全光通量检测系统。
本发明的又另一个目的,在于提供一种对于发光立体角度覆盖率良好, 且待测光源易于进出的全光通量捡测系统用的具有太阳能电池的光接收装 置。
所以, 本发明的一种具有太阳能电池的光接收装置的全光通量捡测系 统, 供量测一组待测光源全光通量, 该待测光源具有一个发光立体角度, 其中该太阳能电池具有一个受光面, 该检测系统包含: 一个供置放并供能 使该待测光源发光的置放座; 一组包括至少一片受光面朝向该置放座、 且 被设置成笼罩该发光立体角度达一预定比例的太阳能电池, 用来将待测光 源照射至上述至少一片太阳能电池的光能转换为电能的光接收装置; 及一 组接收来自该光接收装置所转换的电能的处理装置。
本发明中提出利用太阳能电池 (solar cell photovoltaic)作为光接收装置, 一方面利用太阳能电池的结构简单、 价格适宜, 让制造出的设备具有市场 竞争力; 另一方面以其低反射、 高吸收的特性, 有效地量测全光通量而避 免反射问题, 提高量测灵敏度; 尤其加入了光谱能量响应的补偿, 让量测 精度提升。 另夕卜, 太阳能电池目前有单晶硅 (single crystal)型、 多晶硅 (poly crystal)型、 薄膜型 (thin-film amorphous silicon)、 化合物半导体太阳能电池 及有机 /无机太阳能电池, 不仅都可以作为本发明的光接受装置, 更能依照 各自特性而设计出不同结构, 以提供检测的适应性。
由于本发明的贡献, 得以大幅改善公知检测方式的缺陷, 供在生产线 上建立占用空间有限、 价格适宜、 检测精度良好的待测光源全光通量检测 系统。 附图说明
图 1为一公知检测待测 LED元件全光通量测试设备的俯视图; 图 2为另一公知检测待测 LED元件全光通量测试设备的侧视图; 图 3为图 2的局部放大示意图;
图 4为本发明具全光通量检测系统用的具有太阳能电池光接收装置及 该系统第一较佳实施例的立体示意图;
图 5为本发明全光通量检测系统用的具有太阳能电池光接收装置及该 系统第一较佳实施例的侧视剖面示意图;
图 6为本发明全光通量检测系统用的具有太阳能电池光接收装置及该 系统第一较佳实施例的后视图;
图 7为本发明全光通量检测系统用的具有太阳能电池光接收装置及该 系统第二较佳实施例的侧视剖面示意图;
图 8~10为本发明全光通量检测系统用的具有太阳能电池光接收装置 及该系统第三较佳实施例的运作状态示意图
主要元件符号说明
1、 Γ...积分球
10、 10, 、 10"…光接收装置
102、 104、 106、 108、 110、 112...太阳能电池
2、 2 30...待测 LED
20、 20,、 20".
202、 202,、 202,,...置放座
3、 3,…遮板 32...待测光棒
4、 4,、 40、 40 光纤
5、 5,、 50、 50 光谱能量分析仪
6...标准光源 7…光栏
11...壳体 12...薄膜型太阳能电池
60、 60,、 60"...处理器
70、 70,、 70"…传输装置
80...空缺区 90...传送装置
A、 A,...输入部
B、 B,、 C...输出部 A"...输入部截面积
B"...输出部截面积
h...LED与积分球的间的距离
r...输入部的半径
Θ…纳入角 具体实施方式
有关本发明的前述及其它技术内容、 特点与功效, 在以下配合附图的 较佳实施例的详细说明中, 将可清楚地呈现。 为方便说明, 本发明的检测 系统与光接收装置中的待测光源均以 LED为例, 当然, 其它发光元件诸如 灯泡、 灯管亦可采用本发明所揭示的结构加以检测。
受限于目前的太阳能电池制作过程, 各片硅芯片性能多少有所差异, 其各自的光电转换效率及光谱响应随之有所不同。 因此, 每一片太阳能电 池都必须独立校准, 经过光谱能量分析仪测试, 以获得每片太阳能电池的 个别光谱反应系数 Rn,m( A ) (单位为 Amp/Watt,即每瓦光射入可以得到的光 电流量)。其中 n表示第 n个面上的第 m个光电池。 由于本结构中, 各个太 阳能电池所得的能量将被个别补偿校准, 而且各太阳能电池的空间均匀度 (Space-uniformity)也经过筛选, 以提供正确量测结果。
图 4为本发明全光通量检测系统用的具有太阳能电池光接收装置及该 系统第一较佳实施例立体示意图, 光接收装置是例如由六片分别位于上、 右、 左、 前、 后、 下的太阳能电池 102、 104、 106、 108、 110、 112所共同 围绕形成一个容置空间。本例中, 是以具有多颗 LED晶粒的光棒 (light bar) 作为待测物, 并由输送装置运送, 使得待测的光棒被运送至该容置空间的 中心点时, 被供能发光。
当然, 若待测光源较大, 例如为一灯具时, 单一片太阳能电池的尺寸 可能无法涵盖单一侧面, 每一面都需要更多片太阳能电池才足以组合成上 述光接收装置。
各太阳能电池 102、 104、 106、 108、 110、 112的短路光电流 (short-circuit photocurrent),各自独立地经由传输装置 70输出至处理器 60进行量测与比 对运算。另一方面,一根光纤 40的接收面面向容置空间而被固定连接于输 出部 C, 另一端则连接至光谱能量分析仪 50。
利用置于输出部 C处的光纤 40把极小部分的光通量导入光谱能量分析 仪 50中, 得到待测 LED 30的光谱能量分布 SLED(A), 则各个太阳能电池 的短路光电流
In,m=ASLED( )Rn;m(A)dA...(3) 因此对应第 n,m个太阳能电池量到的 LED部份光通量
Figure imgf000009_0001
=In,m SLED( λ )d λ / A SLED( λ )Rnm( λ )άλ ...(4) 经由光谱能量分析仪 50所得到的待测 LED 30的光谱能量分布, 透过 光谱能量分析仪 50与处理器 60之间的传送装置 90将光谱能量分布汇入处 理器 60, 并与各个太阳能电池测得的 LED部份光通量整合成待测 LED的 全光通量
如上述公式推导得知, 必须先校正得到各太阳能电池的光谱反应系数
Rn,m(X )' 存入处理器 60中, 并且依据由光谱能量分析仪 50中实时得到的 待测光棒 32中 LED的光谱 SLED( λ ), 输入处理器 60中, 对光电池所对应 的光通量进行补偿加权运算,最后相加, 即可得到待测光棒 32的全部光通 量, 单位为瓦特 (watt:)。
如果要换算为可见光功率单位流明 (lumen)必须利用 CIE所规定的标准 视函数 ν(λ)来换算, 其为 φν(1πι)=680 / ν( )SLED( λ )d λ ...(6) 因此 LED的全部光通量为
Figure imgf000010_0001
SLED( X )V( )d X / SLED( λ )Rn,m( λ )d λ… (7) 图 5及图 6为图 4实施例的剖面及后视图,由于光接收装置 10在对应 输送装置运行部分形成有一空缺区 80, 恰可容输送装置运行。 如上所述, 当待测光棒 32位于该光接收装置 10中时, 由输送装置 20上的置放座 202 送能给该待测光棒 32, 使其发光以进行测试。
图 7所示为本发明第二较佳实施例的侧视图,当待测光源例如 LED在 制造工艺上更稳定时, 各发光元件所发光谱稳定度提升, 对于要求较不严 格的产品, 便可省略前述实施例中的光谱能量分析仪而以固定预定的参考 元件的光谱进行演算即可。 一方面更降低检测系统的造价, 同时使其结构 更简单, 占用空间更少。
本例中,上述光接收装置 10,为单一片的平板型太阳能电池,且光接收 装置 10'与置放座 202,距离是使当该待测 LED 30发光时、照射至光接收装 置 10'的光能远大于照射至该光接收装置 10'受光面以外光能, 该光接收装 置 10'因为呈一平面状态,所以仅需固定同一位置无需变动方向。当输送装 置 20,将承载有多个透过置放座 202'供能的待测 LED 30移动至光接收装置 10'下方进行光通量检测时, 此时经由光接收装置 10'将光能转换成电能, 通过装设在光接收装置 10'—端的传输装置 70'传送电能至另一端的处理器 60,。
图 8至 10为本发明全光通量检测系统第三较佳实施例的运作状态示意 图。 为方便说明, 本例以三组光接收装置 10"为例。 分别包含: 一具有弧 形部分的壳体 11"及组设于壳体 11"内部的薄膜型太阳能电池 12", 利用薄 膜型太阳能电池 12"的可塑性, 构成一符合特定需求的光接收装置形状。
当输送装置 20"将承载待测 LED 30的置放座 202"移动至光接收装置 10"下方预定位置时,可笼罩待测光源与置放座 202"的光接收装置 10"会向 置放座 202"移动至一固定高度而覆盖住待测 LED 30的发光立体角度。 此 时置放座 202"将对待测 LED 30供能,使其发光。同时光接收装置 10"将此 光能接收并利用附着于壳体 11"内部的薄膜型太阳能光电池 12"将光能转换 为电能, 由传输装置 70"传导至处理器 60"。
如第一实施例所示,装设在光接收装置 10"端的光纤 40"已将局部的光 能传导至光谱能量分析仪 50", 经光谱能量分析仪 50"分析后, 将取得的信 息透过无线传输的方式传送至处理器 60", 并与刚才所接收的电能比对, 产生所需检测的全光通量。
如图 10所示, 完成所有检测后, 光接收装置 10"会循原途径回到与输 送装置 20"保持一预定距离的起始位置, 当光接收装置 10"离开后, 输送装 置 20"则往原预定方向移动, 将下一批待测 LED 30送至需检测的位置, 周 而复始。
由太阳能电池的尺寸与价格, 可使本申请的光接收装置无论在制造成 本、 还是架构生产线的便利方面, 都大幅优于常用积分球; 另外, 太阳能 电池主动接收光能, 且几乎全部吸收该光能, 只要能笼罩待测光源的发光 立体角度达一定比例, 即可正确推估待测光源的全光通量, 无须顾虑待测 物的反射系数变化等因素, 提高检测结果的精度; 何况结构设计具有相当 变化性, 更可根据客户的需求而改变形状设计, 从而增加客户定制化的弹 性。
以上所述仅为本发明的较佳实施例, 不能以此构成对本发明保护范围 的限制, 任何依本发明申请权利要求保护范围及说明内容所作的等同变化 与修改, 仍属本发明专利涵盖的范围内。

Claims

权 利 要 求 书
1.一种具有太阳能电池的光接收装置的光源全光通量检测系统, 供量 测一组待测光源全光通量, 该待测光源具有一个发光立体角度, 其中该太 阳能电池具有一个受光面, 该检测系统包含:
一个供置放待测光源并对该待测光源供能, 使其发光的置放座; 一组光接收装置, 包括至少一片受光面朝向该置放座、 且被设置成覆 盖该待测光源的发光立体角度达一预定比例的太阳能电池, 供将待测光源 照射至该至少一片太阳能电池的光能转换为电能; 及
一组接收来自该光接收装置所转换的电能的处理装置。
2.根据权利要求 1所述的全光通量检测系统, 其特征在于, 该光接收 装置包括多片受光面朝向该置放座、 共同围绕出一个测试空间的太阳能电 池。
3.根据权利要求 1所述的全光通量检测系统, 其特征在于, 该光接收 装置包括一壳体, 及设置于该壳体的一组太阳能电池。
4.根据权利要求 3所述的全光通量检测系统, 其特征在于中, 该壳体 具有一弧面。
5.根据权利要求 1所述的全光通量检测系统, 其特征在于, 该组太阳 能电池为一片薄膜型太阳能电池。
6.根据权利要求 1所述的全光通量检测系统, 其特征在于, 更包含一 台光谱能量分析仪, 且该光接收装置还包括一组传输该待测光源所发部分 光能至该光谱能量分析仪的光讯号传输装置。
7.根据权利要求 6所述的全光通量检测系统, 其特征在于, 该光讯号 传输装置为一端面向该置放座的一根光纤。
8.—种全光通量捡测系统用的具有太阳能电池的光接收装置, 该全光 通量捡测系统包含一个供置放并向该待测光源供能, 使其发光的置放座及 一组处理装置, 该待测光源具有一个发光立体角度, 且该太阳能电池具有 一个受光面, 光接收装置进而包括:
至少一片太阳能电池组成的电池组, 该太阳能电池的受光面朝向该置 放座、 且设置成覆盖该待测光源的发光立体角度达一个预定比例, 供将照 射至该至少一片太阳能电池的光能转换为电能、 并输出至该处理装置。
9.根据权利要求 8所述的光接收装置, 其特征在于, 更包括一个为该 至少一片太阳能电池的电池组设置的壳体。
10.根据权利要求 9所述的光接收装置, 其特征在于, 该壳体具有一 个弧面。
11.根据权利要求 8所述的光接收装置, 其特征在于, 该全光通量检 测系统更包含一台光谱能量分析仪, 且该光接收装置更包括一组传输该待 测光源所发部分光能至该光谱能量分析仪的光讯号传输装置。
12.根据权利要求 11所述的光接收装置, 其特征在于, 该光讯号传输 装置为一根光纤。
PCT/CN2009/000127 2008-02-05 2009-02-03 太阳能电池光接收装置及具有该装置的全光通量检测系统 WO2009100649A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200810008112 CN101504328B (zh) 2008-02-05 2008-02-05 太阳能电池光接收装置及具有该装置的全光通量检测系统
CN200810008112.6 2008-02-05

Publications (1)

Publication Number Publication Date
WO2009100649A1 true WO2009100649A1 (zh) 2009-08-20

Family

ID=40956646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000127 WO2009100649A1 (zh) 2008-02-05 2009-02-03 太阳能电池光接收装置及具有该装置的全光通量检测系统

Country Status (2)

Country Link
CN (1) CN101504328B (zh)
WO (1) WO2009100649A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2507775A (en) * 2012-11-09 2014-05-14 Feasa Entpr Ltd Scattering and analyzing LED light with sphere having central baffle
CN104655404A (zh) * 2014-06-18 2015-05-27 潘军铁 照明灯具光衰检测设备
CN117782541A (zh) * 2024-02-26 2024-03-29 临沂衍庆电器有限公司 一种基于机器视觉的工程机械led灯具生产测试系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101726404B (zh) * 2008-10-15 2012-10-10 中茂电子(深圳)有限公司 具有多个发光元件的发光组件的检测机台及其检测方法
JP5286571B2 (ja) * 2009-05-22 2013-09-11 大塚電子株式会社 全光束測定装置および全光束測定方法
WO2012073357A1 (ja) * 2010-12-01 2012-06-07 パイオニア株式会社 半導体発光素子用受光モジュール及び半導体発光素子用検査装置
CN102507150A (zh) * 2011-10-20 2012-06-20 上海太阳能电池研究与发展中心 Led灯具光、色、电参数在线实时检测装置
TWI422836B (zh) * 2011-10-25 2014-01-11 Chroma Ate Inc Lighting source detection machine and detection method
CN103135074B (zh) * 2011-11-22 2016-10-19 致茂电子(苏州)有限公司 照明光源检测机台及检测方法
CN103453987B (zh) * 2012-06-05 2015-07-01 致茂电子(苏州)有限公司 全光通量检测系统及全光通量的检测方法
CN103411667A (zh) * 2013-07-18 2013-11-27 致茂电子(苏州)有限公司 发光元件点测机台

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263436A (ja) * 1986-05-12 1987-11-16 Toshiba Corp 発光素子輝度測定装置
JPH04115112A (ja) * 1990-09-05 1992-04-16 Nippondenso Co Ltd 入射光検出センサ
JPH07260569A (ja) * 1994-03-26 1995-10-13 Miyota Kk 輝度測定方法及び輝度測定装置
DE19930043A1 (de) * 1999-06-30 2001-01-04 Wolf Systeme Ag Beleuchtungsvorrichtung für die elektronische Bildverarbeitung
WO2006126544A1 (ja) * 2005-05-23 2006-11-30 Availvs Corporation 発光体の輝度測定方法とその装置
CN1959366A (zh) * 2006-11-30 2007-05-09 复旦大学 采用窄光束标准光源的led光通量测试装置及测试方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200959025Y (zh) * 2006-10-09 2007-10-10 深圳市量子光电子有限公司 Led测试工作台
CN201355305Y (zh) * 2008-05-09 2009-12-02 中茂电子(深圳)有限公司 具有太阳能电池的光接收装置的光源全光通量检测设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263436A (ja) * 1986-05-12 1987-11-16 Toshiba Corp 発光素子輝度測定装置
JPH04115112A (ja) * 1990-09-05 1992-04-16 Nippondenso Co Ltd 入射光検出センサ
JPH07260569A (ja) * 1994-03-26 1995-10-13 Miyota Kk 輝度測定方法及び輝度測定装置
DE19930043A1 (de) * 1999-06-30 2001-01-04 Wolf Systeme Ag Beleuchtungsvorrichtung für die elektronische Bildverarbeitung
WO2006126544A1 (ja) * 2005-05-23 2006-11-30 Availvs Corporation 発光体の輝度測定方法とその装置
CN1959366A (zh) * 2006-11-30 2007-05-09 复旦大学 采用窄光束标准光源的led光通量测试装置及测试方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2507775A (en) * 2012-11-09 2014-05-14 Feasa Entpr Ltd Scattering and analyzing LED light with sphere having central baffle
EP2730899A1 (en) * 2012-11-09 2014-05-14 Feasa Enterprises Limited LED light scattering and analysing
US9534950B2 (en) 2012-11-09 2017-01-03 Feasa Enterprises Limited LED light scattering and analysing
CN104655404A (zh) * 2014-06-18 2015-05-27 潘军铁 照明灯具光衰检测设备
CN117782541A (zh) * 2024-02-26 2024-03-29 临沂衍庆电器有限公司 一种基于机器视觉的工程机械led灯具生产测试系统
CN117782541B (zh) * 2024-02-26 2024-04-26 临沂衍庆电器有限公司 一种基于机器视觉的工程机械led灯具生产测试系统

Also Published As

Publication number Publication date
CN101504328B (zh) 2013-08-28
CN101504328A (zh) 2009-08-12

Similar Documents

Publication Publication Date Title
WO2009100649A1 (zh) 太阳能电池光接收装置及具有该装置的全光通量检测系统
US7973917B2 (en) Method using concentrator for measuring luminous flux of LED
US7532324B2 (en) Equipment and method for LED's total luminous flux measurement with a narrow beam standard light source
AU2010327508B2 (en) Integrating sphere photometer and measuring method of the same
JP4452737B2 (ja) 光束計および測定方法
US8144316B2 (en) Instrument and method for measuring total luminous flux of luminous elements
CN101782428B (zh) 光谱自校正光度计及其测量方法
TW201205046A (en) Sunlight simulator with detection device and solar cell detection device
KR20120096832A (ko) 태양전지 측정시스템과 그 제어방법
CN103411676A (zh) 一种利用线性可变滤光片测量物体颜色的测色仪
TWM345349U (en) Optical receiver device of solar cell and the entire luminous flux detection system with it
CN201355305Y (zh) 具有太阳能电池的光接收装置的光源全光通量检测设备
CN110068392B (zh) 一种led光源的光通量测量装置及方法
Jin et al. On the accurate characterization of quantum-dot light-emitting diodes for display applications
Hanselaer et al. A new integrating sphere design for spectral radiant flux determination of light-emitting diodes
CN101858780A (zh) 一种光通量测试方法及装置
CN202547904U (zh) 汽车led前照灯配光检测装置
CN111323408A (zh) 微区下发光件的外量子效率检测系统及其检测方法
Liu et al. Study on methodology of LED's luminous flux measurement with integrating sphere
JP3716303B2 (ja) 光感応型発光素子の発光効率測定方法及び装置
CN209764269U (zh) 一种led光源的光通量测量装置
Zhou et al. A new spatial integration method for luminous flux determination of light-emitting diodes
Poikonen et al. Multifunctional integrating sphere setup for luminous flux measurements of light emitting diodes
WO2011011908A1 (zh) 48通道阵列式等吸收波长检测系统
Zong et al. Realization of total spectral radiant flux scale and calibration service at NIST

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09710879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09710879

Country of ref document: EP

Kind code of ref document: A1