WO2009099237A1 - 高強度熱延鋼板およびその製造方法 - Google Patents

高強度熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2009099237A1
WO2009099237A1 PCT/JP2009/052244 JP2009052244W WO2009099237A1 WO 2009099237 A1 WO2009099237 A1 WO 2009099237A1 JP 2009052244 W JP2009052244 W JP 2009052244W WO 2009099237 A1 WO2009099237 A1 WO 2009099237A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
strength
steel sheet
cooling
hot
Prior art date
Application number
PCT/JP2009/052244
Other languages
English (en)
French (fr)
Inventor
Shinjiro Kaneko
Kaneharu Okuda
Tetsuo Shimizu
Noriaki Moriyasu
Masahide Watabe
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to KR1020107014865A priority Critical patent/KR101203018B1/ko
Priority to EP09708321.6A priority patent/EP2243853B1/en
Priority to CN2009801045882A priority patent/CN101939459B/zh
Priority to US12/866,382 priority patent/US20100319819A1/en
Publication of WO2009099237A1 publication Critical patent/WO2009099237A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention is a high-strength hot-rolled steel sheet that has excellent tensile strength (TS) force S 540 to 780 MPa, small strength variation between coils and within the coil, and is useful for applications such as automotive copper sheets. And a manufacturing method thereof.
  • TS tensile strength
  • Patent Document 1 8 9 1 2 5 As a method for reducing the intensity variation in the coil, Patent Document 1 8 9 1 2 5), when hot rolling a low-Mn steel containing Nb (Mn: 0.5% or less), the sheet bar after rough rolling was once wound into a coil shape, A method of achieving uniform strength in a coil of a high-strength hot-rolled copper sheet by joining to a preceding sheet bar while rewinding and continuously performing finish rolling is disclosed.
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-032-2 5 4 1 discloses a combination of Ti and Mo added together, and very fine precipitates are uniformly dispersed, resulting in small variations in strength. A high-strength hot-rolled steel sheet with excellent strength uniformity has been proposed.
  • Patent Document 1 Japanese Patent Laid-Open No. 4-2 8 9 1 2 5
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2 00 2-3 2 2 5 4 1 Disclosure of Invention
  • Patent Document 1 In the method described in Patent Document 1, there is a problem that the coil is divided again at the time of harvesting. In addition, Nb addition increases costs and is economically disadvantageous. Further, the steel sheet described in Patent Document 2 is Ti-based, but expensive Mo needs to be added, resulting in cost increase. Furthermore, none of the patent documents considers the two-dimensional intensity uniformity in the coil surface including both the width direction and the longitudinal direction of the coil. Such variation in the strength of the coil surface inevitably occurs because the cooling history of the coil after scraping differs from position to position, regardless of how uniformly the scraping temperature is controlled.
  • the present invention advantageously solves the above problems, uses an inexpensive Ti-based general-purpose steel plate, has a tensile strength (TS) of 540 to 780 MPa, and has high strength uniformity with small strength variation. It aims at providing a strength hot-rolled steel sheet.
  • TS tensile strength
  • the strength of the hot rolled steel sheet was controlled by controlling the chemical composition of the steel sheet, the metal structure, and the precipitation state of Ti that contributes to precipitation strengthening.
  • the present invention succeeded in obtaining a high-strength hot-rolled steel sheet excellent in strength uniformity with small variations.
  • the summary of the high-strength hot-rolled copper sheet and the method for producing the same according to the present invention, which is excellent in strength uniformity with small variation in surface strength, is as follows. [1] When the component composition is% by mass: C: 0.05 to 0.12%, Si: 0.5% or less, Mn: 0.8 to 1.8%, P: 0.030% or less, S: 0.1% or less, A1: 0.005 to 0.1%, N: 0.01 to 3 or less, Ti: 0.030 to 0.080%, the balance being Fe and inevitable impurities, The amount of Ti present in precipitates with a fraction of 70% or more and a size less than 20 nm is 50% or more of the value of Ti * calculated by the following equation (1).
  • a high-strength hot-rolled copper sheet characterized by that.
  • [Ti] and [N] indicate the component composition (mass%) of Ti and N of the copper plate, respectively.
  • Ingredient composition is% by mass, C: 0.05-0.12%, Si: 0.5% or less, Mn: 0.8-1.8%, P: 0.030% or less, S : Steel containing 0.001% or less, A1: 0.005 to 0.1%, N: 0.01% or less, Ti: 0.030 to 0.080%, the balance being Fe and inevitable impurities
  • hot finish rolling is performed at a finishing temperature of 800 to 950 ° C
  • cooling is performed at a cooling rate of 203 ⁇ 4: / 5 or more within 2 seconds after the hot finishing rolling.
  • a high strength hot rolled steel sheet having a tensile strength (TS) of 540 to 780 MPa and it is possible to narrow the strength variation in the coil. Stabilization of shape freezing property, component strength and durability performance will be achieved, and reliability during production and use of automobile parts will be improved. Furthermore, in the present invention, the above effect can be obtained without adding expensive raw materials such as Nb, so that the cost can be reduced.
  • Figure 1 shows the results of an investigation of the correlation between the percentage of polygonal ferrite (%) and the tensile strength TS (MPa).
  • FIG. 2 is a graph showing the results of investigating the correlation between the ratio of Ti content in precipitates with a size of less than 20 nm to Ti * (3 ⁇ 4) and the tensile strength TS (MPa).
  • An example of a target steel sheet is a coiled coil with a weight of 5t or more and a steel plate width of 500mm or more.
  • the innermost and outermost windings at the front and rear ends in the longitudinal direction and 10 mm at both ends in the width direction are not subject to evaluation.
  • the strength variation shall be evaluated with a tensile strength distribution measured two-dimensionally in at least 10 divisions in the longitudinal direction and at least 5 divisions in the width direction.
  • the present invention is directed to the range where the tensile strength (TS) of the copper plate is 540 MPa or more and 780 MPa or less.
  • the unit of element content is “% by mass”, but unless otherwise specified, it is simply indicated by “%”.
  • C is an important element in the present invention together with Ti described later. C forms carbides with Ti and is effective in increasing the strength of steel sheets by precipitation strengthening.
  • the C content is preferably 0.05% or more, more preferably 0.06% or more.
  • the C content exceeding 0.012% does not adversely affect good elongation and hole expansibility, and the upper limit of C content is set to 0.12%, preferably not more than 0.10%.
  • Si has the effect of improving ductility as well as the effect of solid solution strengthening. In order to obtain the above effect, it is effective to contain 0.01% or more of Si. On the other hand, if the Si content exceeds 0.5%, surface defects called red scale are likely to occur during hot rolling, and the surface appearance of the steel sheet may be deteriorated.
  • the Si content is preferably 0.5% or less, and more preferably 0.3% or less.
  • Mn 0.8-1.8%
  • Mn is effective for increasing the strength and has the effect of lowering the transformation point and reducing the particle size of the fly.
  • Mn must be contained in an amount of 0.8% or more, preferably 1.0% or more. Let's say. On the other hand, if it contains excessive Mn exceeding 1.8%, a low-temperature transformation phase is generated after hot rolling and ductility is reduced, and TiC precipitation tends to become unstable, so the upper limit of Mn content is 1. 8%.
  • P is an element having a solid solution strengthening effect and also has an effect of reducing Si-induced scale defects.
  • the upper limit of the P content is set to 0.030%.
  • S is an impurity that causes hot cracking and also exists as an inclusion in copper, degrading various properties of the steel sheet, so it must be reduced as much as possible. Specifically, the S content is acceptable up to 0.01%, so it should be 0.01% or less.
  • A1 In addition to being useful as a deoxidizing element for copper, A1 has the effect of fixing solid solution N present as an impurity and improving the normal temperature aging resistance. In order to exert such an effect, the A1 content is It should be 0.005% or more. On the other hand, the content of A1 exceeding 0.5% causes high alloy costs and is liable to induce surface defects. Therefore, the upper limit of the A1 content is set to 0.1%.
  • N is an element that degrades aging resistance at room temperature, and is preferably an element that should be reduced as much as possible. As the N content increases, the aging resistance at room temperature deteriorates and a large amount of A1 or Ti is required to fix solute N, so it is preferable to reduce it as much as possible, and the upper limit of the N content is 0. 01%.
  • Ti is an important element for strengthening copper by precipitation strengthening.
  • forming carbide with C contributes to precipitation strengthening. That is, in order to obtain a high-strength steel sheet having a tensile strength TS of 540 MPa or more and 780 MPa or less, it is preferable to refine the precipitate so that the precipitate size is less than 20 nm. It is also important to increase the proportion of these fine precipitates (precipitate size less than 20 nm).
  • One reason for this is that when the size of the precipitate is 20 nm or more, it is difficult to obtain the effect of suppressing the movement of dislocations, and the polygonal ferrite cannot be hardened sufficiently, so that the strength may decrease. It is thought from.
  • the size of the precipitate is preferably less than 20 nm.
  • the precipitate containing fine T i of less than 20 nm is formed by adding both Ti and C within the above range.
  • the precipitates containing Ti and C are collectively referred to as Ti-based carbides. Examples of Ti carbides include TiC and Ti 4 C 2 S 2 . Further, the carbide may contain N as a composition, or may be precipitated in combination with MnS or the like.
  • Ti carbides are mainly precipitated in the polygonal ferrite. This is thought to be because supersaturated C tends to precipitate as carbides in the polygonal ferrite because the solid solubility limit of C in the polygonal ferrite is small. For this reason, such a precipitate hardens the soft polygonal ferrite, and a tensile strength (TS) of 540 MPa or more and 780 MPa or less can be obtained.
  • TS tensile strength
  • Ti is a preferable element for fixing solute N because Ti easily binds to solute N. In that sense, it should be 0.030% or more.
  • the upper limit of Ti is set to 0 ⁇ 080%.
  • the balance other than the above-described components is preferably substantially composed of iron and inevitable impurities.
  • the strength of the high-strength hot-rolled steel sheet according to the present invention is obtained by superimposing the respective strengths of the three strengthening mechanisms of solid solution strengthening, structure strengthening and precipitation strengthening on the strength of the base of the steel itself. It is determined. Of these, the base strength is the original strength of iron. Yes, since the solid solution strengthening is determined almost uniquely once the chemical composition is determined, these two strengthening mechanisms have little to do with the strength variation in the coil. Precipitation strengthening is most closely related to strength variation, followed by structure strengthening.
  • the amount of strengthening due to precipitation strengthening is determined by the size and dispersion of the precipitates (specifically, the precipitate spacing). Since the dispersion of precipitates can be expressed by the amount and size of precipitates, the amount of strengthening by precipitation strengthening is determined once the size and amount of precipitates are determined. Strengthening is determined by the type of steel structure. The type of steel structure is determined by the temperature range that transforms from austenite. Once the chemical composition and steel structure are determined, the amount of reinforcement is determined.
  • Chemical yarn is 0.08C-0. lSi-1. 5Mn-0. Ol lP-0. 002S- 0. 017A1-0.
  • the basic composition is ⁇ 05 ⁇ and Ti addition is 0.04%.
  • Steel A and 0.06% steel B were melted in the laboratory to form pieces. These were made into 25 mm thick sheet bars by split rolling. This was heated at 1230, hot-rolled at a finish temperature of 880 ° C in 5 passes, and water-cooled at a cooling rate of 25 tVs 1.7 seconds after finish rolling. At this time, the cooling stop temperature was variously changed between 720 and 520 ° C.
  • Fig. 1 shows the results of investigating the correlation between the percentage (%) and the tensile strength TS (MPa).
  • the tensile strength TS tends to decrease as the polygonal ferrite fraction increases, but at a polygonal ferrite fraction of 70% or more, the fluctuation in TS becomes small and stabilizes.
  • the fraction of polygonal ferrite can be obtained, for example, as follows. For the portion excluding 10% of the surface layer of the L thickness of the steel plate (the cross section parallel to the rolling direction) The corrosion appearance structure by 5% nital is photographed with a scanning electron microscope (SEM) at 1000 times magnification. Grain boundary unevenness is smooth and less than 0 lm, and smooth crystal grains with no corrosion marks in the grains are defined as polygonal ferrite. Distinguish from different transformation phases such as bainites. These are color-coded on the image analysis software, and the area ratio is taken as the polygonal ferrite fraction.
  • SEM scanning electron microscope
  • the steel structure was controlled to a fractional range in which the polygonalite was 70% or more, and the Ti content contained in precipitates with a size of less than 20 nm was expressed by the following formula (1). If it is controlled so that it falls within the range of 50% or more, even if strength fluctuations are unavoidably caused by the cooling history of the coil after scraping differing from position to position, the resulting strength fluctuations are remarkably large. I came up with the idea that it can be reduced to a practically acceptable level.
  • [Ti] and [N] indicate the component composition (mass%) of Ti and N of the copper plate, respectively.
  • the requirement of the present invention that is, the amount of Ti contained in the precipitate having a structure containing polygonal ferrite in a fraction of 70% or more and having a size of less than 20 nm, is represented by the above formula (1). If the amount of 50 or more of * is achieved at any position of the steel sheet, the amount of reinforcement of the steel sheet at each position is almost the same even if the cooling history of the coil varies from position to position. As a result, the steel sheet can be excellent in strength uniformity with small strength variation. 5) In addition, the amount of Ti contained in the precipitate having a size of less than 20 nm can be measured by the following method.
  • the sample piece is taken out of the electrolytic solution and immersed in a solution having dispersibility.
  • the precipitate contained in this solution is filtered using a filter having a pore diameter of 20 nm.
  • the precipitates that have passed through the filter with a pore size of 20 ⁇ together with the filtrate are less than 20 nm in size.
  • inductively coupled plasma is applied to the filtrate after filtration.
  • ICP ICP
  • the composition of the steel slab used in the production method of the present invention is the same as that of the copper plate described above, and the reason for the limitation is also the same.
  • the high-strength hot-rolled copper sheet of the present invention can be manufactured by using a steel slab having a composition in the above-described range as a raw material, and subjecting the raw material to rough rolling to obtain a hot-rolled copper sheet.
  • the slab heating temperature is preferably 1150 ° C or higher for hot-rolled steel sheets so that Ti-based carbides such as TiC do not dissolve in the heating stage. This is because it is preferable to avoid the Ti-based carbide from becoming insoluble since it adversely affects the tensile strength of the hot-rolled steel sheet.
  • the upper limit of the slab heating temperature is preferably 1300 ° C.
  • the steel slab heated under the above conditions is subjected to hot rolling for rough rolling and finish rolling.
  • the copper slab is made into a sheet bar by rough rolling.
  • the conditions for rough rolling do not need to be specified in particular, and may be performed according to ordinary methods. From the viewpoint of reducing the slab heating temperature and preventing problems during hot rolling, it is preferable to use a so-called sheet bar heater that heats the sheet bar.
  • the sheet bar is finish-rolled to obtain a hot-rolled steel sheet.
  • the finishing temperature is 800 ° C or more and 950 ⁇ : or less.
  • the temperature is preferably 840 ° C to 920 ° C.
  • Lubrication rolling may be performed between some or all of the finishing rolling.
  • Lubrication rolling is effective from the viewpoint of uniform steel plate shape and uniform strength.
  • the coefficient of friction during lubrication rolling is preferably in the range of 0.10 to 0.25.
  • the cooling temperature In order to deposit Ti-based carbides such as TiC effectively in a short time passing through the run-out table, the cooling temperature must be maintained for a certain period of time in the temperature range where the ferrite transformation proceeds most.
  • the cooling (holding) temperature is lower than 650 ° C, the growth rate of Ti carbide precipitation is small, so the amount of Ti carbide necessary for the desired strengthening amount cannot be secured.
  • the cooling temperature is higher than 750 ° C, the nucleation of precipitation is not sufficient and the growth rate is fast, so that Ti-based carbides are sparsely and coarsely distributed, so the strengthening ability is small. Therefore, the cooling temperature is 650 to 750 :.
  • the cooling time is less than 2 seconds, the amount of Ti carbide precipitates is not sufficient, making it difficult to secure the necessary amount of strengthening.
  • the cooling time is longer than 15 seconds, Ti-based carbides are sparse and coarsely distributed, so the strengthening ability decreases. Therefore, the cooling time is 2 to 15 seconds.
  • the cooling rate following the cooling treatment is 100 or more, the control of the scraping temperature is deteriorated and it is difficult to stabilize the strength. Therefore, it should be less than lOOT s.
  • the lower limit of the cooling rate is not particularly limited, but from the viewpoint of suppressing the coarsening of the precipitate, it is 5/5 or more. preferable.
  • the winding temperature is 550 to 6503 ⁇ 4.
  • the precipitation of Ti carbide such as TiC mainly proceeds in the cooling stage after scraping, so it is desirable to consider the cooling history of the steel plate after scraping. .
  • the precipitation of Ti-based carbides may not proceed sufficiently because the coil tip cools quickly at the tip and rear ends. For this reason, at the coil front end and rear end, if the temperature is increased with a temperature difference with respect to the inside of the coil other than the front end and rear end, the strength variation is further improved.
  • Molten steel with the composition shown in Table 1 was melted in a converter and slab was formed by continuous forging. These steel slabs were heated to 1250T and roughly rolled into sheet bars, and then hot-rolled steel sheets were formed by a hot rolling process in which finish rolling under the conditions shown in Table 2 was performed.
  • these hot-rolled steel sheets were pickled, subjected to temper rolling with an elongation of 0.5%, and then trimmed and removed 10 mm in the end in the width direction to evaluate various properties.
  • the steel sheet was collected from the position where the innermost and outermost punches were applied at the front and rear ends of the coil, and the dividing point where the inside was divided into 20 equal parts in the longitudinal direction.
  • Tensile specimens and precipitate analysis samples were collected from these width edges and the dividing points divided into 8 in the width direction.
  • the specimens for the tensile test were taken in the direction parallel to the rolling direction (L direction) and processed into JIS No. 5 tensile specimens. Tensile tests were conducted at a crosshead speed of 10 mm / min in accordance with the provisions of JIS Z 2241 to determine the tensile strength (TS). Table 2 shows the results of investigating the tensile properties of the obtained hot-rolled steel sheets.
  • the microstructure of the L section (cross section parallel to the rolling direction), excluding 10% of the surface scrap, is increased by 5000 times using the scanning electron microscope (SEM). After identification, the fraction of polygonal ferrite was measured using the image processing software by the method described above.
  • Ti was quantified in precipitates with a size less than 20 nm by the following quantitative method.
  • the hot-rolled steel sheet obtained above is cut to an appropriate size, and about 0.2 g of current density is obtained in 10% AA electrolyte (10 vol% acetylmethylacetone-lmass% tetramethylammonium chloride-methanol). Constant current electrolysis was performed at 20 mA / cm 2 .
  • SHMP aqueous solution hexane 'sodium metaphosphate aqueous solution (500 mg 8) (hereinafter referred to as SHMP aqueous solution).
  • SHMP aqueous solution hexane 'sodium metaphosphate aqueous solution (500 mg 8)
  • SHMP aqueous solution hexane 'sodium metaphosphate aqueous solution
  • the precipitate was peeled from the sample piece and extracted into an aqueous SHMP solution.
  • the SHMP aqueous solution containing precipitates is filtered using a filter with a pore size of 20 ⁇ , and the filtrate after analysis is analyzed using an ICP emission spectrophotometer to measure the absolute amount of Ti in the filtrate. did.
  • the absolute amount of Ti was divided by the electrolytic weight to obtain the amount (mass%) of Ti contained in the precipitate having a size of less than 20 nm.
  • the electrolytic weight was determined by measuring the weight of the sample after the deposit was peeled off and subtracting it from the sample weight before the electrolysis. After this, the amount of Ti (mass%) contained in the precipitates of size less than 20 nm obtained above was calculated by substituting the Ti and N contents shown in Table 1 into the formula (1). The amount of Ti contained in the precipitate with a size of less than 20 nm was obtained as a percentage (%).
  • the polygonal ferrite fraction the ratio of Ti contained in precipitates with a size of less than 20 nm with respect to Ti * shown in Equation (1), and the tensile strength TS are The value at the center of the length and the center of the width is used as the representative value.
  • the steel structure conformity ratio is the ratio of the 189 measured points that satisfy both the requirements of the fraction of polygonal ferrite and the proportion of Ti in precipitates with a size of less than 20 nm.
  • the TS conformance rate is the ratio that shows a value of 540 MPa or more out of 189 measured points.
  • ⁇ TS is obtained by multiplying the standard deviation ⁇ by four times by calculating the TS of 189 points.
  • TS has a high strength of 540 ⁇ 3 or more, and strength variation (A TS) in the coil surface is as small as 50 MPa or less. A good steel sheet is obtained.
  • the present invention it is possible to stably produce a hot-rolled steel sheet having a tensile strength (TS) of 540 MPa or more and a small strength variation at low cost, and has a remarkable industrial effect.
  • TS tensile strength
  • the high-strength hot-rolled steel sheet of the present invention is applied to automobile parts, the amount of springback after forming and collision variations in high tension can be reduced, and the body design can be made more accurate. There is an effect that it can sufficiently contribute to collision safety and weight reduction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

安価なTi系汎用鋼板を用い、引張強度(TS)が540~780MPaで、強度バラツキの小さい強度均一性に優れた高強度熱延鋼板を提供する。成分組成は、質量%でC:0.05~0.12%、Si:0.5%以下、Mn:0.8~1.8%、P:0.030%以下、S:0.01%以下、Al:0.005~0.1%、N:0.01%以下、Ti:0.030~0.080%を含有し、残部がFeおよび不可避的不純物からなる。そして、組織はポリゴナルフェライトが70%以上の分率で存在し、かつサイズ20nm未満の析出物中に存在するTiの量が、下式(1)で計算されるTi*の値の50%以上である。Ti*=[Ti]−48÷14×[N]…(1)ここで、[Ti]および[N]はそれぞれ鋼板のTiおよびNの成分組成(質量%)を示す。

Description

明細書 高強度熱延銅板およびその製造方法 技術分野
本発明は、 自動車用銅板などの使途に有用な、 引張強さ (TS) 力 S 540〜780MPa で、 コイル間およびコイル内での強度バラツキの小さい強度均一性に優れた、 高 強度熱延鋼板およびその製造方法に関するものである。 背景技術
近年、 地球環境保全の観点から、 C02の排出量を規制するため、 自動車の燃費改 善が要求されている。 加えて、 衝突時に乗員の安全を確保するため、 自動車車体 の衝突特性を中心とした安全性向上も要求されている。 このため、 自動車車体の 軽量化および強化の双方が積極的に進められている。 自動車車体の軽量化と強化 を同時に満たすには、 剛性の問題とならない範囲で部材素材を高強度化し、 板厚 を減ずることによつて軽量化することが効果的といわれており、 最近では高強度 鋼板が自動車部品に積極的に使用されている。 軽量化効果は、 使用する鋼板が高 強度であるほど大きくなるため、 自動車業界では、 例えば構造用材料として引張 強度 (TS) が 540MPa以上の鋼板を使用する動向にある。
一方、鋼板を素材とする自動車部品の多くは、プレス成形によって製造される。 高強度鋼板の成形性に関しては、 割れ、 しわ以外に寸法精度が重要であり、 特に スプリ ングパックの制御が重要課題になっている。 梟近では CAE ( Computer Ass i sted Engineering) により新車の開発が非常に効率化されてきて、 金型を何 度も造ることがなくなつてきた。 同時に、 銅板の特性を入力するとスプリングバ ック量をより精度良く予測可能となっている。 スプリングバック量にバラツキが あると、部品同士を接合する際に問題となるので、より小さくする必要があるが、 それには、 特に強度バラツキの小さい強度均一性に優れた高強度銅板が求められ ている。
コイル内の強度バラツキを小さくする方法として、 特許文献 1 (特開平 4一 2 8 9 1 2 5号公報) には、 Nbを含有する低 Mn鋼 (Mn: 0. 5%以下) を熱間圧延す るに際し、 粗圧延後のシートバーを一旦コイル状に卷取り、 その後巻き戻しなが ら先行するシートバーに接合し、 連続的に仕上げ圧延を行うことにより、 高強度 熱延銅板のコイル内の強度均一化を達成する方法が開示されている。 また、 特許 文献 2 (特開 2 0 0 2— 3 2 2 5 4 1号公報) には、 Ti と Moを複合添加して、 非 常に微細な析出物を均一に分散させた強度バラツキの小さい強度均一性に優れた、 高強度熱延鋼板が提案されている。
特許文献 1 : 特開平 4— 2 8 9 1 2 5号公報
特許文献 2 : 特開 2 0 0 2— 3 2 2 5 4 1号公報 発明の開示
しかしながら、 上述の従来技術には、 次のような問題がある。
特許文献 1に記載の方法では、 卷取時にコイルを再度分割することなどの問題が ある。 さらに、 Nb添加のためコス ト増加を招き経済的に不利である。 また、 特許 文献 2に記載の鋼板では、 Ti系であるが、 高価な Moを添加する必要があり、 コ ス トアップを招く。 さらには、 いずれの特許文献においても、 コイルの幅方向と 長手方向の両方を含む、 コイル面内の 2次元的な強度の均一性については考慮ざ れていない。 このようなコイル面内の強度バラツキは、 いかに卷取り温度を均一 に制御したとしても卷取り後のコィルの冷却履歴が位置毎に異なるために不可避 的に生じるという問題がある。
本発明は、 かかる事情に鑑み、 上記問題点を有利に解決し、 安価な Ti系汎用鋼 板を用い、 引張強度 (TS) が 540〜780MPaで、 強度バラツキの小さい強度均一性 に優れた高強度熱延鋼板を提供することを目的としている。
上記のような課題を解決すべく鋭意検討を進めたところ、 鋼板の化学組成、 金 属組織および析出強化に寄与する T iの析出状態とを制御することにより、 熱延 鋼板全面に渡って強度バラツキの小さい強度均一性に優れた高強度熱延鋼板を得 ることに成功し本発明に至った。
本発明による、 面內強度のバラツキの小さい強度均一性に優れた高強度熱延銅 板およびその製造方法の要旨は以下の通りである。 [ 1 ] 成分組成が、 質量%で C: 0. 05〜0. 12%、 Si : 0. 5%以下、 Mn: 0. 8〜1. 8%、 P : 0. 030%以下、 S: 0. 01%以下、 A1: 0. 005〜0. 1%、 N: 0. 01¾以下、 Ti: 0. 030〜0. 080% を含有し、 残部が Fe および不可避的不純物からなり、 ポリ ゴナルフェライ トが 70%以上の分率で含む組織を有し、 かつサイズ 20nm未満の析出物中に存在する T iの量が、 下式 ( 1 ) で計算される Ti*の値の 50%以上であることを特徴とする高 強度熱延銅板。
Ti* = [Ti] 一 48 + 14 X [N] … (1)
ここで、 [Ti] および [N] はそれぞれ銅板の Tiおよび Nの成分組成 (質量%) を 示す。
[ 2 ] 成分組成が、 質量%で、 C: 0. 05〜0. 12%、 Si : 0. 5%以下、 Mn: 0. 8- 1. 8%, P: 0. 030%以下、 S: 0. 01%以下、 A1: 0. 005〜0. 1%、 N: 0. 01%以下、 Ti: 0. 030〜0. 080% を含有し、残部が Feおよび不可避的不純物かちなる鋼スラブを、 1150〜1300ΐの 加熱温度に加熱後、 800〜950°Cの仕上げ温度で熱間仕上げ圧延を行い、 該熱間仕 上げ圧延後 2秒以内に 20¾:/5以上の冷却速度で冷却を開始し、 650 :〜 750°Cの温 度で冷却を停止し、 引き続いて 2秒〜 15秒の放冷工程を経たのちに、 再度 100¾: /s未満の冷却速度で冷却を施し、 550〜650Τ:の温度域でコイル状に卷き取ること を特徴とする高強度熱延銅板の製造方法
本発明によれば、 引張強度 (TS) が 540〜780MPaの高強度熱延鋼板で、 コイル 内での強度バラツキを狭小化することが可能であり、 これにより、 本鋼板のプレ ス成形時の形状凍結性や部品強度、 耐久性能を安定化することが達成され、 自動 車部品の生産 ·使用時における信頼性の向上がはかれることになる。 さらに、 本 発明では、 N b等の高価な原料を添加せずとも上記効果が得られるので、 コス ト 削減がはかれることになる。 図面の簡単な説明
図 1は、 ポリゴナルフェライ トの分率 (%) と引張強度 TS (MPa)との相関を調査し た結果を示す図である。
図 2は、 Ti*に対するサイズ 20nm未満の析出物に含まれる Ti量の割合(¾)と、 引 張強度 TS (MPa)との相関を調査した結果を示す図である。 発明を実施するための最良の形態
以下に本発明を詳細に説明する。
1 ) まず、 本発明における強度バラツキが少ない、 即ち強度均一性の評価方法に ついて説明する。
対象の鋼板の一例としてはコイル状に卷きとったもので、 その重量が 5t以上、鋼 板の幅が 500mm以上のものがあげられる。 このような場合には、 また熱間圧延ま まの状態における、 長手方向の先端部と後端部で最内周と最外周の各々ひと巻き と幅方向の両端 10mm は評価の対象とはしない。 これの、 長手方向に少なく とも 10分割、 幅方向に少なく とも 5分割に 2次元的に測定した引張強度の分布をもつ て強度バラツキを評価するものとする。 また、 本発明は銅板の引張強度 (TS) が 540MPa以上、 780MPa以下の範囲を対象としている。
2 ) つぎに、 本発明における銅の化学成分 (成分組成) の限定理由について説 明する。
なお、 元素の含有量の単位はいずれも 「質量%」 であるが、 以下、 特に断らない 限り、 単に 「%」 で示す。
C : 0. 05〜0. 12%
Cは、 後述の Ti とともに本発明における重要な元素である。 Cは、 Ti とともに 炭化物を形成し、 析出強化により鋼板を高強度するのに有効である。 本発明では 析出強化の観点から Cを 0. 05 %以上含有することが好ましく、 さらに好ましくは 0. 06%以上である。一方、 0. 012%を超える Cの含有は良好な伸びや穴広げ性に悪 影響を及ぼしゃすく、 C含有量の上限を 0. 12%とし、好ましくは 0. 10%以下とす る。
S i: 0. 5%以下
Siは、 固溶強化の効果ともに延性を向上させる効果がある。 上記効果を得るため には、 Siは 0. 01 %以上含有することが有効である。 一方、 S iを 0. 5 %を超えて含 有すると、 熱間圧延時に赤スケールと称される表面欠陥が発生しやすくなり、 鋼 板とした時の表面外観を悪くすることがあるので、 Si含有量は 0. 5%以下とする ことが好ましく、 さらに好ましくは 0. 3 %以下とする。 Mn: 0. 8〜1. 8%
Mnは、 高強度化に有効であるとともに、 変態点を下げ、 フ ライ ト粒径を微細化 させる作用があり、 Mnは 0. 8%以上含有する必要があり、 好ましくは 1. 0%以上と する。 一方、 1. 8%を超える過度の Mnを含有すると、 熱延後に低温変態相が生成 して延性が低下したり、 TiCの析出が不安定になりやすくなることから、 Mn含有 量の上限は 1. 8%とする。
P : 0. 030%以下
Pは、 固溶強化の効果がある元素であり、 また、 Si起因のスケール欠陥を軽減す る効果をもつ。 しかしながら、 0. 030%を超える過剰な Pの含有は、 Pが粒界に偏 祈しやすく、 靭性および溶接性を劣化させやすい。 従って、 P含有量の上限は 0. 030%とした。
S : 0. 01 %以下
Sは、 不純物であり、 熱間割れの原因になる他、 銅中で介在物として存在し鋼板 の諸特性を劣化させるので、 できるだけ低減する必要がある。 具体的には、 S含 有量は、 0. 01 %までは許容できるため、 0. 01%以下とする。
A1 : 0. 005— 0. 1%
A1は、 銅の脱酸元素として有用である他、 不純物として存在する固溶 Nを固定し -て耐常温時効性を向上させる作用がある. かかる作用を発揮させるためには、 A1 含有量は 0. 005%以上とする必要がある。 一方、 0. 5%を超える A1の含有は、 高 合金コストを招き、さらに表面欠陥を誘発しやすいので、 A1含有量の上限を 0. 1 % とする。
N: 0. 01 %以下
Nは耐常温時効性を劣化させる元素であり、 できるだけ低減することが好ましい 元素である。 N含有量が多くなると耐常温時効性が劣化し、 固溶 Nを固定するた めに多量の A1や Ti添加が必要となるため、できるだけ低減することが好ましく、 N含有量の上限を 0. 01%とする。
Ti: 0. 030~0. 080%
Tiは、析出強化により銅を強化させるために重要な元素である。本願発明の場合、 Cとともに炭化物を形成することで析出強化に寄与する。 つまり、 引張強度 TSが 540MPa以上、 780MPa以下の高強度鋼板を得るためには、 析出物は析出物サイズ 20nm未満となるように微細化することが好ましい。 また、 この微細な析出物 (析出物サイズ 20nm未満) の割合を高めることが重要である。 この理由の一つとして、析出物のサイズが 20nm以上では、転位の移動を抑制する 効果が得られにく く、 またポリゴナルフェライ トを十分に硬質化できないため、 強度が低下する場合があるからと考えられる。 し こがって、 析出物のサイズは 20nm未満とすることが好ましい。 また、 本願発明において、 この 20nm未満の微 細な T i を含む析出物は、 Ti と Cを共に上記範囲で添加することにより形成され る。 本明細書では、 これら Ti と Cを含有する析出物を総称して Ti系炭化物と呼 ぶ。 Ti系炭化物としては例えば TiC、 Ti4C2S2などがあげられる。 また、 前記炭化 物中に Nを組成として含んだり、 MnSなどと複合して析出していても良い。
本願発明の高強度銅板においては、 Ti系炭化物は、 主にポリ ゴナルフェライ ト中 に析出していることが、 確 できている。 これは、 ポリゴナルフェライ トにおけ る Cの固溶限は小さいので、 過飽和の Cがポリゴナルフヱライ ト中に炭化物とし て析出しやすいためと考えられる。 このため、 このような析出物により軟質のポ リゴナルフェライ トが硬質化し、 540MPa以上、 780MPa以下の引張強度 (TS) が得 られることになる。 同時に Tiは、 固溶 Nと結合しやすいので、 固溶 Nを固定する のにも好ましい元素でもある。 その意味で 0. 030%以上とする。 しかしながら、 T iの過剰な添加は加熱段階で強度に寄与しない粗大な T i の未溶解炭化物であ る TiC等を生成させるだけで好ましくなく、 非経済的である。 この観点より、 Ti の上限を 0· 080%とする。
また、 本発明では、 上記した成分以外の残部は実質的に鉄および不可避的不純物 の組成とすることが好ましい。
3 ) 次に、 本発明の鋼板の鋼組織を限定した理由について説明する。
ポリゴナルフェライ トを 70%以上の分率で含む組織を有し、 かつ 20nm未満のサイ ズの析出物中の T i量が、 式 ( 1 ) で示される Ti*の 50¾以上
本願発明にかかる高強度熱延鋼板の強度は、 鋼自身が有しているベースとなる 強度に、 固溶強化、 組織強化または析出強化の 3つの強化機構によるそれぞれの 強化量が重畳することで決定される。 このうち、 ベース強度は鉄の本来の強度で あり、 固溶強化分は化学組成が決まればほぼ一義的に定まることから、 この二つ の強化機構はコイル内の強度バラツキには殆ど関与しない。 強度バラツキに最も 関係が深いのが析出強化であり、 次いで組織強化である。
析出強化による強化量は、 析出物のサイズと分散 (具体的には析出物間隔) に よって定められる。 析出物の分散は、 析出物の量とサイズによって表現できるた め、 析出物のサイズと量が決まれば析出強化による強化量が定まる。 組織強化は 鋼組織の種類によって定まる。 鋼組織はオーステナイ トから変態する温度域によ つて、 その種類が決まり、 化学組成と鋼組織が決まれば、 強化量が定まる。
4 ) 次に、 この発明の根拠となる実験事実について述べる。
化学糸且成が、 0. 08C - 0. lSi-1. 5Mn-0. Ol lP-0. 002S- 0. 017A1-0. Θ05Ν を基本組成と して Ti添加量が 0. 04%である鋼 Aおよび 0. 06%である鋼 Bを実験室的に溶製して 錶片とした。 これらを分塊圧延で 25mm厚のシートバーとした。 これを 1230でに て加熱し、 5パスで仕上げ温度 880°Cの熱間圧延をおこない、 仕上げ圧延から 1. 7 秒後に 25tVsの冷却速度で水冷却を施した。このとき冷却停止温度を 720〜520°C の間で種々変化させた。 水冷却の後は 10秒間放冷した後 500〜700での電気炉に 挿入して卷取り処理をおこない、 炉中の保持時間を 1〜300分の間で変化させた。 このとき、冷却停止温度と炉温の差が 30で以上の場合には、放冷に引続いて 25 /sの冷却速度で水冷却を炉温度の 30 手前まで実施している。以上の方法で、 Ti の析出状態と銅組織とを種々に変化させた熱延銅板を製造した。 これらの熱延鋼 帯を酸洗後、 伸び率 0. 5%の調質圧延を施したのち、 引張試験片と析出物分析サ ンプルを採取した。
上記のように製造された熱延鋼板群より、サイズ 20nm未満の析出物に含まれる Ti量が、 下式 ( 1 ) ·で示される Ti*の 50%以上であるものを抽出し、 ポリゴナル フェライ トの分率(%) と引張強度 TS (MPa)との相関を調査した結果を図 1に示す。 この図から分かるようにポリゴナルフェライ ト分率の増加ともに引張強度 TS は 減少の傾向を示すが、 70%以上のポリ ゴナルフェライ ト分率では TSの変動が小さ くなり安定化する。
尚、ポリゴナルフェライ トの分率は例えば以下のようにして求めることができる。 鋼板の L断面 (圧延方向に平行な断面) の板厚の表層 10%を除く部分について、 5%ナイタールによる腐食現出組織を走査型電子顕微鏡 (SEM) で 1000倍に拡大し て撮影する。粒界の凹凸が 0. l m未満の滑らかで、 かつ粒内に腐食痕が残らず平 滑なフヱライ ト結晶粒をポリ ゴナルフェライ トと定義して、 その他の形態のフエ ライ ト相ゃパーライ トやべイナィ トなどの異なる変態相と区別する。 これらを画 像解析ソフ ト上で色分けし、 その面積率をもって、 ポリ ゴナルフェライ ト分率と する。
同様に、 上記のように製造された熱延鋼板群より、 ポリゴナルフェライ トの分率 が 70%以上のものを抽出し、 下式 ( 1 ) で示される Ti*に対するサイズ 20mn未満 の析出物に含まれる Ti量の割合(%)と、 引張強度 TS (MPa)との相関を調査した結 果を図 2に示す。 上述したように、析出強化に寄与するサイズ 20nm未満の析出物 は、 添加された Tiにより形成されるため、 20nm未満の析出物中の Ti量を把握す れば、 Tiが効率良く微細析出物と して析出しているかどうかを明確にできるから である。 この図から分かるように、 20mn未満のサイズの析出物に含まれる Ti量 の増加と.もに TSは増加の傾向を示すが、析出物に含まれる Ti量が Ti*の 50%以上 では TSの変動が小さくなり安定化する。
以上の、結果から、 鋼組織をポリゴナルフヱライ トが 70%以上の分率範囲に制御 し、 かつ 20nm未満のサイズの析出物に含まれる Ti量が下記式 ( 1 ) で示される Ti*の 50%以上の範囲となるように制御すれば、 たとぇ卷取り後のコイルの冷却履 歴が位置毎に異なるために強度バラツキが不可避的に生じても、 その.生じる強度 バラツキは、 著しく小さくなり実用上問題ない程度にできることに想到した。
Ti* = [Ti] - 48 ÷ 14 X [N] … (1)
ここで、 [Ti] および [N] はそれぞれ銅板の Tiおよび Nの成分組成 (質量%) を 示す。
したがって、 本願発明の要件、 すなわち、 ポリゴナルフェライ トを 70%以上の 分率で含む組織を有し、 かつサイズ 20nm未満の析出物に含まれる Ti量が、 上記 式 ( 1 ) で示される Ti*の 50¾以上の量であることが、 鋼板のいずれの位置におい ても達成されているならば、 コイルの冷却履歴が位置毎に異なってもその各位置 における鋼板の強化量はほぼ同じとなり、 結果として当該鋼板は、 強度バラツキ の小さい強度均一性に優れたものとできる。 5 ) また、 サイズ 20nm未満の析出物に靠まれる Tiの量は、 以下の方法により 測定することができる。
試料を電解液中で所定量電解した後、 試料片を電解液から取り出して分散性を有 する溶液中に浸漬する。 次いで、 この溶液中に含まれる析出物を、 孔径 20nmのフ ィルタを用いてろ過する。この孔径 20ηπιのフィルタをろ液と共に通過した析出物 がサイズ 20nm 未満である。 次いで、 ろ過後のろ液に対して、 誘導結合プラズマ
(ICP) 発光分光分析法、 ICP質量分析法、 および原子吸光分析法等から適宜選択 して分析し、 サイズ 20nm未満での析出 における Tiの量を求める。
6 )次に、本発明の高強度熱延鋼板の好ましい製造方法一例について説明する。 本発明の製造方法に用いられる鋼スラブの組成は、 上述した銅板の組成と同様で あり、 またその限定理由も同様である。 本発明の高強度熱延銅板は、 上記した範 囲内の組成を有する鋼スラブを素材とし、 該素材に粗圧延を施し熱延銅板とする 熱間圧延工程を経ることにより製造できる。
—ィ) 加熱温度を 1150°じ〜1300¾
スラブ加熱温度は、 加熱段階で TiCのような T i系炭化物が未固溶とならないた 'めに熱延鋼板 1150°C以上が望ましい。 T i系炭化物が未固溶となると熱延鋼板の 引張強度に悪影響を与えるため避けることが好ましいからである。 しかし、 過剰 な温度による加熱は、 酸化重量の増加に伴うスケールロスの増大などの問題を引 き起こすから、 スラブ加熱温度の上限は 1300°Cとすることが好ましい。
上記条件で加熱された鋼スラブに粗'圧延および仕上圧延を行う熱間圧延を施す。 ここで、 銅スラブは粗圧延によりシートバーとされる。 なお、 粗圧延の条件は特 に規定する必要はなく、 常法に従って行なえばよい。 また、 スラブ加熱温度を低 く し、 かつ熱間圧延時のトラブルを防止するといつた観点からは、 シートバーを 加熱する、 所謂シートバーヒーターを活用することが好ましい。
次いで、 シートバーを仕上げ圧延して熱延鋼板とする。
口) 仕上げ温度 (FDT) を 800〜950で
仕上げ温度が高いと粒が粗大となり、 成形性が低下すること、 またスケール欠陥 が発生しやすいため 950 以下とする。 また、 800°C未満では圧延荷重が増大し、 圧延負荷が大きくなることや、 オーステナイ ト未再結晶での圧延率が高くなり、 異常な集合組織が発達し、 強度均一性の観点から好ましくない。 その意味で仕上 げ温度は 800°C以上 950^:以下とする。 好ましくは 840°C〜920°Cとする。
また、 熱間圧延時の圧延荷重を低減するため、 仕上げ圧延の一部または全部のパ ス間で潤滑圧延としてもよい。 潤滑圧延を行なうことは、 鋼板形状の均一化や強 度の均一化の観点から有効である。 潤滑圧延の際の摩擦係数は、 0. 10〜0. 25の範 囲とす のが好ましい。 さらに、 相前後するシートバー同士を接合し、 連続的に 仕上げ圧延する連続圧延プロセスとすることも好ましい。 連続圧延プロセスを適 用することは、 熱間圧延の操業安定性の観点からも望ましい。
ハ) 熱間仕上げ圧延後 2秒以内に 20 s以上の冷却速度 (一次冷却) で冷却 仕上げ圧延後に冷却を開始するまでに 2秒を超える時間を経過すると、 仕上げ圧 延時に蓄積された歪みが開放され、 後述する冷却制御を施しても効果的にフェラ イ ト生成が生じず、 TiCの安定的な析出が行われない。 また、 冷却速度が 20 :/s を下回る場合も同様な現象が生じやすくなる。
二) 650 〜750°じの温度域での冷却停止と、 2秒〜 15秒の放冷工程
放冷の温度はランアウ トテーブルを通過する短時間に効果的に TiC のような Ti 系炭化物を析出させるために、 最もフェライ ト変態が進行する温度域に一定時間 保持する必要がある。 650°Cよりも放冷 (保持) 温度が低い場合には Ti系炭化物 の析出の成長速度が小さいために、所望とする強化量に必要な Ti系炭化物の量を 確保できない。 一方、 750°Cよりも放冷温度が高い場合には、 析出の核生成が十分 で無く成長速度が速いため Ti 系炭化物が疎かつ粗大に分布するため強化能が小 さくなる。 したがって、 放冷温度は 650で〜 750 :とする。
放冷時間が 2秒よりも小さい場合には、 Ti系炭化物の析出量が十分では無く、 必 要な強化量を確保できにくレ、。 一方、 放冷時間が 15秒よりも大きい場合には、 Ti 系炭化物が疎かつ粗大に分布するため強化能が小さくなる。 したがって、 放冷時 間は 2秒〜 15秒とする。
ホ) 再度 lOOT s未満の冷却速度 (二次冷却) で冷却
放冷処理に引き続く冷却速度が、 100で以上の場合には卷取り温度の制御性が悪く なり強度の安定化が困難になる。 よって lOOT s未満とする。 冷却速度の下限は 特にこれを限定しないが、 析出物の粗大化を抑制する観点からは、 5 /5 以上が 好ましい。
へ) 550〜650ΐ:の温度域でコイル状に卷き取る
卷取り温度が 550°C未満の場合には、 ランナウ トテーブル上で未変態の部分が低 温変態相として生成して強度バラツキの原因になるとともに延性が低下する。 卷 取り温度が 650でを超える場合には、 TiCのような Ti系炭化物の成長が巻取り後 にも進行するため疎かつ粗大に分布するため強化能が小さくなるとともに、 卷取 り後の冷却履歴に対応した強度バラツキが生じやすい。 したがって、 巻取り温度 は 550〜650¾ とする。 '
強度バラツキをコイル内で考慮した場合、例えば TiCのような Ti系炭化物の析 出は卷き取り後の冷却段階で主に進むために卷取り後の鋼板の冷却履歴を考慮す るのが望ましい。特に、 コイルの先端部と後端部では冷却が早いために Ti系炭化 物の析出が十分に進まないことがある。 このため、 コイル先端部と後端部におい て、 当該先端部と後端部以外のコイル内側に対し、 温度差をつけて温度を高くす ると強度バラツキが、 より一層改善される。 実施例 1
次に、 本発明の実施例について説明する。
表 1に示す組成の溶鋼を転炉で溶製し、 連続铸造法でスラブとした。 これら鋼ス ラブを 1250Tに加熱し粗圧延してシートバーとし、 次いで、 表 2に示す条件の仕 上圧延を施す熱間圧延工程により熱延鋼板とした。
次いで、 これらの熱延鋼板を酸洗後、 伸び率 0. 5%の調質圧延を施したのち、 幅 方向の端部 10mmをトリ ミングして除去し、各種特性を評価した。コイルの長手の、 先端部と後端部で最内周と最外周の各々ひと卷きを力ッ トした位置とその内側を 長手方向に 20等分した分割点より鋼板を採取した。これらの幅端部および幅方向 に 8分割した分割点より引張試験片と析出物分析サンプルを採取した。
引張試験の.試験片は圧延方向に平行な方向 (L方向) に採取し JIS 5号引張試験 片に加工した。 JIS Z 2241 の規定に準拠してクロスへッ ド速度 10mm/minで引張 試験を行い、 引張強さ (TS) を求めた。 得られた各熱延鋼板の引張特性を調査し た結果を表 2に示す。 ミクロ組織は L断面 (圧延方向に平行な断面) の板厚の表屑 10%を除く部分につ いて、 ナイタールによる腐食現出組織を走査型電子顕微鏡 (SEM) で' 5000倍にお 大し同定し、 ポリゴナルフェライ トの分率は、 上記した方法で画像処理ソフ トを 用いて測定した。
20nm未満のサイズの析出物中における Ti の定量は、 以下の定量法により実施し た。
上記により得られた熱延鋼板を適当な大きさに切断し、 10%AA系電解液(10vol % ァセチルァセトン- lmass%塩化テ トラメチルアンモニゥム-メタノール) 中で、約 0. 2gを電流密度 20mA/cm2で定電流電解した。
電解後の、 表面に析出物が付着している試料片を電解液から取り出して、 へキサ 'メタリン酸ナトリ ゥム水溶液(500mg八) (以下、 SHMP水溶液と称す) 中に浸漬し、 超音波振動を付与して、析出物を試料片から剥離し SHMP水溶液中に抽出した。次 いで、 析出物を含む SHMP水溶液を、 孔径 20ηπιのフィルタを用いてろ過し、 ろ過 後のろ液に対して ICP発光分光分析装置を用いて分析し、ろ液中の Tiの絶対量を 測定した。 次いで、 Ti の絶対量を電解重量で除して、 サイズ 20nm未満の析出物 に含まれる Tiの量(質量%)を得た。 なお、 電解重量は、 析出物剥離後の試料に対 して重量を測定し、 電解前の試料重量から差し引く ことで求めた。 この後、 上記 で得られたサイズ 20nm未満の析出物に含まれる Tiの量(質量%)を、表 1に示した Ti と Nの含有量を式(1)に代入して算出した Ti*で除して、 サイズ 20nm未満の析 出物に含まれる Tiの量の割合(%)とした。
表 1
Figure imgf000015_0001
Figure imgf000016_0001
ここで表 2に示す結果のうち、 ポリゴナルフェライ ト分率、 式(1)で示される Ti*に 対するサイズ 20nm未満の析出物に含まれる Ti量の割合、および引張強度 TSは、 コィ ルの長手中央かつ幅中央の値をもって代表値としたものである。 また、 鋼組織適合率 は、測定した 189点のうち、 ポリ ゴナルフェライ ト分率とサイズ 20nm未満の析出物に おける Ti 量の割合の、 両方の要件を満足した点の割合である。 TS適合率は、 測定し た 189点のうち 540MPa以上の値を示した割合である。 Δ TSは測定した 189点の TSで 標準偏差 σを求めてこれを 4倍したものである。
表 2に示す調査結果より明らかなように、 本発明例では、 いずれも TSは 540ΜΡ3以上 の高強度であり、 かつ、 コイル面内での強度バラツキ (A TS) が 50MPa以下と小さい 強度均一性の良好な鋼板が得られている。
【産業上の利用可能性】
本発明によれば、 引張強度 (TS) 540MPa以上でありかつ強度バラツキの小さい熱延 鋼板を安価で安定して製造することが可能となり、 産業上格段の効果を奏する。 例え ば、 本発明の高強度熱延鋼板を自動車部品に適用した場合、 ハイテンにおける成形後 のスプリングバック量や衝突特性のバラッキも低減し、 車体設計の高精度化が可能と なり、 自動車車体の衝突安全性や軽量化に十分寄与できるという効果がある。

Claims

請求の範囲 1 · 成分組成が、 質量%で、 C: 0.05-0. 12%、 Si: 0.5%以下、 Mn: 0.8〜1· 8%、 Ρ: 0. 030%以下、 S: 0.01%以下、 A1 : 0.005〜0. 1%、 Ν: 0.01%以下、 Ti: 0.030〜0.080%を含 有し、 残部が Feおよび不可避的不純物からなり、 ポリゴナルフェライ トを 70%以上の 分率で含む組織を有し、 かつサイズ 20nm未満の析出物中に存在する T iの量が、 下式
( 1 ) で計算される Ti*の値の 50%以上であることを特徴とする高強度熱延鋼板。
Ti*= [Ti] -48÷14X [N] … (1)
ここで、 [Ti] および [N] はそれぞれ鋼板の Tiおよび Nの成分組成 (質量%) を示す。
2. 成分組成が、 質量%で、 C: 0.05〜0· 12%、 Si: 0.5%以下、 Mn: 0.8〜1· 8%、 Ρ: 0. 030%以下、 S: 0.01%以下、 A1: 0.005〜0. 1%、 Ν: 0.01%以下、 Ti: 0.030〜0.080%を含 有し、残部が Feおよび不可避的不純物からなる鋼スラブを、 1150〜1300°Cの加熱温度 に加熱後、 800〜950 の仕上げ温度で熱間仕上げ圧延を行い、 該熱間仕上げ圧延後 2 秒以内に 20°C/s以上の冷却速度で冷却を開始し、 650T〜 750°Cの温度で冷却を停止し、 引き続いて 2秒〜 15秒の放冷工程を経たのちに、再度 100°C/s未満の冷却速度で冷却 を施し、 550〜650での温度域でコイル状に卷き取ることを特徴とする高強度熱延鋼板 の製造方法。
PCT/JP2009/052244 2008-02-08 2009-02-04 高強度熱延鋼板およびその製造方法 WO2009099237A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020107014865A KR101203018B1 (ko) 2008-02-08 2009-02-04 고강도 열연 강판 및 그 제조 방법
EP09708321.6A EP2243853B1 (en) 2008-02-08 2009-02-04 High-strength hot-rolled steel sheet and process for production thereof
CN2009801045882A CN101939459B (zh) 2008-02-08 2009-02-04 高强度热轧钢板及其制造方法
US12/866,382 US20100319819A1 (en) 2008-02-08 2009-02-04 High-strength hot-rolled steel sheet and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-028455 2008-02-08
JP2008028455A JP5194858B2 (ja) 2008-02-08 2008-02-08 高強度熱延鋼板およびその製造方法

Publications (1)

Publication Number Publication Date
WO2009099237A1 true WO2009099237A1 (ja) 2009-08-13

Family

ID=40952299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052244 WO2009099237A1 (ja) 2008-02-08 2009-02-04 高強度熱延鋼板およびその製造方法

Country Status (6)

Country Link
US (1) US20100319819A1 (ja)
EP (1) EP2243853B1 (ja)
JP (1) JP5194858B2 (ja)
KR (1) KR101203018B1 (ja)
CN (1) CN101939459B (ja)
WO (1) WO2009099237A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172257A (ja) * 2011-02-24 2012-09-10 Jfe Steel Corp 良好な延性、伸びフランジ性、材質均一性を有する高強度熱延鋼板およびその製造方法
CN102666901A (zh) * 2009-12-25 2012-09-12 杰富意钢铁株式会社 热轧钢板和冷轧钢板以及它们的制造方法
CN102839322A (zh) * 2012-09-13 2012-12-26 首钢总公司 一种汽车用热镀锌钢板及其生产方法
WO2013161090A1 (ja) * 2012-04-26 2013-10-31 Jfeスチール株式会社 良好な延性、伸びフランジ性、材質均一性を有する高強度熱延鋼板およびその製造方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4998755B2 (ja) 2009-05-12 2012-08-15 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JP5482204B2 (ja) * 2010-01-05 2014-05-07 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JP5482205B2 (ja) * 2010-01-05 2014-05-07 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JP5527051B2 (ja) * 2010-06-30 2014-06-18 新日鐵住金株式会社 バーリング性に優れた焼付け硬化型熱延鋼板及びその製造方法
RU2562582C1 (ru) 2011-08-09 2015-09-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Горячекатаный стальной лист с высоким отношением предела текучести к пределу прочности, который имеет превосходные характеристики поглощения энергии удара при низкой температуре и устойчивость к размягчению зоны термического влияния (haz), и способ его получения
CN102383035A (zh) * 2011-11-07 2012-03-21 武汉钢铁(集团)公司 10吨级车桥桥壳用钢及其生产方法
JP5578288B2 (ja) 2012-01-31 2014-08-27 Jfeスチール株式会社 発電機リム用熱延鋼板およびその製造方法
KR101957078B1 (ko) 2015-02-20 2019-03-11 신닛테츠스미킨 카부시키카이샤 열연 강판
WO2016132549A1 (ja) 2015-02-20 2016-08-25 新日鐵住金株式会社 熱延鋼板
CN107406929B (zh) 2015-02-25 2019-01-04 新日铁住金株式会社 热轧钢板
WO2016135898A1 (ja) 2015-02-25 2016-09-01 新日鐵住金株式会社 熱延鋼板
CN113637923B (zh) * 2016-08-05 2022-08-30 日本制铁株式会社 钢板及镀覆钢板
CN109642279B (zh) * 2016-08-05 2021-03-09 日本制铁株式会社 钢板及镀覆钢板
CN109563586B (zh) 2016-08-05 2021-02-09 日本制铁株式会社 钢板及镀覆钢板
CN109563580A (zh) * 2016-08-05 2019-04-02 新日铁住金株式会社 钢板及镀覆钢板
KR101940919B1 (ko) 2017-08-08 2019-01-22 주식회사 포스코 우수한 강도와 연신율을 갖는 열연강판 및 제조방법
KR102098478B1 (ko) 2018-07-12 2020-04-07 주식회사 포스코 고강도, 고성형성, 우수한 소부경화성을 갖는 열연도금강판 및 그 제조방법
CN114054515B (zh) * 2021-06-18 2024-02-27 德龙钢铁有限公司 一种控制轧后冷轧基料氧化铁皮的方法
CN114309086B (zh) * 2022-01-05 2024-02-23 湖南华菱涟钢特种新材料有限公司 一种提高Ti强化冷成型高强钢性能均匀性的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289125A (ja) 1991-01-14 1992-10-14 Kawasaki Steel Corp 材質均一性に優れる熱延高張力鋼板の製造方法
JPH06200351A (ja) * 1992-12-28 1994-07-19 Kobe Steel Ltd 伸びフランジ性に優れた高強度熱延鋼板
JPH0711382A (ja) * 1993-06-28 1995-01-13 Kobe Steel Ltd 伸びフランジ性に優れた高強度熱延鋼板とその製造方法
JP2002161340A (ja) * 2000-11-24 2002-06-04 Nippon Steel Corp バーリング加工性と疲労特性に優れた熱延鋼板およびその製造方法
JP2002322541A (ja) 2000-10-31 2002-11-08 Nkk Corp 材質均一性に優れた高成形性高張力熱延鋼板ならびにその製造方法および加工方法
JP2004027249A (ja) * 2002-06-21 2004-01-29 Sumitomo Metal Ind Ltd 高張力熱延鋼板およびその製造方法
JP2007239097A (ja) * 2006-02-10 2007-09-20 Jfe Steel Kk 高強度冷延鋼板用熱延鋼板の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3417878B2 (ja) * 1999-07-02 2003-06-16 株式会社神戸製鋼所 伸びフランジ性および疲労特性に優れた高強度熱延鋼板およびその製法
EP1176217B1 (en) * 2000-07-24 2011-12-21 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. High-strength hot-rolled steel sheet superior in strech flange formability and method for production thereof
JP3790135B2 (ja) 2000-07-24 2006-06-28 株式会社神戸製鋼所 伸びフランジ性に優れた高強度熱延鋼板およびその製造方法
ES2690275T3 (es) * 2000-10-31 2018-11-20 Jfe Steel Corporation Chapa de acero laminado en caliente de alta resistencia y método para la fabricación de la misma
JP4470701B2 (ja) * 2004-01-29 2010-06-02 Jfeスチール株式会社 加工性および表面性状に優れた高強度薄鋼板およびその製造方法
JP4291711B2 (ja) * 2004-03-03 2009-07-08 新日本製鐵株式会社 焼付け硬化性を有する高バーリング熱延鋼板およびその製造方法
JP4009313B2 (ja) * 2006-03-17 2007-11-14 株式会社神戸製鋼所 溶接性に優れた高強度鋼材およびその製造方法
KR20080110904A (ko) * 2006-05-16 2008-12-19 제이에프이 스틸 가부시키가이샤 신장 특성, 신장 플랜지 특성 및 인장 피로 특성이 우수한 고강도 열연강판 및 그 제조 방법
JP5040197B2 (ja) * 2006-07-10 2012-10-03 Jfeスチール株式会社 加工性に優れ、かつ熱処理後の強度靭性に優れた熱延薄鋼板およびその製造方法
JP5040475B2 (ja) * 2007-06-29 2012-10-03 Jfeスチール株式会社 加工性に優れ、かつ熱処理後の強度靭性に優れた厚肉熱延鋼板およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289125A (ja) 1991-01-14 1992-10-14 Kawasaki Steel Corp 材質均一性に優れる熱延高張力鋼板の製造方法
JPH06200351A (ja) * 1992-12-28 1994-07-19 Kobe Steel Ltd 伸びフランジ性に優れた高強度熱延鋼板
JPH0711382A (ja) * 1993-06-28 1995-01-13 Kobe Steel Ltd 伸びフランジ性に優れた高強度熱延鋼板とその製造方法
JP2002322541A (ja) 2000-10-31 2002-11-08 Nkk Corp 材質均一性に優れた高成形性高張力熱延鋼板ならびにその製造方法および加工方法
JP2002161340A (ja) * 2000-11-24 2002-06-04 Nippon Steel Corp バーリング加工性と疲労特性に優れた熱延鋼板およびその製造方法
JP2004027249A (ja) * 2002-06-21 2004-01-29 Sumitomo Metal Ind Ltd 高張力熱延鋼板およびその製造方法
JP2007239097A (ja) * 2006-02-10 2007-09-20 Jfe Steel Kk 高強度冷延鋼板用熱延鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2243853A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102666901A (zh) * 2009-12-25 2012-09-12 杰富意钢铁株式会社 热轧钢板和冷轧钢板以及它们的制造方法
JP2012172257A (ja) * 2011-02-24 2012-09-10 Jfe Steel Corp 良好な延性、伸びフランジ性、材質均一性を有する高強度熱延鋼板およびその製造方法
WO2013161090A1 (ja) * 2012-04-26 2013-10-31 Jfeスチール株式会社 良好な延性、伸びフランジ性、材質均一性を有する高強度熱延鋼板およびその製造方法
CN104254633A (zh) * 2012-04-26 2014-12-31 杰富意钢铁株式会社 具有良好的延展性、延伸凸缘性、材质均匀性的高强度热轧钢板及其制造方法
US9657380B2 (en) 2012-04-26 2017-05-23 Jfe Steel Corporation High strength hot-rolled steel sheet having excellent ductility, stretch flangeability and uniformity and method of manufacturing the same
CN102839322A (zh) * 2012-09-13 2012-12-26 首钢总公司 一种汽车用热镀锌钢板及其生产方法

Also Published As

Publication number Publication date
KR20100087239A (ko) 2010-08-03
CN101939459B (zh) 2012-07-11
JP5194858B2 (ja) 2013-05-08
EP2243853B1 (en) 2017-04-05
JP2009185361A (ja) 2009-08-20
EP2243853A1 (en) 2010-10-27
KR101203018B1 (ko) 2012-11-20
CN101939459A (zh) 2011-01-05
EP2243853A4 (en) 2012-04-25
US20100319819A1 (en) 2010-12-23

Similar Documents

Publication Publication Date Title
WO2009099237A1 (ja) 高強度熱延鋼板およびその製造方法
JP4998755B2 (ja) 高強度熱延鋼板およびその製造方法
JP5041084B2 (ja) 加工性に優れた高張力熱延鋼板およびその製造方法
KR101706441B1 (ko) 양호한 연성, 신장 플랜지성, 재질 균일성을 갖는 고강도 열연 강판 및 그 제조 방법
JP5482204B2 (ja) 高強度熱延鋼板およびその製造方法
WO2013065346A1 (ja) 曲げ特性と低温靭性に優れた高強度熱延鋼板およびその製造方法
JP6460258B2 (ja) 高強度熱延鋼板及びその製造方法
JP5453964B2 (ja) 高強度熱延鋼板およびその製造方法
JP5194857B2 (ja) 高強度熱延鋼板およびその製造方法
KR102378147B1 (ko) 열연 강판 및 그 제조 방법
JP5609712B2 (ja) 良好な延性、伸びフランジ性、材質均一性を有する高強度熱延鋼板およびその製造方法
JP5482205B2 (ja) 高強度熱延鋼板およびその製造方法
JP5453973B2 (ja) 高強度冷延鋼板およびその製造方法
CN111971409A (zh) 热轧钢板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980104588.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09708321

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2093/KOLNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107014865

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2009708321

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009708321

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12866382

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE