WO2009098829A1 - Optical waveguide and method for manufacturing same - Google Patents

Optical waveguide and method for manufacturing same Download PDF

Info

Publication number
WO2009098829A1
WO2009098829A1 PCT/JP2008/073302 JP2008073302W WO2009098829A1 WO 2009098829 A1 WO2009098829 A1 WO 2009098829A1 JP 2008073302 W JP2008073302 W JP 2008073302W WO 2009098829 A1 WO2009098829 A1 WO 2009098829A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
layer
rib
core
type optical
Prior art date
Application number
PCT/JP2008/073302
Other languages
French (fr)
Japanese (ja)
Inventor
Masashige Ishizaka
Yutaka Urino
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Publication of WO2009098829A1 publication Critical patent/WO2009098829A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12061Silicon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12097Ridge, rib or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/121Channel; buried or the like
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type
    • G02F1/3133Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type the optical waveguides being made of semiconducting materials

Definitions

  • the present invention relates to an optical waveguide and a method for manufacturing the same.
  • planar light circuits play an important role as a key component supporting the recent optical communication market with AWG (Arrayed Waveguide Grating) and splitters, etc. as the development and commercialization centered on quartz systems.
  • AWG Arrayed Waveguide Grating
  • splitters etc.
  • SOA Semiconductor Optical Amplifier
  • Examples of the SOI optical waveguide include a channel optical waveguide and a rib optical waveguide.
  • a channel-type optical waveguide (Si wire waveguide) has the advantage that light can be propagated even with a bending radius of several microns to 10 microns with almost no optical loss, and the optical circuit can be miniaturized. is there.
  • the disadvantage is that the influence of changes in structural parameters such as width and thickness on optical characteristics such as propagation loss and effective refractive index is large, and manufacturing tolerance is extremely small. This is an important issue particularly when a resonator, a filter, or the like is created by a PLC.
  • the rib-type optical waveguide As an advantage of the rib-type optical waveguide, the light wave propagation loss, the above-mentioned structural tolerance, etc. are improved by an order of magnitude compared to the channel-type optical waveguide. This is an advantage when creating PLCs with various functions.
  • the minimum bending radius is about 50 microns, and it cannot be bent more steeply than the channel type optical waveguide.
  • each of the channel type optical waveguide and the rib type optical waveguide has advantages and disadvantages.
  • JP-A-8-146248 discloses an optical coupling device.
  • the optical coupling device converts the mode size.
  • the upper and lower waveguide guide layers are sandwiched between an upper clad layer and a lower clad layer having a refractive index lower than that of the waveguide guide layer.
  • a low-refractive index layer having a refractive index lower than that of the lower cladding layer is disposed below, and the thickness of at least one of the waveguide guide layer and the upper cladding layer is reduced toward the output end. .
  • Japanese Patent Application Laid-Open No. 5-249331 discloses a waveguide beam spot conversion element.
  • the waveguide-type beam spot conversion element is an optical waveguide that emits light, and has an output optical waveguide portion that emits substantially single-mode light, and a core that is continuous with the core of the output optical waveguide portion.
  • a spot size conversion optical waveguide section for converting the spot size and a light propagation section for propagating the converted spot light are disposed on the substrate.
  • the core of the optical waveguide part for spot size conversion is changed to a taper shape in the width direction toward the tip of the element, the taper is made thin in the thickness direction, and the core is spot size
  • At least one second core having a refractive index higher than that of the substrate is disposed on at least one of the upper and lower cores of the output optical waveguide unit and the spot size converting optical waveguide unit. It is characterized by that.
  • Japanese Patent Laid-Open No. 2002-374035 discloses a semiconductor laser element.
  • the semiconductor laser element includes a stacked structure in which a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer different from the first conductivity type are sequentially stacked.
  • a waveguide region is formed that restricts the spread of light in the width direction and guides light in a direction orthogonal to the width direction.
  • the waveguide region has a first waveguide region and a second waveguide region.
  • the first waveguide region is a region in which light is confined in the restricted active layer by a difference in refractive index between the active layer and the regions on both sides thereof by limiting the width of the active layer.
  • the second waveguide region is characterized in that light is confined by effectively providing a refractive index difference in the active layer.
  • JP 2006-517673 A discloses an optical device.
  • the optical device includes a single mode waveguide supporting a first optical mode in a first region and a second optical mode in a second region, the waveguide including at least one wing extending outward from the guide layer. It is out.
  • an object of the present invention is to connect a channel type optical waveguide and a rib type optical waveguide with low loss, and to complement the characteristics (advantages) of the channel type optical waveguide and the rib type optical waveguide.
  • An object of the present invention is to provide a waveguide and a manufacturing method thereof.
  • the optical waveguide of the present invention includes a first cladding layer formed on a substrate, a core layer formed on the first cladding layer, and a second cladding layer covering the first cladding layer and the core layer. And.
  • the core layer includes a rib-type optical waveguide and a channel-type optical waveguide.
  • the rib-type optical waveguide includes a slab portion formed on the first clad layer and a rib portion formed on the slab portion. The length of the slab portion extends from one end portion to the other end portion in the optical waveguide direction, and the width thereof is reduced in the optical waveguide direction.
  • the length of the rib portion extends from one end portion to the other end portion in the optical waveguide direction, the width thereof decreases in the optical waveguide direction, and is narrower than the width of the slab portion.
  • the channel-type optical waveguide includes a core portion formed on the first cladding layer. The length of the core portion extends from one end to the other end in the optical waveguide direction, and one end is connected to the other end of the slab portion. The thickness and width of the core part are equal to the thickness and width of the other end part of the slab part, respectively.
  • the channel-type optical waveguide and the rib-type optical waveguide can be connected with low loss, and the characteristics (advantages) of the channel-type optical waveguide and the rib-type optical waveguide are complemented. be able to.
  • FIG. 1 is a perspective view showing a configuration of an optical waveguide according to an embodiment of the present invention.
  • FIG. 2A shows the mode-feel shape of the fundamental mode in the waveguide cross section 111.
  • FIG. 2B shows the mode-feel shape of the fundamental mode in the waveguide cross section 112.
  • FIG. 2C shows a mode-feel shape of the fundamental mode in the waveguide cross section 113.
  • FIG. 3A shows the calculation result of the lightwave electric field amplitude in the horizontal direction (direction X) in the rib-type optical waveguide and the channel-type optical waveguide.
  • FIG. 3B shows the calculation result of the light wave electric field amplitude in the vertical direction (direction Z) superimposed on the rib type optical waveguide and the channel type optical waveguide.
  • FIG. 3A shows the calculation result of the lightwave electric field amplitude in the horizontal direction (direction X) in the rib-type optical waveguide and the channel-type optical waveguide.
  • FIG. 3B shows the calculation result of the light
  • FIG. 4A illustrates a process for manufacturing an optical waveguide according to an embodiment of the present invention.
  • FIG. 4B illustrates a process for manufacturing an optical waveguide according to an embodiment of the present invention.
  • FIG. 4C illustrates a process for manufacturing an optical waveguide according to an embodiment of the present invention.
  • FIG. 4D shows a process for manufacturing an optical waveguide according to an embodiment of the present invention.
  • FIG. 4E illustrates a process for manufacturing an optical waveguide according to an embodiment of the present invention.
  • FIG. 5 shows a 1 ⁇ 8 optical switch to which an optical waveguide according to an embodiment of the present invention is applied.
  • FIG. 1 is a perspective view showing a configuration of an optical waveguide according to an embodiment of the present invention.
  • the optical waveguide includes a first clad layer 102 formed on the substrate 101, a core layer formed on the first clad layer 102, and a second clad that covers the first clad layer 102 and the core layer.
  • a cladding layer 104 is a cladding layer 104.
  • the substrate 101, the first cladding layer 102, and the core layer constitute an SOI (Silicon on Insulator) substrate.
  • the core layer has a higher refractive index than the first cladding layer 102 and the second cladding layer 104.
  • the core layer includes a rib type optical waveguide and a channel type optical waveguide.
  • the rib-type optical waveguide includes a slab part 107 formed on the first clad layer 102 and a rib part 105 formed on the slab part 107.
  • the length of the slab part 107 and the rib part 105 extends from one end part to the other end part in the first direction Z (hereinafter referred to as the direction Z), and the width decreases monotonously in the direction Z. .
  • the slab part 107 and the rib part 105 are what is called a taper shape.
  • a direction Z represents an optical waveguide direction (light waveguide direction).
  • the length of the rib part 105 and the slab part 107 represents the length in the direction Z parallel to the substrate 101.
  • the widths of the rib portion 105 and the slab portion 107 are parallel to the substrate 101 and represent the length in the second direction X (hereinafter, direction X) perpendicular to the direction Z.
  • the thickness (height) of the rib part 105 and the slab part 107 represents the length of a third direction Y (hereinafter, direction Y) that is parallel to the substrate 101 and perpendicular to the directions Z and X Yes.
  • the widths of the one end and the other end of the rib portion 105 are 1.0 microns and 0.1 microns, respectively, and the thickness of the rib portion 105 is 1.2 microns.
  • the width of the one end part and the other end part of the rib part 105 is narrower than the width of the one end part and the other end part of the slab part 107, respectively.
  • the thickness and width of the other end of the slab 107 are 0.3 and 0.5 microns, respectively.
  • the channel type optical waveguide includes a core portion 103 formed on the first cladding layer 102.
  • the length of the core portion 103 extends from one end portion to the other end portion in the direction Z, and one end portion is connected to the other end portion of the slab portion 107.
  • the length, width, and thickness of the core portion 103 represent the lengths in the directions Z, X, and Y, respectively.
  • the thickness and width of the core portion 103 are 0.3 and 0.5 microns, respectively. That is, the thickness and width of the core portion 103 are equal to the thickness and width of the other end portion of the slab portion 107, respectively.
  • the light wave incident on the rib-type optical waveguide (rib portion 105, slab portion 107) propagates from one end of the rib portion 105 and slab portion 107 to the other end, and the connection between the rib-type optical waveguide and the channel-type optical waveguide. Propagate to unit 108.
  • the light wave incident on the channel type optical waveguide (core portion 103) propagates from one end portion of the core portion 103 to the other end portion.
  • the optical waveguide according to the embodiment of the present invention achieves the following effects.
  • FIGS. 2A to 2C show the mode feel shapes of the fundamental modes in the waveguide cross sections 111, 112, and 113 (only half in the lateral direction (direction X) in consideration of symmetry), respectively.
  • FIG. 3A shows the calculation result of the light wave electric field amplitude in the horizontal direction (direction X) in the rib type optical waveguide and the channel type optical waveguide
  • FIG. 3B shows the rib type optical waveguide and the channel type optical waveguide.
  • Fig. 5 shows the calculation result of the light wave electric field amplitude in the vertical direction (direction Z) in an overlapping manner.
  • the width and thickness of the slab portion 107 of the rib type optical waveguide are made equal to the width and thickness of the core portion 103 of the channel type optical waveguide. For this reason, since the cross-sectional shapes of the rib-type optical waveguide and the channel-type optical waveguide are equal at the connecting portion 108, the mode-field shape of the rib-type optical waveguide almost matches the mode-field shape of the channel-type optical waveguide.
  • the connecting portion 108 in addition to making the width and thickness of the slab portion 107 of the rib-type optical waveguide equal to the width and thickness of the core portion 103 of the channel-type optical waveguide,
  • the width of the rib portion 105 is preferably sufficiently smaller than the width of the core portion 103 of the channel type optical waveguide.
  • the core layer rib type optical waveguide, channel type optical waveguide
  • the first cladding layer 102 and the second cladding layer 104 contain the same (silicon). ing.
  • the effective refractive indexes also match, and the Fresnel reflection at the connection portion 108 is sufficiently suppressed. Can do. That is, according to the optical waveguide according to the embodiment of the present invention, it is possible to suppress two loss factors due to the difference between the mode feel and the effective refractive index, and to reduce the waveguide connection loss as a whole.
  • the channel-type optical waveguide and the rib-type optical waveguide can be connected with low loss, and the characteristics (advantages) of the channel-type optical waveguide and the rib-type optical waveguide ) Can be complemented.
  • a small optical functional circuit with low optical loss can be realized. That is, a channel type optical circuit is used for a portion having a waveguide bend, a rib type optical circuit is used for a straight portion, and the present embodiment is used for coupling a rib type optical waveguide and a channel type optical waveguide.
  • an optical functional circuit in which both bending loss and propagation loss are minimized can be realized.
  • [Production method] 4A-4E illustrate a process in which an optical waveguide according to an embodiment of the present invention is manufactured.
  • a first clad layer 102 which is a silicon oxide film, is formed on a substrate 101 (silicon substrate).
  • a core layer 121 which is a silicon layer having a thickness of 1.5 microns is formed on the first cladding layer 102.
  • a first insulating layer which is a silicon oxide film, is laminated (formed) on the core layer 121 by a CVD (Chemical Vapor Deposition) method.
  • the second insulating layer 122 (silicon oxide film) is formed on the core layer 121 by patterning so as to partially leave the first insulating layer by a photolithography process.
  • the second insulating layer 122 has a first shape 123 having a tapered shape and a second shape 124 having a linear shape.
  • the length of the first shape 123 extends from one end to the other end in the direction Z, and the width is monotonously reduced in the direction Z.
  • the length of the second shape 124 extends from one end to the other end in the direction Z, and one end is connected to the other end of the first shape 123.
  • the width of the second shape 124 is equal to the width of the other end portion of the first shape 123.
  • the length, width, and thickness of the first shape 123 and the second shape 124 indicate the lengths in the directions Z, X, and Y, respectively.
  • the upper surface portion of the core layer 121 is etched so that the first shape 123 and the second shape 124 have the same thickness.
  • the core layer 121 is removed by a thickness of 0.3 microns by dry etching.
  • the second insulating layer 122 is patterned so as to partially leave the third insulating layer 125 (silicon oxide layer) on the first shape 123 of the second insulating layer 122. Film) is formed.
  • the third insulating layer 125 has a third shape that is narrower than the first shape 123 and has a tapered shape.
  • a rib-type optical waveguide provided with a slab portion 107 and a rib portion 105 corresponding to the first shape 123 and the second shape 124, respectively.
  • the core layer 121 is etched so that a channel-type optical waveguide including the core portion 103 corresponding to the third shape 125 is formed. In this case, the core layer 121 is removed by a thickness of 1.3 microns by dry etching.
  • a second cladding layer 104 which is a silicon oxide film, is laminated (formed) by a CVD method on the first cladding layer 102, the rib-type optical waveguide, and the channel-type optical waveguide.
  • the manufacturing cost of the above-described high-performance optical circuit can be reduced. That is, in two dry etching processes for creating a channel type optical waveguide and a rib type optical waveguide, a spot size converter for connecting the two waveguides is formed at the same time, so that the manufacturing process is prevented from becoming complicated. Thus, it is possible to improve the yield and reduce the manufacturing cost.
  • FIG. 5 shows a 1 ⁇ 8 optical switch to which an optical waveguide according to an embodiment of the present invention is applied.
  • the optical switch includes a plurality of (2 ⁇ 2) optical switch portions 202, 203, 205, 210, 208, 212, and 213 formed on the SOI substrate 201, and a channel type optical waveguide 204.
  • the optical switch sections 202, 203, 205, 210, 208, 212, and 213 include directional couplers and rib-type optical waveguides, and are connected in a tree shape by the channel-type optical waveguide 204.
  • the optical waveguide 214 (rib type optical waveguide and channel type optical waveguide) has the same configuration as the optical waveguide described above.
  • the 2 ⁇ 2 optical switch unit has a Mach-Zehnder interference type configuration with a rib-type optical waveguide having a waveguide width of 1.0 ⁇ m, a rib height of 1.2 ⁇ m, and a slab height of 0.3 ⁇ m. It is formed of a directional coupler and two optical waveguides arranged between them. One of the two optical waveguides includes a heater 209 for providing a phase modulation function.
  • the channel type optical waveguide 204 connecting the optical switch portions has a crank shape having two bends having a curvature radius of 5 microns in order to reduce the element size.
  • the signal light input from one end of the optical switch unit 202 is distributed to the optical switch unit 203 or 205 through the channel type optical waveguide by phase adjustment by the heater, and further, the optical switch is transmitted from each optical switch through the channel type optical waveguide.
  • the signals are distributed from the units 210 to 213, and finally distributed in two directions from each optical switch unit in the same manner. Accordingly, eight output ends can be selected as output destinations of optical signals input from one end by appropriately adjusting the heaters of the respective optical switch sections.
  • a channel type optical waveguide is used in a portion that requires a sharp bend to reduce propagation loss and stability of optical characteristics (suppression of characteristic variations due to structural variations).
  • a rib-type optical waveguide is adopted in the portion where the optical fiber is required, and a small, low loss and highly reliable optical switch element can be realized.
  • the optical switch to which the optical waveguide according to the embodiment of the present invention is applied in addition to the above-described effects, it is possible to achieve both performance variation and miniaturization of the optical functional circuit.
  • a channel-type optical waveguide with a small bending radius is required.
  • the channel-type optical waveguide has a small tolerance to the structure such as width and thickness, and it is optical with a slight change in the waveguide size. It has the characteristic that the characteristics vary greatly.
  • a channel-type optical waveguide can be used only in a portion requiring waveguide bending. Therefore, it is possible to realize an optical element that is small and has little variation in optical characteristics as an entire optical functional circuit. It is.

Abstract

Disclosed is an optical waveguide in which not only the width of a rib portion of a rib optical waveguide is monotonously reduced but also the width of a slab portion thereof is reduced. In a connection portion of the rib optical waveguide and a channel optical waveguide, the width and thickness of the slab portion of the rib optical waveguide are equalized to the width and thickness of a core portion of the channel optical waveguide. In the connection portion, the cross-sectional shapes of the rib optical waveguide and the channel optical waveguide are equal, so the mode field shape of the rib optical waveguide nearly matches the mode field shape of the channel optical waveguide. Thus, the channel optical waveguide and the rib optical waveguide can be connected with low loss, and special characteristics (advantages) of the channel optical waveguide and the rib optical waveguide can complement each other.

Description

光導波路及びその製造方法Optical waveguide and method for manufacturing the same
 本発明は、光導波路及びその製造方法に関する。 The present invention relates to an optical waveguide and a method for manufacturing the same.
 従来、平面光回路(PLC:Planer Lightwave Circuits)は、石英系を中心に発展・実用化が進むにつれて、AWG(Arrayed Waveguide Grating)やスプリッターなどで近年の光通信市場を支える基幹部品として重要な役割を果たしてきた。また、最近では化合物半導体アンプ(SOA:Semiconductor Optical Amplifier)を石英PLCにハイブリット実装した波長可変光源などの新機能素子の開発も進展しており、能動素子と受動素子を共通のPLC基板に搭載して従来よりも小型で安価なシステムをワンチップ上に実現しようとする試みが活発化している。 Conventionally, planar light circuits (PLC: Planner Lightwave Circuits) play an important role as a key component supporting the recent optical communication market with AWG (Arrayed Waveguide Grating) and splitters, etc. as the development and commercialization centered on quartz systems. Has been fulfilled. Recently, the development of new functional elements such as a tunable light source in which a compound semiconductor amplifier (SOA: Semiconductor Optical Amplifier) is mounted in a hybrid on a quartz PLC is also progressing, and active elements and passive elements are mounted on a common PLC substrate. Attempts to realize a smaller and cheaper system on a single chip have become active.
 しかしながら、PLCに求められる機能がより複雑で高度になるに従い、PLCの素子サイズ、及び、PLCを駆動するための消費電力も増大しており、石英系で実現できる機能・性能には限界が見えてきた。そこで、シリコン(Si)細線やフォトニック結晶(PC:Photonic Crystal)といったSiの微細加工技術を応用したSOI(Silicon on Insulator)導波路の研究開発が進んでおり、小型・低消費電力・低コストを特徴とする基幹部品の可能性が検討されている。 However, as the functions required for PLCs become more complex and sophisticated, the element size of PLCs and the power consumption for driving PLCs are increasing, and there are limits to the functions and performance that can be realized with quartz systems. I came. Therefore, research and development of SOI (Silicon on Insulator) waveguides applying Si microfabrication technology such as silicon (Si) fine wires and photonic crystals (PC) is advancing, making them compact, low power consumption, and low cost. The possibility of a basic part characterized by this is being investigated.
 SOI光導波路としては、チャンネル型光導波路とリブ光型導波路とが挙げられる。 Examples of the SOI optical waveguide include a channel optical waveguide and a rib optical waveguide.
 チャンネル型光導波路(Si細線導波路)は、その利点として、数ミクロンから10ミクロン程度の曲げ半径でも光学損失を殆ど生じずに、光を伝搬させることができ、光回路の微細化が可能である。一方、その欠点として、幅や厚さといった構造パラメータの変化が伝搬損失や実効屈折率などの光学特性に与える影響は大きく、製造上のトレランスが極めて小さい。これは、特に、PLCで共振器やフィルターなどを作成する場合に重要な課題となる。 A channel-type optical waveguide (Si wire waveguide) has the advantage that light can be propagated even with a bending radius of several microns to 10 microns with almost no optical loss, and the optical circuit can be miniaturized. is there. On the other hand, the disadvantage is that the influence of changes in structural parameters such as width and thickness on optical characteristics such as propagation loss and effective refractive index is large, and manufacturing tolerance is extremely small. This is an important issue particularly when a resonator, a filter, or the like is created by a PLC.
 リブ型光導波路は、その利点として、光波伝搬損失や前述の構造トレランスなどはチャンネル型光導波路に比べて一桁程度改善される。これは、様々な機能のPLCを作成する際に利点となる。一方、その欠点として、最小曲げ半径が50ミクロン程度であり、チャンネル型光導波路よりも急峻に曲げることはできない。 As an advantage of the rib-type optical waveguide, the light wave propagation loss, the above-mentioned structural tolerance, etc. are improved by an order of magnitude compared to the channel-type optical waveguide. This is an advantage when creating PLCs with various functions. On the other hand, as its disadvantage, the minimum bending radius is about 50 microns, and it cannot be bent more steeply than the channel type optical waveguide.
 このように、チャンネル型光導波路とリブ型光導波路の各々は、利点と欠点とを有している。 Thus, each of the channel type optical waveguide and the rib type optical waveguide has advantages and disadvantages.
 導波路に関する技術について紹介する。 Introducing technologies related to waveguides.
 特開平8-146248号公報には、光結合デバイスが開示されている。光結合デバイスは、モードサイズを変換するものであって、導波路ガイド層の上下を導波路ガイド層の屈折率よりも低い屈折率を有する上部クラッド層、下部クラッド層で挟み、下部クラッド層の下部に下部クラッド層の屈折率よりも低い屈折率を有する低屈折率層を配し、導波路ガイド層、上部クラッド層の少なくとも一方の層厚を出射端に向かって薄くしたことを特徴としている。 JP-A-8-146248 discloses an optical coupling device. The optical coupling device converts the mode size. The upper and lower waveguide guide layers are sandwiched between an upper clad layer and a lower clad layer having a refractive index lower than that of the waveguide guide layer. A low-refractive index layer having a refractive index lower than that of the lower cladding layer is disposed below, and the thickness of at least one of the waveguide guide layer and the upper cladding layer is reduced toward the output end. .
 特開平5-249331号公報には、導波路形ビームスポット変換素子が開示されている。導波路形ビームスポット変換素子は、光を出射する光導波路であって実質的に単一モードの光を出射する出射用光導波路部と、出射用光導波路部のコアと連続するコアを有しスポットサイズを変換するスポットサイズ変換用光導波路部と、変換されたスポットの光を伝搬する光伝搬部とを基板上に配設している。この導波路形ビームスポット変換素子では、スポットサイズ変換用光導波路部のコアを素子先端部へ向けて幅方向にテーパー状に変化させると共に、厚み方向にテーパー状に薄くし、かつコアをスポットサイズ変換用光導波路部において打ち切り、及び基板よりも屈折率が高い少なくとも1個以上の第2コアを出射用光導波路部及びスポットサイズ変換用光導波路部のコアの上及び下の少なくとも一方に配設したことを特徴としている。 Japanese Patent Application Laid-Open No. 5-249331 discloses a waveguide beam spot conversion element. The waveguide-type beam spot conversion element is an optical waveguide that emits light, and has an output optical waveguide portion that emits substantially single-mode light, and a core that is continuous with the core of the output optical waveguide portion. A spot size conversion optical waveguide section for converting the spot size and a light propagation section for propagating the converted spot light are disposed on the substrate. In this waveguide type beam spot conversion element, the core of the optical waveguide part for spot size conversion is changed to a taper shape in the width direction toward the tip of the element, the taper is made thin in the thickness direction, and the core is spot size At least one second core having a refractive index higher than that of the substrate is disposed on at least one of the upper and lower cores of the output optical waveguide unit and the spot size converting optical waveguide unit. It is characterized by that.
 特開2002-374035号公報には、半導体レーザ素子が開示されている。半導体レーザ素子は、第1の導電型の半導体層と、活性層と、第1の導電型とは異なる第2の導電型の半導体層とが順に積層された積層構造体を備え、活性層及びその近傍において幅方向に光の広がりを制限してその幅方向と直交する方向に光を導波させる導波路領域が形成されてなる。導波路領域は、第1の導波路領域と第2の導波路領域とを有している。第1の導波路領域は、活性層の幅を制限することによりその活性層とその両側の領域との間の屈折率差によってその制限された活性層内に光を閉じ込めるようにした領域である。第2の導波路領域は、活性層において実効的に屈折率差を設けることにより光を閉じ込めるようにした領域であることを特徴としている。 Japanese Patent Laid-Open No. 2002-374035 discloses a semiconductor laser element. The semiconductor laser element includes a stacked structure in which a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer different from the first conductivity type are sequentially stacked. In the vicinity thereof, a waveguide region is formed that restricts the spread of light in the width direction and guides light in a direction orthogonal to the width direction. The waveguide region has a first waveguide region and a second waveguide region. The first waveguide region is a region in which light is confined in the restricted active layer by a difference in refractive index between the active layer and the regions on both sides thereof by limiting the width of the active layer. . The second waveguide region is characterized in that light is confined by effectively providing a refractive index difference in the active layer.
 特表2006-517673号公報には、光デバイスが開示されている。光デバイスは、第1領域に第1光モードと、第2領域に第2光モードをサポートするシングル・モード導波路を含み、導波路がガイド・レイヤーから外側に延びる、少なくとも一つのウィングを含んでいる。 JP 2006-517673 A discloses an optical device. The optical device includes a single mode waveguide supporting a first optical mode in a first region and a second optical mode in a second region, the waveguide including at least one wing extending outward from the guide layer. It is out.
 上述したチャンネル型光導波路とリブ型光導波路の各々は、利点と欠点とを有している。従って、本発明の目的は、チャンネル型光導波路とリブ型光導波路とを低損失で接続することができ、チャンネル型光導波路とリブ型光導波路との特質(利点)を相補うことができる光導波路及びその製造方法を提供することにある。 Each of the above-described channel type optical waveguide and rib type optical waveguide has advantages and disadvantages. Therefore, an object of the present invention is to connect a channel type optical waveguide and a rib type optical waveguide with low loss, and to complement the characteristics (advantages) of the channel type optical waveguide and the rib type optical waveguide. An object of the present invention is to provide a waveguide and a manufacturing method thereof.
 本発明の光導波路は、基板上に形成された第1のクラッド層と、第1のクラッド層上に形成されたコア層と、第1のクラッド層とコア層とを覆う第2のクラッド層と、を具備している。コア層は、リブ型光導波路と、チャンネル型光導波路と、を具備している。リブ型光導波路は、第1のクラッド層上に形成されたスラブ部と、スラブ部上に形成されたリブ部と、を具備している。スラブ部は、その長さが光導波方向に向かって一端部から他端部まで延び、その幅が光導波方向に向かって縮減している。リブ部は、その長さが光導波方向に向かって一端部から他端部まで延び、その幅が光導波方向に向かって縮減し、且つ、スラブ部の幅よりも狭い。チャンネル型光導波路は、第1のクラッド層上に形成されたコア部を具備している。コア部は、その長さが光導波方向に向かって一端部から他端部まで延び、一端部がスラブ部の他端部に接続されている。コア部の厚さと幅は、それぞれスラブ部の他端部の厚さと幅に等しい。これにより、本発明の光導波路によれば、チャンネル型光導波路とリブ型光導波路とを低損失で接続することができ、チャンネル型光導波路とリブ型光導波路との特質(利点)を相補うことができる。 The optical waveguide of the present invention includes a first cladding layer formed on a substrate, a core layer formed on the first cladding layer, and a second cladding layer covering the first cladding layer and the core layer. And. The core layer includes a rib-type optical waveguide and a channel-type optical waveguide. The rib-type optical waveguide includes a slab portion formed on the first clad layer and a rib portion formed on the slab portion. The length of the slab portion extends from one end portion to the other end portion in the optical waveguide direction, and the width thereof is reduced in the optical waveguide direction. The length of the rib portion extends from one end portion to the other end portion in the optical waveguide direction, the width thereof decreases in the optical waveguide direction, and is narrower than the width of the slab portion. The channel-type optical waveguide includes a core portion formed on the first cladding layer. The length of the core portion extends from one end to the other end in the optical waveguide direction, and one end is connected to the other end of the slab portion. The thickness and width of the core part are equal to the thickness and width of the other end part of the slab part, respectively. Thus, according to the optical waveguide of the present invention, the channel-type optical waveguide and the rib-type optical waveguide can be connected with low loss, and the characteristics (advantages) of the channel-type optical waveguide and the rib-type optical waveguide are complemented. be able to.
 上記発明の目的、効果、特徴は、添付される図面と連携して実施の形態の記述から、より明らかになる。 The objects, effects, and features of the above invention will become more apparent from the description of the embodiments in conjunction with the accompanying drawings.
図1は、本発明の実施形態による光導波路の構成を示す斜視図である。FIG. 1 is a perspective view showing a configuration of an optical waveguide according to an embodiment of the present invention. 図2Aは、導波路断面111における基本モードのモードフィール形状を示している。FIG. 2A shows the mode-feel shape of the fundamental mode in the waveguide cross section 111. 図2Bは、導波路断面112における基本モードのモードフィール形状を示している。FIG. 2B shows the mode-feel shape of the fundamental mode in the waveguide cross section 112. 図2Cは、導波路断面113における基本モードのモードフィール形状を示している。FIG. 2C shows a mode-feel shape of the fundamental mode in the waveguide cross section 113. 図3Aは、リブ型光導波路、チャンネル型光導波路において、水平方向(方向X)の光波電界振幅の計算結果を重ねて示したものである。FIG. 3A shows the calculation result of the lightwave electric field amplitude in the horizontal direction (direction X) in the rib-type optical waveguide and the channel-type optical waveguide. 図3Bは、リブ型光導波路、チャンネル型光導波路において、垂直方向(方向Z)の光波電界振幅の計算結果を重ねて示したものである。FIG. 3B shows the calculation result of the light wave electric field amplitude in the vertical direction (direction Z) superimposed on the rib type optical waveguide and the channel type optical waveguide. 図4Aは、本発明の実施形態による光導波路が製造される工程を示している。FIG. 4A illustrates a process for manufacturing an optical waveguide according to an embodiment of the present invention. 図4Bは、本発明の実施形態による光導波路が製造される工程を示している。FIG. 4B illustrates a process for manufacturing an optical waveguide according to an embodiment of the present invention. 図4Cは、本発明の実施形態による光導波路が製造される工程を示している。FIG. 4C illustrates a process for manufacturing an optical waveguide according to an embodiment of the present invention. 図4Dは、本発明の実施形態による光導波路が製造される工程を示している。FIG. 4D shows a process for manufacturing an optical waveguide according to an embodiment of the present invention. 図4Eは、本発明の実施形態による光導波路が製造される工程を示している。FIG. 4E illustrates a process for manufacturing an optical waveguide according to an embodiment of the present invention. 図5は、本発明の実施形態による光導波路が適用される1×8の光スイッチを示している。FIG. 5 shows a 1 × 8 optical switch to which an optical waveguide according to an embodiment of the present invention is applied.
 以下に添付図面を参照して、本発明の実施形態による光導波路及びその製造方法について詳細に説明する。 Hereinafter, an optical waveguide according to an embodiment of the present invention and a manufacturing method thereof will be described in detail with reference to the accompanying drawings.
 [構成]
 図1は、本発明の実施形態による光導波路の構成を示す斜視図である。その光導波路は、基板101上に形成された第1のクラッド層102と、第1のクラッド層102上に形成されたコア層と、第1のクラッド層102とコア層とを覆う第2のクラッド層104と、を具備している。
[Constitution]
FIG. 1 is a perspective view showing a configuration of an optical waveguide according to an embodiment of the present invention. The optical waveguide includes a first clad layer 102 formed on the substrate 101, a core layer formed on the first clad layer 102, and a second clad that covers the first clad layer 102 and the core layer. A cladding layer 104.
 そこで、コア層にシリコン層が適用される場合、第1のクラッド層102及び第2のクラッド層104は、シリコン酸化膜が適用される。この場合、基板101と第1のクラッド層102とコア層は、SOI(Silicon on Insulator)基板を構成する。 Therefore, when a silicon layer is applied to the core layer, a silicon oxide film is applied to the first cladding layer 102 and the second cladding layer 104. In this case, the substrate 101, the first cladding layer 102, and the core layer constitute an SOI (Silicon on Insulator) substrate.
 コア層は、第1のクラッド層102及び第2のクラッド層104よりも屈折率が高い。そのコア層は、リブ型光導波路とチャンネル型光導波路とを具備している。 The core layer has a higher refractive index than the first cladding layer 102 and the second cladding layer 104. The core layer includes a rib type optical waveguide and a channel type optical waveguide.
 リブ型光導波路は、第1のクラッド層102上に形成されたスラブ部107と、スラブ部107上に形成されたリブ部105と、を具備している。スラブ部107とリブ部105は、その長さが第1の方向Z(以下、方向Z)に向かって一端部から他端部まで延び、その幅が方向Zに向かって単調に縮減している。スラブ部107とリブ部105は、いわゆる、テーパー形状である。方向Zは、光導波方向(光の導波方向)を表している。 The rib-type optical waveguide includes a slab part 107 formed on the first clad layer 102 and a rib part 105 formed on the slab part 107. The length of the slab part 107 and the rib part 105 extends from one end part to the other end part in the first direction Z (hereinafter referred to as the direction Z), and the width decreases monotonously in the direction Z. . The slab part 107 and the rib part 105 are what is called a taper shape. A direction Z represents an optical waveguide direction (light waveguide direction).
 ここで、リブ部105、スラブ部107の長さは、基板101に平行な方向Zの長さを表している。リブ部105、スラブ部107の幅は、基板101に平行であり、且つ、方向Zに対して垂直な第2の方向X(以下、方向X)の長さを表している。リブ部105、スラブ部107の厚み(高さ)は、基板101に平行であり、且つ、方向Z、Xに対して垂直な第3の方向Y(以下、方向Y)の長さを表している。リブ部105の一端部、他端部の幅は、それぞれ、1.0ミクロン、0.1ミクロンであり、リブ部105の厚さは、1.2ミクロンである。リブ部105の一端部、他端部の幅は、それぞれ、スラブ部107の一端部、他端部の幅よりも狭い。スラブ部107の他端部の厚さと幅は、それぞれ、0.3、0.5ミクロンである。 Here, the length of the rib part 105 and the slab part 107 represents the length in the direction Z parallel to the substrate 101. The widths of the rib portion 105 and the slab portion 107 are parallel to the substrate 101 and represent the length in the second direction X (hereinafter, direction X) perpendicular to the direction Z. The thickness (height) of the rib part 105 and the slab part 107 represents the length of a third direction Y (hereinafter, direction Y) that is parallel to the substrate 101 and perpendicular to the directions Z and X Yes. The widths of the one end and the other end of the rib portion 105 are 1.0 microns and 0.1 microns, respectively, and the thickness of the rib portion 105 is 1.2 microns. The width of the one end part and the other end part of the rib part 105 is narrower than the width of the one end part and the other end part of the slab part 107, respectively. The thickness and width of the other end of the slab 107 are 0.3 and 0.5 microns, respectively.
 チャンネル型光導波路は、第1のクラッド層102上に形成されたコア部103を具備している。コア部103は、その長さが方向Zに向かって一端部から他端部まで延び、一端部がスラブ部107の他端部に接続されている。 The channel type optical waveguide includes a core portion 103 formed on the first cladding layer 102. The length of the core portion 103 extends from one end portion to the other end portion in the direction Z, and one end portion is connected to the other end portion of the slab portion 107.
 ここで、コア部103の長さ、幅、厚みは、それぞれ、方向Z、X、Yの長さを表している。コア部103の厚さと幅は、それぞれ、0.3、0.5ミクロンである。即ち、コア部103の厚さと幅は、それぞれスラブ部107の他端部の厚さと幅に等しい。 Here, the length, width, and thickness of the core portion 103 represent the lengths in the directions Z, X, and Y, respectively. The thickness and width of the core portion 103 are 0.3 and 0.5 microns, respectively. That is, the thickness and width of the core portion 103 are equal to the thickness and width of the other end portion of the slab portion 107, respectively.
 本実施形態の動作機構について述べる。 The operation mechanism of this embodiment will be described.
 リブ型光導波路(リブ部105、スラブ部107)に入射された光波は、リブ部105及びスラブ部107の一端部から他端部に伝播し、リブ型光導波路とチャンネル型光導波路との接続部108に伝播する。チャンネル型光導波路(コア部103)に入射された光波は、コア部103の一端部から他端部に伝搬する。 The light wave incident on the rib-type optical waveguide (rib portion 105, slab portion 107) propagates from one end of the rib portion 105 and slab portion 107 to the other end, and the connection between the rib-type optical waveguide and the channel-type optical waveguide. Propagate to unit 108. The light wave incident on the channel type optical waveguide (core portion 103) propagates from one end portion of the core portion 103 to the other end portion.
 上述の構成と動作により、本発明の実施形態による光導波路は、以下の効果を実現する。 With the configuration and operation described above, the optical waveguide according to the embodiment of the present invention achieves the following effects.
 本発明の実施形態による光導波路を方向Xに沿って切断したとき、リブ型光導波路の一端部、リブ型光導波路とチャンネル型光導波路との接続部108、チャンネル型光導波路の他端部を表す断面を、それぞれ導波路断面111、112、113とする。図2A~2Cは、それぞれ、導波路断面111、112、113における基本モードのモードフィール形状(対称性を考慮して横方向(方向X)の半分のみ)を示している。図3Aは、リブ型光導波路、チャンネル型光導波路において、水平方向(方向X)の光波電界振幅の計算結果を重ねて示したものであり、図3Bは、リブ型光導波路、チャンネル型光導波路において、垂直方向(方向Z)の光波電界振幅の計算結果を重ねて示したものである。 When the optical waveguide according to the embodiment of the present invention is cut along the direction X, one end of the rib-type optical waveguide, the connecting portion 108 between the rib-type optical waveguide and the channel-type optical waveguide, and the other end of the channel-type optical waveguide are The cross sections to be represented are waveguide cross sections 111, 112, and 113, respectively. FIGS. 2A to 2C show the mode feel shapes of the fundamental modes in the waveguide cross sections 111, 112, and 113 (only half in the lateral direction (direction X) in consideration of symmetry), respectively. FIG. 3A shows the calculation result of the light wave electric field amplitude in the horizontal direction (direction X) in the rib type optical waveguide and the channel type optical waveguide, and FIG. 3B shows the rib type optical waveguide and the channel type optical waveguide. Fig. 5 shows the calculation result of the light wave electric field amplitude in the vertical direction (direction Z) in an overlapping manner.
 本発明の実施形態による光導波路では、リブ型光導波路のリブ部105の幅を単調に縮減させるだけではなく、スラブ部107の幅も縮減させている。そこで、接続部108において、リブ型光導波路のスラブ部107の幅と厚さをチャンネル型光導波路のコア部103の幅と厚さに等しくしている。このため、接続部108において、リブ型光導波路、チャンネル型光導波路の断面形状は等しくなるので、リブ型光導波路のモードフィールド形状は、チャンネル型光導波路のモードフィールド形状に殆ど一致する。 In the optical waveguide according to the embodiment of the present invention, not only the width of the rib portion 105 of the rib-type optical waveguide is monotonously reduced but also the width of the slab portion 107 is reduced. Therefore, in the connecting portion 108, the width and thickness of the slab portion 107 of the rib type optical waveguide are made equal to the width and thickness of the core portion 103 of the channel type optical waveguide. For this reason, since the cross-sectional shapes of the rib-type optical waveguide and the channel-type optical waveguide are equal at the connecting portion 108, the mode-field shape of the rib-type optical waveguide almost matches the mode-field shape of the channel-type optical waveguide.
 具体的には、接続部108において、リブ型光導波路のスラブ部107の幅と厚さをチャンネル型光導波路のコア部103の幅と厚さに等しくすることに加えて、リブ型光導波路のリブ部105の幅は、チャンネル型光導波路のコア部103の幅に比べて十分に小さくすることが好ましい。これにより、図2A~2Cに示されるように、接続部108におけるリブ型光導波路のモードフィールド形状は、チャンネル型光導波路のモードフィールド形状に殆ど一致することになる。また、図3A、3Bに示されるように、リブ型光導波路、チャンネル型光導波路において、水平方向、垂直方向の光波電界振幅の計算結果を重ねてみても、共にほぼ一致していることがわかる。即ち、本発明の実施形態による光導波路によれば、接続部108におけるモードミスマッチが非常に小さいことから、結合損失も十分に抑制されることになる。 Specifically, in the connecting portion 108, in addition to making the width and thickness of the slab portion 107 of the rib-type optical waveguide equal to the width and thickness of the core portion 103 of the channel-type optical waveguide, The width of the rib portion 105 is preferably sufficiently smaller than the width of the core portion 103 of the channel type optical waveguide. As a result, as shown in FIGS. 2A to 2C, the mode field shape of the rib-type optical waveguide at the connection portion 108 almost matches the mode field shape of the channel-type optical waveguide. In addition, as shown in FIGS. 3A and 3B, in the rib-type optical waveguide and the channel-type optical waveguide, even if the calculation results of the lightwave electric field amplitudes in the horizontal direction and the vertical direction are overlapped, it can be seen that both are almost the same. . That is, according to the optical waveguide according to the embodiment of the present invention, since the mode mismatch at the connection portion 108 is very small, the coupling loss is sufficiently suppressed.
 また、本発明の実施形態による光導波路では、コア層(リブ型光導波路、チャンネル型光導波路)と第1のクラッド層102及び第2のクラッド層104は、同一のもの(シリコン)を含有している。このため、接続部108でリブ型光導波路、チャンネル型光導波路のモードフィール形状が一致した場合には、実効屈折率も一致することになり、接続部108でのフレネル反射も十分に抑制することができる。即ち、本発明の実施形態による光導波路によれば、モードフィール及び実効屈折率の差異に起因する2つの損失要因を抑制することができ、全体としての導波路接続損失を低減することができる。 Further, in the optical waveguide according to the embodiment of the present invention, the core layer (rib type optical waveguide, channel type optical waveguide), the first cladding layer 102 and the second cladding layer 104 contain the same (silicon). ing. For this reason, when the mode feel shapes of the rib-type optical waveguide and the channel-type optical waveguide match at the connection portion 108, the effective refractive indexes also match, and the Fresnel reflection at the connection portion 108 is sufficiently suppressed. Can do. That is, according to the optical waveguide according to the embodiment of the present invention, it is possible to suppress two loss factors due to the difference between the mode feel and the effective refractive index, and to reduce the waveguide connection loss as a whole.
 このように、本発明の実施形態による光導波路によれば、チャンネル型光導波路とリブ型光導波路とを低損失で接続することができ、チャンネル型光導波路とリブ型光導波路との特質(利点)を相補うことができる。 Thus, according to the optical waveguide according to the embodiment of the present invention, the channel-type optical waveguide and the rib-type optical waveguide can be connected with low loss, and the characteristics (advantages) of the channel-type optical waveguide and the rib-type optical waveguide ) Can be complemented.
 また、本発明の実施形態による光導波路によれば、光学損失が低く、小型の光機能回路を実現できる。即ち、導波路の曲げを有する部分には、チャンネル型光回路を使用し、直線部分には、リブ型光回路を使用して、リブ型光導波路、チャンネル型光導波路の結合には、本実施形態の構造を適用することにより、曲げ損失と伝搬損失の両方を最小にした光機能回路が実現できる。 In addition, according to the optical waveguide according to the embodiment of the present invention, a small optical functional circuit with low optical loss can be realized. That is, a channel type optical circuit is used for a portion having a waveguide bend, a rib type optical circuit is used for a straight portion, and the present embodiment is used for coupling a rib type optical waveguide and a channel type optical waveguide. By applying the structure of the form, an optical functional circuit in which both bending loss and propagation loss are minimized can be realized.
 [製造方法]
 図4A~4Eは、本発明の実施形態による光導波路が製造される工程を示している。
[Production method]
4A-4E illustrate a process in which an optical waveguide according to an embodiment of the present invention is manufactured.
 図4Aに示されるように、基板101(シリコン基板)上には、シリコン酸化膜である第1のクラッド層102が形成される。次に、第1のクラッド層102上には、厚さ1.5ミクロンのシリコン層であるコア層121が形成される。次に、コア層121上には、シリコン酸化膜である第1の絶縁層がCVD(Chemical Vapor Deposition)法により積層(形成)される。その後、フォトリソグラフィー工程により第1の絶縁層を部分的に残すようにパターニングして、コア層121上には、第2の絶縁層122(シリコン酸化膜)が形成される。ここで、第2の絶縁層122は、テーパー形状である第1の形状123と、直線形状である第2の形状124と、を有している。第1の形状123は、その長さが方向Zに向かって一端部から他端部まで延び、且つ、その幅が方向Zに向かって単調に縮減している。第2の形状124は、その長さが方向Zに向かって一端部から他端部まで延び、一端部が第1の形状123の他端部に接続されている。また、第2の形状124の幅は、第1の形状123の他端部の幅に等しい。ここで、第1の形状123及び第2の形状124の長さ、幅、厚みは、それぞれ、方向Z、X、Yの長さを表している。 As shown in FIG. 4A, a first clad layer 102, which is a silicon oxide film, is formed on a substrate 101 (silicon substrate). Next, a core layer 121 which is a silicon layer having a thickness of 1.5 microns is formed on the first cladding layer 102. Next, a first insulating layer, which is a silicon oxide film, is laminated (formed) on the core layer 121 by a CVD (Chemical Vapor Deposition) method. Thereafter, the second insulating layer 122 (silicon oxide film) is formed on the core layer 121 by patterning so as to partially leave the first insulating layer by a photolithography process. Here, the second insulating layer 122 has a first shape 123 having a tapered shape and a second shape 124 having a linear shape. The length of the first shape 123 extends from one end to the other end in the direction Z, and the width is monotonously reduced in the direction Z. The length of the second shape 124 extends from one end to the other end in the direction Z, and one end is connected to the other end of the first shape 123. The width of the second shape 124 is equal to the width of the other end portion of the first shape 123. Here, the length, width, and thickness of the first shape 123 and the second shape 124 indicate the lengths in the directions Z, X, and Y, respectively.
 図4Bに示されるように、第2の絶縁層122をマスクとし、第1の形状123及び第2の形状124が同じ厚みになるように、コア層121の上面部がエッチングされる。この場合、ドライエッチングにより、コア層121が厚さ0.3ミクロンだけ除去される。 As shown in FIG. 4B, using the second insulating layer 122 as a mask, the upper surface portion of the core layer 121 is etched so that the first shape 123 and the second shape 124 have the same thickness. In this case, the core layer 121 is removed by a thickness of 0.3 microns by dry etching.
 図4Cに示されるように、第2の絶縁層122を部分的に残すようにパターニングして、第2の絶縁層122の第1の形状123上には、第3の絶縁層125(シリコン酸化膜)が形成される。ここで、第3の絶縁層125は、第1の形状123よりも幅が狭く、且つ、テーパー形状である第3の形状を有している。 As shown in FIG. 4C, the second insulating layer 122 is patterned so as to partially leave the third insulating layer 125 (silicon oxide layer) on the first shape 123 of the second insulating layer 122. Film) is formed. Here, the third insulating layer 125 has a third shape that is narrower than the first shape 123 and has a tapered shape.
 図4Dに示されるように、第3の絶縁層(125)をマスクとし、それぞれ第1の形状123、第2の形状124に対応するスラブ部107、リブ部105を備えるリブ型光導波路と、第3の形状125に対応するコア部103を備えるチャンネル型光導波路と、が形成されるように、コア層121がエッチングされる。この場合、ドライエッチングにより、コア層121が厚さ1.3ミクロンだけ除去される。 4D, using the third insulating layer (125) as a mask, a rib-type optical waveguide provided with a slab portion 107 and a rib portion 105 corresponding to the first shape 123 and the second shape 124, respectively. The core layer 121 is etched so that a channel-type optical waveguide including the core portion 103 corresponding to the third shape 125 is formed. In this case, the core layer 121 is removed by a thickness of 1.3 microns by dry etching.
 図4Eに示されるように、第1のクラッド層102とリブ型光導波路とチャンネル型光導波路上には、シリコン酸化膜である第2のクラッド層104がCVD法により積層(形成)される。 As shown in FIG. 4E, a second cladding layer 104, which is a silicon oxide film, is laminated (formed) by a CVD method on the first cladding layer 102, the rib-type optical waveguide, and the channel-type optical waveguide.
 本発明の実施形態による光導波路の製造方法によれば、上述の効果に加えて、前述の高性能光回路の製作コストを低減できる。即ち、チャンネル型光導波路とリブ型光導波路を作成する2回のドライエッチング工程において、2つの導波路を接続するためのスポットサイズ変換器が同時に形成されるために、製作工程の複雑化を防ぎ、歩留まりの向上及び製作コストの低減を図ることができる。 According to the method of manufacturing an optical waveguide according to the embodiment of the present invention, in addition to the above-described effects, the manufacturing cost of the above-described high-performance optical circuit can be reduced. That is, in two dry etching processes for creating a channel type optical waveguide and a rib type optical waveguide, a spot size converter for connecting the two waveguides is formed at the same time, so that the manufacturing process is prevented from becoming complicated. Thus, it is possible to improve the yield and reduce the manufacturing cost.
 [応用例]
 図5は、本発明の実施形態による光導波路が適用される1×8の光スイッチを示している。
[Application example]
FIG. 5 shows a 1 × 8 optical switch to which an optical waveguide according to an embodiment of the present invention is applied.
 光スイッチは、SOI基板201上に形成された複数の(2×2の)光スイッチ部202、203、205、210、208、212、213、チャンネル型光導波路204と、を具備している。光スイッチ部202、203、205、210、208、212、213は、方向性結合器とリブ型光導波路とを備え、チャンネル型光導波路204によりツリー状に接続されている。光導波路214(リブ型光導波路とチャンネル型光導波路)は、前述の光導波路の構成と同一である。 The optical switch includes a plurality of (2 × 2) optical switch portions 202, 203, 205, 210, 208, 212, and 213 formed on the SOI substrate 201, and a channel type optical waveguide 204. The optical switch sections 202, 203, 205, 210, 208, 212, and 213 include directional couplers and rib-type optical waveguides, and are connected in a tree shape by the channel-type optical waveguide 204. The optical waveguide 214 (rib type optical waveguide and channel type optical waveguide) has the same configuration as the optical waveguide described above.
 2×2の光スイッチ部は、導波路幅1.0ミクロン、リブ高さ1.2ミクロン、スラブ高さ0.3ミクロンのリブ型光導波路によるマッハツェンダー干渉型の構成であって、2つの方向性結合器とその間に配置された2つの光導波路で形成されている。2つの光導波路のうち1つは、位相変調機能を持たせるためにヒーター209を備えている。また、光スイッチ部を接続するチャンネル型光導波路204は、素子サイズを小さくするために、曲率半径5ミクロンの曲げを2箇所有するクランク型の形状となっている。 The 2 × 2 optical switch unit has a Mach-Zehnder interference type configuration with a rib-type optical waveguide having a waveguide width of 1.0 μm, a rib height of 1.2 μm, and a slab height of 0.3 μm. It is formed of a directional coupler and two optical waveguides arranged between them. One of the two optical waveguides includes a heater 209 for providing a phase modulation function. The channel type optical waveguide 204 connecting the optical switch portions has a crank shape having two bends having a curvature radius of 5 microns in order to reduce the element size.
 以下に、この実施形態の動作機構について述べる。 The operation mechanism of this embodiment will be described below.
 光スイッチ部202の一端から入力された信号光は、ヒーターによる位相調整によって、チャンネル型光導波路を通じて光スイッチ部203或いは205に振り分けられ、更に、それぞれの光スイッチからチャンネル型光導波路を通じて、光スイッチ部210から213に振り分けられて、最後にそれぞれの光スイッチ部から同様に2方向に振り分けられることになる。従って、それぞれの光スイッチ部のヒーターを適宜調整することにより一端から入力された光信号の出力先として8箇所の出力端を選択することができる。本実施形態における1×8の光スイッチでは、急峻な曲げを必要とする部分には、チャンネル型光導波路を使用し、伝搬損失の低減や光学特性の安定性(構造バラツキによる特性バラツキの抑制)が要求される部分にはリブ型光導波路を採用しており、小型、低損失で高信頼な光スイッチ素子が実現できる構成となっている。 The signal light input from one end of the optical switch unit 202 is distributed to the optical switch unit 203 or 205 through the channel type optical waveguide by phase adjustment by the heater, and further, the optical switch is transmitted from each optical switch through the channel type optical waveguide. The signals are distributed from the units 210 to 213, and finally distributed in two directions from each optical switch unit in the same manner. Accordingly, eight output ends can be selected as output destinations of optical signals input from one end by appropriately adjusting the heaters of the respective optical switch sections. In the 1 × 8 optical switch according to the present embodiment, a channel type optical waveguide is used in a portion that requires a sharp bend to reduce propagation loss and stability of optical characteristics (suppression of characteristic variations due to structural variations). A rib-type optical waveguide is adopted in the portion where the optical fiber is required, and a small, low loss and highly reliable optical switch element can be realized.
 本発明の実施形態による光導波路を適用した光スイッチによれば、上述の効果に加えて、光機能回路の性能バラツキと小型化を両立できることにある。光機能回路の小型化には、曲げ半径の小さいチャンネル型光導波路が必要となるが、チャンネル型光導波路は、幅や厚さなどの構造に対するトレランスが小さく、わずかな導波路サイズの変動で光学特性を大きく変動するという特徴を持っている。本発明では、導波路曲げを必要とする部位のみにチャンネル型光導波路を使用することが可能となるので、光機能回路全体として、小型で光学特性のバラツキの少ない光素子を実現することが可能である。 According to the optical switch to which the optical waveguide according to the embodiment of the present invention is applied, in addition to the above-described effects, it is possible to achieve both performance variation and miniaturization of the optical functional circuit. To reduce the size of optical functional circuits, a channel-type optical waveguide with a small bending radius is required. However, the channel-type optical waveguide has a small tolerance to the structure such as width and thickness, and it is optical with a slight change in the waveguide size. It has the characteristic that the characteristics vary greatly. In the present invention, a channel-type optical waveguide can be used only in a portion requiring waveguide bending. Therefore, it is possible to realize an optical element that is small and has little variation in optical characteristics as an entire optical functional circuit. It is.
 以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2008年2月6日に出願された特許出願番号2008-025957号の日本特許出願に基づいており、その出願による優先権の利益を主張し、その出願の開示は、引用することにより、そっくりそのままここに組み込まれている。 This application is based on Japanese Patent Application No. 2008-025957 filed on Feb. 6, 2008 and claims the benefit of the priority of the application, the disclosure of that application should be cited Is incorporated here as it is.

Claims (10)

  1.  基板上に形成された第1のクラッド層と、
     前記第1のクラッド層上に形成されたコア層と、
     前記第1のクラッド層と前記コア層とを覆う第2のクラッド層と、
    を具備し、
     前記コア層は、
     リブ型光導波路と、
     チャンネル型光導波路と、
    を具備し、
     前記リブ型光導波路は、
     前記第1のクラッド層上に形成され、その長さが光導波方向に向かって一端部から他端部まで延び、その幅が前記光導波方向に向かって縮減するスラブ部と、
     前記スラブ部上に形成され、その長さが前記光導波方向に向かって一端部から他端部まで延び、その幅が前記光導波方向に向かって縮減し、且つ、前記スラブ部の幅よりも狭いリブ部と、
    を具備し、
     前記チャンネル型光導波路は、
     前記第1のクラッド層上に形成され、その長さが前記光導波方向に向かって一端部から他端部まで延び、一端部が前記スラブ部の他端部に接続されたコア部、
    を具備し、
     前記コア部の厚さと幅は、それぞれ前記スラブ部の他端部の厚さと幅に等しい、
    光導波路。
    A first cladding layer formed on the substrate;
    A core layer formed on the first cladding layer;
    A second cladding layer covering the first cladding layer and the core layer;
    Comprising
    The core layer is
    A rib-type optical waveguide;
    A channel-type optical waveguide;
    Comprising
    The rib-type optical waveguide is
    A slab part formed on the first cladding layer, the length of which extends from one end to the other end in the optical waveguide direction, and the width of which is reduced toward the optical waveguide direction;
    It is formed on the slab part, its length extends from one end part to the other end part in the optical waveguide direction, its width is reduced in the optical waveguide direction, and is smaller than the width of the slab part Narrow ribs,
    Comprising
    The channel-type optical waveguide is
    A core portion formed on the first cladding layer, the length of which extends from one end to the other end in the optical waveguide direction, and one end connected to the other end of the slab portion;
    Comprising
    The thickness and width of the core part are equal to the thickness and width of the other end of the slab part, respectively.
    Optical waveguide.
  2.  前記リブ部、前記スラブ部及び前記コア部の長さは、前記基板に平行な前記光導波方向である第1の方向の長さを表し、
     前記リブ部、前記スラブ部及び前記コア部の幅は、前記基板に平行であり、且つ、前記第1の方向に対して垂直な第2の方向の長さを表し、
     前記リブ部、前記スラブ部及び前記コア部の厚みは、前記基板に平行であり、且つ、前記第1及び第2の方向に対して垂直な第3の方向の長さを表す、
    請求の範囲1に記載の光導波路。
    The length of the rib part, the slab part, and the core part represents a length in a first direction that is the optical waveguide direction parallel to the substrate,
    The width of the rib part, the slab part, and the core part represents a length in a second direction that is parallel to the substrate and perpendicular to the first direction,
    The thickness of the rib part, the slab part, and the core part represents a length in a third direction that is parallel to the substrate and perpendicular to the first and second directions.
    The optical waveguide according to claim 1.
  3.  前記コア層は、前記第1及び第2のクラッド層よりも屈折率が高い、
    請求の範囲1又は2に記載の光導波路。
    The core layer has a higher refractive index than the first and second cladding layers.
    The optical waveguide according to claim 1 or 2.
  4.  前記コア層は、シリコン層であり、
     前記第1及び第2のクラッド層は、シリコン酸化膜である、
    請求の範囲1~3のいずれかに記載の光導波路。
    The core layer is a silicon layer;
    The first and second cladding layers are silicon oxide films.
    The optical waveguide according to any one of claims 1 to 3.
  5.  基板上に第1のクラッド層を形成する工程と、
     前記第1のクラッド層上にコア層を形成する工程と、
     前記コア層上に第1の絶縁層を形成する工程と、
     前記第1の絶縁層を部分的に残すようにパターニングして、前記コア層上に第2の絶縁層を形成する工程と、ここで、前記第2の絶縁層は、その長さが光導波方向に向かって一端部から他端部まで延び、且つ、その幅が前記光導波方向に向かって縮減した第1の形状と、その長さが前記光導波方向に向かって一端部から他端部まで延び、一端部が前記第1の形状の他端部に接続された第2の形状と、を有し、前記第2の形状の幅は、前記第1の形状の他端部の幅に等しく、
     前記第2の絶縁層をマスクとし、前記第1及び第2の形状が同じ厚みになるように前記コア層の上面部をエッチングする工程と、
     前記第2の絶縁層を部分的に残すようにパターニングして、前記第2の絶縁層の前記第1の形状上に第3の絶縁層を形成する工程と、ここで、前記第3の絶縁層は、前記第1の形状よりも幅が狭い第3の形状を有し、
     前記第3の絶縁層をマスクとし、それぞれ前記第1、第2の形状に対応するスラブ部、リブ部を備えるリブ型光導波路と、前記第3の形状に対応するコア部を備えるチャンネル型光導波路と、が形成されるように、前記コア層をエッチングする工程と、
     前記第1のクラッド層と前記リブ型光導波路と前記チャンネル型光導波路とに第2のクラッド層を積層する工程と、
    を具備する光導波路の製造方法。
    Forming a first cladding layer on the substrate;
    Forming a core layer on the first cladding layer;
    Forming a first insulating layer on the core layer;
    Forming a second insulating layer on the core layer by patterning to leave the first insulating layer partially, wherein the length of the second insulating layer is an optical waveguide; A first shape extending from one end to the other end in the direction and having a width reduced toward the optical waveguide direction, and a length from the one end to the other end in the optical waveguide direction And a second shape having one end connected to the other end of the first shape, and the width of the second shape is equal to the width of the other end of the first shape equally,
    Etching the upper surface of the core layer using the second insulating layer as a mask so that the first and second shapes have the same thickness;
    Forming a third insulating layer on the first shape of the second insulating layer by patterning so as to partially leave the second insulating layer, wherein the third insulating layer The layer has a third shape that is narrower than the first shape,
    A channel-type optical waveguide comprising a rib-type optical waveguide provided with a slab portion and a rib portion corresponding to the first and second shapes, respectively, and a core portion corresponding to the third shape using the third insulating layer as a mask Etching the core layer such that a waveguide is formed;
    Laminating a second cladding layer on the first cladding layer, the rib-type optical waveguide and the channel-type optical waveguide;
    An optical waveguide manufacturing method comprising:
  6.  前記第1~第3の形状の長さは、前記基板に平行な前記光導波方向である第1の方向の長さを表し、
     前記第1~第3の形状の幅は、前記基板に平行であり、且つ、前記第1の方向に対して垂直な第2の方向の長さを表し、
     前記第1~第3の形状の厚みは、前記基板に平行であり、且つ、前記第1及び第2の方向に対して垂直な第3の方向の長さを表す、
    請求の範囲5に記載の光導波路の製造方法。
    The lengths of the first to third shapes represent the length in the first direction that is the optical waveguide direction parallel to the substrate,
    The widths of the first to third shapes represent a length in a second direction parallel to the substrate and perpendicular to the first direction,
    The thicknesses of the first to third shapes represent a length in a third direction parallel to the substrate and perpendicular to the first and second directions.
    The method for manufacturing an optical waveguide according to claim 5.
  7.  前記コア層は、前記第1及び第2のクラッド層よりも屈折率が高い、
    請求の範囲5又は6に記載の光導波路の製造方法。
    The core layer has a higher refractive index than the first and second cladding layers.
    The method for producing an optical waveguide according to claim 5 or 6.
  8.  前記コア層は、シリコン層であり、
     前記第1及び第2のクラッド層は、シリコン酸化膜である、
    請求の範囲5~7のいずれかに記載の光導波路の製造方法。
    The core layer is a silicon layer;
    The first and second cladding layers are silicon oxide films.
    The method for producing an optical waveguide according to any one of claims 5 to 7.
  9.  前記第1~第3の絶縁層は、シリコン酸化膜である、
    請求の範囲5~8のいずれかに記載の光導波路の製造方法。
    The first to third insulating layers are silicon oxide films.
    The method for producing an optical waveguide according to any one of claims 5 to 8.
  10.  請求の範囲1~4のいずれかに記載の光導波路の前記リブ型光導波路を備えた複数の光スイッチ部を具備し、
     前記複数の光スイッチ部は、請求の範囲1~4のいずれかに記載の光導波路の前記チャンネル型光導波路によりツリー状に接続された、
    光スイッチ。
    A plurality of optical switch portions including the rib-type optical waveguide of the optical waveguide according to any one of claims 1 to 4,
    The plurality of optical switch portions are connected in a tree shape by the channel-type optical waveguide of the optical waveguide according to any one of claims 1 to 4.
    Light switch.
PCT/JP2008/073302 2008-02-06 2008-12-22 Optical waveguide and method for manufacturing same WO2009098829A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008025957 2008-02-06
JP2008-025957 2008-02-06

Publications (1)

Publication Number Publication Date
WO2009098829A1 true WO2009098829A1 (en) 2009-08-13

Family

ID=40951912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073302 WO2009098829A1 (en) 2008-02-06 2008-12-22 Optical waveguide and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2009098829A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141943A (en) * 2010-01-07 2011-07-21 Headway Technologies Inc Thermally assisted magnetic recording facilitation structure and method of manufacturing the same
JP2011187149A (en) * 2010-03-09 2011-09-22 Tdk Corp Optical waveguide and thermal assist magnetic recording head using the same
KR20170075439A (en) * 2015-12-23 2017-07-03 삼성전자주식회사 Optical device and method for manufacturing the same
WO2018047683A1 (en) * 2016-09-06 2018-03-15 旭硝子株式会社 Resin optical waveguide and composite optical waveguide
JP2021060482A (en) * 2019-10-04 2021-04-15 富士通株式会社 Optical semiconductor element and receiver

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03200904A (en) * 1989-12-28 1991-09-02 Nec Corp Production of semiconductor optical waveguide
US5078516A (en) * 1990-11-06 1992-01-07 Bell Communications Research, Inc. Tapered rib waveguides
JPH06174982A (en) * 1992-12-03 1994-06-24 Nippon Telegr & Teleph Corp <Ntt> Optical coupling device
JPH1164653A (en) * 1997-08-11 1999-03-05 Nippon Telegr & Teleph Corp <Ntt> Array waveguide grating element
US6028973A (en) * 1996-09-20 2000-02-22 Siemens Aktiengesellschaft Arrangement of two integrated optical waveguides on the surface of a substrate
JP2000214341A (en) * 1999-01-21 2000-08-04 Samsung Electronics Co Ltd Mode shape converter, its production and integrated optical element using this mode shape converter
JP2000269587A (en) * 1999-03-17 2000-09-29 Fujitsu Ltd Optical semiconductor device and manufacture thereof
JP2002519842A (en) * 1998-06-24 2002-07-02 ザ トラスティーズ オブ プリンストン ユニバーシテイ Design of a dual waveguide base for photonic integrated circuits
WO2002063347A2 (en) * 2000-10-20 2002-08-15 Phosistor Technologies, Incorporated Integrated planar composite coupling structures transform between a small mode size and a large mode size waveguide
GB2374155A (en) * 2001-03-16 2002-10-09 Bookham Technology Plc A tapered optical waveguide formed with two substrates
JP2003511737A (en) * 1999-10-13 2003-03-25 ブッカム・テクノロジー・ピーエルシー Manufacturing method of integrated optical element
JP2006171078A (en) * 2004-12-13 2006-06-29 Hitachi Cable Ltd Method for manufacturing device having 3-dimensional tapered structure
JP2007072433A (en) * 2005-08-11 2007-03-22 Ricoh Co Ltd Optical integrated device and optical control device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03200904A (en) * 1989-12-28 1991-09-02 Nec Corp Production of semiconductor optical waveguide
US5078516A (en) * 1990-11-06 1992-01-07 Bell Communications Research, Inc. Tapered rib waveguides
JPH06174982A (en) * 1992-12-03 1994-06-24 Nippon Telegr & Teleph Corp <Ntt> Optical coupling device
US6028973A (en) * 1996-09-20 2000-02-22 Siemens Aktiengesellschaft Arrangement of two integrated optical waveguides on the surface of a substrate
JPH1164653A (en) * 1997-08-11 1999-03-05 Nippon Telegr & Teleph Corp <Ntt> Array waveguide grating element
JP2002519842A (en) * 1998-06-24 2002-07-02 ザ トラスティーズ オブ プリンストン ユニバーシテイ Design of a dual waveguide base for photonic integrated circuits
JP2000214341A (en) * 1999-01-21 2000-08-04 Samsung Electronics Co Ltd Mode shape converter, its production and integrated optical element using this mode shape converter
JP2000269587A (en) * 1999-03-17 2000-09-29 Fujitsu Ltd Optical semiconductor device and manufacture thereof
JP2003511737A (en) * 1999-10-13 2003-03-25 ブッカム・テクノロジー・ピーエルシー Manufacturing method of integrated optical element
WO2002063347A2 (en) * 2000-10-20 2002-08-15 Phosistor Technologies, Incorporated Integrated planar composite coupling structures transform between a small mode size and a large mode size waveguide
GB2374155A (en) * 2001-03-16 2002-10-09 Bookham Technology Plc A tapered optical waveguide formed with two substrates
JP2006171078A (en) * 2004-12-13 2006-06-29 Hitachi Cable Ltd Method for manufacturing device having 3-dimensional tapered structure
JP2007072433A (en) * 2005-08-11 2007-03-22 Ricoh Co Ltd Optical integrated device and optical control device

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"47th Electronic Components & Technology Conference (ECTC), 1997 Proceedings, 1997.05.18", article GOODWILL, D.J. ET AL.: "Polymer Tapered Waveguides and Flip-Chip Solder Bonding as Compatible Technologies for Efficient OEIC Coupling", pages: 788 - 796 *
AALTO, T. ET AL.: "Low-Loss Converters Between Optical Silicon Waveguides of Different Sizes and Types", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 18, no. 5, 1 March 2006 (2006-03-01), pages 709 - 711 *
DAI, D. ET AL.: "Bilevel Mode Converter Between a Silicon Nanowire Waveguide and a Larger Waveguide", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 24, no. 6, June 2006 (2006-06-01), pages 2428 - 2433 *
LI, Y. ET AL.: "Rearrangeable Nonblocking SOI Waveguide Thermooptic 4x4 Switch Matrix With Low Insertion Loss and Fast Response", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 17, no. 8, August 2005 (2005-08-01), pages 1641 - 1643 *
SCHMID, J.H. ET AL.: "Mode Converters for Coupling to High Aspect Ratio Silicon-on- Insulator Channel Waveguides", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 19, no. 11, 1 June 2007 (2007-06-01), pages 855 - 857 *
WANG, Z. ET AL.: "Rearrangeable nonblocking thermo-optic 4x4 switching matrix in silicon- on-insulator", IEEE PROCEEDINGS - OPTOELECTRONICS, vol. 152, no. 3, June 2005 (2005-06-01), pages 160 - 162 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141943A (en) * 2010-01-07 2011-07-21 Headway Technologies Inc Thermally assisted magnetic recording facilitation structure and method of manufacturing the same
JP2011187149A (en) * 2010-03-09 2011-09-22 Tdk Corp Optical waveguide and thermal assist magnetic recording head using the same
KR20170075439A (en) * 2015-12-23 2017-07-03 삼성전자주식회사 Optical device and method for manufacturing the same
KR102604742B1 (en) * 2015-12-23 2023-11-22 삼성전자주식회사 Optical device and method for manufacturing the same
WO2018047683A1 (en) * 2016-09-06 2018-03-15 旭硝子株式会社 Resin optical waveguide and composite optical waveguide
JPWO2018047683A1 (en) * 2016-09-06 2019-06-24 Agc株式会社 Resin optical waveguide and composite optical waveguide
US10768372B2 (en) 2016-09-06 2020-09-08 AGC Inc. Resin optical waveguide and composite optical waveguide
JP2021060482A (en) * 2019-10-04 2021-04-15 富士通株式会社 Optical semiconductor element and receiver
US11327234B2 (en) 2019-10-04 2022-05-10 Fujitsu Limited Optical semiconductor device and reception apparatus

Similar Documents

Publication Publication Date Title
JP5413810B2 (en) Optical waveguide and method for manufacturing the same
JP6175263B2 (en) Spot size converter, manufacturing method thereof, and optical integrated circuit device
KR101121459B1 (en) Method and apparatus for compactly coupling an optical fiber and a planar optical wave guide
JP5966021B2 (en) Polarization conversion element
US20130170807A1 (en) Spot size converter, optical transmitter, optical receiver, optical transceiver, and method of manufacturing spot size converter
JP2007114253A (en) Waveguide type optical branching device
JP2000321452A (en) Optical waveguide element and manufacture thereof
JP2014092759A (en) Polarization control element
US9297956B2 (en) Optical device, optical transmitter, optical receiver, optical transceiver, and method of manufacturing optical device
JP2008250019A (en) Optical integrated circuit and optical integrated circuit module
WO2009098829A1 (en) Optical waveguide and method for manufacturing same
JP6270936B1 (en) Optical waveguide device
JP4377195B2 (en) Manufacturing method of optical module
WO2021161371A1 (en) Optical connection element, optical element, and method for manufacturing optical element
JP2002228863A (en) Optical coupling structure
JP6397862B2 (en) Optical waveguide device
JP4946793B2 (en) Electronic device including optical wiring and optical wiring thereof
JP2013231753A (en) Spot size converter and manufacturing method thereof
JP2005301301A (en) Optical coupler
KR20170095891A (en) Stress-tuned planar lightwave circuit and method therefor
JP5504476B2 (en) Optical waveguide crossing structure
WO2009098828A1 (en) Optical waveguide and method for manufacturing same
KR100563489B1 (en) Optical device employing the silica?polymer hybrid optical waveguide
WO2019117313A1 (en) Optical polarization wave element and method for manufacturing same
WO2023234111A1 (en) Optical element and method for producing optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08872025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08872025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP