WO2009098345A1 - Superconducting current limiter integrated in the heat exchanger of a thermoacoustic refrigerator - Google Patents

Superconducting current limiter integrated in the heat exchanger of a thermoacoustic refrigerator Download PDF

Info

Publication number
WO2009098345A1
WO2009098345A1 PCT/ES2009/070015 ES2009070015W WO2009098345A1 WO 2009098345 A1 WO2009098345 A1 WO 2009098345A1 ES 2009070015 W ES2009070015 W ES 2009070015W WO 2009098345 A1 WO2009098345 A1 WO 2009098345A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
heat exchanger
limiter
current limiter
current
Prior art date
Application number
PCT/ES2009/070015
Other languages
Spanish (es)
French (fr)
Inventor
Manuel RODRÍGUEZ OSORIO
Maurice-Xavier FRANÇOIS
Adrien Betrancourt
Antonio Veira Suarez
Félix VIDAL COSTA
Original Assignee
Universidade De Santiago De Compostela
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade De Santiago De Compostela filed Critical Universidade De Santiago De Compostela
Publication of WO2009098345A1 publication Critical patent/WO2009098345A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/30Devices switchable between superconducting and normal states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1412Pulse-tube cycles characterised by heat exchanger details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F2006/001Constructive details of inductive current limiters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F21/00Variable inductances or transformers of the signal type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/02Quenching; Protection arrangements during quenching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Definitions

  • Superconducting current limiter used to limit fault currents in electrical power production and transport systems.
  • a superconductor undergoes a transition to a dissipative state with non-linear resistance, which can lead to an ohmic resistance regime (such as that of a metal) if dissipation heats the material sufficiently or the current circulating exceeds a second critical value, called J (see, for example, W. Klein et al., J. Low Temp. Phys. 61, 413 (1985); SG Doettinger et al., Phys. Rev. Lett. 73, 1691 ( 1994); ZL Xiao et al., Phys. Rev.
  • the resistive limiter can simply be a superconducting element (in the form of a bar, thin film, coil, etc.) connected in series with the circuit to be protected.
  • the limiter is designed so that, when the nominal current flows through the line, the critical value, I c , is not exceeded, so that the resistance it offers is zero, and its presence is not perceived.
  • I c critical value
  • the limiter is, therefore, self sufficient and does not need any additional element that detects the start or disappearance of a fault (the device itself is a detector). On the other hand, its reaction is almost instantaneous, and responds to a failure in times of the order of 1 ms or less.
  • the inductive limiter has a transformer type design, in which the primary (usually metallic) is connected directly to the circuit to be protected, and the secondary is a ring-shaped superconductor or hollow cylinder. While the nominal current circulates in the circuit, the magnetic flux created by the primary in the magnetic core is canceled by the one generated by the superconductor, so that the effective inductance of the transformer is zero, and the only impedance present is the resistance of the primary coil (and components due to possible leakage inductances). When a fault occurs and I c is exceeded, the transition of the superconductor causes the flow cancellation to cease, so an inductive and resistive impedance arises (depending on the design dominates one or another component) that limits the current. In a way, this can be seen as an ideal transformer whose secondary goes from being short-circuited to being in open circuit.
  • the hybrid limiter has characteristics common to the previous two.
  • the secondary of the transformer is a coil, usually metallic, to which a superconducting element (massive or thin film) is connected, indifferently (that is, it is not necessary that it be a ring or cylinder, as it happens in the inductive limiter).
  • the beginning of operation is analogous to that of the inductive.
  • the secondary coil cancels the flow created by the primary.
  • the superconducting element transits, its non-zero resistance breaks the equality of flows, and two impedance components arise: one resistive and one inductive.
  • the limiter does not act more than a few network cycles, which is the time that the current switches need circuit to detect the fault and open the line (they must wait until a zero of the current is reached). While increasing the temperature of the superconductor can be beneficial in increasing the impedance of the device (which must happen in a similar time to the reaction, i.e. ⁇ 1 ms), it can also cause a very slow recovery of the device.
  • low critical temperature superconductors whose T c is lower than the boiling point of liquid nitrogen (77 K)
  • SBT low critical temperature superconductors
  • SAT critical high temperature superconductors
  • granular SATs are formed by a multitude of small grains linked together, so that the transition to the dissipative state first affects the intergranular borders and then the interior of the grain.
  • thermal conductivity is much reduced ( ⁇ 1 W / mK), so if there is a weak zone and it overheats, its expansion would be slow and local damage could occur to the material that would worsen the performance of the limiter.
  • cryogenic liquids generally it is helium or nitrogen
  • compressors of mechanical type capable of obtaining low temperatures using a thermal exchange gas
  • a thermal exchange gas see, for example, OP Anashkin et al, Cryogenics, 42, 295 (2002) and M. Steurer et al, IEEE Trans. Appl. Supercond., 10, 840 (2000).
  • mechanical devices have a relatively high maintenance, fail due to the presence of moving parts that wear out and frequently use cooling fluids that are highly harmful to the environment. Therefore, it has been proposed to replace these devices with the so-called "thermoacoustic refrigerators” (G. Swift, "Termoacoustics: A unifying perspective for some engines and refrigerators", New York: Acoustic Society of America, 2001).
  • thermoacoustic motor resonator
  • thermoacoustic refrigerator acoustic load
  • Figure 1 shows a diagram of the device and all its components, as well as the temperature profile throughout it. On the y-axis the temperature is given in arbitrary units, and on the x-axis the position along the thermoacoustic machine. Next, the role of each part will be detailed and the principle of operation will be succinctly explained.
  • the inside of the device is filled with an inert gas such as helium or nitrogen, at high pressure (tens of bars).
  • an inert gas such as helium or nitrogen
  • high pressure tens of bars
  • dynamic pressure which overlaps the static gas pressure. This wave will allow you to do work in the refrigerator and extract the heat from the point you want to cool.
  • Thermoacoustic motor it is formed by two heat exchangers and, in between them, a stack of plates known as "stack" (G), in which a strong temperature gradient is created (several hundred degrees Celsius) .
  • the heat is injected through the hot exchanger (H) (by means of Joule dissipation in a resistor, a solar panel, etc.) and the excess is evacuated after reaching the second exchanger (F), which is kept at room temperature thanks to a water flow circuit.
  • the gradient thus established causes the amplification of the natural vibrations of the gas molecules, so that an acoustic wave is generated that resonates within the whole machine.
  • This wave is stationary, that is, the offset between the dynamic pressure and the speed of the wave is 90 °.
  • the frequency is therefore given by the length of the entire device. In general, the wavelength is approximately twice the length of the entire apparatus.
  • thermodynamic cycle that allows the wave to be generated is called the "Brayton" cycle. For this to occur, the wave must be stationary, with the pressure and velocity quadrature (ie, at 90 °).
  • Resonator it is a tube, usually made of steel, whose length allows the frequency of the wave generated in the motor to be set.
  • the diameter can be fixed or vary in different parts of the tube, depending on the frequency desired.
  • Thermoacoustic (RF) cooler this component produces the inverse effect that the wave generated in the motor.
  • the acoustic power is used to extract heat from the cold exchanger (C) (which can be connected to a circuit or cavity that you want to cool) and take it, through a porous medium known as "regenerator” (D) to another exchanger to Ambient temperature (E) which, as in the case of the motor exchanger, allows the removal of excess heat and is cooled by means of a water circuit.
  • the thermodynamic cycle that occurs within the regenerator is called “Ericsson,” and requires that the wave be progressive, not stationary (that is, the pressure and velocity must be in phase).
  • Acoustic load (AC) it consists of a constriction, a long and thin tube
  • inductor and a capacitor in an alternating current circuit.
  • the acoustic load is connected to the refrigerator through a new heat exchanger (A) and an intermediate tube (B).
  • the exchanger allows to eliminate residual heat produced by the dissipation of energy in the acoustic load (especially in the constriction).
  • the intermediate tube or "buffer tube” insulates the refrigerator from this exchanger, and may be internally coated with a material that is poorly conductive to heat.
  • the opening of the hole that plays the role of resistance is given by a flow coefficient usually used by valve manufacturers in the US The smaller it is, the narrower the constriction.
  • the refrigerator's cold exchanger is connected by an isolated circuit with a cavity in which what you want to keep at low temperature is introduced. This can be done with the current limiter. However, the cooling efficiency is diminished, since the machine must cool not only the limiter, but also the complete circuit. In addition, the time required to extract heat from the superconducting element when a fault occurs is clearly greater.
  • the present invention proposes a solution to these drawbacks.
  • the present invention consists of a current superconductive, resistive, inductive or hybrid type limiter (see an example in Figure 3), characterized by being constituted by a superconducting element (SP, in Figures 2 and 3) that is inserted directly in the cold heat exchanger (C, in Figures 1, 2 and 3) of a thermoacoustic refrigerator.
  • the superconductor may be adhered on the outer surface of the heat exchanger (following its perimeter, as in Figure 2 (b)), or on one of its faces (as in Figure 2 (a), preferably the left side in the scheme of Figure 1), without obstructing the gas passage channels as far as possible (O, in Figures 2 and 3).
  • the other surface located on the right in Figure 1 may be in good thermal contact with the regenerator (D, in Figure 1).
  • the superconductor adheres to the cold heat exchanger by means of a substance that is a good conductor of heat but behaves at the same time as an electrical insulator. In this way, the heat generated by the dissipation of electric power in the superconducting element is quickly transmitted by conduction to the cold heat exchanger and from there it is transported along the regenerator to the heat exchanger at room temperature (E, in the Figure 1), where it is evacuated by an auxiliary water circuit that, for simplicity, is not described in the Figure 1.
  • the superconducting element can be of the massive type (either a granular sample or a monodomain), although preferably it is a thin wire or a superconducting film, the thickness of which is typically between 100 nm and l ⁇ m, so the heat produced must travel a distance much smaller than in a massive sample, in which the characteristic dimensions are millimeters or centimeters. Because of this, heat can be evacuated much faster.
  • the films are grown on a suitable substrate, generally of strontium or sapphire titanate (SrTiO 3 and Al 2 O 3 , respectively), which have a high thermal conductivity, but are electrical insulators. This last property allows the use of an adherent substance that simply meets the requirement of having a high thermal conductivity.
  • thermoacoustic device simulation software of the SOCIÉTÉ HEKYOM (Orsay, France)
  • a preliminary calculation of the dimensions of an 80 K refrigerator, capable of extracting about 50 W, as well as the corresponding acoustic load for a power was performed acoustic input of about 500 W at a frequency of 70 Hz.
  • the most important dimension in this example is the diameter of the regenerator (D in Figure 1), since it determines the size of the cold heat exchanger (C in Figures 1 , 2 and 3) and therefore the useful space to insert the superconductor to be refrigerated.
  • the regenerator we use has a diameter of 5.6 cm.
  • thermoacoustic motor At 80 K it is complicated to have an extraction capacity that is greater than a few tens of watts.
  • the input power it is a reasonable value for a thermoacoustic motor, unless an amplifier system is used (D. L. Gardner and G. W. Swift, J. Acoust. Soc. Am., 114, 1905 (2003)).
  • the motor characteristics have not been calculated. It has simply been assumed that the acoustic power is generated by some external element.
  • inductive limiter is difficult to implement, since the transformer takes up too much space in the exchanger (it may be viable for a low power limiter, since then the core can be small in size). Therefore, the best options are the resistive limiter and the hybrid (resistive / inductive). In this example, a hybrid prototype will be used, since the resistive limiter has two drawbacks that, although not as important as the one that allowed the inductive limiter to be discarded, are relevant: 1- The only origin of the impedance is the resistance of the superconducting element itself. This may force the use of excessive length for the space available within the heat exchanger.
  • FIG. 3 An axial view of the hybrid exchanger / limiter assembly is shown in Figure 3.
  • the first is represented as a circular piece (C) with multiple perforations (O), through which the gas must pass during the expansions and rarefactions forced by the wave.
  • the limiter is composed of an external core (N) that surrounds the exchanger, although it does not have to do so, being able to be simply on one side, two windings (in principle metallic), the primary (P) on which the external generator imposes a voltage (V), and the secondary (S) in which a superconducting element (SP) is connected in the form of a meander path (it can have any shape and be, for example, a semicircle).
  • the primary winding is connected to the circuit to be protected.
  • the secondary winding is magnetically coupled with the primary winding and as already said, it is directly connected to the superconducting element, which is the only one inside the cooling device.
  • the characteristics of the limiter are as follows:
  • Core supposed to be made of steel with 3% silicon. It is a typical alloy of power transformers. The saturation field is 1.7 T and the maximum relative permeability is around 5000. The length and section of the magnetic path are 0.6 m and 0.14 x 0.14 m 2 , respectively. Windings: they are made of copper, with diameters of 3 and 4 mm for primary and secondary, with the number of turns equal to 60 and 15, respectively. - Superconducting path: it is a 5 mm wide YBCO film,
  • the substrate is SrTiO 3 and has 0.5 mm of thickness.
  • the critical temperature is about 90 K
  • the critical current density, J c is 4x10 6 A / cm 2
  • the normal state resistivity is equal to 43 ⁇ -cm at 100 K.
  • the core section was calculated to prevent the core from entering the region of magnetic saturation by applying the nominal voltage. Therefore, the equation was applied:
  • A is the arm section of the core, V and ficaz the applied voltage v frequency (assumed equal to 50 Hz), N p the number of turns of the primary and 5 sat field core saturation.
  • Figure 4 (a) shows the limited current (left axis, in a continuous line) and the one that would circulate in the circuit if there were no limiter (right axis, in a broken line), for a large nominal amplitude fault.
  • the expected value is approximately IKA, but the current is strongly reduced even below the nominal value (10 A), up to about 3 A, in a time less than 1 ms.
  • Figure 4 (b) shows the instantaneous power dissipated in the superconducting element (left axis, in a continuous line) and the corresponding energy (right axis, in a broken line), obtained by integrating the instantaneous power. Except for an extremely fine initial peak, the dissipated power is rapidly reduced below 800 W. This gives an energy approximately equal to 30 J, which is less than the maximum value of the extraction capacity of the thermoacoustic refrigerator that had been designed. As for the temperature increase in the superconducting path, Figure 4 (c) shows that the critical temperature has been exceeded, but the maximum value is about 130 K. This value is not too high and does not represent any risk of damage to The superconducting sample.

Abstract

Superconducting current limiter of inductive, resistive or hybrid type, in which the superconducting sample is inserted in the cold exchanger of a thermoacoustic refrigerator that keeps it at cryogenic temperature.

Description

LIMITADOR SUPERCONDUCTOR DE CORRIENTE INTEGRADO EN EL INTERCAMBIADOR DE CALOR DE UN REFRIGERADOR TERMOACÚSTICO CURRENT SUPERCONDUCTOR LIMITER INTEGRATED IN THE HEAT EXCHANGER OF A THERMOACUSTIC REFRIGERATOR
SECTOR DE LA TÉCNICASECTOR OF THE TECHNIQUE
Limitador de corriente superconductor utilizado para limitar las corrientes de fallo en sistemas de producción y transporte de potencia eléctrica.Superconducting current limiter used to limit fault currents in electrical power production and transport systems.
ESTADO DE LA TÉCNICASTATE OF THE TECHNIQUE
Los materiales superconductores presentan la interesante propiedad de poseer una resistencia fuertemente no lineal y dependiente de varias magnitudes: la temperatura, la corriente que se hace circular por ellos y el campo magnético al que se hallen sometidos. Estos materiales están caracterizados por un estado de resistencia cero que se alcanza por debajo de una cierta temperatura crítica, Tc, por lo que deben estar refrigerados mediante líquidos criogénicos o refrigeradores eléctricos, y por debajo de una corriente Ic y un campo Bc. En aspectos de caracterización del superconductor es más propio referirse a la densidad de corriente crítica, Jc, que es la Ic por unidad de área atravesada por la corriente, Jc = Ic /A. Por encima de estos valores críticos, un superconductor experimenta una transición a un estado disipativo con resistencia no lineal, el cual puede desembocar en un régimen de resistencia óhmica (como la de un metal) si la disipación calienta el material lo suficiente o bien la corriente circulante excede un segundo valor crítico, denominado J (véanse, por ejemplo, W. Klein et al, J. Low Temp. Phys. 61, 413 (1985); S. G. Doettinger et al, Phys. Rev. Lett. 73, 1691 (1994); Z. L. Xiao et al, Phys. Rev. B 59, 1481 (1999), y José María Viña Rebolledo, Contribución al estudio del transporte eléctrico en capas delgadas de cupratos superconductores: corrientes supercríticas y paraconductividad, Tesis Doctoral, Universidad de Santiago de Compostela (2003)).Superconducting materials have the interesting property of having a strongly non-linear resistance and dependent on several magnitudes: the temperature, the current that circulates through them and the magnetic field to which they are subjected. These materials are characterized by a zero resistance state that is reached below a certain critical temperature, T c , so they must be cooled by cryogenic liquids or electric refrigerators, and below a current I c and a field B c . In aspects of characterization of the superconductor it is more proper to refer to the critical current density, J c , which is the I c per unit area crossed by the current, J c = I c / A. Above these critical values, a superconductor undergoes a transition to a dissipative state with non-linear resistance, which can lead to an ohmic resistance regime (such as that of a metal) if dissipation heats the material sufficiently or the current circulating exceeds a second critical value, called J (see, for example, W. Klein et al., J. Low Temp. Phys. 61, 413 (1985); SG Doettinger et al., Phys. Rev. Lett. 73, 1691 ( 1994); ZL Xiao et al., Phys. Rev. B 59, 1481 (1999), and José María Viña Rebolledo, Contribution to the study of electrical transport in thin layers of superconducting cuprates: supercritical currents and paraconductivity, Doctoral Thesis, University of Santiago of Compostela (2003)).
Este comportamiento no lineal de la resistencia, función de la temperatura, la corriente y el campo magnético aplicado, ha sugerido la utilización de los superconductores en dispositivos de limitación de corriente, destinados a reducir los efectos perniciosos de las altas corrientes y tensiones generadas durante un fallo en una línea de distribución eléctrica, bien sea en una central de producción o una red o ramificación local (T. Verhaege and Y. Laumond 1998, Handbook of Applied Superconductivity, 2, ed B. Seeber (Bristol: Institute of Physics Publishing), p. 1691; W. T. Norris et al, Cryogenics, 37, 657 (1997); W. Paul et al, Physica C, 354, 27 (2001), y P. Tixador, IEEE Trans. Appl. Supercond., 4, 190 (1994)).This non-linear behavior of the resistance, function of the temperature, the current and the applied magnetic field, has suggested the use of superconductors in current limiting devices, aimed at reducing the pernicious effects of the high currents and voltages generated during a failure in a power distribution line, either in a production plant or a local network or branch (T. Verhaege and Y. Laumond 1998, Handbook of Applied Superconductivity, 2, ed B. Seeber (Bristol: Institute of Physics Publishing), p. 1691; WT Norris et al, Cryogenics, 37, 657 (1997); W. Paul et al, Physica C, 354, 27 (2001), and P. Tixador, IEEE Trans. Appl. Supercond., 4, 190 (1994)).
Dependiendo de la forma en que se inserte el superconductor en el circuito que se quiere proteger, se pueden distinguir dos concepciones fundamentales de limitador: resistivo e inductivo. El limitador resistivo puede ser simplemente un elemento superconductor (en forma de barra, película delgada, bobina, etc) conectado en serie con el circuito que se quiere proteger. El limitador se diseña de forma que, cuando por la línea circula la corriente nominal, no se exceda el valor crítico, Ic, de modo que la resistencia que ofrece es nula, y su presencia no se percibe. Sin embargo, cuando ocurre un fallo y la corriente crece hasta valores superiores a Ic, se produce la transición al estado disipativo (o incluso óhmico), y surge una resistencia que limita de forma efectiva la corriente. Nótese que, en principio, una vez se elimina el fallo de la línea, el superconductor regresa a su estado de nula disipación. El limitador es, por lo tanto, auto suficiente y no necesita de ningún elemento adicional que detecte el inicio o la desaparición de un fallo (el propio dispositivo es un detector). Por otro lado, su reacción es casi instantánea, y responde ante un fallo en tiempos del orden de 1 ms o menos.Depending on the way in which the superconductor is inserted in the circuit to be protected, two fundamental conceptions of limiter can be distinguished: resistive and inductive. The resistive limiter can simply be a superconducting element (in the form of a bar, thin film, coil, etc.) connected in series with the circuit to be protected. The limiter is designed so that, when the nominal current flows through the line, the critical value, I c , is not exceeded, so that the resistance it offers is zero, and its presence is not perceived. However, when a fault occurs and the current grows to values greater than I c , the transition to the dissipative (or even ohmic) state occurs, and a resistance arises that effectively limits the current. Note that, in principle, once the line fault is eliminated, the superconductor returns to its state of zero dissipation. The limiter is, therefore, self sufficient and does not need any additional element that detects the start or disappearance of a fault (the device itself is a detector). On the other hand, its reaction is almost instantaneous, and responds to a failure in times of the order of 1 ms or less.
El limitador inductivo tiene un diseño tipo transformador, en el que el primario (generalmente metálico) está conectado directamente al circuito que se quiere proteger, y el secundario es un superconductor en forma de anillo o cilindro hueco. Mientras circula la corriente nominal en el circuito, el flujo magnético que crea el primario en el núcleo magnético es cancelado por el que genera el superconductor, de forma que la inductancia efectiva del transformador es nula, y la única impedancia presente es la resistencia de la bobina primaria (y componentes debidas a posibles inductancias de fuga). Cuando se produce un fallo y se excede Ic, la transición del superconductor hace que la cancelación de flujo cese, por lo que surge una impedancia de carácter inductivo y resistivo (según el diseño domina una u otra componente) que limita la corriente. En cierto modo, esto puede verse como un transformador ideal cuyo secundario pasa de estar cortocircuitado a estar en circuito abierto.The inductive limiter has a transformer type design, in which the primary (usually metallic) is connected directly to the circuit to be protected, and the secondary is a ring-shaped superconductor or hollow cylinder. While the nominal current circulates in the circuit, the magnetic flux created by the primary in the magnetic core is canceled by the one generated by the superconductor, so that the effective inductance of the transformer is zero, and the only impedance present is the resistance of the primary coil (and components due to possible leakage inductances). When a fault occurs and I c is exceeded, the transition of the superconductor causes the flow cancellation to cease, so an inductive and resistive impedance arises (depending on the design dominates one or another component) that limits the current. In a way, this can be seen as an ideal transformer whose secondary goes from being short-circuited to being in open circuit.
El limitador híbrido presenta características comunes a los dos anteriores. En este caso el secundario del transformador es una bobina, generalmente metálica, a la cual se conecta un elemento superconductor (masivo o película delgada), de forma indiferente (es decir, no hace falta que se trate de un anillo o cilindro, como sucede en el limitador inductivo). El principio de funcionamiento es análogo al del inductivo. En estado superconductor la bobina secundaria cancela el flujo creado por el primario. Cuando el elemento superconductor transita, su resistencia no nula rompe la igualdad de flujos, y surgen dos componentes de impedancia: una resistiva y otra inductiva. En los tres casos, debido a la elevada energía que se disipa en forma de calor en el proceso de limitación de la corriente, es deseable que el limitador no actúe más de unos pocos ciclos de red, que es el tiempo que necesitan los actuales interruptores de circuito para detectar el fallo y abrir la línea (deben esperar a que se alcance un cero de la corriente). Si bien el aumento de la temperatura del superconductor puede ser beneficioso en cuanto a incrementar la impedancia del dispositivo (lo cual debe suceder en un tiempo similar al de reacción, es decir, ~1 ms), también puede provocar una recuperación muy lenta del dispositivo una vez eliminado el fallo, ya que el superconductor seguiría disipando y ofreciendo impedancia en la línea, algo indeseable (véanse, por ejemplo, M. R. Osorio et al, Physica C, 372-376, 1635 (2002) y M. R. Osorio et al, Supercond. Sci. Technol., 18, 739-746 (2005)). Por otro lado, el sobrecalentamiento puede provocar la degradación del elemento superconductor (incluso su fusión), especialmente debido a la presencia de puntos calientes o zonas débiles, que son regiones del material con, por ejemplo, menor temperatura crítica, Tc, o bien menor densidad de corriente crítica, Jc. Los superconductores llamados de baja temperatura crítica (SBT), cuya Tc es inferior a la de ebullición del nitrógeno líquido (77 K), suelen ser metálicos, y la homogeneidad es bastante buena. Además, poseen una conductividad térmica elevada (~100 W/m-K), por lo que el calor generado en la transición puede evacuarse con cierta facilidad al medio refrigerante. Estas propiedades los hacen poco sensibles al problema de los puntos calientes. Sin embargo, los superconductores de alta temperatura crítica (SAT) son cerámicos y mucho más heterogéneos. Por una parte en lo que se refiere a la estequiometría, pudiendo coexistir una fase dominante con proporciones no despreciables de precursores o productos intermedios. Por otra, tienen una estructura menos uniforme que un metal. Así, los SAT granulares están formados por una multitud de pequeños granos unidos entre sí, de forma que la transición al estado disipativo afecta primero a las fronteras intergranulares y, posteriormente, al interior del grano. Además, su conductividad térmica es mucho más reducida (~1 W/m-K), por lo que si existe una zona débil y se sobrecalienta, su expansión sería lenta y podría producirse un daño local en el material que empeorase las prestaciones del limitador. La refrigeración de los dispositivos superconductores requiere un sistema de producción de líquidos criogénicos (generalmente se trata de helio o nitrógeno) y de una renovación constante del fluido refrigerante. Para lograr una mayor independencia, se ha propuesto utilizar compresores de tipo mecánico, capaces de obtener bajas temperaturas utilizando para ello un gas de intercambio térmico (ver, por ejemplo, O. P. Anashkin et al, Cryogenics, 42, 295 (2002) y M. Steurer et al, IEEE Trans. Appl. Supercond., 10, 840 (2000)). Sin embargo, los dispositivos mecánicos tienen un mantenimiento relativamente elevado, sufren averías debido a la presencia de partes móviles que se desgastan y utilizan con frecuencia fluidos refrigerantes que son altamente perjudiciales para el medio ambiente. Por ello, se ha propuesto sustituir estos aparatos por los llamados "refrigeradores termoacústicos" (G. Swift , "Termoacoustics: A unifying perspective for some engines and refrigerators", New York: Acoustic Society of America, 2001). Estos dispositivos se basan en la utilización de una onda longitudinal para transportar el calor desde el punto que se quiere enfriar hasta otro en el cual la energía térmica es emitida al exterior de la máquina. Estos aparatos están compuestos de cuatro partes fundamentales: motor termoacústico, resonador, refrigerador termoacústico y carga acústica. En la figura 1 se muestra un esquema del dispositivo y todos sus componentes, así como el perfil de temperaturas a lo largo del mismo. En el eje y se da la temperatura en unidades arbitrarias, y en el eje x la posición a lo largo de la máquina termoacústica. A continuación se detallará el papel de cada parte y se explicará sucintamente el principio de funcionamiento.The hybrid limiter has characteristics common to the previous two. In this case the secondary of the transformer is a coil, usually metallic, to which a superconducting element (massive or thin film) is connected, indifferently (that is, it is not necessary that it be a ring or cylinder, as it happens in the inductive limiter). The beginning of operation is analogous to that of the inductive. In superconducting state the secondary coil cancels the flow created by the primary. When the superconducting element transits, its non-zero resistance breaks the equality of flows, and two impedance components arise: one resistive and one inductive. In all three cases, due to the high energy dissipated in the form of heat in the current limitation process, it is desirable that the limiter does not act more than a few network cycles, which is the time that the current switches need circuit to detect the fault and open the line (they must wait until a zero of the current is reached). While increasing the temperature of the superconductor can be beneficial in increasing the impedance of the device (which must happen in a similar time to the reaction, i.e. ~ 1 ms), it can also cause a very slow recovery of the device. once the fault was eliminated, since the superconductor would continue to dissipate and offer impedance in the line, something undesirable (see, for example, MR Osorio et al, Physica C, 372-376, 1635 (2002) and MR Osorio et al, Supercond Sci. Technol., 18, 739-746 (2005)). On the other hand, overheating can cause degradation of the superconducting element (including its melting), especially due to the presence of hot spots or weak areas, which are regions of the material with, for example, lower critical temperature, T c , or lower critical current density, J c . The so-called low critical temperature superconductors (SBT), whose T c is lower than the boiling point of liquid nitrogen (77 K), are usually metallic, and the homogeneity is quite good. In addition, they have a high thermal conductivity (~ 100 W / mK), so that the heat generated in the transition can be easily evacuated to the cooling medium. These properties make them little sensitive to the problem of hot spots. However, critical high temperature superconductors (SAT) are ceramic and much more heterogeneous. On the one hand in regards to stoichiometry, a dominant phase may coexist with non-negligible proportions of precursors or intermediate products. On the other, they have a less uniform structure than a metal. Thus, granular SATs are formed by a multitude of small grains linked together, so that the transition to the dissipative state first affects the intergranular borders and then the interior of the grain. In addition, its thermal conductivity is much reduced (~ 1 W / mK), so if there is a weak zone and it overheats, its expansion would be slow and local damage could occur to the material that would worsen the performance of the limiter. The cooling of superconducting devices requires a system for the production of cryogenic liquids (generally it is helium or nitrogen) and a constant renewal of the cooling fluid. To achieve greater independence, it has been proposed to use compressors of mechanical type, capable of obtaining low temperatures using a thermal exchange gas (see, for example, OP Anashkin et al, Cryogenics, 42, 295 (2002) and M. Steurer et al, IEEE Trans. Appl. Supercond., 10, 840 (2000)). However, mechanical devices have a relatively high maintenance, fail due to the presence of moving parts that wear out and frequently use cooling fluids that are highly harmful to the environment. Therefore, it has been proposed to replace these devices with the so-called "thermoacoustic refrigerators" (G. Swift, "Termoacoustics: A unifying perspective for some engines and refrigerators", New York: Acoustic Society of America, 2001). These devices are based on the use of a longitudinal wave to transport heat from the point to be cooled to another in which thermal energy is emitted outside the machine. These devices are composed of four fundamental parts: thermoacoustic motor, resonator, thermoacoustic refrigerator and acoustic load. Figure 1 shows a diagram of the device and all its components, as well as the temperature profile throughout it. On the y-axis the temperature is given in arbitrary units, and on the x-axis the position along the thermoacoustic machine. Next, the role of each part will be detailed and the principle of operation will be succinctly explained.
El interior del aparato está lleno de un gas inerte como el helio o el nitrógeno, a alta presión (decenas de bares). Cuando se dan unas condiciones determinadas, se genera una onda que resuena en el tubo, y que da lugar a una pequeña variación de presión, llamada "presión dinámica", que se superpone a la presión estática del gas. Esta onda permitirá hacer trabajo en el refrigerador y extraer el calor desde el punto que se quiere enfriar. A continuación se detalla el papel de cada uno de los componentes de este dispositivo:The inside of the device is filled with an inert gas such as helium or nitrogen, at high pressure (tens of bars). When certain conditions occur, a wave is generated that resonates in the tube, and which results in a small pressure variation, called "dynamic pressure", which overlaps the static gas pressure. This wave will allow you to do work in the refrigerator and extract the heat from the point you want to cool. The role of each of the components of this device is detailed below:
Motor termoacústico (M): está formado por dos intercambiadores de calor y, en medio de ellos, un apilamiento de placas conocido como "stack" (G), en el que se crea un fuerte gradiente de temperatura (varios cientos de grados Celsius). El calor se inyecta a través del intercambiador caliente (H) (por medio de la disipación Joule en una resistencia, una placa solar, etc) y el exceso es evacuado tras llegar al segundo intercambiador (F), que se mantiene a temperatura ambiente gracias a un circuito de flujo de agua. El gradiente así establecido provoca la amplificación de las vibraciones naturales de las moléculas de gas, de forma que se genera una onda acústica que resuena dentro del conjunto de la máquina. Esta onda es estacionaria, es decir, el desfase entre la presión dinámica y la velocidad de la onda es 90°. La frecuencia está pues dada por la longitud de todo el dispositivo. En general, la longitud de onda es aproximadamente dos veces la longitud de todo el aparato.Thermoacoustic motor (M): it is formed by two heat exchangers and, in between them, a stack of plates known as "stack" (G), in which a strong temperature gradient is created (several hundred degrees Celsius) . The heat is injected through the hot exchanger (H) (by means of Joule dissipation in a resistor, a solar panel, etc.) and the excess is evacuated after reaching the second exchanger (F), which is kept at room temperature thanks to a water flow circuit. The gradient thus established causes the amplification of the natural vibrations of the gas molecules, so that an acoustic wave is generated that resonates within the whole machine. This wave is stationary, that is, the offset between the dynamic pressure and the speed of the wave is 90 °. The frequency is therefore given by the length of the entire device. In general, the wavelength is approximately twice the length of the entire apparatus.
De esta forma, de la potencia térmica que entra en el motor, una parte se emplea en generar la potencia acústica (P), y el resto se evacúa a través del intercambiador a temperatura ambiente, o bien se pierde debido a los procesos naturales de conducción en las paredes y radiación. El ciclo termodinámico que permite generar la onda se llama ciclo de "Brayton". Para que éste se produzca, la onda debe ser estacionaria, con la presión y la velocidad en cuadratura (es decir, a 90°).In this way, of the thermal power entering the engine, a part is used to generate the acoustic power (P), and the rest is evacuated through the exchanger at room temperature, or it is lost due to the natural processes of conduction in the walls and radiation. The thermodynamic cycle that allows the wave to be generated is called the "Brayton" cycle. For this to occur, the wave must be stationary, with the pressure and velocity quadrature (ie, at 90 °).
Resonador (RS): se trata de un tubo, generalmente de acero, cuya longitud permite fijar la frecuencia de la onda que se genera en el motor. El diámetro puede ser fijo o variar en diferentes partes del tubo, dependiendo de la frecuencia que se desee.Resonator (RS): it is a tube, usually made of steel, whose length allows the frequency of the wave generated in the motor to be set. The diameter can be fixed or vary in different parts of the tube, depending on the frequency desired.
Refrigerador termoacústico (RF): en este componente se produce el efecto inverso al que generaba la onda en el motor. La potencia acústica es utilizada para extraer calor del intercambiador frío (C) (que puede estar conectado a un circuito o cavidad que se desea enfriar) y llevarlo, a través de un medio poroso conocido como "regenerador" (D) hasta otro intercambiador a temperatura ambiente (E) que, como en el caso del intercambiador del motor, permite eliminar el calor de exceso y está refrigerado por medio de un circuito de agua. El ciclo termodinámico que se produce dentro del regenerador se llama de "Ericsson", y requiere que la onda sea progresiva, no estacionaria (es decir, la presión y la velocidad deben estar en fase). Carga acústica (CA): está compuesta por una constricción, un tubo largo y finoThermoacoustic (RF) cooler: this component produces the inverse effect that the wave generated in the motor. The acoustic power is used to extract heat from the cold exchanger (C) (which can be connected to a circuit or cavity that you want to cool) and take it, through a porous medium known as "regenerator" (D) to another exchanger to Ambient temperature (E) which, as in the case of the motor exchanger, allows the removal of excess heat and is cooled by means of a water circuit. The thermodynamic cycle that occurs within the regenerator is called "Ericsson," and requires that the wave be progressive, not stationary (that is, the pressure and velocity must be in phase). Acoustic load (AC): it consists of a constriction, a long and thin tube
(llamado "inertancia") y una cavidad de diámetro mucho mayor que cualquiera de los tubos (que llamaremos "capacidad"). Estos elementos se utilizan para modificar localmente el desfase entre la presión y la velocidad, y lograr así que la onda sea de tipo progresivo dentro del refrigerador. Se puede demostrar que su papel es equivalente al que juegan una resistencia eléctrica, un inductor y un condensador en un circuito de corriente alterna.(called "inertia") and a cavity of diameter much larger than any of the tubes (which we will call "capacity"). These elements are used to locally modify the gap between pressure and velocity, and thus achieve that the wave is of a progressive type inside the refrigerator. It can be shown that their role is equivalent to that played by an electrical resistor, an inductor and a capacitor in an alternating current circuit.
La carga acústica se conecta al refrigerador a través de un nuevo intercambiador de calor (A) y un tubo intermedio (B). El intercambiador permite eliminar el calor residual producido por la disipación de energía en la carga acústica (especialmente en la constricción). El tubo intermedio o "buffer tube" aisla el refrigerador de este intercambiador, y puede estar recubierto internamente por un material que sea mal conductor del calor. La apertura del orificio que juega el papel de resistencia viene dada por un coeficiente de flujo habitualmente utilizado por los fabricantes de válvulas en E.E.U.U. Cuanto menor es éste, más estrecha es la constricción.The acoustic load is connected to the refrigerator through a new heat exchanger (A) and an intermediate tube (B). The exchanger allows to eliminate residual heat produced by the dissipation of energy in the acoustic load (especially in the constriction). The intermediate tube or "buffer tube" insulates the refrigerator from this exchanger, and may be internally coated with a material that is poorly conductive to heat. The opening of the hole that plays the role of resistance is given by a flow coefficient usually used by valve manufacturers in the US The smaller it is, the narrower the constriction.
Hasta ahora el intercambiador frío del refrigerador se conecta mediante un circuito aislado con una cavidad en la que se introduce aquello que se quiere mantener a baja temperatura. Esto puede hacerse con el limitador de corriente. No obstante, la eficiencia de la refrigeración se ve disminuida, ya que la máquina debe enfriar no solo el limitador, sino también el circuito completo. Además, el tiempo necesario para extraer el calor desde el elemento superconductor cuando se produce un fallo es netamente superior. La presente invención propone una solución a estos inconvenientes.Until now, the refrigerator's cold exchanger is connected by an isolated circuit with a cavity in which what you want to keep at low temperature is introduced. This can be done with the current limiter. However, the cooling efficiency is diminished, since the machine must cool not only the limiter, but also the complete circuit. In addition, the time required to extract heat from the superconducting element when a fault occurs is clearly greater. The present invention proposes a solution to these drawbacks.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
La presente invención consiste en un limitador superconductor de corriente, de tipo resistivo, inductivo o híbrido (ver un ejemplo en la Figura 3), caracterizado por estar constituido por un elemento superconductor (SP, en las Figuras 2 y 3) que se inserta directamente en el intercambiador de calor frío (C, en las Figuras 1, 2 y 3) de un refrigerador termoacústico. El superconductor puede estar adherido en la superficie exterior del intercambiador de calor (siguiendo su perímetro, como en la Figura 2(b)), o bien sobre una de sus caras (como en la Figura 2(a), preferiblemente la cara izquierda en el esquema de la Figura 1), sin que se obstruyan en lo posible los canales de paso del gas (O, en las Figuras 2 y 3). En este último caso, la otra superficie (situada a la derecha en la Figura 1) puede quedar en buen contacto térmico con el regenerador (D, en la Figura 1). El superconductor se adhiere al intercambiador de calor frío mediante una sustancia que sea buena conductora del calor pero que se comporte a la vez como un aislante eléctrico. De esta manera, el calor generado por la disipación de potencia eléctrica en el elemento superconductor se transmite rápidamente por conducción al intercambiador de calor frío y de ahí es transportado a lo largo del regenerador hasta el intercambiador de calor a temperatura ambiente (E, en la Figura 1), donde es evacuado por un circuito de agua auxiliar que, por simplicidad, no se halla descrito en la Figura 1. Este procedimiento permite una simplificación importante en la construcción del sistema de refrigeración, ya que evita la necesidad de utilizar una cavidad externa (dentro de la cual estaría el limitador) conectada mediante un circuito auxiliar al refrigerador. Además, dado que el elemento superconductor está directamente en contacto con el intercambiador de calor frío, se acelera el proceso de eliminación del calor producido durante la actuación del limitador, y se facilita que éste esté de nuevo operativo en un tiempo en torno a un segundo, tal y como se requiere en los sistemas de distribución de potencia eléctrica (V. Meerovich and V. Sokolovsky, Supercond. Sci. Technol., 20, 457 (2007)).The present invention consists of a current superconductive, resistive, inductive or hybrid type limiter (see an example in Figure 3), characterized by being constituted by a superconducting element (SP, in Figures 2 and 3) that is inserted directly in the cold heat exchanger (C, in Figures 1, 2 and 3) of a thermoacoustic refrigerator. The superconductor may be adhered on the outer surface of the heat exchanger (following its perimeter, as in Figure 2 (b)), or on one of its faces (as in Figure 2 (a), preferably the left side in the scheme of Figure 1), without obstructing the gas passage channels as far as possible (O, in Figures 2 and 3). In the latter case, the other surface (located on the right in Figure 1) may be in good thermal contact with the regenerator (D, in Figure 1). The superconductor adheres to the cold heat exchanger by means of a substance that is a good conductor of heat but behaves at the same time as an electrical insulator. In this way, the heat generated by the dissipation of electric power in the superconducting element is quickly transmitted by conduction to the cold heat exchanger and from there it is transported along the regenerator to the heat exchanger at room temperature (E, in the Figure 1), where it is evacuated by an auxiliary water circuit that, for simplicity, is not described in the Figure 1. This procedure allows an important simplification in the construction of the refrigeration system, since it avoids the need to use an external cavity (within which the limiter would be) connected by an auxiliary circuit to the refrigerator. In addition, since the superconducting element is directly in contact with the cold heat exchanger, the process of eliminating the heat produced during the operation of the limiter is accelerated, and it is facilitated that it is again operational in a time around a second. , as required in electric power distribution systems (V. Meerovich and V. Sokolovsky, Supercond. Sci. Technol., 20, 457 (2007)).
El elemento superconductor puede ser de tipo masivo (ya sea una muestra granular o un monodominio), aunque preferiblemente es un hilo delgado o una película superconductora, cuyo espesor está típicamente entre 100 nm y lμm, por lo que el calor producido debe recorrer una distancia mucho menor que en una muestra masiva, en la que las dimensiones características son de milímetros o centímetros. Debido a esto, el calor se puede evacuar mucho más rápidamente. Las películas se hacen crecer sobre un sustrato adecuado, generalmente de titanato de estroncio o zafiro (SrTiO3 y Al2O3, respectivamente), que tienen una elevada conductividad térmica, pero son aislantes eléctricos. Esta última propiedad permite usar una sustancia adherente que simplemente cumpla el requisito de tener una alta conductividad térmica. De esta forma, no hay contacto eléctrico entre el metal del intercambiador de calor (normalmente cobre) y la película superconductora y, al mismo tiempo, el calor viaja con facilidad desde la película hacia el sustrato y de ahí hasta el intercambiador de calor frío. Éste último actúa inicialmente de masa térmica, absorbiendo el calor producido en el elemento superconductor durante el fallo. Posteriormente, este calor se cede al regenerador (D) mediante el gas que llena todo el refrigerador termoacústico, y de ahí pasa al intercambiador de calor a temperatura ambiente (E).The superconducting element can be of the massive type (either a granular sample or a monodomain), although preferably it is a thin wire or a superconducting film, the thickness of which is typically between 100 nm and lμm, so the heat produced must travel a distance much smaller than in a massive sample, in which the characteristic dimensions are millimeters or centimeters. Because of this, heat can be evacuated much faster. The films are grown on a suitable substrate, generally of strontium or sapphire titanate (SrTiO 3 and Al 2 O 3 , respectively), which have a high thermal conductivity, but are electrical insulators. This last property allows the use of an adherent substance that simply meets the requirement of having a high thermal conductivity. In this way, there is no electrical contact between the heat exchanger metal (usually copper) and the superconducting film and, at the same time, heat travels easily from the film to the substrate and from there to the cold heat exchanger. The latter initially acts as a thermal mass, absorbing the heat produced in the superconducting element during the fault. Subsequently, this heat is transferred to the regenerator (D) by means of the gas that fills the entire thermoacoustic refrigerator, and from there it passes to the heat exchanger at room temperature (E).
EJEMPLO 1EXAMPLE 1
Mediante el software de simulación de dispositivos termoacústicos de la SOCIÉTÉ HEKYOM (Orsay, Francia), se realizó un cálculo preliminar de las dimensiones de un refrigerador a 80 K, capaz de extraer unos 50 W, así como de la carga acústica correspondiente para una potencia acústica de entrada de unos 500 W a una frecuencia de 70 Hz. La dimensión más importante en este ejemplo es el diámetro del regenerador (D en la Figura 1), ya que determina el tamaño del intercambiador de calor frío (C en las Figuras 1, 2 y 3) y por tanto el espacio útil para insertar el superconductor que debe ser refrigerado. En concreto, el regenerador que usamos tiene un diámetro de 5.6 cm.By means of the thermoacoustic device simulation software of the SOCIÉTÉ HEKYOM (Orsay, France), a preliminary calculation of the dimensions of an 80 K refrigerator, capable of extracting about 50 W, as well as the corresponding acoustic load for a power was performed acoustic input of about 500 W at a frequency of 70 Hz. The most important dimension in this example is the diameter of the regenerator (D in Figure 1), since it determines the size of the cold heat exchanger (C in Figures 1 , 2 and 3) and therefore the useful space to insert the superconductor to be refrigerated. Specifically, the regenerator we use has a diameter of 5.6 cm.
A 80 K es complicado tener una capacidad de extracción que sea superior a unas decenas de vatios. En cuanto a la potencia de entrada, es un valor razonable para un motor termoacústico, salvo que se utilice un sistema de amplificadores (D. L. Gardner and G. W. Swift, J. Acoust. Soc. Am., 114, 1905 (2003)). En este ejemplo las características del motor no se han calculado. Simplemente se ha supuesto que la potencia acústica es generada por algún elemento externo.At 80 K it is complicated to have an extraction capacity that is greater than a few tens of watts. As for the input power, it is a reasonable value for a thermoacoustic motor, unless an amplifier system is used (D. L. Gardner and G. W. Swift, J. Acoust. Soc. Am., 114, 1905 (2003)). In this example the motor characteristics have not been calculated. It has simply been assumed that the acoustic power is generated by some external element.
Posteriormente, y teniendo esto en cuenta, se procedió a calcular un prototipo de limitador de corriente que pudiese satisfacer los siguientes requerimientos:Subsequently, and taking this into account, we proceeded to calculate a prototype current limiter that could meet the following requirements:
1- Tener un elemento superconductor de tamaño reducido, tal que pueda acoplarse sobre la superficie del intercambiador sin, menguar de forma significativa la potencia extraíble. Se puede considerar que esto se consigue siempre y cuando la porosidad del intercambiador no se vea muy reducida.1- Having a superconducting element of reduced size, such that it can be coupled on the surface of the exchanger without significantly diminishing the removable power. It can be considered that this is achieved as long as the porosity of the exchanger is not greatly reduced.
Esto quiere decir que el elemento superconductor debe estar adherido de forma que obstruya el menor número posible de canales del intercambiador de calor, a través de los cuales fluye el gas que llena la máquina termoacústica. 2- Ser útil a una potencia media/alta y ofrecer unas buenas prestaciones durante fallos de diversa amplitud.This means that the superconducting element must be adhered so as to obstruct the smallest possible number of heat exchanger channels, through which the gas that fills the thermoacoustic machine flows. 2- Be useful at medium / high power and offer good performance during failures of varying amplitude.
3- No disipar durante un fallo típico (unos 100 ms) más energía de la que puede evacuar el refrigerador.3- Do not dissipate during a typical fault (about 100 ms) more energy than the refrigerator can evacuate.
Un limitador inductivo es de difícil implementación, ya que el transformador ocupa demasiado espacio en el intercambiador (puede ser viable para un limitador de baja potencia, ya que entonces el núcleo puede ser de pequeño tamaño). Por ello, las mejores opciones son el limitador resistivo y el híbrido (resistivo/inductivo). En este ejemplo se utilizará un prototipo híbrido, ya que el limitador resistivo tiene dos inconvenientes que, si bien no son tan importantes como el que permitió descartar el limitador inductivo, sí son relevantes: 1- El único origen de la impedancia es la resistencia del propio elemento superconductor. Ello puede obligar a usar una longitud excesiva para el espacio disponible dentro del intercambiador de calor.An inductive limiter is difficult to implement, since the transformer takes up too much space in the exchanger (it may be viable for a low power limiter, since then the core can be small in size). Therefore, the best options are the resistive limiter and the hybrid (resistive / inductive). In this example, a hybrid prototype will be used, since the resistive limiter has two drawbacks that, although not as important as the one that allowed the inductive limiter to be discarded, are relevant: 1- The only origin of the impedance is the resistance of the superconducting element itself. This may force the use of excessive length for the space available within the heat exchanger.
2- Toda la potencia debe disiparse en el propio elemento superconductor, por lo que su temperatura puede llegar a ser excesiva, y eso reduce la capacidad de recuperar el limitador en un tiempo corto.2- All the power must dissipate in the superconducting element itself, so its temperature can become excessive, and that reduces the ability to recover the limiter in a short time.
En la Figura 3 se muestra una visión axial del conjunto intercambiador/limitador híbrido. El primero se representa como una pieza circular (C) con múltiples perforaciones (O), a través de las que debe pasar el gas durante las expansiones y rarefacciones forzadas por la onda. El limitador está compuesto de un núcleo externo (N) que rodea al intercambiador, aunque no tiene por qué hacerlo, pudiendo estar simplemente a un lado, dos bobinados (en principio metálicos), el primario (P) en el cual el generador externo impone un voltaje (V), y el secundario (S) en el cual se conecta un elemento superconductor (SP) en forma de camino de meandros (puede tener cualquier forma y ser, por ejemplo, una semicircunferencia). El bobinado primario está conectado al circuito que se quiere proteger. El bobinado secundario está acoplado magnéticamente con el primario y como ya se ha dicho, se halla directamente conectado al elemento superconductor, que es el único que está dentro del dispositivo refrigerador.An axial view of the hybrid exchanger / limiter assembly is shown in Figure 3. The first is represented as a circular piece (C) with multiple perforations (O), through which the gas must pass during the expansions and rarefactions forced by the wave. The limiter is composed of an external core (N) that surrounds the exchanger, although it does not have to do so, being able to be simply on one side, two windings (in principle metallic), the primary (P) on which the external generator imposes a voltage (V), and the secondary (S) in which a superconducting element (SP) is connected in the form of a meander path (it can have any shape and be, for example, a semicircle). The primary winding is connected to the circuit to be protected. The secondary winding is magnetically coupled with the primary winding and as already said, it is directly connected to the superconducting element, which is the only one inside the cooling device.
En este ejemplo, las características del limitador son las siguientes:In this example, the characteristics of the limiter are as follows:
- Potencia nominal: 220 V x IO A.- Nominal power: 220 V x IO A.
Núcleo: se supone hecho de acero con un 3% de silicio. Es una aleación típica de los transformadores de potencia. El campo de saturación es 1.7 T y la permeabilidad relativa máxima está alrededor de 5000. La longitud y la sección del camino magnético son 0.6 m y 0.14 x 0.14 m2, respectivamente. Bobinados: se suponen hechos de cobre, con diámetros de 3 y 4 mm para primario y secundario, siendo el número de vueltas igual a 60 y 15, respectivamente. - Camino superconductor: se trata de una película de YBCO, de 5 mm de anchura,Core: supposed to be made of steel with 3% silicon. It is a typical alloy of power transformers. The saturation field is 1.7 T and the maximum relative permeability is around 5000. The length and section of the magnetic path are 0.6 m and 0.14 x 0.14 m 2 , respectively. Windings: they are made of copper, with diameters of 3 and 4 mm for primary and secondary, with the number of turns equal to 60 and 15, respectively. - Superconducting path: it is a 5 mm wide YBCO film,
10 cm de longitud y lμm de espesor. El sustrato es SrTiO3 y tiene 0.5 mm de espesor. La temperatura crítica es de unos 90 K, la densidad de corriente crítica, Jc, es de 4x106 A/cm2 y la resistividad de estado normal es igual a 43 μΩ-cm a 100 K.10 cm long and lμm thick. The substrate is SrTiO 3 and has 0.5 mm of thickness. The critical temperature is about 90 K, the critical current density, J c , is 4x10 6 A / cm 2 and the normal state resistivity is equal to 43 μΩ-cm at 100 K.
La sección del núcleo se calculó para evitar que, aplicando el voltaje nominal, el núcleo entrase en la región de saturación magnética. Por ello, se aplicó la ecuación:The core section was calculated to prevent the core from entering the region of magnetic saturation by applying the nominal voltage. Therefore, the equation was applied:
V icaz -Vicacious -
A > ef J 9 πvNpBsat A> ef J 9 πvN p B sat
en la que A es la sección del brazo del núcleo, Veficaz el voltaje aplicado, v la frecuencia (se supone igual a 50 Hz), Np el número de vueltas del primario y 5sat el campo de saturación del núcleo.wherein A is the arm section of the core, V and ficaz the applied voltage v frequency (assumed equal to 50 Hz), N p the number of turns of the primary and 5 sat field core saturation.
Para estudiar el funcionamiento del limitador, se simularon diferentes fallos al reducir el valor de una impedancia de carga que se supone conectada en serie con el circuito. El voltaje nominal no se varió a lo largo del proceso. La figura 4(a) muestra la corriente limitada (eje de la izquierda, en línea continua) y la que circularía en el circuito si no hubiese limitador (eje de la derecha, en línea discontinua), para un fallo de gran amplitud nominal. El valor esperado es de IKA, aproximadamente, pero la corriente es fuertemente reducida incluso por debajo del valor nominal (10 A), hasta unos 3 A, en un tiempo inferior a 1 ms. En la figura 4(b) se muestran la potencia instantánea disipada en el elemento superconductor (eje de la izquierda, en línea continua) y la energía correspondiente (eje de la derecha, en línea discontinua), obtenida al integrar la potencia instantánea. Excepto un pico inicial extremadamente fino, la potencia disipada es rápidamente reducida por debajo de los 800 W. Esto da una energía aproximadamente igual a 30 J, que es un valor inferior al tope de la capacidad de extracción del refrigerador termoacústico que se había diseñado. En cuanto al incremente de temperatura en el camino superconductor, la figura 4(c) muestra que se ha sobrepasado la temperatura crítica, pero el valor máximo es de unos 130 K. Este valor no es demasiado elevado y no representa ningún riesgo de daño para la muestra superconductora. To study the operation of the limiter, different faults were simulated by reducing the value of a load impedance that is supposed to be connected in series with the circuit. The nominal voltage did not change throughout the process. Figure 4 (a) shows the limited current (left axis, in a continuous line) and the one that would circulate in the circuit if there were no limiter (right axis, in a broken line), for a large nominal amplitude fault. The expected value is approximately IKA, but the current is strongly reduced even below the nominal value (10 A), up to about 3 A, in a time less than 1 ms. Figure 4 (b) shows the instantaneous power dissipated in the superconducting element (left axis, in a continuous line) and the corresponding energy (right axis, in a broken line), obtained by integrating the instantaneous power. Except for an extremely fine initial peak, the dissipated power is rapidly reduced below 800 W. This gives an energy approximately equal to 30 J, which is less than the maximum value of the extraction capacity of the thermoacoustic refrigerator that had been designed. As for the temperature increase in the superconducting path, Figure 4 (c) shows that the critical temperature has been exceeded, but the maximum value is about 130 K. This value is not too high and does not represent any risk of damage to The superconducting sample.

Claims

REIVINDICACIONES
L- Limitador superconductor de corriente, de tipo resistivo, inductivo o híbrido, caracterizado por estar constituido por un elemento superconductor que se adhiere al intercambiador de calor frío de un refrigerador termoacústico.L- Current superconductive, resistive, inductive or hybrid type limiter, characterized by being constituted by a superconducting element that adheres to the cold heat exchanger of a thermoacoustic refrigerator.
2.- Limitador superconductor de corriente, según la reivindicación 1, caracterizado porque el elemento superconductor puede ser de tipo masivo (granular o monodominio), aunque preferiblemente es una película delgada o un hilo delgado superconductor.2. Superconducting current limiter according to claim 1, characterized in that the superconducting element can be of the massive type (granular or monodomain), although preferably it is a thin film or a thin superconducting wire.
3.- Limitador superconductor de corriente, según la reivindicación 1, caracterizado porque el elemento superconductor se adhiere sobre la superficie del intercambiador de calor frío mediante una sustancia que sea una buena conductora del calor.3. Superconducting current limiter according to claim 1, characterized in that the superconducting element adheres to the surface of the cold heat exchanger by means of a substance that is a good heat conductor.
4.- Limitador superconductor de corriente, según la reivindicación 1, caracterizado porque el elemento superconductor se dispone de forma que no evite el paso del gas a través de los canales del intercambiador de calor. 4. Superconducting current limiter according to claim 1, characterized in that the superconducting element is arranged so as not to prevent the passage of gas through the heat exchanger channels.
5.- Limitador superconductor de corriente, según la reivindicación 1, caracterizado por ser escalable a mayores potencias cuando se incrementa el diámetro del dispositivo refrigerador. 5. Superconducting current limiter according to claim 1, characterized in that it is scalable to higher powers when the diameter of the cooling device is increased.
PCT/ES2009/070015 2008-02-04 2009-02-02 Superconducting current limiter integrated in the heat exchanger of a thermoacoustic refrigerator WO2009098345A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200800298A ES2334616A1 (en) 2008-02-04 2008-02-04 Superconducting current limiter integrated in the heat exchanger of a thermoacoustic refrigerator
ESP200800298 2008-02-04

Publications (1)

Publication Number Publication Date
WO2009098345A1 true WO2009098345A1 (en) 2009-08-13

Family

ID=40951808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070015 WO2009098345A1 (en) 2008-02-04 2009-02-02 Superconducting current limiter integrated in the heat exchanger of a thermoacoustic refrigerator

Country Status (2)

Country Link
ES (1) ES2334616A1 (en)
WO (1) WO2009098345A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179720A (en) * 2010-02-26 2011-09-15 Isuzu Motors Ltd Thermoacoustic engine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2075843T3 (en) * 1988-11-18 1995-10-16 Sumitomo Electric Industries PRODUCTION METHOD OF A CERAMIC SUPERCONDUCTOR WIRE.
WO1997005433A2 (en) * 1995-07-31 1997-02-13 Steven Lurie Garrett High-power thermoacoustic refrigerator
US5901556A (en) * 1997-11-26 1999-05-11 The United States Of America As Represented By The Secretary Of The Navy High-efficiency heat-driven acoustic cooling engine with no moving parts
US6637211B1 (en) * 2002-08-13 2003-10-28 The Regents Of The University Of California Circulating heat exchangers for oscillating wave engines and refrigerators
ES2168969B1 (en) * 2000-07-07 2003-11-01 Consejo Superior Investigacion INDUCTIVE CURRENT LIMITER WITH NORMAL METAL HYBRID SECONDARY AND HIGH TEMPERATURE SUPERCONDUCTOR AS A CURRENT CONTROLLED SWITCH.
ES2240490T3 (en) * 2000-08-14 2005-10-16 PIRELLI & C. S.P.A. SUPERCONDUCTOR CABLE.
ES2266450T3 (en) * 2001-02-19 2007-03-01 Renault S.A.S. DEVICE AND REFRIGERATION PROCEDURE OF A CONTROL ORGAN OF A THERMAL ENGINE.
ES2265749B2 (en) * 2004-12-14 2007-07-16 Universidade De Santiago De Compostela CURRENT LIMITER BASED ON SUPERCONDUCTOR ELEMENTS WITH VARIOUS WEAK AREAS ARTIFICIALLY CREATED.
ES2280500T3 (en) * 2002-06-17 2007-09-16 Abb Research Ltd. A SUPERCONDUCTOR FAILURE CURRENT LIMITER.
ES2312319T3 (en) * 2000-12-27 2009-03-01 Prysmian S.P.A. SUPERCONDUCTOR CABLE.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9621142D0 (en) * 1996-10-10 1996-11-27 Oxford Instr Public Limited Co Current limiting device
US7017351B2 (en) * 2002-11-21 2006-03-28 Mems Optical, Inc. Miniature thermoacoustic cooler
US7062921B2 (en) * 2002-12-30 2006-06-20 Industrial Technology Research Institute Multi-stage thermoacoustic device
TWI285630B (en) * 2005-05-05 2007-08-21 Lee Chih Kung Passive thermoacoustic cooling apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2075843T3 (en) * 1988-11-18 1995-10-16 Sumitomo Electric Industries PRODUCTION METHOD OF A CERAMIC SUPERCONDUCTOR WIRE.
WO1997005433A2 (en) * 1995-07-31 1997-02-13 Steven Lurie Garrett High-power thermoacoustic refrigerator
US5901556A (en) * 1997-11-26 1999-05-11 The United States Of America As Represented By The Secretary Of The Navy High-efficiency heat-driven acoustic cooling engine with no moving parts
ES2168969B1 (en) * 2000-07-07 2003-11-01 Consejo Superior Investigacion INDUCTIVE CURRENT LIMITER WITH NORMAL METAL HYBRID SECONDARY AND HIGH TEMPERATURE SUPERCONDUCTOR AS A CURRENT CONTROLLED SWITCH.
ES2240490T3 (en) * 2000-08-14 2005-10-16 PIRELLI & C. S.P.A. SUPERCONDUCTOR CABLE.
ES2312319T3 (en) * 2000-12-27 2009-03-01 Prysmian S.P.A. SUPERCONDUCTOR CABLE.
ES2266450T3 (en) * 2001-02-19 2007-03-01 Renault S.A.S. DEVICE AND REFRIGERATION PROCEDURE OF A CONTROL ORGAN OF A THERMAL ENGINE.
ES2280500T3 (en) * 2002-06-17 2007-09-16 Abb Research Ltd. A SUPERCONDUCTOR FAILURE CURRENT LIMITER.
US6637211B1 (en) * 2002-08-13 2003-10-28 The Regents Of The University Of California Circulating heat exchangers for oscillating wave engines and refrigerators
ES2265749B2 (en) * 2004-12-14 2007-07-16 Universidade De Santiago De Compostela CURRENT LIMITER BASED ON SUPERCONDUCTOR ELEMENTS WITH VARIOUS WEAK AREAS ARTIFICIALLY CREATED.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179720A (en) * 2010-02-26 2011-09-15 Isuzu Motors Ltd Thermoacoustic engine

Also Published As

Publication number Publication date
ES2334616A1 (en) 2010-03-12

Similar Documents

Publication Publication Date Title
WO2010140398A1 (en) Refrigerator cooling-type superconducting magnet
JP4018981B2 (en) Apparatus comprising a rotor and a magnetic bearing for supporting the rotor without contact
US9508477B2 (en) Superconducting magnet system
JP6445752B2 (en) Superconducting magnet device
PL202616B1 (en) Cryogenic cooling system
Bagdinov et al. Performance test of 1.5 T cryogen-free orthopedic MRI magnet
Kim et al. The design and testing of a cooling system using mixed solid cryogen for a portable superconducting magnetic energy storage system
JP2005526476A (en) Superconducting device
JP2015079846A (en) Superconducting magnetic device
US20100267567A1 (en) Superconducting magnet system with cooling system
WO2009098345A1 (en) Superconducting current limiter integrated in the heat exchanger of a thermoacoustic refrigerator
JP6860517B2 (en) Superconducting magnet device
TW201322910A (en) Techniques for sub-cooling in a superconducting system
JPH10189328A (en) Superconducting magnet
JP2004222494A (en) Vacuum retention method and superconducting machine with vacuum retention
JP2019161060A (en) Superconducting magnet device
JP6021791B2 (en) Permanent current switch and superconducting device equipped with it
JP7110035B2 (en) Superconducting magnet device
JP2004111581A (en) Superconducting magnet unit
WO1997011472A1 (en) Superconducting magnet system
JP2011155096A (en) Superconducting electromagnet device
JP2607661Y2 (en) Cryogenic container
JP2020068293A (en) Superconducting magnet device
JPH11329834A (en) Superconducting device with conductor formed of superconducting material
ES2235612B2 (en) CURRENT INDUCTIVE LIMITER BASED ON MULTIPLE RINGS OR SMALL DIAMETER SUPERCONDUCTING FILMS.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09707864

Country of ref document: EP

Kind code of ref document: A1