WO1997011472A1 - Superconducting magnet system - Google Patents

Superconducting magnet system Download PDF

Info

Publication number
WO1997011472A1
WO1997011472A1 PCT/JP1995/001876 JP9501876W WO9711472A1 WO 1997011472 A1 WO1997011472 A1 WO 1997011472A1 JP 9501876 W JP9501876 W JP 9501876W WO 9711472 A1 WO9711472 A1 WO 9711472A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
cooling
temperature
superconducting magnet
switch
Prior art date
Application number
PCT/JP1995/001876
Other languages
French (fr)
Japanese (ja)
Inventor
Norihide Saho
Takeo Nemoto
Hisashi Isogami
Teruhiro Takizawa
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP09512564A priority Critical patent/JP3107228B2/en
Priority to PCT/JP1995/001876 priority patent/WO1997011472A1/en
Publication of WO1997011472A1 publication Critical patent/WO1997011472A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Definitions

  • the present invention relates to a superconducting magnet system, and more particularly, to a superconducting switch for generating a permanent current for use in a conduction-cooled superconducting magnet operated in a permanent current maintaining mode.
  • the conventional superconducting magnet system disclosed in Japanese Patent Publication No. Hei 6—7 3 3 3 4 discloses a superconducting coil that constitutes a superconducting magnet (hereinafter, referred to as a superconducting magnet unless otherwise specified).
  • An external power supply and a superconducting coil are electrically connected to allow a permanent current to flow through the superconducting coil, and a superconductor connected in parallel to the superconducting coil and a heater for cutting off the superconducting state of the superconductor are provided.
  • a superconducting switch is composed of a conductor and a heater.When current is supplied from an external power supply to the superconducting coil, the superconductor is heated by a heater and the resistance is increased to increase the resistance. It describes a technique in which a coil is electrically connected, and then a heater is turned off to restore the superconducting state of the superconductor and a permanent current is applied to both ends of the superconducting coil and the superconducting switch winding.
  • the superconducting switch when the superconducting magnet is cooled below the superconducting generation temperature by the refrigerator, current is supplied from the external power supply to the superconducting coil via the bus, but at this time, the superconducting switch is set to ⁇ 0FF ''
  • the heater of the superconducting switch is heating the superconductor, the temperature of the superconductor rises above the temperature at which superconductivity occurs, and the superconductor is in normal conduction and has an electrical resistance. Therefore, current hardly flows to the superconductor side, but flows to the superconducting magnet having zero electrical resistance, and is supplied at a predetermined current rising speed to a desired current value.
  • the heater of the superconducting switch is turned off, the superconductor is cooled by the cold heat of the refrigerator, the temperature of the superconductor is cooled below the superconducting generation temperature, the superconducting state is established, and the electric resistance is reduced to zero.
  • the current flowing through the superconducting magnet is maintained as a permanent current in a closed circuit that connects the superconductors that are also in the superconducting state and the superconductor with zero electrical resistance between the buses.
  • a quench occurs where the superconductor switches to the normal conduction state for some reason from the permanent current holding operation state where the superconducting switch is ⁇ 0N '', and Joule heat generated by the operating current in the superconductor causes heat damage. Provide sufficient heat capacity to the switch to prevent bleeding.
  • a part of the superconducting magnet is thermally coupled to a cooling station having the lowest temperature of the refrigerator. Then, the superconductor is attached to the inside of the superconducting magnet through a spacer having a small thermal conductivity such as epoxy resin at the same temperature location where the superconducting magnet is cooled, and each cooling station of the expander that cools the superconducting magnet is mounted. It describes cooling the superconductor through a copper bus bar that is thermally connected to the conductor.
  • the heater of the superconducting switch When the superconducting switch is in the “0FF” state, the heater of the superconducting switch is heating the superconductor, and the temperature of the superconductor rises above the superconducting generation temperature. For this reason, the heat energy of this heater acts as an extra heat load on the refrigerator that cools the superconducting magnet through the leading bus, and when this exceeds the refrigerating capacity of the refrigerator, the temperature at which the refrigerator can cool increases and the superconducting temperature rises. The superconducting state is destroyed when the temperature of the magnet exceeds the superconducting temperature.
  • An object of the present invention is to provide a superconducting magnet system equipped with a superconducting switch that does not impose heat load on a cooling refrigerator as much as possible.
  • the object is to provide a superconducting magnet, a power supply connected to the superconducting magnet and supplying a current, a superconducting switch connected in parallel to the superconducting magnet,
  • the cooling means is achieved by means for individually cooling the superconducting magnet and the superconducting switch.
  • a refrigerator having a cooling station at a plurality of temperatures such as a mechanical expander, for example, two temperature levels of 50 K and 5 K.
  • a mechanical expander for example, two temperature levels of 50 K and 5 K.
  • the heat load of the cooling station is small, and even when the superconducting switch is turned off, the temperature of the superconducting magnet cooled by the low-temperature cooling station does not increase, and the superconducting state of the superconducting magnet is maintained stably. Can be.
  • the superconducting switch can be turned off by generating a magnetic field that breaks the superconducting state of the superconductor with the superconducting magnet for the switch.
  • the heat load of the superconducting magnet for the switch can be cooled by the cooling station higher than the superconducting temperature of the superconducting magnet, and the heat load of the cooling station having a lower temperature coupled to the superconducting magnet becomes smaller, and the superconducting magnet becomes smaller.
  • the switch is turned off, the temperature of the superconducting magnet does not rise and the superconducting state of the superconducting magnet can be maintained.
  • FIG. 1 is a cross-sectional view illustrating the structure of a superconducting magnet system according to one embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a refrigerator applied to one embodiment of the present invention.
  • FIG. 4 is a cross-sectional view illustrating the structure of a superconducting magnet system according to another embodiment of the present invention, and FIG. 4 is a superconducting magnet system according to another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view illustrating the structure of a superconducting magnet system according to another embodiment of the present invention.
  • FIG. 6 is a cross-sectional view illustrating the structure of a superconducting magnet system according to another embodiment of the present invention.
  • FIG. 7 is a cross-sectional view illustrating the structure of a superconducting magnet system, and FIG. 7 is a cross-sectional view illustrating the structure of a superconducting magnet system according to another embodiment of the present invention.
  • FIG. 1 is a vertical cross-sectional view of a vacuum insulation tube in a direction perpendicular to the longitudinal direction.
  • the superconducting magnet 1 is fixed to the bobbin 2 and arranged in the vacuum chamber 3 and is insulated from the room temperature space (outside) by vacuum.
  • the refrigerator 4 is composed of, for example, a Gifford McMahon type expander (hereinafter referred to as a GM expander).
  • the compressor 5 supplies a high-pressure gas helium through a pipe 6 and expands in the refrigerator 4 to expand the first stage.
  • Heat station 8 produces a temperature of about 50 K and second stage heat station 9 produces a temperature of about 5 5.
  • the expanded low-pressure gas helium returns to the compressor 5 through the pipe 7.
  • the bobbin 2 is thermally coupled to the second-stage heat station 9 and, for example, a copper heat conductor 10, and the superconducting magnet 1 further heats through the bobbin 2 and the copper heat conductor 10. And is cooled by the second-stage heat station 9 below the superconducting generation temperature.
  • the superconducting magnet 1 is connected to an external power supply 11 in a room temperature space and a pair of copper buses 12.
  • the bus bar 12 is connected to a terminal 15 fixed to the flange 13 of the vacuum chamber 3 via an electric insulating material 14.
  • one end of a copper bus 16 is connected to a terminal 15 and the other end is connected to a copper heat transfer member 17 cooled by a first-stage heat station 8 via an electrical insulating material 18.
  • the other end of the bus bar 19 is thermally coupled to a copper heat conductor 20 via an electrical insulator 21, and is cooled by the second-stage heat station 9.
  • the bus 19 and the superconducting magnet 1 are connected by a bus 22 made of superconducting material constituting the superconducting magnet.
  • the bus 19 is connected by a U-shaped superconductor 23 made of the same material as the bus 19, and the first heat station is used.
  • Heat transfer material fixed to copper heat transfer material 17 cooled by 8 via electrical insulating material 24 (electrically insulating material, but thermally heat transfer material) Is combined with.
  • a part of the superconductor 23 is connected to an electrically insulated heater 27, and the heater 27 is connected to a heater external power supply 28 by a lead wire 29.
  • a copper heat shield plate 3a cooled by the first-stage heat station 8 is installed so as to surround the superconducting magnet 1, the busbar 19, and the superconductor 23. It is insulated so that radiant heat from does not enter.
  • the superconducting magnet 1 When exciting the superconducting magnet 1 cooled below the superconducting temperature by the refrigerator 1, the superconducting magnet 1 is connected to the superconducting magnet from the external power supply 11 via the bus 12, terminal 15, bus 16 and bus 19 and bus 22. 1 is supplied with current.
  • the superconducting switch 26 is in the "0FF" state, and the heater 27 of the superconducting switch 26 is receiving current from the external power supply 28 and heating the superconductor 23. .
  • the temperature of the superconductor 23 rises above the superconducting generation temperature, and the superconductor shifts to the normal conduction state, and a state where electric resistance is generated. Therefore, due to this electric resistance, current hardly flows to the superconductor side, but flows to the superconducting magnet 1 having the electric resistance as a hole, and is supplied at a predetermined current rising speed to a desired current value.
  • the superconductor 23 is cooled at the first heat station 8 of the refrigerator through the electric insulating material 24 and the copper heat conductor 17. Since the temperature of the superconductor 23 becomes equal to or lower than the superconducting generation temperature, the superconducting state is restored. As a result, the electric resistance of the superconductor 23 becomes zero, and the current flowing through the superconducting magnet 1 becomes the superconductor 2 having the same electric resistance between the bus 19 and the bus 19 in the superconducting state. The inside of the closed circuit electrically connected by 3 is maintained as a permanent current.
  • the superconducting magnet 1 is connected to the second stage heater.
  • the superconductor 23 of the superconducting switch 26 is cooled by the first-stage heat station 8.
  • the heat load of the heater 27, which is heated when the superconducting switch is in the “0FF” state is absorbed by the first-stage heat station 8 having a large heat capacity.
  • the temperature rise of 9 is small, and the temperature of superconducting magnet 1 can be maintained at an extremely low temperature. Therefore, even when the superconducting switch is in the “0FF” state, the temperature of the superconducting magnet 1 can be cooled stably below the superconducting generation temperature, and the superconducting state can be maintained.
  • Fig. 2 shows a typical Gifford McMaffon expander as a mechanical expander.
  • the same reference numerals as those in FIG. 1 indicate the same components.
  • the expander 4 has a first expansion chamber 41 and a second expansion chamber 92, and these expansion chambers have a two-stage series configuration.
  • the volume of the first expansion chamber 41 having a higher temperature level is larger than that of the second expansion chamber 92 having a lower temperature level.
  • a working fluid at normal temperature and high pressure supplied from the compressor 5 at normal temperature, for example, helium gas flows through a first cold storage material 43 incorporated in a first disposable laser 42 moving up and down at a predetermined cycle in a first expansion chamber. It flows toward 4 1 and is cooled by the cold energy of the cold storage material.
  • the first cold storage material 43 is made of, for example, a copper wire mesh. A part of the low-temperature and high-pressure helium gas flowing into the first expansion chamber 43 further flows into the second cold storage material 96 built in the second displacer 95 that moves up and down. And is cooled by the cold heat of the cold storage material 96.
  • the second regenerative material 96 is made of, for example, a material filled with spherical particles such as lead and erbium nickel.
  • the high-pressure helium gas in these expansion chambers is expanded at a stretch.
  • the helium gas generates cold and the first heat connected to the expansion chamber.
  • the first stage 8 and the second heat stage 9 are cooled, and the low-temperature and low-pressure heat gas is heated while cooling the heat storage materials 43 and 96 and reaches almost normal temperature and flows into the low-pressure circuit of the compressor 5. I do.
  • both displacers move to the lower end to minimize the volume of the expansion chamber, exhaust the bleed gas to a low pressure in the expansion chamber, and complete one cycle.
  • the Gifford-Macmaphon expander 4 is composed of two independent expanders.
  • the amount of cold generated in each expansion chamber is substantially determined by the pressure difference between the before and after expansion of the helium gas and the volume of the expansion chamber, the amount of cold generated in the first expansion chamber 41 having a large expansion volume is determined by the second expansion chamber. 5 to 10 times larger than the amount of cold generated in Therefore, when a predetermined amount of heat (in this case, the sum of the amount of heat generated by the heater 27 and the amount of heat generated by the superconductor 23) is cooled by the first heat stage 8, the temperature of the second heat stage 9 rises. In the case where the same amount of heat is cooled by the second heat stage 9, the temperature can be reduced as compared with the temperature rise of the second heat stage 9.
  • a predetermined amount of heat in this case, the sum of the amount of heat generated by the heater 27 and the amount of heat generated by the superconductor 23
  • the superconducting switch 26 is cooled on the high-temperature side (first heat stage 8) of the Gifford / Macmaphon expander 4 composed of two expanders. Therefore, quenching of the superconducting magnet thermally connected to the low-temperature side (second heat stage 9) can be prevented.
  • the reason that the superconductor 23 of the superconducting switch 26 shows a superconducting state at the high temperature side is that the superconductor 23 is made of a bismuth-based high-temperature superconductor.
  • the heat transfer member 17 is made of copper.
  • the heat transfer member 17 may be made of Machiyu having a lower thermal conductivity than copper.
  • the material and shape of the electric insulating material 24 and the heat transfer member 17 may be determined so as to be higher than the temperature.
  • the superconducting magnet constructed in this way is used for nuclear magnetic resonance equipment, and is also used as a plankton, which is the source of aqua and red tide, in water as outlined below. It is also used as a magnetic separation film for separating such as.
  • a flow path 3 c is provided inside the room temperature bore 3 b and made of magnetic material in this flow path.
  • a magnetic filter 3d such as a wire mesh is placed. By doing so, a large magnetic gradient is generated on the surface of the magnetic filter 3d by the magnetic field generated by the superconducting magnet 1, so that magnetic particles mixed in the fluid flowing in the flow path can be captured and the fluid can be purified.
  • Such fluids include, for example, sewage containing flocs in which magnetic particles and impurities are integrated with a condensing agent, industrial wastewater containing solid magnetic substances, water flow containing magnetic minerals, gas containing magnetic particles, etc. There is.
  • the present conduction-cooled superconducting magnet system can provide a conduction-cooled superconducting magnet system having a stable superconducting switch that can be used in the conduction-cooled superconducting magnet operated in the permanent current maintaining mode.
  • FIG. 3 shows another embodiment according to the present invention, which is different from the embodiment shown in FIG. 1 in that a U-shaped superconducting element which is a component of the superconducting switch 26 in FIG.
  • the point is that the body 23 is constituted by a substantially linear superconductor 30.
  • the superconductor 23 is fixed to the heat transfer member 17 via an electric insulating material 27a, a heat transfer control member 27c, and a heater 27b.
  • the superconductor 23 is made of, for example, a bismuth-based high-temperature superconductor, the conductor is very brittle, so if it is processed into a U-shape, cracks and the like will be generated inside and the superconducting state cannot be stably maintained. Therefore, by forming the superconductor 23 in a linear shape as in the present embodiment, it is possible to provide a conduction-cooled superconducting magnet system having a highly reliable superconducting switch.
  • FIG. 4 shows another embodiment of the present invention.
  • the difference from the embodiment shown in FIG. 1 is that the configuration of the superconducting magnet 1 and the superconducting switch 26 using two expanders is shown. This is where the superconductors 23 of the element are cooled separately.
  • the superconducting magnet 1 is cooled to a temperature lower than the superconducting temperature at the second heat station 9a (lowest temperature) of the first expander 4a.
  • the electrical insulation material 24, the heat transfer material 25, the electrical insulation material 26, the heater 27, and the copper heat shield plate 30 are connected to the first stage heating station 8b (highest temperature) of the expander 4b.
  • the other end of bus 19, copper heat conductor 20, electrical insulation 21 and end of bus 22 (these are superconducting at the temperature of the first stage heat station 8b).
  • the superconducting switch 26 is provided by two cooling devices (expanders 4a and 4b) that are thermally completely independent of the superconducting magnet 1. Since the cooling can be performed individually, the heat that enters the superconducting magnet 1 due to conduction heat conduction through the current lead wire can be cooled by the expander 4b, and the expansion can be performed even when the superconducting switch is in the ⁇ 0FF '' state. This has the effect that the temperature of the superconducting magnet 1 cooled by the machine 4a can be stably cooled below the superconducting generation temperature and the superconducting state can be maintained stably.
  • the supply of helium gas to the expanders 4a and 4b is performed by the compressor 5.
  • the same effect can be obtained even if separate compressors are provided.
  • the expander 4a is no longer affected by the heavier gas pressure due to the thermal load fluctuation of the expander 4b, so that the temperature of the superconducting magnet 1 cooled by the expander 4a is lower than the superconducting temperature. This has the effect that the superconducting state can be maintained stably by cooling more stably.
  • FIG. 5 shows another embodiment according to the present invention.
  • the difference from the embodiment shown in FIG. 4 is that the components of the superconducting magnet 1 and the superconducting switch 26 using two expanders are used. The point is that the superconductors 23 are separately cooled.
  • the superconducting temperature of superconductor 23 in superconducting switch 26 was set to be higher than the superconducting temperature of superconducting magnet 1 and lower than the superconducting temperature of bus 19.
  • the superconducting magnet 1 is made of a niobium-titanium-based (superconducting state at 4 K) superconductor
  • the busbar 19 is made of a bismuth-based (superconducting state at 80 K) high-temperature superconducting conductor
  • the superconducting switch 2 is manufactured.
  • the superconductor 23 in 6 is made of a niobium-tin-based (superconducting state at 20 K) superconducting conductor Make.
  • the superconducting magnet 1 is cooled below the superconducting generation temperature at the second-stage heat station 9a of the first expander 4a that generates the lowest temperature.
  • the external power supply 28 and the lead wire 29 for the heater of the superconducting switch shown in FIG. 4, the compressor 5, and the pipes 6 and 7 are not shown.
  • the second superheater switch 26 is cooled by the second heat station 9b of the second expander 4b that generates the next lowest temperature after the second heat station 9a, and the highest temperature is generated.
  • the heat shield plate 30 made of copper is cooled by the first-stage heat station 8b of the second expander 4b.
  • the copper heat transfer body 17, electric insulating material 18, the end of the busbar 19, and the copper heat shield plate 30 are cooled by the first-stage heat station 8a.
  • the other end of the bus 19, the copper heat conductor 20, the electrical insulating material 21, and the end of the bus 22a are cooled by the second-stage heat station 9a.
  • the bus bar 2 2b and the superconductor 23 in the superconducting switch 26 are made of the same superconductor, and these are superconductors that become superconductive at the temperature of the first stage heater 9b. It is formed.
  • the heat load of the heater 27 heated when the superconducting switch is in the “0FF” state is absorbed by the second-stage heat station 9 b of the second refrigerator 4 b. Therefore, the influence on the first refrigerator 4a is small, the temperature rise of the second-stage heat station 9a of the first refrigerator 4a is small, and the temperature of the superconducting magnet 1 can be maintained at a very low temperature. Therefore, even when the superconducting switch is in the “0FF” state, there is an effect that the temperature of the superconducting magnet 1 can be stably cooled below the superconducting generation temperature and the superconducting state can be maintained. Also, since the second heat station 9b does not need to be cooled to a temperature of 4 K (the superconductor 23 and the bus 22 of the superconducting switch 26 are composed of a niobium-tin system). It can be cheap.
  • FIG. 6 shows another embodiment according to the present invention.
  • the difference from the embodiment shown in FIG. 5 is that the components of the superconducting magnet 1 and the superconducting switch 26 using two expanders are used.
  • the superconductors 23 are cooled separately, and the superconductors 23, busbars 19, and busbars 22 are made of bismuth-based high-temperature superconductors.
  • the point is that 23 is cooled by the first stage heating station 8b of the second expander 4b.
  • the heat shield plate 30 made of copper is cooled by the same first-stage heat station 8b.
  • the second expander has only the first-stage heat station 8b and does not have the second-stage heat station.
  • FIG. 7 shows another embodiment of the present invention, which is different from the embodiment shown in FIG. 2 in that means for breaking the superconducting state of the superconductor 23, which is a component of the superconducting switch.
  • the point is that a small superconducting coil 31 made of the same material as the superconductor 23 is used instead of the heater 27.
  • the superconducting coil 31 is molded with an epoxy resin 32 or the like and fixed to the heat transfer member 17 via the heat transfer control member 27c.
  • the superconducting coil 31 is cooled by the first-stage heat station 8.
  • the superconducting state can always be maintained.
  • the superconducting coil 31 for the switch is connected to an external power supply 33 by a bus 34.
  • the superconducting switch When the superconducting switch is set to the “0FF” state, when power is supplied to the superconducting coil 31 from the external power supply 33, a magnetic field crossing the superconductor 23 at right angles is generated, and the superconductor 23 in the magnetic field is generated.
  • the superconducting state breaks down to the normal conducting state, causing electrical resistance. In this case, heat is generated by this electric resistance, but the heater As a result, the temperature fluctuation of the first-stage heat station 8 of the refrigerator 4 is further reduced. For this reason, the temperature rise of the second-stage heat station 9 is further reduced, and the temperature of the superconducting magnet 1 can be maintained at an extremely low temperature, thereby preventing quenching.
  • the present invention is not limited to this, and is configured by a refrigerator having different low-temperature side and high-temperature side.
  • a solver type, a starling type, or a pulse tube type can be applied.
  • the superconducting magnet and the superconducting switch are cooled by a refrigerator.
  • the superconducting magnet is cooled by a 4.2 K temperature liquid crystal, and the superconducting switch is cooled to a temperature of 77 K.
  • the superconducting switch can be cooled by the cooling station whose superconducting generation temperature is higher than the superconducting generation temperature of the superconducting magnet, the heat load of the lower temperature cooling station coupled to the superconducting magnet is small. Thus, the temperature of the superconducting magnet does not rise when the superconducting switch is turned off, and the superconducting state of the superconducting magnet can be maintained.
  • the superconducting switch can be turned off by generating a magnetic field that breaks the superconducting state of the superconductor with the superconducting magnet for the switch.
  • the heat load of the superconducting magnet for the switch can be cooled by a cooling station higher than the superconducting temperature of the superconducting magnet.
  • the heat load of the low cooling station is small, the temperature of the superconducting magnet does not rise when the superconducting switch is turned off, and the superconducting state of the superconducting magnet can be maintained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

The heat generated from a superconducting switch used for supplying an electric current to a conduction-cooled superconducting magnet system from the outside so as to set the magnet system in a permanent current maintaining mode does not influence the superconducting magnet, because a cooler for cooling the superconducting magnet and a cooler for cooling the superconducting switch are separately provided. Even when one mechanical cooler is used for cooling the superconducting magnet and the switch and it generates different temperature levels, the magnet and switch are thermally coupled to the different temperature-level generating sections of the cooler. Therefore, the superconducting magnet can be maintained stably below the superconduction generating temperature, because the thermal energy for operating the superconducting switch can remarkably reduce the temperature rise at the superconducting magnet cooling part of the cooler.

Description

明 細 書  Specification
超電導磁石システム Superconducting magnet system
技術分野  Technical field
本発明は、 超電導磁石システムに係り、 特に永久電流維持モー ドで運 転される伝導冷却型超電導磁石で使用する永久電流を生成する超電導ス イッチに関する。  The present invention relates to a superconducting magnet system, and more particularly, to a superconducting switch for generating a permanent current for use in a conduction-cooled superconducting magnet operated in a permanent current maintaining mode.
背景技術 Background art
特公平 6— 7 3 3 3 4号公報に開示された従来の超電導磁石システム は、 超電導磁石を構成する超電導コイル (以下、 本明細書では特に断り のない限り超電導磁石と呼ぶ)  The conventional superconducting magnet system disclosed in Japanese Patent Publication No. Hei 6—7 3 3 3 4 discloses a superconducting coil that constitutes a superconducting magnet (hereinafter, referred to as a superconducting magnet unless otherwise specified).
に永久電流を流すために、 外部電源装置と超電導コイルとを電気的に接 続し、 これらに並列に接続された超電導体と、 この超電導体の超電導状 態を絶つヒーターとを備え、 この超伝導体及びヒーターとから超電導ス ィ ツチを構成し、 外部電源から超電導コイルに対して電流を供給する際 に、 ヒータ一によって超電導体を暖めてこの抵抗値を増加させることに よって外部電源と超電導コイルを電気的に接続し、 次にヒーターを切つ て超電導体の超電導状態を回復させて超電導コィルの両端と超電導スィ ツチ巻に永久電流を流す技術が記載されている。 すなわち、 冷凍機で超 電導発生温度以下に冷却した超電導磁石の励磁の時は、 母線を介して外 部電源から超電導コイルに電流が供給されるが、 この時超電導スィツチ は 「0FF」 の状態で、 超電導スィツチのヒータは超電導体を加熱している 状態にあり、 超電導体の温度が超電導発生温度以上に上昇し、 超電導体 は常電導状態で電気抵抗が生じている。 したがって、 電流は超電導体側 にほとんど流れず電気抵抗がゼロの超電導磁石に流れ、 所望の電流値ま で所定の電流上昇速度で供給する。 その後、 超電導スィ ッチのヒータを 切り超電導体を冷凍機の冷熱で冷却し、 超電導体の温度を超電導発生温 度以下に冷却して超電導状態にし、 電気抵抗をゼロにする。 これによつ て、 超電導磁石に流れる電流は、 同じく超電導状態にある母線、 母線間 にある電気抵抗ゼロの超電導体をつなぐ閉回路内を永久電流として保持 される。 また、 超電導スィ ツチが 「0N」 の永久電流保持運転状態から、 何らかの原因で超電導体が常電導状態に移行するクェンチが生じ、 超電 導体で運転電流によるジュール熱が発生した場合、 熱による損傷を防止 するに十分な熱容量をスィ ツチに付与する。 An external power supply and a superconducting coil are electrically connected to allow a permanent current to flow through the superconducting coil, and a superconductor connected in parallel to the superconducting coil and a heater for cutting off the superconducting state of the superconductor are provided. A superconducting switch is composed of a conductor and a heater.When current is supplied from an external power supply to the superconducting coil, the superconductor is heated by a heater and the resistance is increased to increase the resistance. It describes a technique in which a coil is electrically connected, and then a heater is turned off to restore the superconducting state of the superconductor and a permanent current is applied to both ends of the superconducting coil and the superconducting switch winding. That is, when the superconducting magnet is cooled below the superconducting generation temperature by the refrigerator, current is supplied from the external power supply to the superconducting coil via the bus, but at this time, the superconducting switch is set to `` 0FF '' The heater of the superconducting switch is heating the superconductor, the temperature of the superconductor rises above the temperature at which superconductivity occurs, and the superconductor is in normal conduction and has an electrical resistance. Therefore, current hardly flows to the superconductor side, but flows to the superconducting magnet having zero electrical resistance, and is supplied at a predetermined current rising speed to a desired current value. After that, the heater of the superconducting switch is turned off, the superconductor is cooled by the cold heat of the refrigerator, the temperature of the superconductor is cooled below the superconducting generation temperature, the superconducting state is established, and the electric resistance is reduced to zero. This Thus, the current flowing through the superconducting magnet is maintained as a permanent current in a closed circuit that connects the superconductors that are also in the superconducting state and the superconductor with zero electrical resistance between the buses. In addition, a quench occurs where the superconductor switches to the normal conduction state for some reason from the permanent current holding operation state where the superconducting switch is `` 0N '', and Joule heat generated by the operating current in the superconductor causes heat damage. Provide sufficient heat capacity to the switch to prevent bleeding.
この超電導磁石システムでは、 冷凍機の最も温度が低い冷却ステーシ ヨ ンに超電導磁石の一部を熱的に結合している。 そして、 超電導磁石を 冷却する同じ温度部位にエポキシ樹脂等の熱電導率が小さなスぺーサを 介して超電導体を超電導磁石の内部に取付け、 超電導磁石を冷却する膨 張機の各冷却ステ一ショ ンに熱的に接続した銅製の母線を介して超電導 体を冷却するこ とが記載されている。  In this superconducting magnet system, a part of the superconducting magnet is thermally coupled to a cooling station having the lowest temperature of the refrigerator. Then, the superconductor is attached to the inside of the superconducting magnet through a spacer having a small thermal conductivity such as epoxy resin at the same temperature location where the superconducting magnet is cooled, and each cooling station of the expander that cools the superconducting magnet is mounted. It describes cooling the superconductor through a copper bus bar that is thermally connected to the conductor.
超電導スィ ツチが 「0FF」状態では、 超電導スィ ツチのヒータは超電導 体を加熱している状態にあり、 超電導体の温度が超電導発生温度以上に 上昇する。 このため、 このヒータの熱エネルギーは先母線を通じて超電 導磁石を冷却する冷凍機に余分の熱負荷として作用し、 これが冷凍機の 冷凍能力を越えると冷凍機で冷却できる温度が上昇し、 超電導磁石の温 度が超電導発生温度以上となって超電導状態が破壊する。 また、 超電導 発生温度以上に上昇した超電導体の熱の一部はスぺーサを通じて直接超 電導磁石に伝わり、 冷凍機の冷却ステーショ ンに流れる。 このため、 熱 の流れ流路にある超電導磁石の温度は冷却ステ一シヨ ンの温度より高く なり、 超電導磁石の温度が超電導発生温度以上となって、 超電導状態が 破壊するという問題がある。  When the superconducting switch is in the “0FF” state, the heater of the superconducting switch is heating the superconductor, and the temperature of the superconductor rises above the superconducting generation temperature. For this reason, the heat energy of this heater acts as an extra heat load on the refrigerator that cools the superconducting magnet through the leading bus, and when this exceeds the refrigerating capacity of the refrigerator, the temperature at which the refrigerator can cool increases and the superconducting temperature rises. The superconducting state is destroyed when the temperature of the magnet exceeds the superconducting temperature. In addition, part of the heat of the superconductor that has risen above the temperature at which superconductivity occurs is transmitted directly to the superconducting magnet through the spacer and flows to the cooling station of the refrigerator. For this reason, there is a problem that the temperature of the superconducting magnet in the heat flow path becomes higher than the temperature of the cooling station, and the temperature of the superconducting magnet becomes higher than the superconducting generation temperature, thereby destroying the superconducting state.
発明の開示 Disclosure of the invention
本発明の目的は、 極力冷却用冷凍機に対して熱負担を掛けない超電導 スィ ツチを搭載した超電導磁石システムを提供するこ とにある。  An object of the present invention is to provide a superconducting magnet system equipped with a superconducting switch that does not impose heat load on a cooling refrigerator as much as possible.
上記目的は、 超電導磁石と、 この超電導磁石に接続され電流を供給す る電源と、 前記超電導磁石に並列接続された超電導スィ ッチと、 前記超 電導磁石と前記超電導スィ ッチとを冷却する冷却手段とを備えた超電導 システムにおいて、 前記冷却手段は、 前記超電導磁石と前記超電導スィ ツチとを個別に冷却する手段とすることによって達成される。 The object is to provide a superconducting magnet, a power supply connected to the superconducting magnet and supplying a current, a superconducting switch connected in parallel to the superconducting magnet, In a superconducting system including a conductive magnet and cooling means for cooling the superconducting switch, the cooling means is achieved by means for individually cooling the superconducting magnet and the superconducting switch.
以上の本発明の構成により、 例えば機械式膨張機等の複数温度、 例え ば 5 0 Kと 5 Kの 2温度レベルの冷却ステーショ ンを有する冷凍機では. 同じ熱負荷を冷凍機で吸収する場合、 より温度レベルが高い温度側のス テーショ ンでその熱負荷を吸収する方が、 低い温度側のステーショ ンの 温度をより低い温度状態に維持できることができる。 すなわち熱的に干 渉が少なくいわば独立した冷却器であるため、 超電導磁石をより低い温 度状態に維持できるのでクェンチを防止することができる。 したがって、 本構造により、 超電導スィ ツチをオンオフさせるヒー夕の熱エネルギー は超電導磁石の超電導発生温度よりかなり高い温度の冷却ステージョ ン で冷凍機側に吸収できるので、 超電導磁石に結合したより温度の低い冷 却ステーショ ンの熱負荷は小さ くて済み、超電導スイツチ OFF時にも、温 度の低い冷却ステーショ ンで冷却する超電導磁石の温度が上昇せず、 超 電導磁石の超電導状態を安定に保持することができる。  With the configuration of the present invention described above, for example, a refrigerator having a cooling station at a plurality of temperatures, such as a mechanical expander, for example, two temperature levels of 50 K and 5 K. When the same heat load is absorbed by the refrigerator By absorbing the heat load at the higher temperature station, the temperature of the lower station can be maintained at a lower temperature. In other words, since it is an independent cooler with little thermal interference, it is possible to maintain the superconducting magnet at a lower temperature state, thereby preventing quenching. Therefore, with this structure, the heat energy of the heat that turns the superconducting switch on and off can be absorbed by the refrigerator at the cooling stage whose temperature is much higher than the superconducting generation temperature of the superconducting magnet. The heat load of the cooling station is small, and even when the superconducting switch is turned off, the temperature of the superconducting magnet cooled by the low-temperature cooling station does not increase, and the superconducting state of the superconducting magnet is maintained stably. Can be.
また、 スィ ツチ用超電導磁石で超電導体の超電導状態が壊れる磁場を 発生させることによって、 超電導スィ ツチを OFFに操作できる。 この時、 スイツチ用超電導磁石の熱負荷は、 超電導磁石の超電導発生温度より高 い冷却ステーショ ンで冷却できるので、 超電導磁石に結合したより温度 の低い冷却ステーショ ンの熱負荷は小さ くなり、超電導スィッチ OFF時に 超電導磁石の温度が上昇せず、 超電導磁石の超電導状態を保持すること ができる。  The superconducting switch can be turned off by generating a magnetic field that breaks the superconducting state of the superconductor with the superconducting magnet for the switch. At this time, the heat load of the superconducting magnet for the switch can be cooled by the cooling station higher than the superconducting temperature of the superconducting magnet, and the heat load of the cooling station having a lower temperature coupled to the superconducting magnet becomes smaller, and the superconducting magnet becomes smaller. When the switch is turned off, the temperature of the superconducting magnet does not rise and the superconducting state of the superconducting magnet can be maintained.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明の一実施例の超電導磁石システムの構造を説明する断面 図であり、 第 2図は本発明の一実施例に適用される冷凍機を説明する図 であり、 第 3図は本発明の他の実施例の超電導磁石システムの構造を説 明する断面図であり、 第 4図は本発明の他の実施例の超電導磁石システ ムの構造を説明する断面図であり、 第 5図は本発明の他の実施例の超電 導磁石システムの構造を説明する断面図であり、 第 6図は本発明の他の 実施例の超電導磁石システムの構造を説明する断面図であり、 第 7図は 本発明の他の実施例の超電導磁石システムの構造を説明する断面図であ る。 FIG. 1 is a cross-sectional view illustrating the structure of a superconducting magnet system according to one embodiment of the present invention. FIG. 2 is a diagram illustrating a refrigerator applied to one embodiment of the present invention. FIG. 4 is a cross-sectional view illustrating the structure of a superconducting magnet system according to another embodiment of the present invention, and FIG. 4 is a superconducting magnet system according to another embodiment of the present invention. FIG. 5 is a cross-sectional view illustrating the structure of a superconducting magnet system according to another embodiment of the present invention. FIG. 6 is a cross-sectional view illustrating the structure of a superconducting magnet system according to another embodiment of the present invention. FIG. 7 is a cross-sectional view illustrating the structure of a superconducting magnet system, and FIG. 7 is a cross-sectional view illustrating the structure of a superconducting magnet system according to another embodiment of the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の一実施例を第 1図により説明する。 第 1図は真空断熱 管の長手直角方向の縱断面図である。 超電導磁石 1はボビン 2に固定さ れ真空槽 3内に配置され常温空間 (外部) と真空断熱されている。 冷凍 機 4は例えばギフ ォー ド ·マクマホン式膨張機(以下, GM膨張機と称す) で構成し、 圧縮機 5から高圧ガスヘリゥムを配管 6を通じて供給され冷 凍機 4内で膨張し第 1段ヒー トステーシ ョ ン 8で温度約 5 0 K、 第 2段 ヒー トステーシ ョ ン 9で温度約 5 Κの寒冷を発生する。 膨張後の低圧ガ スヘリゥムは配管 7を通じて圧縮機 5に戻る。 ボビン 2は第 2段ヒー ト ステーシ ョ ン 9 と例えば銅製の伝熱体 1 0と熱的に結合されており超電 導磁石 1 はさらにボビン 2、 銅製の伝熱体 1 0を介して熱的に結合され、 超電導発生温度以下に第 2段ヒー トステーシ ョ ン 9で冷却される。  Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a vertical cross-sectional view of a vacuum insulation tube in a direction perpendicular to the longitudinal direction. The superconducting magnet 1 is fixed to the bobbin 2 and arranged in the vacuum chamber 3 and is insulated from the room temperature space (outside) by vacuum. The refrigerator 4 is composed of, for example, a Gifford McMahon type expander (hereinafter referred to as a GM expander). The compressor 5 supplies a high-pressure gas helium through a pipe 6 and expands in the refrigerator 4 to expand the first stage. Heat station 8 produces a temperature of about 50 K and second stage heat station 9 produces a temperature of about 5 5. The expanded low-pressure gas helium returns to the compressor 5 through the pipe 7. The bobbin 2 is thermally coupled to the second-stage heat station 9 and, for example, a copper heat conductor 10, and the superconducting magnet 1 further heats through the bobbin 2 and the copper heat conductor 10. And is cooled by the second-stage heat station 9 below the superconducting generation temperature.
超電導磁石 1は常温空間にある外部電源 1 1 と一対の銅製の母線 1 2 と接続されている。 母線 1 2は真空槽 3のフラ ンジ 1 3に電気絶縁材 1 4を介して固定された端子 1 5 と結合される。 真空槽内では例えば銅製 の母線 1 6の一端を端子 1 5 と結合し他端を、 第 1段ヒー トステーシ ョ ン 8で冷却される銅製の伝熱体 1 7に電気絶縁材 1 8を介して固定され た母線 1 9 と結合される。 母線 1 9の他端は、 銅製の伝熱体 2 0に電気 絶縁材 2 1を介して熱的に結合され、 第 2段ヒー トステーシ ョ ン 9で冷 却される。 母線 1 9 と超電導磁石 1 とは超電導磁石を構成する超電導材 製の母線 2 2で接続する。  The superconducting magnet 1 is connected to an external power supply 11 in a room temperature space and a pair of copper buses 12. The bus bar 12 is connected to a terminal 15 fixed to the flange 13 of the vacuum chamber 3 via an electric insulating material 14. In the vacuum chamber, for example, one end of a copper bus 16 is connected to a terminal 15 and the other end is connected to a copper heat transfer member 17 cooled by a first-stage heat station 8 via an electrical insulating material 18. And fixed to the fixed bus 19. The other end of the bus bar 19 is thermally coupled to a copper heat conductor 20 via an electrical insulator 21, and is cooled by the second-stage heat station 9. The bus 19 and the superconducting magnet 1 are connected by a bus 22 made of superconducting material constituting the superconducting magnet.
超電導スィツチ 2 6を構成するため、 母線 1 9間を母線 1 9 と同じ材 料で製作した U字型の超電導体 2 3で連結し、第 1段ヒー 卜ステーシ ョ ン 8で冷却される銅製の伝熱体 1 7に電気絶縁材 2 4 (電気的には絶縁体 であるが、 熱的には伝熱体である) を介して固定された伝熱体 2 5 と結 合される。 超電導体 2 3の一部は電気絶縁されたヒーター 2 7 と結合さ れ、 ヒーター 2 7はヒーター用外部電源 2 8 とリー ド線 2 9で接続され ている。 To form the superconducting switch 26, the bus 19 is connected by a U-shaped superconductor 23 made of the same material as the bus 19, and the first heat station is used. Heat transfer material fixed to copper heat transfer material 17 cooled by 8 via electrical insulating material 24 (electrically insulating material, but thermally heat transfer material) Is combined with. A part of the superconductor 23 is connected to an electrically insulated heater 27, and the heater 27 is connected to a heater external power supply 28 by a lead wire 29.
また、 第 1段ヒー トステーショ ン 8で冷却される銅製の熱シールド板 3 aを超電導磁石 1、 母線 1 9、 超電導体 2 3を取り囲むように設置し、 これらの要素に常温の真空槽壁からの輻射熱が侵入しないように断熱し ている。  In addition, a copper heat shield plate 3a cooled by the first-stage heat station 8 is installed so as to surround the superconducting magnet 1, the busbar 19, and the superconductor 23. It is insulated so that radiant heat from does not enter.
冷凍機 1で超電導発生温度以下に冷却した超電導磁石 1を励磁する時 は、 外部電源 1 1から母線 1 2、 端子 1 5、 母線 1 6、 母線 1 9及び、 母線 2 2を介して超電導磁石 1に電流が供給される。 この時、 超電導ス イッチ 2 6は「0FF」 の状態で、 超電導スィ ツチ 2 6のヒーター 2 7は外 部電源 2 8から電流の供給を受け超電導体 2 3を加熱している状態にあ る。 このため、 超電導体 2 3の温度は超電導発生温度以上に上昇し、 超 電導体は常電導状態に移行し電気抵抗が生じる状態となる。 したがって、 この電気抵抗のため電流は超電導体側にほとんど流れずに電気抵抗がゼ 口となつている超電導磁石 1 に流れ、 所望の電流値まで所定の電流上昇 速度で供給する。  When exciting the superconducting magnet 1 cooled below the superconducting temperature by the refrigerator 1, the superconducting magnet 1 is connected to the superconducting magnet from the external power supply 11 via the bus 12, terminal 15, bus 16 and bus 19 and bus 22. 1 is supplied with current. At this time, the superconducting switch 26 is in the "0FF" state, and the heater 27 of the superconducting switch 26 is receiving current from the external power supply 28 and heating the superconductor 23. . For this reason, the temperature of the superconductor 23 rises above the superconducting generation temperature, and the superconductor shifts to the normal conduction state, and a state where electric resistance is generated. Therefore, due to this electric resistance, current hardly flows to the superconductor side, but flows to the superconducting magnet 1 having the electric resistance as a hole, and is supplied at a predetermined current rising speed to a desired current value.
その後、 超電導スィ ツチ 2 6のヒーター 2 7を切ると、 超電導体 2 3 は、 電気絶縁材 2 4、 銅製の伝熱体 1 7を介して冷凍機の第 1段ヒー ト ステーショ ン 8で冷却されているので、 超電導体 2 3の温度は超電導発 生温度以下になることから超電導状態が回復する。 これによつて、 超電 導体 2 3の電気抵抗はゼロになり、 超電導磁石 1 に流れる電流は、 同じ く超電導状態にある母線 1 9及び母線 1 9間にある電気抵抗ゼロの超電 導体 2 3により電気的に接続された閉回路内を永久電流として保持され る。  Then, when the heater 27 of the superconducting switch 26 is turned off, the superconductor 23 is cooled at the first heat station 8 of the refrigerator through the electric insulating material 24 and the copper heat conductor 17. Since the temperature of the superconductor 23 becomes equal to or lower than the superconducting generation temperature, the superconducting state is restored. As a result, the electric resistance of the superconductor 23 becomes zero, and the current flowing through the superconducting magnet 1 becomes the superconductor 2 having the same electric resistance between the bus 19 and the bus 19 in the superconducting state. The inside of the closed circuit electrically connected by 3 is maintained as a permanent current.
本実施例に係る超電導磁石システムでは、 超電導磁石 1を第 2段ヒー トステーショ ン 9で冷却し、 超電導スィ ツチ 2 6の超電導体 2 3を第 1 段ヒー トステーショ ン 8で冷却している。 このため、 超電導スィ ッチが 「0FF」状態のとき加熱されるヒータ 2 7の熱負荷は、熱容量の大きな第 1段ヒー トステーショ ン 8で吸収されるので、 第 2段ヒー トステ一ショ ン 9の温度上昇は小さ く、 超電導磁石 1 の温度も極低温状態を維持でき る。 したがって、 超電導スィ ツチが 「0FF」 状態のときでも、 超電導磁石 1 の温度を超電導発生温度以下に安定に冷却でき超電導状態を維持でき る効果がある。 In the superconducting magnet system according to the present embodiment, the superconducting magnet 1 is connected to the second stage heater. The superconductor 23 of the superconducting switch 26 is cooled by the first-stage heat station 8. For this reason, the heat load of the heater 27, which is heated when the superconducting switch is in the “0FF” state, is absorbed by the first-stage heat station 8 having a large heat capacity. The temperature rise of 9 is small, and the temperature of superconducting magnet 1 can be maintained at an extremely low temperature. Therefore, even when the superconducting switch is in the “0FF” state, the temperature of the superconducting magnet 1 can be cooled stably below the superconducting generation temperature, and the superconducting state can be maintained.
このように第 2段ヒー 卜ステーショ ン 9の温度上昇を抑えるこ とがで きる理由を第 2図を用いて説明する。  The reason why the temperature rise of the second-stage heat station 9 can be suppressed in this way will be described with reference to FIG.
第 2図に機械式膨張機として代表的なギフオー ド · マクマフォ ン膨張 機を示した。 第 1 図と同一の符号は同一の構成を示している。 このギフ オー ド · マクマフォ ン膨張機 4は第 1 の膨張室 4 1及び第 2の膨張室 9 2の膨張室を有し、 これら膨張室はシリーズ 2段構成となっている。 温 度レベルが高い第 1 の膨張室 4 1 の容積は温度レベルが低い第 2の膨張 室 9 2 より も大きい。 常温の圧縮機 5から供給される常温高圧の作動流 体、 例えば、 ヘリ ウムガスは、 所定周期で上下に移動する第 1 ディスプ レーザ 4 2に内蔵した第 1蓄冷材 4 3内を第 1膨張室 4 1 に向かって流 れ、 蓄冷材の冷熱で冷却される。 第 1蓄冷材 4 3 としては、 例えば、 銅 の金網にて構成する。 第 1膨張室 4 3に流入した低温高圧のヘリ ウムガ スの一部は、 さらに、 上下に移動する第 2ディ スプレーサ 9 5に内蔵し た第 2蓄冷材 9 6内を第 2膨張室 9 2に向かって流れ、 蓄冷材 9 6の冷 熱で冷却される。第 2蓄冷材 9 6 としては、例えば、鉛やエリ ビユウム · 二ッケル等の球形粒子を充填したものにて構成する。 第 1及び第 2ディ スプレーサ 4 2 · 9 5が上端部に移動し、 膨張容積がもつ とも大き く な つた時点で高圧ヘリ ゥムガスの供給を止め、 両膨張室内を圧縮機の低圧 流路に解放して、 これら膨張室内の高圧ヘリ ウムガスを一気に膨張させ る。 この時、 ヘリ ゥ厶ガスは寒冷を発生し、 膨張室に接続された第 1 ヒ 一トステージ 8及び第 2 ヒー 卜ステージ 9を冷却し、 低温低圧のへリ ゥ ムガスは蓄熱材 4 3及び 9 6を冷却しながら加温されほぼ常温となつて 圧縮機 5の低圧回路に流入する。 この時、 両ディ スプレーサは下端部ま で移動し膨張室容積をもっとも小さ く して膨張室内の低圧へリ ゥムガス を排出して 1サイクルを終了する。 このようにこのギフオー ド · マクマ フォ ン膨張機 4は独立した二つの膨張機によって構成されているといえ る。 Fig. 2 shows a typical Gifford McMaffon expander as a mechanical expander. The same reference numerals as those in FIG. 1 indicate the same components. The expander 4 has a first expansion chamber 41 and a second expansion chamber 92, and these expansion chambers have a two-stage series configuration. The volume of the first expansion chamber 41 having a higher temperature level is larger than that of the second expansion chamber 92 having a lower temperature level. A working fluid at normal temperature and high pressure supplied from the compressor 5 at normal temperature, for example, helium gas, flows through a first cold storage material 43 incorporated in a first disposable laser 42 moving up and down at a predetermined cycle in a first expansion chamber. It flows toward 4 1 and is cooled by the cold energy of the cold storage material. The first cold storage material 43 is made of, for example, a copper wire mesh. A part of the low-temperature and high-pressure helium gas flowing into the first expansion chamber 43 further flows into the second cold storage material 96 built in the second displacer 95 that moves up and down. And is cooled by the cold heat of the cold storage material 96. The second regenerative material 96 is made of, for example, a material filled with spherical particles such as lead and erbium nickel. When the first and second displacers 42, 95 move to the upper end and the expansion volume increases, the supply of high-pressure helium gas is stopped, and both expansion chambers are released to the low-pressure flow path of the compressor. Then, the high-pressure helium gas in these expansion chambers is expanded at a stretch. At this time, the helium gas generates cold and the first heat connected to the expansion chamber. The first stage 8 and the second heat stage 9 are cooled, and the low-temperature and low-pressure heat gas is heated while cooling the heat storage materials 43 and 96 and reaches almost normal temperature and flows into the low-pressure circuit of the compressor 5. I do. At this time, both displacers move to the lower end to minimize the volume of the expansion chamber, exhaust the bleed gas to a low pressure in the expansion chamber, and complete one cycle. In this way, it can be said that the Gifford-Macmaphon expander 4 is composed of two independent expanders.
各膨張室での寒冷発生量は膨張前後のへリ ゥ厶ガスの圧力差と膨張室 容積でほぼ決定されるため、 膨張容積の大きい第 1膨張室 4 1 における 寒冷発生量は第 2膨張室における寒冷発生量より 5倍から 1 0倍大き く なる。 このため、 所定の熱量 (この場合ヒーター 2 7の発生熱量及び超 電導体 2 3が発生した熱量の和) を第 1 ヒー トステージ 8で冷却する場 合の第 2 ヒー トステージ 9の温度上昇は、 同じ熱量を第 2 ヒー 卜ステー ジ 9で冷却する場合の第 2 ヒー トステージ 9の温度上昇に比べて低くす るこ とができる。  Since the amount of cold generated in each expansion chamber is substantially determined by the pressure difference between the before and after expansion of the helium gas and the volume of the expansion chamber, the amount of cold generated in the first expansion chamber 41 having a large expansion volume is determined by the second expansion chamber. 5 to 10 times larger than the amount of cold generated in Therefore, when a predetermined amount of heat (in this case, the sum of the amount of heat generated by the heater 27 and the amount of heat generated by the superconductor 23) is cooled by the first heat stage 8, the temperature of the second heat stage 9 rises. In the case where the same amount of heat is cooled by the second heat stage 9, the temperature can be reduced as compared with the temperature rise of the second heat stage 9.
以上本実施例によれば、 構成上二つの膨張機からなるギフオー ド · マ クマフ ォ ン膨張機 4の高温側 (第 1 ヒー トステージ 8 ) で超電導スィ ッ チ 2 6を冷却するように構成したので、低温側(第 2 ヒー 卜ステージ 9 ) に熱的に接続されている超電導磁石のクェンチを防止するこ とができる。 ちなみに、 超電導スィ ツチ 2 6の超電導体 2 3が高温側で超伝導状態 を示す理由は、 この超電導体 2 3がビスマス系の高温超電導体で構成し As described above, according to the present embodiment, the superconducting switch 26 is cooled on the high-temperature side (first heat stage 8) of the Gifford / Macmaphon expander 4 composed of two expanders. Therefore, quenching of the superconducting magnet thermally connected to the low-temperature side (second heat stage 9) can be prevented. Incidentally, the reason that the superconductor 23 of the superconducting switch 26 shows a superconducting state at the high temperature side is that the superconductor 23 is made of a bismuth-based high-temperature superconductor.
7"こためでめる。 7 "
なお、 本実施例では伝熱体 1 7を銅で製作したが銅より も熱電導率が 小さい真ちゆう製でもよく 、 ヒータ 2 7の小さい熱負荷で伝熱体 1 7の 温度が超電導発生温度より も高く なるよう に、 電気絶縁材 2 4、 伝熱体 1 7の材質、 形状を決定すればよい。  In this embodiment, the heat transfer member 17 is made of copper. However, the heat transfer member 17 may be made of Machiyu having a lower thermal conductivity than copper. The material and shape of the electric insulating material 24 and the heat transfer member 17 may be determined so as to be higher than the temperature.
このように構成された超電導磁石は、 核磁気共鳴装置に利用される他、 以下に略説するような水の中からァォコや赤潮の元となるプランク ト ン などを分離する磁気分離フイルクにも利用される。 真空槽 3の内側の室 温ボア一 3 b内に超電導磁石 1が作る磁場空間を利用して、室温ボア一 3 b内側に流路 3 cを設け、 この流路内に磁性材で作られた金網等の磁性フ ィルタ 3 dを配置する。 このようにすると、 磁性フィルタ 3 dの表面には 超電導磁石 1が作る磁場により、 大きな磁気勾配が生じ流路内を流れる 流体に混在した磁性粒子を捕捉し流体を浄化できる。 このような流体と しては、 例えば、 磁性粒子と不純物を凝縮剤等で一体化したフロックを 含む汚水、 個体磁性物を含む工業用排水、 磁性鉱物を含む水流、 磁性粒 子を含む気体等がある。 The superconducting magnet constructed in this way is used for nuclear magnetic resonance equipment, and is also used as a plankton, which is the source of aqua and red tide, in water as outlined below. It is also used as a magnetic separation film for separating such as. Utilizing the magnetic field space created by the superconducting magnet 1 in the room temperature bore 3 b inside the vacuum chamber 3, a flow path 3 c is provided inside the room temperature bore 3 b and made of magnetic material in this flow path. A magnetic filter 3d such as a wire mesh is placed. By doing so, a large magnetic gradient is generated on the surface of the magnetic filter 3d by the magnetic field generated by the superconducting magnet 1, so that magnetic particles mixed in the fluid flowing in the flow path can be captured and the fluid can be purified. Such fluids include, for example, sewage containing flocs in which magnetic particles and impurities are integrated with a condensing agent, industrial wastewater containing solid magnetic substances, water flow containing magnetic minerals, gas containing magnetic particles, etc. There is.
したがって、 本電導冷却型超電導磁石システムでは、 永久電流維持モ 一ドで運転される伝導冷却型超電導磁石で使用し得る安定な超電導スィ ツチを有した伝導冷却型超電導磁石システムを提供できる。  Therefore, the present conduction-cooled superconducting magnet system can provide a conduction-cooled superconducting magnet system having a stable superconducting switch that can be used in the conduction-cooled superconducting magnet operated in the permanent current maintaining mode.
第 3図は本発明になる他の実施例を示すもので、 第 1図に示した実施 例と異なる点は、 第 1図において超電導スィ ツチ 2 6を構成する要素で ある U字型の超電導体 2 3をほぼ直線型の超電導体 3 0で構成した点に ある。 超電導体 2 3は電気絶縁材 2 7 a、 熱移動制御体 2 7 c、 およびヒ 一ター 2 7 bを介して伝熱体 1 7に固定されている。超電導体 2 3を、例 えば、 ビスマス系の高温超電導体で構成する場合、 導体が非常に脆いの で U字型に加工すると内部に亀裂等が発生し安定に超電導状態を維持で きない。 したがって、 本実施例のように超電導体 2 3を直線型に構成す ることにより信頼性が高い超電導スィツチを有した伝導冷却型超電導磁 石システムを提供することができる。  FIG. 3 shows another embodiment according to the present invention, which is different from the embodiment shown in FIG. 1 in that a U-shaped superconducting element which is a component of the superconducting switch 26 in FIG. The point is that the body 23 is constituted by a substantially linear superconductor 30. The superconductor 23 is fixed to the heat transfer member 17 via an electric insulating material 27a, a heat transfer control member 27c, and a heater 27b. When the superconductor 23 is made of, for example, a bismuth-based high-temperature superconductor, the conductor is very brittle, so if it is processed into a U-shape, cracks and the like will be generated inside and the superconducting state cannot be stably maintained. Therefore, by forming the superconductor 23 in a linear shape as in the present embodiment, it is possible to provide a conduction-cooled superconducting magnet system having a highly reliable superconducting switch.
第 4図は本発明になる他の実施例を示すもので、 第 1図に示した実施 例と異なる点は、 膨張機を 2台使用して超電導磁石 1 と超電導スィ ッチ 2 6の構成要素の超電導体 2 3を別々に冷却するようにした所にある。 超電導磁石 1を第 1 の膨張機 4 aの第 2段ヒー トステーショ ン 9 a (最も 低温) で超電導発生温度以下に冷却する。  FIG. 4 shows another embodiment of the present invention. The difference from the embodiment shown in FIG. 1 is that the configuration of the superconducting magnet 1 and the superconducting switch 26 using two expanders is shown. This is where the superconductors 23 of the element are cooled separately. The superconducting magnet 1 is cooled to a temperature lower than the superconducting temperature at the second heat station 9a (lowest temperature) of the first expander 4a.
銅製の伝熱体 1 7、 電気絶縁材 1 8、 母線 1 9の端部、 超電導体 2 3、 電気絶縁材 2 4、 伝熱体 2 5、 電気絶縁材 2 6、 ヒーター 2 7と銅製の 熱シールド板 3 0を膨張機 4 bの第 1段ヒー 卜ステーショ ン 8 b (最も高 温) で冷却し、 母線 1 9の他端、 銅製の伝熱体 2 0、 電気絶縁材 2 1、 母線 2 2の端部 (これらは第 1段ヒー トステーショ ン 8 bの温度で超電 導状態を示す超電導体で形成する)を第 2段ヒー 卜ステーショ ン 9 b (第 2段ヒー トステーショ ン 9 aとほぼ同温) で冷却する。 Copper heat conductor 17, electrical insulation 18, end of bus 19, superconductor 23, The electrical insulation material 24, the heat transfer material 25, the electrical insulation material 26, the heater 27, and the copper heat shield plate 30 are connected to the first stage heating station 8b (highest temperature) of the expander 4b. After cooling, the other end of bus 19, copper heat conductor 20, electrical insulation 21 and end of bus 22 (these are superconducting at the temperature of the first stage heat station 8b). Is cooled at the second-stage heat station 9b (at substantially the same temperature as the second-stage heat station 9a).
本実施例によれば、 第 1図に示した実施例と比べて、 超電導スィッチ 2 6を超電導磁石 1 とは熱的に完全に独立した二つの冷却装置 (膨張機 4 a, 4 b)により個別に冷却することができるので、超電導磁石 1への電 流リ一ド線を通る伝導伝熱による侵入熱を膨張機 4 bで冷却でき、超電導 スィ ツチが 「0FF」 状態のときでも、 膨張機 4 aで冷却する超電導磁石 1 の温度を超電導発生温度以下に安定に冷却して超電導状態を安定に維持 できる効果がある。  According to this embodiment, compared to the embodiment shown in FIG. 1, the superconducting switch 26 is provided by two cooling devices (expanders 4a and 4b) that are thermally completely independent of the superconducting magnet 1. Since the cooling can be performed individually, the heat that enters the superconducting magnet 1 due to conduction heat conduction through the current lead wire can be cooled by the expander 4b, and the expansion can be performed even when the superconducting switch is in the `` 0FF '' state. This has the effect that the temperature of the superconducting magnet 1 cooled by the machine 4a can be stably cooled below the superconducting generation temperature and the superconducting state can be maintained stably.
なお、 本実施例では、 膨張機 4 a、 4 bへのヘリウムガスの供給は圧縮 機 5から行う力 別々に圧縮機を配置しても同様な効果があり、 圧縮機 を別々の圧縮機を配置することにより、膨張機 4 bの熱負荷変動の影響に よるヘリ ゥムガス圧力の影響を膨張機 4 aが受けなくなるので、膨張機 4 aで冷却する超電導磁石 1の温度を超電導発生温度以下にさらに安定に 冷却して超電導状態を安定に維持できる効果がある。  In the present embodiment, the supply of helium gas to the expanders 4a and 4b is performed by the compressor 5. The same effect can be obtained even if separate compressors are provided. By arranging, the expander 4a is no longer affected by the heavier gas pressure due to the thermal load fluctuation of the expander 4b, so that the temperature of the superconducting magnet 1 cooled by the expander 4a is lower than the superconducting temperature. This has the effect that the superconducting state can be maintained stably by cooling more stably.
第 5図は本発明になる他の実施例を示すもので、 第 4図に示した実施 例と異なる点は、 膨張機を 2台使用して超電導磁石 1 と超電導スィツチ 2 6の構成要素の超電導体 2 3を別々に冷却する様にした点である。 こ れにより、 超電導スィツチ 2 6内の超電導体 2 3の超電導発生温度を超 電導磁石 1 の超電導発生温度より高く、 かつ母線 1 9の超電導発生温度 より低くなるようにした。例えば、超電導磁石 1をニオブ 'チタン系( 4 Kで超電導状態) の超電導導体で製作し、 母線 1 9をビスマス系 ( 8 0 Kで超電導状態) の高温超電導導体で製作し、 超電導スィ ツチ 2 6内の 超電導体 2 3をニオブ ' スズ系 ( 2 0 Kで超電導状態) 超電導導体で製 作する。 FIG. 5 shows another embodiment according to the present invention. The difference from the embodiment shown in FIG. 4 is that the components of the superconducting magnet 1 and the superconducting switch 26 using two expanders are used. The point is that the superconductors 23 are separately cooled. Thus, the superconducting temperature of superconductor 23 in superconducting switch 26 was set to be higher than the superconducting temperature of superconducting magnet 1 and lower than the superconducting temperature of bus 19. For example, the superconducting magnet 1 is made of a niobium-titanium-based (superconducting state at 4 K) superconductor, the busbar 19 is made of a bismuth-based (superconducting state at 80 K) high-temperature superconducting conductor, and the superconducting switch 2 is manufactured. The superconductor 23 in 6 is made of a niobium-tin-based (superconducting state at 20 K) superconducting conductor Make.
最も低温を発生する第 1 の膨張機 4 aの第 2段ヒー 卜ステーショ ン 9 a で超電導磁石 1 を超電導発生温度以下に冷却する。 第 4図で示した超電 導スィ ツチのヒーター用外部電源 2 8 と リー ド線 2 9、 および圧縮機 5、 配管 6、 7は図示していない。第 2段ヒー 卜ステーショ ン 9 aの次に低温 を発生する第 2の膨張機 4 bの第 2段ヒー トステーショ ン 9 bで超電導ス イ ッチ 2 6を冷却し、最も高温を発生する第 2の膨張機 4 bの第 1段ヒー トステーショ ン 8 bで銅製の熱シールド板 3 0を冷却する。第 1 の膨張機 4 aの第 1段ヒー トステーショ ン 8 aで銅製の伝熱体 1 7、 電気絶縁材 1 8、 母線 1 9の端部、 銅製の熱シールド板 3 0を冷却し、 母線 1 9の他 端、 銅製の伝熱体 2 0、 電気絶縁材 2 1、 母線 2 2 aの端部を第 2段ヒー トステ一ショ ン 9 aで冷却する。 母線 2 2 bと超電導スィ ツチ 2 6内の超 電導体 2 3は同材質の超電導導体で製作し、 これらは第 1段ヒ一 トステ —シヨ ン 9 bの温度で超電導状態になる超電導体で形成される。  The superconducting magnet 1 is cooled below the superconducting generation temperature at the second-stage heat station 9a of the first expander 4a that generates the lowest temperature. The external power supply 28 and the lead wire 29 for the heater of the superconducting switch shown in FIG. 4, the compressor 5, and the pipes 6 and 7 are not shown. The second superheater switch 26 is cooled by the second heat station 9b of the second expander 4b that generates the next lowest temperature after the second heat station 9a, and the highest temperature is generated. The heat shield plate 30 made of copper is cooled by the first-stage heat station 8b of the second expander 4b. In the first stage 4a of the first expander 4a, the copper heat transfer body 17, electric insulating material 18, the end of the busbar 19, and the copper heat shield plate 30 are cooled by the first-stage heat station 8a. The other end of the bus 19, the copper heat conductor 20, the electrical insulating material 21, and the end of the bus 22a are cooled by the second-stage heat station 9a. The bus bar 2 2b and the superconductor 23 in the superconducting switch 26 are made of the same superconductor, and these are superconductors that become superconductive at the temperature of the first stage heater 9b. It is formed.
本実施例によれば、 超電導スィ ツチが 「0FF」状態のとき加熱されるヒ 一夕 2 7の熱負荷は、 第 2冷凍機 4 bの第 2段ヒー トステーショ ン 9 bで 吸収されるので、 第 1冷凍機 4 aへの影響は少なく、 第 1冷凍機 4 aの第 2段ヒー トステーショ ン 9 aの温度上昇は小さ く 、超電導磁石 1 の温度も 極低温状態を維持できる。 したがって、 超電導スィ ツチが 「0FF」 状態の ときでも、 超電導磁石 1 の温度を超電導発生温度以下に安定に冷却でき 超電導状態を維持できる効果がある。 また、 第 2のヒー トステーショ ン 9 bは温度 4 Kまで冷却する必要がないので(超電導スィ ッチ 2 6の超電 導体 2 3及び母線 2 2をニオブ · スズ系で構成) 冷凍機を安価にするこ とができる。  According to this embodiment, the heat load of the heater 27 heated when the superconducting switch is in the “0FF” state is absorbed by the second-stage heat station 9 b of the second refrigerator 4 b. Therefore, the influence on the first refrigerator 4a is small, the temperature rise of the second-stage heat station 9a of the first refrigerator 4a is small, and the temperature of the superconducting magnet 1 can be maintained at a very low temperature. Therefore, even when the superconducting switch is in the “0FF” state, there is an effect that the temperature of the superconducting magnet 1 can be stably cooled below the superconducting generation temperature and the superconducting state can be maintained. Also, since the second heat station 9b does not need to be cooled to a temperature of 4 K (the superconductor 23 and the bus 22 of the superconducting switch 26 are composed of a niobium-tin system). It can be cheap.
第 6図は本発明になる他の実施例を示すもので、 第 5図に示す実施例 と異なる点は、 膨張機を 2台使用して超電導磁石 1 と超電導スィ ツチ 2 6の構成要素の超電導体 2 3を別々に冷却する様にし、 超電導体 2 3 と 母線 1 9、 母線 2 2をビスマス系の高温超電導導体で製作し、 超電導体 2 3を第 2の膨張機 4 bの第 1段ヒー 卜ステーショ ン 8 bで冷却するよう にした点である。 FIG. 6 shows another embodiment according to the present invention. The difference from the embodiment shown in FIG. 5 is that the components of the superconducting magnet 1 and the superconducting switch 26 using two expanders are used. The superconductors 23 are cooled separately, and the superconductors 23, busbars 19, and busbars 22 are made of bismuth-based high-temperature superconductors. The point is that 23 is cooled by the first stage heating station 8b of the second expander 4b.
また、同じ第 1段ヒー トステーショ ン 8 bで銅製の熱シールド板 3 0を 冷却する。第 2膨張機は第 1段ヒー トステーショ ン 8 bのみで第 2段ヒー トステーショ ンを有しない。  Also, the heat shield plate 30 made of copper is cooled by the same first-stage heat station 8b. The second expander has only the first-stage heat station 8b and does not have the second-stage heat station.
本実施例によれば、 超電導スィ ツチ 2 6が 「0FF」状態のとき加熱され る ヒータ 2 7の熱負荷は、第 2冷凍機 4 bの第 1段ヒー 卜ステーショ ン 8 bで吸収されるので、 第 1冷凍機 4 aへの影響は少なく、 最も低温を発生 する第 1冷凍機 4 aの第 2段ヒー 卜ステーショ ン 9 aの温度上昇は小さ く , 熱伝導体 1 0 a及び熱伝導板 1 O bを介して冷却される超電導磁石 1 の温 度も極低温状態を維持できる。 したがって、超電導スィ ツチ 2 6力 「0FF」 状態のときでも、 超電導磁石 1 の温度を超電導発生温度以下に安定に冷 却でき超電導状態を維持できる効果がある。 また、 第 2膨張機 4bは第 1 段ヒー 卜ステーショ ン 8 bのみで第 2段ヒー 卜ステーシ ョ ンが無いので、 第 2膨張機 4bの圧縮機は処理流量が少なくて済み、 圧縮機を駆動する電 力を小さ くできる効果がある。  According to the present embodiment, the heat load of the heater 27, which is heated when the superconducting switch 26 is in the “0FF” state, is absorbed by the first-stage heat station 8b of the second refrigerator 4b. Therefore, the influence on the first refrigerator 4a is small, and the temperature rise in the second-stage heat station 9a of the first refrigerator 4a, which generates the lowest temperature, is small, and the heat conductor 10a and heat The temperature of the superconducting magnet 1 cooled through the conductive plate 1 Ob can also be maintained at a very low temperature. Therefore, even when the superconducting switch 26 is in the “0FF” state, the temperature of the superconducting magnet 1 can be cooled stably below the superconducting generation temperature and the superconducting state can be maintained. Also, since the second expander 4b has only the first-stage heat station 8b and no second-stage heat station, the compressor of the second expander 4b requires a small processing flow rate, and the compressor can be used. This has the effect of reducing the driving power.
第 7図は本発明になる他の実施例を示すもので、 第 2図に示した実施 例とと異なる点は、 超電導スィ ツチの構成要素である超電導体 2 3の超 電導状態を壊す手段として、 ヒーター 2 7の代わりに、 超電導体 2 3 と 同材質の小型の超電導コイル 3 1 を使用する点にある。 超電導コイル 3 1 はエポキシ系樹脂 3 2等でモール ドされ熱移動制御体 2 7 cを介して 伝熱体 1 7に固定され、 超電導コイル 3 1 は第 1段ヒー トステーショ ン 8で冷却され常に超電導状態を維持できる。 また、 スィ ッチ用の超電導 コイル 3 1 は外部電源 3 3 と母線 3 4で接続されている。  FIG. 7 shows another embodiment of the present invention, which is different from the embodiment shown in FIG. 2 in that means for breaking the superconducting state of the superconductor 23, which is a component of the superconducting switch. The point is that a small superconducting coil 31 made of the same material as the superconductor 23 is used instead of the heater 27. The superconducting coil 31 is molded with an epoxy resin 32 or the like and fixed to the heat transfer member 17 via the heat transfer control member 27c.The superconducting coil 31 is cooled by the first-stage heat station 8. The superconducting state can always be maintained. The superconducting coil 31 for the switch is connected to an external power supply 33 by a bus 34.
超電導スィ ツチを 「0FF」 状態とするとき、 超電導コイル 3 1 に外部電 源 3 3から給電されると、 超電導体 2 3を直角に横切る磁場が発生し、 磁場内にある超電導体 2 3の超電導状態が壊れ常電導状態となって電気 抵抗が生じる。 この場合、 この電気抵抗により熱は発生するが、 ヒータ による熱負荷は生じないので、 冷凍機 4の第 1段ヒー トステーショ ン 8 の温度変動はさ らに少なく なる。 このため、 第 2段ヒー トステーショ ン 9の温度上昇もさらに小さ く、 超電導磁石 1の温度も極低温状態を維持 するでき、 クェンチを防止することができる。 したがって、 超電導スィ ツチが 「0FF」状態のときでも、 超電導磁石 1 の温度を超電導発生温度以 下に安定に冷却でき超電導状態を維持できる効果がある。 超電導スィ ッ チが 「0N」 時は、 外部電源 3 3からの給電止め、 超電導コイル 3 1で発 生する磁場を無くす。 超電導体 2 3を直角に横切る磁場が無くなるこ と によって、 超電導体 2 3は再び超電導状態となり、 永久電流が流れる。 なお、 以上説明した実施例では、 機械式膨張機の一例として、 ギフォ 一ド · マクマフォ ン式を代表して説明したが、 本発明はこれに限らず低 温側と高温側が異なる冷凍機で構成されたものであれば、 例えば、 ソル ベ式、 スターリ ング式、 パルス管式であっても適用するこ とができる。 When the superconducting switch is set to the “0FF” state, when power is supplied to the superconducting coil 31 from the external power supply 33, a magnetic field crossing the superconductor 23 at right angles is generated, and the superconductor 23 in the magnetic field is generated. The superconducting state breaks down to the normal conducting state, causing electrical resistance. In this case, heat is generated by this electric resistance, but the heater As a result, the temperature fluctuation of the first-stage heat station 8 of the refrigerator 4 is further reduced. For this reason, the temperature rise of the second-stage heat station 9 is further reduced, and the temperature of the superconducting magnet 1 can be maintained at an extremely low temperature, thereby preventing quenching. Therefore, even when the superconducting switch is in the “0FF” state, there is an effect that the temperature of the superconducting magnet 1 can be cooled stably below the superconducting generation temperature and the superconducting state can be maintained. When the superconducting switch is “0N”, the power supply from the external power supply 33 is stopped and the magnetic field generated by the superconducting coil 31 is eliminated. When the magnetic field crossing the superconductor 23 at right angles disappears, the superconductor 23 becomes superconductive again, and a permanent current flows. In the above-described embodiment, a gifford / macmaphon type was described as an example of the mechanical expander. However, the present invention is not limited to this, and is configured by a refrigerator having different low-temperature side and high-temperature side. As long as the method is used, for example, a solver type, a starling type, or a pulse tube type can be applied.
また、 上記説明した実施例では、 超電導磁石および超電導スィ ッチを 冷凍機で冷却する場合で説明したが、 超電導磁石を温度 4. 2Kの液体ヘリ ゥムで冷却し、超電導スィ ツチを温度 77. 4Kの液体窒素、すなわち温度レ ベルが異なる複数の寒剤で冷却する場合においても、 超電導スィ ツチの 開閉時に、 温度が低い側の寒剤、 すなわち潜熱が小さい方の寒剤の消費 量を低減でき、 超電導磁石を安定に冷却できる効果がある。  In the above-described embodiment, the case where the superconducting magnet and the superconducting switch are cooled by a refrigerator has been described. However, the superconducting magnet is cooled by a 4.2 K temperature liquid crystal, and the superconducting switch is cooled to a temperature of 77 K. Even when cooling with 4K liquid nitrogen, that is, multiple refrigerants with different temperature levels, it is possible to reduce the consumption of the refrigerant on the lower temperature side, that is, the refrigerant with smaller latent heat, when opening and closing the superconducting switch. There is an effect that the superconducting magnet can be cooled stably.
本発明によれば、 超電導スィ ッチは超電導発生温度が超電導磁石の超 電導発生温度より高い冷却ステーシヨ ンで冷却できるので、 超電導磁石 に結合したより温度の低い冷却ステーショ ンの熱負荷は小さ くなり、 超 電導スィ ッチ OFF時に超電導磁石の温度が上昇せず、超電導磁石の超電導 状態を保持するこ とができる。  According to the present invention, since the superconducting switch can be cooled by the cooling station whose superconducting generation temperature is higher than the superconducting generation temperature of the superconducting magnet, the heat load of the lower temperature cooling station coupled to the superconducting magnet is small. Thus, the temperature of the superconducting magnet does not rise when the superconducting switch is turned off, and the superconducting state of the superconducting magnet can be maintained.
また、 スィ ッチ用超電導磁石で超電導体の超電導状態が壊れる磁場を 発生させることによって、 超電導スィ ッチを OFFに操作できる。 この時、 スイ ツチ用超電導磁石の熱負荷は、 超電導磁石の超電導発生温度より高 い冷却ステーシヨ ンで冷却できるので、 超電導磁石に結合したより温度 の低い冷却ステーシヨ ンの熱負荷は小さ くなり、超電導スィッチ OFF時に 超電導磁石の温度が上昇せず、 超電導磁石の超電導状態を保持すること ができる。 The superconducting switch can be turned off by generating a magnetic field that breaks the superconducting state of the superconductor with the superconducting magnet for the switch. At this time, the heat load of the superconducting magnet for the switch can be cooled by a cooling station higher than the superconducting temperature of the superconducting magnet. The heat load of the low cooling station is small, the temperature of the superconducting magnet does not rise when the superconducting switch is turned off, and the superconducting state of the superconducting magnet can be maintained.

Claims

請求の範囲 The scope of the claims
1 .超電導磁石と、 この超電導磁石に接続され電流を供給する電源と、前 記超電導磁石に並列接続された超電導スィツチと、 前記超電導磁石と前 記超電導スィッチとを冷却する冷却手段とを備えた超電導システムにお いて、 前記冷却手段は、 前記超電導磁石と前記超電導スィッチとを個別 に冷却する手段である超電導システム。  1.A superconducting magnet, a power supply connected to the superconducting magnet and supplying a current, a superconducting switch connected in parallel to the superconducting magnet, and cooling means for cooling the superconducting magnet and the superconducting switch. In the superconducting system, the cooling means is a means for individually cooling the superconducting magnet and the superconducting switch.
2 .請求項 1において、前記個別に冷却する手段は、複数温度レベルの冷 却部位を有する冷却手段であり、 前記超電導磁石を冷却する冷却部位よ りも、 前記超電導スィッチを冷却する冷却部位の冷却温度を高い冷却部 位で冷却する超電導磁石システム。  2.In claim 1, the means for individually cooling is a cooling means having a plurality of cooling levels at a plurality of temperature levels, and a cooling section for cooling the superconducting switch, rather than a cooling section for cooling the superconducting magnet. A superconducting magnet system that cools the cooling temperature with a high cooling unit.
3 .請求項 2において、前記超電導スィツチを前記超電導磁石よりも高い 温度で超電導状態になる物質で生成した超電導システム。  3. The superconducting system according to claim 2, wherein the superconducting switch is made of a substance that becomes superconducting at a higher temperature than the superconducting magnet.
4 .請求項 1 において、前記超電導スィ ツチに用いられる超電導状態から 常電導状態に移行させる手段は、 ヒーターである超電導システム。  4. The superconducting system according to claim 1, wherein the means for shifting from the superconducting state used for the superconducting switch to the normal conducting state is a heater.
5 . 請求項 1 において、 前記超電導スィ ッチに用いられる超電導状態か ら常電導状態に移行させる手段は、 磁界を発生させる手段である超電導 システム。  5. The superconducting system according to claim 1, wherein the means for shifting the superconducting state used in the superconducting switch to the normal conducting state is a means for generating a magnetic field.
6 . 超電導磁石と、 この超電導磁石に接続され電流を供給する電源と、 前記超電導磁石に並列接続された超電導スィ ッチと、 前記超電導磁石と 前記超電導スィ ッチとを冷却する冷却手段とを備えた超電導システムに おいて、 前記冷却手段は、 複数温度レベルの冷却部位を有するものであ り、 この冷却手段の冷却温度が最も低い第 2の冷却部位よりも冷却温度 が高い第 1の冷却部位で超電導磁石に給電する母線の一部を冷却し、 こ の第 1の冷却部位よりも温度が低い領域にある前記母線を前記第 1の冷 却部位の温度で超電導状態を維持する超電導体で形成し、 前記超電導ス ィツチの導電体を前記第 1の冷却部位の温度で超電導状態を維持する超 電導体で形成し、 この超電導スィ ツチを前記第 2の冷却部位より も温度 が高い部位にかつ前記母線間を短絡するように構成した超電導磁石シス テム。 6. A superconducting magnet, a power supply connected to the superconducting magnet and supplying a current, a superconducting switch connected in parallel to the superconducting magnet, and a cooling means for cooling the superconducting magnet and the superconducting switch. In the superconducting system provided, the cooling means has a plurality of cooling levels, and the first cooling means has a cooling temperature higher than a second cooling part having the lowest cooling temperature of the cooling means. A superconductor that cools a part of the bus that supplies power to the superconducting magnet at the portion, and maintains the bus in a region where the temperature is lower than the first cooling portion at a temperature of the first cooling portion. And the conductor of the superconducting switch is formed of a superconductor that maintains a superconducting state at the temperature of the first cooling portion, and the superconducting switch has a temperature lower than that of the second cooling portion. A superconducting magnet system configured to short-circuit between the buses at a location where the temperature is high.
7 . 超電導磁石と、 この超電導磁石に接続され電流を供給する電源と、 前記超電導磁石に並列接続された超電導スィツチと、 前記超電導磁石と 前記超電導スィ ッチとを冷却する冷却手段とを備えた超電導システムに おいて、 前記冷却手段は、 複数温度レベルの冷却部位を有するものであ り、 この冷却手段の冷却温度が最も低い第 2の冷却部位より も冷却温度 が高い第 1の冷却部位で超電導磁石に給電する母線の一部を冷却し、 こ の第 1の冷却部位より も温度が低い領域にある前記母線をこの第 1の冷 却部位の温度で超電導状態を維持できる超電導体で形成し、 前記超電導 スィ ツチの導電体を前記第 1の冷却部位よりも温度が低くかつ前記第 2 の冷却部位よりも温度が高い第 3の冷却部位の温度で超電導状態を維持 できる超電導体で形成し、 前記超電導スィツチをこの第 3の冷却部位で 冷却し、 前記母線間を短絡するように構成した超電導磁石システム。  7. A superconducting magnet, a power supply connected to the superconducting magnet and supplying a current, a superconducting switch connected in parallel to the superconducting magnet, and a cooling means for cooling the superconducting magnet and the superconducting switch. In the superconducting system, the cooling means has a cooling portion having a plurality of temperature levels, and the first cooling portion has a higher cooling temperature than the second cooling portion having the lowest cooling temperature of the cooling means. A part of the bus that supplies power to the superconducting magnet is cooled, and the bus in a region where the temperature is lower than the first cooling part is formed of a superconductor that can maintain a superconducting state at the temperature of the first cooling part. The conductor of the superconducting switch is formed of a superconductor that can maintain a superconducting state at a temperature of a third cooling portion having a lower temperature than the first cooling portion and a higher temperature than the second cooling portion. And, wherein the superconducting Suitsuchi cooled in this third cooling region, the superconducting magnet system configured to short-circuit between the bus bars.
PCT/JP1995/001876 1995-09-20 1995-09-20 Superconducting magnet system WO1997011472A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP09512564A JP3107228B2 (en) 1995-09-20 1995-09-20 Superconducting magnet system
PCT/JP1995/001876 WO1997011472A1 (en) 1995-09-20 1995-09-20 Superconducting magnet system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/001876 WO1997011472A1 (en) 1995-09-20 1995-09-20 Superconducting magnet system

Publications (1)

Publication Number Publication Date
WO1997011472A1 true WO1997011472A1 (en) 1997-03-27

Family

ID=14126279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001876 WO1997011472A1 (en) 1995-09-20 1995-09-20 Superconducting magnet system

Country Status (2)

Country Link
JP (1) JP3107228B2 (en)
WO (1) WO1997011472A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140398A1 (en) * 2009-06-05 2010-12-09 株式会社日立製作所 Refrigerator cooling-type superconducting magnet
JP2011082229A (en) * 2009-10-05 2011-04-21 Hitachi Ltd Conduction-cooled superconducting magnet
CN103247406A (en) * 2012-02-06 2013-08-14 三星电子株式会社 Cryocooler system and superconducting magnet apparatus having the same
WO2014096995A1 (en) * 2012-12-17 2014-06-26 Koninklijke Philips N.V. Low-loss persistent current switch with heat transfer arrangement
US20160116555A1 (en) * 2014-10-23 2016-04-28 Hitachi, Ltd. Superconducting Magnet, MRI Apparatus and NMR Apparatus
GB2586821A (en) * 2019-09-04 2021-03-10 Siemens Healthcare Ltd Current leads for superconducting magnets
WO2024072382A1 (en) * 2022-09-28 2024-04-04 General Electric Renovables España, S.L. Field charging system for a superconducting magnet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214588A (en) * 1985-03-20 1986-09-24 Hitachi Ltd Superconducting apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214588A (en) * 1985-03-20 1986-09-24 Hitachi Ltd Superconducting apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140398A1 (en) * 2009-06-05 2010-12-09 株式会社日立製作所 Refrigerator cooling-type superconducting magnet
CN102460610A (en) * 2009-06-05 2012-05-16 株式会社日立制作所 Refrigerator cooling-type superconducting magnet
JP2011082229A (en) * 2009-10-05 2011-04-21 Hitachi Ltd Conduction-cooled superconducting magnet
CN103247406A (en) * 2012-02-06 2013-08-14 三星电子株式会社 Cryocooler system and superconducting magnet apparatus having the same
WO2014096995A1 (en) * 2012-12-17 2014-06-26 Koninklijke Philips N.V. Low-loss persistent current switch with heat transfer arrangement
US10107879B2 (en) 2012-12-17 2018-10-23 Koninklijke Philips N.V. Low-loss persistent current switch with heat transfer arrangement
US9704630B2 (en) * 2014-10-23 2017-07-11 Hitachi, Ltd. Superconducting magnet, MRI apparatus and NMR apparatus
US20160116555A1 (en) * 2014-10-23 2016-04-28 Hitachi, Ltd. Superconducting Magnet, MRI Apparatus and NMR Apparatus
GB2586821A (en) * 2019-09-04 2021-03-10 Siemens Healthcare Ltd Current leads for superconducting magnets
WO2021043486A1 (en) * 2019-09-04 2021-03-11 Siemens Healthcare Limited Current leads for superconducting magnets
GB2586821B (en) * 2019-09-04 2022-04-13 Siemens Healthcare Ltd Current leads for superconducting magnets
US12073992B2 (en) 2019-09-04 2024-08-27 Siemens Healthcare Limited Current leads for superconducting magnets
WO2024072382A1 (en) * 2022-09-28 2024-04-04 General Electric Renovables España, S.L. Field charging system for a superconducting magnet

Also Published As

Publication number Publication date
JP3107228B2 (en) 2000-11-06

Similar Documents

Publication Publication Date Title
US5848532A (en) Cooling system for superconducting magnet
Mito et al. Achievement of high heat removal characteristics of superconducting magnets with imbedded oscillating heat pipes
CN101109583A (en) Cryogenically cooled equipment comprising current leads for electric equipment
US9072198B2 (en) Variable impedance device with integrated refrigeration
JPH09312210A (en) Cooling device and cooling method
CN102360711A (en) Superconducting magnetizer
JP3107228B2 (en) Superconducting magnet system
US20090086386A1 (en) Fault current limiter
JPH08222429A (en) Device for cooling to extremely low temperature
CN100375305C (en) Superconductive breaker
US7174737B2 (en) Refrigeration plant for parts of installation, which are to be chilled
US5563369A (en) Current lead
JPH10285792A (en) Current limiter
CN102985769A (en) Method and apparatus for electricity generation using electromagnetic induction including thermal transfer between vortex flux generator and refrigerator compartment
JP3450318B2 (en) Thermoelectric cooling type power lead
JP3377350B2 (en) Thermoelectric cooling type power lead
JP3020140B2 (en) Permanent current switch device for refrigerator cooled superconducting magnet
JP2022068403A (en) Variable magnetic field generation system and static magnetic refrigeration system using the same
Gromoll et al. Development of a 25 K Pulse Tube Refrigerator for Future HTS‐Series Products in Power Engineering
JP3725305B2 (en) Superconducting magnet cooling system
JPH09106909A (en) Conductive cooling superconducting magnet
US6286318B1 (en) Pulse tube refrigerator and current lead
JPH09106906A (en) Conductive cooling superconducting magnet
JPH10247753A (en) Superconducting device and control method thereof
JP3860070B2 (en) Thermoelectric cooling power lead

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase