WO2009098149A2 - Verfahren zur gewinnung olfaktorischer epithelzellen aus nicht-menschlichen embryonalen stammzellen - Google Patents

Verfahren zur gewinnung olfaktorischer epithelzellen aus nicht-menschlichen embryonalen stammzellen Download PDF

Info

Publication number
WO2009098149A2
WO2009098149A2 PCT/EP2009/050908 EP2009050908W WO2009098149A2 WO 2009098149 A2 WO2009098149 A2 WO 2009098149A2 EP 2009050908 W EP2009050908 W EP 2009050908W WO 2009098149 A2 WO2009098149 A2 WO 2009098149A2
Authority
WO
WIPO (PCT)
Prior art keywords
cells
olfactory
embryonic stem
concentration
stem cells
Prior art date
Application number
PCT/EP2009/050908
Other languages
English (en)
French (fr)
Other versions
WO2009098149A3 (de
Inventor
Daniela KEßLER-BECKER
Dirk Petersohn
Heribert Bohlen
Kristina JÖNSSON
Andreas Ehlich
Original Assignee
Henkel Ag & Co. Kgaa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Ag & Co. Kgaa filed Critical Henkel Ag & Co. Kgaa
Publication of WO2009098149A2 publication Critical patent/WO2009098149A2/de
Publication of WO2009098149A3 publication Critical patent/WO2009098149A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/062Sensory transducers, e.g. photoreceptors; Sensory neurons, e.g. for hearing, taste, smell, pH, touch, temperature, pain
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/11Epidermal growth factor [EGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/119Other fibroblast growth factors, e.g. FGF-4, FGF-8, FGF-10
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/19Growth and differentiation factors [GDF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/385Hormones with nuclear receptors of the family of the retinoic acid recptor, e.g. RAR, RXR; Peroxisome proliferator-activated receptor [PPAR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • C12N2502/1394Bone marrow stromal cells; whole marrow
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2503/00Use of cells in diagnostics
    • C12N2503/02Drug screening
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • C12N2533/32Polylysine, polyornithine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/52Fibronectin; Laminin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/90Substrates of biological origin, e.g. extracellular matrix, decellularised tissue

Definitions

  • the present invention relates to a method for obtaining olfactory epithelial cells from non-human embryonic stem cells, olfactory epithelial cells obtained by the method according to the invention and test systems for cosmetic and / or pharmaceutical preparations based on olfactory epithelial cells, which were obtained by the method according to the invention.
  • the sense of smell of a person greatly influences his perception of the environment and the quality of life. Certain odors can trigger memories of situations that are very long in time. The loss of the sense of smell significantly affects the quality of life: the odor information of the environment can no longer be perceived, and certain warning signals are switched off.
  • the first step in the perception of odors in mammals occurs at the level of the olfactory epithelium or olfactory epithelium.
  • the olfactory epithelium contains highly specialized neuroepithelial cells, so-called olfactory receptor neurons (ORN), which form receptor proteins in the membrane of their cilia, specifically bind to the odorants and trigger a biochemical signal cascade. This signal is transmitted electrochemically into the olfactory bulb and then into higher brain regions and processed into an olfactory impression.
  • ORN olfactory receptor neurons
  • the first step in binding an odor molecule is so important precisely because the molecular identity of the odorant molecule is translated into a pattern of activated receptor cells. This process, referred to as odorant coding (or odorant fingerprinting), allows an organism to distinguish an abundance of fragrances.
  • the most impressive feature of the sense of smell is the extremely high selectivity with which the olfactory organ can distinguish different olfactory sensory stimuli.
  • the human scent system for example, is able to differentiate about 10,000 odors, other species still outnumber this enormous number.
  • Research on mice has led to the discovery of a whole gene family containing the biochemical blueprints for -1,000 olfactory receptors. In humans, the number of functional olfactory receptor proteins is lower since more than 60% of these olfactory receptor genes are pseudogenes.
  • the proportion of genes coding for olfactory receptor proteins represents the largest gene family in the mammalian genome so far and thus reflects the importance of olfactory information for the organism.
  • One odor receptor protein is expressed exclusively in an individual olfactory neuron. This means that the olfactory system has ⁇ 1,000 separate input channels in the form of primary odor stimuli, which correspond to 1,000 subpopulations of the millions of olfactory neurons of the olfactory mucosa.
  • the primary odor stimuli recognized by the olfactory receptor proteins are thought to be specific surface features of odorous substances. These surface features detectable by the receptor proteins of the olfactory sensory cells are referred to as odotopes.
  • the structure of an odorant may contain more than one odotope and therefore theoretically be recognized by more than one odorant receptor.
  • the parallel detection of several odotopes of an odorant leads to the activation of an individual ensemble of olfactory neurons. This specific pattern of neuronal activity represents the odorant on the entrance level of the olfactory system.
  • Odorants are molecules of volatile substances that dissolve in the mucus over the olfactory epithelium. In this way, they get to the olfactory receptor proteins that are embedded in the membrane of olfactory cilia. Smelling cilia are cell processes of the olfactory neurons. 20-30 scenticles protrude into the olfactory mucus from a button-like distension at the tip of the apical dendrite of an olfactory neuron. The binding of an odotope to a receptor protein generates an action potential, which is transmitted via the axon of the olfactory neuron into the olfactory bulb, the first central processing station for the odor information.
  • Immortalized cell lines of neuroepithelial origin have a longer lifespan, however, no or only a limited endogenous expression of receptor proteins has been detected in all characterized lines, so that these cells rather as a recipient system for heterologously transfected receptor proteins rather than starting material for the construction of a screening system suitable for endogenous receptor expression.
  • fragrance molecules can shed light on which ligand-specific receptors are activated.
  • These individual odor codes can be used to characterize the fragrance, optimize biochemical fragrance compositions, or search for specific receptor antagonists to block unwanted odors.
  • the prerequisite for this is a biological test system that reflects the biochemical components of the mammalian olfactory epithelium.
  • the (endogenous) presence of a representative number of different scent receptors and the elements of the G protein-coupled signal cascade should be mentioned.
  • the test system used should provide standardized and reproducible results that are not dependent on the availability of donor organisms and individual expression variations.
  • test systems which correspond as closely as possible to the olfactory epithelium of mammals and avoid the disadvantages of the prior art mentioned.
  • embryonic stem cells can be differentiated in vitro to cells of the olfactory epithelium, which are suitable to be used in a desired test system.
  • the present invention therefore relates to a method for obtaining olfactory epithelial cells from non-human embryonic stem cells, which comprises a) cultivating embryonic stem cells, b) transfecting the embryonic stem cells with a suitable marker or a suitable combination of markers, c ) the embryonic stem cells by further culturing in the presence of inactivated stromal cells and subsequent sowing on coated culture carriers and further culturing in the presence of a suitable growth factor or a suitable combination of growth factors and / or in the presence of retinoic acid differentiated to cells of the olfactory epithelium and d) the successful differentiation in olfactory epithelial cells using the markers or combination of markers used in step b).
  • Embryonic stem cells are regenerative, pluripotent cells capable of forming any cell type of organism. Various differentiations into a specific cell type have been described in vitro. The respective ES cells are subjected to a specific differentiation protocol. The differentiation of ES cells into neuronal progenitor cells and mature neurons was described for the first time in 2001 (Reubinoff et al., Nature Biotechnology, 2001, 19, 1134-1140; Zhang et al., Nature Biotechnology, 2001, 19, 1129-1133 ).
  • a first specific differentiation protocol based on an improvement of the existing neuronal progenitor cell protocols is the generation of various neuronal subtypes from mouse embryonic stem cells (Barberi et al., Nat. Biotechnol., 2003, 21, 1200 1207). Targeted differentiation into cells of the olfactory epithelium has not yet been described.
  • olfactory epithelial cells from mouse embryonic stem cells offers a cost-effective and resource-saving alternative to classical cultivation and overexpression methods.
  • In vitro differentiation advantageously allows the provision of starting material for a true olfactory epithelium in vitro, which better reflects the situation in vivo than other cell culture models or artificial systems based on the heterologous expression of olfactory receptor proteins (OR). Due to their origin, the differentiated cells have endogenous protein expression patterns typical for olfactory epithelial cells, i. all important components of the signaling apparatus are endogenously present in the cells and the natural receptor potential is exploited. The cells are suitable for the construction of a screening system, but also the construction of tissue models (possibly also for transplantation) is possible.
  • embryonic stem cells from rodents does not rely on primary material since the starting material is commercially available and can be differentiated in the laboratory. Enrichment of a particular cell type by a suitable selection strategy minimizes individual differences.
  • the embryonic stem cells cultured in step a) of the method according to the invention may in principle be of any origin; It is preferred to use cells from already available embryonic stem cell lines. In the context of the present invention, however, human embryonic stem cells are explicitly excluded.
  • embryonic stem cells from mammals are cultured in step a), in particular those from mice, hamsters, rats, monkeys or dogs, particularly preferably from mice.
  • Very particularly preferred according to the invention are murine embryonic stem cells from the cell line ATCC ES-D3 (CRL-11632).
  • the cultivation time in step a) of the method according to the invention is 1 to 40 days, preferably 8 to 12 days.
  • the transfection of the embryonic stem cells in step b) of the method according to the invention is preferably carried out with a reporter construct and an antibiotic resistance under an OE-specific promoter, whereby the production of a pure culture is made possible, which can be identified as such by the detection of specific cell markers.
  • Particularly preferred markers for transfection in step b) are selected according to the invention from the following promoters: Olfactory Marker Protein (OMP), olfactory G protein (G alpha olf or GNAL), Adenylate Cyclase 3 (ADCY3) and olfactory receptor proteins.
  • OMP Olfactory Marker Protein
  • olfactory G protein G alpha olf or GNAL
  • ADCY3 Adenylate Cyclase 3
  • Olfactory receptor proteins olfactory receptor proteins
  • the cultivation time in step c) of the method according to the invention is 1 to 40 days, preferably 1 to 20 days.
  • the stromal cells used in step c) are preferably cells of the type
  • PA-6 or MS-5 in particular "MS-5 bone marrow stromal cells”.
  • the seed coating according to the invention on coated culture carriers in step c) is preferably carried out on biopolymer-coated culture dishes, in particular on culture dishes whose coating is selected from coatings with laminin / poly-ornithine, fibronectin, laminin,
  • Collagen type IV collagen type IV, collagen type I, poly-L-lysine, Matrigel®, "reconstituted basal membrane”
  • Growth factors which can be used according to the invention in step c) are preferably selected from
  • GDF7 (bmp-12, bone morphogenic protein 12) in a concentration of 1 to 50 ng / mL, in particular 5 to 15 ng / mL, particularly preferably 10 ng / mL;
  • Bmp-4 bone morphogenic protein 4 in a concentration of 0.01 to 0.5 ng / ml, in particular 0.05 to 0.15 ng / ml, particularly preferably 0.1 ng / ml;
  • BFGF Recombinant Human FGF-basic in a concentration of 1 to 50 ng / mL, in particular 5 to 15 ng / mL, particularly preferably 10 ng / mL;
  • EGF recombinant murine epidermal growth factor
  • FGF8 Recombinant Mouse Fiboblast Growth Factor 8b at a concentration of 1 to 500 ng / mL, in particular 1 to 200 ng / mL, particularly preferably 100 ng / mL.
  • step c) of the process according to the invention a combination of the growth factors bFGF (Recombinant Human FGF-basic) in a concentration of 5 to 15 ng / ml, particularly preferably 10 ng / ml and EGF (Recombinant murine epidermal growth factor) in a particularly preferred manner a concentration of 15 to 25 ng / mL, more preferably 20 ng / mL used.
  • bFGF Recombinant Human FGF-basic
  • EGF Recombinant murine epidermal growth factor
  • Retinic acid is preferably used in step c) of the method according to the invention in a concentration of 0.01 to 50 ⁇ M, in particular 5 ⁇ M.
  • Olfactory epithelial cells obtained by the method of the invention.
  • olfactory epithelial cells obtained by the method according to the invention in test systems for cosmetic and / or pharmaceutical preparations.
  • Bio-electrical nasal or olfactory chips obtainable by the coupling of olfactory epithelial cells, which were obtained by the method according to the invention to bio-chips.
  • Three-dimensional tissue models obtainable by introducing the differentiated cells or their precursors obtained by the method according to the invention into or onto a 3D matrix, for example a spherical or spherical support (eg Cultisphere® support), or by introducing the differentiated cells or their precursors, which were obtained by the method according to the invention, in simple gel matrices (analogous to the construction of a collagen gel), or by introducing the differentiated cells or their precursors, which were obtained by the method according to the invention, into complex matrices (eg freeze-dried matrices as used for skin models, typically from cross-linked collagen or other components of the extracellular matrix).
  • a 3D matrix for example a spherical or spherical support (eg Cultisphere® support), or by introducing the differentiated cells or their precursors, which were obtained by the method according to the invention, in simple gel matrices (analogous to the construction of a collagen gel), or by introducing the differentiate
  • olfactory epithelial cells obtained by the method according to the invention for transplantation purposes, for example as xenotransplants.
  • the following examples describe the invention without, however, limiting it to:
  • the cell line D3 of murine embryonic stem cells is used as standard (strain 129 / Sv + c / + p, ATCC catalog no .: CRL-11632).
  • the embryonic stem cells (ES cells) are transfected into DMEM (Dulbecco's Modified Eagle Medium, Invitrogen, 41965039) with 15% FCS (fetal calf serum), 2 mM L-glutamine (Invitrogen, 25030-024), 1% nonessential amino acids (Invitrogen, 11140-035) and 50 ⁇ M ⁇ -mercaptoethanol (Invitrogen, 31350-010), LIF 1x10 3 U / ml (Chemicon, Cat.No.ESG1 107) at 37 ° C and 7% CO2 according to a standard protocol of Torres and kuhn (Laboratory Protocols for Conditional Gene Targeting, 1997 (New York: Oxford University Press) on inactivated embryonic feeder cells (eg, MEF feeder cells, n
  • Olfactory marker protein is highly formed in terminally differentiated olfactory epithelial cells and is an indication of their functionality. Amplification of the OMP promoter: anterior region: nucleotides 22,371 to 27,731, posterior region: nucleotides 16,652 to 20,445;
  • Annealing temperature 60 ° C., long range PCR (Qiagen protocol)
  • PCR products were analyzed by agarose gel electrophoresis and cloned into the vector pPIG. The sequence identity of the resulting construct was verified by restriction mapping as well as by sequencing of the regulatory regions ( Figure 1).
  • OMP-PIG vector Cloning of the OMP-PIG vector and establishment of an OMP-PIG transgenic ES cell line: The fragments obtained in Example 2 are ligated into vector pPIG. The 5.4 kb fragment of the anterior region (2nd round) is cleaved with the restriction enzymes EcoRI / SaI I. The defined ends are needed for insertion into the vector. The 3.8 kb fragment of the posterior region is split with Not I / Mun I.
  • the PCR fragments are inserted into pPIG.
  • pPIG is cleaved with Not I / Mun I and ligated with the 3.8 kb fragment.
  • the resulting construct is inserted into the anterior region with Eco RI / Sal I and cleaved with the 5.8 kb fragment.
  • the resulting vector size is 14.4 kb ( Figure 2), the vector contains the antibiotic resistance kanamycin / neomycin and puromycin.
  • the vector contains the coding for GFP (Green Fluorescent Protein) under control of the OMP promoter. This results in successfully transfected cells in the culture fluorescing as soon as the OMP gene promoter is activated.
  • GFP Green Fluorescent Protein
  • the embryonic stem cells are transfected with the linearized vector construct (Eco RI) by electroporation and cultured with G418 sulfate-halitgem medium.
  • the resistant clones are isolated and used for further differentiation.
  • the cells are cultured together with inactivated MS-5 bone marrow stromal cells in serum replacement medium (SRM) (MS-5: DSMZ, Cat No. ACC441); SRM: DMEM (Invitrogen, 41965-039), 10 ⁇ M ⁇ -MeOH (Invitogen, 31350-010), 2mM L-Glutamine (Invitrogen, 25030024), 15% Knockout Serum Replacement (Invitrogen, 10828028)).
  • SRM serum replacement medium
  • the MS-5 cells as feeder cells, favor the differentiation of the ES cells into cells of the olfactory epithelium. As culture dishes culture dishes are used with a diameter of 6 cm.
  • the complete cell culture medium On the third day of cultivation, the complete cell culture medium, on the fifth day the entire of the cell culture medium is replaced with fresh SRM.
  • the cells On the 6th day, the cells are dissociated by trypsinization (the reaction stop is carried out by a trypsin inhibitor) and seeded in 24-well format on poly-L-ornithine / laminin-coated cell culture dishes (Becton Dickinson, Cat No. 354659). The cell population of a 6 cm culture dish is distributed over a total of 8 wells in 24-well format.
  • Neurobasal / B27 medium or DMEM / F12-ITSF medium and combinations of the growth factors bFGF 10ng / ml, EGF 20ng / ml, (FGF8) with / (without) 100 nM retinoic acid are used. Every two days, half of the cell culture medium is replaced with fresh culture medium. Cultivation takes place over a period of 11 to 18 days ( Figures 3 to 5).
  • DMEM / F12-ITSF Dulbecco's Modified Eagle Medium / F12 1: 1 glu (Invitrogen, 21331020),
  • Fibronectin (Sigma, F1141) 0.5mM L-Glutamine (Invitrogen, 25030-024) Trypsin Trypsin-EDTA (1x), PAA Cat.No. L11-004
  • Trypsin Inhibitor Trypsin Inhibitor Defined Solution (1x) Sigma, Cat.No. T7659 bFGF Recombinant Human FGF-basic (Tebu, 100-18B), 10 ng / mL
  • EGF Recombinant Murine Epidermal Growth Factor (Tebu, 315-09), 20 ng / mL
  • FGF8 Recombinant Mouse Fiboblastic Growth Factor 8b (R & D Systems, 423-F8), 100 ng / mL RA Retinol Acid (Sigma, R-2625), 100 nM
  • the differentiation protocol S was applied to mouse murine embryonic stem cells.
  • the differentiated cells were tested for the expression of different markers with regard to their phenotype (see Figures 3 to 5):
  • Neuronal progenitor cell markers Mash-1 marker for formation of "immidiate neuronal precursors": Ngn-1 marker for formation of immature olfactory epithelial cells: Gap43
  • Marker for the formation of mature olfactory epithelial cells OMP, NCAM, olfactory G protein, olfactory receptors. All relevant markers can be detected in the differentiated cells.
  • Ngn1 Ngn1-F1 sequence 5'-cgatccccttttctcctttc
  • GAP43-R1 sequence ⁇ '-gcaggagagacagggttcag
  • Fig. 1 Analysis of the PCR products (actual round). Upstream corresponds to the 5.4 kb fragment of the anterior region, downstream corresponds to the 3.8 kb fragment of the posterior region of the genomic OMP promoter.
  • Fig. 2 Restriction analysis of vector OMP-PIG. The theoretical fragment sizes are consistent with the experimentally determined sizes.
  • Fig. 3 Immunofluorescent staining of cells after application of the differentiation protocols (differentiation day 11).
  • A Microscopic image of a section of the differentiated cell population (phase contrast).
  • B Immunofluorescent staining of the cell population from A) with rabbit anti-OMP antibody (Biosensis) and detection with a Cy3-conjugated anti-rabbit secondary antibody. The cell shows the typical morphology of a matured olfactory epithelial cell in vitro with the characteristic cytoplasmic distribution of OMP.
  • Fig. 4 RT-PCR analysis of differentiated ES cells after performing different differentiation protocols (L-S, differentiation day 1 1). All cells show a more or less pronounced expression of the neuronal markers Mash-1 and Ngn-1.
  • Fig. 5 RT-PCR analysis of differentiated ES cells after performing different differentiation protocols (LS, differentiation day 11).
  • the formation of OMP mRNA and of G alpha olf mRNA is particularly prominent when using the protocols N, O, R and S, whereas feeder cells and undifferentiated ES cells show virtually no formation of the markers.
  • RNA was isolated from olfactory epithelia of adult mice.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Neurology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Acoustics & Sound (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Gewinnung olfaktorischer Epithelzellen aus nicht-menschlichen embryonalen Stammzellen, olfaktorische Epithelzellen, die mittels des erfindungsgemäßen Verfahrens gewonnen wurden sowie Testsysteme für kosmetische und/oder pharmazeutische Zubereitungen auf der Basis olfaktorischer Epithelzellen, die mittels des erfindungsgemäßen Verfahrens gewonnen wurden.

Description

Verfahren zur Gewinnung olfaktorischer Epithelzellen aus nicht-menschlichen embryonalen Stammzellen
Beschreibung:
Die vorliegende Erfindung betrifft ein Verfahren zur Gewinnung olfaktorischer Epithelzellen aus nicht-menschlichen embryonalen Stammzellen, olfaktorische Epithelzellen, die mittels des erfindungsgemäßen Verfahrens gewonnen wurden sowie Testsysteme für kosmetische und/oder pharmazeutische Zubereitungen auf der Basis olfaktorischer Epithelzellen, die mittels des erfindungsgemäßen Verfahrens gewonnen wurden.
Der Geruchssinn eines Menschen beeinflusst seine Wahrnehmung der Umwelt und die Lebensqualität in hohem Maße. Bestimmte Gerüche können Erinnerungen an Situationen auslösen, die zeitlich sehr lange zurückliegen. Der Verlust des Geruchssinns beeinträchtigt die Lebensqualität deutlich: Die geruchlichen Informationen der Umgebung können nicht mehr wahrgenommen werden, und auch bestimmte Warnsignale sind ausgeschaltet.
Der erste Schritt der Wahrnehmung von Gerüchen in Säugetieren findet auf der Ebene des Riechepithels oder olfaktorischen Epithels statt. Das olfaktorische Epithel enthält hoch spezialisierte Neuroepithelzellen, sog. olfaktorische Rezeptor-Neuronen (ORN), die in der Membran ihrer Zilien Rezeptorproteine ausbilden, an die Geruchstoffe spezifisch binden und eine biochemische Signalkaskade auslösen. Dieses Signal wird elektrochemisch in den Olfaktorischen Bulbus (Riechkolben) und anschließend in höhere Hirnregionen weitergeleitet und zu einem Geruchseindruck verarbeitet. Der erste Schritt der Bindung eines Geruchsmoleküls ist gerade deshalb so bedeutsam, da hier die molekulare Identität des Duftmoleküls in ein Muster aktivierter Rezeptorzellen übersetzt wird. Dieser Vorgang, der als Kodierung der Geruchsinformation („odorant coding" oder auch „odorant fingerprinting") bezeichnet wird, ermöglicht einem Organismus, eine ganze Fülle von Duftstoffen zu unterscheiden.
Die wohl beeindruckendste Eigenschaft des Geruchssinnes ist die extrem hohe Trennschärfe, mit der das Riechorgan unterschiedliche olfaktorische Sinnesreize unterscheiden kann. Das menschliche Riechsystem beispielsweise ist in der Lage, ungefähr 10.000 Gerüche zu differenzieren, andere Spezies überbieten diese enorme Zahl noch. Forschungen an Mäusen führten zur Entdeckung einer ganzen Genfamilie, die die biochemischen Baupläne für -1.000 Geruchsrezeptoren enthält. Beim Menschen ist die Zahl funktioneller olfaktorischer Rezeptorproteine geringer, da es sich bei mehr als 60% dieser Geruchsrezeptorgene um Pseudogene handelt.
Der Anteil der Gene, die für Geruchsrezeptorproteine codieren, stellt die bislang größte Genfamilie im Säugergenom überhaupt dar und reflektiert auf diese Weise die Bedeutung olfaktorischer Informationen für den Organismus.
Jeweils ein Geruchsrezeptorprotein wird exklusiv in einem individuellen olfaktorischen Neuron exprimiert. Das bedeutet, dass das olfaktorische System über ~1.000 getrennte Eingangskanäle in Form von primären Geruchsstimuli verfügt, die 1.000 Subpopulationen der Millionen von olfaktorischen Neuronen der Riechschleimhaut entsprechen.
Die primären Geruchsstimuli, die von den olfaktorischen Rezeptorproteinen erkannt werden, stellt man sich als spezifische Oberflächenmerkmale von Geruchsstoffen vor. Diese durch die Rezeptorproteine der Riechsinneszellen detektierbaren Oberflächenmerkmale werden als Odotope bezeichnet. Die Struktur eines Geruchsstoffs kann mehr als ein Odotop enthalten und deshalb theoretisch von mehr als einem Geruchsrezeptor erkannt werden. Die parallele Erkennung mehrerer Odotope eines Geruchsstoffes führt zur Aktivierung eines individuellen Ensembles olfaktorischer Neurone. Dieses spezifische Muster neuronaler Aktivität repräsentiert den Geruchsstoff auf der Eingangsebene des olfaktorischen Systems.
Geruchsstoffe sind Moleküle flüchtiger Substanzen, die sich im Schleim über dem Riechepithel lösen. Auf diesem Weg gelangen sie an die olfaktorischen Rezeptorproteine, die in der Membran von Riechzilien eingelassen sind. Riechzilien sind Zellfortsätze der olfaktorischen Neurone. 20-30 Riechzilien ragen, ausgehend von einer knopfartigen Auftreibung an der Spitze des apikalen Dendriten eines olfaktorischen Neurons, in den Riechschleim. Die Bindung eines Odotops an ein Rezeptorprotein erzeugt ein Aktionspotenzial, das über das Axon des olfaktorischen Neurons in den Bulbus olfactorius, die erste zentrale Verarbeitungsstation der Geruchsinformationen, weitergeleitet wird.
Die enorme Menge von Kombinationsmöglichkeiten der etwa 1.000 primären Geruchsstimuli setzt einen komplexen Verarbeitungsmechanismus der olfaktorischen Informationen voraus.
Obwohl die zugrunde liegenden Mechanismen der Duftwahrnehmung bekannt sind, existiert bisher kein experimentelles System, mit dem in vitro eine umfassende Beschreibung der molekularen Signalmuster erfolgen und die Situation in vivo an einem adäquaten Zelltyp, das heißt, an einem Zelltyp, der olfaktorischen Rezeptor-Neu ronen in vivo entspricht, studiert werden kann.
Primäre neuronale Riechepithel-Zellen, die zum Aufbau eines Testsystems für die molekulare Analyse von Duftmolekülen geeignet sind, sind durch „klassische" Isolierungs- und Kultivierungsmethoden (aus Nasenbiopsien) kaum zugänglich. Es steht nur wenig geeignetes Material zur Verfügung, die Präparation ist kompliziert, erfordert große Übung und ist zeitaufwändig. Zudem ist die Zellausbeute sehr gering.
Zum Aufbau eines Screeningsystems sind solche Kulturen daher wenig geeignet: Sie resultieren in einer Mischkultur verschiedener Zelltypen, die eine sehr begrenzte Lebensdauer aufweisen. Die Zellen müssen immer frisch aus Biopsiematerial eines Spenderorganismus präpariert werden. Der Zugang zu diesem Material ist schwierig und mit einem hohen bürokratischen Aufwand verbunden, zudem müssen spenderabhängige Unterschiede der Zellpopulationen in Kauf genommen werden. Ganz ähnliche Nachteile gelten für die Ex-vivo-Kultivierung von olfaktorischem Gewebe.
Zum Aufbau einer Screeningtechnologie, mit der sich gezielt molekulare Mechanismen der Duftkodierung sowie Möglichkeiten zur molekularen Steuerung derselben finden lassen, benötigt man jedoch regelmäßig eine ausreichende Menge an olfaktorischen Epithelzellen.
Aus diesem Grund wurde in der Vergangenheit versucht, mittels alternativer Ansätze, insbesondere Rezeptor-Transfektionsstudien an Zeil-Linien sowie Studien an immortalisierten Zeil- Linien neuroepithelialen Ursprungs die Erforschung molekularer Duftwirkung zu ermöglichen.
Auch diese experimentellen Techniken weisen Limitationen auf:
Um die gesamte biologische Signalleistung des Riechepithels durch Rezeptor- Transfektionsstudien abzubilden, müssen alle Rezeptoren eines Säugers einzeln kloniert und gleichzeitig erfolgreich in Empfängerzellen exprimiert werden. Diese Vorgehensweise ist aufwändig, und sehr oft scheitert das Vorgehen an einer unzureichenden Einlagerung des Rezeptorproteins in die Plasmamembran der Empfängerzelle, was auf einer ineffizienten Protein- Translokation der membranständigen Rezeptoren beruht.
Immortalisierte Zeil-Linien neuroepithelialen Ursprungs haben eine längere Lebensdauer, allerdings konnte in allen charakterisierten Linien bisher keine bzw. nur eine limitierte endogene Expression von Rezeptorproteinen nachgewiesen werden, so dass sich diese Zellen eher als Empfängersystem für heterolog transfizierte Rezeptorproteine denn als Ausgangsmaterial zum Aufbau eines Screeningsystems mit endogener Rezeptorexpression eignen.
Untersuchungen der Bindung von Duftmolekülen an die entsprechenden Rezeptorproteine und der ausgelösten Signalkaskade können Aufschluss darüber geben, welche ligandenspezifi- schen Rezeptoren aktiviert werden. Diese individuellen Aktivierungsmuster („odor codes") können zur Charakterisierung des Duftstoffs, zur Optimierung von Duftkompositionen auf biochemischer Ebene oder zur Suche nach spezifischen Rezeptorantagonisten für die Blockierung unerwünschter Gerüche verwendet werden. Voraussetzung hierfür ist ein biologisches Testsystem, das die biochemischen Komponenten des Säuger-Riechepithels widerspiegelt. Insbesondere sind hierbei das (endogene) Vorhandensein einer repräsentativen Anzahl verschiedener Duftrezeptoren sowie die Elemente der G- Protein-gekoppelten Signalkaskade zu nennen. Daneben sollte das verwendete Testsystem standardisierbare und reproduzierbare Ergebnisse liefern, die nicht abhängig sind von der Verfügbarkeit von Spenderorganismen und individuellen Expressionsschwankungen.
Es besteht daher ein Bedarf an Testsystemen, die dem Riechepithel von Säugern möglichst weitgehend entsprechen und die genannten Nachteile des Standes der Technik vermeiden.
Überraschenderweise wurde gefunden, daß sich embryonale Stammzellen in vitro zu Zellen des Riechepithels differenzieren lassen, die geeignet sind, in einem gewünschten Testsystem eingesetzt zu werden.
Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Gewinnung olfaktorischer Epithelzellen aus nicht-menschlichen embryonalen Stammzellen, daß dadurch gekennzeichnet ist, daß man a) embryonale Stammzellen kultiviert, b) die embryonalen Stammzellen mit einem geeigneten Marker oder einer geeigneten Kombination von Markern transfiziert, c) die embryonalen Stammzellen durch weitere Kultivierung in Gegenwart inaktivierter stromaler Zellen sowie nachfolgende Aussaat auf beschichtete Kulturträger und weitere Kultivierung in Gegenwart eines geeigneten Wachstumsfaktors oder einer geeigneten Kombination von Wachstumsfaktoren und/oder in Gegenwart von Retinsäure zu Zellen des Riechepithels differenziert und d) die erfolgreiche Differenzierung in olfaktorischen Epithelzellen anhand der in Schritt b) eingesetzten Marker oder Kombination von Markern überprüft.
Embryonale Stammzellen (ES-Zellen) sind sich regenerierende, pluripotente Zellen, die in der Lage sind, jeden Zelltyp eines Organismus zu bilden. Vielfältige Differenzierungen in einen bestimmten Zelltyp wurden in vitro beschrieben. Die jeweiligen ES-Zellen werden dabei einem bestimmten Differenzierungsprotokoll unterworfen. Erstmals beschrieben wurde die Differenzierung von ES-Zellen in neuronale Vorläuferzellen und reife Neuronen im Jahr 2001 (Reubinoff et al., Nature Biotechnology, 2001 , 19, 1134-1140; Zhang et al., Nature Biotechnology, 2001 , 19, 1129-1133).
Ein erstes spezielles Differenzierungsprotokoll, das auf einer Verbesserung der existierenden Protokolle für neuronale Vorläuferzellen beruht, ist die Bildung verschiedener neuronaler Subtypen aus embryonalen Stammzellen der Maus (Barberi et al., Nat. Biotechnol., 2003, 21 , 1200- 1207). Eine gezielte Differenzierung in Zellen des Riechepithels wurde bisher allerdings nicht beschrieben.
Die erfindungsgemäße Herstellung von olfaktorischen Epithelzellen aus embryonalen Stammzellen der Maus bietet eine kostengünstige und ressourcenschonende Alternative zu klassischen Kultivierungs- und Überexpressionsverfahren.
Die In-vitro-Differenzierung ermöglicht vorteilhafterweise die Bereitstellung von Ausgangsmaterial für ein echtes Riechepithel in vitro, das die Situation in vivo besser wiedergibt als andere Zellkulturmodelle, bzw. artifizielle Systeme, die auf der heterologen Expression von olfaktorischen Rezeptorproteinen (OR) beruhen. Aufgrund ihrer Herkunft besitzen die differenzierten Zellen ein endogenes, für olfaktorische Epithelzellen zelltypisches Proteinexpressionsmuster, d.h. alle wichtigen Komponenten des Signalapparates sind endogen in den Zellen vorhanden und das natürliche Rezeptorpotenzial wird ausgenutzt. Die Zellen eignen sich zum Aufbau eines Screeningsystems, aber auch der Aufbau von Gewebemodellen (evtl. auch zur Transplantation) ist möglich.
Bei der Verwendung von embryonalen Stammzellen aus Nagetieren ist man nicht auf Primärmaterial angewiesen, da das Ausgangsmaterial kommerziell erhältlich ist und im Labor differenziert werden kann. Die Anreicherung eines bestimmten Zelltyps durch eine geeignete Selektionsstrategie sorgt für die Minimierung individueller Unterschiede.
Die in Schritt a) des erfindungsgemäßen Verfahrens kultivierten embryonalen Stammzellen können grundsätzlich beliebigen Ursprungs sein; bevorzugtermaßen setzt man Zellen aus bereits verfügbaren embryonalen Stammzelllinien ein. Im Rahmen der vorliegenden Erfindung sind menschliche embryonale Stammzellen jedoch explizit ausgeschlossen. Vorzugsweise werden in Schritt a) embryonale Stammzellen aus Säugetieren kultiviert, insbesondere solche aus Mäusen, Hamstern, Ratten, Affen oder Hunden, besonders bevorzugt aus Mäusen. Ganz besonders bevorzugt sind erfindungsgemäß murine embryonale Stammzellen aus der Zelllinie ATCC ES-D3 (CRL-11632).
Die Kultivierungsdauer in Schritt a) des erfindungsgemäßen Verfahrens beträgt 1 bis 40 Tage, vorzugsweise 8 bis 12 Tage.
Die Transfektion der embryonalen Stammzellen in Schritt b) des erfindungsgemäßen Verfahrens erfolgt vorzugsweise mit einem Reporterkonstrukt und einer Antibiotikaresistenz unter einem OE-spezifischen Promotor, wodurch die Herstellung einer Reinkultur ermöglicht wird, die durch den Nachweis spezifischer Zellmarker auch als solche identifiziert werden kann. Besonders bevorzugte Marker für die Transfektion in Schritt b) sind erfindungsgemäß ausgewählt unter folgenden Promotoren: „Olfactory Marker Protein" (OMP), olfaktorisches G-Protein (G alpha olf oder GNAL), „Adenylat Cyclase 3" (ADCY3) sowie olfaktorische Rezeptorproteine. Ganz besonders bevorzugt ist im Rahmen der vorliegenden Erfindung das „Olfactory Marker Protein" (OMP).
Die Kultivierungsdauer in Schritt c) des erfindungsgemäßen Verfahrens beträgt 1 bis 40 Tage, vorzugsweise 1 1 bis 20 Tage.
Die in Schritt c) zum Einsatz kommenden stromalen Zellen sind vorzugsweise Zellen des Typs
PA-6 oder MS-5, insbesondere „MS-5 Bone marrow stromal cells".
Die erfindungsgemäße Aussaat auf beschichtete Kulturträger in Schritt c) erfolgt vorzugsweise auf Biopolymer-beschichtete Kulturschalen, insbesondere auf Kulturschalen, deren Beschich- tung ausgewählt ist unter Beschichtungen mit Laminin/Poly-Ornithin, Fibronectin, Laminin,
Collagen Type IV, Collagen Type I, Poly-L-Lysin, Matrigel®, „reconstituted basal membrane"
(RBM) und Mischungen davon. Besonders bevorzugt ist die Beschichtung mit Laminin/Poly-L-
Ornithin.
Erfindungsgemäß in Schritt c) einsetzbare Wachstumsfaktoren sind vorzugsweise ausgewählt unter
• GDF7 (bmp-12, bone morphogenic protein 12) in einer Konzentration von 1 bis 50 ng/mL, insbesondere 5 bis 15 ng/mL, besonders bevorzugt 10 ng/mL;
• bmp-4 (bone morphogenic protein 4) in einer Konzentration von 0,01 bis 0,5 ng/mL, insbesondere 0,05 bis 0,15 ng/mL, besonders bevorzugt 0,1 ng/mL;
• bFGF (Recombinant Human FGF-basic) in einer Konzentration von 1 bis 50 ng/mL, insbesondere 5 bis 15 ng/mL, besonders bevorzugt 10 ng/mL;
• EGF (Recombinant murine Epidermal Growth Factor) in einer Konzentration von 1 bis 50 ng/mL, insbesondere 15 bis 25 ng/mL, besonders bevorzugt 20 ng/mL sowie
• FGF8 (Recombinant Mouse Fiboblast Growth Factor 8b in einer Konzentration von 1 bis 500 ng/mL, insbesondere 1 bis 200 ng/mL, besonders bevorzugt 100 ng/mL.
Ganz besonders bevorzugt wird in Schritt c) des erfindungsgemäßen Verfahrens eine Kombination der Wachstumsfaktoren bFGF (Recombinant Human FGF-basic) in einer Konzentration von 5 bis 15 ng/mL, besonders bevorzugt 10 ng/mL und EGF (Recombinant murine Epidermal Growth Factor) in einer Konzentration von 15 bis 25 ng/mL, besonders bevorzugt 20 ng/mL eingesetzt.
Vorzugsweise wird in Schritt c) des erfindungsgemäßen Verfahrens Retinsäure in einer Konzentration von 0,01 bis 50 μM, insbesondere 5 μM eingesetzt.
Weitere Gegenstände der vorliegenden Erfindung sind
• olfaktorische Epithelzellen, die mittels des erfindungsgemäßen Verfahrens gewonnen wurden; • Testsysteme für kosmetische und/oder pharmazeutische Zubereitungen auf der Basis olfaktorischer Epithelzellen, die mittels des erfindungsgemäßen Verfahrens gewonnen wurden;
• Die Verwendung olfaktorischer Epithelzellen, die mittels des erfindungsgemäßen Verfahrens gewonnen wurden in Testsystemen für kosmetische und/oder pharmazeutische Zubereitungen.
• Systeme zur Identifizierung der Rezeptorcodes für bestimmte Liganden auf der Basis olfaktorischer Epithelzellen, die mittels des erfindungsgemäßen Verfahrens gewonnen wurden;
• Modelle für die Identifzierung von Geruchsinhibitoren oder die Aufklärung der komplexen Muster aktivierter Rezeptoren, mit denen sich Riechstoffe hinreichend beschreiben lassen, auf der Basis olfaktorischer Epithelzellen, die mittels des erfindungsgemäßen Verfahrens gewonnen wurden;
• Systeme zur Identifizierung von „Geruchsverstärkern", also Substanzen, die die Amplitude des biologischen Geruchssignals erhöhen, auf der Basis olfaktorischer Epithelzellen, die mittels des erfindungsgemäßen Verfahrens gewonnen wurden;
• Bio-elektrische Nasen bzw. Riechchips, erhältlich durch die Kopplung olfaktorischer Epithelzellen, die mittels des erfindungsgemäßen Verfahrens gewonnen wurden an Bio- Chips.
• Systeme zur Identifizierung von Rezeptoren bestimmter, vorgegebener Liganden durch Aufbringung differenzierter Neuronen olfaktorischer Epithelzellen, die mittels des erfindungsgemäßen Verfahrens gewonnen wurden, auf eine Oberfläche, die die genaue Lokalisation angeregter Neurone und anschließende Analyse (z. B. durch Einzelzell-PCR) ermöglicht.
• Dreidimensionale Gewebemodelle, erhältlich durch Einbringung der differenzierten Zellen bzw. deren Vorstufen, die mittels des erfindungsgemäßen Verfahrens gewonnen wurden, in oder auf eine 3D-Matrix, beispielsweise einen sphärischen oder kugelförmigen Träger (z.B. CultisphereO-Träger), oder durch Einbringung der differenzierten Zellen bzw. deren Vorstufen, die mittels des erfindungsgemäßen Verfahrens gewonnen wurden, in einfache Gelmatrices (analog zum Aufbau eines Collagengels), oder durch Einbringung der differenzierten Zellen bzw. deren Vorstufen, die mittels des erfindungsgemäßen Verfahrens gewonnen wurden, in komplexe Matrices (z.B. gefriergetrocknete Matrices, wie sie für Hautmodelle verwendet werden, typischerweise aus quervernetz- tem Collagen bzw. anderen Bestandteilen der extrazellulären Matrix).
• Die Verwendung olfaktorischer Epithelzellen, die mittels des erfindungsgemäßen Verfahrens gewonnen wurden zu Transplantationszwecken, beispielsweise als Xe- notransplantate. Die folgenden Beispiele beschreiben die Erfindung, ohne sie jedoch darauf einzuschränken:
Beispiel 1
Kultivierung von murinen embryonalen Stammzellen:
Standardmäßig wird die Zelllinie D3 muriner embryonaler Stammzellen eingesetzt (Stamm 129/Sv+c/+p, ATCC Katalog-Nr.: CRL-11632). Die embyonalen Stammzellen (ES-Zellen) werden in DMEM (Dulbecco's Modified Eagle Medium, Invitrogen, 41965039) mit 15% FCS (fötalem Kälberserum), 2mM L-Glutamin (Invitrogen, 25030-024), 1 % nicht essentiellen Aminosäuren (Invitrogen, 11140-035) und 50μM ß- Mercaptoethanol (Invitrogen, 31350-010) , LIF 1x103 U/ml (Chemicon, Cat.No.ESG1 107) bei 37°C und 7% CO2 nach einem Standardprotokoll von Torres und Kühn (Laboratory protocols for Conditional Gene Targeting, 1997 (New York: Oxford University Press) auf inaktivierten embryonalen Feederzellen (z. B. MEF feeder cells, neomycin resistant, Cell Biolabs, CBA-311 ) kultiviert. Während der Kultivierungsdauer werden die Zellen alle 2 Tage nach Trypsinierung gesplittet
Beispiel 2
Amplifizierung des OMP-Promotors aus genomischer DNA:
Olfactory Marker Protein (OMP) wird in hohem Maße in terminal differenzierten Riechepithelzellen gebildet und ist ein Hinweis auf deren Funktionalität. Amplifikation des OMP-Promotors: Anterior region: Nukleotide 22.371 bis 27.731 , Posterior region: Nukleotide 16.652-20.445;
Nummerierungen gemäß GenBank Record NW_047561 , gi: 34857865, Version NW_047561.1. PCR Template: BAC-Klon CH230-432I8 (Ratte)
Figure imgf000009_0001
Figure imgf000010_0001
Annealing-Temperatur: 60 0C, Long Range-PCR (Qiagen-Protokoll)
Die PCR-Produkte wurden durch Agarosegel-Elektrophorese analysiert, und in den Vektor pPIG kloniert. Die Sequenzidentität des resultierenden Konstrukts wurde durch Restriktionskartierung sowie durch Sequenzierung der regulatorischen Regionen verifiziert (Abb. 1 ).
Beispiel 3
Klonierung des OMP-PIG-Vektors und Etablierung einer OMP-PIG-transgenen ES-Zell-Linie: Die in Beispiel 2 gewonnenen Fragmente werden in Vektor pPIG ligiert. Das 5.4 kb-Fragment der Anterior Region (2nd round) wird mit den Restriktionsenzymen EcoRI /SaI I gespalten. Die definierten Enden werden für die Insertion in den Vektor benötigt. Das 3.8 kb-Fragment der Posterior Region wird mit Not I/Mun I gespalten.
In zwei Schritten werden die PCR-Fragmente in pPIG eingefügt. Zum Einfügen der Posterior Region wird pPIG mit Not I/Mun I gespalten und mit dem 3.8 kb-Fragment ligiert. Analog wird das resultierende Konstrukt zum Einfügen der Anterior region mit Eco Rl/ SaI I gespalten und mit dem 5.8 kb-Fragment ligiert. Die enstehende Vektorgröße beträgt 14,4 kb (Abb. 2), der Vektor enthält die Antibiotikaresistenzen Kanamycin/Neomycin sowie Puromycin. Darüber hinaus enthält der Vektor die Kodierung für GFP (Green Fluorescent Protein) unter Kontrolle des OMP-Promotors. Die führt dazu, dass erfolgreich transfizierte Zellen in der Kultur fluoreszieren, sobald der OMP-Gen-Promotor aktiviert wird.
Die embryonalen Stammzellen werden mit dem linearisierten Vektorkonstrukt (Eco Rl) mittels Elektroporation transfiziert und mit G418-Sulfat-halitgem Medium kultiviert. Die resistenten Klone werden isoliert und zur Weiterdifferenzierung verwendet. Beispiel 4
Differenzierung in Zellen des Riechepithels (siehe auch Tabelle 1 ):
Zur weiteren Differenzierung der stabil transfizierten ES-Zellen werden die Zellen zusammen mit inaktivierten MS-5 Bone marrrow stromal cells in Serum replacement medium (SRM) kultiviert (MS-5: DSMZ, Cat. No. ACC441 ); SRM: DMEM (Invitrogen, 41965-039), 10μM ß-MeOH (Invitogen, 31350-010), 2mM L-Glutamin (Invitrogen, 25030024), 15% Knockout Serum replacement (Invitrogen, 10828028)). Die MS-5-Zellen begünstigen als Feederzellen die Differenzierung der ES-Zellen in Zellen des Riechepithels. Als Kulturschalen werden Kulturschalen mit einem Durchmesser von 6 cm verwendet.
Am dritten Tag der Kultivierung wird das komplette Zellkulturmedium, am fünften Tag das komplette des Zellkulturmediums gegen frisches SRM ausgetauscht. Am 6. Tag werden die Zellen durch Trypsinisierung dissoziiert (der Reaktionsstopp erfolgt durch einen Trypsin- Inhibitor) und im 24well-Format auf Poly-L-Ornithine/Laminin-beschichteten Zellkulturschalen (Becton Dickinson, Cat. No. 354659) ausgesät. Dabei wird die Zellpopulation einer 6cm- Kulturschale auf insgesamt 8 wells im 24er-Format verteilt.
Ab dem 6. Tag wird entweder Neurobasal/B27-Medium oder DMEM/F12-ITSF-Medium und Kombinationen der Wachstumsfaktoren bFGF 10ng/ml, EGF 20ng/ml, (FGF8) mit/(ohne) 100 nM Retinsäure verwendet. Alle zwei Tage wird die Hälfte des Zellkulturmediums gegen frisches Kulturmedium ausgetauscht. Die Kultivierung erfolgt über einen Zeitraum von insgesamt 11 bis 18 Tagen (Abb. 3 bis 5).
Konzentrationen und Zusammensetzungen:
SRM: DMEM (Invitrogen, 41965), 15% Knockout SR (Invitrogen, 10828-028)
10μM ß-MeOH (Invitrogen, 31350-010) 2mM L-Glutamin (Invitrogen,
25030024)
Neurobasal/B27- Neurobasalmedium (Invitrogen, 21 103-049), mit 2% B27 Supplement w/o
Medium: RA 5Ox (Invitrogen, 12587-010), 0,5mM L-glutamin(Gibco, 25030024)
DMEM/F12-ITSF Dulbecco's Modified Eagle Medium/F12 1 :1-glu (Invitrogen, 21331020),
1 % Insulin-Transferrin-Selenin 100x (Invitrogen, 51500-056) 1 μg/ml
Fibronectin (Sigma, F1141 ) 0,5mM L-Glutamin (Invitrogen, 25030-024) trypsin Trypsin-EDTA (1x), PAA Cat.No. L11-004
Trypsin inhibitor Trypsin inhibitor defined Solution (1x) Sigma, Cat.No. T7659 bFGF Recombinant Human FGF-basic (Tebu, 100-18B), 10 ng/mL
EGF Recombinant murine Epidermal Growth Factor (Tebu, 315-09), 20 ng/mL
FGF8 Recombinant Mouse Fiboblast Growth Factor 8b (R&D Systems, 423-F8), 100 ng/mL RA Retinole Acid (Sigma, R-2625), 100 nM
Optional ist es auch möglich, die Zellen zur Erhöhung der Zellausbeute mit Puromycin zu behandeln und eine Reinkultur herzustellen.
Beispiel 5
Nachweis der Differenzierung durch Analyse des Expressionsprofils:
Zur Entwicklung eines erfolgreichen Differenzierungsprotokolls wurde die Expression wichtiger olfaktorischer Marker in vitro mit In vivo-Daten und aus der Literatur bekannten Daten abgeglichen.
Im ersten Schritt der Differenzierung (s. Beispiel 4) wurde das Differenzierungsprotokoll S auf murine embryonale Stammzellen der Maus angewendet. Die differenzierten Zellen wurden hinsichtlich ihres Phänotyps auf die Expression verschiedener Marker überprüft (s. a. Abb. 3 bis 5):
Marker für neuronale Vorläuferzellen: Mash-1 Marker für Bildung von „immidiate neuronal precursors": Ngn-1 Marker für Bildung von unreifen olfaktorischen Epithelzellen: Gap43
Marker für Bildung von reifen olfaktorischen Eüpithelzellen: OMP, NCAM, olfaktorisches G- Protein, olfaktorische Rezeptoren. Alle relevanten Marker können in den differenzierten Zellen nachgewiesen werden.
Beispiele für verwendete diagnostische Primerkombinationen
Mashi Mash1-F1 Sequenz 5'-cgtcctctccggaactgat
Mash1-R1 Sequenz 5'-ggttggctgtctggtttgtt
Ngn1 Ngn1-F1 Sequenz 5'-cgatccccttttctcctttc
Ngn1-R1 Sequenz 5'-gggtcagttctgagccagtc
GAP43 GAP43-F1 Sequenz 5'-ggctctgctactaccgatgc
GAP43-R1 Sequenzδ'-gcaggagagacagggttcag
Ncami Ncam1-F1 Sequenz 5'-cagtctgaggccactgtcaa
Ncam1-R1 Sequenz 5'-cacacaccagggtgacagac
df GoIf-FI Sequenz 5'-tacacacccacagaccagga
GoIf-RI Sequenz 5'-cctgccaagactttttctgc
OMP OMP-F1 Sequenz 5'-cttgtggacttggtggaggt
OMP-R1 Sequenz 5'-ccaccgttttcctgtcagtt Verzeichnis der Abbildungen (Figuren):
Abb. 1.: Analyse der PCR-Produkte (Ist round). Upstream entspricht dem 5.4 kb-Fragment der Anterior-Region, Downstream entspricht dem 3.8 kb-Fragment der Posterior-Region des genomischen OMP-Promotors.
Abb. 2.: Restriktionsanalyse Vektors OMP-PIG. Die theoretischen Fragmentgrößen stimmen mit den experimentell bestimmten Größen überein.
Abb. 3.: Immunfluoreszenzfärbung von Zellen nach Anwendung der angegebenen Differenzierungsprotokolle (Differenzierungstag 11 ). A: Mikroskopische Aufnahme eines Ausschnitts der differenzierten Zellpopulation (Phasenkontrast). B: Immunfluoreszenzfärbung der Zellpopulation aus A) mit Rabbit-Anti-OMP-Antikörper (Biosensis) und Detektion mit einem Cy3-konjugierten Anti-Rabbit-Zweitantikörper. Die Zelle zeigt die typische Morphologie einer gereiften olfaktorischen Epithelzelle in vitro mit der charakteristischen zytoplasmatischen Verteilung von OMP.
Abb. 4.: RT-PCR-Analyse von differenzierten ES-Zellen nach Durchführung verschiedener Differenzierungsprotokolle (L-S, Differenzierungstag 1 1 ). Alle Zellen zeigen eine mehr oder weniger starke Ausprägung der neuronalen Marker Mash-1 und Ngn-1.
Abb. 5.: RT-PCR-Analyse von differenzierten ES-Zellen nach Durchführung verschiedener Differenzierungsprotokolle (L-S, Differenzierungstag 11 ). Die Bildung von OMP-mRNA sowie von G alpha olf mRNA ist bei Anwendung der Protokolle N, O, R und S besonders prominent, wohingegen Feeder-Zellen und undifferenzierte ES-Zellen praktisch keine Bildung der Marker zeigen. Als Kontrolle diente RNA isoliert aus olfaktorischen Epithelien erwachsener Mäuse.
Tabellen:
Tab. 1
Figure imgf000014_0001

Claims

Patentansprüche:
1. Verfahren zur Gewinnung olfaktorischer Epithelzellen aus nicht-menschlichen embryonalen Stammzellen, dadurch gekennzeichnet, daß man a) embryonale Stammzellen kultiviert, b) die embryonalen Stammzellen mit einem geeigneten Marker oder einer geeigneten Kombination von Markern transfiziert, c) die embryonalen Stammzellen durch weitere Kultivierung in Gegenwart inaktivierter stromaler Zellen sowie nachfolgende Aussaat auf beschichtete Kulturträger und weitere Kultivierung in Gegenwart eines geeigneten Wachstumsfaktors oder einer geeigneten Kombination von Wachstumsfaktoren und/oder in Gegenwart von Retinsäure zu Zellen des Riechepithels differenziert und d) die erfolgreiche Differenzierung in olfaktorischen Epithelzellen anhand der in Schritt b) eingesetzten Marker oder Kombination von Markern überprüft.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß man in Schritt a) embryonale Stammzellen aus Säugetieren kultiviert, insbesondere solche aus Mäusen, Hamstern, Ratten, Affen oder Hunden, besonders bevorzugt aus Mäusen, ganz besonders bevorzugt murine embryonale Stammzellen aus der Zelllinie ATCC ES-D3 (CRL-11632).
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man in Schritt c) als stromale Zellen Zellen des Typs PA-6 oder MS-5, insbesondere MS-5 Bone marrow stromal cells einsetzt.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Aussaat auf beschichtete Kulturträger in Schritt c) auf Kulturschalen erfolgt, deren Be- schichtung ausgewählt ist unter Beschichtungen mit Laminin/Poly-Ornithin, Fibronectin, Laminin, Collagen Type IV, Collagen Type I, Poly-L-Lysin, Matrigel®, reconstituted basal membrane und Mischungen davon, insbesondere unter Beschichtungen mit Laminin/Poly- L-Ornithin.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die in Schritt c) einsetzbaren Wachstumsfaktoren ausgewählt sind unter
• GDF7 in einer Konzentration von 1 bis 50 ng/mL, insbesondere 5 bis 15 ng/mL, besonders bevorzugt 10 ng/mL;
• bmp-4 in einer Konzentration von 0,01 bis 0,5 ng/mL, insbesondere 0,05 bis 0,15 ng/mL, besonders bevorzugt 0,1 ng/mL;
• bFGF in einer Konzentration von 1 bis 50 ng/mL, insbesondere 5 bis 15 ng/mL, besonders bevorzugt 10 ng/mL; • EGF in einer Konzentration von 1 bis 50 ng/mL, insbesondere 15 bis 25 ng/mL, besonders bevorzugt 20 ng/mL sowie
• FGF8 in einer Konzentration von 1 bis 500 ng/mL, insbesondere 1 bis 200 ng/mL, besonders bevorzugt 100 ng/mL.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß in Schritt c) eine Kombination der Wachstumsfaktoren bFGF in einer Konzentration von 5 bis 15 ng/mL, besonders bevorzugt 10 ng/mL und EGF in einer Konzentration von 15 bis 25 ng/mL, besonders bevorzugt 20 ng/mL eingesetzt wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in Schritt c) Retinsäure in einer Konzentration von 0,01 bis 50 μM, insbesondere 5 μM eingesetzt wird.
8. Testsystem für kosmetische und/oder pharmazeutische Zubereitungen auf der Basis olfaktorischer Epithelzellen, die mittels des Verfahrens nach einem der Ansprüche 1 bis 7 gewonnen wurden.
9. Verwendung olfaktorischer Epithelzellen, die mittels des Verfahrens nach einem der Ansprüche 1 bis 7 gewonnen wurden, in Testsystemen für kosmetische und/oder pharmazeutische Zubereitungen.
10. Bio-elektrische Nase, erhältlich durch die Kopplung olfaktorischer Epithelzellen, die mittels des Verfahrens nach einem der Ansprüche 1 bis 7 gewonnen wurden, an Bio-Chips.
11. Dreidimensionales Gewebemodell, erhältlich durch Einbringung der differenzierten Zellen oder deren Vorstufen, die mittels des Verfahrens nach einem der Ansprüche 1 bis 7 gewonnen wurden, in oder auf eine 3D-Matrix, beispielsweise einen sphärischen oder kugelförmigen Träger, oder durch Einbringung der differenzierten Zellen oder deren Vorstufen, die mittels des Verfahrens nach einem der Ansprüche 1 bis 7 gewonnen wurden, in einfache Gelmatrices, oder durch Einbringung der differenzierten Zellen oder deren Vorstufen, die mittels des Verfahrens nach einem der Ansprüche 1 bis 7 gewonnen wurden, in komplexe Matrices.
12. Verwendung olfaktorischer Epithelzellen, die mittels des Verfahrens nach einem der Ansprüche 1 bis 7 gewonnen wurden zu Transplantationszwecken, beispielsweise als Xe- notransplantate.
PCT/EP2009/050908 2008-02-08 2009-01-28 Verfahren zur gewinnung olfaktorischer epithelzellen aus nicht-menschlichen embryonalen stammzellen WO2009098149A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200810008558 DE102008008558A1 (de) 2008-02-08 2008-02-08 Verfahren zur Gewinnung olfaktorischer Epithelzellen aus nicht-menschlichen embryonalen Stammzellen
DE102008008558.8 2008-02-08

Publications (2)

Publication Number Publication Date
WO2009098149A2 true WO2009098149A2 (de) 2009-08-13
WO2009098149A3 WO2009098149A3 (de) 2009-10-01

Family

ID=40735992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/050908 WO2009098149A2 (de) 2008-02-08 2009-01-28 Verfahren zur gewinnung olfaktorischer epithelzellen aus nicht-menschlichen embryonalen stammzellen

Country Status (2)

Country Link
DE (1) DE102008008558A1 (de)
WO (1) WO2009098149A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112601814A (zh) * 2018-08-24 2021-04-02 住友化学株式会社 包含嗅神经细胞或其前体细胞的细胞团块及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308763A (en) * 1991-10-01 1994-05-03 The Johns Hopkins University Method of making primary culture of olfactory neurons
US5380651A (en) * 1990-12-31 1995-01-10 The Johns Hopkins University Method of determining odorant compounds and antagonists of odorants using a primary culture of olfactory neurons
US5639618A (en) * 1994-05-13 1997-06-17 Plurion, Inc. Method of isolating a lineage specific stem cell in vitro
WO2001051609A1 (en) * 2000-01-14 2001-07-19 The Johns Hopkins University Isolation and in vitro differentiation of conditionally immortalized murine olfactory receptor neurons
WO2003064601A2 (en) * 2002-01-28 2003-08-07 University Of Louisville Research Foundation, Inc. Adult human olfactory stem cell
US20040029269A1 (en) * 2002-05-07 2004-02-12 Goldman Steven A Promoter-based isolation, purification, expansion, and transplantation of neuronal progenitor cells, oligodendrocyte progenitor cells, or neural stem cells from a population of embryonic stem cells
US20070172946A1 (en) * 1998-04-14 2007-07-26 The University Court Of The University Of Edinburgh Lineage specific cells and progenitor cells

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380651A (en) * 1990-12-31 1995-01-10 The Johns Hopkins University Method of determining odorant compounds and antagonists of odorants using a primary culture of olfactory neurons
US5308763A (en) * 1991-10-01 1994-05-03 The Johns Hopkins University Method of making primary culture of olfactory neurons
US5639618A (en) * 1994-05-13 1997-06-17 Plurion, Inc. Method of isolating a lineage specific stem cell in vitro
US20070172946A1 (en) * 1998-04-14 2007-07-26 The University Court Of The University Of Edinburgh Lineage specific cells and progenitor cells
WO2001051609A1 (en) * 2000-01-14 2001-07-19 The Johns Hopkins University Isolation and in vitro differentiation of conditionally immortalized murine olfactory receptor neurons
WO2003064601A2 (en) * 2002-01-28 2003-08-07 University Of Louisville Research Foundation, Inc. Adult human olfactory stem cell
US20040029269A1 (en) * 2002-05-07 2004-02-12 Goldman Steven A Promoter-based isolation, purification, expansion, and transplantation of neuronal progenitor cells, oligodendrocyte progenitor cells, or neural stem cells from a population of embryonic stem cells

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CALOF ANNE L ET AL: "Progenitor cells of the olfactory receptor neuron lineage." MICROSCOPY RESEARCH AND TECHNIQUE 1 AUG 2002, Bd. 58, Nr. 3, 1. August 2002 (2002-08-01), Seiten 176-188, XP002537124 ISSN: 1059-910X *
HANSEL D E ET AL: "REGULATION OF OLFACTORY NEUROGENESIS BY AMIDATED NEUROPEPTIDES" JOURNAL OF NEUROSCIENCE RESEARCH, WILEY-LISS, US, Bd. 66, Nr. 1, 1. Oktober 2001 (2001-10-01), Seiten 1-07, XP008022866 ISSN: 0360-4012 *
MURRELL J R ET AL: "AN OLFACTORY SENSORY NEURON LINE, ODORA, PROPERLY TARGETS OLFACTORYPROTEINS AND RESPONDS TO ODORANTS" JOURNAL OF NEUROSCIENCE, NEW YORK, NY, US, Bd. 19, Nr. 19, 1. Oktober 1999 (1999-10-01), Seiten 8260-8270, XP002938275 ISSN: 0270-6474 *
YEE K K ET AL: "Immunolocalization of retinoic acid receptors in the mammalian olfactory system and the effects of olfactory denervation on receptor distribution" NEUROSCIENCE, NEW YORK, NY, US, Bd. 131, Nr. 3, 1. Januar 2005 (2005-01-01), Seiten 733-743, XP025366758 ISSN: 0306-4522 [gefunden am 2005-01-01] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112601814A (zh) * 2018-08-24 2021-04-02 住友化学株式会社 包含嗅神经细胞或其前体细胞的细胞团块及其制备方法
EP3842527A4 (de) * 2018-08-24 2022-05-18 Sumitomo Chemical Company Limited Zellaggregation mit olfaktorischem neuron oder vorläuferzelle davon und verfahren zur herstellung davon

Also Published As

Publication number Publication date
DE102008008558A1 (de) 2009-08-13
WO2009098149A3 (de) 2009-10-01

Similar Documents

Publication Publication Date Title
Mchedlishvili et al. A clonal analysis of neural progenitors during axolotl spinal cord regeneration reveals evidence for both spatially restricted and multipotent progenitors
Yoshida et al. Lysophosphatidic acid and bFGF control different modes in proliferating myoblasts.
CN107709549A (zh) 从干细胞产生功能细胞
Van der Velden et al. LysoTracker is a marker of differentiated alveolar type II cells
Jurga et al. Generation of functional neural artificial tissue from human umbilical cord blood stem cells
O'Shaughnessy et al. Functional synapse formation among rat cortical neurons grown on three-dimensional collagen gels
EP1002080B1 (de) Fluoreszierende proteine als zelltypspezifische reporter
DE69535300T2 (de) In-vitro-Musters für ZNS - Funktion und Dysfunktion
CN105492597A (zh) 利用hmga2制备由非神经元细胞重编程的诱导神经干细胞的方法
Wei et al. An improved method for isolating Schwann cells from postnatal rat sciatic nerves
Bellon et al. Transdifferentiation of human circulating monocytes into neuronal-like cells in 20 days and without reprograming
Boisseau et al. Mammalian neuronal differentiation: early expression of a neuronal phenotype from mouse neural crest cells in a chemically defined culture medium
EP3458119A1 (de) Verfahren zur bildung eines funktionellen netzwerkes von humanen neuronalen und glialen zellen
Meas et al. In vitro methods to cultivate spiral ganglion cells, and purification of cellular subtypes for induced neuronal reprogramming
Markey et al. Astrocyte development—More questions than answers
WO2006028049A1 (ja) アストロサイト様細胞馴化培地の製造方法
WO2009098149A2 (de) Verfahren zur gewinnung olfaktorischer epithelzellen aus nicht-menschlichen embryonalen stammzellen
Minovi et al. Isolation, culture optimization and functional characterization of stem cell neurospheres from mouse neonatal olfactory bulb and epithelium
Calof et al. Regulation of neurogenesis and neuronal differentiation in primary and immortalized cells from mouse olfactory epithelium
WO2006037579A1 (de) Verwendung von fibroblasten zur differenzierung in fett-, knochen-und knorpelzellen
EP1747459A1 (de) Multizelluläre testsysteme
EP2677027A1 (de) Verfahren zur Herstellung von funktionalem Fusionsgewebe aus humanen Chondrozyten
WO2020260714A1 (en) Methods to derive cruelty free bioengineered vertebrata pelt and wool with inseparably anti-counterfeit properties
CN112912495A (zh) 星形胶质细胞的制造方法
DE102011121556B4 (de) In vitro 3D-Reporter-Hautmodell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09708160

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09708160

Country of ref document: EP

Kind code of ref document: A2