WO2009096380A1 - Substrate cleaning apparatus, substrate cleaning method and computer storage medium - Google Patents

Substrate cleaning apparatus, substrate cleaning method and computer storage medium Download PDF

Info

Publication number
WO2009096380A1
WO2009096380A1 PCT/JP2009/051251 JP2009051251W WO2009096380A1 WO 2009096380 A1 WO2009096380 A1 WO 2009096380A1 JP 2009051251 W JP2009051251 W JP 2009051251W WO 2009096380 A1 WO2009096380 A1 WO 2009096380A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
processing container
charging member
wafer
back surface
Prior art date
Application number
PCT/JP2009/051251
Other languages
French (fr)
Japanese (ja)
Inventor
Hisanori Sugimachi
Yoshitaka Matsuda
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2009096380A1 publication Critical patent/WO2009096380A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like

Definitions

  • the present invention relates to a substrate cleaning apparatus, a substrate cleaning method, and a computer storage medium for cleaning the back surface of a substrate such as a semiconductor wafer before exposure.
  • a resist coating process in which a resist solution is applied on a semiconductor wafer (hereinafter referred to as “wafer”) to form a resist film, and a predetermined pattern is exposed on the resist film.
  • An exposure process, a heating process for promoting a chemical reaction in the resist film after the exposure, a developing process for developing the exposed resist film, and the like are sequentially performed to form a predetermined resist pattern on the wafer.
  • the resist film is normally exposed to a predetermined pattern by placing the wafer on a mounting table and irradiating the resist film on the wafer with light.
  • the wafer is usually placed on a hot plate and the wafer is heated by the hot plate.
  • deposits such as dust may adhere to the back surface of the wafer during the process or transfer of the wafer. If the above-described exposure process or heat treatment is performed with the adherent attached to the back surface of the wafer in this way, a focus error may occur due to the wafer not being properly placed on the mounting table during the exposure process, or heating may occur. During processing, the wafer may not be properly placed on the hot plate, so that the heat treatment may not be uniformly performed on the wafer surface.
  • the back surface of the wafer is cleaned before the exposure process.
  • the spin chuck is rotated while the back surface of the wafer is adsorbed and held on the spin chuck, the cleaning liquid is sprayed on the back surface of the wafer, and the cleaning liquid is diffused on the back surface of the wafer by rotating centrifugal force to clean the back surface.
  • the cleaning liquid cannot be sprayed on the portion of the back surface of the wafer held by the spin chuck, and the portion is cleaned. I could't. Further, when the cleaning liquid is sprayed on the back surface of the wafer, it takes time to dry the cleaning liquid on the back surface of the wafer after the cleaning process.
  • the present invention has been made in view of such a point, and an object thereof is to efficiently clean the entire back surface of a wafer before exposure.
  • the present invention provides a substrate cleaning apparatus for cleaning the back surface of a substrate before exposure of the substrate, comprising a processing container having a loading / unloading port for loading / unloading a substrate, and an outer peripheral portion of the substrate.
  • a charging member that can be charged to collect deposits on the rear surface of the held substrate by static electricity, and an exhaust mechanism that exhausts the atmosphere in the processing container.
  • the entire back surface of the substrate can be cleaned.
  • the gas can be ejected from the gas ejection nozzle to the back surface of the substrate, deposits on the back surface of the substrate can be removed from the back surface by physical force due to the gas ejection.
  • the charging member can be charged at the same time as the gas injection, the adhering material on the back surface of the substrate held by the transport mechanism is sucked and collected on the surface of the charging member by the static electricity of the charged charging member. be able to.
  • the deposit on the back surface of the substrate can be removed by both the gas injection from the gas injection nozzle and the static electricity of the charging member, the back surface of the substrate can be cleaned with a high cleaning effect.
  • the cleaning processing time can be shortened and the cleaning processing can be performed efficiently.
  • the atmosphere in the processing container can be exhausted by the exhaust mechanism, even if the deposit on the back surface of the substrate floats in the processing container, the deposit can be prevented from reattaching to the substrate. .
  • a substrate cleaning method for cleaning the back surface of a substrate before exposure of the substrate, wherein the substrate is moved into a processing container by a transport mechanism that holds the outer periphery of the substrate and transports the substrate.
  • a carry-in step for carrying in the gas a gas injection step for injecting gas to the back surface of the substrate held by the transfer mechanism in the processing container by a gas injection nozzle, and a substrate held by the transfer mechanism in the processing vessel During the process of collecting the deposit on the back surface of the charging member due to static electricity of the charged charging member, the gas jetting step, and the deposit collecting step, the atmosphere in the processing container And an unloading step of unloading the substrate out of the processing container by the transport mechanism.
  • a readable computer storage medium storing a program that operates on a computer of a control unit that controls the substrate cleaning apparatus so that the substrate cleaning method is executed by the substrate cleaning apparatus.
  • the entire back surface of the substrate can be efficiently cleaned in a short time with a high cleaning ability.
  • the state of carrying out the container is shown, and (d) shows the state of exhausting the atmosphere in the processing container.
  • It is explanatory drawing which shows the cleaning process of the back surface of a wafer (a) shows a mode that the back surface of the wafer which is conveying the wafer in the carrying-in direction is shown, (b) is the back surface of the wafer which is conveying the wafer in the carrying-out direction It shows how to wash.
  • FIG. 1 is a plan view showing an outline of the configuration of a coating and developing treatment system 1 equipped with a wafer back surface cleaning device according to the present embodiment
  • FIG. 2 is a front view of the coating and developing treatment system 1.
  • FIG. 3 is a rear view of the coating and developing treatment system 1.
  • the coating and developing treatment system 1 is a cassette that carries, for example, 25 wafers W from the outside to the coating and developing treatment system 1 in a cassette unit, and carries a wafer W into and out of the cassette C.
  • a station 2 a processing station 3 in which a plurality of various processing apparatuses for performing predetermined processing in a single wafer type in a photolithography process are arranged in multiple stages, and an exposure apparatus provided adjacent to the processing station 3 4 and the interface station 5 that transfers the wafer W to and from the unit 4.
  • the cassette station 2 is provided with a cassette mounting table 6.
  • the cassette mounting table 6 can mount a plurality of cassettes C in a row in the X direction (vertical direction in FIG. 1).
  • the cassette station 2 is provided with a transfer arm 8 that can move in the X direction on the transfer path 7.
  • the transfer arm 8 is also movable in the wafer arrangement direction (Z direction; vertical direction) of the wafers W accommodated in the cassette C, and selectively with respect to the wafers W in each cassette C arranged in the X direction. Accessible.
  • the transfer arm 8 is rotatable in the ⁇ direction around the Z axis, and is connected to a temperature adjusting device 60 belonging to a third processing device group G3 on the processing station 3 side, which will be described later, and a transition device 61 for transferring the wafer W. Also accessible.
  • the processing station 3 adjacent to the cassette station 2 includes, for example, five processing device groups G1 to G5 in which a plurality of processing devices are arranged in multiple stages.
  • a first processing device group G1 and a second processing device group G2 are arranged in this order from the cassette station 2 side on the X direction negative direction (downward direction in FIG. 1) side of the processing station 3.
  • a third processing device group G3, a fourth processing device group G4, and a fifth processing device group G5 are sequentially arranged from the cassette station 2 side on the X direction positive direction (upward direction in FIG. 1) side of the processing station 3.
  • a first transfer device A1 is provided between the third processing device group G3 and the fourth processing device group G4, and the wafer W is supported and transferred inside the first transfer device A1.
  • a first transfer arm 10 is provided.
  • the first transfer arm 10 can selectively access each processing apparatus in the first processing apparatus group G1, the third processing apparatus group G3, and the fourth processing apparatus group G4 to transfer the wafer W.
  • a second transfer device A2 is provided between the fourth processing device group G4 and the fifth processing device group G5, and the wafer W is supported and transferred inside the second transfer device A2.
  • a second transfer arm 11 is provided. The second transfer arm 11 can selectively access each processing apparatus in the second processing apparatus group G2, the fourth processing apparatus group G4, and the fifth processing apparatus group G5 to transfer the wafer W.
  • a liquid processing apparatus that supplies a predetermined liquid to the wafer W and performs processing for example, a resist coating apparatus 20 that applies a resist solution as a coating liquid to the wafer W.
  • 21, 22, bottom coating devices 23, 24 for forming an antireflection film for preventing reflection of light during the exposure process are stacked in five stages in order from the bottom.
  • liquid processing units, for example, development processing units 30 to 34 for supplying a developing solution to the wafer W and performing development processing are stacked in five stages in order from the bottom.
  • chemical chambers 40 and 41 for supplying various processing liquids to the liquid processing apparatuses in the processing apparatus groups G1 and G2 are provided at the bottom of the first processing apparatus group G1 and the second processing apparatus group G2. Each is provided.
  • the third processing unit group G3 includes a temperature control unit 60, a transition unit 61, high-precision temperature control units 62 to 64 that control the temperature of the wafer W under high-precision temperature control, and the wafer W.
  • High temperature heat treatment apparatuses 65 to 68 for heat treatment at a high temperature are stacked in nine stages in order from the bottom.
  • the fourth processing unit group G4 includes, for example, a high-accuracy temperature control unit 70, pre-baking units 71 to 74 that heat-treat the resist-coated wafer W, and a post-baking unit 75 that heat-processes the developed wafer W. 79 are stacked in 10 steps from the bottom.
  • a plurality of heat processing apparatuses for heat-treating the wafer W for example, high-accuracy temperature control apparatuses 80 to 83 and post-exposure baking apparatuses 84 to 89 are stacked in 10 stages in order from the bottom.
  • a plurality of processing devices are arranged on the positive side in the X direction of the first transfer device A1, and for example, an adhesion device 90 for hydrophobizing the wafer W as shown in FIG. 91, and heating devices 92 and 93 for heating the wafer W are stacked in four stages in order from the bottom.
  • a peripheral exposure device 94 that selectively exposes only the edge portion of the wafer W, for example, is disposed on the positive side in the X direction of the second transfer device A2.
  • a transfer mechanism 101 that moves on a transfer path 100 extending in the X direction, a buffer cassette 102, and a cleaning apparatus for the back surface of the wafer W according to the present embodiment 103 is provided.
  • the transport mechanism 101 can move in the Z direction and can also rotate in the ⁇ direction, and with respect to the exposure apparatus 4 adjacent to the interface station 5, the buffer cassette 102, the cleaning apparatus 103, and the fifth processing apparatus group G5.
  • the wafer W can be transferred by accessing.
  • FIG. 4 is a longitudinal sectional view showing an outline of the configuration of the cleaning apparatus 103
  • FIG. 5 is a transverse sectional view showing an outline of the configuration of the cleaning apparatus 103.
  • the cleaning apparatus 103 has a processing container 110 as shown in FIG.
  • a loading / unloading port 111 for loading / unloading the wafer W held by the transfer mechanism 101 is formed on one side surface of the processing container 110, and an opening / closing shutter 112 is provided at the loading / unloading port 111.
  • the transfer mechanism 101 has a transfer arm 120 that holds the outer periphery of the wafer W as shown in FIG.
  • the transfer arm 120 includes a frame portion 121 configured in a 3/4 annular shape to support the outer peripheral portion of the wafer W, and an arm portion that is formed integrally with the frame portion 121 and supports the frame portion 121. 122.
  • the frame portion 121 is provided with, for example, three support portions 123 that directly support the outer peripheral portion of the wafer W.
  • the support portions 123 are provided at equal intervals on the inner circumference of the frame portion 121 and project inside the frame portion 121.
  • a base 124 that supports the transfer arm 120 is provided on the lower surface side of the transfer arm 120.
  • the base 124 has a built-in motor (not shown), for example, and can move the transfer arm 120 in the horizontal direction.
  • a shaft 125 that supports the base 124 is provided on the lower surface side of the base 124.
  • a drive mechanism 126 incorporating a motor (not shown), for example, is further provided on the lower surface side of the shaft 125, and the transport arm 120 can be moved up and down in the vertical direction (Z direction in FIG. 4) by this drive mechanism 126. Yes and can rotate.
  • the transport mechanism 101 is connected to a transport mechanism control unit 210 of the control unit 200 as shown in FIG.
  • a height control unit 211 is provided in the transport mechanism control unit 210, and the height control unit 211 controls the drive mechanism 126 so that the height of the transport arm 120 is controlled to an appropriate height.
  • a transport speed control unit 212 is provided in the transport mechanism control unit 210, and the transport arm 120 is controlled to an appropriate transport speed by controlling the base 124 by the transport speed control unit 212. Then, the wafer W held by the transfer arm 120 is transferred by the transfer mechanism 101 in the horizontal direction (X direction in FIG. 4) in the processing container 110.
  • a charging member 130 that can be charged to a predetermined polarity is provided near the center of the processing container 110 as shown in FIG.
  • the charging member 130 has, for example, a flat plate shape, and the width in the direction perpendicular to the conveyance direction of the wafer W (the Y direction in FIG. 5) is longer than the diameter of the wafer W. Further, as shown in FIG. 4, the charging member 130 is provided below the back surface of the wafer W held by the transfer arm 120 in the processing container 110. For example, an aluminum material is used for the charging member 130.
  • a temperature adjusting mechanism 131 for adjusting the temperature of the charging member 130 is provided as shown in FIG.
  • the charging member 130 is connected to a charging mechanism 132 that charges the charging member 130 to a predetermined polarity.
  • a DC power source is used for the charging mechanism 132.
  • the temperature adjustment mechanism 131 and the charging mechanism 132 are connected to the charging member control unit 220 of the control unit 200 as shown in FIG.
  • a temperature controller 221 is provided in the charging member controller 220, and the temperature of the charging member 130 is controlled by the temperature controller 221.
  • the charging member 130 is controlled to be lower than the temperature of the atmosphere in the processing container 110, for example.
  • a polarity setting unit 222 is provided in the charging member control unit 220, and the polarity of the charge charged on the charging member 130 by the polarity setting unit 222 is set to a predetermined polarity.
  • a charging amount control unit 223 is provided in the charging member control unit 220, and the charge charged to the charging member 130 by the charging amount control unit 223 is controlled to an appropriate charge amount. Then, static electricity is generated when the charging member 130 is charged, and deposits on the back surface of the wafer W held on the transfer arm 120 are collected on the surface of the charging member 130 by the static electricity.
  • a gas injection nozzle 140 capable of injecting gas is provided in the processing container 110 on the wafer W loading direction side from the charging member 130 (X direction negative direction side from the charging member 130). It has been.
  • the gas injection nozzle 140 extends in a direction perpendicular to the transfer direction of the wafer W (Y direction in FIG. 5). Further, as shown in FIG. 4, the gas injection nozzle 140 is provided below the back surface of the wafer W held by the transfer arm 120 in the processing container 110, and is oblique to the charging member 130 side (X direction in FIG. 4). Gas can be injected upward.
  • the gas injection nozzle 140 is connected to a gas supply source 142 that stores a predetermined gas, such as nitrogen gas or air, through a pipe 141 as shown in FIG.
  • the pipe 141 is provided with an ionizer 143 for mixing the gas supplied from the gas supply source 142 with ion molecules having a polarity different from that of the charging member 130.
  • the pipe 141 is provided with a temperature adjustment mechanism 144 for controlling the gas supplied from the gas supply source 142 to a predetermined temperature.
  • the pipe 141 is provided with a pressure adjusting mechanism 145 that pumps the gas at a predetermined pressure in order to set the gas injected from the gas injection nozzle 140 to a predetermined pressure.
  • the ionizer 143, the temperature adjustment mechanism 144, and the pressure adjustment mechanism 145 are provided in this order from the gas supply source 142.
  • the ionizer 143, the temperature adjustment mechanism 144, and the pressure adjustment mechanism 145 are connected to the gas injection nozzle controller 230 of the controller 200 as shown in FIG.
  • the gas injection nozzle control unit 230 performs control so that ion molecules mixed with the gas by the ionizer 143 are charged to a polarity different from that of the charging member 130. Further, the gas injection nozzle control unit 230 controls the gas to an appropriate temperature by the temperature adjustment mechanism 144, for example, to control the temperature higher than the temperature of the charging member 130. Further, the gas injection nozzle control unit 230 controls the gas so as to have an appropriate pressure by the pressure adjusting mechanism 145. Then, a predetermined gas is injected from the gas injection nozzle 140 onto the back surface of the wafer W held on the air transfer arm 120.
  • an exhaust port 150 for exhausting the atmosphere in the processing container 110 is formed on the bottom surface of the processing container 110.
  • the exhaust port 150 is formed around the charging member 130.
  • An exhaust path 151 is connected to the exhaust port 150, and a pump 152 that evacuates the atmosphere in the processing container 110 is connected to the exhaust path 151.
  • the exhaust port 150, the exhaust path 151, and the pump 152 constitute an exhaust mechanism.
  • the pump 152 is connected to the exhaust mechanism control unit 240 of the control unit 200 as shown in FIG.
  • the exhaust mechanism control unit 240 controls timing for operating the pump 152 and the like.
  • the pump 152 is controlled to operate while the back surface of the wafer W is being cleaned by the charging member 130 and the gas injection nozzle 140.
  • an inspection mechanism 160 for inspecting the deposit on the back surface of the wafer W is provided on the inner surface on the loading / unloading exit 111 side as shown in FIG.
  • the gas inspection mechanism 160 extends in a direction perpendicular to the transfer direction of the wafer W (Y direction in FIG. 5). Further, the inspection mechanism 160 is provided below the back surface of the wafer W held by the transfer arm 120 in the processing container 110 as shown in FIG.
  • the inspection mechanism 160 is a line sensor, for example, and can inspect the deposits remaining on the back surface of the wafer W after cleaning the back surface of the wafer W.
  • the inspection result in the inspection mechanism 160 is transmitted to the control unit 200 as shown in FIG.
  • the control unit 200 based on the inspection result, for example, in the cleaning condition of the wafer W to be loaded next, that is, in the transfer mechanism control unit 210, the charging member control unit 220, the gas injection nozzle control unit 230, and the exhaust mechanism control unit 240. Each control condition is determined.
  • the control unit 200 described above is configured by, for example, a computer having a CPU, a memory, and the like. For example, by executing a program stored in the memory, the cleaning of the back surface of the wafer W in the cleaning apparatus 103 can be realized.
  • Various programs for realizing the cleaning of the back surface of the wafer W in the cleaning apparatus 103 are, for example, a computer-readable hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnet optical desk (MO), What is stored in a storage medium such as a memory card and installed in the control unit 200 from the storage medium is used.
  • one wafer W is taken out from the cassette C on the cassette mounting table 6 by the transfer arm 8 and transferred to the temperature control device 60 of the third processing unit group G3.
  • the wafer W transferred to the temperature adjusting device 60 is adjusted to a predetermined temperature, and then transferred to the bottom coating device 23 by the first transfer arm 10 to form an antireflection film.
  • the wafer W on which the antireflection film is formed is sequentially transferred by the first transfer arm 10 to the heating device 92, the high temperature heat treatment device 65, and the high precision temperature adjustment device 70, and is subjected to predetermined processing in each device. Thereafter, the wafer W is transferred to the resist coating apparatus 20.
  • the wafer W is transferred to the pre-baking apparatus 71 by the first transfer arm 10, and then the peripheral exposure apparatus 94 and the high exposure apparatus 94 are moved by the second transfer arm 11. It is sequentially conveyed to the precision temperature control device 83, and predetermined processing is performed in each device.
  • deposits such as dust adhere to the back surface of the wafer W that has been subjected to various processes such as resist coating and heat treatment when the wafer W is held or while the wafer W is being transferred.
  • the wafer W is transferred to the cleaning device 103 by the transfer mechanism 101 of the interface station 5, and a cleaning process described later is performed.
  • the wafer is transferred to the exposure apparatus 4 by the transfer mechanism 101 of the interface station 5, and a predetermined pattern is exposed on the resist film on the wafer W.
  • the wafer W that has been subjected to the exposure process is transferred to the post-exposure baking apparatus 84 by the transfer mechanism 101 and subjected to a predetermined process.
  • the wafer W is transferred to the high-accuracy temperature adjustment apparatus 81 by the second transfer arm 11 and the temperature is adjusted, and then transferred to the development processing apparatus 30 and developed on the wafer W. Is applied to form a pattern on the resist film. Thereafter, the wafer W is transferred to the post-baking device 75 by the second transfer arm 11 and subjected to heat treatment, and then transferred to the high-accuracy temperature adjusting device 63 to adjust the temperature. Then, the wafer W is transferred to the transition device 61 by the first transfer arm 10 and returned to the cassette C by the transfer arm 8 to complete a series of photolithography steps.
  • the opening / closing shutter 112 is opened, and the wafer W is loaded into the processing container 110 from the loading / unloading port 111 while being held by the transfer arm 120 (FIG. 6A). Then, the wafer W is transported in the carry-in direction (X direction negative direction in FIG. 6).
  • the charging member 130 When the wafer W is conveyed above the charging member 130, the charging member 130 is charged to a predetermined polarity, for example, an anode, and gas is injected from the gas injection nozzle 140 toward the back surface of the wafer W being transferred. Then, the deposit S that has adhered to the back surface of the wafer W is physically peeled off from the back surface of the wafer W by gas injection from the gas injection nozzle 140 and is attracted by the static electricity of the charging member 130. Collected on the surface.
  • a predetermined polarity for example, an anode
  • the gas ejected from the gas ejection nozzle 140 includes a polarity different from the polarity of the charging member 130, for example, ionic molecules of the cathode, the ionic molecules adhere around the deposit S, and the deposit S Charges the cathode. Then, the deposit S is easily collected by the charging member 130. While the back surface of the wafer W is being cleaned by the charging member 130 and the gas injection nozzle 140 in this way, the pump 152 of the exhaust mechanism is operated. Then, even when the deposit S is peeled off from the back surface of the wafer W and floated in the processing container 110, the atmosphere in the processing container 110 containing the deposit S can be exhausted, and the deposit S is re-applied to the wafer W. Adhesion can be prevented (FIG. 6B).
  • the wafer W is transported in the unloading direction (X direction positive direction in FIG. 6).
  • the pump 152 of the exhaust mechanism is kept operating.
  • the inspection apparatus 160 is operated to inspect whether there is a deposit S remaining on the back surface of the wafer W.
  • the wafer W is carried out of the processing container 110 (FIG. 6C).
  • the inspection result of the inspection apparatus 160 is transmitted to the control unit 200 and the control unit 200, and the control unit 200 determines, for example, a cleaning condition for the next wafer W to be loaded based on the inspection result. This series of cleaning processes is performed during the transfer of the wafer W while the wafer W is held by the transfer arm 120.
  • Such a cleaning process is repeatedly performed on a predetermined number of wafers W. If it does so, since the collected matter S collected on the surface of the charging member 130 will need to be removed periodically.
  • the open / close shutter 112 is closed to seal the inside of the processing container 110.
  • the pump 152 is operated to exhaust the atmosphere in the processing container 110 together with the deposit S (FIG. 6D).
  • the entire back surface of the wafer W can be cleaned.
  • the gas can be ejected from the gas ejection nozzle 140 to the back surface of the wafer W, the deposit S on the back surface of the wafer W can be removed from the back surface by a physical force due to the gas ejection.
  • the charging member 130 can be charged at the same time as the gas injection, the charging member 130 sucks the deposit S on the back surface of the transfer arm 102 held by the transfer arm 102 by the static electricity of the charged charging member 130. 130 can be collected on the surface.
  • the back surface of the wafer W can be cleaned with a high cleaning effect.
  • the cleaning processing time can be shortened and the cleaning processing can be performed efficiently.
  • the atmosphere in the processing container 110 can be exhausted from the exhaust port 150 of the exhaust mechanism, even if the deposit S on the back surface of the wafer W floats in the processing chamber 110, the deposit S is attached to the wafer W. Reattachment can be prevented.
  • the deposit S is charged to a polarity different from that of the charging member 130. Then, the deposit S is easily collected by the charging member 130.
  • the cleaning apparatus 103 can efficiently perform the cleaning process on the back surface of the wafer W and reduce the deposits S on the back surface of the wafer W before the exposure process. A focus error at the time of exposing the resist film of W can be reduced. Furthermore, in the post-exposure baking apparatus 84, the heat treatment of the wafer W after the exposure processing can be performed uniformly. Then, the line width of the resist pattern on the wafer W can be made uniform.
  • the manufacturing cost of the cleaning apparatus 103 can be reduced.
  • the temperature of the charging member 130 is controlled to be lower than the temperature of the atmosphere in the processing container 110. According to the inventors, it has been found that when the temperature of the charging member 130 is controlled in this way, the deposit S on the back surface of the wafer W is likely to adhere to the charging member 130. Moreover, since the temperature of the gas injected from the gas injection nozzle 140 is controlled to be higher than the temperature of the charging member 130, the above-described deposit S collecting effect can be further promoted.
  • the charging member 130 is charged with one polarity.
  • the charging member 300 may be divided and charged with different polarities.
  • the charging member 300 includes divided members 301 and 302 that are divided into two in the conveyance direction of the wafer W (X direction in FIG. 7).
  • the dividing member 301 is charged to, for example, an anode, and the dividing member 302 is charged to, for example, a cathode.
  • the wafer W is carried into the processing container 110, and during the transfer of the wafer W, gas is injected from the gas injection nozzle 140, and for example, the divided member 301 is charged to the anode to divide the deposit S on the back surface of the wafer W.
  • the gas ejected from the gas ejection nozzle 140 includes negative ion molecules that are different in polarity from the split member 301 (FIG. 8A).
  • gas is injected from the gas injection nozzle 140 and the split member 302 is charged to the cathode so that the back surface of the wafer W is charged.
  • the deposit S is collected on the surface of the dividing member 302.
  • the gas ejected from the gas ejection nozzle 140 contains ionic molecules of the anode having a polarity different from that of the dividing member 302 (FIG. 8B).
  • the deposit S can be collected in the bipolar state during the cleaning process.
  • the back surface of the wafer W can be cleaned efficiently.
  • a collection substrate 310 for collecting the deposit S may be further provided as shown in FIG.
  • the collection substrate 310 is supported by a conductive support member 311 provided on the charging member 130.
  • the collection substrate 310 can be charged to the same polarity.
  • the collection substrate 310 for example, the same material and shape as the wafer W are used. Then, the wafer W is carried into the processing container 110 and gas is injected from the gas injection nozzle 140 and the collection substrate 310 is charged via the charging member 130 to collect the deposit S on the back surface of the wafer W. It collects on the surface of the substrate 310 (FIG. 10A).
  • the wafer W is carried out of the processing container 110 (FIG. 10B).
  • the collection substrate 310 is moved to the processing container by the transfer arm 102. 110 is carried out (FIG. 10C). Then, the collection substrate 310 is washed outside the processing container 110.
  • the exhaust processing in the processing container 110 performed when cleaning the charging member 130 in the above embodiment can be omitted. it can. Therefore, since the maintenance time of the cleaning apparatus 103 can be shortened, the throughput of wafer processing can be improved.
  • the gas injection nozzle 140 is provided separately from the charging member 130. However, as shown in FIG. 11, the gas injection nozzle 140 is omitted, and a plurality of through holes 320 are provided in the charging member 130. Gas may be injected from the through hole 320 to the back surface of the wafer W.
  • a gas supply source 142 is connected to the plurality of through holes 320 via the pipe 141 described above, and the pipe 141 is provided with an ionizer 143, a temperature adjustment mechanism 144, and a pressure adjustment mechanism 145. Even in such a case, the back surface of the wafer W can be cleaned by gas injection from the through hole 320 and static electricity of the charging member 130. Moreover, since the gas injection nozzle 140 becomes unnecessary, the manufacturing cost of the cleaning device 103 can be reduced, and the cleaning device 103 can be downsized.
  • the cleaning device 103 and the buffer cassette 102 are provided at different positions, but the cleaning device 103 may be provided below the buffer cassette 102. As a result, the area occupied by the coating and developing treatment system 1 can be reduced.
  • the present invention is not limited to such examples. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood.
  • the present invention is not limited to this example and can take various forms.
  • the present invention can also be applied to a case where the substrate is another substrate such as an FPD (flat panel display) other than a wafer or a mask reticle for a photomask.
  • FPD flat panel display
  • the present invention is useful when cleaning the back surface of a substrate such as a semiconductor wafer before exposure.

Abstract

Provided is a substrate cleaning apparatus for cleaning a rear surface of a substrate prior to exposing the substrate. The substrate cleaning apparatus is provided with a processing container having a carry in/out port for carrying in and out the substrate; a transfer mechanism, which holds an outer circumference section of the substrate and carries in and out the substrate to and from the processing container; a gas jetting nozzle which jets a gas to the rear surface of the substrate held by the transfer mechanism in the processing container; an electrostatically chargeable member which can be electrostatically charged for capturing, in theprocessing container by static electricity, adhered materials on the rear surface of the substrate held by the transfer mechanism; and an exhaust mechanism for exhausting atmosphere in the processing container. Thus, the rear surface of the substrate can be entirely cleaned efficiently prior to exposure.

Description

基板洗浄装置、基板洗浄方法及びコンピュータ記憶媒体Substrate cleaning apparatus, substrate cleaning method, and computer storage medium
 本発明は、例えば半導体ウェハ等の基板の露光前に当該基板の裏面を洗浄する基板洗浄装置、基板洗浄方法及びコンピュータ記憶媒体に関する。 The present invention relates to a substrate cleaning apparatus, a substrate cleaning method, and a computer storage medium for cleaning the back surface of a substrate such as a semiconductor wafer before exposure.
 例えば半導体デバイスの製造におけるフォトリソグラフィー処理では、例えば半導体ウェハ(以下、「ウェハ」という。)上にレジスト液を塗布してレジスト膜を形成するレジスト塗布処理、当該レジスト膜に所定のパターンを露光する露光処理、露光後にレジスト膜内の化学反応を促進させる加熱処理、露光されたレジスト膜を現像する現像処理などが順次行われ、ウェハ上に所定のレジストのパターンが形成される。 For example, in a photolithography process in the manufacture of a semiconductor device, for example, a resist coating process in which a resist solution is applied on a semiconductor wafer (hereinafter referred to as “wafer”) to form a resist film, and a predetermined pattern is exposed on the resist film. An exposure process, a heating process for promoting a chemical reaction in the resist film after the exposure, a developing process for developing the exposed resist film, and the like are sequentially performed to form a predetermined resist pattern on the wafer.
 上述した露光処理では、通常、ウェハを載置台上に載置し、当該ウェハ上のレジスト膜に光を照射することによって、レジスト膜が所定のパターンに露光される。また、露光後の加熱処理では、通常、ウェハをホットプレート上に載置して、当該ウェハがホットプレートで加熱される。 In the exposure processing described above, the resist film is normally exposed to a predetermined pattern by placing the wafer on a mounting table and irradiating the resist film on the wafer with light. In the heat treatment after exposure, the wafer is usually placed on a hot plate and the wafer is heated by the hot plate.
 ここで、ウェハの露光処理前には、レジスト塗布処理等の種々の処理が行われるため、ウェハの処理中あるいは搬送中にウェハの裏面に塵埃などの付着物が付着する場合がある。このようにウェハの裏面に付着物が付着した状態で、上述の露光処理や加熱処理を行うと、露光処理時には、ウェハが載置台上に適切に載置されないためにフォーカスエラーが生じたり、加熱処理時には、ウェハがホットプレート上に適切に載置されないために加熱処理がウェハの面内に均一に行われないことがある。 Here, since various processes such as a resist coating process are performed before the wafer exposure process, deposits such as dust may adhere to the back surface of the wafer during the process or transfer of the wafer. If the above-described exposure process or heat treatment is performed with the adherent attached to the back surface of the wafer in this way, a focus error may occur due to the wafer not being properly placed on the mounting table during the exposure process, or heating may occur. During processing, the wafer may not be properly placed on the hot plate, so that the heat treatment may not be uniformly performed on the wafer surface.
 そこで、従来より、露光処理前にウェハの裏面を洗浄することが行われている。この洗浄処理では、ウェハの裏面をスピンチャックに吸着保持した状態でスピンチャックを回転させると共にウェハの裏面に洗浄液を噴射し、回転遠心力によって洗浄液をウェハの裏面に拡散させることで当該裏面の洗浄が行われる(特許文献1)。
特開2007-134671号公報
Therefore, conventionally, the back surface of the wafer is cleaned before the exposure process. In this cleaning process, the spin chuck is rotated while the back surface of the wafer is adsorbed and held on the spin chuck, the cleaning liquid is sprayed on the back surface of the wafer, and the cleaning liquid is diffused on the back surface of the wafer by rotating centrifugal force to clean the back surface. (Patent Document 1).
JP 2007-134671 A
 しかしながら、上述のようにウェハの裏面をスピンチャックで吸着保持して当該裏面を洗浄した場合、ウェハの裏面においてスピンチャックに保持された部分には洗浄液を噴射することができず、当該部分を洗浄することができなかった。また、ウェハの裏面に洗浄液を噴射した場合、洗浄処理後、ウェハの裏面の洗浄液を乾燥させるのに時間がかかっていた。 However, when the back surface of the wafer is adsorbed and held by the spin chuck and the back surface is cleaned as described above, the cleaning liquid cannot be sprayed on the portion of the back surface of the wafer held by the spin chuck, and the portion is cleaned. I couldn't. Further, when the cleaning liquid is sprayed on the back surface of the wafer, it takes time to dry the cleaning liquid on the back surface of the wafer after the cleaning process.
 本発明は、かかる点に鑑みてなされたものであり、露光前のウェハの裏面全面を効率よく洗浄することを目的とする。 The present invention has been made in view of such a point, and an object thereof is to efficiently clean the entire back surface of a wafer before exposure.
 前記の目的を達成するため、本発明は、基板の露光前に当該基板の裏面を洗浄する基板洗浄装置であって、基板を搬入出させる搬入出口を備えた処理容器と、基板の外周部を保持し、前記処理容器に基板を搬入出する搬送機構と、前記処理容器内で前記搬送機構に保持された基板の裏面に気体を噴射する気体噴射ノズルと、前記処理容器内で前記搬送機構に保持された基板の裏面の付着物を静電気によって捕集するために帯電可能な帯電部材と、前記処理容器内の雰囲気を排気する排気機構と、を有する。 In order to achieve the above object, the present invention provides a substrate cleaning apparatus for cleaning the back surface of a substrate before exposure of the substrate, comprising a processing container having a loading / unloading port for loading / unloading a substrate, and an outer peripheral portion of the substrate. A holding mechanism for carrying the substrate in and out of the processing container; a gas injection nozzle for injecting gas to the back surface of the substrate held by the conveying mechanism in the processing container; and the conveying mechanism in the processing container. And a charging member that can be charged to collect deposits on the rear surface of the held substrate by static electricity, and an exhaust mechanism that exhausts the atmosphere in the processing container.
 本発明によれば、搬送機構によって基板の外周部のみを保持し、当該基板の裏面を洗浄するので、基板の裏面全面を洗浄することができる。また、気体噴射ノズルから基板の裏面に気体を噴射することができるので、気体の噴射による物理的な力によって基板の裏面の付着物を当該裏面から除去することができる。この気体の噴射と同時に、帯電部材を帯電させることができるので、帯電した状態の帯電部材の静電気によって、搬送機構に保持された基板の裏面の付着物を吸引し帯電部材の表面に捕集することができる。すなわち、気体噴射ノズルからの気体の噴射と帯電部材の静電気の両方によって基板の裏面の付着物を除去できるので、高い洗浄効果で基板の裏面を洗浄できる。また、従来のように洗浄液を乾燥させる必要がなくなるので、洗浄処理時間を短時間にすることができ、洗浄処理を効率よく行うことができる。さらに、排気機構によって処理容器内の雰囲気を排気することができるので、基板の裏面の付着物が処理容器内に浮遊した場合でも、当該付着物が基板に再付着するのを防止することができる。 According to the present invention, since only the outer peripheral portion of the substrate is held by the transport mechanism and the back surface of the substrate is cleaned, the entire back surface of the substrate can be cleaned. Further, since the gas can be ejected from the gas ejection nozzle to the back surface of the substrate, deposits on the back surface of the substrate can be removed from the back surface by physical force due to the gas ejection. Since the charging member can be charged at the same time as the gas injection, the adhering material on the back surface of the substrate held by the transport mechanism is sucked and collected on the surface of the charging member by the static electricity of the charged charging member. be able to. That is, since the deposit on the back surface of the substrate can be removed by both the gas injection from the gas injection nozzle and the static electricity of the charging member, the back surface of the substrate can be cleaned with a high cleaning effect. In addition, since it is not necessary to dry the cleaning liquid as in the prior art, the cleaning processing time can be shortened and the cleaning processing can be performed efficiently. Furthermore, since the atmosphere in the processing container can be exhausted by the exhaust mechanism, even if the deposit on the back surface of the substrate floats in the processing container, the deposit can be prevented from reattaching to the substrate. .
 別な観点による本発明は、基板の露光前に当該基板の裏面を洗浄する基板の洗浄方法であって、基板の外周部を保持して当該基板を搬送する搬送機構によって、基板を処理容器内に搬入する搬入工程と、前記処理容器内で前記搬送機構に保持された基板の裏面に、気体噴射ノズルによって気体を噴射する気体噴射工程と、前記処理容器内で前記搬送機構に保持された基板の裏面の付着物を、帯電した状態の帯電部材の静電気によって捕集する付着物捕集工程と、前記気体噴射工程及び前記付着物捕集工程が行われている間、前記処理容器内の雰囲気を排気機構によって排気する排気工程と、前記搬送機構によって基板を前記処理容器外に搬出する搬出工程と、を有する。 According to another aspect of the present invention, there is provided a substrate cleaning method for cleaning the back surface of a substrate before exposure of the substrate, wherein the substrate is moved into a processing container by a transport mechanism that holds the outer periphery of the substrate and transports the substrate. A carry-in step for carrying in the gas, a gas injection step for injecting gas to the back surface of the substrate held by the transfer mechanism in the processing container by a gas injection nozzle, and a substrate held by the transfer mechanism in the processing vessel During the process of collecting the deposit on the back surface of the charging member due to static electricity of the charged charging member, the gas jetting step, and the deposit collecting step, the atmosphere in the processing container And an unloading step of unloading the substrate out of the processing container by the transport mechanism.
 また別な観点による本発明によれば、前記基板洗浄方法を基板洗浄装置によって実行させるために、当該基板洗浄装置を制御する制御部のコンピュータ上で動作するプログラムを格納した読み取り可能なコンピュータ記憶媒体が提供される。 According to another aspect of the present invention, a readable computer storage medium storing a program that operates on a computer of a control unit that controls the substrate cleaning apparatus so that the substrate cleaning method is executed by the substrate cleaning apparatus. Is provided.
 本発明によれば、基板の裏面全面を高い洗浄能力で、かつ短時間で効率よく洗浄することができる。 According to the present invention, the entire back surface of the substrate can be efficiently cleaned in a short time with a high cleaning ability.
本実施の形態にかかる洗浄装置を搭載した、塗布現像処理システムの構成の概略を示す平面図である。It is a top view which shows the outline of a structure of the coating and developing treatment system carrying the washing | cleaning apparatus concerning this Embodiment. 塗布現像処理システムの正面図である。It is a front view of a coating and developing treatment system. 塗布現像処理システムの背面図である。It is a rear view of a coating and developing treatment system. 洗浄装置の構成の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of a structure of a washing | cleaning apparatus. 洗浄装置の構成の概略を示す横断面図である。It is a cross-sectional view which shows the outline of a structure of a washing | cleaning apparatus. ウェハの裏面の洗浄処理を示す説明図であり、(a)はウェハを処理容器内に搬入する様子を示し、(b)はウェハの裏面を洗浄する様子を示し、(c)はウェハを処理容器外に搬出する様子を示し、(d)は処理容器内の雰囲気を排気する様子を示している。It is explanatory drawing which shows the cleaning process of the back surface of a wafer, (a) shows a mode that a wafer is carried in in a processing container, (b) shows a mode that the back surface of a wafer is cleaned, (c) processes a wafer. The state of carrying out the container is shown, and (d) shows the state of exhausting the atmosphere in the processing container. 他の実施の形態にかかる洗浄装置の構成の概略を示す横断面図である。It is a cross-sectional view which shows the outline of a structure of the washing | cleaning apparatus concerning other embodiment. ウェハの裏面の洗浄処理を示す説明図であり、(a)はウェハを搬入方向に搬送中のウェハの裏面を洗浄する様子を示し、(b)はウェハを搬出方向に搬送中のウェハの裏面を洗浄する様子を示している。It is explanatory drawing which shows the cleaning process of the back surface of a wafer, (a) shows a mode that the back surface of the wafer which is conveying the wafer in the carrying-in direction is shown, (b) is the back surface of the wafer which is conveying the wafer in the carrying-out direction It shows how to wash. 他の実施の形態にかかる洗浄装置の構成の概略を示す横断面図である。It is a cross-sectional view which shows the outline of a structure of the washing | cleaning apparatus concerning other embodiment. ウェハの裏面の洗浄処理を示す説明図であり、(a)はウェハの裏面を洗浄する様子を示し、(b)はウェハを処理容器外に搬出する様子を示し、(c)は処理容器内の雰囲気を排気する様子を示している。It is explanatory drawing which shows the cleaning process of the back surface of a wafer, (a) shows a mode that the back surface of a wafer is cleaned, (b) shows a mode that a wafer is carried out of a processing container, (c) is in a processing container. It shows how the atmosphere is exhausted. 他の実施の形態にかかる洗浄装置の構成の概略を示す横断面図である。It is a cross-sectional view which shows the outline of a structure of the washing | cleaning apparatus concerning other embodiment.
符号の説明Explanation of symbols
  1  塗布現像処理システム
  101 搬送機構
  103 洗浄装置
  110 処理容器
  111 搬入出口
  120 搬送アーム
  130 帯電部材
  131 温度調節機構
  132 帯電機構
  140 気体噴射ノズル
  142 気体供給源
  143 イオナイザー
  144 圧力調節機構
  145 温度調節機構
  150 排気口
  151 排気経路
  152 ポンプ
  160 検査機構
  200 制御部
  210 搬送機構制御部
  211 高さ制御部
  212 搬送速度制御部
  220 帯電部材制御部
  221 温度制御部
  222 極性設定部
  223 帯電量制御部
  230 気体噴射ノズル制御部
  240 排気機構制御部
  300 帯電部材
  310 捕集用基板
  320 貫通孔
  S  付着物
  W  ウェハ
DESCRIPTION OF SYMBOLS 1 Coating | development processing system 101 Conveyance mechanism 103 Cleaning apparatus 110 Processing container 111 Carry-in / out port 120 Conveyance arm 130 Charging member 131 Temperature adjustment mechanism 132 Charging mechanism 140 Gas injection nozzle 142 Gas supply source 143 Ionizer 144 Pressure adjustment mechanism 145 Temperature adjustment mechanism 150 Exhaust Port 151 Exhaust path 152 Pump 160 Inspection mechanism 200 Control unit 210 Transport mechanism control unit 211 Height control unit 212 Transport speed control unit 220 Charging member control unit 221 Temperature control unit 222 Polarity setting unit 223 Charge amount control unit 230 Gas injection nozzle control Unit 240 exhaust mechanism control unit 300 charging member 310 collection substrate 320 through-hole S deposit W wafer
 以下、本発明の好ましい実施の形態について説明する。図1は、本実施の形態にかかるウェハの裏面の洗浄装置を搭載した、塗布現像処理システム1の構成の概略を示す平面図であり、図2は、塗布現像処理システム1の正面図であり、図3は、塗布現像処理システム1の背面図である。 Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 is a plan view showing an outline of the configuration of a coating and developing treatment system 1 equipped with a wafer back surface cleaning device according to the present embodiment, and FIG. 2 is a front view of the coating and developing treatment system 1. FIG. 3 is a rear view of the coating and developing treatment system 1.
 塗布現像処理システム1は、図1に示すように例えば25枚のウェハWをカセット単位で外部から塗布現像処理システム1に対して搬入出したり、カセットCに対してウェハWを搬入出したりするカセットステーション2と、フォトリソグラフィー工程の中で枚葉式に所定の処理を施す複数の各種処理装置を多段に配置している処理ステーション3と、この処理ステーション3に隣接して設けられている露光装置4との間でウェハWの受け渡しをするインターフェイスステーション5とを一体に接続した構成を有している。 As shown in FIG. 1, the coating and developing treatment system 1 is a cassette that carries, for example, 25 wafers W from the outside to the coating and developing treatment system 1 in a cassette unit, and carries a wafer W into and out of the cassette C. A station 2, a processing station 3 in which a plurality of various processing apparatuses for performing predetermined processing in a single wafer type in a photolithography process are arranged in multiple stages, and an exposure apparatus provided adjacent to the processing station 3 4 and the interface station 5 that transfers the wafer W to and from the unit 4.
 カセットステーション2には、カセット載置台6が設けられ、当該カセット載置台6は、複数のカセットCをX方向(図1中の上下方向)に一列に載置自在になっている。カセットステーション2には、搬送路7上をX方向に向かって移動可能な搬送アーム8が設けられている。搬送アーム8は、カセットCに収容されたウェハWのウェハ配列方向(Z方向;鉛直方向)にも移動自在であり、X方向に配列された各カセットC内のウェハWに対して選択的にアクセスできる。 The cassette station 2 is provided with a cassette mounting table 6. The cassette mounting table 6 can mount a plurality of cassettes C in a row in the X direction (vertical direction in FIG. 1). The cassette station 2 is provided with a transfer arm 8 that can move in the X direction on the transfer path 7. The transfer arm 8 is also movable in the wafer arrangement direction (Z direction; vertical direction) of the wafers W accommodated in the cassette C, and selectively with respect to the wafers W in each cassette C arranged in the X direction. Accessible.
 搬送アーム8は、Z軸周りのθ方向に回転可能であり、後述する処理ステーション3側の第3の処理装置群G3に属する温度調節装置60やウェハWの受け渡しを行うためのトランジション装置61に対してもアクセスできる。 The transfer arm 8 is rotatable in the θ direction around the Z axis, and is connected to a temperature adjusting device 60 belonging to a third processing device group G3 on the processing station 3 side, which will be described later, and a transition device 61 for transferring the wafer W. Also accessible.
 カセットステーション2に隣接する処理ステーション3は、複数の処理装置が多段に配置された、例えば5つの処理装置群G1~G5を備えている。処理ステーション3のX方向負方向(図1中の下方向)側には、カセットステーション2側から第1の処理装置群G1、第2の処理装置群G2が順に配置されている。処理ステーション3のX方向正方向(図1中の上方向)側には、カセットステーション2側から第3の処理装置群G3、第4の処理装置群G4及び第5の処理装置群G5が順に配置されている。第3の処理装置群G3と第4の処理装置群G4の間には、第1の搬送装置A1が設けられており、第1の搬送装置A1の内部には、ウェハWを支持して搬送する第1の搬送アーム10が設けられている。第1の搬送アーム10は、第1の処理装置群G1、第3の処理装置群G3及び第4の処理装置群G4内の各処理装置に選択的にアクセスしてウェハWを搬送できる。第4の処理装置群G4と第5の処理装置群G5の間には、第2の搬送装置A2が設けられており、第2の搬送装置A2の内部には、ウェハWを支持して搬送する第2の搬送アーム11が設けられている。第2の搬送アーム11は、第2の処理装置群G2、第4の処理装置群G4及び第5の処理装置群G5内の各処理装置に選択的にアクセスしてウェハWを搬送できる。 The processing station 3 adjacent to the cassette station 2 includes, for example, five processing device groups G1 to G5 in which a plurality of processing devices are arranged in multiple stages. A first processing device group G1 and a second processing device group G2 are arranged in this order from the cassette station 2 side on the X direction negative direction (downward direction in FIG. 1) side of the processing station 3. A third processing device group G3, a fourth processing device group G4, and a fifth processing device group G5 are sequentially arranged from the cassette station 2 side on the X direction positive direction (upward direction in FIG. 1) side of the processing station 3. Has been placed. A first transfer device A1 is provided between the third processing device group G3 and the fourth processing device group G4, and the wafer W is supported and transferred inside the first transfer device A1. A first transfer arm 10 is provided. The first transfer arm 10 can selectively access each processing apparatus in the first processing apparatus group G1, the third processing apparatus group G3, and the fourth processing apparatus group G4 to transfer the wafer W. A second transfer device A2 is provided between the fourth processing device group G4 and the fifth processing device group G5, and the wafer W is supported and transferred inside the second transfer device A2. A second transfer arm 11 is provided. The second transfer arm 11 can selectively access each processing apparatus in the second processing apparatus group G2, the fourth processing apparatus group G4, and the fifth processing apparatus group G5 to transfer the wafer W.
 図2に示すように第1の処理装置群G1には、ウェハWに所定の液体を供給して処理を行う液処理装置、例えばウェハWに塗布液としてのレジスト液を塗布するレジスト塗布装置20、21、22、露光処理時の光の反射を防止する反射防止膜を形成するボトムコーティング装置23、24が下から順に5段に重ねられている。第2の処理装置群G2には、液処理装置、例えばウェハWに現像液を供給して現像処理する現像処理装置30~34が下から順に5段に重ねられている。また、第1の処理装置群G1及び第2の処理装置群G2の最下段には、各処理装置群G1、G2内の液処理装置に各種処理液を供給するためのケミカル室40、41がそれぞれ設けられている。 As shown in FIG. 2, in the first processing apparatus group G1, a liquid processing apparatus that supplies a predetermined liquid to the wafer W and performs processing, for example, a resist coating apparatus 20 that applies a resist solution as a coating liquid to the wafer W. , 21, 22, bottom coating devices 23, 24 for forming an antireflection film for preventing reflection of light during the exposure process are stacked in five stages in order from the bottom. In the second processing unit group G2, liquid processing units, for example, development processing units 30 to 34 for supplying a developing solution to the wafer W and performing development processing are stacked in five stages in order from the bottom. In addition, chemical chambers 40 and 41 for supplying various processing liquids to the liquid processing apparatuses in the processing apparatus groups G1 and G2 are provided at the bottom of the first processing apparatus group G1 and the second processing apparatus group G2. Each is provided.
 図3に示すように第3の処理装置群G3には、温度調節装置60、トランジション装置61、精度の高い温度管理下でウェハWを温度調節する高精度温度調節装置62~64及びウェハWを高温で加熱処理する高温度熱処理装置65~68が下から順に9段に重ねられている。 As shown in FIG. 3, the third processing unit group G3 includes a temperature control unit 60, a transition unit 61, high-precision temperature control units 62 to 64 that control the temperature of the wafer W under high-precision temperature control, and the wafer W. High temperature heat treatment apparatuses 65 to 68 for heat treatment at a high temperature are stacked in nine stages in order from the bottom.
 第4の処理装置群G4には、例えば高精度温度調節装置70、レジスト塗布処理後のウェハWを加熱処理するプリベーキング装置71~74及び現像処理後のウェハWを加熱処理するポストベーキング装置75~79が下から順に10段に重ねられている。 The fourth processing unit group G4 includes, for example, a high-accuracy temperature control unit 70, pre-baking units 71 to 74 that heat-treat the resist-coated wafer W, and a post-baking unit 75 that heat-processes the developed wafer W. 79 are stacked in 10 steps from the bottom.
 第5の処理装置群G5には、ウェハWを熱処理する複数の熱処理装置、例えば高精度温度調節装置80~83、ポストエクスポージャーベーキング装置84~89が下から順に10段に重ねられている。 In the fifth processing apparatus group G5, a plurality of heat processing apparatuses for heat-treating the wafer W, for example, high-accuracy temperature control apparatuses 80 to 83 and post-exposure baking apparatuses 84 to 89 are stacked in 10 stages in order from the bottom.
 図1に示すように第1の搬送装置A1のX方向正方向側には、複数の処理装置が配置されており、例えば図3に示すようにウェハWを疎水化処理するためのアドヒージョン装置90、91、ウェハWを加熱する加熱装置92、93が下から順に4段に重ねられている。図1に示すように第2の搬送装置A2のX方向正方向側には、例えばウェハWのエッジ部のみを選択的に露光する周辺露光装置94が配置されている。 As shown in FIG. 1, a plurality of processing devices are arranged on the positive side in the X direction of the first transfer device A1, and for example, an adhesion device 90 for hydrophobizing the wafer W as shown in FIG. 91, and heating devices 92 and 93 for heating the wafer W are stacked in four stages in order from the bottom. As shown in FIG. 1, a peripheral exposure device 94 that selectively exposes only the edge portion of the wafer W, for example, is disposed on the positive side in the X direction of the second transfer device A2.
 インターフェイスステーション5には、例えば図1に示すようにX方向に向けて延伸する搬送路100上を移動する搬送機構101と、バッファカセット102と、本実施の形態にかかるウェハWの裏面の洗浄装置103が設けられている。搬送機構101は、Z方向に移動可能でかつθ方向にも回転可能であり、インターフェイスステーション5に隣接した露光装置4と、バッファカセット102、洗浄装置103及び第5の処理装置群G5に対してアクセスしてウェハWを搬送できる。 In the interface station 5, for example, as shown in FIG. 1, a transfer mechanism 101 that moves on a transfer path 100 extending in the X direction, a buffer cassette 102, and a cleaning apparatus for the back surface of the wafer W according to the present embodiment 103 is provided. The transport mechanism 101 can move in the Z direction and can also rotate in the θ direction, and with respect to the exposure apparatus 4 adjacent to the interface station 5, the buffer cassette 102, the cleaning apparatus 103, and the fifth processing apparatus group G5. The wafer W can be transferred by accessing.
 次に、上述の洗浄装置103の構成について説明する。図4は、洗浄装置103の構成の概略を示す縦断面図であり、図5は、洗浄装置103の構成の概略を示す横断面図である。 Next, the configuration of the above-described cleaning apparatus 103 will be described. FIG. 4 is a longitudinal sectional view showing an outline of the configuration of the cleaning apparatus 103, and FIG. 5 is a transverse sectional view showing an outline of the configuration of the cleaning apparatus 103.
 洗浄装置103は、図4に示すように処理容器110を有している。処理容器110の一の側面には、搬送機構101に保持されたウェハWを搬入出させる搬入出口111が形成され、搬入出口111には、開閉シャッタ112が設けられている。 The cleaning apparatus 103 has a processing container 110 as shown in FIG. A loading / unloading port 111 for loading / unloading the wafer W held by the transfer mechanism 101 is formed on one side surface of the processing container 110, and an opening / closing shutter 112 is provided at the loading / unloading port 111.
 搬送機構101は、図5に示すようにウェハWの外周部を保持する搬送アーム120を有している。搬送アーム120は、ウェハWの外周部を支持するために3/4円環状に構成されたフレーム部121と、このフレーム部121と一体に形成され、かつフレーム部121を支持するためのアーム部122とを有している。フレーム部121には、ウェハWの外周部を直接支持する支持部123が例えば3箇所設けられている。支持部123はフレーム部121の内円周に等間隔に設けられ、フレーム部121の内側に突出している。 The transfer mechanism 101 has a transfer arm 120 that holds the outer periphery of the wafer W as shown in FIG. The transfer arm 120 includes a frame portion 121 configured in a 3/4 annular shape to support the outer peripheral portion of the wafer W, and an arm portion that is formed integrally with the frame portion 121 and supports the frame portion 121. 122. The frame portion 121 is provided with, for example, three support portions 123 that directly support the outer peripheral portion of the wafer W. The support portions 123 are provided at equal intervals on the inner circumference of the frame portion 121 and project inside the frame portion 121.
 搬送アーム120の下面側には、図4に示すように搬送アーム120を支持する基台124が設けられている。基台124には、例えばモータ(図示せず)が内蔵されており、搬送アーム120を水平方向に移動させることができる。基台124の下面側には、基台124を支持するシャフト125が設けられている。シャフト125の下面側には、例えばモータ(図示せず)などを内蔵した駆動機構126がさらに設けられ、この駆動機構126により搬送アーム120は鉛直方向(図4中のZ方向)に昇降可能であり、かつ回転できる。 As shown in FIG. 4, a base 124 that supports the transfer arm 120 is provided on the lower surface side of the transfer arm 120. The base 124 has a built-in motor (not shown), for example, and can move the transfer arm 120 in the horizontal direction. A shaft 125 that supports the base 124 is provided on the lower surface side of the base 124. A drive mechanism 126 incorporating a motor (not shown), for example, is further provided on the lower surface side of the shaft 125, and the transport arm 120 can be moved up and down in the vertical direction (Z direction in FIG. 4) by this drive mechanism 126. Yes and can rotate.
 搬送機構101は、図4に示すように制御部200の搬送機構制御部210に接続されている。搬送機構制御部210内には高さ制御部211が設けられ、高さ制御部211によって駆動機構126を制御することで搬送アーム120の高さが適切な高さになるように制御される。また、搬送機構制御部210内には搬送速度制御部212が設けられ、搬送速度制御部212によって基台124を制御することで搬送アーム120は適切な搬送速度に制御される。そして、搬送機構101によって、搬送アーム120に保持された状態のウェハWは、処理容器110内を水平方向(図4中のX方向)に搬送される。 The transport mechanism 101 is connected to a transport mechanism control unit 210 of the control unit 200 as shown in FIG. A height control unit 211 is provided in the transport mechanism control unit 210, and the height control unit 211 controls the drive mechanism 126 so that the height of the transport arm 120 is controlled to an appropriate height. In addition, a transport speed control unit 212 is provided in the transport mechanism control unit 210, and the transport arm 120 is controlled to an appropriate transport speed by controlling the base 124 by the transport speed control unit 212. Then, the wafer W held by the transfer arm 120 is transferred by the transfer mechanism 101 in the horizontal direction (X direction in FIG. 4) in the processing container 110.
 処理容器110内の中央部付近には、図5に示すように所定の極性に帯電可能な帯電部材130が設けられている。帯電部材130は例えば平板状であり、ウェハWの搬送方向と直角方向(図5中のY方向)の幅はウェハWの径よりも長くなっている。また、帯電部材130は、図4に示すように処理容器110内で搬送アーム120に保持されたウェハWの裏面より下方に設けられている。なお、帯電部材130には、例えばアルミ材が用いられる。 A charging member 130 that can be charged to a predetermined polarity is provided near the center of the processing container 110 as shown in FIG. The charging member 130 has, for example, a flat plate shape, and the width in the direction perpendicular to the conveyance direction of the wafer W (the Y direction in FIG. 5) is longer than the diameter of the wafer W. Further, as shown in FIG. 4, the charging member 130 is provided below the back surface of the wafer W held by the transfer arm 120 in the processing container 110. For example, an aluminum material is used for the charging member 130.
 帯電部材130の下面側には、図4に示すように当該帯電部材130の温度を調節する温度調節機構131が設けられている。また、帯電部材130には、当該帯電部材130を所定の極性に帯電させる帯電機構132が接続されている。帯電機構132には、例えば直流電源が用いられる。 On the lower surface side of the charging member 130, a temperature adjusting mechanism 131 for adjusting the temperature of the charging member 130 is provided as shown in FIG. The charging member 130 is connected to a charging mechanism 132 that charges the charging member 130 to a predetermined polarity. For the charging mechanism 132, for example, a DC power source is used.
 温度調節機構131及び帯電機構132は、図4に示すように制御部200の帯電部材制御部220に接続されている。帯電部材制御部220内には温度制御部221が設けられ、温度制御部221によって帯電部材130の温度が制御される。帯電部材130は、例えば処理容器110内の雰囲気の温度よりも低くなるように制御される。また、帯電部材制御部220内には極性設定部222が設けられ、極性設定部222によって帯電部材130に帯電する電荷の極性は所定の極性に設定される。さらに、帯電部材制御部220内には帯電量制御部223が設けられ、帯電量制御部223によって帯電部材130に帯電する電荷は適切な帯電量に制御される。そして、帯電部材130が帯電することで静電気が発生し、この静電気によって搬送アーム120に保持されたウェハWの裏面の付着物が帯電部材130の表面に捕集される。 The temperature adjustment mechanism 131 and the charging mechanism 132 are connected to the charging member control unit 220 of the control unit 200 as shown in FIG. A temperature controller 221 is provided in the charging member controller 220, and the temperature of the charging member 130 is controlled by the temperature controller 221. The charging member 130 is controlled to be lower than the temperature of the atmosphere in the processing container 110, for example. In addition, a polarity setting unit 222 is provided in the charging member control unit 220, and the polarity of the charge charged on the charging member 130 by the polarity setting unit 222 is set to a predetermined polarity. Further, a charging amount control unit 223 is provided in the charging member control unit 220, and the charge charged to the charging member 130 by the charging amount control unit 223 is controlled to an appropriate charge amount. Then, static electricity is generated when the charging member 130 is charged, and deposits on the back surface of the wafer W held on the transfer arm 120 are collected on the surface of the charging member 130 by the static electricity.
 処理容器110の内部には、図5に示すように帯電部材130よりウェハWの搬入方向側(帯電部材130よりX方向負方向側)に、気体を噴射することができる気体噴射ノズル140が設けられている。気体噴射ノズル140は、ウェハWの搬送方向と直角方向(図5中のY方向)に延伸している。また、気体噴射ノズル140は、図4に示すように処理容器110内で搬送アーム120に保持されたウェハWの裏面より下方に設けられ、帯電部材130側(図4中のX方向)に斜め上方に気体を噴射することができる。 As shown in FIG. 5, a gas injection nozzle 140 capable of injecting gas is provided in the processing container 110 on the wafer W loading direction side from the charging member 130 (X direction negative direction side from the charging member 130). It has been. The gas injection nozzle 140 extends in a direction perpendicular to the transfer direction of the wafer W (Y direction in FIG. 5). Further, as shown in FIG. 4, the gas injection nozzle 140 is provided below the back surface of the wafer W held by the transfer arm 120 in the processing container 110, and is oblique to the charging member 130 side (X direction in FIG. 4). Gas can be injected upward.
 気体噴射ノズル140は、図4に示すように配管141を介して所定の気体、例えば窒素ガスや空気等を貯留する気体供給源142に接続されている。配管141には、気体供給源142から供給される気体に、帯電部材130の極性と異極性のイオン分子を混合させるイオナイザー143が設けられている。また配管141には、気体供給源142から供給される気体を所定の温度に制御するための温度調節機構144が設けられている。さらに配管141には、気体噴射ノズル140から噴射される気体を所定の圧力にするために、気体を所定の圧力で圧送する圧力調節機構145が設けられている。これらイオナイザー143、温度調節機構144、圧力調節機構145は、気体供給源142からこの順で設けられている。 The gas injection nozzle 140 is connected to a gas supply source 142 that stores a predetermined gas, such as nitrogen gas or air, through a pipe 141 as shown in FIG. The pipe 141 is provided with an ionizer 143 for mixing the gas supplied from the gas supply source 142 with ion molecules having a polarity different from that of the charging member 130. The pipe 141 is provided with a temperature adjustment mechanism 144 for controlling the gas supplied from the gas supply source 142 to a predetermined temperature. Further, the pipe 141 is provided with a pressure adjusting mechanism 145 that pumps the gas at a predetermined pressure in order to set the gas injected from the gas injection nozzle 140 to a predetermined pressure. The ionizer 143, the temperature adjustment mechanism 144, and the pressure adjustment mechanism 145 are provided in this order from the gas supply source 142.
 イオナイザー143、温度調節機構144、圧力調節機構145は、図4に示すように制御部200の気体噴射ノズル制御部230に接続されている。気体噴射ノズル制御部230は、イオナイザー143で気体に混合させるイオン分子を帯電部材130の極性と異極性に帯電するように制御する。また、気体噴射ノズル制御部230は、温度調節機構144で気体を適切な温度に制御し、例えば帯電部材130の温度より高い温度に制御する。さらに、気体噴射ノズル制御部230は、圧力調節機構145で気体を適切な圧力になるように制御する。そして、気搬送アーム120に保持されたウェハWの裏面に対して、気体噴射ノズル140から所定の気体が噴射される。 The ionizer 143, the temperature adjustment mechanism 144, and the pressure adjustment mechanism 145 are connected to the gas injection nozzle controller 230 of the controller 200 as shown in FIG. The gas injection nozzle control unit 230 performs control so that ion molecules mixed with the gas by the ionizer 143 are charged to a polarity different from that of the charging member 130. Further, the gas injection nozzle control unit 230 controls the gas to an appropriate temperature by the temperature adjustment mechanism 144, for example, to control the temperature higher than the temperature of the charging member 130. Further, the gas injection nozzle control unit 230 controls the gas so as to have an appropriate pressure by the pressure adjusting mechanism 145. Then, a predetermined gas is injected from the gas injection nozzle 140 onto the back surface of the wafer W held on the air transfer arm 120.
 処理容器110の底面には、図4に示すように当該処理容器110内の雰囲気を排気する排気口150が形成されている。排気口150は、帯電部材130の周囲に形成されている。排気口150には、排気経路151が接続され、排気経路151には処理容器110内の雰囲気を真空引きするポンプ152が接続されている。これら排気口150、排気経路151及びポンプ152で排気機構を構成している。 As shown in FIG. 4, an exhaust port 150 for exhausting the atmosphere in the processing container 110 is formed on the bottom surface of the processing container 110. The exhaust port 150 is formed around the charging member 130. An exhaust path 151 is connected to the exhaust port 150, and a pump 152 that evacuates the atmosphere in the processing container 110 is connected to the exhaust path 151. The exhaust port 150, the exhaust path 151, and the pump 152 constitute an exhaust mechanism.
 ポンプ152は、図4に示すように制御部200の排気機構制御部240に接続されている。排気機構制御部240は、ポンプ152を作動させるタイミング等を制御する。例えば帯電部材130及び気体噴射ノズル140によるウェハWの裏面の洗浄が行われている間、ポンプ152を作動させるように制御する。 The pump 152 is connected to the exhaust mechanism control unit 240 of the control unit 200 as shown in FIG. The exhaust mechanism control unit 240 controls timing for operating the pump 152 and the like. For example, the pump 152 is controlled to operate while the back surface of the wafer W is being cleaned by the charging member 130 and the gas injection nozzle 140.
 処理容器110の内部には、図5に示すように搬入出口111側の内側面に、ウェハWの裏面の付着物を検査する検査機構160が設けられている。気体検査機構160は、ウェハWの搬送方向と直角方向(図5中のY方向)に延伸している。また、検査機構160は、図4に示すように処理容器110内で搬送アーム120に保持されたウェハWの裏面より下方に設けられている。検査機構160は、例えばラインセンサであり、ウェハWの裏面の洗浄後にウェハWの裏面に残存している付着物を検査することができる。 In the processing container 110, an inspection mechanism 160 for inspecting the deposit on the back surface of the wafer W is provided on the inner surface on the loading / unloading exit 111 side as shown in FIG. The gas inspection mechanism 160 extends in a direction perpendicular to the transfer direction of the wafer W (Y direction in FIG. 5). Further, the inspection mechanism 160 is provided below the back surface of the wafer W held by the transfer arm 120 in the processing container 110 as shown in FIG. The inspection mechanism 160 is a line sensor, for example, and can inspect the deposits remaining on the back surface of the wafer W after cleaning the back surface of the wafer W.
 検査機構160における検査結果は、図4に示すように制御部200に伝達される。制御部200では、この検査結果に基づいて、例えば次に搬入されるウェハWの洗浄条件、すなわち搬送機構制御部210、帯電部材制御部220、気体噴射ノズル制御部230、排気機構制御部240における各制御条件が決定される。 The inspection result in the inspection mechanism 160 is transmitted to the control unit 200 as shown in FIG. In the control unit 200, based on the inspection result, for example, in the cleaning condition of the wafer W to be loaded next, that is, in the transfer mechanism control unit 210, the charging member control unit 220, the gas injection nozzle control unit 230, and the exhaust mechanism control unit 240. Each control condition is determined.
 上述した制御部200は、例えばCPUやメモリなどを備えたコンピュータにより構成され、例えばメモリに記憶されたプログラムを実行することによって、洗浄装置103におけるウェハWの裏面の洗浄を実現できる。なお、洗浄装置103におけるウェハWの裏面の洗浄を実現するための各種プログラムは、例えばコンピュータ読み取り可能なハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルデスク(MO)、メモリーカードなどの記憶媒体に記憶されていたものであって、その記憶媒体から制御部200にインストールされたものが用いられている。 The control unit 200 described above is configured by, for example, a computer having a CPU, a memory, and the like. For example, by executing a program stored in the memory, the cleaning of the back surface of the wafer W in the cleaning apparatus 103 can be realized. Various programs for realizing the cleaning of the back surface of the wafer W in the cleaning apparatus 103 are, for example, a computer-readable hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnet optical desk (MO), What is stored in a storage medium such as a memory card and installed in the control unit 200 from the storage medium is used.
 次に、以上のように構成された洗浄装置103で行われるウェハWの裏面の洗浄について、塗布現像処理システム1全体で行われるウェハ処理のプロセスと共に説明する。 Next, cleaning of the back surface of the wafer W performed by the cleaning apparatus 103 configured as described above will be described together with a wafer processing process performed by the entire coating and developing processing system 1.
 先ず、搬送アーム8によって、カセット載置台6上のカセットC内からウェハWが一枚取り出され、第3の処理装置群G3の温度調節装置60に搬送される。温度調節装置60に搬送されたウェハWは、所定温度に温度調節され、その後第1の搬送アーム10によってボトムコーティング装置23に搬送され、反射防止膜が形成される。反射防止膜が形成されたウェハWは、第1の搬送アーム10によって加熱装置92、高温度熱処理装置65、高精度温度調節装置70に順次搬送され、各装置で所定の処理が施される。その後ウェハWは、レジスト塗布装置20に搬送される。 First, one wafer W is taken out from the cassette C on the cassette mounting table 6 by the transfer arm 8 and transferred to the temperature control device 60 of the third processing unit group G3. The wafer W transferred to the temperature adjusting device 60 is adjusted to a predetermined temperature, and then transferred to the bottom coating device 23 by the first transfer arm 10 to form an antireflection film. The wafer W on which the antireflection film is formed is sequentially transferred by the first transfer arm 10 to the heating device 92, the high temperature heat treatment device 65, and the high precision temperature adjustment device 70, and is subjected to predetermined processing in each device. Thereafter, the wafer W is transferred to the resist coating apparatus 20.
 レジスト塗布装置20においてウェハW上にレジスト膜が形成されると、ウェハWは第1の搬送アーム10によってプリベーキング装置71に搬送され、続いて第2の搬送アーム11によって周辺露光装置94、高精度温調装置83に順次搬送されて、各装置において所定の処理が施される。このようにレジスト塗布処理、熱処理等の種々の処理が施されたウェハWの裏面には、ウェハWを保持する際あるいはウェハWの搬送中に塵埃等の付着物が付着する。このウェハWの裏面を洗浄するため、ウェハWはインターフェイスステーション5の搬送機構101によって洗浄装置103に搬送され、後述する洗浄処理が行われる。 When a resist film is formed on the wafer W in the resist coating apparatus 20, the wafer W is transferred to the pre-baking apparatus 71 by the first transfer arm 10, and then the peripheral exposure apparatus 94 and the high exposure apparatus 94 are moved by the second transfer arm 11. It is sequentially conveyed to the precision temperature control device 83, and predetermined processing is performed in each device. Thus, deposits such as dust adhere to the back surface of the wafer W that has been subjected to various processes such as resist coating and heat treatment when the wafer W is held or while the wafer W is being transferred. In order to clean the back surface of the wafer W, the wafer W is transferred to the cleaning device 103 by the transfer mechanism 101 of the interface station 5, and a cleaning process described later is performed.
 その後、インターフェイスステーション5の搬送機構101によって露光装置4に搬送され、ウェハW上のレジスト膜に所定のパターンが露光される。露光処理の終了したウェハWは、搬送機構101によってポストエクスポージャーベーキング装置84に搬送され、所定の処理が施される。 Thereafter, the wafer is transferred to the exposure apparatus 4 by the transfer mechanism 101 of the interface station 5, and a predetermined pattern is exposed on the resist film on the wafer W. The wafer W that has been subjected to the exposure process is transferred to the post-exposure baking apparatus 84 by the transfer mechanism 101 and subjected to a predetermined process.
 ポストエクスポージャーベーキング装置84における熱処理が終了すると、ウェハWは第2の搬送アーム11によって高精度温度調節装置81に搬送されて温度調節され、その後現像処理装置30に搬送され、ウェハW上に現像処理が施され、レジスト膜にパターンが形成される。その後ウェハWは、第2の搬送アーム11によってポストベーキング装置75に搬送され、加熱処理が施された後、高精度温度調節装置63に搬送され温度調節される。そしてウェハWは、第1の搬送アーム10によってトランジション装置61に搬送され、搬送アーム8によってカセットCに戻されて一連のフォトリソグラフィー工程が終了する。 When the heat treatment in the post-exposure baking apparatus 84 is completed, the wafer W is transferred to the high-accuracy temperature adjustment apparatus 81 by the second transfer arm 11 and the temperature is adjusted, and then transferred to the development processing apparatus 30 and developed on the wafer W. Is applied to form a pattern on the resist film. Thereafter, the wafer W is transferred to the post-baking device 75 by the second transfer arm 11 and subjected to heat treatment, and then transferred to the high-accuracy temperature adjusting device 63 to adjust the temperature. Then, the wafer W is transferred to the transition device 61 by the first transfer arm 10 and returned to the cassette C by the transfer arm 8 to complete a series of photolithography steps.
 次に、洗浄装置103におけるウェハWの裏面の洗浄処理について説明する。 Next, the cleaning process for the back surface of the wafer W in the cleaning apparatus 103 will be described.
 先ず、開閉シャッタ112を開き、搬送アーム120に保持された状態でウェハWを搬入出口111から処理容器110内に搬入する(図6(a))。そして、ウェハWを搬入方向(図6中のX方向負方向)に搬送する。 First, the opening / closing shutter 112 is opened, and the wafer W is loaded into the processing container 110 from the loading / unloading port 111 while being held by the transfer arm 120 (FIG. 6A). Then, the wafer W is transported in the carry-in direction (X direction negative direction in FIG. 6).
 ウェハWが帯電部材130の上方まで搬送されると、帯電部材130を所定の極性、例えば陽極に帯電させると共に、搬送中のウェハWの裏面に向けて気体噴射ノズル140から気体を噴射する。そうすると、ウェハWの裏面に付着していた付着物Sは、気体噴射ノズル140からの気体の噴射によって物理的にウェハWの裏面から剥離すると共に、帯電部材130の静電気によって吸引され帯電部材130の表面に捕集される。このとき、気体噴射ノズル140から噴射される気体は帯電部材130の極性と異極性、例えば陰極のイオン分子を含んでいるため、付着物Sの周囲にこのイオン分子が付着し、付着物Sは陰極の電荷を帯びる。そうすると、付着物Sは帯電部材130に捕集されやすくなる。なお、このように帯電部材130と気体噴射ノズル140によってウェハWの裏面を洗浄している間、排気機構のポンプ152を作動させておく。そうすると、付着物SがウェハWの裏面から剥離し処理容器110内に浮遊した場合でも、当該付着物Sを含む処理容器110内の雰囲気を排気することができ、付着物SがウェハWに再付着するのを防止することができる(図6(b))。 When the wafer W is conveyed above the charging member 130, the charging member 130 is charged to a predetermined polarity, for example, an anode, and gas is injected from the gas injection nozzle 140 toward the back surface of the wafer W being transferred. Then, the deposit S that has adhered to the back surface of the wafer W is physically peeled off from the back surface of the wafer W by gas injection from the gas injection nozzle 140 and is attracted by the static electricity of the charging member 130. Collected on the surface. At this time, since the gas ejected from the gas ejection nozzle 140 includes a polarity different from the polarity of the charging member 130, for example, ionic molecules of the cathode, the ionic molecules adhere around the deposit S, and the deposit S Charges the cathode. Then, the deposit S is easily collected by the charging member 130. While the back surface of the wafer W is being cleaned by the charging member 130 and the gas injection nozzle 140 in this way, the pump 152 of the exhaust mechanism is operated. Then, even when the deposit S is peeled off from the back surface of the wafer W and floated in the processing container 110, the atmosphere in the processing container 110 containing the deposit S can be exhausted, and the deposit S is re-applied to the wafer W. Adhesion can be prevented (FIG. 6B).
 上述の帯電部材130の静電気と気体噴射ノズル140からの気体の噴射によってウェハWの裏面全面が洗浄されると、ウェハWは搬出方向(図6中のX方向正方向)に搬送される。このウェハWの搬送中、排気機構のポンプ152は作動させたままにしておく。そして、ウェハWが検査装置160の上方を通過させる際、検査装置160を作動させ、ウェハWの裏面に残存している付着物Sがあるかどうかを検査する。その後、ウェハWは処理容器110外に搬出される(図6(c))。検査装置160の検査結果は制御部200制御部200に伝達され、制御部200では、この検査結果に基づいて例えば次に搬入されるウェハWの洗浄条件が決定される。なお、この一連の洗浄処理は、ウェハWが搬送アーム120によって保持された状態で、ウェハWの搬送中に行われる。 When the entire back surface of the wafer W is cleaned by the static electricity of the charging member 130 and the gas jet from the gas jet nozzle 140, the wafer W is transported in the unloading direction (X direction positive direction in FIG. 6). During the transfer of the wafer W, the pump 152 of the exhaust mechanism is kept operating. Then, when the wafer W passes above the inspection apparatus 160, the inspection apparatus 160 is operated to inspect whether there is a deposit S remaining on the back surface of the wafer W. Thereafter, the wafer W is carried out of the processing container 110 (FIG. 6C). The inspection result of the inspection apparatus 160 is transmitted to the control unit 200 and the control unit 200, and the control unit 200 determines, for example, a cleaning condition for the next wafer W to be loaded based on the inspection result. This series of cleaning processes is performed during the transfer of the wafer W while the wafer W is held by the transfer arm 120.
 このような洗浄処理を所定の枚数のウェハWに対して繰り返し行う。そうすると、帯電部材130の表面には捕集された付着物Sが溜まるため、定期的に付着物Sを除去する必要がある。この付着物Sを除去する際には、先ず、開閉シャッタ112を閉じて処理容器110内を密閉する。帯電部材130の帯電を停止し、付着物Sに対する吸着力を弱くしてから、ポンプ152を作動させ、処理容器110内の雰囲気を付着物Sと共に排気する(図6(d))。 Such a cleaning process is repeatedly performed on a predetermined number of wafers W. If it does so, since the collected matter S collected on the surface of the charging member 130 will need to be removed periodically. When removing the deposit S, first, the open / close shutter 112 is closed to seal the inside of the processing container 110. After the charging of the charging member 130 is stopped and the adsorbing force on the deposit S is weakened, the pump 152 is operated to exhaust the atmosphere in the processing container 110 together with the deposit S (FIG. 6D).
 以上の実施の形態によれば、搬送アーム102によってウェハWの外周部のみを保持し、当該ウェハWの裏面を洗浄するので、ウェハWの裏面全面を洗浄することができる。また、気体噴射ノズル140からウェハWの裏面に気体を噴射することができるので、気体の噴射による物理的な力によってウェハWの裏面の付着物Sを当該裏面から除去することができる。この気体の噴射と同時に、帯電部材130を帯電させることができるので、帯電した状態の帯電部材130の静電気によって、搬送アーム102に保持された搬送アーム102の裏面の付着物Sを吸引し帯電部材130の表面に捕集することができる。すなわち、気体噴射ノズル140からの気体の噴射と帯電部材130の静電気の両方によってウェハWの裏面の付着物Sを除去できるので、高い洗浄効果でウェハWの裏面を洗浄できる。また、従来のように洗浄液を乾燥させる必要がなくなるので、洗浄処理時間を短時間にすることができ、洗浄処理を効率よく行うことができる。 According to the above embodiment, since only the outer peripheral portion of the wafer W is held by the transfer arm 102 and the back surface of the wafer W is cleaned, the entire back surface of the wafer W can be cleaned. Further, since the gas can be ejected from the gas ejection nozzle 140 to the back surface of the wafer W, the deposit S on the back surface of the wafer W can be removed from the back surface by a physical force due to the gas ejection. Since the charging member 130 can be charged at the same time as the gas injection, the charging member 130 sucks the deposit S on the back surface of the transfer arm 102 held by the transfer arm 102 by the static electricity of the charged charging member 130. 130 can be collected on the surface. That is, since the deposit S on the back surface of the wafer W can be removed by both the gas injection from the gas injection nozzle 140 and the static electricity of the charging member 130, the back surface of the wafer W can be cleaned with a high cleaning effect. In addition, since it is not necessary to dry the cleaning liquid as in the prior art, the cleaning processing time can be shortened and the cleaning processing can be performed efficiently.
 また、排気機構の排気口150から処理容器110内の雰囲気を排気することができるので、ウェハWの裏面の付着物Sが処理容器110内に浮遊した場合でも、当該付着物SがウェハWに再付着するのを防止することができる。 Further, since the atmosphere in the processing container 110 can be exhausted from the exhaust port 150 of the exhaust mechanism, even if the deposit S on the back surface of the wafer W floats in the processing chamber 110, the deposit S is attached to the wafer W. Reattachment can be prevented.
 また、気体噴射ノズル140から噴射される気体は、帯電部材130の極性と異極性のイオンを含んでいるので、付着物Sは帯電部材130の極性と異極性に帯電する。そうすると、付着物Sは帯電部材130により捕集されやすくなる。 Further, since the gas ejected from the gas ejection nozzle 140 contains ions having a polarity different from that of the charging member 130, the deposit S is charged to a polarity different from that of the charging member 130. Then, the deposit S is easily collected by the charging member 130.
 また、このように洗浄装置103によってウェハWの裏面の洗浄処理を効率よく行うことができ、露光処理前のウェハWの裏面の付着物Sを低減することができるので、露光装置4において、ウェハWのレジスト膜を露光する際のフォーカスエラーを低減することができる。さらに、ポストエクスポージャーベーキング装置84において、露光処理後のウェハWの加熱処理を均一に行うことができる。そうすると、ウェハWのレジストパターンの線幅を均一にすることができる。 Further, the cleaning apparatus 103 can efficiently perform the cleaning process on the back surface of the wafer W and reduce the deposits S on the back surface of the wafer W before the exposure process. A focus error at the time of exposing the resist film of W can be reduced. Furthermore, in the post-exposure baking apparatus 84, the heat treatment of the wafer W after the exposure processing can be performed uniformly. Then, the line width of the resist pattern on the wafer W can be made uniform.
 また、ウェハWの洗浄の際に従来用いられていたスピンチャックや洗浄液の供給システムが不要になるため、洗浄装置103の製造コストを低廉化することができる。 Further, since the spin chuck and the cleaning liquid supply system conventionally used for cleaning the wafer W are not required, the manufacturing cost of the cleaning apparatus 103 can be reduced.
 また、帯電部材130の温度を処理容器110内の雰囲気の温度よりも低くなるように制御している。発明者らによれば、このように帯電部材130の温度制御を行うと、ウェハWの裏面の付着物Sは帯電部材130に付着しやすくなることが分かった。また、気体噴射ノズル140から噴射される気体の温度を帯電部材130の温度よりも高くなるように制御しているので、上述の付着物Sの捕集効果をより促進することができる。 Further, the temperature of the charging member 130 is controlled to be lower than the temperature of the atmosphere in the processing container 110. According to the inventors, it has been found that when the temperature of the charging member 130 is controlled in this way, the deposit S on the back surface of the wafer W is likely to adhere to the charging member 130. Moreover, since the temperature of the gas injected from the gas injection nozzle 140 is controlled to be higher than the temperature of the charging member 130, the above-described deposit S collecting effect can be further promoted.
 以上の実施の形態では、帯電部材130は一の極性に帯電していたが、図7に示すように帯電部材300を分割し、それぞれを異極性に帯電させてもよい。この帯電部材300は、ウェハWの搬送方向(図7中のX方向)に2分割された分割部材301、302を有している。分割部材301は例えば陽極に帯電され、分割部材302は例えば陰極に帯電される。そして、ウェハWを処理容器110に搬入し、ウェハWの搬送中に、気体噴射ノズル140から気体を噴射すると共に、例えば分割部材301を陽極に帯電させてウェハWの裏面の付着物Sを分割部材301の表面に捕集する。この際、気体噴射ノズル140から噴射される気体には、分割部材301の極性と異極性となる陰極のイオン分子が含まれている(図8(a))。次に、ウェハWを搬出方向(図8中のX方向正方向)に搬送する間には、気体噴射ノズル140から気体を噴射すると共に、分割部材302を陰極に帯電させてウェハWの裏面の付着物Sを分割部材302の表面に捕集する。この際、気体噴射ノズル140から噴射される気体には、分割部材302の極性と異極性となる陽極のイオン分子が含まれている(図8(b))。かかる場合、付着物Sの性質によって、いずれか一方の極性では帯電部材300に付着物Sを捕集できない場合でも、洗浄処理中に双極性で付着物Sを捕集することができるため、より効率よくウェハWの裏面を洗浄することができる。 In the above embodiment, the charging member 130 is charged with one polarity. However, as shown in FIG. 7, the charging member 300 may be divided and charged with different polarities. The charging member 300 includes divided members 301 and 302 that are divided into two in the conveyance direction of the wafer W (X direction in FIG. 7). The dividing member 301 is charged to, for example, an anode, and the dividing member 302 is charged to, for example, a cathode. Then, the wafer W is carried into the processing container 110, and during the transfer of the wafer W, gas is injected from the gas injection nozzle 140, and for example, the divided member 301 is charged to the anode to divide the deposit S on the back surface of the wafer W. Collected on the surface of the member 301. At this time, the gas ejected from the gas ejection nozzle 140 includes negative ion molecules that are different in polarity from the split member 301 (FIG. 8A). Next, while the wafer W is transported in the unloading direction (the positive direction of the X direction in FIG. 8), gas is injected from the gas injection nozzle 140 and the split member 302 is charged to the cathode so that the back surface of the wafer W is charged. The deposit S is collected on the surface of the dividing member 302. At this time, the gas ejected from the gas ejection nozzle 140 contains ionic molecules of the anode having a polarity different from that of the dividing member 302 (FIG. 8B). In such a case, due to the nature of the deposit S, even if the deposit S cannot be collected on the charging member 300 with either polarity, the deposit S can be collected in the bipolar state during the cleaning process. The back surface of the wafer W can be cleaned efficiently.
 以上の実施の形態の帯電部材130上に、図9に示すようにさらに付着物Sを捕集するための捕集用基板310を設けてもよい。捕集用基板310は、帯電部材130上に設けられた伝導性の支持部材311によって支持されており、帯電部材130を帯電させると、捕集用基板310も同じ極性に帯電させることができる。なお、捕集用基板310には、例えばウェハWと同一の材料、形状のものが用いられる。そして、ウェハWを処理容器110に搬入し、気体噴射ノズル140から気体を噴射すると共に、帯電部材130を介して捕集用基板310を帯電させ、ウェハWの裏面の付着物Sを捕集用基板310の表面に捕集する(図10(a))。このようにウェハWの裏面を洗浄した後、ウェハWを処理容器110外に搬出する(図10(b))。この洗浄処理を所定の枚数のウェハWに対して行った後、捕集用基板310上に捕集された付着物Sを除去する際には、搬送アーム102によって捕集用基板310を処理容器110外に搬出する(図10(c))。そして、処理容器110の外部で捕集用基板310を洗浄する。かかる場合、捕集用基板310の洗浄を処理容器100の外部で行うことができるので、上記実施の形態において帯電部材130の洗浄の際に行った処理容器110内の排気処理を省略することができる。したがって、洗浄装置103のメンテナンス時間を短縮できるため、ウェハ処理のスループットを向上させることができる。 On the charging member 130 of the above embodiment, a collection substrate 310 for collecting the deposit S may be further provided as shown in FIG. The collection substrate 310 is supported by a conductive support member 311 provided on the charging member 130. When the charging member 130 is charged, the collection substrate 310 can be charged to the same polarity. For the collection substrate 310, for example, the same material and shape as the wafer W are used. Then, the wafer W is carried into the processing container 110 and gas is injected from the gas injection nozzle 140 and the collection substrate 310 is charged via the charging member 130 to collect the deposit S on the back surface of the wafer W. It collects on the surface of the substrate 310 (FIG. 10A). After cleaning the back surface of the wafer W in this way, the wafer W is carried out of the processing container 110 (FIG. 10B). After the cleaning process is performed on a predetermined number of wafers W, when the deposit S collected on the collection substrate 310 is removed, the collection substrate 310 is moved to the processing container by the transfer arm 102. 110 is carried out (FIG. 10C). Then, the collection substrate 310 is washed outside the processing container 110. In this case, since the collection substrate 310 can be cleaned outside the processing container 100, the exhaust processing in the processing container 110 performed when cleaning the charging member 130 in the above embodiment can be omitted. it can. Therefore, since the maintenance time of the cleaning apparatus 103 can be shortened, the throughput of wafer processing can be improved.
 以上の実施の形態では、気体噴射ノズル140は帯電部材130と別に設けられていたが、図11に示すように気体噴射ノズル140を省略し、帯電部材130に複数の貫通孔320を設けて、この貫通孔320からウェハWの裏面に気体を噴射してもよい。これら複数の貫通孔320には、上述した配管141を介して気体供給源142が接続され、配管141には、イオナイザー143、温度調節機構144、圧力調節機構145が設けられている。かかる場合でも、貫通孔320からの気体の噴射と帯電部材130の静電気によってウェハWの裏面を洗浄することができる。また、気体噴射ノズル140が不要になるため、洗浄装置103の製造コストを低廉化できると共に、洗浄装置103を小型化することができる。 In the above embodiment, the gas injection nozzle 140 is provided separately from the charging member 130. However, as shown in FIG. 11, the gas injection nozzle 140 is omitted, and a plurality of through holes 320 are provided in the charging member 130. Gas may be injected from the through hole 320 to the back surface of the wafer W. A gas supply source 142 is connected to the plurality of through holes 320 via the pipe 141 described above, and the pipe 141 is provided with an ionizer 143, a temperature adjustment mechanism 144, and a pressure adjustment mechanism 145. Even in such a case, the back surface of the wafer W can be cleaned by gas injection from the through hole 320 and static electricity of the charging member 130. Moreover, since the gas injection nozzle 140 becomes unnecessary, the manufacturing cost of the cleaning device 103 can be reduced, and the cleaning device 103 can be downsized.
 以上の実施の形態では、洗浄装置103とバッファカセット102をそれぞれ別の位置に設けていたが、洗浄装置103をバッファカセット102の下方に設けてもよい。これによって、塗布現像処理システム1の占有面積を小さくすることができる。 In the above embodiment, the cleaning device 103 and the buffer cassette 102 are provided at different positions, but the cleaning device 103 may be provided below the buffer cassette 102. As a result, the area occupied by the coating and developing treatment system 1 can be reduced.
 以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。本発明はこの例に限らず種々の態様を採りうるものである。本発明は、基板がウェハ以外のFPD(フラットパネルディスプレイ)、フォトマスク用のマスクレチクルなどの他の基板である場合にも適用できる。 The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood. The present invention is not limited to this example and can take various forms. The present invention can also be applied to a case where the substrate is another substrate such as an FPD (flat panel display) other than a wafer or a mask reticle for a photomask.
 本発明は、例えば半導体ウェハ等の基板の露光前に当該基板の裏面を洗浄する際に有用である。
 
The present invention is useful when cleaning the back surface of a substrate such as a semiconductor wafer before exposure.

Claims (14)

  1. 基板の露光前に当該基板の裏面を洗浄する基板洗浄装置であって、
    基板を搬入出させる搬入出口を備えた処理容器と、
    基板の外周部を保持し、前記処理容器に基板を搬入出する搬送機構と、
    前記処理容器内で前記搬送機構に保持された基板の裏面に気体を噴射する気体噴射ノズルと、
    前記処理容器内で前記搬送機構に保持された基板の裏面の付着物を静電気によって捕集するために帯電可能な帯電部材と、
    前記処理容器内の雰囲気を排気する排気機構と、を有する。
    A substrate cleaning apparatus for cleaning the back surface of the substrate before exposure of the substrate,
    A processing container having a loading / unloading port for loading and unloading a substrate;
    A transport mechanism that holds the outer periphery of the substrate and carries the substrate into and out of the processing container;
    A gas injection nozzle for injecting gas to the back surface of the substrate held by the transport mechanism in the processing container;
    A charging member that can be charged to collect deposits on the back surface of the substrate held by the transport mechanism in the processing container by static electricity; and
    And an exhaust mechanism for exhausting the atmosphere in the processing container.
  2. 請求項1に記載の基板処理装置において、
    前記気体噴射ノズルから噴射される気体は、前記帯電部材の極性と異極性のイオン分子を含む。
    The substrate processing apparatus according to claim 1,
    The gas ejected from the gas ejection nozzle includes ion molecules having a polarity different from that of the charging member.
  3. 請求項1に記載の基板洗浄装置において、
    前記気体噴射ノズルには、当該気体噴射ノズルから噴射される気体の噴射圧力を調節する圧力調節機構が設けられている。
    The substrate cleaning apparatus according to claim 1,
    The gas injection nozzle is provided with a pressure adjustment mechanism that adjusts the injection pressure of the gas injected from the gas injection nozzle.
  4. 請求項1に記載の基板洗浄装置において、
    前記気体噴射ノズルには、当該気体噴射ノズルから噴射される気体の温度を調節する温度調節機構が設けられている。
    The substrate cleaning apparatus according to claim 1,
    The gas injection nozzle is provided with a temperature adjustment mechanism that adjusts the temperature of the gas injected from the gas injection nozzle.
  5. 請求項1に記載の基板洗浄装置において、
    前記帯電部材には、当該帯電部材の温度を調節する温度調節機構が設けられている。
    The substrate cleaning apparatus according to claim 1,
    The charging member is provided with a temperature adjusting mechanism for adjusting the temperature of the charging member.
  6. 請求項1に記載の基板洗浄装置において、
    前記帯電部材には、当該帯電部材を帯電させる帯電機構が設けられ、
    前記帯電機構には、前記帯電部材の帯電量を制御する帯電量制御部が設けられている。
    The substrate cleaning apparatus according to claim 1,
    The charging member is provided with a charging mechanism for charging the charging member,
    The charging mechanism is provided with a charge amount control unit for controlling the charge amount of the charging member.
  7. 請求項1に記載の基板洗浄装置において、
    前記帯電部材には、当該帯電部材を帯電させる帯電機構が設けられ、
    前記帯電機構には、前記帯電部材の極性を設定する極性設定部が設けられている。
    The substrate cleaning apparatus according to claim 1,
    The charging member is provided with a charging mechanism for charging the charging member,
    The charging mechanism is provided with a polarity setting unit that sets the polarity of the charging member.
  8. 請求項1に記載の基板洗浄装置において、
    前記帯電部材は分割され、それぞれの帯電部材は異極性に帯電可能である。
    The substrate cleaning apparatus according to claim 1,
    The charging members are divided, and each charging member can be charged to a different polarity.
  9. 基板の露光前に当該基板の裏面を洗浄する基板の洗浄方法であって、
    基板の外周部を保持して当該基板を搬送する搬送機構によって、基板を処理容器内に搬入する搬入工程と、
    前記処理容器内で前記搬送機構に保持された基板の裏面に、気体噴射ノズルによって気体を噴射する気体噴射工程と、
    前記処理容器内で前記搬送機構に保持された基板の裏面の付着物を、帯電した状態の帯電部材の静電気によって捕集する付着物捕集工程と、
    前記気体噴射工程及び前記付着物捕集工程が行われている間、前記処理容器内の雰囲気を排気機構によって排気する排気工程と、
    前記搬送機構によって基板を前記処理容器外に搬出する搬出工程と、
    を有する。
    A substrate cleaning method for cleaning the back surface of the substrate before exposure of the substrate,
    A carrying-in process of carrying the substrate into the processing container by a transport mechanism that transports the substrate while holding the outer periphery of the substrate;
    A gas injection step of injecting gas by a gas injection nozzle on the back surface of the substrate held by the transport mechanism in the processing container;
    An adhering matter collecting step for collecting adhering matter on the back surface of the substrate held by the transport mechanism in the processing container by static electricity of a charged charging member;
    An exhaust process for exhausting the atmosphere in the processing container by an exhaust mechanism while the gas injection process and the deposit collection process are performed;
    An unloading step of unloading the substrate out of the processing container by the transfer mechanism;
    Have
  10. 請求項9に記載の基板処理方法において、
    前記気体噴射工程において前記気体噴射ノズルから噴射される気体は、前記帯電部材の極性と異極性のイオン分子を含む。
    The substrate processing method according to claim 9,
    The gas ejected from the gas ejection nozzle in the gas ejection step includes ion molecules having a polarity different from that of the charging member.
  11. 請求項9に記載の基板処理方法において、
    前記搬出工程において、基板の裏面の付着物を検査する。
    The substrate processing method according to claim 9,
    In the unloading step, the deposit on the back surface of the substrate is inspected.
  12. 請求項9に記載の基板処理方法において、
    前記搬出工程後、前記処理容器内の雰囲気を排気する。
    The substrate processing method according to claim 9,
    After the unloading step, the atmosphere in the processing container is exhausted.
  13. 請求項9に記載の基板処理方法において、
    前記帯電部材上には、前記搬送機構に保持された基板の裏面の付着物を捕集する捕集用基板が設けられ、
    前記搬出工程後、前記捕集用基板を前記処理容器外に搬出する。
    The substrate processing method according to claim 9,
    On the charging member, a collection substrate for collecting deposits on the back surface of the substrate held by the transport mechanism is provided,
    After the unloading step, the collection substrate is unloaded from the processing container.
  14. 基板洗浄方法を基板洗浄装置によって実行させるために、当該基板洗浄装置を制御する制御部のコンピュータ上で動作するプログラムを格納した読み取り可能なコンピュータ記憶媒体であって、
    前記基板処理方法は、基板の露光前に当該基板の裏面を洗浄する基板の洗浄方法であって、
    基板の外周部を保持して当該基板を搬送する搬送機構によって、基板を処理容器内に搬入する搬入工程と、
    前記処理容器内で前記搬送機構に保持された基板の裏面に、気体噴射ノズルによって気体を噴射する気体噴射工程と、
    前記処理容器内で前記搬送機構に保持された基板の裏面の付着物を、帯電した状態の帯電部材の静電気によって捕集する付着物捕集工程と、
    前記気体噴射工程及び前記付着物捕集工程が行われている間、前記処理容器内の雰囲気を排気機構によって排気する排気工程と、
    前記搬送機構によって基板を前記処理容器外に搬出する搬出工程と、を有するものである。
    A readable computer storage medium storing a program that operates on a computer of a control unit that controls the substrate cleaning apparatus in order to execute the substrate cleaning method by the substrate cleaning apparatus,
    The substrate processing method is a substrate cleaning method for cleaning the back surface of the substrate before exposure of the substrate,
    A carrying-in process of carrying the substrate into the processing container by a transport mechanism that transports the substrate while holding the outer periphery of the substrate;
    A gas injection step of injecting gas by a gas injection nozzle on the back surface of the substrate held by the transport mechanism in the processing container;
    An adhering matter collecting step for collecting adhering matter on the back surface of the substrate held by the transport mechanism in the processing container by static electricity of a charged charging member;
    An exhaust process for exhausting the atmosphere in the processing container by an exhaust mechanism while the gas injection process and the deposit collection process are performed;
    An unloading step of unloading the substrate out of the processing container by the transfer mechanism.
PCT/JP2009/051251 2008-01-31 2009-01-27 Substrate cleaning apparatus, substrate cleaning method and computer storage medium WO2009096380A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-021188 2008-01-31
JP2008021188A JP5002471B2 (en) 2008-01-31 2008-01-31 Substrate cleaning apparatus, substrate cleaning method, program, and computer storage medium

Publications (1)

Publication Number Publication Date
WO2009096380A1 true WO2009096380A1 (en) 2009-08-06

Family

ID=40912733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051251 WO2009096380A1 (en) 2008-01-31 2009-01-27 Substrate cleaning apparatus, substrate cleaning method and computer storage medium

Country Status (2)

Country Link
JP (1) JP5002471B2 (en)
WO (1) WO2009096380A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016020242A1 (en) * 2014-08-05 2016-02-11 Robert Bosch Gmbh Method and device for treating a semiconductor material
CN108604544A (en) * 2016-02-09 2018-09-28 株式会社斯库林集团 Substrate board treatment and substrate processing method using same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5834406B2 (en) * 2010-12-28 2015-12-24 富士通セミコンダクター株式会社 Cleaning method and cleaning device
JP2013004845A (en) * 2011-06-20 2013-01-07 Tokyo Electron Ltd Separation system, separation method, program and computer storage medium
JP5689048B2 (en) * 2011-11-04 2015-03-25 東京エレクトロン株式会社 Substrate processing system, substrate transfer method, program, and computer storage medium
JP5512633B2 (en) * 2011-11-04 2014-06-04 東京エレクトロン株式会社 Substrate processing system, substrate transfer method, program, and computer storage medium
JP5752827B2 (en) * 2014-03-26 2015-07-22 東京エレクトロン株式会社 Substrate processing system, substrate transfer method, program, and computer storage medium
JP6462444B2 (en) * 2015-03-23 2019-01-30 株式会社日立ハイテクマニファクチャ&サービス Wafer transfer device
JP7186230B2 (en) * 2017-12-28 2022-12-08 エーエスエムエル ネザーランズ ビー.ブイ. Apparatus and method for removing contaminant particles from apparatus components
US11607716B1 (en) * 2020-06-23 2023-03-21 Kla Corporation Systems and methods for chuck cleaning

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102456A (en) * 1994-09-30 1996-04-16 Kobe Steel Ltd Electronic material cleaning method and cleaning equipment
JPH10189511A (en) * 1996-12-20 1998-07-21 Sony Corp Wafer cleaning device
JP2003017457A (en) * 2001-07-03 2003-01-17 Dainippon Screen Mfg Co Ltd Method and apparatus for cleaning substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195645A (en) * 1983-04-21 1984-11-06 Nec Corp Device for washing exposure mask
JPH0536623A (en) * 1991-07-29 1993-02-12 Nec Kyushu Ltd Manufacture of semiconductor device
JPH09106065A (en) * 1995-10-09 1997-04-22 Nikon Corp Substrate cleaning device and method
JP2003324064A (en) * 2002-03-01 2003-11-14 Tokyo Electron Ltd Development method and developing equipment
JP4793927B2 (en) * 2005-11-24 2011-10-12 東京エレクトロン株式会社 Substrate processing method and apparatus
JP2007214365A (en) * 2006-02-09 2007-08-23 Sokudo:Kk Substrate processor
JP2007335709A (en) * 2006-06-16 2007-12-27 Dainippon Screen Mfg Co Ltd Substrate processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102456A (en) * 1994-09-30 1996-04-16 Kobe Steel Ltd Electronic material cleaning method and cleaning equipment
JPH10189511A (en) * 1996-12-20 1998-07-21 Sony Corp Wafer cleaning device
JP2003017457A (en) * 2001-07-03 2003-01-17 Dainippon Screen Mfg Co Ltd Method and apparatus for cleaning substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016020242A1 (en) * 2014-08-05 2016-02-11 Robert Bosch Gmbh Method and device for treating a semiconductor material
CN108604544A (en) * 2016-02-09 2018-09-28 株式会社斯库林集团 Substrate board treatment and substrate processing method using same
CN108604544B (en) * 2016-02-09 2022-10-21 株式会社斯库林集团 Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
JP5002471B2 (en) 2012-08-15
JP2009182222A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP5002471B2 (en) Substrate cleaning apparatus, substrate cleaning method, program, and computer storage medium
KR102436241B1 (en) Substrate processing method and heat treatment apparatus
JP5443070B2 (en) Imprint system
JP4410121B2 (en) Coating and developing apparatus and coating and developing method
JP6740065B2 (en) Substrate cleaning apparatus, substrate processing apparatus, substrate cleaning method and substrate processing method
KR101841593B1 (en) Development processing method and development processing apparatus using developer solution contained organic solvent
WO2010150741A1 (en) Imprint system, imprinting method, and computer storage medium
WO2010150742A1 (en) Template treatment device and imprint system
JP2010219434A (en) Substrate processing apparatus
WO2011145611A1 (en) Imprinting system, imprinting method, and computer storage medium
JPH1079343A (en) Processing system and application and development processing system
JP5411201B2 (en) IMPRINT SYSTEM, IMPRINT METHOD, PROGRAM, AND COMPUTER STORAGE MEDIUM
JP2011104910A (en) Template processing method, program, computer storage medium, template processor, and imprinting system
JP2011205004A (en) Substrate processing apparatus and substrate processing method
JP2000124127A (en) Resist application/developing apparatus, substrate heat treatment device and substrate transfer apparatus used therefor
JP2013098477A (en) Substrate processing system, substrate transfer method, program, and computer storage medium
JP5285514B2 (en) Template processing apparatus, imprint system, release agent processing method, program, and computer storage medium
JP5314461B2 (en) Substrate processing method, program, computer storage medium, and substrate processing system
CN110313060B (en) Substrate processing system
JP5108834B2 (en) Template processing apparatus, imprint system, release agent processing method, program, and computer storage medium
JP5216713B2 (en) Coating processing apparatus, coating processing method, program, and computer storage medium
JP4044994B2 (en) Substrate processing equipment
JP5752827B2 (en) Substrate processing system, substrate transfer method, program, and computer storage medium
KR101884856B1 (en) Apparatus for treating substrate
KR20150076808A (en) Unit for transferring substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09705587

Country of ref document: EP

Kind code of ref document: A1