WO2009096350A1 - Air conditioning control system - Google Patents

Air conditioning control system Download PDF

Info

Publication number
WO2009096350A1
WO2009096350A1 PCT/JP2009/051164 JP2009051164W WO2009096350A1 WO 2009096350 A1 WO2009096350 A1 WO 2009096350A1 JP 2009051164 W JP2009051164 W JP 2009051164W WO 2009096350 A1 WO2009096350 A1 WO 2009096350A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
conditioning control
value
coil
temperature
Prior art date
Application number
PCT/JP2009/051164
Other languages
French (fr)
Japanese (ja)
Inventor
Kenzo Yonezawa
Yasuo Takagi
Nobutaka Nishimura
Yuuichi Hanada
Naoki Makino
Hiroshi Morimoto
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to US12/864,680 priority Critical patent/US20100307731A1/en
Priority to DE112009000227T priority patent/DE112009000227T5/en
Priority to CN2009801033141A priority patent/CN101925786B/en
Priority to KR1020107016381A priority patent/KR101198313B1/en
Publication of WO2009096350A1 publication Critical patent/WO2009096350A1/en
Priority to US15/067,883 priority patent/US20160195290A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/50HVAC for high buildings, e.g. thermal or pressure differences
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioning control system that controls air conditioning in an office, a residence, or the like.
  • Patent Document 1 discloses a technique using an air-conditioning system that performs air-conditioning operation that achieves optimum energy saving in a building facility.
  • the technique of this patent document 1 includes the energy consumption of the heat source machine that produces cold / hot water, the energy consumption of the fan that sends out the air heat-exchanged by the air conditioning coil, and the energy consumption of the pump that sends the cold / hot water from the heat source machine By obtaining the coil temperature target value of the air conditioning coil and the cold / hot water temperature target value of the heat source machine so that the required energy consumption for air conditioning is minimized, it is possible to efficiently perform the energy saving air conditioning operation.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an air conditioning control system capable of efficiently saving energy consumption while considering the comfort of the occupants.
  • an air conditioning control system includes an air conditioner, a central heat source device, an air conditioning control device that controls operations of the air conditioner and the central heat source device, and an air conditioning control.
  • a measuring device that is installed corresponding to each target room or each indoor control zone and measures the temperature and humidity of the air conditioning control target is connected.
  • the measurement device includes a measurement value transmission unit that acquires a temperature measurement value and a humidity measurement value measured in a room or an indoor control zone of the air conditioning control target, and transmits the temperature measurement value and the humidity measurement value to the air conditioning control device.
  • the air conditioner takes in a predetermined amount of outside air and adjusts the temperature and humidity of the outside air taken in based on the temperature setting value and the humidity setting value acquired from the air conditioning control device, and the room of the air conditioning control target Alternatively, a predetermined amount of return air is taken in from the indoor control zone and the return air coil that adjusts the temperature of the return air taken in based on the temperature set value acquired from the air conditioning control device, and the outside air cooling coil Blower that generates air in which the outside air whose humidity has been adjusted and the return air whose temperature has been adjusted by the return air cooling coil is mixed, and blows the air mixed in the air-conditioning control target room or a control zone in the room And a fan.
  • the central heat source device includes a refrigerator and a cooling tower, adjusts the water temperature based on a water temperature setting value acquired from the air conditioning control device, and generates cold water or hot water to be supplied to the air conditioner, and the air conditioning control
  • a water supply pump for supplying cold water or hot water generated by the cold / hot water adjustment unit to at least one of the outside air coil and the return air coil of the air conditioner based on a flow rate value acquired from an apparatus; .
  • the air conditioning control device stores a measurement value acquisition unit that acquires the temperature measurement value and the humidity measurement value transmitted from the measurement value transmission unit of the measurement device, and a preset target setting range of the comfort index.
  • the refrigeration Temperature setting value of air blown from the air conditioner so that the total value of energy consumption of the cooling unit, the cooling tower, the outside air coil, the return air coil, the water supply pump, and the blower fan is minimized
  • An air conditioner set value calculating unit that calculates a humidity set value, a set value transmitting unit that transmits the temperature set value and humidity set value calculated by the air conditioner set value calculating unit to the air conditioner, and the air conditioner set value Temperature calculated by the calculator And calculates the water temperature set value and the flow rate value of the cold or hot water from the set value and the humidity set value, and a control value transmission unit that transmits to the central heat source device.
  • An air conditioning control system includes an air conditioner, a water pump, an air conditioning control device that controls operations of the air conditioner and the water pump, and a room or a room that is an air conditioning control target.
  • a measurement device that is installed corresponding to each control zone and measures the temperature and humidity of the air conditioning control target is connected.
  • the measurement apparatus includes a measurement value transmission unit that acquires a temperature measurement value and a humidity measurement value measured in the indoor or air-conditioning control target room or a control zone in the room, and transmits the measurement value to the air-conditioning control apparatus.
  • the air conditioner takes in a predetermined amount of outside air, adjusts the temperature and humidity of the outside air taken in based on the temperature setting value and the humidity setting value acquired from the air conditioning control device, and the indoor or air conditioning control target room or
  • a return air coil that takes in a predetermined amount of return air from an indoor control zone and adjusts the temperature of the return air that has been acquired based on the temperature setting value acquired from the air conditioning control device, and the temperature and humidity are adjusted by the outside air cooling coil.
  • a blower fan that generates air in which the adjusted outside air and the return air whose temperature is adjusted by the return air cooling coil are mixed, and blows the air mixed in the air-conditioning control target room or a control zone in the room; .
  • the water supply pump supplies cold water or hot water supplied from the outside to at least one of the outside air coil and the return air coil of the air conditioner based on the flow rate value acquired from the air conditioning controller.
  • a water supply section is provided.
  • the air conditioning control device stores a measurement value acquisition unit that acquires the temperature measurement value and the humidity measurement value transmitted from the measurement value transmission unit of the measurement device, and a preset target setting range of the comfort index.
  • the outside air The temperature setting value and humidity setting value of the blast supplied from the air conditioner are calculated so that the total value of the energy consumption of each of the air coil, the return air coil, the water pump, and the blower fan is minimized.
  • FIG. 1 is an overall view showing a configuration of an air conditioning control system according to first to fifth embodiments of the present invention.
  • FIG. 3 is a configuration diagram showing a detailed configuration of an air conditioning control system according to the first to third embodiments of the present invention.
  • FIG. 10 is a sequence diagram showing an operation of the air conditioning control system according to the first to fifth embodiments of the present invention.
  • 6 is a graph showing the relationship between room temperature and indoor humidity when the PMV value used in the air conditioning control system according to the first to fifth embodiments of the present invention is determined to be comfortable.
  • the air-conditioning control system by 3rd Embodiment of this invention is a graph which shows the change by the outside air intake amount of the damper opening for supplying the air to the coil 11 for external air cooling, the coil 12 for return air cooling, and the ventilation fan 13 .
  • FIG. 1 shows an overall view of an air conditioning control system 1 according to the first embodiment of the present invention.
  • each control zone is also referred to as a room for simplicity.
  • the air conditioning control system 1 is for controlling the air conditioning in the building A to be air-conditioned.
  • the air conditioning control system 1 includes an air conditioner 10 installed in each room in the building A, a temperature sensor 20 installed in each room in order to measure a room temperature and transmit a measured value to each air conditioner 10, In order to measure the humidity in the room and transmit the measured value to each air conditioner, a humidity sensor 30 installed in each room, a central heat source device 40 that manages the cold water supplied to each air conditioner 10, and each air conditioner 10 And an air conditioning linkage control device 50 as an air conditioning control device that receives the room temperature measurement value and the indoor humidity measurement value received in step S1 and controls the operation of the air conditioner 10.
  • Each air conditioner 10 acquires measurement values from the temperature sensor 20 and the humidity sensor 30 and transmits the measurement values to the air conditioning cooperation control device 50. Further, as shown in FIG. 2, each air conditioner 10 includes an outside air cooling coil 11 that dehumidifies and cools outside air using cold water supplied from the central heat source device 40, and cold water supplied from the central heat source device 40.
  • the return air cooling coil 12 cools the sensible heat emitted from the indoor return air lighting, OA equipment, human body, etc., and the outside air cooled by the outside air cooling coil 11 and the return air cooling coil 12.
  • a blower fan 13 that blows air mixed with the return air cooled in step 4 into each room.
  • the central heat source device 40 includes a refrigerator 41 that generates cold water, a cooling tower 42 that cools the refrigerator 41 with air in order to reuse the water whose temperature has risen and the refrigerator 41, the refrigerator 41, and each air conditioner 10. Or the water supply pump 43 which conveys cold water between the cooling towers 42 is provided.
  • the air conditioning cooperation control device 50 acquires the measured values of the temperature sensor 20 and the humidity sensor 30 transmitted from each air conditioner 10. And the air-conditioning cooperation control device 50 is within the range of the comfort index set in advance, the cooling tower 42 of the central heat source device 40, the refrigerator 41, the water pump 43, the outside air cooling coil 11 of the air conditioner 10, the return The optimum room temperature setting value and humidity setting value for each room are calculated so that the total energy consumption of the air cooling coil 12 and the blower fan 13 is minimized. Further, the air conditioning cooperation control device 50 transmits the calculation result to each air conditioner 10 and the central heat source device 40.
  • each temperature sensor 20 measures the temperature in each room
  • each humidity sensor 30 measures the humidity in each room. And the measured value of the temperature and humidity of each room
  • the air-conditioning linkage control device 50 is based on the received measurement values, the PMV (Predicted Mean Vote) within a comfortable range, and the cooling tower 42 of the central heat source device 40, which is the total required energy consumption, the refrigerator 41, the water supply pump 43, and the optimum room temperature setting value in each room so that the total value of energy consumption in the outside air cooling coil 11, the return air cooling coil 12, and the blower fan 13 of the air conditioner 10 is minimized.
  • a humidity set value is calculated (S3).
  • PMV is a variable that affects human sense of heat against heat and cold.
  • A Air temperature
  • the amount of heat generated by a person is represented by the sum of the amount of radiation by convection, the amount of heat released by radiation, the amount of heat evaporated from the person, the amount of heat released by heat and the amount of heat stored.
  • PMV which is an index of thermal sensation
  • +3 Hot
  • +2 Warm
  • +1 Somewhat warm
  • 0 Neither, comfortable
  • -1 Somewhat cool
  • -2 Cool
  • -3 cold
  • It is expressed as The range of human comfortable PMV values is -0.5 to +0.5.
  • the unit of met is used for the amount of activity representing work intensity
  • the unit of clo is used for the amount of clothing.
  • the unit met represents the amount of metabolism and is a value based on resting metabolism in a thermally comfortable state.
  • 1met is represented by the following formula (1).
  • M activity amount [kcal / h]
  • A human body surface area [m 2 ]
  • L human body heat load [kcal / m 2 h] (calculated from Fanger's comfort equation).
  • M activity amount [kcal / h]
  • A human body surface area [m 2 ]
  • L human body heat load [kcal / m 2 h] (calculated from Fanger's comfort equation).
  • the total energy consumed in the air conditioning control system 1 is the cooling tower 42 of the central heat source device 40, the refrigerator 41, the water pump 43, the outside air cooling coil 11 of the air conditioner 10, and the return air cooling. It is the total value of the energy consumption of each of the coil 12 and the blower fan 13.
  • a provisional total air conditioning load is calculated from the heat exchange amount between the current heat source device and the cold water coil in the initial stage. Then, with this total air conditioning load as a variable, the air conditioning equipment of the air conditioning system is controlled based on the optimum operating state quantity of the air conditioning system. Then, when the air condition of the air conditioning control target space substantially matches the set air conditioning condition, the true total air conditioning load is calculated, and the optimum operation state quantity is determined. As a result, the air conditioning is efficiently operated, and energy saving of the air conditioning system is realized.
  • the air conditioner 10 has a minimum PMV value within the comfortable range of ⁇ 0.5 to +0.5 so that the total energy consumption in the air conditioning control system 1 is minimized. Is calculated, and the set value is transmitted to the air conditioner 10 and the central heat source device 40 (S3).
  • the air conditioning control system When the cooling process is performed by the air conditioning control system, the function of dehumidifying and cooling fresh outside air taken into the building for the residents (latent heat cooling load) and the sensible heat generation of the lighting inside the building, OA equipment, human body, etc. Two functions of cooling (sensible heat cooling load) are performed in the air conditioner.
  • an outside air cooling coil 11 that dehumidifies and cools the outside air and a return air cooling coil 12 that cools the return air are provided separately. And the cold water of the temperature and flow volume suitable for each control is supplied.
  • the comfort of the occupant is taken into account, the outside air and the indoor return air are adjusted separately, and the total required energy consumption in the system is controlled to be minimum. The Therefore, it is possible to efficiently perform air conditioning control that saves energy.
  • step S3 of FIG. 3 the processing when the air conditioning linkage control device 50 calculates the set value of each air conditioner 10 so that the required energy consumption is minimized within the range where the PMV is comfortable. explain.
  • FIG. 4 shows the relationship between room temperature and room humidity at which the PMV value is 0.3 to 0.5, which is energy-saving and comfortable during cooling, assuming an office building with an indoor wind speed of 0.1 m / s. Indicates.
  • FIG. 4 shows that the PMV value is 0.3 to 0.5 when the room temperature and the room humidity are in a range A surrounded by a thick line (the humidity is limited to 20% to 80%). ).
  • the government recommends that the temperature setting of air conditioners in summer be 28 ° C.
  • the PMV value becomes larger than +0.5 which is the upper limit of the comfortable range for humans, no matter how low the humidity is.
  • the indoor wind speed is 0.5 m / s
  • the humidity is 40% and the PMV is +0.5 or less (about 0.43) even if the room temperature is 28 ° C.
  • the average wind speed can be set to be smaller than 0.5 m / s. For this reason, even if the room temperature setting is 28 ° C., comfortable air conditioning control can be provided to the occupants without significantly increasing the energy consumption of the blower fan 13.
  • the optimum setting value of the air conditioner 10 is calculated in consideration of the wind speed blown from the air conditioner 10. For this reason, it becomes possible to perform the air-conditioning control aiming at energy saving of energy consumption and maintenance of comfort more efficiently.
  • the carbon dioxide sensor measures the carbon dioxide concentration in the room exhausted from the occupants and transmits it to the air conditioner 10.
  • the human sensor detects the number of occupants in the room subject to air conditioning control and transmits the detected number to the air conditioner 10.
  • each temperature sensor 20 measures the indoor temperature
  • each humidity sensor 30 measures the indoor humidity.
  • the carbon dioxide sensor measures the carbon dioxide concentration in the room, or the human sensor detects the number of people in the room. The measured value measured by each sensor is transmitted to the air conditioner 10 in each room (S1).
  • Each air conditioner 10 receives the measurement value transmitted from each sensor and further transmits it to the air conditioning cooperation control device 50 (S2).
  • the damper opening for supplying air to the outside air cooling coil 11, the return air cooling coil 12, and the blower fan 13 is controlled according to the graph shown in FIG.
  • the tamper to the return air cooling coil 12 is fully open and the damper to the outside air cooling coil 11 is fully closed. Therefore, the indoor air is not exhausted to the outside air. Then, exhausting into the room is started after a certain time. Then, the minimum outside air (b) to the middle outside air (c) to the maximum outside air (d) so that the total energy consumption of each device is minimized by the temperature and humidity of the outside air and the temperature and humidity of the return air. Any one of the time points is selected, and each tamper opening degree is controlled.
  • the room has a cooling request, and the enthalpy of the outside air is lower than the enthalpy in the room.
  • the damper opening degree is controlled so that outside air is actively introduced. For this reason, the amount of cold water supplied to the return air cooling coil 12 is reduced.
  • each damper opening is controlled according to FIG.
  • the set value of each device is calculated in consideration of the measurement value acquired from the carbon dioxide sensor or the human sensor.
  • each air conditioner 10 when determining the set value of each air conditioner 10 so that the required energy consumption of each device is minimized, the minimum based on the use of outside air cooling and the carbon dioxide concentration in the room or the number of people in the room (S3). And based on this setting value, the central heat source apparatus 40 supplies the cold water which is required to the air conditioner 10 (S4). As a result, the air adjusted in consideration of the comfort of the occupant is supplied to the air-conditioned room (S5).
  • the optimum setting value of the air conditioner is calculated in consideration of the use of outside air cooling and the intake of outside air based on the indoor carbon dioxide concentration or the number of people in the room. Therefore, it becomes possible to perform the air conditioning control in which energy consumption is further efficiently saved.
  • ⁇ 4th Embodiment >> ⁇ Configuration of the air conditioning control system according to the fourth embodiment>
  • two systems of heat source devices a central heat source device 40 and a second central heat source device 40 ′, are installed.
  • Other configurations are the same as those of the first embodiment. Therefore, detailed description of the same parts as those of the first embodiment is omitted.
  • the central heat source device 40 supplies cold water to the outside air cooling coil 11, and the second central heat source device 40 ′ supplies cold water to the return air cooling coil 12.
  • the central heat source device 40 when supplying cold water to each air conditioner 10 in step S6, the central heat source device 40 supplies cold water to the outside air cooling coil 11, and the second heat source device 40 is a separate system from the central heat source device 40.
  • the central heat source device 40 ′ supplies cold water to the return air cooling coil 12.
  • the cold water supplied to the cooling coil by the central heat source device is about 7 ° C.
  • this 7 ° C. cold water is required only when the outside air is dehumidified and cooled.
  • a temperature of about 13 ° C. is sufficient for the temperature of the cold water.
  • the amount of energy required to dehumidify and cool the outside air is about 30 to 20% of the total amount of energy required for air conditioning control of cooling. Therefore, the amount of energy (sensible heat cooling load) required when cooling the return air corresponding to 70 to 80% of the total amount of energy is used to excessively cool the cold water. Therefore, useless energy is generated.
  • two systems of cold water supply that is, a central heat source device 40 that supplies cold water to the outside air cooling coil 11 and a second central heat source device 40 ′ that supplies cold water to the return air cooling coil 12.
  • a source is provided.
  • the cold water which the central heat source apparatus 40 supplies to the coil 11 for external air cooling is adjusted to about 7 degreeC.
  • the cold water supplied to the return air cooling coil 12 by the second central heat source device 40 ′ is set to be adjusted to around 13 ° C.
  • ⁇ 5th Embodiment >> ⁇ Configuration of air conditioning control system according to fifth embodiment>
  • the configuration of the air conditioning control system 5 according to the fifth embodiment of the present invention is the same as the configuration of the air conditioning control system 1 according to the first embodiment shown in FIG. However, the outside air cooling coil 11 is connected in series with the return air cooling coil 12 in each air conditioner 10.
  • Each air conditioner 10 includes a plurality of valves as shown in FIG.
  • the first valve 14 adjusts the amount of cold water taken into the outside air cooling coil 11 from the central heat source device 40 according to the opening degree.
  • the second valve 15 adjusts the amount of cold water taken into the return air cooling coil 12 after being used in the outside air cooling coil 11.
  • the third valve 16 is connected in parallel with the return air cooling coil 12 and adjusts the amount of cold water drained directly after being used in the outside air cooling coil 11.
  • the fourth valve 17 is connected to the outside air cooling coil 11 in parallel, and the valve 15 and the valve 16 are connected to be upstream of these in series and from the central heat source device 40 to the return air cooling coil 12. Adjust the amount of cold water taken directly into the.
  • the cold water used in the return air cooling coil 12 does not have to be as low as the cold water used in the outside air cooling coil 11. Accordingly, the cold water used in the return air cooling coil 12 can be dealt with by reusing the cold water after being used in the outside air cooling coil 11.
  • the amount of cold water supplied from the central heat source device 40 to the outside air cooling coil 11 is adjusted by the opening degree of the valve 14.
  • the amount of cold water that is used by the outside air cooling coil 11 and then supplied to the return air cooling coil 12 is adjusted by the opening degree of the valve 15 and the valve 16. Further, when the amount of cold water used in the return air cooling coil 12 is not sufficient after the use of the outside air cooling coil 11, the cold water is returned from the central heat source device 40 by opening the valve 17. Directly supplied to the cooling coil 12.
  • FIG. 8A shows the flow of cold water when the valve 14 and the valve 15 are opened to the same extent so that all the cold water used in the outside air cooling coil 11 is supplied to the return air cooling coil 12. It shows with.
  • FIG. 8B shows that the valve 14, the valve 15, and the valve 16 are opened, so that a part of the cold water used in the outside air cooling coil 11 is supplied to the return air cooling coil 12 and is unnecessary.
  • the flow of cold water when the cold water is drained without passing through the return air cooling coil 12 is indicated by a bold line.
  • FIG. 8C when the valve 14, the valve 15, and the valve 17 are opened, the cold water used in the outside air cooling coil 11 and the cold water from the central heat source device 40 are supplied to the return air cooling coil 12.
  • the outside air cooling coil 11 is connected in series with the return air cooling coil 12. With such a configuration, the cold water used in the outside air cooling coil 11 can be reused in the return air cooling coil 12. Therefore, it becomes possible to perform the air conditioning control in which energy consumption is further efficiently saved.
  • the refrigerator 41 and the cooling tower 42 of the central heat source device 40 are not in each building, and when performing air-conditioning control by DHC (District Heating and Cooling), cold / hot water may be supplied from the outside. (However, there is a water pump 43 that sends cold and hot water to each air conditioner).
  • the total consumed energy in the air conditioning control system is the total value of the consumed energy of the water pump, the outside air cooling coil, the return air cooling coil, and the blower fan.
  • each measured value measured by each sensor is transmitted from each sensor to the air conditioning linkage control device 50 via the air conditioner 30 .
  • the present invention is not limited to this, and each measurement value may be directly transmitted from each sensor to the air conditioning cooperation control device 50.
  • the PMV value is used as a comfort index for human thermal sensation.
  • air conditioning control may be performed using a standard effective temperature, a new effective temperature, or the like.
  • embodiments may be combined as much as possible. A higher effect can be obtained by combining the implementation states.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An air conditioning control system (1) includes: an air conditioner (10) having a external air cooling coil (11) for cooling an external air and a returning air cooling coil (12) for cooling an air returning from a room; a central heat source device (40) for supplying a cold water to the coils (11, 12) of the air conditioner (10); and an air conditioning linkage control device (50) which calculates a set value of the air conditioner (10) so as to minimize the total energy consumed in the air conditioning control system (1) within a preset range of the pleasance index.

Description

空調制御システムAir conditioning control system
 本発明は、オフィスや住居等の空調を制御する空調制御システムに関する。 The present invention relates to an air conditioning control system that controls air conditioning in an office, a residence, or the like.
 オフィスや住居などの建築設備全体で消費されるエネルギーは、空調関連のエネルギーが約半分を占めている。そのため、空調制御に関する省エネルギーの推進が、建築設備全体の省エネルギー化に大きく貢献する。 About half of the energy consumed by all building equipment such as offices and residences is air-conditioning related energy. Therefore, the promotion of energy saving related to air conditioning control greatly contributes to energy saving of the entire building equipment.
 これに鑑み、建築設備において最適な省エネルギー化を図った空調運転をする空調システムを利用した技術が特許文献1に記載されている。 In view of this, Patent Document 1 discloses a technique using an air-conditioning system that performs air-conditioning operation that achieves optimum energy saving in a building facility.
 この特許文献1の技術は、冷温水を生産する熱源機の消費エネルギー、空調コイルで熱交換された空気を送出するファンの消費エネルギー、熱源機からの冷温水を送出するポンプの消費エネルギーを含む空調所要消費エネルギーがそれぞれ最小になるように、空調コイルのコイル温度目標値と熱源機の冷温水温度目標値を求めることにより、効率よく省エネルギー化された空調運転を行うことができる。
特開2004-69134
The technique of this patent document 1 includes the energy consumption of the heat source machine that produces cold / hot water, the energy consumption of the fan that sends out the air heat-exchanged by the air conditioning coil, and the energy consumption of the pump that sends the cold / hot water from the heat source machine By obtaining the coil temperature target value of the air conditioning coil and the cold / hot water temperature target value of the heat source machine so that the required energy consumption for air conditioning is minimized, it is possible to efficiently perform the energy saving air conditioning operation.
JP 2004-69134 A
 このように省エネルギーが推進される一方で、空調制御の対象となる室内では在室者の温熱感覚を満足させるため、いわゆる快適性を確保することが要求されている。しかし、この「省エネルギーの推進」と「在室者の快適性の確保」とはトレードオフの関係にある。つまり、省エネルギーを推進すると、在室者の快適性が低下する場合が多い。 While energy conservation is promoted in this way, it is required to ensure so-called comfort in a room subject to air conditioning control in order to satisfy the thermal sensation of the occupants. However, there is a trade-off between this “promotion of energy saving” and “ensuring the comfort of occupants”. That is, when energy conservation is promoted, the comfort of the occupants often decreases.
 しかし、在室者の快適性の範囲を超えた過剰なエネルギー消費を抑えることにより、無駄なエネルギー消費を抑えることは可能である。 However, it is possible to suppress wasteful energy consumption by suppressing excessive energy consumption that exceeds the comfort range of the occupants.
 そこで本発明は上記事情に鑑みてなされたものであり、在室者の快適性を考慮しつつ、効率よく消費エネルギーの省エネルギー化を図ることができる空調制御システムを提供することを目的とする。 Therefore, the present invention has been made in view of the above circumstances, and an object thereof is to provide an air conditioning control system capable of efficiently saving energy consumption while considering the comfort of the occupants.
 上記目的を達成するために、本発明の第1の特徴の空調制御システムは、空調機と、中央熱源装置と、前記空調機と前記中央熱源装置の動作を制御する空調制御装置と、空調制御対象である室内あるいは室内の制御ゾーン毎に対応して設置されその空調制御対象の温度と湿度を計測する計測装置と、が接続される。前記計測装置は、前記空調制御対象の室内あるいは室内の制御ゾーンで計測された温度計測値と湿度計測値を取得して、前記空調制御装置に送信する計測値送信部を備える。前記空調機は、所定量の外気を取り込むと共に前記空調制御装置から取得した温度設定値と湿度設定値に基づいて取り込んだ外気の温度と湿度を調整する外気用コイルと、前記空調制御対象の室内あるいは室内の制御ゾーンから所定量の還気を取り込むと共に前記空調制御装置から取得した温度設定値に基づいて取り込んだ還気の温度を調整する還気用コイルと、前記外気冷却用コイルで温度と湿度を調整された外気と前記還気冷却用コイルで温度を調整された還気とが混合された空気を生成し前記空調制御対象の室内あるいは室内の制御ゾーンに混合された空気を送風する送風ファンと、を備える。前記中央熱源装置は、冷凍機と冷却塔を備え前記空調制御装置から取得した水温設定値に基づき水温を調整し前記空調機に供給する冷水又は温水を生成する冷温水調整部と、前記空調制御装置から取得した流量値に基づいて前記冷温水調整部で生成された冷水または温水を前記空調機の前記外気用コイルと前記還気用コイルの少なくともいずれか一方に送水する送水ポンプと、を備える。前記空調制御装置は、前記計測装置の計測値送信部から送信された前記温度計測値と前記湿度計測値を取得する計測値取得部と、予め設定された快適性指標の目標設定範囲を記憶する快適性指標範囲記憶部と、前記計測値取得部で取得した温度計測値と湿度計測値に基づいて前記快適性指標範囲記憶部に記憶された快適性指標の目標設定範囲の中で、前記冷凍機、前記冷却塔、前記外気用コイル、前記還気用コイル、前記送水ポンプ、および前記送風ファンの消費エネルギーの合計値が最小になるように前記空調機から送風される空気の温度設定値と湿度設定値を算出する空調機設定値算出部と、前記空調機設定値算出部で算出された温度設定値と湿度設定値を前記空調機に送信する設定値送信部と、前記空調機設定値算出部で算出された温度設定値と湿度設定値から前記冷水または温水の水温設定値および流量値を算出して、前記中央熱源装置に送信する制御値送信部と、を備える。 In order to achieve the above object, an air conditioning control system according to a first aspect of the present invention includes an air conditioner, a central heat source device, an air conditioning control device that controls operations of the air conditioner and the central heat source device, and an air conditioning control. A measuring device that is installed corresponding to each target room or each indoor control zone and measures the temperature and humidity of the air conditioning control target is connected. The measurement device includes a measurement value transmission unit that acquires a temperature measurement value and a humidity measurement value measured in a room or an indoor control zone of the air conditioning control target, and transmits the temperature measurement value and the humidity measurement value to the air conditioning control device. The air conditioner takes in a predetermined amount of outside air and adjusts the temperature and humidity of the outside air taken in based on the temperature setting value and the humidity setting value acquired from the air conditioning control device, and the room of the air conditioning control target Alternatively, a predetermined amount of return air is taken in from the indoor control zone and the return air coil that adjusts the temperature of the return air taken in based on the temperature set value acquired from the air conditioning control device, and the outside air cooling coil Blower that generates air in which the outside air whose humidity has been adjusted and the return air whose temperature has been adjusted by the return air cooling coil is mixed, and blows the air mixed in the air-conditioning control target room or a control zone in the room And a fan. The central heat source device includes a refrigerator and a cooling tower, adjusts the water temperature based on a water temperature setting value acquired from the air conditioning control device, and generates cold water or hot water to be supplied to the air conditioner, and the air conditioning control A water supply pump for supplying cold water or hot water generated by the cold / hot water adjustment unit to at least one of the outside air coil and the return air coil of the air conditioner based on a flow rate value acquired from an apparatus; . The air conditioning control device stores a measurement value acquisition unit that acquires the temperature measurement value and the humidity measurement value transmitted from the measurement value transmission unit of the measurement device, and a preset target setting range of the comfort index. In the target setting range of the comfort index stored in the comfort index range storage unit based on the temperature measurement value and the humidity measurement value acquired by the comfort index range storage unit and the measurement value acquisition unit, the refrigeration Temperature setting value of air blown from the air conditioner so that the total value of energy consumption of the cooling unit, the cooling tower, the outside air coil, the return air coil, the water supply pump, and the blower fan is minimized An air conditioner set value calculating unit that calculates a humidity set value, a set value transmitting unit that transmits the temperature set value and humidity set value calculated by the air conditioner set value calculating unit to the air conditioner, and the air conditioner set value Temperature calculated by the calculator And calculates the water temperature set value and the flow rate value of the cold or hot water from the set value and the humidity set value, and a control value transmission unit that transmits to the central heat source device.
 また、本発明の第2の特徴の空調制御システムは、空調機と、送水ポンプと、こ前記空調機と前記送水ポンプの動作を制御する空調制御装置と、空調制御対象である室内あるいは室内の制御ゾーン毎に対応して設置されその空調制御対象の温度と湿度を計測する計測装置と、が接続される。前記計測装置は、前記空調制御対象の室内あるいは室内の制御ゾーンで計測された温度計測値と湿度計測値を取得して前記空調制御装置に送信する計測値送信部を備える。前記空調機は、所定量の外気を取り込み前記空調制御装置から取得した温度設定値と湿度設定値に基づいて取り込んだ外気の温度と湿度を調整する外気用コイルと、前記空調制御対象の室内あるいは室内の制御ゾーンから所定量の還気を取り込み前記空調制御装置から取得した温度設定値に基づいて取り込んだ還気の温度を調整する還気用コイルと、前記外気冷却用コイルで温度と湿度を調整された外気と前記還気冷却用コイルで温度を調整された還気とが混合された空気を生成し前記空調制御対象の室内あるいは室内の制御ゾーンに混合された空気を送風する送風ファンと、を備える。前記送水ポンプは、前記空調制御装置から取得した流量値に基づいて、外部から供給された冷水または温水を、前記空調機の前記外気用コイルと前記還気用コイルの少なくともいずれか一方に送水する送水部を備える。前記空調制御装置は、前記計測装置の計測値送信部から送信された前記温度計測値および前記湿度計測値を取得する計測値取得部と、予め設定された快適性指標の目標設定範囲を記憶する快適性指標範囲記憶部と、前記計測値取得部で取得した温度計測値と湿度計測値に基づいて前記快適性指標範囲記憶部に記憶された快適性指標の目標設定範囲の中で、前記外気用コイル、前記還気用コイル、前記送水ポンプ、および前記送風ファンのそれぞれの消費エネルギーの合計値が最小になるように前記空調機から供給される送風の温度設定値と湿度設定値を算出する空調機設定値算出部と、前記空調機設定値算出部で算出された温度設定値と湿度設定値を前記空調機に送信する設定値送信部と、前記空調機設定値算出部で算出された温度設定値と湿度設定値から前記冷水または温水の流量値を算出して、前記送水ポンプに送信する制御値送信部と、を備える。 An air conditioning control system according to a second aspect of the present invention includes an air conditioner, a water pump, an air conditioning control device that controls operations of the air conditioner and the water pump, and a room or a room that is an air conditioning control target. A measurement device that is installed corresponding to each control zone and measures the temperature and humidity of the air conditioning control target is connected. The measurement apparatus includes a measurement value transmission unit that acquires a temperature measurement value and a humidity measurement value measured in the indoor or air-conditioning control target room or a control zone in the room, and transmits the measurement value to the air-conditioning control apparatus. The air conditioner takes in a predetermined amount of outside air, adjusts the temperature and humidity of the outside air taken in based on the temperature setting value and the humidity setting value acquired from the air conditioning control device, and the indoor or air conditioning control target room or A return air coil that takes in a predetermined amount of return air from an indoor control zone and adjusts the temperature of the return air that has been acquired based on the temperature setting value acquired from the air conditioning control device, and the temperature and humidity are adjusted by the outside air cooling coil. A blower fan that generates air in which the adjusted outside air and the return air whose temperature is adjusted by the return air cooling coil are mixed, and blows the air mixed in the air-conditioning control target room or a control zone in the room; . The water supply pump supplies cold water or hot water supplied from the outside to at least one of the outside air coil and the return air coil of the air conditioner based on the flow rate value acquired from the air conditioning controller. A water supply section is provided. The air conditioning control device stores a measurement value acquisition unit that acquires the temperature measurement value and the humidity measurement value transmitted from the measurement value transmission unit of the measurement device, and a preset target setting range of the comfort index. Within the target setting range of the comfort index stored in the comfort index range storage unit based on the temperature measurement value and the humidity measurement value acquired by the comfort index range storage unit and the measurement value acquisition unit, the outside air The temperature setting value and humidity setting value of the blast supplied from the air conditioner are calculated so that the total value of the energy consumption of each of the air coil, the return air coil, the water pump, and the blower fan is minimized. An air conditioner set value calculator, a set value transmitter that transmits the temperature set value and humidity set value calculated by the air conditioner set value calculator, and the air conditioner set value calculator Temperature setpoint and It calculates the flow rate value of the cold or hot water from degrees set value, and a control value transmission unit that transmits to the water pump.
 本発明の特徴の空調制御システムによれば、在室者の快適性を考慮しつつ、効率よく消費エネルギーの省エネルギー化を図ることができる。 According to the air conditioning control system of the present invention, energy consumption can be efficiently saved while taking into account the comfort of the occupants.
本発明の第1実施形態~第5実施形態による空調制御システムの構成を示す全体図である。1 is an overall view showing a configuration of an air conditioning control system according to first to fifth embodiments of the present invention. 本発明の第1実施形態~第3実施形態による空調制御システムの詳細な構成を示す構成図である。FIG. 3 is a configuration diagram showing a detailed configuration of an air conditioning control system according to the first to third embodiments of the present invention. 本発明の第1実施形態~第5実施形態による空調制御システムの動作を示すシーケンス図である。FIG. 10 is a sequence diagram showing an operation of the air conditioning control system according to the first to fifth embodiments of the present invention. 本発明の第1実施形態~第5実施形態による空調制御システムにおいて利用されるPMV値が快適と判断されるときの室温と室内の湿度との関係を示すグラフである。6 is a graph showing the relationship between room temperature and indoor humidity when the PMV value used in the air conditioning control system according to the first to fifth embodiments of the present invention is determined to be comfortable. 本発明の第3実施形態による空調制御システムにおいて、外気冷却用コイル11、還気冷却用コイル12、送風ファン13に空気を供給するためのダンパー開度の外気取り込み量による変化を示すグラフである。In the air-conditioning control system by 3rd Embodiment of this invention, it is a graph which shows the change by the outside air intake amount of the damper opening for supplying the air to the coil 11 for external air cooling, the coil 12 for return air cooling, and the ventilation fan 13 . 本発明の第4実施形態による空調制御システムの詳細な構成を示す構成図である。It is a block diagram which shows the detailed structure of the air-conditioning control system by 4th Embodiment of this invention. 本発明の第5実施形態による空調制御システムの空調機の詳細な構成を示す構成図である。It is a block diagram which shows the detailed structure of the air conditioner of the air-conditioning control system by 5th Embodiment of this invention. 本発明の第5実施形態による空調機の外気冷却用コイルおよび還気冷却用コイルを流れる冷水の流路を示す概念図である。It is a conceptual diagram which shows the flow path of the cold water which flows through the coil for external air cooling of the air conditioner by 5th Embodiment of this invention, and the coil for return air cooling.
 本発明の空調制御システムの実施形態について、図面を参照して説明する。なお、最近の多くのオフィスビル等は断熱性が良く、PCやOA機器が多いため、年間を通して冷房モードである場合が多い。そのため、以下の各実施形態においては、主に冷房モードで空調制御を行う場合について説明する。 Embodiments of an air conditioning control system of the present invention will be described with reference to the drawings. In recent years, many office buildings have good heat insulation, and since there are many PCs and OA devices, they are often in a cooling mode throughout the year. Therefore, in each of the following embodiments, a case where air conditioning control is mainly performed in the cooling mode will be described.
《第1実施形態》
 〈第1実施形態による空調制御システムの構成〉
 本発明の第1実施形態による空調制御システム1の全体図を、図1に示す。
<< First Embodiment >>
<Configuration of air conditioning control system according to the first embodiment>
FIG. 1 shows an overall view of an air conditioning control system 1 according to the first embodiment of the present invention.
 なお、大型ビルの場合、室内が大きいので、室内を複数の制御ゾーンに分けて、それぞれの制御ゾーン毎に対応して、複数の空調機を室内の近傍の機械室に設置する。このような場合でも、以下では簡略のため各制御ゾーンも室内と呼ぶことにする。 In the case of a large building, since the room is large, the room is divided into a plurality of control zones, and a plurality of air conditioners are installed in a machine room near the room corresponding to each control zone. Even in such a case, hereinafter, each control zone is also referred to as a room for simplicity.
 空調制御システム1は空調対象のビルA内の空調を制御するためのものである。この空調制御システム1は、ビルA内の各室内に設置された空調機10と、室温を計測して各空調機10に計測値を送信するために各室内に設置された温度センサ20と、室内の湿度を計測して各空調機に計測値を送信するために各室内に設置された湿度センサ30と、各空調機10へ供給する冷水を管理する中央熱源装置40と、各空調機10で受信された室温計測値および室内の湿度の計測値を受信して中央熱源装置40及び各空調機10の動作を制御する空調制御装置としての空調連携制御装置50と、を備える。 The air conditioning control system 1 is for controlling the air conditioning in the building A to be air-conditioned. The air conditioning control system 1 includes an air conditioner 10 installed in each room in the building A, a temperature sensor 20 installed in each room in order to measure a room temperature and transmit a measured value to each air conditioner 10, In order to measure the humidity in the room and transmit the measured value to each air conditioner, a humidity sensor 30 installed in each room, a central heat source device 40 that manages the cold water supplied to each air conditioner 10, and each air conditioner 10 And an air conditioning linkage control device 50 as an air conditioning control device that receives the room temperature measurement value and the indoor humidity measurement value received in step S1 and controls the operation of the air conditioner 10.
 各空調機10は、温度センサ20および湿度センサ30からの計測値を取得し、その計測値を空調連携制御装置50へ送信する。また、各空調機10は、図2に示すように、中央熱源装置40から供給された冷水を利用して外気を除湿および冷却する外気冷却用コイル11と、中央熱源装置40から供給された冷水を利用して室内の還気の照明、OA機器、人体等から発せられた顕熱を冷却する還気冷却用コイル12と、外気冷却用コイル11で冷却された外気と還気冷却用コイル12で冷却された還気とを混合した空気を各室内に送風する送風ファン13と、を備える。 Each air conditioner 10 acquires measurement values from the temperature sensor 20 and the humidity sensor 30 and transmits the measurement values to the air conditioning cooperation control device 50. Further, as shown in FIG. 2, each air conditioner 10 includes an outside air cooling coil 11 that dehumidifies and cools outside air using cold water supplied from the central heat source device 40, and cold water supplied from the central heat source device 40. The return air cooling coil 12 cools the sensible heat emitted from the indoor return air lighting, OA equipment, human body, etc., and the outside air cooled by the outside air cooling coil 11 and the return air cooling coil 12. And a blower fan 13 that blows air mixed with the return air cooled in step 4 into each room.
 中央熱源装置40は、冷水を生成する冷凍機41と、冷凍機41を冷却して温度が上昇した水を再利用するために空気で冷却する冷却塔42と、冷凍機41と各空調機10または冷却塔42との間で冷水を搬送する送水ポンプ43と、を備える。 The central heat source device 40 includes a refrigerator 41 that generates cold water, a cooling tower 42 that cools the refrigerator 41 with air in order to reuse the water whose temperature has risen and the refrigerator 41, the refrigerator 41, and each air conditioner 10. Or the water supply pump 43 which conveys cold water between the cooling towers 42 is provided.
 空調連携制御装置50は、各空調機10から送信された温度センサ20と湿度センサ30の計測値を取得する。そして、空調連携制御装置50は、予め設定された快適性指標の範囲内で、中央熱源装置40の冷却塔42、冷凍機41、送水ポンプ43、および空調機10の外気冷却用コイル11、還気冷却用コイル12、送風ファン13の消費エネルギーの合計値が最小となるように、各室内の最適な室温設定値と湿度設定値とを算出する。更に、空調連携制御装置50は、その算出結果を各空調機10および中央熱源装置40に送信する。 The air conditioning cooperation control device 50 acquires the measured values of the temperature sensor 20 and the humidity sensor 30 transmitted from each air conditioner 10. And the air-conditioning cooperation control device 50 is within the range of the comfort index set in advance, the cooling tower 42 of the central heat source device 40, the refrigerator 41, the water pump 43, the outside air cooling coil 11 of the air conditioner 10, the return The optimum room temperature setting value and humidity setting value for each room are calculated so that the total energy consumption of the air cooling coil 12 and the blower fan 13 is minimized. Further, the air conditioning cooperation control device 50 transmits the calculation result to each air conditioner 10 and the central heat source device 40.
 〈第1実施形態による空調制御システムの動作〉
 第1実施形態における空調制御システム1の動作について、図3のシーケンス図を参照して説明する。
<Operation of the air conditioning control system according to the first embodiment>
Operation | movement of the air-conditioning control system 1 in 1st Embodiment is demonstrated with reference to the sequence diagram of FIG.
 まず、ビルA内の空調制御が開始される。すると、各温度センサ20が各室内の温度を計測し、各湿度センサ30が各室内の湿度を計測する。そして、これら各室の温度と湿度の計測値が、各室内に備えられた空調機10に送信される(S1)。 First, air conditioning control in building A is started. Then, each temperature sensor 20 measures the temperature in each room, and each humidity sensor 30 measures the humidity in each room. And the measured value of the temperature and humidity of each room | chamber is transmitted to the air conditioner 10 with which each room was equipped (S1).
 これらの計測値は各空調機10で受信された後に、さらに空調機10から空調連携制御装置50に送信される(S2)。 These measurement values are received by each air conditioner 10 and then transmitted from the air conditioner 10 to the air conditioning linkage control device 50 (S2).
 空調連携制御装置50は、受信したこれら計測値から、PMV(Predicted Mean Vote:予測平均回答)が快適な範囲内で、且つ、全所要消費エネルギーである中央熱源装置40の冷却塔42、冷凍機41、送水ポンプ43、および空調機10の外気冷却用コイル11、還気冷却用コイル12、送風ファン13での消費エネルギーの合計値が最小となるように、各室内の最適な室温設定値および湿度設定値を算出する(S3)。 The air-conditioning linkage control device 50 is based on the received measurement values, the PMV (Predicted Mean Vote) within a comfortable range, and the cooling tower 42 of the central heat source device 40, which is the total required energy consumption, the refrigerator 41, the water supply pump 43, and the optimum room temperature setting value in each room so that the total value of energy consumption in the outside air cooling coil 11, the return air cooling coil 12, and the blower fan 13 of the air conditioner 10 is minimized. A humidity set value is calculated (S3).
 ここで各値の算出に利用されるPMVについて説明する。 Here, PMV used for calculation of each value will be described.
 PMVとは、暑さ、寒さに対する人間の温熱感覚に影響を与える変数として、(a)空気温度、(b)相対湿度、(c)平均輻射温度、(d)気流速度、(e)活動量(人体の内部発熱量)、(f)着衣量、の6つの変数から求められる快適性指標である。 PMV is a variable that affects human sense of heat against heat and cold. (A) Air temperature, (b) Relative humidity, (c) Average radiation temperature, (d) Airflow velocity, (e) Activity amount It is a comfort index obtained from six variables of (the amount of internal heat generated by the human body) and (f) the amount of clothes.
 人の発熱量は、対流による放射量、輻射による放熱量、人からの蒸発熱量、呼吸による放熱量および蓄熱量、の合計で表される。そして、発熱量が熱平衡状態にある場合は、人体は熱的に中立となる。そのため、室内は人体にとって暑くも寒くもない快適状態となる。逆に、発熱量が熱平衡からくずれている場合には、人体は暑さや寒さを感じる。 The amount of heat generated by a person is represented by the sum of the amount of radiation by convection, the amount of heat released by radiation, the amount of heat evaporated from the person, the amount of heat released by heat and the amount of heat stored. When the calorific value is in a thermal equilibrium state, the human body becomes thermally neutral. Therefore, the room is in a comfortable state that is neither hot nor cold for the human body. Conversely, when the calorific value is out of thermal equilibrium, the human body feels hot or cold.
 デンマーク工科大学のFanger教授は1967年に快適方程式の導出を発表した。そして、これを出発点として、多数の被験者のアンケートから統計分析して、人体の熱負荷と人間の温冷感とを結び付け、PMVを提案した。このPMVは、1994年にISO規格にも取り上げられ、最近よく用いられるようになった。 Professor Fanger of the Technical University of Denmark announced the derivation of the comfort equation in 1967. Then, using this as a starting point, statistical analysis was conducted from questionnaires of a large number of subjects, and the thermal load of the human body and the thermal sensation of human beings were combined to propose PMV. This PMV was taken up by the ISO standard in 1994 and has recently been used frequently.
 温冷感の指標となるPMVは、7段階評価尺度による数値として次の、
 +3:暑い、
 +2:暖かい、
 +1:やや暖かい、
  0:どちらでもない、快適、
 -1:やや涼しい、
 -2:涼しい、
 -3:寒い、
のように表される。なお、人間の快適なPMV値の範囲は-0.5~+0.5である。
PMV, which is an index of thermal sensation, is a numerical value based on a 7-point scale,
+3: Hot,
+2: Warm,
+1: Somewhat warm,
0: Neither, comfortable,
-1: Somewhat cool,
-2: Cool,
-3: cold,
It is expressed as The range of human comfortable PMV values is -0.5 to +0.5.
 上記の6つの変数のうち、作業強度を表す活動量にはmet(メット)の単位が用いられ、着衣量にはclo(クロ)の単位が用いられる。 Of the above six variables, the unit of met is used for the amount of activity representing work intensity, and the unit of clo is used for the amount of clothing.
 単位metは、代謝量を表し、熱的に快適な状態における安静時代謝を基準とした値である。ここで、1metは下記式(1)で表される。 The unit met represents the amount of metabolism and is a value based on resting metabolism in a thermally comfortable state. Here, 1met is represented by the following formula (1).
  〔数1〕
   1 met = 58.2 W/m2 = 50 kcal/m2・h        …(1)
 また、単位cloは、衣服の熱絶縁性を表し、1 clo とは気温 21℃,相対湿度 50%,気流5 cm/s以下の室内で、体表面からの放熱量が1 metの代謝と平衡するような着衣状態での値である。これを、通常の熱抵抗値に換算すると下記式(2)で表される。
[Equation 1]
1 met = 58.2 W / m 2 = 50 kcal / m 2 · h (1)
In addition, the unit clo represents the thermal insulation of clothes. 1 clo is a room temperature of 21 ° C, relative humidity 50%, air flow of 5 cm / s or less, and the amount of heat released from the body surface is balanced with 1 met metabolism. It is a value in the clothing state which does. When this is converted into a normal thermal resistance value, it is represented by the following formula (2).
  〔数2〕
   1 clo = 0.155 m2・℃/W = 0.180 m2・h・℃/kcal  …(2)
 次に、下記式(3)にPMV値の算出式を示す。
[Equation 2]
1 clo = 0.155 m 2 · ° C / W = 0.180 m 2 · h · ° C / kcal (2)
Next, a formula for calculating the PMV value is shown in the following formula (3).
Figure JPOXMLDOC01-appb-M000001
ここで、M:活動量[kcal/h]、A:人体表面積[m2]、L:人体熱負荷[kcal/mh](Fangerの快適方程式より算定)である。この式(3)を用いて、快適な範囲内(-0.5<PMV<+0.5)で冷房時はより暑い方向の側のPMV値に、暖房時はより寒い方向の側のPMV値に、それぞれPMV目標値を設定する。このことで、空調負荷の軽減が図られ、省エネルギーが達成される。
Figure JPOXMLDOC01-appb-M000001
Here, M: activity amount [kcal / h], A: human body surface area [m 2 ], L: human body heat load [kcal / m 2 h] (calculated from Fanger's comfort equation). Using this equation (3), within a comfortable range (-0.5 <PMV <+0.5), the PMV value on the hotter side during cooling and the PMV value on the colder side during heating Each PMV target value is set. This reduces the air conditioning load and achieves energy saving.
 次に、空調機10の最適な設定値の算出について説明する。 Next, calculation of the optimum set value for the air conditioner 10 will be described.
 空調制御システム1内で消費される全消費エネルギーは、上述したように、中央熱源装置40の冷却塔42、冷凍機41、送水ポンプ43、および空調機10の外気冷却用コイル11、還気冷却用コイル12、送風ファン13のそれぞれの消費エネルギーの合計値である。 As described above, the total energy consumed in the air conditioning control system 1 is the cooling tower 42 of the central heat source device 40, the refrigerator 41, the water pump 43, the outside air cooling coil 11 of the air conditioner 10, and the return air cooling. It is the total value of the energy consumption of each of the coil 12 and the blower fan 13.
 そして、空調制御システム1内で消費される全消費エネルギーが最小となるように、空調機10の設定値を算出するアルゴリズムとして、特開2008―232507明細書に記載されたような手法がある。この手法は、空調制御に用いる各種センサの測定値から空調最適化に必要な状態量、例えば、部屋内発生熱量、部屋内発生水蒸気量、熱交換器の総括伝熱係数と伝熱面積との積等の物理量を推定する。このことで、空調システム全体を見通した最適な制御を可能にする。また、他のアルゴリズムとして、特開2008―256258明細書等に記載されたような手法がある。この手法は、初期段階において、現状の熱源機と冷水コイルとの間の熱交換量から暫定的な総空調負荷を算出する。そして、この総空調負荷を変数として、空調システムの最適運転状態量に基づいて、空調システムの空調機器が制御される。そして、空調制御対象空間の空気状態が設定された空調条件にほぼ一致したとき、真の総空調負荷が算出され、最適運転状態量が決定される。この結果、空調が効率的に運転され、空調のシステムの省エネ化が実現される。 And there exists a technique as described in Unexamined-Japanese-Patent No. 2008-232507 as an algorithm which calculates the setting value of the air conditioning machine 10 so that the total consumption energy consumed in the air-conditioning control system 1 may become the minimum. This method uses the measured values of various sensors used for air conditioning control to determine the state quantities necessary for air conditioning optimization, for example, the amount of heat generated in the room, the amount of steam generated in the room, the overall heat transfer coefficient of the heat exchanger, and the heat transfer area. Estimate physical quantities such as products. This enables optimal control with a view to the entire air conditioning system. As another algorithm, there is a technique as described in Japanese Patent Application Laid-Open No. 2008-256258. In this method, a provisional total air conditioning load is calculated from the heat exchange amount between the current heat source device and the cold water coil in the initial stage. Then, with this total air conditioning load as a variable, the air conditioning equipment of the air conditioning system is controlled based on the optimum operating state quantity of the air conditioning system. Then, when the air condition of the air conditioning control target space substantially matches the set air conditioning condition, the true total air conditioning load is calculated, and the optimum operation state quantity is determined. As a result, the air conditioning is efficiently operated, and energy saving of the air conditioning system is realized.
 第1実施形態においては、上述したように、PMV値が快適な範囲である-0.5~+0.5内で、空調制御システム1内の全消費エネルギーが最小となるように、空調機10の最適な設定値が算出されて、その設定値が空調機10および中央熱源装置40に送信される(S3)。 In the first embodiment, as described above, the air conditioner 10 has a minimum PMV value within the comfortable range of −0.5 to +0.5 so that the total energy consumption in the air conditioning control system 1 is minimized. Is calculated, and the set value is transmitted to the air conditioner 10 and the central heat source device 40 (S3).
 そして、空調機10の最適な設定値が中央熱源装置40で取得されると、この設定値に基づいて空調機10に必要な冷水が供給される(S4)。この結果、在室者の快適性が考慮されて調整された空気が、空調制御対象の室内に供給される(S5)。 Then, when the optimum set value of the air conditioner 10 is acquired by the central heat source device 40, necessary cold water is supplied to the air conditioner 10 based on this set value (S4). As a result, the air adjusted in consideration of the comfort of the occupant is supplied to the air-conditioned room (S5).
 ここで、空調制御対象の室内に調整された空気が供給されるときの、空調機10の動作について説明する。 Here, the operation of the air conditioner 10 when the adjusted air is supplied into the air-conditioning controlled room will be described.
 空調制御システムにより冷房処理が行われるときは、居住者のために建物に取り入れる新鮮外気を除湿および冷却する機能(潜熱冷房負荷)と、建物内部の照明、OA機器、人体等の顕熱発熱を冷却する機能(顕熱冷房負荷)との2つが空調機において実行される。 When the cooling process is performed by the air conditioning control system, the function of dehumidifying and cooling fresh outside air taken into the building for the residents (latent heat cooling load) and the sensible heat generation of the lighting inside the building, OA equipment, human body, etc. Two functions of cooling (sensible heat cooling load) are performed in the air conditioner.
 従来の空調機により冷房を行うときには、外気と還気を混合することにより上記の2つの機能が同時に行われていた。しかし、この場合、除湿が必要なのは主に外気のみである。このため、必要な冷水の温度と流量はそれぞれの機能で異なる。従って、上記の2つの機能は別個に実行されるほうが効率的である。 When performing cooling with a conventional air conditioner, the above two functions were performed simultaneously by mixing outside air and return air. However, in this case, only the outside air needs to be dehumidified. For this reason, the required temperature and flow rate of cold water are different for each function. Therefore, it is more efficient to perform the above two functions separately.
 そこで、図2に示すように、第1実施形態においては、外気を除湿、冷却する外気冷却用コイル11と、還気を冷却する還気冷却用コイル12とが別に設けられる。そして、それぞれの制御に適した温度と流量の冷水が供給される。 Therefore, as shown in FIG. 2, in the first embodiment, an outside air cooling coil 11 that dehumidifies and cools the outside air and a return air cooling coil 12 that cools the return air are provided separately. And the cold water of the temperature and flow volume suitable for each control is supplied.
 以上の第1実施形態によれば、在室者の快適性が考慮されるとともに、外気と室内の還気とが別に調整され、且つシステム内の全所要消費エネルギーが最小となるように制御される。従って、効率よく消費エネルギーの省エネルギー化を図った空調制御を行うことが可能になる。 According to the first embodiment described above, the comfort of the occupant is taken into account, the outside air and the indoor return air are adjusted separately, and the total required energy consumption in the system is controlled to be minimum. The Therefore, it is possible to efficiently perform air conditioning control that saves energy.
《第2実施形態》
 〈第2実施形態による空調制御システムの構成〉
 本発明の第2実施形態による空調制御システム2の構成は、図1および図2に示す第1実施形態の構成と同様である。従って、第2実施形態の構成の詳細な説明は省略する。
<< Second Embodiment >>
<Configuration of air conditioning control system according to the second embodiment>
The configuration of the air conditioning control system 2 according to the second embodiment of the present invention is the same as the configuration of the first embodiment shown in FIGS. 1 and 2. Therefore, detailed description of the configuration of the second embodiment is omitted.
 〈第2実施形態による空調制御システムの動作〉
 第2実施形態における空調制御システム2の動作は、図3のステップS3における各空調機10の設定値の算出を除いては第1実施形態と同様である。従って、第1の実施形態と同一部分の詳細な説明は省略する。
<Operation of the air conditioning control system according to the second embodiment>
The operation of the air conditioning control system 2 in the second embodiment is the same as that of the first embodiment except for the calculation of the set value of each air conditioner 10 in step S3 of FIG. Therefore, detailed description of the same parts as those of the first embodiment is omitted.
 第2実施形態において、図3のステップS3で、PMVが快適な範囲内で所要消費エネルギーが最小となるように、空調連携制御装置50が各空調機10の設定値を算出する際の処理について説明する。 In the second embodiment, in step S3 of FIG. 3, the processing when the air conditioning linkage control device 50 calculates the set value of each air conditioner 10 so that the required energy consumption is minimized within the range where the PMV is comfortable. explain.
 図4に、事務所ビルを想定し、室内の風速が0.1m/sのときに、PMV値が冷房時に省エネルギーで快適な0.3~0.5となる室温と室内の湿度との関係を示す。図4において、太線で囲まれた範囲Aの室温および室内の湿度の状態のときに、PMV値0.3~0.5になることを示している(湿度は20%~80%に限定した)。 Fig. 4 shows the relationship between room temperature and room humidity at which the PMV value is 0.3 to 0.5, which is energy-saving and comfortable during cooling, assuming an office building with an indoor wind speed of 0.1 m / s. Indicates. FIG. 4 shows that the PMV value is 0.3 to 0.5 when the room temperature and the room humidity are in a range A surrounded by a thick line (the humidity is limited to 20% to 80%). ).
 一方、温室効果ガス削減のために、夏のエアコンの温度設定を28℃にすることが日本では政府により推奨されている。 On the other hand, in order to reduce greenhouse gases, the government recommends that the temperature setting of air conditioners in summer be 28 ° C.
 しかしこの場合、図4からわかるように、室温が28℃の場合、いくら湿度を低くしても、PMV値は人間にとって快適な範囲の上限である+0.5よりも大きくなってしまう。 However, in this case, as can be seen from FIG. 4, when the room temperature is 28 ° C., the PMV value becomes larger than +0.5 which is the upper limit of the comfortable range for humans, no matter how low the humidity is.
 しかし、室内の風速が0.5m/sであるなら、室温が28℃でも湿度が40%でPMVが+0.5以下(約0.43)となる。 However, if the indoor wind speed is 0.5 m / s, the humidity is 40% and the PMV is +0.5 or less (about 0.43) even if the room temperature is 28 ° C.
 そこで、第2実施形態においては、人間の居る高さの中心位置である床から1m付近で、最高風速が0.5m/sとなるように、揺らぎのある風が空調機10の送風部分から空調制御対象の室内に供給されるように設定する。 Therefore, in the second embodiment, the wind with fluctuations from the air blowing portion of the air conditioner 10 so that the maximum wind speed is 0.5 m / s around 1 m from the floor which is the center position of the height where the human is. It is set so that it is supplied to the room subject to air conditioning control.
 この供給される風は揺らぎのある風であるので、平均風速は0.5m/sよりも小さくなるように設定できる。このため、室温設定が28℃の状態でも、送風ファン13の消費エネルギーを大幅に増やすことなく、在室者に快適な空調制御を提供することができる。 Since this supplied wind is a fluctuating wind, the average wind speed can be set to be smaller than 0.5 m / s. For this reason, even if the room temperature setting is 28 ° C., comfortable air conditioning control can be provided to the occupants without significantly increasing the energy consumption of the blower fan 13.
 以上の第2実施形態によれば、空調機10の最適な設定値が、空調機10から送風される風速も考慮して算出される。このため、さらに効率よく消費エネルギーの省エネルギー化と快適性維持とを図った空調制御を行うことが可能になる。 According to the second embodiment described above, the optimum setting value of the air conditioner 10 is calculated in consideration of the wind speed blown from the air conditioner 10. For this reason, it becomes possible to perform the air-conditioning control aiming at energy saving of energy consumption and maintenance of comfort more efficiently.
《第3実施形態》
 〈第3実施形態による空調制御システムの構成〉
 本発明の第3実施形態による空調制御システム3の構成は、空調制御対象の室内に、二酸化炭素センサ(図示なし)または人感センサ(図示なし)の少なくともどちらか一方を設ける。その他の構成は、図1および図2に示す第1実施形態と同様である。従って、第1実施形態と同一部分の詳細な説明は省略する。
<< Third Embodiment >>
<Configuration of air conditioning control system according to the third embodiment>
In the configuration of the air conditioning control system 3 according to the third embodiment of the present invention, at least one of a carbon dioxide sensor (not shown) and a human sensor (not shown) is provided in a room subject to air conditioning control. Other configurations are the same as those of the first embodiment shown in FIGS. 1 and 2. Therefore, detailed description of the same parts as those of the first embodiment is omitted.
 二酸化炭素センサは、在室者から排出された室内の二酸化炭素濃度を測定し、空調機10に送信する。また人感センサは、空調制御対象の室内の在室者の数を検知し、空調機10に送信する。 The carbon dioxide sensor measures the carbon dioxide concentration in the room exhausted from the occupants and transmits it to the air conditioner 10. The human sensor detects the number of occupants in the room subject to air conditioning control and transmits the detected number to the air conditioner 10.
 〈第3実施形態による空調制御システムの動作〉
 第3実施形態における空調制御システム3の動作について、図3を参照して説明する。
<Operation of the air conditioning control system according to the third embodiment>
The operation of the air conditioning control system 3 in the third embodiment will be described with reference to FIG.
 まず、ビルA内の空調制御が開始される。すると、各温度センサ20が室内の温度を計測し、各湿度センサ30が室内の湿度を計測する。これとともに、二酸化炭素センサが室内の二酸化炭素濃度を測定する、もしくは、人感センサが在室者の数を検知する。各センサで計測された計測値は、それぞれの室内の空調機10に送信される(S1)。 First, air conditioning control in building A is started. Then, each temperature sensor 20 measures the indoor temperature, and each humidity sensor 30 measures the indoor humidity. At the same time, the carbon dioxide sensor measures the carbon dioxide concentration in the room, or the human sensor detects the number of people in the room. The measured value measured by each sensor is transmitted to the air conditioner 10 in each room (S1).
 各空調機10は各センサから送信された計測値を受信し、さらに空調連携制御装置50へと送信する(S2)。 Each air conditioner 10 receives the measurement value transmitted from each sensor and further transmits it to the air conditioning cooperation control device 50 (S2).
 第3実施形態において、PMVが快適な範囲内で所要消費エネルギーが最小となるよう、空調連携制御装置50が各空調機10の最適な設定値を算出する際の処理について説明する。 In the third embodiment, a process when the air conditioning linkage control device 50 calculates the optimum setting value of each air conditioner 10 so that the required energy consumption is minimized within the range where the PMV is comfortable will be described.
 第3実施形態の空調連携制御装置50では、図5に示すグラフに従って、外気冷却用コイル11、還気冷却用コイル12、送風ファン13に空気を供給するためのダンパー開度が制御される。 In the air conditioning linkage control device 50 of the third embodiment, the damper opening for supplying air to the outside air cooling coil 11, the return air cooling coil 12, and the blower fan 13 is controlled according to the graph shown in FIG.
 図5に示すように、空調立上時(a)では、還気冷却用コイル12へのタンパーが全開であるとともに、外気冷却用コイル11へのダンパーが全閉である。従って、室内空気の外気への排気は行われていない状態である。そして、一定時間後、室内への排気が開始される。すると、外気の温度、湿度、および還気の温度、湿度により、各機器の全消費エネルギーが最小となるように、最小外気時(b)~中間外気時(c)~最大外気時(d)内のいずれかの時点が選択され、各タンパー開度が制御される。 As shown in FIG. 5, at the time of air conditioning startup (a), the tamper to the return air cooling coil 12 is fully open and the damper to the outside air cooling coil 11 is fully closed. Therefore, the indoor air is not exhausted to the outside air. Then, exhausting into the room is started after a certain time. Then, the minimum outside air (b) to the middle outside air (c) to the maximum outside air (d) so that the total energy consumption of each device is minimized by the temperature and humidity of the outside air and the temperature and humidity of the return air. Any one of the time points is selected, and each tamper opening degree is controlled.
 この最小外気時(b)~中間外気時(c)~最大外気時(d)内のいずれかの時点が選択される際、室内が冷房要求時で、外気のエンタルピーが室内のエンタルピーより低く、エネルギー的に外気を取り入れたほうが有効な場合には、積極的に外気が導入されるようにダンパー開度が制御される。このため、還気冷却用コイル12に供給される冷水使用量が軽減される。 When any point in time from the minimum outside air (b) to the middle outside air (c) to the maximum outside air (d) is selected, the room has a cooling request, and the enthalpy of the outside air is lower than the enthalpy in the room. When it is more effective to take outside air in terms of energy, the damper opening degree is controlled so that outside air is actively introduced. For this reason, the amount of cold water supplied to the return air cooling coil 12 is reduced.
 また、ここで、外気冷却用コイル11の負荷が一定値よりも大きい場合、図5に従って、各ダンパー開度が制御される。この際、二酸化炭素センサまたは人感センサから取得された計測値も考慮して、各機器の設定値が算出される。 Further, here, when the load of the outside air cooling coil 11 is larger than a certain value, each damper opening is controlled according to FIG. At this time, the set value of each device is calculated in consideration of the measurement value acquired from the carbon dioxide sensor or the human sensor.
 具体的には、二酸化炭素濃度が一定濃度よりも高くなったとき、または在室者が一定以上の人数になった場合に、二酸化炭素濃度を一定濃度よりも下げるため、最小限の外気を取り入れるようにダンパー開度が制御され、二酸化炭素濃度が換気により下げられる。こうして、外気冷却用コイル11の負荷が過剰になることなく、換気が行われる。 Specifically, when the carbon dioxide concentration is higher than a certain level, or when the number of people in the room exceeds a certain level, a minimum amount of outside air is taken in to reduce the carbon dioxide concentration below the certain level. Thus, the damper opening is controlled and the carbon dioxide concentration is lowered by ventilation. In this way, ventilation is performed without the load of the outside air cooling coil 11 being excessive.
 このように、各機器の所要消費エネルギーが最小となるように各空調機10の設定値を定める際に、外気冷房の利用、および、室内の二酸化炭素濃度または在室者の人数に基づいた最小の外気取り入れにより制御される(S3)。そして、この設定値に基づいて、中央熱源装置40が必要な冷水を空調機10に供給する(S4)。この結果、在室者の快適性が考慮されて調整された空気が、空調制御対象の室内に供給される(S5)。 Thus, when determining the set value of each air conditioner 10 so that the required energy consumption of each device is minimized, the minimum based on the use of outside air cooling and the carbon dioxide concentration in the room or the number of people in the room (S3). And based on this setting value, the central heat source apparatus 40 supplies the cold water which is required to the air conditioner 10 (S4). As a result, the air adjusted in consideration of the comfort of the occupant is supplied to the air-conditioned room (S5).
 以上の第3実施形態によれば、空調機の最適な設定値が、外気冷房の利用と室内の二酸化炭素濃度または在室者の人数に基づいた外気の取り入れとを考慮して算出する。従って、さらに効率よく消費エネルギーの省エネルギー化を図った空調制御を行うことが可能になる。 According to the third embodiment described above, the optimum setting value of the air conditioner is calculated in consideration of the use of outside air cooling and the intake of outside air based on the indoor carbon dioxide concentration or the number of people in the room. Therefore, it becomes possible to perform the air conditioning control in which energy consumption is further efficiently saved.
《第4実施形態》
 〈第4実施形態による空調制御システムの構成〉
 本発明の第4実施形態による空調制御システム4の構成では、図6に示すように、中央熱源装置40と第2の中央熱源装置40’との2系統の熱源装置が設置される。その他の構成は第1実施形態と同様である。従って、第1実施形態と同一部分の詳細な説明は省略する。
<< 4th Embodiment >>
<Configuration of the air conditioning control system according to the fourth embodiment>
In the configuration of the air conditioning control system 4 according to the fourth embodiment of the present invention, as shown in FIG. 6, two systems of heat source devices, a central heat source device 40 and a second central heat source device 40 ′, are installed. Other configurations are the same as those of the first embodiment. Therefore, detailed description of the same parts as those of the first embodiment is omitted.
 第4実施形態において、中央熱源装置40は外気冷却用コイル11へ冷水を供給し、第2の中央熱源装置40’は還気冷却用コイル12へ冷水を供給する。 In the fourth embodiment, the central heat source device 40 supplies cold water to the outside air cooling coil 11, and the second central heat source device 40 ′ supplies cold water to the return air cooling coil 12.
 〈第4実施形態による空調制御システムの動作〉
 第4実施形態における空調制御システム4の動作は、図3のステップS5において、冷水を供給するときの処理を除いては第1実施形態と同様である。従って、第1実施形態と同一部分の詳細な説明は省略する。
<Operation of the air conditioning control system according to the fourth embodiment>
The operation of the air conditioning control system 4 in the fourth embodiment is the same as that in the first embodiment except for the processing when supplying cold water in step S5 of FIG. Therefore, detailed description of the same parts as those of the first embodiment is omitted.
 第4実施形態では、ステップS6において、各空調機10に冷水を供給する際に、中央熱源装置40が外気冷却用コイル11に冷水を供給し、中央熱源装置40とは別系統である第2の中央熱源装置40’が還気冷却用コイル12に冷水を供給する。 In 4th Embodiment, when supplying cold water to each air conditioner 10 in step S6, the central heat source device 40 supplies cold water to the outside air cooling coil 11, and the second heat source device 40 is a separate system from the central heat source device 40. The central heat source device 40 ′ supplies cold water to the return air cooling coil 12.
 従来の空調制御システムでは、中央熱源装置が冷却用コイルに供給する冷水は約7℃である。しかし、この7℃の冷水を必要とするのは外気を除湿、冷却するときのみである。これに対し、空調制御対象の室内の還気を冷却する際には、冷水の温度は13℃程度で十分である。この外気を除湿、冷却する際に必要となるエネルギー量(潜熱冷房負荷)は、冷房の空調制御を行う際に必要とするエネルギー総量の約30~20%である。したがって、エネルギー総量の70~80%にあたる還気を冷却する際に必要となるエネルギー量(顕熱冷房負荷)は冷水を過剰に冷却するために利用されている。従って、消費エネルギーに無駄が生じていることになる。 In the conventional air conditioning control system, the cold water supplied to the cooling coil by the central heat source device is about 7 ° C. However, this 7 ° C. cold water is required only when the outside air is dehumidified and cooled. On the other hand, when cooling the return air in the air conditioning control target room, a temperature of about 13 ° C. is sufficient for the temperature of the cold water. The amount of energy required to dehumidify and cool the outside air (latent heat cooling load) is about 30 to 20% of the total amount of energy required for air conditioning control of cooling. Therefore, the amount of energy (sensible heat cooling load) required when cooling the return air corresponding to 70 to 80% of the total amount of energy is used to excessively cool the cold water. Therefore, useless energy is generated.
 そこで、第4実施形態においては、外気冷却用コイル11に冷水を供給する中央熱源装置40と還気冷却用コイル12に冷水を供給する第2の中央熱源装置40’との2系統の冷水供給源が設けられる。そして、中央熱源装置40が外気冷却用コイル11に供給する冷水は7℃前後に調整される。これに対し、第2の中央熱源装置40’が還気冷却用コイル12に供給する冷水は13℃前後に調整されるように設定する。 Therefore, in the fourth embodiment, two systems of cold water supply, that is, a central heat source device 40 that supplies cold water to the outside air cooling coil 11 and a second central heat source device 40 ′ that supplies cold water to the return air cooling coil 12. A source is provided. And the cold water which the central heat source apparatus 40 supplies to the coil 11 for external air cooling is adjusted to about 7 degreeC. In contrast, the cold water supplied to the return air cooling coil 12 by the second central heat source device 40 ′ is set to be adjusted to around 13 ° C.
 以上の第4実施形態によれば、2系統の中央熱源装置40と40’を設ける。その結果、冷水が過剰に低温に調整されることによるエネルギーの無駄を省くことができる。従って、さらに効率よく消費エネルギーの省エネルギー化を図った空調制御を行うことが可能になる。 According to the above fourth embodiment, two central heat source devices 40 and 40 'are provided. As a result, energy waste due to excessive adjustment of cold water to a low temperature can be eliminated. Therefore, it becomes possible to perform the air conditioning control in which energy consumption is further efficiently saved.
《第5実施形態》
 〈第5実施形態による空調制御システムの構成〉
 本発明の第5実施形態による空調制御システム5の構成は、図1に示す第1実施形態による空調制御システム1の構成と同様である。しかし、外気冷却用コイル11が還気冷却用コイル12と各空調機10内で直列状態に接続される。
<< 5th Embodiment >>
<Configuration of air conditioning control system according to fifth embodiment>
The configuration of the air conditioning control system 5 according to the fifth embodiment of the present invention is the same as the configuration of the air conditioning control system 1 according to the first embodiment shown in FIG. However, the outside air cooling coil 11 is connected in series with the return air cooling coil 12 in each air conditioner 10.
 各空調機10は、図7に示すように、複数の弁を備える。第1の弁14は、中央熱源装置40から外気冷却用コイル11に取り込まれる冷水の量を、開度により調整する。第2の弁15は、外気冷却用コイル11で利用された後に還気冷却用コイル12に取り込まれる冷水の量を調整する。第3の弁16は、還気冷却用コイル12と並列状態で接続され、外気冷却用コイル11で利用された後に、直接排水される冷水の量を調整する。第4の弁17は、外気冷却用コイル11とは並列状態で、且つ弁15と弁16とは直列状態でこれらより上流側になるよう接続され、中央熱源装置40から還気冷却用コイル12に直接取り込まれる冷水の量を調整する。 Each air conditioner 10 includes a plurality of valves as shown in FIG. The first valve 14 adjusts the amount of cold water taken into the outside air cooling coil 11 from the central heat source device 40 according to the opening degree. The second valve 15 adjusts the amount of cold water taken into the return air cooling coil 12 after being used in the outside air cooling coil 11. The third valve 16 is connected in parallel with the return air cooling coil 12 and adjusts the amount of cold water drained directly after being used in the outside air cooling coil 11. The fourth valve 17 is connected to the outside air cooling coil 11 in parallel, and the valve 15 and the valve 16 are connected to be upstream of these in series and from the central heat source device 40 to the return air cooling coil 12. Adjust the amount of cold water taken directly into the.
 〈第5実施形態による空調制御システムの動作〉
 第5実施形態における空調制御システム5の動作は、図3のステップS5において、冷水が供給されるときの処理を除いては第1実施形態と同様である。従って、第1実施形態と同一部分の詳細な説明は省略する。
<Operation of the air conditioning control system according to the fifth embodiment>
The operation of the air conditioning control system 5 in the fifth embodiment is the same as that in the first embodiment except for the processing when cold water is supplied in step S5 of FIG. Therefore, detailed description of the same parts as those of the first embodiment is omitted.
 第5実施形態では、ステップS5において、各空調機10に冷水を供給する際に、まず、7℃の冷水が中央熱源装置40から外気冷却用コイル11に供給される。そして、外気冷却用コイル11で利用された後の冷水が、還気冷却用コイル12で再利用される。第4実施形態において説明したように、還気冷却用コイル12で利用される冷水は、外気冷却用コイル11で利用される冷水ほど低い温度である必要はない。従って、還気冷却用コイル12で利用される冷水は、外気冷却用コイル11で利用された後の冷水の再利用で対応可能である。 In the fifth embodiment, when supplying cold water to each air conditioner 10 in step S5, first, cold water of 7 ° C. is supplied from the central heat source device 40 to the outside air cooling coil 11. Then, the cold water after being used in the outside air cooling coil 11 is reused in the return air cooling coil 12. As described in the fourth embodiment, the cold water used in the return air cooling coil 12 does not have to be as low as the cold water used in the outside air cooling coil 11. Accordingly, the cold water used in the return air cooling coil 12 can be dealt with by reusing the cold water after being used in the outside air cooling coil 11.
 このとき、中央熱源装置40から外気冷却用コイル11に供給される冷水の量は、弁14の開度により調整される。また、外気冷却用コイル11で利用された後に還気冷却用コイル12に供給される冷水の量は、弁15および弁16の開度により調整される。更に、還気冷却用コイル12で利用する冷水の量が外気冷却用コイル11で利用した後の冷水のみでは足りない場合には、弁17を開くことにより、中央熱源装置40から冷水が還気冷却用コイル12に直接供給される。 At this time, the amount of cold water supplied from the central heat source device 40 to the outside air cooling coil 11 is adjusted by the opening degree of the valve 14. The amount of cold water that is used by the outside air cooling coil 11 and then supplied to the return air cooling coil 12 is adjusted by the opening degree of the valve 15 and the valve 16. Further, when the amount of cold water used in the return air cooling coil 12 is not sufficient after the use of the outside air cooling coil 11, the cold water is returned from the central heat source device 40 by opening the valve 17. Directly supplied to the cooling coil 12.
 図8(a)は、弁14および弁15が同程度に開かれることにより、外気冷却用コイル11で利用された冷水が全て還気冷却用コイル12に供給される場合の冷水の流れを太線で示す。図8(b)は、弁14、弁15、および弁16が開かれることにより、外気冷却用コイル11で利用された冷水の一部が還気冷却用コイル12に供給されるとともに、不要な冷水が還気冷却用コイル12を経ずに排水される場合の冷水の流れを太線で示す。図8(c)は弁14、弁15、および弁17が開かれることにより、外気冷却用コイル11で利用された冷水と中央熱源装置40からの冷水とが還気冷却用コイル12に供給される場合の冷水の流れを太線で示す。 FIG. 8A shows the flow of cold water when the valve 14 and the valve 15 are opened to the same extent so that all the cold water used in the outside air cooling coil 11 is supplied to the return air cooling coil 12. It shows with. FIG. 8B shows that the valve 14, the valve 15, and the valve 16 are opened, so that a part of the cold water used in the outside air cooling coil 11 is supplied to the return air cooling coil 12 and is unnecessary. The flow of cold water when the cold water is drained without passing through the return air cooling coil 12 is indicated by a bold line. In FIG. 8C, when the valve 14, the valve 15, and the valve 17 are opened, the cold water used in the outside air cooling coil 11 and the cold water from the central heat source device 40 are supplied to the return air cooling coil 12. The flow of cold water in the case of
 以上の第5実施形態によれば、外気冷却用コイル11が還気冷却用コイル12と直列状態に接続される。このような構成により、外気冷却用コイル11で利用した冷水を還気冷却用コイル12で再利用することができる。従って、さらに効率よく消費エネルギーの省エネルギー化を図った空調制御を行うことが可能になる。 According to the above fifth embodiment, the outside air cooling coil 11 is connected in series with the return air cooling coil 12. With such a configuration, the cold water used in the outside air cooling coil 11 can be reused in the return air cooling coil 12. Therefore, it becomes possible to perform the air conditioning control in which energy consumption is further efficiently saved.
 なお、上記の第1実施形態~第5実施形態においては、空調制御対象のビルA内に中央熱源装置40を有する場合について説明した。しかし、中央熱源装置40の冷凍機41と冷却塔42が各ビルになく、DHC(District Heating and Cooling:地域冷暖房)により空調制御を行う際には、冷・温水は外部から供給されればよい(ただし各空調機に冷温水を送る送水ポンプ43は建物内にある)。このような場合、空調制御システム内の全消費エネルギーは、送水ポンプ、外気冷却用コイル、還気冷却用コイル、および送風ファンの消費エネルギーの合計値となる。 In the first to fifth embodiments, the case where the central heat source device 40 is provided in the building A subject to air conditioning control has been described. However, the refrigerator 41 and the cooling tower 42 of the central heat source device 40 are not in each building, and when performing air-conditioning control by DHC (District Heating and Cooling), cold / hot water may be supplied from the outside. (However, there is a water pump 43 that sends cold and hot water to each air conditioner). In such a case, the total consumed energy in the air conditioning control system is the total value of the consumed energy of the water pump, the outside air cooling coil, the return air cooling coil, and the blower fan.
 また、上記の第1実施形態~第5実施形態においては、各センサで計測された各計測値は、各センサから空調機30を介して空調連携制御装置50に送信される場合について説明した。しかし、これには限定されず、各計測値が各センサから直接空調連携制御装置50に送信されるようにしてもよい。 In the first to fifth embodiments, the case where each measured value measured by each sensor is transmitted from each sensor to the air conditioning linkage control device 50 via the air conditioner 30 has been described. However, the present invention is not limited to this, and each measurement value may be directly transmitted from each sensor to the air conditioning cooperation control device 50.
 また、上記の第1実施形態~第5実施形態においては、人間の温熱感覚の快適性指標としてPMV値を用いた。しかし、これには限定されず、標準有効温度や新有効温度などを用いて空調制御を行うようにしてもよい。 In the first to fifth embodiments, the PMV value is used as a comfort index for human thermal sensation. However, the present invention is not limited to this, and air conditioning control may be performed using a standard effective temperature, a new effective temperature, or the like.
 また、各実施形態は可能な限り組み合わせて実施してもよい。各実施状態を組み合わせることにより、さらに高い効果を得ることができる。 Further, the embodiments may be combined as much as possible. A higher effect can be obtained by combining the implementation states.
 本発明の空調制御システムにより、大型ビルなどにおいて、在室者の快適性を考慮しつつ、在室者の快適性の範囲を超えた過剰なエネルギー消費を抑え、消費エネルギーの省エネルギー化を効率よく図ることができる。 With the air conditioning control system of the present invention, in a large building or the like, while considering the comfort of the occupants, excessive energy consumption exceeding the occupant's comfort range is suppressed, and energy consumption is efficiently saved. Can be planned.

Claims (7)

  1.  空調機と、中央熱源装置と、前記空調機と前記中央熱源装置の動作を制御する空調制御装置と、空調制御対象である室内あるいは室内の制御ゾーン毎に対応して設置されその空調制御対象の温度と湿度を計測する計測装置と、が接続された空調制御システムにおいて、
     前記計測装置は、
      前記空調制御対象の室内あるいは室内の制御ゾーンで計測された温度計測値と湿度計測値を取得して、前記空調制御装置に送信する計測値送信部を備え、
     前記空調機は、
      所定量の外気を取り込むと共に、前記空調制御装置から取得した温度設定値と湿度設定値に基づいて、取り込んだ外気の温度と湿度を調整する外気用コイルと、
      前記空調制御対象の室内あるいは室内の制御ゾーンから所定量の還気を取り込むと共に、前記空調制御装置から取得した温度設定値に基づいて、取り込んだ還気の温度を調整する還気用コイルと、
      前記外気冷却用コイルで温度と湿度を調整された外気と前記還気冷却用コイルで温度を調整された還気とが混合された空気を生成し、前記空調制御対象の室内あるいは室内の制御ゾーンに混合された空気を送風する送風ファンと、
    を備え、
     前記中央熱源装置は、
      冷凍機と冷却塔を備え、前記空調制御装置から取得した水温設定値に基づき水温を調整し、前記空調機に供給する冷水又は温水を生成する冷温水調整部と、
      前記空調制御装置から取得した流量値に基づいて、前記冷温水調整部で生成された冷水または温水を、前記空調機の前記外気用コイルと前記還気用コイルの少なくともいずれか一方に送水する送水ポンプと、
    を備え、
     前記空調制御装置は、
      前記計測装置の計測値送信部から送信された前記温度計測値と前記湿度計測値を取得する計測値取得部と、
      予め設定された快適性指標の目標設定範囲を記憶する快適性指標範囲記憶部と、
      前記計測値取得部で取得した温度計測値と湿度計測値に基づいて、前記快適性指標範囲記憶部に記憶された快適性指標の目標設定範囲の中で、前記冷凍機、前記冷却塔、前記外気用コイル、前記還気用コイル、前記送水ポンプ、および前記送風ファンの消費エネルギーの合計値が最小になるように、前記空調機から送風される空気の温度設定値と湿度設定値を算出する空調機設定値算出部と、
      前記空調機設定値算出部で算出された温度設定値と湿度設定値を前記空調機に送信する設定値送信部と、
      前記空調機設定値算出部で算出された温度設定値と湿度設定値から、前記冷水または温水の水温設定値および流量値を算出して、前記中央熱源装置に送信する制御値送信部と、
    を備えたもの。
    An air conditioner, a central heat source device, an air conditioning control device that controls the operation of the air conditioner and the central heat source device, and an air conditioning control target that is installed corresponding to each room or indoor control zone. In an air conditioning control system connected to a measuring device that measures temperature and humidity,
    The measuring device is
    A measurement value transmission unit that acquires the temperature measurement value and the humidity measurement value measured in the indoor or indoor control zone of the air conditioning control target, and transmits to the air conditioning control device,
    The air conditioner
    A coil for outside air that takes in a predetermined amount of outside air and adjusts the temperature and humidity of the outside air taken in based on the temperature setting value and the humidity setting value acquired from the air conditioning control device,
    A return air coil that takes in a predetermined amount of return air from the air conditioning control target room or indoor control zone, and adjusts the temperature of the returned return air based on a temperature setting value acquired from the air conditioning control device;
    Generates air in which the outside air whose temperature and humidity are adjusted by the outside air cooling coil and the return air whose temperature is adjusted by the return air cooling coil are mixed, and the room to be air-conditioned is controlled or a control zone in the room A blower fan for blowing the air mixed in
    With
    The central heat source device is
    A chiller / cooling tower comprising a refrigerator and a cooling tower, adjusting the water temperature based on a water temperature setting value acquired from the air conditioning controller, and generating cold water or hot water to be supplied to the air conditioner;
    Water supply for supplying cold water or hot water generated by the cold / hot water adjustment unit to at least one of the outside air coil and the return air coil of the air conditioner based on the flow rate value acquired from the air conditioning controller A pump,
    With
    The air conditioning control device
    A measurement value acquisition unit that acquires the temperature measurement value and the humidity measurement value transmitted from the measurement value transmission unit of the measurement device;
    A comfort index range storage unit that stores a target setting range of a comfort index set in advance;
    Based on the temperature measurement value and the humidity measurement value acquired by the measurement value acquisition unit, in the target setting range of the comfort index stored in the comfort index range storage unit, the refrigerator, the cooling tower, the The temperature setting value and humidity setting value of the air blown from the air conditioner are calculated so that the total value of the energy consumption of the outside air coil, the return air coil, the water pump, and the blower fan is minimized. An air conditioner set value calculator,
    A set value transmitting unit for transmitting the temperature set value and the humidity set value calculated by the air conditioner set value calculating unit to the air conditioner;
    From the temperature setting value and the humidity setting value calculated by the air conditioner setting value calculation unit, a control value transmission unit that calculates a water temperature setting value and a flow rate value of the cold water or hot water, and transmits it to the central heat source device;
    With
  2.  請求項1に記載の空調制御システムにおいて、
     前記中央熱源装置は、2系統設けられ、
      第1の中央熱源装置は、前記外気用コイルに冷水または温水を供給し、
      第2の中央熱源装置は、前記還気用コイルに冷水または温水を供給するもの。
    In the air-conditioning control system according to claim 1,
    The central heat source device is provided with two systems,
    The first central heat source device supplies cold water or hot water to the outside air coil,
    The second central heat source device supplies cold water or hot water to the return air coil.
  3.  空調機と、送水ポンプと、こ前記空調機と前記送水ポンプの動作を制御する空調制御装置と、空調制御対象である室内あるいは室内の制御ゾーン毎に対応して設置されその空調制御対象の温度と湿度を計測する計測装置と、が接続された空調制御システムにおいて、
     前記計測装置は、
      前記空調制御対象の室内あるいは室内の制御ゾーンで計測された温度計測値と湿度計測値を取得して、前記空調制御装置に送信する計測値送信部を備え、
     前記空調機は、
      所定量の外気を取り込み、前記空調制御装置から取得した温度設定値と湿度設定値に基づいて、取り込んだ外気の温度と湿度を調整する外気用コイルと、
      前記空調制御対象の室内あるいは室内の制御ゾーンから所定量の還気を取り込み、前記空調制御装置から取得した温度設定値に基づいて、取り込んだ還気の温度を調整する還気用コイルと、
      前記外気冷却用コイルで温度と湿度を調整された外気と前記還気冷却用コイルで温度を調整された還気とが混合された空気を生成し、前記空調制御対象の室内あるいは室内の制御ゾーンに混合された空気を送風する送風ファンと、
    を備え、
     前記送水ポンプは、
      前記空調制御装置から取得した流量値に基づいて、外部から供給された冷水または温水を、前記空調機の前記外気用コイルと前記還気用コイルの少なくともいずれか一方に送水する送水部を備え、
     前記空調制御装置は、
      前記計測装置の計測値送信部から送信された前記温度計測値および前記湿度計測値を取得する計測値取得部と、
      予め設定された快適性指標の目標設定範囲を記憶する快適性指標範囲記憶部と、
      前記計測値取得部で取得した温度計測値と湿度計測値に基づいて、前記快適性指標範囲記憶部に記憶された快適性指標の目標設定範囲の中で、前記外気用コイル、前記還気用コイル、前記送水ポンプ、および前記送風ファンのそれぞれの消費エネルギーの合計値が最小になるように、前記空調機から供給される送風の温度設定値と湿度設定値を算出する空調機設定値算出部と、
      前記空調機設定値算出部で算出された温度設定値と湿度設定値を前記空調機に送信する設定値送信部と、
      前記空調機設定値算出部で算出された温度設定値と湿度設定値から、前記冷水または温水の流量値を算出して、前記送水ポンプに送信する制御値送信部と、
    を備えたもの。
    An air conditioner, a water pump, an air conditioning control device that controls the operation of the air conditioner and the water pump, and the temperature of the air conditioning control target that is installed corresponding to each indoor or indoor control zone. And an air conditioning control system connected to a measuring device for measuring humidity,
    The measuring device is
    A measurement value transmission unit that acquires the temperature measurement value and the humidity measurement value measured in the indoor or indoor control zone of the air conditioning control target, and transmits to the air conditioning control device,
    The air conditioner
    A coil for outside air that takes in a predetermined amount of outside air and adjusts the temperature and humidity of the taken-in outside air based on the temperature setting value and the humidity setting value acquired from the air conditioning control device;
    A return air coil that takes in a predetermined amount of return air from the air-conditioning control target room or an indoor control zone, and adjusts the temperature of the acquired return air based on a temperature setting value acquired from the air-conditioning control device;
    Generates air in which the outside air whose temperature and humidity are adjusted by the outside air cooling coil and the return air whose temperature is adjusted by the return air cooling coil are mixed, and the room to be air-conditioned is controlled or a control zone in the room A blower fan for blowing the air mixed in
    With
    The water pump is
    Based on the flow rate value acquired from the air conditioning control device, comprising a water supply unit for supplying cold water or hot water supplied from the outside to at least one of the outside air coil and the return air coil of the air conditioner,
    The air conditioning control device
    A measurement value acquisition unit that acquires the temperature measurement value and the humidity measurement value transmitted from the measurement value transmission unit of the measurement device;
    A comfort index range storage unit that stores a target setting range of a comfort index set in advance;
    Based on the temperature measurement value and the humidity measurement value acquired by the measurement value acquisition unit, within the target setting range of the comfort index stored in the comfort index range storage unit, the outside air coil, the return air An air conditioner set value calculation unit that calculates a temperature set value and a humidity set value of the air supplied from the air conditioner so that a total value of energy consumption of each of the coil, the water pump, and the blower fan is minimized. When,
    A set value transmitting unit for transmitting the temperature set value and the humidity set value calculated by the air conditioner set value calculating unit to the air conditioner;
    From the temperature setting value and the humidity setting value calculated by the air conditioner set value calculation unit, a flow rate value of the cold water or hot water is calculated and transmitted to the water pump;
    With
  4.  請求項1又は3に記載の空調制御システムにおいて、
     前記空調制御装置の空調機設定値算出部は、前記温度設定値および前記湿度設定値に加え、風速設定値を算出し、
     前記空調制御装置の設定値送信部は、前記温度設定値および前記湿度設定値に加え、風速設定値を前記空調機に送信し、
     前記空調機の送風ファンは、前記空調制御装置から取得した風速設定値に基づき、混合した空気を前記空調制御対象の室内あるいは室内の制御ゾーンに送風するもの。
    In the air-conditioning control system according to claim 1 or 3,
    The air conditioner set value calculation unit of the air conditioning control device calculates a wind speed set value in addition to the temperature set value and the humidity set value,
    The set value transmission unit of the air conditioning control device transmits a wind speed set value to the air conditioner in addition to the temperature set value and the humidity set value,
    The blower fan of the air conditioner blows the mixed air into the air-conditioning control target room or the indoor control zone based on the wind speed setting value acquired from the air-conditioning control device.
  5.  請求項1又は3に記載の空調制御システムにおいて、
     前記計測装置は、前記空調制御対象の室内あるいは室内の制御ゾーンの二酸化炭素濃度を更に計測し、
     前記計測装置の計測値送信部は、前記空調制御対象の室内あるいは室内の制御ゾーンで計測された二酸化炭素濃度の計測値を更に取得して、前記空調制御装置に送信し、
     前記空調制御装置の前記計測値取得部は、前記計測装置の計測値送信部から、前記二酸化炭素濃度の計測値を更に取得し、
     前記空調制御装置の前記空調機設定値算出部は、前記快適性指標範囲記憶部に記憶された快適性指標の範囲の中で、前記空調機により冷房が要求され外気のエンタルピーが室内のエンタルピーよりも低いときには外気の取り込み量を増やし、また、前記外気冷却用コイルの負荷が所定値よりも高く、且つ前記計測値取得部で取得した二酸化炭素濃度の計測値が予め設定された二酸化炭素濃度限界値よりも高いときは、前記室内の二酸化炭素濃度を前記二酸化炭素濃度限界値よりも低くするための最小限の量の外気を取り込むように前記外気用コイルで取り込む外気量設定値を更に算出し、
     前記空調制御装置の前記設定値送信部は、前記空調機設定値算出部で算出された前記外気用コイルで取り込む外気量設定値を前記空調機に送信し、
     前記空調機の前記外気用コイルは、前記空調制御装置の前記設定値送信部から送信された外気量設定値に基づいて外気を取り込むもの。
    In the air-conditioning control system according to claim 1 or 3,
    The measurement device further measures the carbon dioxide concentration in the indoor or control zone of the indoor air conditioning control target,
    The measurement value transmission unit of the measurement device further acquires a measurement value of the carbon dioxide concentration measured in the indoor or control room of the air conditioning control target, and transmits the measurement value to the air conditioning control device.
    The measurement value acquisition unit of the air conditioning control device further acquires the measurement value of the carbon dioxide concentration from the measurement value transmission unit of the measurement device,
    The air conditioner set value calculation unit of the air conditioning control device has a range of comfort indices stored in the comfort index range storage unit, and cooling is required by the air conditioner, so that the enthalpy of the outside air is greater than the enthalpy of the room. The amount of outside air taken in is increased, the load of the outside air cooling coil is higher than a predetermined value, and the measured value of the carbon dioxide concentration acquired by the measured value acquisition unit is a preset carbon dioxide concentration limit. When the value is higher than the value, the outside air amount setting value to be taken in by the outside air coil is further calculated so as to take in the minimum amount of outside air for making the indoor carbon dioxide concentration lower than the carbon dioxide concentration limit value. ,
    The set value transmission unit of the air conditioning control device transmits an outside air amount set value taken in by the outside air coil calculated by the air conditioner set value calculation unit to the air conditioner,
    The outside air coil of the air conditioner takes in outside air based on an outside air amount setting value transmitted from the set value transmission unit of the air conditioning control device.
  6.  請求項1又は3に記載の空調制御システムにおいて、
     前記計測装置は、前記空調制御対象の室内あるいは室内の制御ゾーンの在室者の人数を更に計測し、
     前記計測装置の計測値送信部は、前記空調制御対象の室内あるいは室内の制御ゾーンで計測された在室者の人数の計測値を更に取得して、前記空調制御装置に送信し、
     前記空調制御装置の前記計測値取得部は、前記計測装置の計測値送信部から、前記在室者の人数の計測値を更に取得し、
     前記空調制御装置の前記空調機設定値算出部は、前記快適性指標範囲記憶部に記憶された快適性指標の範囲の中で、前記空調機により冷房が要求され外気のエンタルピーが室内のエンタルピーよりも低いときには外気の取り込み量を増やし、また、前記外気冷却用コイルの負荷が所定値よりも高く、且つ在室者の人数計測値が所定値よりも高いときは、室内の二酸化炭素濃度を予め設定された二酸化炭素濃度限界値よりも低くするための最小限の量の外気を取り込むように前記外気用コイルで取り込む外気量設定値を更に算出し、
     前記空調制御装置の前記設定値送信部は、前記空調機設定値算出部で算出された前記外気用コイルで取り込む外気量設定値を前記空調機に送信し、
     前記空調機の前記外気用コイルは、前記空調制御装置の前記設定値送信部から送信された外気量設定値に基づいて外気を取り込むもの。
    In the air-conditioning control system according to claim 1 or 3,
    The measuring device further measures the number of people in the room or the control zone in the room subject to air conditioning control,
    The measurement value transmission unit of the measurement device further acquires a measurement value of the number of occupants measured in the indoor or control room of the air conditioning control target, and transmits the measurement value to the air conditioning control device.
    The measurement value acquisition unit of the air conditioning control device further acquires a measurement value of the number of people in the room from the measurement value transmission unit of the measurement device,
    The air conditioner set value calculation unit of the air conditioning control device has a range of comfort indices stored in the comfort index range storage unit, and cooling is required by the air conditioner, so that the enthalpy of the outside air is greater than the enthalpy of the room. When the temperature is lower, the intake amount of outside air is increased, and when the load of the outside air cooling coil is higher than a predetermined value and the measured number of people in the room is higher than the predetermined value, the indoor carbon dioxide concentration is set in advance. Further calculating an outside air amount set value to be taken in by the outside air coil so as to take in a minimum amount of outside air for lowering the set carbon dioxide concentration limit value,
    The set value transmission unit of the air conditioning control device transmits an outside air amount set value taken in by the outside air coil calculated by the air conditioner set value calculation unit to the air conditioner,
    The outside air coil of the air conditioner takes in outside air based on an outside air amount setting value transmitted from the set value transmission unit of the air conditioning control device.
  7.  請求項1又は3に記載の空調制御システムにおいて、
     前記外気用コイルと前記還気用コイルとが直列状態に接続され、
     前記外気用コイルで利用された冷水または温水が前記還気用コイルで再利用されるもの。
    In the air-conditioning control system according to claim 1 or 3,
    The outside air coil and the return air coil are connected in series,
    Cold water or hot water used in the outside air coil is reused in the return air coil.
PCT/JP2009/051164 2008-01-28 2009-01-26 Air conditioning control system WO2009096350A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/864,680 US20100307731A1 (en) 2008-01-28 2009-01-26 Air-conditioning control system
DE112009000227T DE112009000227T5 (en) 2008-01-28 2009-01-26 Air conditioning control system
CN2009801033141A CN101925786B (en) 2008-01-28 2009-01-26 Air conditioning control system
KR1020107016381A KR101198313B1 (en) 2008-01-28 2009-01-26 Air conditioning controller and air conditioning control system using the same
US15/067,883 US20160195290A1 (en) 2008-01-28 2016-03-11 Air-conditioning controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008016218A JP5132334B2 (en) 2008-01-28 2008-01-28 Air conditioning control device and air conditioning control system using the same
JP2008-016218 2008-01-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/864,680 A-371-Of-International US20100307731A1 (en) 2008-01-28 2009-01-26 Air-conditioning control system
US15/067,883 Continuation US20160195290A1 (en) 2008-01-28 2016-03-11 Air-conditioning controller

Publications (1)

Publication Number Publication Date
WO2009096350A1 true WO2009096350A1 (en) 2009-08-06

Family

ID=40912703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051164 WO2009096350A1 (en) 2008-01-28 2009-01-26 Air conditioning control system

Country Status (7)

Country Link
US (2) US20100307731A1 (en)
JP (1) JP5132334B2 (en)
KR (1) KR101198313B1 (en)
CN (2) CN101925786B (en)
DE (1) DE112009000227T5 (en)
TW (2) TWI463101B (en)
WO (1) WO2009096350A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100951A1 (en) * 2016-11-30 2018-06-07 パナソニックIpマネジメント株式会社 Blowing device and blowing control program
JP2018091155A (en) * 2016-11-30 2018-06-14 パナソニックIpマネジメント株式会社 Air blower and air feeding control program
CN110940059A (en) * 2018-09-21 2020-03-31 珠海格力电器股份有限公司 Air conditioning equipment control method, device and equipment
JP2020176799A (en) * 2019-04-22 2020-10-29 ダイキン工業株式会社 Air conditioning system
CN116294059A (en) * 2023-05-12 2023-06-23 广州豪特节能环保科技股份有限公司 Air conditioner and control method thereof

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8600556B2 (en) 2009-06-22 2013-12-03 Johnson Controls Technology Company Smart building manager
US8417392B2 (en) * 2009-07-23 2013-04-09 Siemens Industry, Inc. Qualification system and method for chilled water plant operations
JP2011179722A (en) 2010-02-26 2011-09-15 Toshiba Corp Air conditioning control system
JP2011257072A (en) * 2010-06-09 2011-12-22 Panasonic Electric Works Co Ltd Energy management apparatus
JP5602072B2 (en) * 2011-03-15 2014-10-08 株式会社東芝 Air conditioning system for server room management
US9307679B2 (en) 2011-03-15 2016-04-05 Kabushiki Kaisha Toshiba Server room managing air conditioning system
KR101274935B1 (en) * 2011-05-16 2013-06-17 단국대학교 산학협력단 Method for control of ventilation in building based on moisture and enthalpy
JP4989801B1 (en) * 2011-05-30 2012-08-01 株式会社ユビテック Energy-saving equipment, energy-saving system and energy-saving program
DE102012208970A1 (en) * 2012-05-29 2013-12-05 Manitowoc Crane Group France Sas Automated cab cabin climate control
CN103673208B (en) * 2012-09-26 2016-05-25 中国移动通信集团公司 A kind of temperature-controlled process, Apparatus and system
WO2014087650A1 (en) * 2012-12-06 2014-06-12 パナソニック株式会社 Space environment management device, space environment management system, and space environment management method
JP5951526B2 (en) 2013-03-04 2016-07-13 株式会社東芝 Air conditioning control device and control program
CN103307701B (en) * 2013-05-29 2015-10-21 广东美的制冷设备有限公司 The control method of air-conditioning system human comfort and air-conditioner
JP2015059692A (en) * 2013-09-18 2015-03-30 新晃工業株式会社 Air conditioning system
KR102157072B1 (en) 2013-12-03 2020-09-17 삼성전자 주식회사 Apparatus and method for controlling a comfort temperature in air conditioning device or system
WO2015194024A1 (en) * 2014-06-20 2015-12-23 株式会社日立製作所 Thermal demand adjustment device for energy network and thermal demand adjustment method for energy network
CN104807137B (en) * 2014-07-23 2020-03-31 张迎春 Method and device for controlling temperature and humidity of air conditioner
CN104456841B (en) * 2014-11-13 2017-01-25 重庆大学 Thermal and humid environment integrated control air-conditioning system and method based on thermal comfort evaluation
US10082078B2 (en) * 2015-03-25 2018-09-25 United Technologies Corporation Aircraft thermal management system
CN106885303A (en) * 2015-12-16 2017-06-23 上海日立电器有限公司 Sensible heat latent heat separates the air-conditioning system of control
CN105465957B (en) * 2015-12-21 2019-07-09 Tcl集团股份有限公司 A kind of intelligent temperature adjusting method and its system
CN105757834B (en) * 2016-02-29 2018-05-18 武汉华星光电技术有限公司 Medium temperature ice water supply system
JP6751885B2 (en) * 2016-06-14 2020-09-09 パナソニックIpマネジメント株式会社 Air conditioning control system and air conditioning control method
JP6604578B2 (en) * 2016-07-25 2019-11-13 株式会社アクシス Ventilation control device for outside air intake
CN109690200A (en) * 2016-09-12 2019-04-26 株式会社技术未来 Digital intelligent energy conserving system, methods and procedures
US10914479B2 (en) * 2016-10-17 2021-02-09 Lennox Industries Inc. Communications between thermostat and rooftop unit of climate control system
CA2995017C (en) * 2017-03-01 2019-12-24 Kimura Kohki Co., Ltd. Air conditioner and air conditioning system including the same
US10742441B2 (en) 2017-04-13 2020-08-11 Johnson Controls Technology Company Unified building management system
US11025563B2 (en) 2017-04-13 2021-06-01 Johnson Controls Technology Company Space-aware network switch
US10691081B2 (en) 2017-04-13 2020-06-23 Johnson Controls Technology Company Building management system with space and place utilization
US10599115B2 (en) 2017-04-13 2020-03-24 Johnson Controls Technology Company Unified building management system with space use case profiles
CN109425072A (en) * 2017-08-18 2019-03-05 茂盟(上海)工程技术股份有限公司 A kind of energy-saving control system and control method
JP7002918B2 (en) * 2017-11-08 2022-02-04 三菱電機株式会社 Ventilation system, air conditioning system, ventilation method and program
JP7292915B2 (en) * 2019-03-27 2023-06-19 株式会社熊谷組 air conditioning system
US10917740B1 (en) 2019-07-30 2021-02-09 Johnson Controls Technology Company Laboratory utilization monitoring and analytics
CN112902342A (en) * 2019-12-04 2021-06-04 佛山市云米电器科技有限公司 Household equipment control method, system, control equipment and readable storage medium
KR20210074919A (en) * 2019-12-12 2021-06-22 삼성전자주식회사 Sever and method for controlling the thereof
JP7499577B2 (en) * 2020-01-23 2024-06-14 三菱重工サーマルシステムズ株式会社 Air conditioning system control device, air conditioning system, air conditioning system control method and program
US11536476B2 (en) 2020-05-12 2022-12-27 Johnson Controls Tyco IP Holdings LLP Building system with flexible facility operation
US11864510B2 (en) 2020-05-18 2024-01-09 Trane International Inc. HVAC system for indoor agriculture
US11164269B1 (en) 2020-06-25 2021-11-02 Johnson Controls Tyco IP Holdings LLP Systems and methods for dynamic travel planning
CN112648695A (en) * 2020-12-29 2021-04-13 明德倍适(天津)科技有限公司 Radiation air conditioning system and temperature and humidity adjusting method
US11662104B2 (en) 2021-03-26 2023-05-30 First Co. Independent temperature control for rooms

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120042A (en) * 1981-01-20 1982-07-26 Toshiba Corp Method of controlling air conditioner
JPS6375435A (en) * 1986-09-18 1988-04-05 Matsushita Seiko Co Ltd Controller for air-conditioning machine
JPH01277146A (en) * 1988-04-28 1989-11-07 Sanki Eng Co Ltd Air-conditioning equipment
JP2003139372A (en) * 2001-11-02 2003-05-14 Ohbayashi Corp Optimal restraint control system for air-conditioning/ heat source equipment
JP2004053127A (en) * 2002-07-19 2004-02-19 Hitachi Plant Eng & Constr Co Ltd Air conditioner and its control method
JP2004340529A (en) * 2003-05-19 2004-12-02 Kajima Corp Energy saving type air conditioning system
JP2007064556A (en) * 2005-08-31 2007-03-15 Sanki Eng Co Ltd Air conditioner and method for outdoor air cooling operation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2407036A (en) * 1942-08-21 1946-09-03 Edison Inc Thomas A Air-conditioning control
US5165465A (en) * 1988-05-03 1992-11-24 Electronic Environmental Controls Inc. Room control system
US5285959A (en) * 1991-05-16 1994-02-15 Matsushita Electric Industrial Co., Ltd. Air heating apparatus
WO1992020973A1 (en) * 1991-05-24 1992-11-26 Luminis Pty. Ltd. Air conditioning for humid climates
US5395042A (en) * 1994-02-17 1995-03-07 Smart Systems International Apparatus and method for automatic climate control
US6415617B1 (en) * 2001-01-10 2002-07-09 Johnson Controls Technology Company Model based economizer control of an air handling unit
JP4166051B2 (en) 2002-08-05 2008-10-15 株式会社東芝 Air conditioning system
JP2007285579A (en) * 2006-04-14 2007-11-01 Toshiba Corp Air conditioning control device
JP5044251B2 (en) 2007-03-19 2012-10-10 株式会社東芝 Building air conditioning optimum control system and building air conditioning optimum control device
JP4936961B2 (en) * 2007-04-04 2012-05-23 株式会社東芝 Air conditioning system controller

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120042A (en) * 1981-01-20 1982-07-26 Toshiba Corp Method of controlling air conditioner
JPS6375435A (en) * 1986-09-18 1988-04-05 Matsushita Seiko Co Ltd Controller for air-conditioning machine
JPH01277146A (en) * 1988-04-28 1989-11-07 Sanki Eng Co Ltd Air-conditioning equipment
JP2003139372A (en) * 2001-11-02 2003-05-14 Ohbayashi Corp Optimal restraint control system for air-conditioning/ heat source equipment
JP2004053127A (en) * 2002-07-19 2004-02-19 Hitachi Plant Eng & Constr Co Ltd Air conditioner and its control method
JP2004340529A (en) * 2003-05-19 2004-12-02 Kajima Corp Energy saving type air conditioning system
JP2007064556A (en) * 2005-08-31 2007-03-15 Sanki Eng Co Ltd Air conditioner and method for outdoor air cooling operation

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100951A1 (en) * 2016-11-30 2018-06-07 パナソニックIpマネジメント株式会社 Blowing device and blowing control program
JP2018091155A (en) * 2016-11-30 2018-06-14 パナソニックIpマネジメント株式会社 Air blower and air feeding control program
CN110940059A (en) * 2018-09-21 2020-03-31 珠海格力电器股份有限公司 Air conditioning equipment control method, device and equipment
CN110940059B (en) * 2018-09-21 2020-11-24 珠海格力电器股份有限公司 Air conditioning equipment control method, device and equipment
JP2020176799A (en) * 2019-04-22 2020-10-29 ダイキン工業株式会社 Air conditioning system
WO2020217933A1 (en) * 2019-04-22 2020-10-29 ダイキン工業株式会社 Air conditioning system
CN113677937A (en) * 2019-04-22 2021-11-19 大金工业株式会社 Air conditioning system
JP7460876B2 (en) 2019-04-22 2024-04-03 ダイキン工業株式会社 air conditioning system
CN116294059A (en) * 2023-05-12 2023-06-23 广州豪特节能环保科技股份有限公司 Air conditioner and control method thereof
CN116294059B (en) * 2023-05-12 2023-08-08 广州豪特节能环保科技股份有限公司 Air conditioner and control method thereof

Also Published As

Publication number Publication date
CN103292431B (en) 2015-04-29
TWI439644B (en) 2014-06-01
KR101198313B1 (en) 2012-11-07
US20160195290A1 (en) 2016-07-07
CN101925786B (en) 2013-10-16
TWI463101B (en) 2014-12-01
KR20100106508A (en) 2010-10-01
CN103292431A (en) 2013-09-11
DE112009000227T5 (en) 2010-11-25
CN101925786A (en) 2010-12-22
JP2009174825A (en) 2009-08-06
TW200949165A (en) 2009-12-01
TW201337181A (en) 2013-09-16
US20100307731A1 (en) 2010-12-09
JP5132334B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
WO2009096350A1 (en) Air conditioning control system
JP4703692B2 (en) Air conditioning control system, air supply switching controller used therefor, and air conditioning control method
JP5175643B2 (en) Air conditioning control system and air conditioning control device
US7757504B2 (en) Air conditioning controller
JP5185319B2 (en) Air conditioning system and air conditioning control method for server room management
US11391475B2 (en) Radiant air conditioning system for controlling comfortable and healthy indoor environment based on infrared sensing technology
JP4836967B2 (en) Air conditioning control support screen generation device, air conditioning control support screen generation method, and air conditioning monitoring system
WO2006054586A1 (en) Air conditioning system and method of controlling air conditioning system
CN108534319B (en) Air conditioner and air conditioning system provided with same
JP2011027301A (en) Air conditioning control device
JP2008170025A (en) Air-conditioning control device
KR102362252B1 (en) air conditioning control system and method for thermal comfort control and energy saving
JP2013164260A (en) Air conditioning control device, air conditioning control method, and program for air conditioning control
JP5284528B2 (en) Air conditioning control device, air conditioning system, air conditioning control method, air conditioning control program
CN109780656B (en) Indoor comfortable healthy environment control radiation air conditioning system based on infrared sensing technology
KR101454995B1 (en) Outdoor air conditioner having air conditioning function
JP2010190480A (en) Air conditioning control system, air supply switching controller used for the same and air conditioning control method
JP2005042993A (en) Air conditioning system
JP2023037745A (en) air conditioning system
JP2002349933A (en) Controller for air conditioning of air-conditioning facility

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980103314.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705323

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107016381

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12864680

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 5252/CHENP/2010

Country of ref document: IN

RET De translation (de og part 6b)

Ref document number: 112009000227

Country of ref document: DE

Date of ref document: 20101125

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09705323

Country of ref document: EP

Kind code of ref document: A1