WO2009096305A1 - 通信装置、通信方法 - Google Patents

通信装置、通信方法 Download PDF

Info

Publication number
WO2009096305A1
WO2009096305A1 PCT/JP2009/050956 JP2009050956W WO2009096305A1 WO 2009096305 A1 WO2009096305 A1 WO 2009096305A1 JP 2009050956 W JP2009050956 W JP 2009050956W WO 2009096305 A1 WO2009096305 A1 WO 2009096305A1
Authority
WO
WIPO (PCT)
Prior art keywords
mbms
mobile station
station apparatus
base station
request
Prior art date
Application number
PCT/JP2009/050956
Other languages
English (en)
French (fr)
Inventor
Yasuo Sugawara
Shohei Yamada
Waho Oh
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to CN2009801115160A priority Critical patent/CN101981953A/zh
Priority to US12/864,962 priority patent/US8477644B2/en
Priority to JP2009551484A priority patent/JP4759088B2/ja
Priority to EP09706956A priority patent/EP2239968A1/en
Publication of WO2009096305A1 publication Critical patent/WO2009096305A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present invention relates to communication technology, and in particular, to a mobile station device, a base station device, a communication system, a communication method, and a program.
  • 3GPP 3rd Generation Partnership Project, 3rd Generation Partnership Project
  • W-CDMA Wideband Code Division Multiple Access
  • HSDPA High Speed Downlink Packet Access
  • EUTRA Evolution of Third Generation wireless access
  • an OFDM (Orthogonal-Frequency-Division-Multiplexing) scheme has been proposed.
  • an adaptive modulation / demodulation and error correction scheme (AMCS) based on adaptive radio link control (link adaptation, link adaptation) such as channel coding is applied to the OFDM scheme.
  • the AMCS method is an error correction method, an error correction coding rate, a data modulation multi-value number (MCS: Modulation and Coding) according to the channel conditions of each mobile station.
  • MCS Modulation and Coding
  • Scheme a method of switching wireless transmission parameters such as time-frequency axis code spreading factor (SF) and multi-code multiplexing number.
  • FIG. 1 is a diagram showing a channel configuration in EUTRA.
  • the downlink of EUTRA includes downlink pilot channel (DPiCH: Downlink Pilot Channel), downlink synchronization channel (PSCH: Physical Downlink Synchronization Channel), downlink shared channel (PDSCH: Physical Downlink Shared Channel), and downlink control. It consists of a channel (PDCCH: Physical Downlink Control Channel) and a downlink broadcast channel (PBCH: Physical Broadcast Channel).
  • DCICH Downlink Pilot Channel
  • PSCH Physical Downlink Synchronization Channel
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • EUTRA uplink includes uplink pilot channel (UPiCH: Uplink Pilot Channel), random access channel (RACH: Random Access Channel), uplink shared channel (PUSCH: Physical Uplink Shared Channel), and uplink control.
  • UPiCH Uplink Pilot Channel
  • RACH Random Access Channel
  • PUSCH Physical Uplink Shared Channel
  • uplink control uplink control.
  • PUCCH Physical Uplink Control Channel
  • MBMS Multimedia Broadcast Multicast Service
  • MBMSMBdedicated cell a cell that specializes in MBMS transmission using a frequency different from the frequency used for unicast transmission (MBMS service dedicated frequency) and unicast transmission
  • MBMS / Unicast-mixed cells two types of cells that perform both MBMS transmission and unicast transmission using the frequency used for communication (frequency not dedicated to MBMS service).
  • a transmission method of the MBMS service there are a method in which only one base station transmits, and a method in which a plurality of base stations synchronized in time and frequency simultaneously transmit.
  • the former is called SCPTM (Single-Cell-Point-to-Multipoint) transmission
  • MBSFN Multimedia Broadcast multicast service Single Frequency Network
  • SCPTM Single-Cell-Point-to-Multipoint
  • MBSFN Multimedia Broadcast multicast service Single Frequency Network
  • MBSFN transmission the same MBMS transmission signal is simultaneously transmitted from a plurality of base stations, and the mobile station can combine the signals so that they appear as one MBMS transmission signal.
  • SCPTM Single-Cell-Point-to-Multipoint
  • MBSFN Multimedia Broadcast multicast service Single Frequency Network
  • FIG. 2 is a diagram illustrating a schematic configuration example of the MBMS service in the SCPTM transmission.
  • the same AMCS as unicast transmission is applied to the MBMS transmission signal in the SCPTM transmission.
  • FIG. 2 consider a state in which a plurality of mobile stations 20c, 20d, etc. are receiving an MBMS service in a cell 23 that provides an MBMS service by SCPTM transmission. It is assumed that the base station 10c provides the MBMS service by the SCPTM transmission and the two mobile stations 20c and 20d, and the mobile stations 20c and 20d receive the MBMS service.
  • Non-Patent Document 1 Based on the current specification described in Non-Patent Document 1 below, a mobile station in an idle state that wishes to receive an MBMS service through SCPTM transmission transitions from an idle state to a connected state when specified by the base station 10c. It is assumed that uplink feedback resources are allocated and feedback is performed periodically. A mobile station in the connected state to which feedback resources for MBMS are allocated performs feedback to the base station using the feedback resource specified by the base station.
  • This feedback information includes a channel quality identifier (CQI: Channel Quality Indicator, also called downlink channel quality information, CQI feedback information) indicating downlink channel quality for each frequency domain, and HARQ (Hybrid Automatic) for MBMS service data.
  • CQI Channel Quality Indicator
  • CQI feedback information Hybrid Automatic
  • ACK Positive Acknowledgment
  • NACK Negative Acknowledgment
  • the mobile station 20 c with poor downlink channel quality performs feedback.
  • an MCS value (a combination of the modulation multi-level number and coding rate in AMCS) so that all the mobile stations 20c and 20d can receive the MBMS service ( For example, 16QAM modulation, 2/3 coding rate) is determined and applied to the transmission data of the MBMS service, and then SCPTM transmission is performed.
  • the mobile station 20c performing feedback is in a connected state
  • the mobile station 20d not performing feedback is in an idle state or a connected state.
  • 3GPP TS (Technical Specification) 36.300 V8.2.0 (2007-09), Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage2 (Release 8).
  • 3GPP TS (Technical Specification) 36.304 V8.0.0 (2007-12), Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) procedure in idle mode (Release 8).
  • FIG. 3 shows a cell reselection (Cell) in this cell 23 in addition to the base station 10c providing the MBMS service by the SCPTM transmission shown in FIG. 2 and the mobile stations 20c and 20d receiving the MBMS service.
  • Cell cell reselection
  • a mobile station 20e that has been (reselected) is shown. At this time, the mobile station 20e is in an idle state.
  • the base station 10c allocates feedback resources to the mobile station 20c having a poor downlink channel quality. That is, the mobile station 20c is in a connected state.
  • the downlink channel state (or quality) of the mobile station 20d is better than the downlink channel state (or quality) of the mobile station 20c.
  • the base station 10c transmits the MBMS service with an MCS value that matches the bad downlink channel quality, but the mobile station 20d with good downlink channel quality that has not performed feedback can receive the MBMS service. Therefore, in this case, there is no problem even if the base station 10c determines the MCS value without considering the mobile station 20d that is not performing feedback.
  • the mobile station 20e in the downlink channel state (or quality) that is worse than the downlink channel state (or quality) of the mobile station 20c that is performing feedback and in the idle state causes the cell 23 to
  • the uplink feedback resource is not allocated, so the MBMS service is not provided with the optimum MCS value for the mobile station 20e.
  • the base station 10c since the base station 10c is not aware of the presence of the mobile station 20e, the MCS value is determined without considering the mobile station 20e.
  • the mobile station 20d when the mobile station 20d receives an MBMS service in an idle state, the downlink channel state (or quality) of the mobile station 20d deteriorates, and the downlink channel state (or quality) of the mobile station 20c deteriorates.
  • the uplink feedback resource is not allocated, there is a problem that the MBMS service cannot be provided with the optimum MCS value for the mobile station 20d.
  • the base station 10c since the base station 10c is not aware of the change in the downlink channel state (or quality) of the mobile station 20d, the MCS value is determined without considering the mobile station 20d.
  • the base station 10c allocates an individual uplink feedback resource to each mobile station using the conventional technique, the uplink feedback resource is increased. Further, there is a problem that the base station 10c cannot efficiently select a mobile station according to the downlink channel state (or quality) of the mobile station.
  • FIG. 11 describes a cell 23 in which the base station 10b provides an MBMS service through SCPTM transmission, and mobile stations 20c and 20f.
  • the mobile station 20c represents the connected mobile station that has received the MBMS service and transmitted uplink feedback information to the base station 10b, and the mobile station 20f has received the MBMS service.
  • the mobile station 20f when the mobile station 20f receives the MBMS service in the connected state, the downlink channel state (or quality) of the mobile station 20f deteriorates, and the downlink channel state (or quality) of the mobile station 20c However, since the uplink feedback resource is not allocated, the MBMS service is not provided with the optimum MCS value for the mobile station 20f. On the other hand, since the base station 10b does not know the change of the downlink channel state (or quality) of the mobile station 20f, the MCS value is determined without considering the mobile station 20f.
  • the base station 10b assigns an individual uplink feedback resource to each mobile station using a general technique, there arises a problem that the uplink feedback resource increases. Further, there is a problem that the base station 10b cannot efficiently select a mobile station according to the downlink channel state (or quality) of the mobile station.
  • An object of the present invention is to solve the above-described problems, and is a communication technique for efficiently providing an MBMS service by SCPTM transmission to a mobile station, in particular, a mobile station apparatus, a base station apparatus, a mobile station A communication system and a communication method are provided.
  • a mobile station apparatus that communicates with a base station apparatus that provides an MBMS service, and transmits an MBMS request to the base station apparatus when a condition for performing an MBMS request is met.
  • a mobile station apparatus is provided.
  • the MBMS request is preferably an MBMS service feedback resource request.
  • the MBMS request is preferably performed when the downlink control channel (PDCCH) used when transmitting the MBMS service cannot be received / demodulated / decoded for a certain period.
  • the MBMS request is made when the downlink control channel (PDCCH) can be received / demodulated / decoded, but the downlink shared channel (PDSCH) cannot be received / demodulated / decoded for a certain period.
  • the condition for performing the MBMS request may be a case where the downlink channel state (or quality) of the own station is equal to or less than (or less than) a threshold value broadcast from the base station apparatus.
  • the MBMS request can be received, demodulated and decoded in the downlink control channel (PDCCH), but demodulated and decoded in the downlink shared channel (PDSCH) specified in the downlink control channel (PDCCH).
  • the transmission form (MCS value, etc.) for doing so may not match the downlink channel state (or quality) of the own station.
  • a mobile station apparatus that communicates with a base station apparatus that provides an MBMS service, and the MBMS measurement report is transmitted to the base station when a condition for performing an MBMS measurement report is met.
  • a mobile station apparatus characterized by transmitting to the apparatus may be used.
  • the MBMS measurement report is preferably an MBMS service feedback resource request report.
  • the condition for performing the MBMS measurement report may be a case where the downlink control channel (PDCCH) used when transmitting the MBMS service cannot be received / demodulated / decoded for a certain period.
  • PDCCH downlink control channel
  • the conditions for performing the MBMS measurement report were that the downlink control channel (PDCCH) could be received, demodulated, and decoded, but the downlink shared channel (PDSCH) could not be received, demodulated, and decoded for a certain period of time. It may be the case.
  • the condition for performing the MBMS measurement report may be a case where the downlink channel state (or quality) of the own station is equal to or less than (or less than) a threshold value broadcast from the base station apparatus.
  • the conditions for performing the MBMS measurement report were that the downlink control channel (PDCCH) could be received, demodulated and decoded, but the downlink shared channel (PDSCH) specified in the downlink control channel (PDCCH) was demodulated / demodulated.
  • the transmission form for decoding MCS value or the like
  • a base station apparatus that provides an MBMS service to a mobile station apparatus, the MBMS request trigger standard and / or the MBMS measurement report trigger standard is notified to the mobile station apparatus.
  • a featured base station apparatus is provided.
  • an MBMS service feedback request is received from the mobile station apparatus, it is preferable to allocate a feedback resource to the mobile station apparatus.
  • an MBMS service transmission request is received from the mobile station apparatus, it is preferable to provide the MBMS service specified by the MBMS service transmission request.
  • a communication system including a mobile station apparatus and a base station apparatus that provides an MBMS service, and the mobile station apparatus performs the MBMS when a condition for performing an MBMS request is met.
  • the base station device transmits a request to the base station device, the base station device allocates feedback resources to the mobile station device based on the MBMS request received from the mobile station device, and the mobile station device Using the feedback resource specified by the base station apparatus, feedback information is transmitted to the base station apparatus, and the base station apparatus performs the MBMS service based on the feedback information received from the mobile station apparatus.
  • a communication system characterized by changing a transmission form is provided.
  • the communication system includes a mobile station apparatus and a base station apparatus that provides an MBMS service, and the mobile station apparatus transmits the MBMS measurement report to the base station apparatus when a condition for performing an MBMS measurement report is met.
  • the base station apparatus changes the transmission mode of the MBMS service based on the MBMS measurement report received from the mobile station apparatus.
  • the MBMS service can be efficiently provided to the mobile station by SCPTM transmission.
  • PUSCH uplink shared channel
  • PUCCH uplink control channel
  • RACH random access channel
  • the vertical axis is frequency and the horizontal axis is time.
  • FIG. It is a figure which shows the example of 1 structure of the communication system using the communication technique by this Embodiment. Knowing that the mobile station is providing the MBMS service by SCPTM transmission at the base station, requesting the feedback resource from the base station, and using the feedback resource designated by the base station 10b, FIG. It is a figure which shows the flowchart of a state transition until it will be in a connection state from an idle state through the procedure of FIG. It is a figure for demonstrating the structure of one radio frame (10 milliseconds) in a downlink, and the example of a radio channel mapping.
  • FIG. 2 is a diagram illustrating a mobile station in a connected state that does not transmit uplink feedback information.
  • a communication technique according to a second embodiment of the present invention wherein a base station receives an MBMS service in a cell providing an MBMS service by SCPTM transmission, but is in a connected state with respect to the base station 10b. It is a sequence diagram showing a procedure until the stations 20c and 20f transmit an MBMS measurement report to the base station 10b. It is a flowchart figure which shows the process sequence until the mobile station in a connection state makes a MBMS measurement report through the procedure of FIG.
  • base station apparatus 101 data control section 102 OFDM modulation section 103 radio section 104 scheduling section 105 channel estimation section 106 DFT-S-OFDM demodulation section 107 data extraction section 109 upper layer 109a radio resource control section 200 mobile station apparatus 201 data control section 202 DFT-S-OFDM modulation section 203 Radio section 204 Scheduling section 205 Channel estimation section 206 OFDM demodulation section 207 Data extraction section 208 MBMS request section 209 Upper layer 209a Radio resource control section
  • the communication technique according to the present embodiment includes a base station apparatus (hereinafter referred to as “base station”) 100 and a mobile station apparatus (hereinafter referred to as “mobile station”) 200.
  • base station a base station apparatus
  • mobile station a mobile station apparatus
  • FIG. 4 is a functional block diagram showing a configuration example of a base station apparatus used in the communication technique according to the present embodiment.
  • the configuration example of the base station apparatus shown in FIG. 4 can be applied not only to the first embodiment but also to a second embodiment to be described later.
  • the base station apparatus 100 includes a data control unit 101, an OFDM modulation unit 102, a radio unit 103, a scheduling unit 104, a channel estimation unit 105, a DFT-Spread-OFDM demodulation unit (DFT). -S-OFDM demodulation unit) 106, data extraction unit 107, and upper layer 109.
  • DFT DFT-Spread-OFDM demodulation unit
  • the data control unit 101 receives control data, user data, and an MBMS service (also referred to as MBMS transmission data) from the scheduling unit 104, and transmits control data based on the scheduling information input from the scheduling unit 104. It maps to a link pilot channel (DPiCH), a downlink synchronization channel (PSCH), a downlink shared channel (PDSCH), a downlink control channel (PDCCH), and a downlink broadcast channel (PBCH). Also, user data for each mobile station is mapped to a downlink shared channel (PDSCH). Each mapped data is output to OFDM modulation section 102.
  • DPiCH link pilot channel
  • PSCH downlink synchronization channel
  • PDSCH downlink shared channel
  • PDCCH downlink control channel
  • PBCH downlink broadcast channel
  • PDSCH downlink shared channel
  • Each mapped data is output to OFDM modulation section 102.
  • the RRC (Radio Resource Control) message and the MAC (Medium Access Control) control Element are mapped to the downlink shared channel (PDSCH) and transmitted to the mobile station.
  • PDSCH downlink shared channel
  • the MBMS transmission data is mapped to the downlink shared channel (PDSCH), and the group identifier MBMS-RNTI (MBMS-Radio Network Temporary Identity) is assigned to the downlink control channel (PDCCH).
  • PDSCH downlink shared channel
  • MBMS-RNTI MBMS-Radio Network Temporary Identity
  • MBMS related information is included in the logical channel BCCH (Broadcast Control Channel) or MCCH (Multicast Control Channel) and is mapped to the downlink shared channel (PDSCH).
  • BCCH Broadcast Control Channel
  • MCCH Multicast Control Channel
  • RS Reference Signal
  • DPiCH downlink pilot channel
  • the OFDM modulation unit 102 receives scheduling information (downlink resource block PRB (Physical Resource Block) allocation information (for example, frequency, time) from the scheduling unit 104). Resource block location information) and MCS values corresponding to each PRB (including 16QAM modulation, 2/3 coding rate, etc.), encoding, data modulation, serial / parallel conversion of input signal, IFFT
  • An OFDM signal is generated by performing (Inverse Fast Fourier Transform), CP (Cyclic Prefix) insertion, filtering, and the like, and an OFDM signal is generated and output to the radio section 103.
  • the radio unit 103 up-converts the modulation data input from the OFDM modulation unit 102 to a radio frequency to generate a radio signal, and transmits the radio signal to the mobile station 200 via an antenna (not shown).
  • Radio section 103 receives an uplink radio signal from mobile station 200 via an antenna (not shown), down-converts it to a baseband signal, and converts the received data to channel estimation section 105 and DFT- The data is output to the S-OFDM demodulator 106.
  • the scheduling unit 104 performs downlink scheduling and uplink scheduling.
  • uplink feedback information received from mobile station apparatus 200 downlink channel quality information (CQI feedback information), ACK / NACK feedback information for downlink user data or MBMS transmission data, etc.
  • CQI feedback information downlink channel quality information
  • ACK / NACK feedback information for downlink user data or MBMS transmission data etc.
  • the buffer status Based on the PRB information that can be used by each mobile station apparatus, the buffer status, the scheduling information input from the upper layer 109, the downlink control data, user data, and MBMS transmission data input from the upper layer 109
  • a scheduling process for mapping to a channel and a calculation process of a downlink transmission form (MCS value, etc.) for modulating each data are performed.
  • the scheduling information is output to the data control unit 101.
  • the uplink transmission form (MCS value etc.) is calculated.
  • the uplink scheduling information is output to the data control unit 101.
  • the scheduling unit 104 outputs downlink control data, user data, and MBMS transmission data input from the upper layer 109 to the data control unit 101. Also, the scheduling unit 104 outputs user data to the upper layer 109 among the uplink control data and user data input from the data extraction unit 107, and after processing the control data as necessary, Output to upper layer 109.
  • the scheduling unit 104 generates a MAC control Element and exchanges the MAC control Element with the mobile station device 200.
  • the channel estimation unit 105 estimates the uplink channel state from the demodulation pilot (DRS: Demodulation Reference Signal) of the uplink pilot channel (UPiCH) and demodulates the estimation result for DFT-S. Output to OFDM demodulator 106. Further, in order to perform uplink scheduling, an uplink channel state is estimated from an uplink pilot channel (UPiCH) scheduling pilot (SRS: Sounding Reference Signal), and the estimation result is output to the scheduling section 104.
  • the uplink communication scheme is assumed to be a single carrier scheme such as DFT-S-OFDM, but a multicarrier scheme such as the OFDM scheme may be used.
  • the DFT-S-OFDM demodulation unit 106 performs DFT conversion, subcarrier mapping, IFFT conversion on the modulation data input from the radio unit 103 based on the uplink channel state estimation result input from the channel estimation unit 105. Then, DFT-S-OFDM signal processing such as filtering is performed, demodulation processing is performed, and the result is output to the data extraction unit 107.
  • the data extraction unit 107 confirms the correctness of the data input from the DFT-S-OFDM demodulation unit 106 and outputs a confirmation result (ACK / NACK) to the scheduling unit 104.
  • the data extraction unit 107 separates the data input from the DFT-S-OFDM demodulation unit 106 into user data and control data, and outputs the user data and control data to the scheduling unit 104.
  • the separated control data includes uplink feedback information (downlink channel quality information, downlink user data, or ACK / NACK feedback information for MBMS transmission data) notified from the mobile station 200.
  • the upper layer 109 processes user data and control data.
  • the upper layer 109 has a radio resource control unit 109a.
  • the radio resource control unit 109a generates RRC messages and exchanges RRC messages with the radio resource control unit 209a of the mobile station apparatus 200. Further, the radio resource control unit 109a also manages the state of the mobile station device 200. Further, when receiving an MBMS request from a mobile station, the upper layer 109 generates feedback resource allocation information for the mobile station 200 based on downlink channel quality information included in the MBMS request. Also, the radio resource control unit 109a generates measurement setting information and notifies the mobile station apparatus.
  • FIG. 10 is a diagram for explaining a configuration of one radio frame (10 milliseconds) in a downlink and a mapping example of a radio channel.
  • the downlink radio frame is composed of a plurality of two-dimensional PRBs having a frequency bandwidth (Bch) and a time-base subframe (SF: Sub-frame).
  • the PRB frequency bandwidth (Bch) is 180 kHz
  • the subcarrier frequency bandwidth (Bsc) is 15 kHz
  • one radio frame is 10 milliseconds
  • the subframe (SF) is 1 millisecond.
  • 10 PRBs in the time direction and 110 PRBs in the frequency direction are included.
  • 12 PRBs are included in one PRB
  • 1320 subcarriers are included in the entire system.
  • Ts represents the OFDM symbol length.
  • the downlink pilot channel (including DPiCH and RS) is mapped to the head of each subframe (SF). Further, one downlink broadcast channel (PBCH) and one downlink synchronization channel (PSCH) are mapped at the head of each radio frame and / or a plurality of radio frames. The remaining part of each PRB is used as a downlink shared channel (PDSCH), and is distributed to each mobile station using AMCS.
  • PBCH downlink broadcast channel
  • PSCH downlink synchronization channel
  • FIG. 5 is a functional block diagram showing a configuration example of the mobile station apparatus according to the present embodiment.
  • the mobile station apparatus configuration shown in FIG. 5 is similarly applied not only to the first embodiment but also to the second embodiment.
  • mobile station apparatus 200 includes data control section 201, DFT-S-OFDM modulation section 202, radio section 203, scheduling section 204, channel estimation section 205, OFDM demodulation section 206, The data extraction unit 207 and the upper layer 209 are included.
  • the data control unit 201 receives input of control data and user data from the scheduling unit 204, and based on the scheduling information input from the scheduling unit 204, the data control unit 201 and the uplink shared channel (PUSCH) Mapping to the control channel (PUCCH). Further, the demodulation pilot (DRS) and the scheduling pilot (SRS) are mapped to the uplink pilot channel (UPiCH). In addition, during preamble transmission in random access (contention based random access and non-contention random access), the preamble is mapped to a random access channel (RACH).
  • RACH random access channel
  • the feedback information (CQI feedback information and / or ACK / NACK feedback information) is mapped to the uplink shared channel (PUSCH).
  • the feedback information (CQI feedback information and / or ACK / NACK feedback information) is mapped to the uplink control channel (PUCCH).
  • Each data mapped in this way is output to the DFT-S-OFDM modulation unit 202.
  • FIG. 6 shows a configuration example of one radio frame (10 milliseconds) in the uplink, and this uplink radio frame is divided into a plurality of radio resource blocks PRB.
  • the vertical axis represents frequency and the horizontal axis represents time.
  • One PRB radio resource is configured with an area of 180 kHz in the frequency direction and 1 millisecond in the time direction as a unit, and the uplink shared channel (PUSCH), uplink control channel (PUCCH), and random access channel (RACH) are mapped. Is done.
  • uplink pilot channels including UPiCH, DRS, and SRS
  • PUSCH uplink shared channel
  • PUCCH uplink control channel
  • RACH random access channel
  • the DFT-S-OFDM modulation unit 202 performs data modulation, DFT (Discrete Fourier Transform) processing, subcarrier mapping, IFFT (Inverse Fast Fourier Transform) processing, CP insertion, filtering on the data input from the data control unit 201.
  • DFT-S-OFDM signal processing such as the above is performed to generate a DFT-S-OFDM signal and output it to the radio section 203.
  • the uplink communication scheme is assumed to be a single carrier scheme such as DFT-S-OFDM, but a multicarrier scheme such as the OFDM scheme may be used instead.
  • Radio section 203 up-converts the modulation data input from DFT-S-OFDM modulation section 202 to a radio frequency, generates a radio signal, and transmits the radio signal to base station 100 via an antenna (not shown).
  • Radio section 203 receives a radio signal modulated with downlink data from base station 100 via an antenna (not shown), down-converts it to a baseband signal, and converts the received data into channel It outputs to the estimation part 205 and the OFDM demodulation part 206.
  • the scheduling unit 204 is configured to estimate the downlink channel state (radio channel state) input from the channel estimation unit 205, uplink scheduling information from the base station 100 input from the data extraction unit 207, and Based on scheduling information input from the upper layer 209, scheduling processing for mapping uplink user data and control data input from the upper layer 209 to each channel is performed. For uplink MCS, the MCS value notified from the base station 100 is used. The scheduling information is output to the data control unit 201. The scheduling unit 204 generates a MAC control Element and exchanges the MAC control Element with the base station apparatus 100.
  • the scheduling unit 204 outputs the uplink control data and user data input from the higher layer 209 to the data control unit 201.
  • the MBMS request input from the MBMS request unit 208 is output to the data extraction unit 201.
  • the scheduling unit 204 also outputs downlink channel quality information (CQI feedback information) input from the channel estimation unit 205 and ACK / NACK feedback information input from the data extraction unit 207 to the data control unit 201. To do.
  • the scheduling unit 204 outputs the user data to the upper layer 209 among the downlink control data and user data input from the data extraction unit 207, and after processing the control data as necessary, Output to the upper layer 209.
  • the channel estimation unit 205 estimates the downlink channel state from the reference signal (RS) of the downlink pilot channel (DPiCH), and outputs the estimation result to the OFDM demodulation unit 206 in order to demodulate the downlink data. Further, the channel estimation unit 205 converts the estimation result into downlink channel quality information (CQI feedback information) and outputs the result to the scheduling unit 204 in order to notify the base station 100 of the downlink channel state estimation result. To do.
  • RS reference signal
  • DPiCH downlink pilot channel
  • OFDM demodulation section 206 Based on the downlink channel state estimation result input from channel estimation section 205, OFDM demodulation section 206 performs OFDM demodulation processing on the modulated data input from radio section 203 and outputs the result to data extraction section 207. To do.
  • the data extraction unit 207 confirms the correctness of the data input from the OFDM demodulation unit 206 and outputs a confirmation result (ACK / NACK feedback information) to the scheduling unit 204.
  • the data extraction unit 207 separates the data input from the OFDM demodulation unit 206 into user data and control data, and outputs the user data and control data to the scheduling unit 204.
  • the upper layer 209 processes user data and control data.
  • the upper layer 209 has a radio resource control unit 209a.
  • the radio resource control unit 209a generates an RRC message and exchanges the RRC message with the radio resource control unit 109a of the base station apparatus 100.
  • the radio resource control unit 209a holds the RRC message from the base station apparatus 100 and sets parameters in the related function unit.
  • the radio resource control unit 209a also performs state management of the own station.
  • the radio resource control unit 209a has an MBMS request unit 208, and when the MBMS service is not transmitted based on the data input from the scheduling unit 204, the MBMS request including the MBMS service transmission request Is output to the scheduling unit 204.
  • the MBMS request including the MBMS service transmission request is generated, and the scheduling unit 204 Output.
  • the radio resource control unit 209a sets the measurement setting information received from the base station apparatus, performs measurement on the measurement item specified by the base station, and meets the conditions for performing the MBMS measurement report. To the base station.
  • FIG. 7, FIG. 8, and FIG. 9 are diagrams for explaining the mechanism of the communication technology according to the present embodiment.
  • FIG. 7 shows a mobile station 20b (procedure 1) receiving the MBMS service in a cell in which the base station 10b provides the MBMS service by SCPTM transmission, and the mobile station 20a After moving to this cell (cell reselection) using the cell reselection method (procedure 2)), procedures (procedure 3), 4), 5)) from receiving the MBMS service from the base station 10b
  • the base station 10b may be a cell that supports both MBSFN transmission and SCPTM transmission.
  • FIG. 8 shows that the mobile station 20a provides an MBMS service by SCPTM transmission in the base station 10b, requests the feedback resource from the base station 10b, and uses the feedback resource specified by the base station 10b.
  • FIG. 6 is a sequence diagram showing a procedure until uplink feedback information is transmitted.
  • FIG. 9 is a diagram showing a flow chart of state transition until the mobile station 20a changes from the idle state to the connected state through the procedure of FIG.
  • the mobile station 20b represents a mobile station that is transmitting uplink feedback information among mobile stations that are receiving MBMS service by SCPTM transmission in the base station 10b. ing. That is, the mobile station 20b is in a connected state. Further, the base station 10a and the base station 10b are base stations that are a source and a destination when the mobile station 20a reselects a cell, respectively.
  • the idle mobile station 20a receives, demodulates and decodes the downlink synchronization channel (PSCH) and downlink broadcast channel (PBCH) for the base station 10b. Further, the mobile station 20a knows that the base station 10b is providing the MBMS service by SCPTM transmission. This knowledge is acquired from the MBMS related information broadcast from the base station 10b (Procedure 1 in FIG. 8, FIG. 7—Procedure 3).
  • the MBMS related information is included in BCCH (Broadcast Control Channel) or MCCH (Multicast Control Channel) which is a logical channel, and is mapped to the downlink shared channel (PDSCH).
  • the MBMS related information includes an MBMS request trigger criterion (described later) in addition to the advertisement information indicating that the base station 10b provides the MBMS service by SCPTM transmission.
  • this knowledge may be acquired through advertisement information broadcast by an adjacent base station (in this case, the base station 10a) before the mobile station 20a moves to this cell.
  • the mobile station 20a confirms whether or not the MBMS service is actually being transmitted in this cell, and determines whether or not to make an MBMS request (FIG. 8—Procedure 2). This determination is made by the MBMS request unit 208. This MBMS request signaling is transmitted using contention based random access.
  • MBMS requests There are two types of MBMS requests. One is an “MBMS service transmission request” that is transmitted when an MBMS service to be received is not transmitted. The other is an “MBMS service feedback request” that is transmitted when the transmission mode (MCS value or the like) of the MBMS service being transmitted is changed or when an uplink feedback resource is requested.
  • MCS value transmission mode
  • uplink feedback resource is requested.
  • the mobile station 20a sends a message 1 (Msg.) Described later to the base station 10b in order to send an MBMS request (MBMS service transmission request message) when the MBMS service to be received is not transmitted. 1) is transmitted (FIG. 8—Procedure 3).
  • the MBMS service to be received is transmitted, if the following conditions (MBMS request transmission conditions) are met, the base station 10b is transmitted in order to transmit an MBMS request (MBMS service feedback request message). Then, a message 1 described later is transmitted (FIG. 8—Procedure 3).
  • the downlink control channel (PDCCH) can be received, demodulated, and decoded, but the downlink shared channel (PDSCH) cannot be received, demodulated, and decoded for a certain period. That is, when the cyclic redundancy check CRC (Cyclic Redundancy Check) added to the downlink shared channel (PDSCH) has not succeeded for a certain period of time.
  • CRC Cyclic Redundancy Check
  • the mobile station 20a measures the downlink synchronization channel (PSCH) and the downlink pilot channel (DPiCH) for the base station 10b through cell selection / reselection (procedure 2 in FIG. 7). That is, a) Correlation value of a synchronization code included in a downlink synchronization channel (PSCH) corresponding to the base station 10b, or correlation value of a reference signal (RS) code included in a downlink pilot channel (DPiCH) corresponding to the base station 10b (For example, dB value, mV value).
  • PSCH downlink synchronization channel
  • DPiCH downlink pilot channel
  • the mobile station 20a uses one or more of these measurement results to compare with the threshold value broadcast from the base station 10b, and determines the downlink channel state (or quality). When the mobile station 20a is below (or below) a predetermined threshold value, the mobile station 20a transmits a message 1 described later to the base station 10b in order to transmit an MBMS request (MBMS service feedback request message).
  • MBMS service feedback request message MBMS service feedback request message
  • Condition 1 is thresholds related to the MBMS reception status
  • Condition 3 is a threshold related to the channel state.
  • the mobile station that has detected that any of the above conditions 1) to 4) is met immediately transmits an MBMS request (MBMS service feedback request) through a contention-type random access procedure.
  • a mobile station that has detected that transmission of an MBMS service to be received has not been performed immediately transmits an MBMS request (MBMS service transmission request message) through a contention type random access procedure.
  • the base station 10b notifies information (MBMS request trigger criteria: MBMS Trigger Criteria) for controlling the occurrence frequency of the MBMS request as described below, so that the mobile station controls the occurrence frequency of the MBMS request. Is possible.
  • MBMS request trigger criteria MBMS Trigger Criteria
  • Criterion 1 Prohibition of MBMS request Criterion 2) Presence / absence of MBMS service transmission Criterion 3) Threshold value of downlink control channel (PDCCH) reception failure determination period used for MBMS service transmission Criterion 4) Used for MBMS service transmission Threshold value for determination period for reception failure of downlink shared channel (PDSCH) to be performed Criterion 5) Threshold value for downlink channel state for MBMS service feedback request Criterion 6) Downlink shared channel (PDSCH) used for MBMS service transmission When using the threshold 1 of the non-conformity determination period of the transmission form (MCS value or the like), the mobile station that has not received the “MBMS request prohibition” from the base station receives an MBMS request (MBMS service transmission request, or (MBMS service feedback request) can be transmitted.
  • MCS value the threshold 1 of the non-conformity determination period of the transmission form
  • an MBMS request (MBMS service feedback request) and / or an MBMS request (MBMS Service transmission request) is not transmitted.
  • the presence / absence of transmission of the MBMS service in the above standard 2) indicates whether the provision of the MBMS service has been advertised but actual data transmission has started.
  • the mobile station receives an “MBMS service transmission presence / absence” from the base station, and only when it detects that the MBMS service is not transmitted, the MBMS request (MBMS service) Send request).
  • the mobile station determines whether an MBMS request (MBMS service feedback request) should be transmitted according to a period during which the downlink control channel (PDCCH) cannot be received, demodulated, or decoded. That is, only the mobile station exceeding the threshold (or above) transmits an MBMS request (MBMS service feedback request).
  • this threshold value may be a value common to all cells that perform the MBMS service using SCPTM transmission.
  • the above criterion 4 when the above criterion 4) is used, it is used for MBMS service transmission by receiving from the base station the “threshold of the downlink shared channel (PDSCH) reception determination impossible period used for MBMS service transmission”.
  • the mobile station determines whether to transmit an MBMS request (MBMS service feedback request) according to a period during which the downlink shared channel (PDSCH) cannot be received / demodulated / decoded. That is, only the mobile station exceeding the threshold (or above) transmits an MBMS request (MBMS service feedback request).
  • This threshold value may also be a value common to all cells that perform the MBMS service using SCPTM transmission.
  • the downlink channel state of the local station is set to the threshold (the above condition 3) by receiving the “threshold for downlink channel state for MBMS service feedback request” from the base station. It is determined that only the mobile station that is equal to or less than (or less than the described threshold) transmits an MBMS request (MBMS service feedback request).
  • This threshold value may also be a value common to all cells that perform the MBMS service using SCPTM transmission.
  • the transmission of the MBMS service is performed by receiving the “threshold of the nonconformity determination period of the transmission form of the downlink shared channel (PDSCH) used for transmitting the MBMS service” from the base station.
  • the mobile station determines whether an MBMS request (MBMS service feedback request) should be transmitted according to a period in which the transmission form (MCS value or the like) of the downlink shared channel (PDSCH) used for the mobile station is inappropriate. That is, only the mobile station exceeding the threshold (or above) transmits an MBMS request (MBMS service feedback request).
  • This threshold value may also be a value common to all cells that perform the MBMS service using SCPTM transmission.
  • MBMS request trigger criteria are not limited to this. Further, the operation may be performed not only when a single criterion is met but also when a plurality of criteria are met.
  • contention based random access Contention based Random Access
  • Non-contention based Random Access Random Access
  • the former is random access that may collide between mobile stations
  • the latter is random access that does not cause collision between mobile stations.
  • the former procedure will be described here.
  • Contention-based random access starts when the mobile station 20a transmits a preamble (message 1).
  • the preamble includes a preamble ID that is a signal pattern representing information.
  • 6 bits ie, 64 types
  • 6-bit information is assigned information such as 5 bits for random ID and the remaining 1 bit for downlink path loss / CQI.
  • the mobile station 20a selects the preamble ID based on the random ID, the downlink path loss / CQI, and the like, and transmits the preamble through the random access channel (RACH) (FIG. 8-Procedure 3).
  • the message 1 also has a meaning of requesting an uplink resource for transmitting the message 3 (described later).
  • the base station 10b When the base station 10b receives the preamble from the mobile station 20a, the RA-RNTI (Random Access) indicating a response addressed to the mobile station 20a that has transmitted the preamble using the random access channel (RACH) to the downlink control channel (PDCCH).
  • -Radio Network Temporary Identity indicating a response addressed to the mobile station 20a that has transmitted the preamble using the random access channel (RACH) to the downlink control channel (PDCCH).
  • -Radio Network Temporary Identity Downlink shared channel (PDSCH), synchronization timing shift information, scheduling information of message 3 (described later), Temporary C-RNTI (Temporary Cell-Radio Network Temporary Identity), and
  • a random access response (message 2) including the preamble ID of the received preamble is transmitted (FIG. 8-Procedure 4).
  • the mobile station 20a Upon confirming that the downlink control channel (PDCCH) has RA-RNTI, the mobile station 20a confirms the content of the random access response arranged in the downlink shared channel (PDSCH), and transmits the preamble transmitted by the mobile station 20a. It is detected whether or not the preamble ID is included.
  • the downlink control channel (PDCCH) has RA-RNTI
  • the mobile station 20a continues to wait for a random access response from the base station 10b for a certain period, and when it does not receive the random access response including the transmitted preamble ID, leaves the procedure and transmits the preamble again (see FIG. 8-Procedure 3).
  • the mobile station 20a When detecting the preamble ID transmitted by the mobile station 20a, the mobile station 20a transmits the message 3 in the scheduled radio resource (FIG. 8—Procedure 5).
  • the message 3 includes an RRC connection request (Radio Resource Control Control Connection Request), an MBMS request, and channel quality information (CQI feedback information).
  • the RRC connection request is information used when a mobile station in an idle state transitions to a connected state.
  • the mobile station has a NAS-ID (Non-Access-Stratum-Identity) (for example, IMSI (International Mobile Subscriber Identity) or TMSI). (Temporary Mobile Subscriber Identity)) and the selected PLMN ID (Public Land Mobile Network Identity) are included and transmitted as an RRC message.
  • NAS-ID Non-Access-Stratum-Identity
  • IMSI International Mobile Subscriber Identity
  • TMSI Temporal Mobile Subscriber Identity
  • PLMN ID Public Land Mobile Network Identity
  • An MBMS request is transmitted together with this RRC connection request. That is, the MBMS request is transmitted as L3 (Layer 3) level control information called an RRC message, and includes an MBMS service feedback request message or an MBMS service transmission request message. Each message includes an MBMS service ID for identifying which MBMS service the request is for.
  • the MBMS request may be transmitted by being included in the RRC connection request, but may be transmitted as a separate message. When sent as a separate message, it is included in the RRC signal from the mobile station after RRC connection setup.
  • the channel quality information is further included in the MBMS request.
  • the channel quality information may be transmitted as L2 (Layer 2) level control information called MAC control Element, or may be included in the RRC message.
  • L2 Layer 2
  • MAC control Element L2 level control information
  • information indicating the detailed MBMS service reception status different from the channel quality information may be transmitted. This facilitates determination of feedback resource allocation at the base station.
  • the base station 10b When receiving the RRC connection request (message 3) from the mobile station 20a, the base station 10b transmits a message 4 including an RRC connection setup (Radio Resource Control Control Connection) to the mobile station 20a (FIG. 8-Procedure 7).
  • This RRC connection setup also includes a contention resolution message for the mobile station 20a to determine whether it is an RRC connection setup addressed to itself by including the NAS ID detected by the base station 10b in message 3. ing.
  • the mobile station 20a receives the RRC connection setup including the NAS ID of its own station, the RRC connection between the mobile station 20a and the base station 10b is established, and this contention based random access procedure ends.
  • the base station 10b When the MBMS request included in the message 3 is an MBMS service transmission request, the base station 10b starts transmission of the MBMS service and, based on the channel quality information (CQI feedback information) acquired in the message 3, It is determined whether or not an uplink feedback resource is assigned to 20a (FIG. 8-Procedure 6). Also, if the MBMS request is an MBMS service feedback request, the base station 10b determines whether to allocate uplink feedback resources to the mobile station 20a based on the channel quality information (CQI feedback information) acquired in the message 3 (FIG. 8-Procedure 6).
  • CQI feedback information channel quality information
  • uplink feedback resources are provided to the mobile station that has received an MBMS request (MBMS service transmission request or MBMS service feedback request) from a plurality of mobile stations and has transmitted the worst channel quality information (CQI feedback information). Assign. That is, depending on the situation (when it is not the mobile station that transmitted the worst channel quality information), the base station 10b may not allocate uplink feedback resources in this RRC connection setup, or may use RRC instead of RRC connection setup. A connection reject (a message rejecting the RRC connection request received in message 3) may be transmitted. With this scheduling method, it is possible to reduce the overhead of uplink feedback resources.
  • MBMS request MBMS service transmission request or MBMS service feedback request
  • CQI feedback information worst channel quality information
  • the feedback resource allocation information is transmitted as the message 4 together with the RRC connection setup.
  • the feedback resource allocation information is composed of uplink control channel (PUCCH) or uplink shared channel (PUSCH) resource allocation, transmission period, feedback information (channel quality information and / or ACK / NACK feedback information) format, and the like.
  • the feedback resource allocation information may be included in the RRC connection setup or may be sent as a separate message. When sent as a separate message, it is included in the RRC signal from the base station after RRC connection setup.
  • the base station 10b allocates feedback resources to the mobile station 20a.
  • the mobile station 20a that has received the RRC connection setup including the NAS ID of the local station thereafter (FIG. 8—procedure 8 and later), the resource specified in the feedback resource allocation information (uplink control channel (PUCCH))
  • uplink control channel (PUCCH) uplink control channel
  • channel quality information (CQI feedback information) and / or ACK / NACK is transmitted using an uplink shared channel (PUSCH).
  • the base station has worse channel quality information (CQI feedback information) when the number of mobile stations transmitting uplink feedback information reaches a certain number.
  • CQI feedback information channel quality information
  • the base station When a mobile station that returns is appeared, scheduling is performed so that uplink feedback resources are allocated to the mobile station and uplink feedback resources of other mobile stations are released.
  • the base station returns a mobile station that returns worse channel quality information (CQI feedback information). Even if uplink feedback resources are allocated to a station, it is not always necessary to release uplink feedback resources of other mobile stations (however, they may be released).
  • the base station may perform scheduling so as to release the allocation of uplink feedback resources to the mobile station.
  • CQI feedback information channel quality information
  • FIG. 9 will be described with reference to FIG.
  • the mobile station periodically performs cell reselection processing in the idle state (RRC_IDLE) (FIG. 9—step S1).
  • the MBMS related information includes advertisement information indicating that the base station 10b is providing the MBMS service through the SCPTM transmission, the above-described MBMS request trigger criteria, and the like (FIG. 9—Step S2). Since the mobile station 20a that receives MBMS can receive the MBMS service while in the idle state, the mobile station 20a also receives notification information for the connection state. As a result, both the mobile stations in the idle state and the connected state can receive MBMS related information and measurement configuration (Measurement Configuration) information (described later).
  • Measurement Configuration Measurement Configuration
  • the mobile station 20a When the mobile station 20a matches the conditions for making an MBMS request (MBMS request transmission conditions based on the trigger criteria) in the MBMS service that it wants to receive (FIG. 9—YES in step S3), the mobile station 20a enter. On the other hand, if the condition is not met (NO in FIG. 9-step S3), the process returns to FIG. 9-step S1.
  • Step S4 is processing corresponding to FIG. 8—Procedure 3 to Procedure 5. That is, the mobile station 20a transmits a preamble to the base station 10b, receives a random access response including scheduling information for message 3 transmission from the base station 10b, and sends an RRC connection request ( The message 3 including the NAS ID of the own station), the MBMS request, and the channel quality information (CQI feedback information) is transmitted.
  • RRC connection request The message 3 including the NAS ID of the own station
  • the MBMS request the channel quality information (CQI feedback information) is transmitted.
  • CQI feedback information channel quality information
  • step S5 when the message 4 including the RRC connection setup including the NAS ID addressed to the own station and the uplink feedback resource allocation information is received from the base station 10b (FIG. 9—YES in step S5), the mobile station 20a Transits to the connected state (RRC_CONNECTED) and transmits feedback information (CQI feedback information and / or ACK / NACK feedback information) to the base station using the designated uplink feedback resource (FIG. 9—step S6). . In other cases (FIG. 9-NO in step S5), the process returns to FIG. 9-step S1 without changing to the connected state and in the idle state. Also, when an RRC connection reject is received from the base station 10b (in the case of NO in FIG. 9-step S5), the process returns to FIG. 9-step S1 without changing to the connected state and in the idle state.
  • the base station returns a worse channel state and MBMS reception status when the number of mobile stations transmitting uplink feedback information reaches a certain number.
  • uplink feedback resources are allocated to the mobile station, and scheduling is performed so as to release uplink feedback resources of other mobile stations.
  • the base station On the other hand, even if uplink feedback resources are allocated, it is not always necessary to release uplink feedback resources of other mobile stations (however, they may be released).
  • the base station may perform scheduling so as to release allocation of uplink feedback resources to the mobile station.
  • the mobile station transmits an MBMS request to the base station when it meets the conditions for making an MBMS request.
  • the base station can efficiently provide an MBMS service by SCPTM transmission to the mobile station.
  • FIG. 11 is a diagram for explaining a mechanism of communication technology according to the second embodiment of the present invention.
  • FIG. 11 describes a cell 23 in which the base station 10b provides an MBMS service through SCPTM transmission, and mobile stations 20c and 20f.
  • the mobile station 20c represents the connected mobile station that has received the MBMS service from the base station 10b and is transmitting uplink feedback information
  • the mobile station 20f has received the MBMS service.
  • FIG. 12 shows that the mobile stations 20c and 20f connected to the base station 10b receive the MBMS service in the cell 23 where the base station 10b provides the MBMS service by SCPTM transmission. It is a sequence diagram which shows the procedure until it transmits a MBMS measurement report with respect to 10b.
  • the mobile stations 20c and 20f that have already received the MBMS service but are connected to the base station 10b are connected to the downlink synchronization channel (PSCH) and the downlink broadcast channel for the base station 10b. (PBCH) is received, demodulated, and decoded.
  • PSCH downlink synchronization channel
  • PBCH downlink broadcast channel for the base station 10b.
  • the mobile stations 20c and 20f already know that the base station 10b provides the MBMS service by SCPTM transmission.
  • the MBMS related information is included in the logical channel BCCH or MCCH and mapped to the downlink shared channel (PDSCH).
  • the MBMS-related information includes, in addition to advertisement information indicating that the base station 10b is providing the MBMS service by SCPTM transmission, an MBMS measurement report trigger criterion described later.
  • Measurement setting information includes measurement report (Measurement Report) criteria (Periodic Reporting, Event Triggered Reporting, Event Triggered Periodic Report (Event Triggered Periodic Reporting)), measurement, etc. Items (reference signal received power (RSRP: Reference Signal Received Power), carrier received signal strength (RSSI), or reference signal received quality (RSRQ: Reference Signal Received Quality), etc.), measurement item threshold, measurement ID (Measurement Identity) ), Measurement command (Measurement Command), and measurement report format.
  • RSRP Reference Signal Received Power
  • RSSI carrier received signal strength
  • RSSQ Reference Signal Received Quality
  • the measurement report standard is information that defines at what timing the result of measurement by the mobile station is transmitted to the base station.
  • the measurement item represents which signal is to be measured among signals transmitted from the base station.
  • the measurement ID is a signal from a base station of EUTRAN (EUTRA Network) having the same carrier frequency, a signal from a base station in EUTRA having a different carrier frequency, or other than EUTRAN This is used to specify whether the signal is from a base station (that is, UTRAN (Universal Terrestrial Radio Access Network) and GERAN).
  • EUTRAN EUTRA Network
  • UTRAN Universal Terrestrial Radio Access Network
  • GERAN Universal Terrestrial Radio Access Network
  • the measurement command is used when the base station notifies the mobile station of a measurement start / stop command and measurement setting information update. That is, the start and stop of measurement in the mobile station are specified by the base station.
  • the measurement setting information is transmitted as an RRC message (mobile station specific information or cell specific information).
  • the mobile station specific information is transmitted as an RRC signal, and the cell specific information is transmitted as a broadcast signal.
  • the MBMS measurement report standard is added to the measurement report standard at the time of event occurrence (Event (Triggered Reporting) used for normal handover or the like.
  • MBMS measurement reports There are two types of MBMS measurement reports.
  • One of the MBMS measurement reports is an “MBMS service transmission request report” that is transmitted when the MBMS service to be received is not transmitted.
  • Another of the MBMS measurement reports is “MBMS service feedback request” triggered when the transmission mode (MCS value, etc.) of the MBMS service being transmitted is changed or when an uplink feedback resource is requested. Report ".
  • the mobile stations 20c and 20f determine whether or not to actually transmit an MBMS measurement report in this cell (FIG. 12—Procedure 13). This determination is performed by the radio resource control unit 209.
  • the mobile stations 20c and 20f transmit an MBMS measurement report (MBMS service transmission request report message) when the MBMS service to be received is not transmitted (procedure 14 in FIG. 12).
  • MBMS measurement report conditions MBMS service feedback request report message
  • the MBMS measurement report condition the same MBMS request transmission condition as described in the first embodiment can be used. The conditions are shown below.
  • the downlink control channel (PDCCH) can be received, demodulated, and decoded, but the downlink shared channel (PDSCH) cannot be received, demodulated, and decoded for a certain period. That is, when the cyclic redundancy check CRC (Cyclic Redundancy Check) added to the downlink shared channel (PDSCH) has not succeeded for a certain period of time.
  • CRC Cyclic Redundancy Check
  • Condition 1 is a threshold related to the MBMS reception status
  • Condition 3 is a threshold related to the channel state.
  • the mobile station that has detected that any of the above conditions 1) to 4) is met transmits an MBMS measurement report (MBMS service feedback request report message) on the uplink.
  • the mobile station that has detected that the MBMS service that it wants to receive has not been transmitted immediately transmits an MBMS measurement report (MBMS service transmission request report message).
  • the base station 10b notifies the following information (MBMS measurement report trigger criteria: MBMS Trigger Criteria) for controlling the occurrence frequency of the MBMS measurement report, so that the mobile station generates the MBMS request occurrence frequency. Can be controlled.
  • MBMS measurement report trigger criteria MBMS Trigger Criteria
  • Criteria 1 Prohibition of MBMS measurement report Criteria 2) Presence / absence of MBMS service transmission Criteria 3) Threshold value for determination of reception failure of downlink control channel (PDCCH) used for transmission of MBMS service Criteria 4) Transmission of MBMS service Threshold value for determination of reception failure of downlink shared channel (PDSCH) used Criteria 5) Threshold value for downlink channel state for MBMS service feedback request report Criteria 6) Downlink shared channel (PDSCH) used for transmission of MBMS service ) Transmission type (MCS value, etc.) of non-conformity determination period of the above-mentioned criteria 1), the mobile station that has not received “MBMS measurement report prohibition” from the base station receives an MBMS measurement report (MBMS service).
  • PDCCH downlink control channel
  • Transmission request report or MBMS service feedback request report The judges. On the other hand, even if the mobile station receiving “MBMS measurement report prohibition” satisfies any of the above conditions 1) to 4), the MBMS measurement report (MBMS service feedback request report) and / or MBMS The measurement report (MBMS service transmission request report) is not transmitted.
  • the presence / absence of transmission of the MBMS service in the above standard 2) indicates whether the provision of the MBMS service has been advertised but actual data transmission has started.
  • the mobile station receives an “MBMS service transmission presence / absence” from the base station, and only detects that the MBMS service is not transmitted. (MBMS service transmission request report) is transmitted.
  • the MBMS service can be transmitted.
  • the mobile station determines whether to transmit an MBMS measurement report (MBMS service feedback request report) according to a period during which the downlink control channel (PDCCH) to be used cannot be received / demodulated / decoded. That is, only the mobile station exceeding (or exceeding) the threshold value transmits the MBMS measurement report (MBMS service feedback request report).
  • this threshold value may be a value common to all cells that perform the MBMS service using SCPTM transmission.
  • the mobile station determines whether to transmit an MBMS measurement report (MBMS service feedback request report) according to a period during which the downlink shared channel (PDSCH) to be used cannot be received / demodulated / decoded. That is, only the mobile station exceeding (or exceeding) the threshold value transmits the MBMS measurement report (MBMS service feedback request report).
  • This threshold value may also be a value common to all cells that perform the MBMS service using SCPTM transmission.
  • the downlink channel state of the own station is set to the threshold value (the above condition 3) by receiving “the threshold value of the downlink channel state for MBMS service feedback request report” from the base station. Only the mobile station that is equal to or less than (or less than) the threshold value described in (1)) determines that an MBMS measurement report (MBMS service feedback request report) is transmitted.
  • This threshold value may also be a value common to all cells that perform the MBMS service using SCPTM transmission.
  • the MBMS service is received by receiving from the base station the “threshold for the nonconformity determination period of the transmission format of the downlink shared channel (PDSCH) used for transmitting the MBMS service”.
  • Whether the mobile station should transmit an MBMS measurement report (MBMS service feedback request report) according to a period in which the transmission form (MCS value, etc.) of the downlink shared channel (PDSCH) used for transmission of the mobile station is inappropriate Determine whether. That is, only the mobile station exceeding (or exceeding) the threshold value transmits the MBMS measurement report (MBMS service feedback request report).
  • This threshold value may also be a value common to all cells that perform the MBMS service using SCPTM transmission.
  • the base station 10b can change the transmission mode of the MBMS service based on the MBMS measurement report from the mobile station 20f.
  • the above criteria are not limited to this. Further, the operation may be performed not only when a single criterion is met but also when a plurality of criteria are met.
  • a reverse threshold that is, an upper threshold can be provided for the mobile station 20c performing feedback. That is, the mobile station 20c having a channel state equal to or exceeding a certain upper threshold and the MBMS reception status transmits an MBMS measurement report so that the base station 10b can release feedback resources.
  • FIG. 13 will be described with reference to FIG.
  • the mobile station 20f will be described, but the mobile station 20c performs the same processing.
  • the mobile station 20f in the connected state receives, demodulates and decodes the downlink synchronization channel (PSCH) and the downlink broadcast channel (PBCH) from the base station 10b, and is shared by the downlink.
  • MBMS related information broadcast on the channel (PDSCH) or the like is acquired (FIG. 13—step S12).
  • the MBMS related information includes advertisement information indicating that the base station 10b is providing an MBMS service through SCPTM transmission, the above-described MBMS measurement report trigger criteria, and the like.
  • the base station 10b instructs the mobile station 20f to start measurement.
  • the mobile station 20f that is designated to start measurement starts measurement in accordance with the MBMS measurement report standard from the base station 10b (FIG. 13—step S13).
  • the mobile station 20f matches the conditions for performing an MBMS measurement report (MBMS measurement report conditions based on the trigger criteria) in the MBMS service to be received (FIG. 13—YES in step S13), the mobile station 20f performs the MBMS measurement report transmission process. Enter (FIG. 13—Step S14). On the other hand, if the condition is not met (NO in FIG. 13-step S13), the process returns to FIG. 13-step S11.
  • This MBMS measurement report includes information indicating that the MBMS measurement report standard has been reached or the measurement value itself.
  • This measurement report is transmitted as L3 (Layer 3) level control information called an RRC message, and includes an MBMS service feedback request report message or an MBMS service transmission report message.
  • Each message includes an MBMS service ID for identifying which MBMS service the request is for.
  • the base station returns a worse channel state and MBMS reception status when the number of mobile stations transmitting uplink feedback information reaches a certain number.
  • uplink feedback resources are allocated to the mobile station, and scheduling is performed so as to release uplink feedback resources of other mobile stations.
  • the base station On the other hand, even if uplink feedback resources are allocated, it is not always necessary to release uplink feedback resources of other mobile stations (however, they may be released).
  • the base station may perform scheduling so as to release allocation of uplink feedback resources to the mobile station.
  • the base station 10b can change the transmission mode of the MBMS service based on the MBMS measurement report from the mobile station 20f.
  • the mobile station transmits the MBMS measurement report to the base station when it meets the conditions for performing the MBMS measurement report.
  • the base station has an advantage that the mobile station can efficiently provide the MBMS service by the SCPTM transmission.
  • the same MBMS request transmission condition described in the first embodiment and the MBMS measurement report condition described in the second embodiment are used, and the MBMS request trigger described in the first embodiment is further used. If the same standard is used for the criterion and the trigger criterion for the MBMS measurement report described in the second embodiment, the measurement complexity at the mobile station can be reduced. Also, the MBMS measurement report, the MBMS service request report, and the MBMS service feedback request report used in the second embodiment are respectively the same messages as the MBMS measurement request, the MBMS service request, and the MBMS service feedback request of the first embodiment. You may comprise so that it may be used. This can reduce the design complexity of the mobile station.
  • a program for realizing the functions described in the present embodiment is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed to execute processing of each unit. May be performed.
  • the “computer system” here includes an OS and hardware such as peripheral devices.
  • the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
  • the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case, and a program that holds a program for a certain period of time are also included.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system. Also, a communication method may be used.
  • the type of wireless access means is not limited to existing means such as W-CDMA, cdma2000, wireless LAN, and PHS, but the present invention can also be applied to communication means that will be put into practical use in the future.
  • the present invention can be used in a mobile communication system that provides an MBMS service.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

アイドル状態(RRC_IDLE)の移動局20aは、受信したいMBMSサービスにおいて、MBMS要求を行う条件(MBMS要求のトリガー基準)に一致した場合に(S3:YES)、MBMS要求の送信処理に入り、基地局10bに対してプリアンブルを送信し、基地局10bからメッセージ3送信のためのスケジューリング情報などを含むランダムアクセスレスポンスを受信し、基地局10bに対してRRC接続要求(自局のNAS ID 含む)・MBMS要求・チャネル品質情報を含むメッセージ3を送信し(S4)、基地局10bから自局宛のNAS ID を含むRRC接続セットアップとフィードバックリソースの割り当て情報を含むメッセージ4を受信した場合(S5:YES)、移動局20aは接続状態(RRC_CONNECTED)に遷移するとともに、指定されたリソースを用いて基地局へフィードバックする(S6)。これによりSCPTM送信でのMBMSサービス提供を効率的に行うことが可能になる。

Description

通信装置、通信方法
 本発明は、通信技術に関し、特に、移動局装置、基地局装置、通信システム、通信方法、及びプログラムに関する。
 固定系通信および移動系通信に共通に適用できる携帯電話系のネットワークのため、3GPP(3rd Generation Partnership Project、第三世代パートナーシッププロジェクト)では、W-CDMA(Wideband Code Division Multiple Access)方式が第三世代セルラー移動通信方式として標準化され、順次サービスが開始されている。また、通信速度を更に上げたHSDPA(High Speed Downlink Packet Access)も標準化され、サービスが開始されつつある。さらに、3GPPでは、第三世代無線アクセスの進化(Evolved Universal Terrestrial Radio Access、以下、「EUTRA」と称する。)が検討されている。
 EUTRAの下りリンクとして、OFDM(Orthogonal Frequency Division Multiplexing)方式が提案されている。EUTRA技術として、OFDM方式にチャネル符号化等の適応無線リンク制御(リンクアダプテーション、Link Adaptiveion)に基づく適応変復調・誤り訂正方式(AMCS:Adaptive Modulation and Coding Scheme)といった技術が適用されている。AMCS方式とは、高速パケットデータ伝送を効率的に行うために、各移動局の伝搬路状況に応じて、誤り訂正方式、誤り訂正の符号化率、データ変調多値数(MCS:Modulation and Coding Scheme)、時間・周波数軸の符号拡散率(SF:Spreading Factor)、マルチコード多重数など無線伝送パラメーターを切り替える方式である。例えば、データ変調については、伝搬路状況が良好になるに従って、QPSK(Quadrature Phase Shift Keying)変調から、16QAM(Quadrature Amplitude Modulation)変調、64QAM変調など、より高い効率の多値変調に切り替えることで、通信システムの最大スループットを増大させることができる。一方、EUTRAの上りリンクとしては、DFT-S-OFDM(Discrete Fourier transform Spread OFDM)方式が提案されている(下記非特許文献1参照)。
 図1は、EUTRAにおけるチャネル構成を示す図である。EUTRAの下りリンクは、下りリンクパイロットチャネル(DPiCH:Downlink Pilot Channel)と、下りリンク同期チャネル(PSCH:Physical Downlink Synchronization Channel)と、下りリンク共用チャネル(PDSCH:Physical Downlink Shared Channel)と、下りリンク制御チャネル(PDCCH:Physical Downlink Control Channel)と、下りリンク報知チャネル(PBCH:Physical Broadcast Channel)と、により構成されている。
 また、EUTRAの上りリンクは、上りリンクパイロットチャネル(UPiCH:Uplink Pilot Channel)と、ランダムアクセスチャネル(RACH:Random Access Channel)と、上りリンク共用チャネル(PUSCH:Physical Uplink Shared Channel)と、上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)と、により構成されている(例えば、下記非特許文献1参照)。
 また現在、EUTRAに関する議論では、MBMS(Multimedia Broadcast Multicast Service)サービスについて検討されている。MBMSサービスを提供するセルとしては、ユニキャスト送信のために利用される周波数と異なる周波数(MBMSサービス専用の周波数)を利用してMBMS送信を専門に行うセル(MBMS dedicated cell)と、ユニキャスト送信のために利用される周波数(MBMSサービス専用ではない周波数)を利用してMBMS送信とユニキャスト送信の双方を行うセル(MBMS/Unicast-mixed cell)と、の2つがあり、これらのうちのいずれかのセルを用いて、複数ユーザに対して同時にMBMSサービスを提供することができる。
 そして、MBMSサービスの送信方法としては、1つの基地局だけが送信する方法と、時間・周波数同期している複数の基地局が同時に送信する方法と、がある。前者をSCPTM(Single-Cell Point-to-Multipoint)送信と呼び、後者をMBSFN(Multimedia Broadcast multicast service Single Frequency Network)送信と呼ぶ。MBSFN送信では、複数の基地局から同時に同じMBMS送信信号が送信され、移動局においては、その信号が1つのMBMS送信信号として見えるように合成することができる。本明細書では、説明の便宜上、SCPTM送信を行うセルをSCPTMセルと呼ぶこととする。
 図2は、SCPTM送信におけるMBMSサービスの概略構成例を示す図である。SCPTM送信におけるMBMS送信信号は、ユニキャスト送信と同じAMCSが適用される。図2に示すように、SCPTM送信でMBMSサービスを提供するセル23において、複数の移動局20c・20d等がMBMSサービスを受信している状態について考える。SCPTM送信でMBMSサービスを提供する基地局10cと、2つの移動局20cと20dにより構成され、移動局20cと20dがMBMSサービスを受信しているものとする。
 SCPTM送信でMBMSサービスの受信を希望するアイドル状態の移動局は、下記非特許文献1に記載の現在の仕様に基づいて、基地局10cから指定されると、アイドル状態から接続状態へ遷移し、上りリンクのフィードバックリソースが割り当てられ、フィードバックを定期的に行うことが想定されている。MBMS用のフィードバックリソースが割り当てられた接続状態の移動局は、基地局によって指定されたフィードバックリソースを利用して、基地局へフィードバックを行う。このフィードバック情報には、周波数領域ごとの下りリンクのチャネル品質を示すチャネル品質識別子(CQI:Channel Quality Indicator、下りリンクチャネル品質情報、CQIフィードバック情報とも称する)や、MBMSサービスのデータに対するHARQ(Hybrid Automatic Repeat Request)のACK(肯定確認:Positive Acknowledgement)/NACK(否定確認:Negative Acknowledgement)が含まれる。特に、より詳細なCQIフィードバックがさらに必要な場合には、移動局から基地局へ、チャネル品質の良い周波数領域を示す情報がフィードバックされる。
 図2では、矢印で示すように、例えば、下りリンクチャネル品質の悪い移動局20cがフィードバックを行っている。基地局10cでは、移動局20cからのフィードバック情報をもとに、全ての移動局20c・20dがMBMSサービスを受信できるように、AMCSにおける変調多値数・符号化率の組合せであるMCS値(例えば、16QAM変調、2/3コーディングレート)を決定し、MBMSサービスの送信データに対して施してから、SCPTM送信を行う。なお、フィードバックを行っている移動局20cは接続状態であり、フィードバックを行っていない移動局20dはアイドル状態または接続状態である。
3GPP TS (Technical Specification) 36.300 V8.2.0 (2007-09), Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage2 (Release 8). 3GPP TS (Technical Specification) 36.304 V8.0.0 (2007-12), Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) procedure in idle mode (Release 8).
 ここで、図3に示されるケースについて考える。図3は、図2に示されるSCPTM送信でMBMSサービスを提供している基地局10cと、そのMBMSサービスを受信している移動局20cおよび20dに加え、このセル23内へセル再選択(Cell Reselection)をした移動局20eが示されている。このとき移動局20eは、アイドル状態である。
 図2では、基地局10cは、下りリンクチャネル品質の悪い移動局20cに対してフィードバックリソースを割当てることを想定している。すなわち、移動局20cは接続状態である。ここでは、移動局20dの下りリンクチャネル状態(または品質)の方が、移動局20cの下りリンクチャネル状態(または品質)よりも良いことを想定している。このとき、基地局10cは悪い下りリンクチャネル品質に合わせたMCS値でMBMSサービスを送信するが、フィードバックを行っていない下りリンクチャネル品質の良い移動局20dは、MBMSサービスを受信することができる。そのため、この場合は、基地局10cはフィードバックを行っていない移動局20dを考慮せずにMCS値を決定しても問題はない。
 しかしながら、図3のように、フィードバックを行っている移動局20cの下りリンクチャネル状態(または品質)よりも悪い下りリンクチャネル状態(または品質)であり、かつアイドル状態の移動局20eがセル23を選択し、MBMSサービスの受信を希望する場合には、上りリンクのフィードバックリソースが割り当てられていないため、この移動局20eに最適なMCS値でMBMSサービスが提供されなかった。一方、基地局10cにおいても、移動局20eの存在については気づいていないため、移動局20eを考慮せずにMCS値を決定していた。
 また、図2において、移動局20dがアイドル状態でMBMSサービスを受信する場合、移動局20dの下りリンクチャネル状態(または品質)が劣化し、移動局20cの下りリンクのチャネル状態(または品質)よりも悪くなった場合、上りリンクのフィードバックリソースが割り当てられていないため、この移動局20dに最適なMCS値でMBMSサービスが提供されないという問題があった。一方、基地局10cにおいても、移動局20dの下りリンクチャネル状態(または品質)の変化について気づいていないため、移動局20dを考慮せずにMCS値を決定していた。
 以上のように、従来技術を用いて、基地局10cが各移動局に個別の上りリンクのフィードバックリソースを割り当てる場合、上りリンクフィードバックリソースの増大となる。また、基地局10cは、移動局の下りリンクチャネル状態(または品質)に応じて、効率的に移動局を選択することができないという問題があった。
 また同様に、この状況は、SCPTM送信でMBMSサービスを提供しているセルにおいて、MBMSサービスを受信しているが、基地局に対して上りリンクのフィードバック情報を送信していない接続状態の移動局に対しても同様に当てはまる。図11を参照しながらこの状況を説明する。
 図11には、基地局10bがSCPTM送信でMBMSサービスを提供するセル23と、移動局20cと20fとが記述されている。ここでは、移動局20cは基地局10bに対してMBMSサービスを受信し、上りリンクのフィードバック情報を送信している接続状態の移動局を表しており、移動局20fはMBMSサービスを受信しているが、基地局10bに対して上りリンクのフィードバック情報を送信していない接続状態の移動局を表している。
 すなわち、図11において、移動局20fが接続状態でMBMSサービスを受信する場合、移動局20fの下りリンクチャネル状態(または品質)が劣化し、移動局20cの下りリンクのチャネル状態(または品質)よりも悪くなった場合に、上りリンクのフィードバックリソースが割り当てられていないため、この移動局20fに最適なMCS値でMBMSサービスが提供されなかった。一方、基地局10bにおいても、移動局20fの下りリンクチャネル状態(または品質)の変化を知らないため、移動局20fを考慮せずにMCS値を決定していた。
 以上のように、一般的な技術を用いて、基地局10bが各移動局に個別の上りリンクのフィードバックリソースを割り当てる場合に、上りリンクフィードバックリソースが増大するという問題が生じる。また、基地局10bは、移動局の下りリンクチャネル状態(または品質)に応じて、効率的に移動局を選択することができないという問題があった。
 本発明は、上記問題を解決することを目的とするものであり、移動局に対して、SCPTM送信でのMBMSサービス提供を効率的に行う通信技術、特に、移動局装置、基地局装置、移動通信システム及び通信方法を提供するものである。
 本発明の一観点によれば、MBMSサービスを提供する基地局装置と通信を行う移動局装置であって、MBMS要求を行う条件に合致した場合に、前記MBMS要求を前記基地局装置に送信することを特徴とする移動局装置が提供される。前記MBMS要求は、MBMSサービスフィードバックリソース要求であることが好ましい。前記MBMS要求を行う条件は、MBMSサービスの送信時に使用される下りリンク制御チャネル(PDCCH)を一定期間受信・復調・復号をすることができない場合であるのが好ましい。また、前記MBMS要求を行う条件は、下りリンク制御チャネル(PDCCH)を受信・復調・復号することはできたが、下りリンク共用チャネル(PDSCH)の受信・復調・復号が一定期間できなかった場合であっても良い。或いは、前記MBMS要求を行う条件は、自局の下りリンクのチャネル状態(または品質)が、前記基地局装置から報知される閾値以下(または未満)である場合であっても良い。前記MBMS要求を行う条件は、下りリンク制御チャネル(PDCCH)を受信・復調・復号することはできたが、下りリンク制御チャネル(PDCCH)において指定される下りリンク共用チャネル(PDSCH)を復調・復号するための送信形態(MCS値など)が、自局の下りリンクのチャネル状態(または品質)と合わない場合であっても良い。前記MBMS要求を送信するために、競合型ランダムアクセスを行うことが好ましい。
 また、本発明の別の観点によれば、MBMSサービスを提供する基地局装置と通信する移動局装置であって、MBMS測定報告を行う条件に合致した場合に、前記MBMS測定報告を前記基地局装置に送信することを特徴とする移動局装置であっても良い。前記MBMS測定報告は、MBMSサービスフィードバックリソース要求報告であることが好ましい。また、前記MBMS測定報告を行う条件は、MBMSサービスの送信時に使用される下りリンク制御チャネル(PDCCH)を一定期間受信・復調・復号することができない場合であっても良い。或いは、前記MBMS測定報告を行う条件は、下りリンク制御チャネル(PDCCH)を受信・復調・復号することはできたが、下りリンク共用チャネル(PDSCH)の受信・復調・復号が一定期間できなかった場合であっても良い。前記MBMS測定報告を行う条件は、自局の下りリンクのチャネル状態(または品質)が、前記基地局装置から報知される閾値以下(または未満)である場合であっても良い。前記MBMS測定報告を行う条件は、下りリンク制御チャネル(PDCCH)を受信・復調・復号することはできたが、下りリンク制御チャネル(PDCCH)において指定される下りリンク共用チャネル(PDSCH)を復調・復号するための送信形態(MCS値など)が、自局の下りリンクのチャネル状態(または品質)と合わない場合であっても良い。
 本発明の他の観点によれば、移動局装置へMBMSサービスを提供する基地局装置であって、MBMS要求のトリガー基準および/またはMBMS測定報告のトリガー基準を前記移動局装置へ通知することを特徴とする基地局装置が提供される。前記移動局装置からMBMSサービスフィードバック要求を受信した場合、前記移動局装置に対してフィードバックリソースを割当てることが好ましい。前記移動局装置からMBMSサービス送信要求を受信した場合に、前記MBMSサービス送信要求で指定されたMBMSサービスを提供することが好ましい。
 本発明の別の観点によれば、移動局装置とMBMSサービスを提供する基地局装置とを備える通信システムであって、前記移動局装置は、MBMS要求を行う条件に合致した場合に、前記MBMS要求を前記基地局装置に対して送信し、前記基地局装置は、前記移動局装置から受信した前記MBMS要求に基づいて、前記移動局装置に対してフィードバックリソースを割当て、前記移動局装置は、前記基地局装置から指定されたフィードバックリソースを用いて、フィードバック情報を前記基地局装置に対して送信し、前記基地局装置は、前記移動局装置から受信したフィードバック情報に基づいて、前記MBMSサービスの送信形態を変更することを特徴とする通信システムが提供される。
 また、移動局装置とMBMSサービスを提供する基地局装置とを備える通信システムであって、前記移動局装置は、MBMS測定報告を行う条件に合致した場合に、前記MBMS測定報告を前記基地局装置に対して送信し、前記基地局装置は、前記移動局装置から受信したMBMS測定報告に基づいて、前記MBMSサービスの送信形態を変更することを特徴とする通信システムが提供される。
 本発明によれば、移動局に対して、SCPTM送信でのMBMSサービス提供を効率的に行うことができるという利点がある。
EUTRAにおけるチャネル構成を示す図である。 MBMSサービスの概略構成例を示す図である。 図2に示されるSCPTM送信でMBMSサービスを提供している基地局と、そのMBMSサービスを受信している移動局に加え、このセル内へセル再選択(Cell Reselection)をした移動局が示されている図である。 本実施の形態による通信技術に用いられる基地局装置の一構成例を示す機能ブロック図である。 本実施の形態における移動局装置の一構成例を示す機能ブロック図である。 上りリンク共用チャネル(PUSCH)、上りリンク制御チャネル(PUCCH)、ランダムアクセスチャネル(RACH)をマッピングした一例を示す図である。縦軸は周波数、横軸は時間である。 本実施の形態による通信技術を利用した通信システムの一構成例を示す図である。 移動局が、基地局においてSCPTM送信によるMBMSサービス提供していることを知り、基地局に対してフィードバックリソースを要求し、基地局10bによって指定されたフィードバックリソースを用いて、フィードバックするまでの手順を示すシーケンス図である。 図8の手順を通じて、アイドル状態から接続状態になるまでの状態遷移のフローチャートを示す図である。 下りリンクにおける1つの無線フレーム(10ミリ秒)の構成と、無線チャネルのマッピング例を説明するための図である。 基地局からMBMSサービスを受信し、上りリンクのフィードバック情報を送信している接続状態の移動局と、他の移動局はMBMSサービスを受信しているが、基地局からMBMSサービスを受信しているが、上りリンクのフィードバック情報を送信していない接続状態の移動局を示す図である。 本発明の第2の実施の形態による通信技術であって、基地局がSCPTM送信でMBMSサービスを提供するセルにおいて、MBMSサービスを受信しているが、基地局10bに対して接続状態にある移動局20cおよび20fが、基地局10bに対してMBMS測定報告を送信するまでの手順を示すシーケンス図である。 図12の手順を通じて、接続状態にある移動局が、MBMS測定報告をするまでの処理手順を示すフローチャート図である。
符号の説明
100 基地局装置
101 データ制御部
102 OFDM変調部
103 無線部
104 スケジューリング部
105 チャネル推定部
106 DFT-S-OFDM復調部
107 データ抽出部
109 上位層
109a 無線リソース制御部
200 移動局装置
201 データ制御部
202 DFT-S-OFDM変調部
203 無線部
204 スケジューリング部
205 チャネル推定部
206 OFDM復調部
207 データ抽出部
208 MBMS要求部
209 上位層
209a 無線リソース制御部
 (第1の実施の形態)
 以下、本発明の第1の実施の形態による通信技術について図面を参照しながら説明する。
 本実施の形態による通信技術は、基地局装置(以下、「基地局」と称する。)100と、移動局装置(以下、「移動局」と称する)200と、を備えて構成される。
 図4は、本実施の形態による通信技術に用いられる基地局装置の一構成例を示す機能ブロック図である。図4に示す基地局装置の構成例は、第1の実施の形態だけでなく、後述する第2の実施の形態においても適用できるため、これを参照することとする。図4に示すように、基地局装置100は、データ制御部101と、OFDM変調部102と、無線部103と、スケジューリング部104と、チャネル推定部105と、DFT-Spread-OFDM復調部(DFT-S-OFDM復調部)106と、データ抽出部107と、上位層109と、を含んで構成される。
 データ制御部101は、スケジューリング部104から制御データ、ユーザデータおよびMBMSサービス(MBMS送信データとも言う。)の入力を受けるとともに、スケジューリング部104から入力されるスケジューリング情報に基づいて、制御データを、下りリンクパイロットチャネル(DPiCH)、下りリンク同期チャネル(PSCH)、下りリンク共用チャネル(PDSCH)、下りリンク制御チャネル(PDCCH)、下りリンク報知チャネル(PBCH)にマッピングする。また、各移動局に対するユーザデータについては、下りリンク共用チャネル(PDSCH)にマッピングする。マッピングされた各データは、OFDM変調部102へ出力される。
 尚、RRC(Radio Resource Control)メッセージや、MAC(Medium Access Control) control Elementは、下りリンク共用チャネル(PDSCH)にマッピングされて、移動局へ送信される。
 また、SCPTM送信でMBMSサービスを送信する際には、下りリンク共用チャネル(PDSCH)にMBMS送信データをマッピングし、下りリンク制御チャネル(PDCCH)にグループ識別子MBMS-RNTI(MBMS - Radio Network Temporary Identity)をマッピングする。
 また、MBMS関連情報は、論理チャネルであるBCCH(Broadcast Control Channel)またはMCCH(Multicast Control Channel)に含まれており、下りリンク共用チャネル(PDSCH)にマッピングされる。
 また、下りリンクパイロットチャネル(DPiCH)には、参照信号(RS:Reference Signal)がマッピングされる。
 OFDM変調部102は、データ制御部101から入力されたユーザデータおよびMBMS送信データに対して、スケジューリング部104からのスケジューリング情報(下りリンクリソースブロックPRB(Physical Resource Block)割り当て情報(例えば、周波数、時間などリソースブロック位置情報)や、各PRBに対応するMCS値(例えば、16QAM変調、2/3コーディングレート)などを含む)に基づいて、符号化、データ変調、入力信号の直列/並列変換、IFFT(Inverse Fast Fourier Transform、逆高速フーリエ変換)処理、CP(Cyclic Prefix)挿入、並びに、フィルタリングなどOFDM信号処理を行い、OFDM信号を生成して、無線部103へ出力する。
 無線部103は、OFDM変調部102から入力された変調データを無線周波数にアップコンバートして無線信号を生成し、アンテナ(図示せず)を介して、移動局200に送信する。
 また、無線部103は、移動局200からの上りリンクの無線信号を、アンテナ(図示せず)を介して受信し、ベースバンド信号にダウンコンバートして、受信データをチャネル推定部105とDFT-S-OFDM復調部106とに出力する。
 スケジューリング部104は、下りリンクのスケジューリングと、上りリンクのスケジューリングと、を行う。下りリンクのスケジューリングでは、移動局装置200から受信した上りリンクのフィードバック情報(下りリンクのチャネル品質情報(CQIフィードバック情報)や、下りリンクのユーザデータまたはMBMS送信データに対するACK/NACKフィードバック情報など)、各移動局装置の使用可能なPRBの情報、バッファ状況、上位層109から入力されたスケジューリング情報などに基づいて、上位層109から入力された下りリンクの制御データ、ユーザデータおよびMBMS送信データを各チャネルにマッピングするためのスケジューリング処理、及び、各データを変調するための下りリンクの送信形態(MCS値など)の算出処理を行う。これらのスケジューリング情報は、データ制御部101へ出力される。
 また、上りリンクのスケジューリングでは、チャネル推定部105が出力する上りリンクのチャネル状態(無線伝搬路状態)の推定結果、移動局装置200からのリソース割り当て要求(MBMS要求を含む)、各移動局装置200の使用可能なPRBの情報、上位層109から入力されたスケジューリング情報などに基づいて、上りリンクのユーザデータおよび制御データを各チャネルにマッピングするためのスケジューリング処理、及び、各データを変調するための上りリンクの送信形態(MCS値など)の算出処理を行う。これら上りリンクのスケジューリング情報は、データ制御部101へ出力される。
 また、スケジューリング部104は、上位層109から入力された下りリンクの制御データとユーザデータおよびMBMS送信データとをデータ制御部101へ出力する。また、スケジューリング部104は、データ抽出部107から入力された上りリンクの制御データとユーザデータのうち、ユーザデータについては上位層109へ出力し、制御データについては、必要に応じて処理した後に、上位層109へ出力する。
 スケジューリング部104は、MAC control Elementの生成や、移動局装置200との間でMAC control Elementをやり取りする。
 チャネル推定部105は、上りリンクデータの復調のために、上りリンクパイロットチャネル(UPiCH)の復調用パイロット(DRS:Demodulation Reference Signal)から上りリンクのチャネル状態を推定し、その推定結果をDFT-S-OFDM復調部106に出力する。また、上りリンクのスケジューリングを行なうために、上りリンクパイロットチャネル(UPiCH)のスケジューリングパイロット(SRS:Sounding Reference Signal)から上りリンクのチャネル状態を推定し、その推定結果をスケジューリング部104に出力する。尚、上りリンクの通信方式は、DFT-S-OFDM等のようなシングルキャリア方式を想定しているが、OFDM方式のようなマルチキャリア方式を用いてもよい。
 DFT-S-OFDM復調部106は、チャネル推定部105から入力された上りリンクのチャネル状態推定結果に基づいて、無線部103から入力された変調データに対し、DFT変換、サブキャリアマッピング、IFFT変換、フィルタリング等のDFT-S-OFDM信号処理を行って、復調処理を施し、データ抽出部107に出力する。
 データ抽出部107は、DFT-S-OFDM復調部106から入力されたデータに対して、正誤を確認するとともに、確認結果(ACK/NACK)をスケジューリング部104に出力する。また、データ抽出部107は、DFT-S-OFDM復調部106から入力されたデータを、ユーザデータと制御データとに分離して、スケジューリング部104に出力する。分離された制御データには、移動局200から通知された上りリンクのフィードバック情報(下りリンクのチャネル品質情報や下りリンクのユーザデータまたはMBMS送信データ対するACK/NACKフィードバック情報)が含まれている。
 上位層109は、ユーザデータおよび制御データの処理を行う。上位層109は、無線リソース制御部109aを有している。無線リソース制御部109aは、RRCメッセージの生成や、移動局装置200の無線リソース制御部209aとの間でRRCメッセージをやり取りする。また、無線リソース制御部109aは、移動局装置200の状態管理も行っている。また、上位層109は、移動局からのMBMS要求を受信した場合に、MBMS要求に含まれる下りリンクのチャネル品質情報に基づいて、移動局200に対するフィードバックリソースの割り当て情報を生成する。また、無線リソース制御部109aは、測定設定情報を生成し、移動局装置へ通知する。
 図10は、下りリンクにおける1つの無線フレーム(10ミリ秒)の構成と、無線チャネルのマッピング例を説明するための図である。下りリンク無線フレームは、周波数帯域幅(Bch)と時間軸のサブフレーム(SF:Sub-frame)による2次元の複数のPRBにより構成されている。
 例えば、PRBの周波数帯域幅(Bch)を180kHz、サブキャリア周波数帯域幅(Bsc)を15kHz、1つの無線フレームを10ミリ秒、サブフレーム(SF)を1ミリ秒とし、下りリンク無線フレーム全体として、時間方向に10個、周波数方向に110個のPRBが含まれる。また、1つのPRBには12本のサブキャリアが含まれるので、システム全体では1320本のサブキャリアが含まれる。TsはOFDMシンボル長を表す。
 図10に示すように、下りリンクパイロットチャネル(DPiCH、RSを含む)は、各サブフレーム(SF)の先頭にマッピングされる。また、下りリンク報知チャネル(PBCH)と下りリンク同期チャネル(PSCH)とは、各無線フレームの先頭に1つおよび/または無線フレーム中に複数マッピングされている。各PRBの残りの一部は、下りリンク共用チャネル(PDSCH)として使用され、AMCSを用いて各移動局に配分する。
 図5は、本実施の形態における移動局装置の一構成例を示す機能ブロック図である。図5に記載の移動局装置構成は、第1の実施の形態だけでなく、第2の実施の形態においても同様に適用される。図5に示すように、移動局装置200は、データ制御部201と、DFT-S-OFDM変調部202と、無線部203と、スケジューリング部204と、チャネル推定部205と、OFDM復調部206と、データ抽出部207と、上位層209と、を含んで構成されている。
 データ制御部201は、スケジューリング部204から制御データおよびユーザデータの入力を受けるとともに、これらのデータを、スケジューリング部204から入力されるスケジューリング情報に基づいて、上りリンク共用チャネル(PUSCH)と、上りリンク制御チャネル(PUCCH)と、にマッピングする。また、復調用パイロット(DRS)やスケジューリングパイロット(SRS)は、上りリンクパイロットチャネル(UPiCH)にマッピングされる。また、ランダムアクセス(競合ベースランダムアクセスおよび非競合ランダムアクセス)におけるプリアンブル送信の際、プリアンブルはランダムアクセスチャネル(RACH)にマッピングされる。
 移動局装置は、基地局装置から上りリンク共用チャネル(PUSCH)が割り当てられている場合、フィードバック情報(CQIフィードバック情報および/またはACK/NACKフィードバック情報)は上りリンク共用チャネル(PUSCH)にマッピングされる。一方、上りリンク共用チャネル(PUSCH)が割り当てられていない場合、フィードバック情報(CQIフィードバック情報および/またはACK/NACKフィードバック情報)は上りリンク制御チャネル(PUCCH)にマッピングされる。
 このようにマッピングされた各データは、DFT-S-OFDM変調部202へ出力される。
 図6に、上りリンクにおける1つの無線フレーム(10ミリ秒)の構成例を示しており、この上りリンク無線フレームは、複数の無線リソースブロックPRBに分割される。縦軸は周波数、横軸は時間を示している。1つのPRB無線リソースは、周波数方向に180kHz、時間方向に1ミリ秒の領域を単位として構成され、上りリンク共用チャネル(PUSCH)、上りリンク制御チャネル(PUCCH)、ランダムアクセスチャネル(RACH)がマッピングされる。また、上りリンクパイロットチャネル(UPiCH、DRSおよびSRSを含む)は図示していないが、上りリンク共用チャネル(PUSCH)または上りリンク制御チャネル(PUCCH)の領域内に、シンボル単位、サブキャリア単位で分散してマッピングされる。
 DFT-S-OFDM変調部202は、データ制御部201から入力されたデータに対し、データ変調、DFT(離散フーリエ変換)処理、サブキャリアマッピング、IFFT(逆高速フーリエ変換)処理、CP挿入、フィルタリングなどのDFT-S-OFDM信号処理を行い、DFT-S-OFDM信号を生成して、無線部203へ出力する。
 尚、上りリンクの通信方式は、DFT-S-OFDM等のようなシングルキャリア方式を想定しているが、代わりにOFDM方式のようなマルチキャリア方式を用いても良い。
 無線部203は、DFT-S-OFDM変調部202から入力された変調データを無線周波数にアップコンバートして無線信号を生成し、アンテナ(図示せず)を介して、基地局100に送信する。
 また、無線部203は、基地局100からの下りリンクのデータで変調された無線信号を、アンテナ(図示せず)を介して受信し、ベースバンド信号にダウンコンバートして、受信データを、チャネル推定部205およびOFDM復調部206に出力する。
 スケジューリング部204は、チャネル推定部205から入力された下りリンクのチャネル状態(無線伝搬路状態)の推定結果や、データ抽出部207から入力された基地局100からの上りリンクのスケジューリング情報、および、上位層209から入力されるスケジューリング情報に基づいて、上位層209から入力された上りリンクのユーザデータおよび制御データを各チャネルにマッピングするためのスケジューリング処理を行う。なお、上りリンクのMCSについては、基地局100から通知されたMCS値を利用する。これらスケジューリング情報は、データ制御部201へ出力される。スケジューリング部204は、MAC control Elementの生成や、基地局装置100との間でMAC control Elementをやり取りする。
 また、スケジューリング部204は、上位層209から入力された上りリンクの制御データとユーザデータをデータ制御部201へ出力する。また、MBMS要求部208から入力されたMBMS要求をデータ抽出部201に出力する。また、スケジューリング部204は、チャネル推定部205から入力された下りリンクのチャネル品質情報(CQIフィードバック情報)や、データ抽出部207から入力されたACK/NACKフィードバック情報についても、データ制御部201へ出力する。また、スケジューリング部204は、データ抽出部207から入力された下りリンクの制御データとユーザデータのうち、ユーザデータについては上位層209へ出力し、制御データについては、必要に応じて処理した後、上位層209へ出力する。
 チャネル推定部205は、下りリンクデータの復調のために、下りリンクパイロットチャネル(DPiCH)の参照信号(RS)から下りリンクのチャネル状態を推定し、その推定結果をOFDM復調部206に出力する。また、チャネル推定部205は、基地局100に下りリンクのチャネル状態推定結果を通知するために、この推定結果を下りリンクのチャネル品質情報(CQIフィードバック情報)に変換して、スケジューリング部204に出力する。
 OFDM復調部206は、チャネル推定部205から入力された下りリンクのチャネル状態推定結果に基づいて、無線部203から入力された変調データに対して、OFDM復調処理を施し、データ抽出部207に出力する。
 データ抽出部207は、OFDM復調部206から入力されたデータに対して、正誤を確認するとともに、確認結果(ACK/NACKフィードバック情報)をスケジューリング部204に出力する。また、データ抽出部207は、OFDM復調部206から入力されたデータを、ユーザデータと制御データに分離して、スケジューリング部204に出力する。
 上位層209は、ユーザデータおよび制御データの処理を行う。上位層209は、無線リソース制御部209aを有している。無線リソース制御部209aは、RRCメッセージの生成や、基地局装置100の無線リソース制御部109aとRRCメッセージをやり取りする。無線リソース制御部209aは、基地局装置100からのRRCメッセージを保持し、関連機能部にパラメータをセットする。また、無線リソース制御部209aは、自局の状態管理も行っている。
 また、無線リソース制御部209aは、MBMS要求部208を持ち、スケジューリング部204から入力されたデータをもとに、MBMSサービスの送信が行われていない場合には、MBMSサービス送信要求を含むMBMS要求を生成し、スケジューリング部204に出力する。また、送信されているMBMSサービスの送信形態(MCS値など)を変更させる、あるいは、上りリンクのフィードバックリソースを要求する場合には、MBMSサービスフィードバック要求を含むMBMS要求を生成し、スケジューリング部204に出力する。
 また、無線リソース制御部209aは、基地局装置から受信した測定設定情報を設定し、基地局によって指定された測定項目について測定を行い、MBMS測定報告を行う条件に適合した場合に、MBMS測定報告を基地局へ送信する。
 図7、図8および図9は、本実施の形態による通信技術の仕組みを説明するための図である。図7は、基地局10bがSCPTM送信でMBMSサービスを提供するセルにおいて、MBMSサービスを受信している移動局20b(手順1))と、移動局20aが上記非特許文献2に記載の通常のセル再選択手法を利用してこのセルへ移動(セル再選択)してから(手順2))、基地局10bからMBMSサービスを受信するまでの手順(手順3)、4)、5))を示す概念図である。なお、基地局10bは、MBSFN送信およびSCPTM送信の両方をサポートするセルであっても良い。
 図8は、移動局20aが、基地局10bにおいてSCPTM送信によるMBMSサービスを提供していることを知り、基地局10bに対してフィードバックリソースを要求し、基地局10bによって指定されたフィードバックリソースを用いて、上りリンクのフィードバック情報を送信するまでの手順を示すシーケンス図である。図9は、図8の手順を通じて、移動局20aがアイドル状態から接続状態になるまでの状態遷移のフローチャートを示す図である。
 以下、図8のシーケンス図を用いて、アイドル状態の移動局が上りリンクのフィードバック情報を送信する際の流れを説明する。
 図7に示すように、初期状態では、移動局20bは、基地局10bにおいてSCPTM送信でMBMSサービスを受信している移動局の中で、上りリンクのフィードバック情報を送信している移動局を表している。すなわち、移動局20bは接続状態にある。また、基地局10aと基地局10bとは、それぞれ、移動局20aがセル再選択する際の移動元、移動先となる基地局である。
 アイドル状態の移動局20aは、セル再選択(図7の手順2))の結果、基地局10bに対する下りリンク同期チャネル(PSCH)、下りリンク報知チャネル(PBCH)を受信・復調・復号する。また、移動局20aは、基地局10bにおいてSCPTM送信でMBMSサービス提供を行っていることを知る。この知識は、基地局10bから報知されるMBMS関連情報から取得される(図8の手順1、図7-手順3))。MBMS関連情報は、論理チャネルであるBCCH(Broadcast Control Channel)またはMCCH(Multicast Control Channel)に含まれ、下りリンク共用チャネル(PDSCH)にマッピングされている。なお、MBMS関連情報には、基地局10bにおいてSCPTM送信でMBMSサービス提供を行っていることを示す広告情報に加えて、MBMS要求のトリガー基準(後述)などが含まれる。
 尚、この知識は、移動局20aがこのセルへ移動する前の段階で、隣接する基地局(この場合は、基地局10a)が報知する広告情報を通じて取得されてもよい。
 次に、移動局20aは、実際にこのセルにおいてMBMSサービスの送信が行われているかどうかを確認し、MBMS要求を行うかどうかを判断する(図8-手順2)。この判断は、MBMS要求部208が行う。このMBMS要求シクナリングは、競合ベースでのランダムアクセス(contention based random access)を使って送信される。
 MBMS要求には2種類存在する。1つは、受信したいMBMSサービスの送信が行われていない場合に送信する「MBMSサービス送信要求」である。もう1つは、送信されているMBMSサービスの送信形態(MCS値など)を変更させるか、または、上りリンクのフィードバックリソースを要求する場合に送信する「MBMSサービスフィードバック要求」である。
 すなわち、移動局20aは、受信したいMBMSサービスの送信が行われていない場合に、MBMS要求(MBMSサービス送信要求メッセージ)を送信するために、基地局10bに対して、後述のメッセージ1(Msg.1)を送信する(図8-手順3)。また、受信したいMBMSサービスの送信は行われているが、以下の条件(MBMS要求送信条件)に当てはまる場合には、MBMS要求(MBMSサービスフィードバック要求メッセージ)を送信するために、基地局10bに対して、後述のメッセージ1を送信する(図8-手順3)。
 条件1)MBMSサービスの送信時に使用される下りリンク制御チャネル(PDCCH)を一定期間受信・復調・復号することができない場合。すなわち、MBMSサービスの送信時に使用されるグループ識別子MBMS-RNTIを一定期間検出できない場合。
 条件2)下りリンク制御チャネル(PDCCH)を受信・復調・復号することはできたが、下りリンク共用チャネル(PDSCH)の受信・復調・復号が一定期間できなかった場合。すなわち、下りリンク共用チャネル(PDSCH)に付加された巡回冗長検査CRC(Cyclic Redundancy Check)が一定期間成功しなかった場合。
 条件3)自局の下りリンクのチャネル状態(または品質)が、基地局10bから報知される閾値以下(または未満)である場合。
 条件4)下りリンク制御チャネル(PDCCH)を受信・復調・復号することはできたが、下りリンク制御チャネル(PDCCH)において指定される下りリンク共用チャネル(PDSCH)を復調・復号するための送信形態(MCS値など)が、自局の下りリンクのチャネル状態(または品質)と合わない場合。すなわち、自局の下りリンクのチャネル状態(または品質)に対してMCS値が高すぎる(自局の下りリンクチャネル状態よりも良いチャネル状態に対応したMCS値である)ため、MBMSサービスを含む下りリンク共用チャネル(PDSCH)を受信・復調・復号できない場合である。
 上記の条件3)について、以下において、さらに詳細に説明する。移動局20aは、セル選択/再選択(図7の手順2))を通じて、基地局10bに対する下りリンク同期チャネル(PSCH)、下りリンクパイロットチャネル(DPiCH)の測定を行う。すなわち、
a)基地局10bに対応した下りリンク同期チャネル(PSCH)に含まれる同期符号の相関値や、基地局10bに対応した下りリンクパイロットチャネル(DPiCH)に含まれる参照信号(RS)符号の相関値(例えばdB値、mV値)。
b)相関値から算出した下りリンク同期チャネル(PSCH)の受信電力値や下りリンクパイロットチャネル(DPiCH)の受信電力値(RSRP: Reference Signal Received Power)(例えばdBm値、mW値)。
c)下りリンク報知チャネル(PBCH)によって報知された下りリンク同期チャネル(PSCH)や下りリンクパイロットチャネル(DPiCH)の送信電力、および、下りリンク同期チャネル(PSCH)や下りリンクパイロットチャネル(DPiCH)の受信電力値から算出した移動局と基地局間の無線伝播損失値(例えばパスロス、dB値)
d)下りリンクOFDM信号から検出した搬送波受信信号強度(RSSI:EUTRA carrier Received Signal Strength Indicator、例えばdBm値、mW値)
などである。
 移動局20aは、これらの測定結果の1つまたは複数を用いて、基地局10bから報知される閾値と比較し、下りリンクのチャネル状態(または品質)の判定を行う。そして、所定の閾値以下(または未満)の場合、移動局20aは、MBMS要求(MBMSサービスフィードバック要求メッセージ)を送信するために、基地局10bに対して、後述のメッセージ1を送信する。
 尚、上記条件は、これらに限定されるものではない。また、単一の条件に合致した場合に限らず、複数の条件に合致した場合として動作させるようにしてもよい。条件1、条件2、条件4は、MBMSの受信状況に関する閾値であり、条件3は、チャネル状態に関する閾値である。 以上、上記条件1)から4)のいずれかの条件に合致したことを検出した移動局は、すぐに、競合型ランダムアクセス手順を経て、MBMS要求(MBMSサービスフィードバック要求)を送信する。また、受信したいMBMSサービスの送信が行われていないことを検出した移動局も、同様に、すぐに、競合型ランダムアクセス手順を経て、MBMS要求(MBMSサービス送信要求メッセージ)を送信する。
 さらに、基地局10bが、以下のようなMBMS要求の発生頻度を制御するための情報(MBMS要求のトリガー基準:MBMS Trigger Criteria)を報知することによって、移動局は、MBMS要求の発生頻度を制御することが可能である。
 基準1)MBMS要求の禁止
 基準2)MBMSサービスの送信の有無
 基準3)MBMSサービスの送信に使用される下りリンク制御チャネル(PDCCH)の受信不能判定期間の閾値
 基準4)MBMSサービスの送信に使用される下りリンク共用チャネル(PDSCH)の受信不能判定期間の閾値
 基準5)MBMSサービスフィードバック要求用の下りリンクチャネル状態の閾値
 基準6)MBMSサービスの送信に使用される下りリンク共用チャネル(PDSCH)の送信形態(MCS値など)の不適合判定期間の閾値
 上記基準1)を利用する場合、基地局から「MBMS要求の禁止」を受信していない移動局は、MBMS要求(MBMSサービス送信要求、または、MBMSサービスフィードバック要求)の送信が可能であることを判断する。一方、「MBMS要求の禁止」を受信している移動局は、上記条件1)から4)のいずれかを満たす場合であっても、MBMS要求(MBMSサービスフィードバック要求)および/またはMBMS要求(MBMSサービス送信要求)の送信はしない。
 また、上記基準2)のMBMSサービスの送信の有無とは、MBMSサービスの提供が広告されているが、実際のデータ送信が開始されているかどうかを示している。上記基準2)を利用する場合、移動局は、基地局から「MBMSサービスの送信の有無」を受信することで、MBMSサービスが送信されていないことを検出した場合にのみ、MBMS要求(MBMSサービス送信要求)を送信する。
 また、上記基準3)を利用する場合、基地局から「MBMSサービスの送信に使用される下りリンク制御チャネル(PDCCH)の受信判定不能期間の閾値」を受信することで、MBMSサービス送信に使用される下りリンク制御チャネル(PDCCH)を受信・復調・復号できない期間に応じて、移動局は、MBMS要求(MBMSサービスフィードバック要求)を送信すべきかを判断する。すなわち、閾値を越えている(または以上である)移動局のみが、MBMS要求(MBMSサービスフィードバック要求)を送信する。なお、この閾値は、SCPTM送信を用いてMBMSサービスを行うセル全てに共通の値でも良い。
 また、上記基準4)を利用する場合、基地局から「MBMSサービスの送信に使用される下りリンク共用チャネル(PDSCH)の受信判定不能期間の閾値」を受信することで、MBMSサービス送信に使用される下りリンク共用チャネル(PDSCH)を受信・復調・復号できない期間に応じて、移動局は、MBMS要求(MBMSサービスフィードバック要求)を送信すべきかを判断する。すなわち、閾値を越えている(または以上である)移動局のみが、MBMS要求(MBMSサービスフィードバック要求)を送信する。なお、この閾値も、SCPTM送信を用いてMBMSサービスを行うセル全てに共通の値でも良い。
 また、上記基準5)を利用する場合、基地局から「MBMSサービスフィードバック要求用の下りリンクチャネル状態の閾値」を受信することで、自局の下りリンクチャネル状態が閾値(上記の条件3)に記載した閾値に相当)以下(または未満)になった移動局のみが、MBMS要求(MBMSサービスフィードバック要求)を送信することを判断する。なお、この閾値も、SCPTM送信を用いてMBMSサービスを行うセル全てに共通の値でも良い。
 また、上記基準6)を利用する場合、基地局から「MBMSサービスの送信に使用される下りリンク共用チャネル(PDSCH)の送信形態の不適合判定期間の閾値」を受信することで、MBMSサービスの送信に使用される下りリンク共用チャネル(PDSCH)の送信形態(MCS値など)が不適切である期間に応じて、移動局は、MBMS要求(MBMSサービスフィードバック要求)を送信すべきかを判断する。すなわち、閾値を越えている(または以上である)移動局のみが、MBMS要求(MBMSサービスフィードバック要求)を送信する。なお、この閾値も、SCPTM送信を用いてMBMSサービスを行うセル全てに共通の値でも良い。
 尚、上記基準(MBMS要求のトリガー基準)は、これに限られるものではない。また、単一の基準に合致した場合に限らず複数の基準に合致した場合として動作させるようにしてもよい。
 ここで、ランダムアクセスについて説明を行う。ランダムアクセスには、競合ベースランダムアクセス(Contention based Random Access)と非競合ベースランダムアクセス(Non-contention based Random Access)との2つのアクセス方法がある。前者は、移動局間で衝突する可能性のあるランダムアクセスであり、後者は移動局間で衝突が発生しないランダムアクセスである。本実施の形態では、前者を利用するため、ここでは前者の手順について説明を行う。
 競合ベースランダムアクセスは、移動局20aがプリアンブル(メッセージ1)を送信することから開始される。プリアンブルには、情報を表す信号パターンであるプリアンブルIDが含まれている。現在、プリアンブルIDは6ビット(すなわち64種類)を用意することが想定されている。また、6ビットの情報は、5ビットがランダムID、残りの1ビットが下りリンクのパスロス/CQIなどのような情報を割り当てるように想定されている。以上のように、移動局20aは、ランダムID、下りリンクのパスロス/CQIなどをもとに、プリアンブルIDを選択し、ランダムアクセスチャネル(RACH)でプリアンブルを送信する(図8-手順3)。尚、このメッセージ1は、メッセージ3(後述する)を送信するための上りリンクリソースを要求する意味もある。
 基地局10bは、移動局20aからのプリアンブルを受信すると、下りリンク制御チャネル(PDCCH)に、そのランダムアクセスチャネル(RACH)でプリアンブルを送信した移動局20a宛の応答を示すRA-RNTI(Random Access - Radio Network Temporary Identity)を配置するとともに、下りリンク共用チャネル(PDSCH)に、同期タイミングずれ情報、メッセージ3(後述)のスケジューリング情報、Temporary C-RNTI(Temporary Cell-Radio Network Temporary Identity)、および、受信したプリアンブルのプリアンブルIDなどを含んだランダムアクセスレスポンス(メッセージ2)を送信する(図8-手順4)。
 移動局20aは、下りリンク制御チャネル(PDCCH)にRA-RNTIがあることを確認すると、下りリンク共用チャネル(PDSCH)に配置されたランダムアクセスレスポンスの中身を確認して、自局が送信したプリアンブルのプリアンブルIDが含まれるかどうかを検出する。
 尚、移動局20aは、基地局10bからのランダムアクセスレスポンスを一定期間待ち続け、送信したプリアンブルIDを含んだランダムアクセスレスポンスを受信しない場合は、この手順から離脱し、再度プリアンブルを送信する(図8-手順3)。
 移動局20aは、自局が送信したプリアンブルIDを検出すると、スケジューリングされた無線リソースにおいて、メッセージ3を送信する(図8-手順5)。メッセージ3には、RRC接続要求(Radio Resource Control Connection Request)、MBMS要求およびチャネル品質情報(CQIフィードバック情報)が含まれる。
 RRC接続要求は、アイドル状態の移動局が接続状態に遷移するときに使用される情報であり、移動局のNAS ID(Non-Access-Stratum Identity)(例えば、IMSI(International Mobile Subscriber Identity)やTMSI(Temporary Mobile Subscriber Identity))や、選択したPLMN ID(Public Land Mobile Network Identity)などが含まれ、RRCメッセージとして送信される。
 このRRC接続要求と共にMBMS要求が送信される。すなわち、MBMS要求は、RRCメッセージと呼ばれるL3(Layer3)レベルの制御情報として送信され、MBMSサービスフィードバック要求メッセージまたはMBMSサービス送信要求メッセージが含まれる。また、それぞれのメッセージには、どのMBMSサービスに対する要求であるかを識別するためのMBMSサービスIDが含まれる。このように、MBMS要求はRRC接続要求に含めて送信しても良いが、別メッセージとして送信しても良い。別メッセージとして送られる場合は、RRC接続セットアップ後の移動局からのRRC信号に含められる。
 また、MBMS要求には、チャネル品質情報がさらに含まれる。チャネル品質情報は、MAC control Elementと呼ばれるL2(Layer2)レベルの制御情報として送信されてもよいし、RRCメッセージに含まれても良い。また、このMBMS要求では、チャネル品質情報とは異なる詳細なMBMSサービスの受信状況を示す情報(例えば、上記MBMS要求送信条件の合致状況など)を送信しても良い。これによって、基地局でのフィードバックリソース割り当ての判断が容易になる。
 基地局10bは、移動局20aからのRRC接続要求(メッセージ3)を受信すると、RRC接続セットアップ(Radio Resource Control Connection Setup)を含むメッセージ4を移動局20aに送信する(図8-手順7)。このRRC接続セットアップには、基地局10bがメッセージ3で検出したNAS IDを含めることによって、移動局20aが、自局宛のRRC接続セットアップかどうかを判断するためのコンテンションレゾリューションメッセージも兼ねている。移動局20aは、自局のNAS IDを含むRRC接続セットアップを受信した場合は、移動局20aと基地局10bとのRRC接続が確立され、この競合ベースランダムアクセス手順は終了する。
 基地局10bは、メッセージ3に含まれるMBMS要求がMBMSサービス送信要求である場合は、MBMSサービスの送信を開始して、メッセージ3で取得したチャネル品質情報(CQIフィードバック情報)に基づいて、移動局20aに上りリンクのフィードバックリソースを割り当てるかどうかを判断する(図8-手順6)。また、基地局10bは、そのMBMS要求がMBMSサービスフィードバック要求である場合は、メッセージ3で取得したチャネル品質情報(CQIフィードバック情報)に基づいて、移動局20aに上りリンクのフィードバックリソースを割り当てるかどうかを判断する(図8-手順6)。ここでは、複数の移動局からMBMS要求(MBMSサービス送信要求、または、MBMSサービスフィードバック要求)を受信し、最も悪いチャネル品質情報(CQIフィードバック情報)を送信した移動局に対して上りリンクのフィードバックリソースを割り当てる。すなわち、基地局10bは、状況によっては(最も悪いチャネル品質情報を送信した移動局で無い場合は)、このRRC接続セットアップにおいて、上りリンクのフィードバックリソースを割り当てない場合や、RRC接続セットアップではなくRRC接続リジェクト(メッセージ3で受信したRRC接続要求を拒絶するメッセージ)を送信する場合もありうる。このスケジューリング方法により、上りリンクのフィードバックリソースのオーバヘッド削減が可能となる。
 以上、SCPTM送信でMBMSサービスを受信した場合に上りリンクのフィードバックリソースを割り当てた場合は、メッセージ4として、RRC接続セットアップとともに、フィードバックリソースの割り当て情報を送信する。フィードバックリソースの割り当て情報は、上りリンク制御チャネル(PUCCH)または上りリンク共用チャネル(PUSCH)のリソース割り当て、送信周期、フィードバック情報(チャネル品質情報および/またはACK/NACKフィードバック情報)のフォーマットなどで構成される。
 なお、フィードバックリソース割り当て情報は、RRC接続セットアップに含んでも良いし、別メッセージとして送っても良い。別メッセージとして送られる場合は、RRC接続セットアップ後の基地局からのRRC信号に含められる。
 ここでは、基地局10bは、移動局20aに対して、フィードバックリソースを割当てるものとする。
 メッセージ4において、自局のNAS IDを含むRRC接続セットアップを受信した移動局20aは、これ以降(図8-手順8以降)、フィードバックリソース割り当て情報で指定されたリソース(上りリンク制御チャネル(PUCCH)または上りリンク共用チャネル(PUSCH))を利用して、チャネル品質情報(CQIフィードバック情報)、および/または、ACK/NACKを送信する。
 このように、一般に、上りリンクリソースは有限であるため、基地局は、上りリンクのフィードバック情報を送信する移動局数が一定数に達している場合に、より悪いチャネル品質情報(CQIフィードバック情報)を返す移動局が現れた場合には、その移動局に対して上りリンクのフィードバックリソースを割り当てると共に、他の移動局の上りリンクのフィードバックリソースを解放するようにスケジューリングを行う。なお、基地局は、上りリンクのフィードバック情報を送信する移動局数が一定数に達していない場合に、より悪いチャネル品質情報(CQIフィードバック情報)を返す移動局が現れた場合には、その移動局に対して上りリンクのフィードバックリソースを割り当てたとしても、他の移動局の上りリンクのフィードバックリソースを必ずしも解放する必要はない(ただし、解放しても良い)。
 また、基地局は、より良いチャネル品質情報(CQIフィードバック情報)を返す移動局が現れた場合には、その移動局に対する上りリンクのフィードバックリソースの割り当てを解放するようスケジューリングを行ってもよい。
 次に、図9について、図8を参照しながら説明を行う。移動局は、アイドル状態(RRC_IDLE)でセル再選択処理を定期的に行っている(図9-ステップS1)。
 その後、基地局10bからの下りリンク同期チャネル(PSCH)や、下りリンク報知チャネル(PBCH)を受信・復調・復号し、下りリンク共用チャネル(PDSCH)等で報知されるMBMS関連情報を取得する。MBMS関連情報には、基地局10bがSCPTM送信でのMBMSサービス提供を行っていること示す広告情報、前述のMBMS要求のトリガー基準などが含まれる(図9-ステップS2)。なお、MBMSを受信する移動局20aは、アイドル状態でありながらMBMSサービスを受信できるため、接続状態用の報知情報も受信する。これによって、MBMS関連情報および測定設定(Measurement Configuration)情報(後述)を、アイドル状態および接続状態の移動局双方が受信することが可能となる。
 移動局20aは、受信したいMBMSサービスにおいて、MBMS要求を行う条件(トリガー基準に基づいたMBMS要求送信条件)に一致した場合に(図9-ステップS3でYESの場合)、MBMS要求の送信処理に入る。一方、条件に合致しない場合(図9-ステップS3でNOの場合)は、図9-ステップS1に戻る。
 図9-ステップS4は、図8-手順3~手順5に対応する処理である。すなわち、移動局20aは、基地局10bに対してプリアンブルを送信し、基地局10bからメッセージ3送信のためのスケジューリング情報などを含むランダムアクセスレスポンスを受信し、基地局10bに対してRRC接続要求(自局のNAS ID含む)・MBMS要求・チャネル品質情報(CQIフィードバック情報)を含むメッセージ3を送信する。
 次に、基地局10bから自局宛のNAS IDを含むRRC接続セットアップと上りリンクのフィードバックリソースの割り当て情報を含むメッセージ4を受信した場合(図9-ステップS5でYESの場合)、移動局20aは接続状態(RRC_CONNECTED)に遷移するとともに、指定された上りリンクのフィードバックリソースを用いて基地局へフィードバック情報(CQIフィードバック情報および/またはACK/NACKフィードバック情報)を送信する(図9-ステップS6)。これ以外の場合は(図9-ステップS5でNOの場合)、接続状態には遷移することなくアイドル状態のまま、図9-ステップS1に戻る。また、基地局10bからRRC接続リジェクトを受信した場合も(図9-ステップS5でNOの場合)、接続状態には遷移することなくアイドル状態のまま、図9-ステップS1に戻る。
 このように、一般に、上りリンクリソースは有限であるため、基地局は、上りリンクのフィードバック情報を送信する移動局数が一定数に達している場合に、より悪いチャネル状態、MBMS受信状況を返す移動局が現れた場合には、その移動局に対して上りリンクのフィードバックリソースを割り当てると共に、他の移動局の上りリンクのフィードバックリソースを解放するようにスケジューリングを行う。尚、基地局は、上りリンクのフィードバック情報を送信する移動局数が一定数に達していない場合に、より悪いチャネル状態、MBMS受信状況を返す移動局が現れた場合には、その移動局に対して上りリンクのフィードバックリソースを割り当てたとしても、他の移動局の上りリンクのフィードバックリソースを必ずしも解放する必要はない(但し、解放しても良い)。
 また、基地局は、より良いチャネル状態、MBMS受信状況を返す移動局が現れた場合には、その移動局に対する上りリンクのフィードバックリソースの割り当てを解放するようスケジューリングを行ってもよい。
 本実施の形態による通信技術によれば、移動局は、MBMS要求を行う条件に適合した場合に、基地局に対してMBMS要求を送信する。これにより、基地局は、移動局に対して、SCPTM送信でのMBMSサービス提供を効率的に行うことができる。
 <更なる変形例>
 上記第1の実施の形態では、アイドル状態の移動局が、SCPTM送信でMBMSサービスを提供するセルへセル再選択をした場合を例にとって説明を行った。しかしながら、例えば、もともとそのセルにおいて、上りリンクのフィードバックリソースが割り当てられておらず、MBMSサービスを受信しているアイドル状態の移動局の下りリンクのチャネル状態(または品質)やMBMS受信状況が劣化した場合に対しても、図8や図9に記載のシーケンス図、フローチャートを適用することができる。
 (第2の実施の形態)
 次に、本発明の第2の実施の形態による通信技術について図面を参照しながら説明を行う。図11は、本発明の第2の実施の形態による通信技術の仕組みを説明するための図である。図11には、基地局10bがSCPTM送信でMBMSサービスを提供するセル23と、移動局20cと20fが記述されている。ここでは、移動局20cは基地局10bからMBMSサービスを受信し、上りリンクのフィードバック情報を送信している接続状態の移動局を表しており、移動局20fはMBMSサービスを受信しているが、基地局10bに対して上りリンクのフィードバック情報を送信していない接続状態の移動局を表している。また、基地局10bの構成や、移動局20cと20fの構成は、第1の実施形態に記載の構成を利用する。また、図12は、基地局10bがSCPTM送信でMBMSサービスを提供するセル23において、MBMSサービスを受信しているが、基地局10bに対して接続状態にある移動局20cおよび20fが、基地局10bに対してMBMS測定報告を送信するまでの手順を示すシーケンス図である。
 以下、図12のシーケンス図を参照しながら、接続状態の移動局が上りリンクのフィードバック情報を送信する際の流れについて説明する。以下においては、適宜、図11も参照しながら説明する。
 図12に示すように、既にMBMSサービスを受信しているが、基地局10bに対して接続状態にある移動局20cおよび20fは、基地局10bに対する下りリンク同期チャネル(PSCH)、下りリンク報知チャネル(PBCH)を受信・復調・復号している。また、移動局20cおよび20fは、基地局10bにおいてSCPTM送信でMBMSサービス提供を行っていることも既に知っている。
 この知識は、基地局10bから報知されるMBMS関連情報から取得される(図12の手順11)。MBMS関連情報は、論理チャネルであるBCCHまたはMCCHに含まれ、下りリンク共用チャネル(PDSCH)にマッピングされている。尚、MBMS関連情報には、基地局10bにおいてSCPTM送信でMBMSサービス提供を行っていることを示す広告情報に加えて、後述するMBMS測定報告のトリガー基準などが含まれる。
 次に、移動局20cおよび20fは、基地局10bから測定設定(Measurement Configuration)情報を、定期的またはトリガー的に受信している(図12の手順12)。測定設定情報には、後述の測定報告(Measurement Report)基準(定期報告(Periodic Reporting)、イベント発生時報告(Event Triggered Reporting)、または、イベント発生時定期報告(Event Triggered Periodic Reporting)など)、測定項目(参照信号受信電力(RSRP:Reference Signal Received Power)、搬送波受信信号強度(RSSI)、または、参照信号受信品質(RSRQ:Reference Signal Received Quality)など)、測定項目の閾値、測定ID(Measurement Identity)、測定コマンド(Measurement Command)、および、測定報告フォーマットなどが含まれている。
 測定報告基準は、移動局が測定した結果を、どのタイミングで基地局に対して送信するかを規定する情報である。
 測定項目は、基地局から送信される信号のうち、どの信号を測定の対象とするかを表す。
 また、測定IDは、測定の対象が、搬送波周波数が同一であるEUTRAN(EUTRA Network)の基地局からの信号であるのか、搬送波周波数が異なるEUTRA内の基地局からの信号であるのか、EUTRAN以外(すなわちUTRAN(Universal Terrestrial Radio Access Network)およびGERAN)の基地局からの信号であるのか、を指定するために利用される。
 また、測定コマンドは、基地局が移動局に対して、測定の開始・停止命令や測定設定情報の更新を通知するために使用される。すなわち、移動局における測定の開始や停止は、基地局によって指定される。
 前記測定設定情報は、RRCメッセージ(移動局特有情報またはセル特有情報)として送信される。移動局特有情報の場合はRRC信号として、セル特有情報の場合は報知信号として送信される。
 本実施の形態では、通常ハンドオーバーなどのために使用されるイベント発生時報告(Event Triggered Reporting)時の測定報告基準に、MBMS測定報告基準を追加する。
 MBMS測定報告には2種類存在する。MBMS測定報告のうちの1つは、受信したいMBMSサービスの送信が行われていない場合に送信する「MBMSサービス送信要求報告」である。MBMS測定報告のうちのもう1つは、送信されているMBMSサービスの送信形態(MCS値など)を変更させるか、または、上りリンクのフィードバックリソースを要求する場合にトリガーされる「MBMSサービスフィードバック要求報告」である。
 移動局20cおよび20fは、実際にこのセルにおいて、MBMS測定報告を送信するか否かを判断する(図12-手順13)。この判断は、無線リソース制御部209が行う。
 すなわち、移動局20cおよび20fは、受信したいMBMSサービスの送信が行われていない場合に、MBMS測定報告(MBMSサービス送信要求報告メッセージ)を送信する(図12の手順14)。また、受信したいMBMSサービスの送信は行われているが、以下の条件(MBMS測定報告条件)に当てはまる場合には、MBMS測定報告(MBMSサービスフィードバック要求報告メッセージ)を送信する(図12の手順14)。MBMS測定報告条件は、第1の実施の形態において記載したMBMS要求送信条件と同様のものを用いることができる。以下に条件を示す。
 条件1)MBMSサービスの送信時に使用される下りリンク制御チャネル(PDCCH)を一定期間受信・復調・復号することができない場合。すなわち、MBMSサービスの送信時に使用されるグループ識別子MBMS-RNTIを一定期間検出できない場合。
 条件2)下りリンク制御チャネル(PDCCH)を受信・復調・復号することはできたが、下りリンク共用チャネル(PDSCH)の受信・復調・復号が一定期間できなかった場合。すなわち、下りリンク共用チャネル(PDSCH)に付加された巡回冗長検査CRC(Cyclic Redundancy Check)が一定期間成功しなかった場合。
 条件3)自局の下りリンクのチャネル状態(または品質)が、基地局10bから報知される閾値以下(または未満)である場合。
 条件4)下りリンク制御チャネル(PDCCH)を受信・復調・復号することはできたが、下りリンク制御チャネル(PDCCH)において指定される下りリンク共用チャネル(PDSCH)を復調・復号するための送信形態(MCS値など)が、自局の下りリンクのチャネル状態(または品質)と合わない場合。すなわち、自局の下りリンクのチャネル状態(または品質)に対してMCS値が高すぎる(自局の下りリンクチャネル状態よりも良いチャネル状態に対応したMCS値である)ため、MBMSサービスを含む下りリンク共用チャネル(PDSCH)を受信・復調・復号できない場合。
 尚、上記の条件は、これに限定されるものではない。また、単一の条件に合致した場合に限らず、複数の条件に合致した場合として動作させるようにしてもよい。条件1、条件2、条件4は、MBMSの受信状況に関する閾値であり、条件3は、チャネル状態に関する閾値である。
 以上のように、上記条件1)から4)のいずれかの条件に合致したことを検出した移動局は、上りリンクでMBMS測定報告(MBMSサービスフィードバック要求報告メッセージ)を送信する。また、受信したいMBMSサービスの送信が行われていないことを検出した移動局も、同様に、すぐに、MBMS測定報告(MBMSサービス送信要求報告メッセージ)を送信する。
 さらに、基地局10bが、以下のようなMBMS測定報告の発生頻度を制御するための情報(MBMS測定報告のトリガー基準:MBMS Trigger Criteria)を報知することによって、移動局は、MBMS要求の発生頻度を制御することが可能である。
 基準1)MBMS測定報告の禁止
 基準2)MBMSサービスの送信の有無
 基準3)MBMSサービスの送信に使用される下りリンク制御チャネル(PDCCH)の受信不能判定期間の閾値
 基準4)MBMSサービスの送信に使用される下りリンク共用チャネル(PDSCH)の受信不能判定期間の閾値
 基準5)MBMSサービスフィードバック要求報告用の下りリンクチャネル状態の閾値
 基準6)MBMSサービスの送信に使用される下りリンク共用チャネル(PDSCH)の送信形態(MCS値など)の不適合判定期間の閾値
 上記基準1)を利用する場合に、基地局から「MBMS測定報告の禁止」を受信していない移動局は、MBMS測定報告(MBMSサービス送信要求報告、または、MBMSサービスフィードバック要求報告)の送信が可能であることを判断する。一方、「MBMS測定報告の禁止」を受信している移動局は、上記条件1)から4)のいずれかを満たす場合であっても、MBMS測定報告(MBMSサービスフィードバック要求報告)および/またはMBMS測定報告(MBMSサービス送信要求報告)の送信はしない。
 また、上記基準2)のMBMSサービスの送信の有無とは、MBMSサービスの提供が広告されているが、実際のデータ送信が開始されているか否かを示している。上記基準2)を利用する場合には、移動局は、基地局から「MBMSサービスの送信の有無」を受信することで、MBMSサービスが送信されていないことを検出した場合にのみ、MBMS測定報告(MBMSサービス送信要求報告)を送信する。
 また、上記基準3)を利用する場合には、基地局から「MBMSサービスの送信に使用される下りリンク制御チャネル(PDCCH)の受信判定不能期間の閾値」を受信することで、MBMSサービス送信に使用される下りリンク制御チャネル(PDCCH)を受信・復調・復号できない期間に応じて、移動局は、MBMS測定報告(MBMSサービスフィードバック要求報告)を送信すべきかを判断する。すなわち、閾値を越えている(または以上である)移動局のみが、MBMS測定報告(MBMSサービスフィードバック要求報告)を送信する。なお、この閾値は、SCPTM送信を用いてMBMSサービスを行うセル全てに共通の値でも良い。
 また、上記基準4)を利用する場合には、基地局から「MBMSサービスの送信に使用される下りリンク共用チャネル(PDSCH)の受信判定不能期間の閾値」を受信することで、MBMSサービス送信に使用される下りリンク共用チャネル(PDSCH)を受信・復調・復号できない期間に応じて、移動局は、MBMS測定報告(MBMSサービスフィードバック要求報告)を送信すべきかを判断する。すなわち、閾値を越えている(または以上である)移動局のみが、MBMS測定報告(MBMSサービスフィードバック要求報告)を送信する。なお、この閾値も、SCPTM送信を用いてMBMSサービスを行うセル全てに共通の値でも良い。
 また、上記基準5)を利用する場合には、基地局から「MBMSサービスフィードバック要求報告用の下りリンクチャネル状態の閾値」を受信することで、自局の下りリンクチャネル状態が閾値(上記条件3)に記載の閾値に相当)以下(または未満)になった移動局のみが、MBMS測定報告(MBMSサービスフィードバック要求報告)を送信することを判断する。尚、この閾値も、SCPTM送信を用いてMBMSサービスを行うセル全てに共通の値であっても良い。
 また、上記基準6)を利用する場合には、基地局から「MBMSサービスの送信に使用される下りリンク共用チャネル(PDSCH)の送信形態の不適合判定期間の閾値」を受信することで、MBMSサービスの送信に使用される下りリンク共用チャネル(PDSCH)の送信形態(MCS値など)が不適切である期間に応じて、移動局は、MBMS測定報告(MBMSサービスフィードバック要求報告)を送信すべきか否かを判断する。すなわち、閾値を越えている(または以上である)移動局のみが、MBMS測定報告(MBMSサービスフィードバック要求報告)を送信する。なお、この閾値も、SCPTM送信を用いてMBMSサービスを行うセル全てに共通の値でも良い。
 以上から、基地局10bは、移動局20fからのMBMS測定報告に基づいて、MBMSサービスの送信形態を変更することができる。
 尚、上記基準(MBMS測定報告のトリガー基準)は、これに限定されるものではない。また、単一の基準に合致した場合に限らず、複数の基準に合致した場合として動作させるようにしてもよい。
 さらに上記の条件、基準(下限閾値)とは別に、フィードバックを行っている移動局20c用に逆の閾値、すなわち上限閾値を設けることができる。すなわち、ある上限閾値以上のチャネル状態、MBMS受信状況の移動局20cは、MBMS測定報告を送信し、基地局10bがフィードバックリソースを開放できるようにする。
 次に、図13について、図12を参照しながら説明を行う。ここでは、移動局20fについて説明するが、移動局20cも同様の処理である。接続状態(RRC_CONNECTED)にある移動局20f(図13-ステップS11)は、基地局10bから下りリンク同期チャネル(PSCH)や、下りリンク報知チャネル(PBCH)を受信・復調・復号し、下りリンク共用チャネル(PDSCH)等で報知されるMBMS関連情報を取得する(図13-ステップS12)。MBMS関連情報には、基地局10bがSCPTM送信でのMBMSサービス提供を行っていること示す広告情報、前述のMBMS測定報告のトリガー基準などが含まれる。そして、基地局10bは移動局20fに対して測定を開始するよう指定する。測定開始を指定された移動局20fは、基地局10bからのMBMS測定報告基準に従って測定を開始する(図13-ステップS13)。
 移動局20fは、受信したいMBMSサービスにおいて、MBMS測定報告を行う条件(トリガー基準に基づいたMBMS測定報告条件)に一致した場合に(図13-ステップS13でYES)、MBMS測定報告の送信処理に入る(図13-ステップS14)。一方、条件に合致しない場合(図13-ステップS13でNOの場合)は、図13-ステップS11に戻る。
 このMBMS測定報告には、MBMS測定報告基準に達したことを示す情報または測定値そのものが含められる。この測定報告は、RRCメッセージと呼ばれるL3(Layer3)レベルの制御情報として送信され、MBMSサービスフィードバック要求報告メッセージまたはMBMSサービス送信報告メッセージが含まれる。また、それぞれのメッセージには、どのMBMSサービスに対する要求なのかを識別するためのMBMSサービスIDが含まれる。
 このように、一般に、上りリンクリソースは有限であるため、基地局は、上りリンクのフィードバック情報を送信する移動局数が一定数に達している場合に、より悪いチャネル状態、MBMS受信状況を返す移動局が現れた場合には、その移動局に対して上りリンクのフィードバックリソースを割り当てると共に、他の移動局の上りリンクのフィードバックリソースを解放するようにスケジューリングを行う。尚、基地局は、上りリンクのフィードバック情報を送信する移動局数が一定数に達していない場合に、より悪いチャネル状態、MBMS受信状況を返す移動局が現れた場合には、その移動局に対して上りリンクのフィードバックリソースを割り当てたとしても、他の移動局の上りリンクのフィードバックリソースを必ずしも解放する必要はない(但し、解放しても良い)。
 また、基地局は、より良いチャネル状態、MBMS受信状況を返す移動局が現れた場合には、その移動局に対する上りリンクのフィードバックリソースの割り当てを解放するようスケジューリングを行ってもよい。
 さらに、基地局10bは、移動局20fからのMBMS測定報告に基づいて、MBMSサービスの送信形態を変更することができる。
 以上に説明したように、本実施の形態による通信技術によれば、移動局は、MBMS測定報告を行う条件に適合した場合に、基地局に対してMBMS測定報告を送信する。これにより、基地局は、移動局に対して、SCPTM送信でのMBMSサービス提供を効率的に行うことができるという利点がある。
 また、第1の実施の形態に記載のMBMS要求送信条件と第2の実施の形態に記載のMBMS測定報告条件に同じものを用い、さらに、第1の実施の形態に記載のMBMS要求のトリガー基準と第2の実施形態に記載のMBMS測定報告のトリガー基準と、に同じものを用いると、移動局での測定の複雑性を低減することができる。また、第2の実施の形態で使用したMBMS測定報告およびMBMSサービス要求報告およびMBMSサービスフィードバック要求報告を、それぞれ、第1の実施形態のMBMS測定要求およびMBMSサービス要求およびMBMSサービスフィードバック要求と同じメッセージを使用するように構成しても良い。これにより、移動局の設計の複雑性を低減できる。
<更なる変形例>
 尚、本発明は、上記に記載の実施の形態で示した例に限定されず、種々の変更を行うことが可能である。上記の各実施の形態において、添付図面に図示されている構成等については、これらに限定されるものではなく、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。
 また、本実施の形態で説明した機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。尚、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。また、通信方法であっても良い。
 また、ここまでの説明では、便宜上、基地局装置と移動局装置が1対1で処理する場合について説明しているが、基地局が複数存在したり、移動局が複数存在したりしても良いことは勿論である。
 また、無線アクセス手段の種別としては、W-CDMAやcdma2000、無線LAN、PHS等の既存の手段に限らず、将来実用化される通信手段に対しても、本発明は適用可能である。
 本発明は、MBMSサービスを提供する移動通信システムに利用可能である。

Claims (18)

  1.  MBMSサービスを提供する基地局装置と通信を行う移動局装置であって、
     MBMS要求を行う条件に合致した場合に、前記MBMS要求を前記基地局装置に送信することを特徴とする移動局装置。
  2.  前記MBMS要求は、MBMSサービスフィードバックリソース要求であることを特徴とする請求項1に記載の移動局装置。
  3.  前記MBMS要求を行う条件は、MBMSサービスの送信時に使用される下りリンク制御チャネル(PDCCH)を一定期間受信・復調・復号をすることができない場合であることを特徴とする請求項1又は2に記載の移動局装置。
  4.  前記MBMS要求を行う条件は、下りリンク制御チャネル(PDCCH)を受信・復調・復号することはできたが、下りリンク共用チャネル(PDSCH)の受信・復調・復号が一定期間できなかった場合であることを特徴とする請求項1又は2に記載の移動局装置。
  5.  前記MBMS要求を行う条件は、自局の下りリンクのチャネル状態又は品質が、前記基地局装置から報知される閾値以下の場合であることを特徴とする請求項1又は2に記載の移動局装置。
  6.  前記MBMS要求を行う条件は、下りリンク制御チャネル(PDCCH)を受信・復調・復号することはできたが、下りリンク制御チャネル(PDCCH)において指定される下りリンク共用チャネル(PDSCH)を復調・復号するための送信形態が、自局の下りリンクのチャネル状態又は品質と合わない場合であることを特徴とする請求項1又は2に記載の移動局装置。
  7.  前記MBMS要求を送信するために、競合型ランダムアクセスを行うことを特徴とする請求項1から6までのいずれか1項に記載の移動局装置。
  8.  MBMSサービスを提供する基地局装置と通信する移動局装置であって、
     MBMS測定報告を行う条件に合致した場合に、前記MBMS測定報告を前記基地局装置に送信することを特徴とする移動局装置。
  9.  前記MBMS測定報告は、MBMSサービスフィードバックリソース要求報告であることを特徴とする請求項8に記載の移動局装置。
  10.  前記MBMS測定報告を行う条件は、MBMSサービスの送信時に使用される下りリンク制御チャネル(PDCCH)を一定期間受信・復調・復号することができない場合であることを特徴とする請求項8に記載の移動局装置。
  11.  前記MBMS測定報告を行う条件は、下りリンク制御チャネル(PDCCH)を受信・復調・復号することはできたが、下りリンク共用チャネル(PDSCH)の受信・復調・復号が一定期間できなかった場合であることを特徴とする請求項8に記載の移動局装置。
  12.  前記MBMS測定報告を行う条件は、自局の下りリンクのチャネル状態又は品質が、前記基地局装置から報知される閾値以下である場合であることを特徴とする請求項8に記載の移動局装置。
  13.  前記MBMS測定報告を行う条件は、下りリンク制御チャネル(PDCCH)を受信・復調・復号することはできたが、下りリンク制御チャネル(PDCCH)において指定される下りリンク共用チャネル(PDSCH)を復調・復号するための送信形態が、自局の下りリンクのチャネル状態又は品質と合わない場合であることを特徴とする請求項8に記載の移動局装置。
  14.  移動局装置へMBMSサービスを提供する基地局装置であって、
     MBMS要求のトリガー基準および/またはMBMS測定報告のトリガー基準を前記移動局装置へ通知することを特徴とする基地局装置。
  15.  前記移動局装置からMBMSサービスフィードバック要求を受信した場合、前記移動局装置に対してフィードバックリソースを割当てることを特徴とする請求項14に記載の基地局装置。
  16.  前記移動局装置からMBMSサービス送信要求を受信した場合に、前記MBMSサービス送信要求で指定されたMBMSサービスを提供することを特徴とする請求項15に記載の基地局装置。
  17.  移動局装置とMBMSサービスを提供する基地局装置とを備える通信システムであって、
     前記移動局装置は、MBMS要求を行う条件に合致した場合に、前記MBMS要求を前記基地局装置に対して送信し、
     前記基地局装置は、前記移動局装置から受信した前記MBMS要求に基づいて、前記移動局装置に対してフィードバックリソースを割当て、
     前記移動局装置は、前記基地局装置から指定されたフィードバックリソースを用いて、フィードバック情報を前記基地局装置に対して送信し、
     前記基地局装置は、前記移動局装置から受信したフィードバック情報に基づいて、前記MBMSサービスの送信形態を変更することを特徴とする通信システム。
  18.  移動局装置とMBMSサービスを提供する基地局装置とを備える通信システムであって、
     前記移動局装置は、MBMS測定報告を行う条件に合致した場合に、前記MBMS測定報告を前記基地局装置に対して送信し、
     前記基地局装置は、前記移動局装置から受信したMBMS測定報告に基づいて、前記MBMSサービスの送信形態を変更することを特徴とする通信システム。
PCT/JP2009/050956 2008-01-29 2009-01-22 通信装置、通信方法 WO2009096305A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801115160A CN101981953A (zh) 2008-01-29 2009-01-22 通信设备、通信方法
US12/864,962 US8477644B2 (en) 2008-01-29 2009-01-22 Communication apparatus, communication method
JP2009551484A JP4759088B2 (ja) 2008-01-29 2009-01-22 通信装置、通信方法
EP09706956A EP2239968A1 (en) 2008-01-29 2009-01-22 Communication device and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-017549 2008-01-29
JP2008017549 2008-01-29

Publications (1)

Publication Number Publication Date
WO2009096305A1 true WO2009096305A1 (ja) 2009-08-06

Family

ID=40912658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050956 WO2009096305A1 (ja) 2008-01-29 2009-01-22 通信装置、通信方法

Country Status (5)

Country Link
US (1) US8477644B2 (ja)
EP (1) EP2239968A1 (ja)
JP (1) JP4759088B2 (ja)
CN (1) CN101981953A (ja)
WO (1) WO2009096305A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011020384A1 (zh) * 2009-08-18 2011-02-24 中兴通讯股份有限公司 一种多媒体广播组播业务的调度和传输方法及其系统
US20110230179A1 (en) * 2010-03-19 2011-09-22 Lg Electronics Inc. Wireless/wired backhaul-aware cell selection mechanism
WO2011136279A1 (ja) * 2010-04-30 2011-11-03 株式会社 エヌ・ティ・ティ・ドコモ 移動通信システムにおけるユーザ装置及び方法
WO2011147246A1 (zh) * 2010-05-28 2011-12-01 中兴通讯股份有限公司 多媒体广播组播上行资源分配及反馈方法与系统
JP2012157005A (ja) * 2011-01-25 2012-08-16 Ntt Docomo Inc データ再送方法およびその装置
CN103069862A (zh) * 2010-08-06 2013-04-24 京瓷株式会社 无线基站和无线通信方法
CN103687043A (zh) * 2012-09-11 2014-03-26 普天信息技术研究院有限公司 一种建立无线资源控制协议连接的方法
JP2014513489A (ja) * 2011-05-02 2014-05-29 アルカテル−ルーセント Mbmsサービス受信ステータス報告を開始するための方法および装置
EP2373069A3 (en) * 2010-03-29 2014-09-17 Fujitsu Limited Base station apparatus and method for delivering multicast signal
CN104735787A (zh) * 2013-12-18 2015-06-24 中兴通讯股份有限公司 一种pucch资源的分配方法、网络侧设备和通信系统
JP2015527828A (ja) * 2012-07-23 2015-09-17 アップル インコーポレイテッド 協調マルチポイント送信クラスタのアンカ付き絞り込みを行うための方法及びシステム
WO2016121567A1 (ja) * 2015-01-28 2016-08-04 京セラ株式会社 ユーザ端末及び基地局
WO2016121787A1 (ja) * 2015-01-30 2016-08-04 京セラ株式会社 基地局、プロセッサ及びユーザ端末
CN107251588A (zh) * 2015-01-30 2017-10-13 高通股份有限公司 用于点对多点传输的ue反馈
JP2019527953A (ja) * 2016-07-27 2019-10-03 グァンドン オッポ モバイル テレコミュニケーションズ コーポレーション リミテッドGuangdong Oppo Mobile Telecommunications Corp., Ltd. フィードバック情報を伝送する方法、端末機器、および基地局

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5158194B2 (ja) * 2008-05-02 2013-03-06 富士通株式会社 基地局、移動機並びに方法
GB2464994A (en) * 2008-11-04 2010-05-05 Nec Corp Communication system in which access control is dependent on mode of base station
CN101841771B (zh) * 2009-03-18 2013-05-22 电信科学技术研究院 实现单小区多媒体广播组播业务传输的方法及装置
CN102362441B (zh) * 2009-03-22 2016-12-21 Lg电子株式会社 使用多个天线的信道探测方法以及用于其的装置
US20110143675A1 (en) * 2009-06-09 2011-06-16 Qualcomm Incorporated Method and apparatus for facilitating radio link monitoring and recovery
US8441976B2 (en) * 2009-06-29 2013-05-14 Htc Corporation Method of managing multimedia broadcast multicast service reception and related communication device
BR112012032622B1 (pt) * 2010-06-21 2022-04-12 Alcatel Lucent Métodos de e aparelho para a transmissão de estado de recepção de serviço de multidifusão de radiodifusão multimídia
CN102378112B (zh) * 2010-08-12 2016-06-15 中兴通讯股份有限公司 多媒体广播多播业务中统计用户设备信息的方法和系统
GB2485237A (en) 2010-11-08 2012-05-09 Nec Corp MBMS provided by unicast or broadcast/multicast in dependence on the number of interested users.
CN103314609B (zh) * 2011-01-12 2017-02-08 诺基亚通信公司 用于在蜂窝通信网络中分配无线电资源的方法和其装置
CN103095390B (zh) * 2011-10-31 2016-06-29 上海贝尔股份有限公司 一种用于在eNB中配置下行链路的方法与设备
EP2953411B1 (en) * 2011-10-31 2017-08-16 Samsung Electronics Co., Ltd Feedback method, user equipment, and network device for cooperative multi-point communication in communication system
US9473967B2 (en) * 2011-11-17 2016-10-18 Qualcomm Incorporated Method and apparatus for physical layer measurements in multicast broadcast multimedia service systems
CN104025484B (zh) * 2011-12-22 2017-05-17 Lg电子株式会社 在无线接入系统中测量无线通信状态的方法及其设备
CN103260251B (zh) * 2012-02-17 2016-06-15 华为技术有限公司 数据传输方法、基站及用户设备
SG11201407264WA (en) * 2012-05-10 2014-12-30 Nokia Solutions & Networks Oy Service performance feedback in a radio access network
US9516653B2 (en) 2012-06-22 2016-12-06 Lg Electronics Inc. Scheduling method for device-to-device communication and apparatus for same
US9363827B2 (en) 2012-07-23 2016-06-07 Broadcom Corporation Vehicle gateway access in cellular network for vehicle communications
CN103999507B (zh) * 2012-11-30 2018-11-06 华为技术有限公司 通信方法、基站及用户设备
US9509469B2 (en) 2013-04-04 2016-11-29 Futurewei Technologies, Inc. Device, network, and method for utilizing a downlink discovery reference signal
US9900872B2 (en) * 2013-04-17 2018-02-20 Futurewei Technologies, Inc. Systems and methods for adaptive transmissions in wireless network
GB2513870A (en) * 2013-05-07 2014-11-12 Nec Corp Communication system
US9585134B2 (en) * 2013-12-13 2017-02-28 Sharp Kabushiki Kaisha Systems and methods for multi-connectivity operation
CN106105111B (zh) * 2014-01-28 2020-01-31 华为技术有限公司 一种数据传输方法及站点
CN105557012B (zh) * 2014-05-29 2019-07-19 华为技术有限公司 用于mbms测量滤波的用户设备、网络设备、系统及方法
US10638272B2 (en) * 2015-01-09 2020-04-28 Lg Electronics Inc. Method and apparatus for controlling reception of SCPTM service using SCPTM-RNTI
EP3244687B1 (en) * 2015-01-09 2020-05-20 LG Electronics Inc. Method and device for establishing rrc connection for scptm reception
JP6334005B2 (ja) * 2015-01-28 2018-05-30 京セラ株式会社 基地局、ユーザ端末、及び通信制御方法
US9756483B2 (en) * 2015-01-29 2017-09-05 Acer Incorporated Method of single-cell point-to-multipoint transmission
WO2016163837A1 (en) * 2015-04-09 2016-10-13 Lg Electronics Inc. Method and apparatus for handling l2 entity in continuity between sc-ptm transmission and mbsfn transmission in wireless communication system
US10231165B2 (en) 2015-05-13 2019-03-12 Qualcomm Incorporated RRM measurement and reporting for license assisted access
EP3346767B1 (en) 2015-08-30 2022-01-26 LG Electronics Inc. Method and device for performing cell reselection
WO2017153628A1 (en) * 2016-03-11 2017-09-14 Nokia Technologies Oy Feedback signaling management
CN108023708B (zh) * 2016-11-03 2022-09-13 中兴通讯股份有限公司 一种信息发送方法、装置、系统及相关设备
ES2895368T3 (es) * 2017-05-04 2022-02-21 Samsung Electronics Co Ltd Procedimiento y aparato para transmitir información del margen de potencia en un sistema de comunicación
CN109600833B (zh) * 2017-09-30 2023-08-01 中国移动通信有限公司研究院 一种确定传输资源的方法及设备
CN113543179A (zh) * 2017-11-16 2021-10-22 维沃移动通信有限公司 非连接态测量方法、终端及基站
EP3777301A1 (en) * 2018-04-06 2021-02-17 Nokia Technologies Oy Optimized user equipment measurements for fast cell access
CN110972078A (zh) * 2018-09-30 2020-04-07 华为技术有限公司 多播/广播业务传输的方法、核心网网元和终端设备
BR112021006758A8 (pt) * 2018-10-10 2021-08-03 Huawei Tech Co Ltd método e dispositivo de comunicação
US11265879B2 (en) * 2019-07-05 2022-03-01 Qualcomm Incorporated Group component carrier based updates
US11438836B2 (en) * 2019-08-16 2022-09-06 Samsung Electronics Co., Ltd. Methods and systems for managing SCPTM services
CN115190437A (zh) * 2019-12-10 2022-10-14 Oppo广东移动通信有限公司 用于实施反馈辅助多播的方法、用户设备及基站
CN113225695B (zh) * 2020-01-21 2022-12-20 大唐移动通信设备有限公司 一种多媒体广播组播服务业务接收及指示方法、设备、介质
CN115190432A (zh) * 2021-04-01 2022-10-14 华为技术有限公司 一种通信方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515496A (ja) * 2003-04-03 2006-05-25 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるネットワーク接続制御装置及び方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101369135B1 (ko) * 2006-06-21 2014-03-05 엘지전자 주식회사 이동통신 시스템에서의 멀티미디어 및 방송서비스의 품질보장 방법 및 그 단말
US8369860B2 (en) * 2006-08-18 2013-02-05 Interdigital Technology Corporation Sending and reducing uplink feedback signaling for transmission of MBMS data
US8139524B2 (en) * 2007-06-18 2012-03-20 Lg Electronics Inc. Control channel reception method for receiving broadcast or multicast service
KR20120093455A (ko) * 2008-08-29 2012-08-22 인터디지탈 패튼 홀딩스, 인크 다운링크 공유 서비스에 대한 피드백 신호를 전송하고 무선 송수신 유닛의 갯수를 추정하기 위한 방법 및 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515496A (ja) * 2003-04-03 2006-05-25 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるネットワーク接続制御装置及び方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"E-UTRAN; Overall description", 3GPP TS 36.300 V0.1.0 (2006-10), 2006, pages 38 - 39, XP008138954, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Specs/archive/36_series/36.300/36300-010.zip> [retrieved on 20090407] *
MOTOROLA: "Uplink Feedback for E-MBMS", 3GPP TSG RAN1 #49-BIS, JUNE 2007, R1-072710, XP008138930, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_49b/Docs/R1-072710.zip> [retrieved on 20090407] *
MOTOROLA: "Uplink Feedback for E-MBMS", 3GPP TSG RAN2#57, February 2007 (2007-02-01), XP008138935, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_57/Documents/R2-070726.zip> [retrieved on 20090407] *
PANASONIC: "Uplink feedback for eMBMS MBSFN operations", 3GPP TSG-RAN WG2 MEETING #58, R2-071777, May 2007 (2007-05-01), XP008138934, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_58/Documents/R2-071777.zip>> *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8797939B2 (en) 2009-08-18 2014-08-05 Zte Corporation Multimedia broadcast multicast service scheduling and transmission method and system
CN101998274A (zh) * 2009-08-18 2011-03-30 中兴通讯股份有限公司 一种多媒体广播组播业务的调度和传输方法及其系统
WO2011020384A1 (zh) * 2009-08-18 2011-02-24 中兴通讯股份有限公司 一种多媒体广播组播业务的调度和传输方法及其系统
US20110230179A1 (en) * 2010-03-19 2011-09-22 Lg Electronics Inc. Wireless/wired backhaul-aware cell selection mechanism
US8504040B2 (en) * 2010-03-19 2013-08-06 Lg Electronics Inc. Wireless/wired backhaul-aware cell selection mechanism
US9749989B2 (en) 2010-03-29 2017-08-29 Fujitsu Limited Base station apparatus and method for delivering multicast signal
EP2373069A3 (en) * 2010-03-29 2014-09-17 Fujitsu Limited Base station apparatus and method for delivering multicast signal
WO2011136279A1 (ja) * 2010-04-30 2011-11-03 株式会社 エヌ・ティ・ティ・ドコモ 移動通信システムにおけるユーザ装置及び方法
JP2011238993A (ja) * 2010-04-30 2011-11-24 Ntt Docomo Inc 移動通信システムにおけるユーザ装置及び方法
US9491643B2 (en) 2010-04-30 2016-11-08 Ntt Docomo, Inc. User apparatus and method in mobile communication system
WO2011147246A1 (zh) * 2010-05-28 2011-12-01 中兴通讯股份有限公司 多媒体广播组播上行资源分配及反馈方法与系统
CN103069862A (zh) * 2010-08-06 2013-04-24 京瓷株式会社 无线基站和无线通信方法
JP2012157005A (ja) * 2011-01-25 2012-08-16 Ntt Docomo Inc データ再送方法およびその装置
JP2014513489A (ja) * 2011-05-02 2014-05-29 アルカテル−ルーセント Mbmsサービス受信ステータス報告を開始するための方法および装置
JP2015527828A (ja) * 2012-07-23 2015-09-17 アップル インコーポレイテッド 協調マルチポイント送信クラスタのアンカ付き絞り込みを行うための方法及びシステム
US9432221B2 (en) 2012-07-23 2016-08-30 Apple Inc. Methods and systems for adaptive channel estimation/prediction filter design
CN103687043A (zh) * 2012-09-11 2014-03-26 普天信息技术研究院有限公司 一种建立无线资源控制协议连接的方法
CN103687043B (zh) * 2012-09-11 2016-12-21 普天信息技术研究院有限公司 一种建立无线资源控制协议连接的方法
CN104735787A (zh) * 2013-12-18 2015-06-24 中兴通讯股份有限公司 一种pucch资源的分配方法、网络侧设备和通信系统
JP2017504248A (ja) * 2013-12-18 2017-02-02 中興通訊股▲ふん▼有限公司Zte Corporation Pucchリソースの割当方法、ネットワーク側装置及び通信システム
US10492239B2 (en) 2015-01-28 2019-11-26 Kyocera Corporation User terminal and base station
WO2016121567A1 (ja) * 2015-01-28 2016-08-04 京セラ株式会社 ユーザ端末及び基地局
WO2016121787A1 (ja) * 2015-01-30 2016-08-04 京セラ株式会社 基地局、プロセッサ及びユーザ端末
KR20170115519A (ko) * 2015-01-30 2017-10-17 퀄컴 인코포레이티드 포인트-투-멀티포인트 송신들을 위한 ue 피드백
JPWO2016121787A1 (ja) * 2015-01-30 2017-10-19 京セラ株式会社 基地局、ユーザ端末及び装置
JP2018505613A (ja) * 2015-01-30 2018-02-22 クゥアルコム・インコーポレイテッドQualcomm Incorporated ポイントツーマルチポイント送信に関するueのフィードバック
CN107251588A (zh) * 2015-01-30 2017-10-13 高通股份有限公司 用于点对多点传输的ue反馈
US11025371B2 (en) 2015-01-30 2021-06-01 Qualcomm Incorporated UE feedback for point-to-multipoint transmissions
KR102615582B1 (ko) * 2015-01-30 2023-12-18 퀄컴 인코포레이티드 포인트-투-멀티포인트 송신들을 위한 ue 피드백
JP2019527953A (ja) * 2016-07-27 2019-10-03 グァンドン オッポ モバイル テレコミュニケーションズ コーポレーション リミテッドGuangdong Oppo Mobile Telecommunications Corp., Ltd. フィードバック情報を伝送する方法、端末機器、および基地局
US10892854B2 (en) 2016-07-27 2021-01-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method, terminal device and base station for transmitting feedback information

Also Published As

Publication number Publication date
CN101981953A (zh) 2011-02-23
JP4759088B2 (ja) 2011-08-31
EP2239968A1 (en) 2010-10-13
US8477644B2 (en) 2013-07-02
JPWO2009096305A1 (ja) 2011-05-26
US20100309836A1 (en) 2010-12-09

Similar Documents

Publication Publication Date Title
JP4759088B2 (ja) 通信装置、通信方法
JP4777480B2 (ja) 通信装置、通信方法
JP6546607B2 (ja) 無線通信システムにおいて競合ベースリソースを用いたスケジューリング要求伝送方法及びそのための装置
AU2008301677B2 (en) Radio communication system, base station device, mobile station device, and random access method
JP5183687B2 (ja) 移動通信システム、処理方法、移動局装置および基地局装置
JP4864096B2 (ja) 1対多サービス通信
KR101281851B1 (ko) 무선 통신 시스템에서 고속 액세스를 위한 장치 및 방법
WO2013065409A1 (ja) 基地局装置、移動局装置、無線通信方法、無線通信システム、および集積回路
EA027151B1 (ru) Устройство терминала, устройство базовой станции, способ радиосвязи и процессор
KR20080107457A (ko) 무선 통신 시스템에서의 고속 액세스 장치 및 방법
KR20100138812A (ko) 멀티미디어 브로드캐스트/멀티캐스트 서비스에서 오류 패킷의 재전송 요구 정보 전송 방법 및 재전송 요구에 대한 오류 패킷 재전송 방법
US20100110953A1 (en) Method for transmitting phasing information and phasing method in mobile communication system
KR101727086B1 (ko) 하이브리드 자동 재전송 요청 지시자 정보를 송신하는 방법 및 장치
CN110708147B (zh) Harq反馈信息的传输、指示方法及装置、存储介质、终端、基站
CN118020258A (zh) 用于群组共有的dci有效负载大小确定的方法及设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111516.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09706956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009551484

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12864962

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009706956

Country of ref document: EP