WO2009096028A1 - Motive power supply system for plant, method for operating the same, and method for modifying the same - Google Patents

Motive power supply system for plant, method for operating the same, and method for modifying the same Download PDF

Info

Publication number
WO2009096028A1
WO2009096028A1 PCT/JP2008/051573 JP2008051573W WO2009096028A1 WO 2009096028 A1 WO2009096028 A1 WO 2009096028A1 JP 2008051573 W JP2008051573 W JP 2008051573W WO 2009096028 A1 WO2009096028 A1 WO 2009096028A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
steam
turbine equipment
power supply
gas turbine
Prior art date
Application number
PCT/JP2008/051573
Other languages
French (fr)
Japanese (ja)
Inventor
Yukinori Katagiri
Kouichi Chino
Yasuo Fukushima
Mutsumi Horitsugi
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2009506827A priority Critical patent/JP4910042B2/en
Priority to PCT/JP2008/051573 priority patent/WO2009096028A1/en
Publication of WO2009096028A1 publication Critical patent/WO2009096028A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/02Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
    • F01K17/025Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic in combination with at least one gas turbine, e.g. a combustion gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0268Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0284Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/70Steam turbine, e.g. used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • F25J2240/82Hot exhaust gas turbine combustion engine with waste heat recovery, e.g. in a combined cycle, i.e. for generating steam used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the present invention relates to a power supply system for a plant that supplies power to a plant, and an operation method and a modification method thereof.
  • An example of this type of plant is a natural gas liquefaction plant that purifies and liquefies natural gas extracted from a gas field.
  • this plant continuous and stable power supply is indispensable in order to maintain the quality of natural gas and maximize the production volume.
  • the necessary power is supplied within the plant by using a combined cycle facility in order to cope with constraints such as the location of the well being located in an area away from other industrial facilities. There is something.
  • combined cycle equipment has the characteristic that the power generation output fluctuates due to daytime and nighttime or annual atmospheric temperature fluctuations.
  • the gas turbine output is relatively decreased during warm weather such as daytime or summer, because the atmospheric temperature relatively increases as compared with other times and seasons.
  • a method has been proposed in which water is sprayed on the gas turbine intake air during warm weather to increase the gas turbine output (see JP 2003-206750 A).
  • the cooling performance of a heat exchanger or the like used for cooling natural gas or refrigerant is relatively improved during cold weather. Therefore, the required power of the compressor that pressurizes and compresses the refrigerant is reduced, and the power required by the plant tends to be reduced. This characteristic is opposite to the characteristic of the combined cycle facility in which the output increases in cold weather, and the efficiency decrease due to surplus steam during cold weather becomes even more remarkable.
  • An object of the present invention is to provide a power supply system for a plant that can suppress a decrease in efficiency when the atmospheric temperature is lowered while supplying continuous and stable power to the plant.
  • the present invention provides a gas turbine facility driven by combustion gas obtained by burning fuel and intake air, an exhaust heat recovery boiler that generates steam from exhaust gas from the gas turbine facility, Steam turbine equipment driven by steam from the exhaust heat recovery boiler, extraction piping for supplying steam extracted from the steam turbine facility to the steam utilization facility, extraction flow rate control valve provided in the extraction piping, air
  • the output command value (MWD) from the plant that changes with the daily change in temperature is lower than the rated output value (MWD0) of the gas turbine equipment and the steam turbine equipment
  • the total output of the gas turbine equipment and the steam turbine equipment ( MW) is based on a deviation ( ⁇ MW) between the rated output value (MWD0) and the output command value (MWD) so that the output command value (MWD) approaches.
  • a control device for determining a steam flow rate (GblsD) extracted from the steam turbine equipment via the extraction piping and setting the extraction flow rate control valve at an opening degree (CVbls) determined based on the steam flow rate (GblsD).
  • the gas turbine equipment can be operated near the rating even when the atmospheric temperature decreases, the efficiency of the power supply system for the plant can be improved.
  • FIG. 1 is a schematic view of a natural gas liquefaction plant provided with a plant power supply system according to a first embodiment of the present invention.
  • the natural gas liquefaction plant is a facility for producing liquefied natural gas (LNG) 48 by refining and liquefying natural gas extracted from a gas field.
  • the natural gas liquefaction plant (hereinafter referred to as appropriate plant) shown in this figure mainly includes a main heat exchanger 40, a gas-liquid separator 41 (separator), a first refrigeration cycle system (mixed refrigerant refrigeration cycle system) 60, A second refrigeration cycle system (propane refrigeration cycle system) 61 is provided.
  • the main heat exchanger 40 cools and liquefies natural gas (source gas 49) from which impurities have been separated by a natural gas refining facility (not shown) with the first refrigerant from the first refrigeration cycle system 60. .
  • a natural gas introduction pipe 62 from a natural gas purification facility is introduced.
  • the natural gas introduction pipe 62 circulates the source gas 49 and passes through the main heat exchanger 40 and extends to the outside of the main heat exchanger 40.
  • the main heat exchanger 40 is connected to a gas-liquid separator 41 into which the first refrigerant cooled by the first refrigeration cycle system 60 is introduced.
  • the liquid phase portion and the gas phase portion of the first refrigerant separated by the gas-liquid separator 41 are separately led to the main heat exchanger 40 and used for cooling the raw material gas 49.
  • the raw material gas 49 supplied from the natural gas refining facility is cooled by the first refrigerant when passing through the main heat exchanger 40, and then further cooled to pass through the expansion valve 65 to liquefy natural gas 48. It becomes.
  • the first refrigeration cycle system (mixed refrigerant refrigeration cycle system) 60 compresses and cools the first refrigerant to be supplied to the main heat exchanger 40.
  • the working fluid (first refrigerant) of the first refrigeration cycle system 60 in the present embodiment is a mixed refrigerant (MCR) mainly composed of methane, ethane, and propane.
  • MCR mixed refrigerant
  • the first refrigeration cycle system 60 cools the first refrigerant compressed by the low-pressure refrigerant compressor 10a and the low-pressure refrigerant compressor 10a that compresses the first refrigerant used for cooling the natural gas in the main heat exchanger 40.
  • An intermediate cooler 47a a high-pressure refrigerant compressor 10b that compresses the first refrigerant cooled by the intermediate cooler 47a, a post-cooler 47b that cools the first refrigerant compressed by the high-pressure refrigerant compressor 10b, and a plant
  • an electric motor 16 that drives the low-pressure refrigerant compressor 10a and the high-pressure refrigerant compressor 10b with electric power supplied from a power supply system 80 (described later) via a power system 18 (see FIG. 2).
  • the inlet of the low-pressure refrigerant compressor 10a is connected to the main heat exchanger 40.
  • the outlet of the post-cooler 47b is connected to the gas-liquid separator 41 after passing through the cooler group (the first cooler 43, the second cooler 44, and the third cooler 45) of the second refrigeration cycle system 61. ing.
  • the low-pressure refrigerant compressor 10a and the high-pressure refrigerant compressor 10b are collectively referred to as the first refrigerant compressor 10 and the gas-liquid separator 41 is cooled through the cooler group of the second refrigeration cycle system 61.
  • the first refrigerant is subjected to gas-liquid separation, and is connected to the outlet of the third cooler 45.
  • the gas-liquid separator 41 supplies the separated liquid phase portion and gas phase portion of the first refrigerant to the main heat exchanger 40 separately.
  • the second refrigeration cycle system (propane refrigeration cycle system) 61 compresses and cools the second refrigerant for cooling the first refrigerant, and cools the first refrigerant from the first refrigeration cycle system 60 with the second refrigerant.
  • the second refrigeration cycle system 61 includes a refrigerant compressor (second refrigerant compressor) 11, an electric motor 17, a condenser 46, a liquid receiver 42, a first cooler 43, a second cooler 44, and A third cooler 45 is provided.
  • the working fluid (second refrigerant) of the second refrigeration cycle system 61 in the present embodiment is propane.
  • the refrigerant compressor 11 compresses the second refrigerant and is driven by an electric motor 17 connected to a drive shaft.
  • the refrigerant compressor 11 has a high pressure stage portion connected to the first cooler 43, an intermediate pressure stage portion connected to the second cooler 44, and a low pressure stage portion connected to the third cooler 45.
  • the second refrigerant (gas) supplied from the coolers 43, 44, 45 to the refrigerant compressor 11 via this connection path cools the second refrigerant in the refrigerant compressor 11.
  • Electric power of the electric motor 17 is supplied from a power supply system 80 via an electric power system 18 (see FIG. 2).
  • the condenser 46 is connected to the outlet of the refrigerant compressor 11 and cools and condenses the second refrigerant compressed by the refrigerant compressor 11.
  • the liquid receiver 42 is connected to the outlet of the condenser 46 and receives the second refrigerant condensed by the condenser 46.
  • a second refrigerant condensed and liquefied is stored in the liquid receiver 42.
  • the first cooler 43 is connected to the outlet of the liquid receiver 42, and receives the second refrigerant that has been expanded under reduced pressure and reduced in temperature via an expansion valve.
  • the second cooler 44 is connected to the first cooler 43, and receives the second refrigerant further reduced in temperature via the expansion valve.
  • the third cooler 45 is connected to the second cooler 44, and receives the second refrigerant whose temperature has been further reduced via the expansion valve.
  • first cooler 43 Inside the first cooler 43, the second cooler 44, and the third cooler 45, a pipe through which the first refrigerant (mixed refrigerant) flows is arranged.
  • the second refrigerant (propane) received in the coolers 43, 44, and 45 takes heat from the first refrigerant and evaporates, thereby cooling the first refrigerant stepwise.
  • the mixed refrigerant (first refrigerant) is cooled to about ⁇ 35 ° C., for example, when it passes through the third cooler 45 and supplied to the gas-liquid separator 41.
  • coolant is determined by the heat exchange amount of the condenser 46, the intermediate
  • the blower air volume and cooling water volume of these heat exchangers 46, 47a, 47b are increased, and the temperature and pressure of the refrigerant are controlled to be constant.
  • the power required by the entire plant or the first refrigerant compressor 10 and the second refrigerant compressor 11 (output command value MWD described later) also changes.
  • FIG. 2 is a schematic diagram of a power supply system for a plant according to the first embodiment of the present invention.
  • the plant power supply system (power supply system) 80 shown in this figure includes a gas turbine facility 20, an intake spray device 6, a water amount adjustment valve 8, a water tank 31, an exhaust heat recovery boiler 3, and a steam turbine facility. 25, a condenser 35, a water production device 30, a power system 18, and a control device 110.
  • the gas turbine facility 20 includes a turbine 1, a compressor 2, and a combustor (not shown).
  • the intake air and fuel compressed by the compressor 2 are burned by the combustor to generate combustion gas.
  • the turbine 1 is rotationally driven by the combustion gas.
  • a generator 14 is connected to the turbine 1 and supplies power to the plant via the power system 18.
  • the power system 18 supplies the power generated by the power supply system to the plant, and the main power supply destination is the motor 16 that drives the first refrigerant compressor and the second refrigerant compressor 11. There is a motor 17 to perform.
  • An intake spray device 6 and a temperature measuring device 7 are provided on the upstream side of the compressor 2.
  • the intake spray device 6 sprays water on the intake air of the gas turbine equipment 20, and is connected to the water tank 31 via the spray water pipe 63.
  • the spray water pipe 63 is provided with a water amount adjustment valve 8 that adjusts the amount of water supplied to the intake spray device 6 according to the atmospheric temperature, and a water transfer pump 32 that pumps up water in the water tank 31.
  • the opening degree of the water amount adjustment valve 8 in the present embodiment is adjusted by an opening degree command (CVwac) output from a combined cycle auxiliary control unit 101 (described later).
  • CVwac opening degree command
  • pure water is preferable in order to suppress corrosion and the like of piping.
  • the temperature measuring device 7 measures the atmospheric temperature, and outputs the measured atmospheric temperature Ta to the combined cycle auxiliary control unit 101.
  • the water tank 31 stores water supplied to the intake spray device 6. Pure water is supplied from the water production apparatus 30 to the water tank 31 of the present embodiment. In addition to the water production apparatus 30, the condenser 35 and other supply sources may be used as the pure water supply source.
  • the exhaust heat recovery boiler 3 heats the water supplied from the condenser 35 via the makeup water pump 34 with the exhaust gas from the gas turbine facility 20 to generate steam.
  • the exhaust heat recovery boiler 3 is provided on the downstream side in the direction in which the exhaust gas from the gas turbine equipment 20 flows. Most of the steam generated in the exhaust heat recovery boiler 3 is supplied to the steam turbine equipment 25 via the flow rate control valve 23, and the rest is discharged to the outside via the chimney 4.
  • the steam turbine facility 25 has a turbine 5 driven by steam from the exhaust heat recovery boiler 3.
  • a generator 15 is connected to the turbine 5, and the steam turbine facility 25 supplies power to the plant via the power system 18.
  • the steam turbine facility 25 is attached with an extraction pipe 64 for extracting a part of the steam flowing through the steam turbine facility 25.
  • the extraction pipe 64 of the present embodiment is connected to a so-called intermediate stage portion between the first stage and the last stage of the turbine 5.
  • the extraction pipe 64 is connected to the water production facility (steam utilization facility) 30 and supplies the steam extracted from the steam turbine facility 25 to the water production facility 30.
  • the extraction pipe 64 is provided with an extraction flow rate adjusting valve 9 that adjusts the extraction flow rate of steam from the turbine 5 in accordance with the atmospheric temperature.
  • the opening degree of the extraction flow rate adjusting valve 9 in the present embodiment is adjusted by an opening degree command (CVbls) output from a combined cycle auxiliary control unit 101 (described later).
  • the water production device 30 produces pure water from seawater, river water, etc. using steam from the extraction pipe 64.
  • Seawater or river water which is a raw material of pure water, is supplied to the water production apparatus 30 by a water intake pump 33.
  • seawater or river water pumped up by the intake pump 33 is also supplied to the condenser 35, and is used for condensing steam from the steam turbine equipment 25 by the condenser 35.
  • the pure water produced by the water production apparatus 30 is supplied to the water tank 31 and the condenser 35 and used as intake spray or steam.
  • the control device 110 controls the entire plant, and includes a plant control unit 102, a combined cycle control unit (hereinafter referred to as CC control unit) 100, and a combined cycle auxiliary control unit (hereinafter referred to as CC auxiliary control unit) 101. is doing.
  • CC control unit combined cycle control unit
  • CC auxiliary control unit combined cycle auxiliary control unit
  • the plant control unit 102 includes a CC control unit 100 and a CC auxiliary control unit that output a total output (output command value MWD) required by the entire plant and a signal SW that instructs the power supply system to execute the optimum control according to the present invention.
  • 101 is connected to the CC control unit 100 and the CC auxiliary control unit 101.
  • the output command value MWD changes with the daily change of the atmospheric temperature Ta, as shown in FIGS.
  • the signal SW indicates the start of the optimum operation of the plant based on the atmospheric temperature change according to the present invention after the combined cycle facility including the gas turbine facility 20, the steam turbine facility 25, and the exhaust heat recovery boiler 3 reaches the rated operation state. Or it is a control signal for instruct
  • the CC control unit 100 is connected to the fuel flow control valve 22.
  • the CC control unit 100 calculates the opening degree of the fuel flow control valve 22 based on the output command value MWD, and holds the calculated opening degree.
  • the degree command CVfuel is output to the fuel flow control valve 22.
  • the opening degree command CVfuel determines the amount of fuel supplied to the combustor of the gas turbine equipment 20, and thereby the output of the gas turbine equipment 20 and the turbine rotational speed, and the amount of steam generated in the exhaust heat recovery boiler 3 (that is, The amount of steam supplied to the steam turbine equipment 25) is controlled.
  • the CC auxiliary control unit 101 is connected to the temperature measuring device 7, the water amount adjustment valve 8, and the extraction flow rate adjustment valve 9.
  • the CC auxiliary control unit 101 receives a signal to start control by the signal SW from the plant control unit 102, the CC auxiliary control unit 101 sums the actual outputs of the gas turbine facility 20 and the steam turbine facility 25 (that is, the actual total output of the power supply system ( Hereinafter, based on the output command value MWD and the atmospheric temperature Ta so that the output MW)) approaches the output command value (MWD), the amount of spray water (GwacD) supplied to the intake spray device 6 and the extraction from the steam turbine equipment 25 The steam flow rate (GblsD) to be adjusted is adjusted.
  • gas turbine facility 20 only one gas turbine facility 20 is shown, but a plurality of gas turbine facilities may be connected to the power system 18 according to the power required by the plant.
  • the output of any of the multiple gas turbine facilities decreases due to failure or inspection.
  • the necessary power can be supplemented by the output from other gas turbine equipment.
  • a combined cycle system may be constructed by appropriately providing steam turbine equipment that cooperates with a plurality of gas turbine equipment.
  • FIG. 3 is a circuit diagram of the CC auxiliary control unit 101 of the power supply system according to the first embodiment of the present invention.
  • the CC auxiliary control unit 101 shown in this figure supplies a subtraction unit 50 that calculates an output command value deviation ⁇ MW0 (described later), a maximum selection unit 51 that selects the maximum value of the output command value deviation ⁇ MW0, and an intake spray device 6.
  • a water amount control unit 52 for calculating the amount of water to be calculated, a valve opening degree control unit 53 for adjusting the opening amount of the water amount control valve 8, a minimum selection unit 54 for selecting the minimum value of the output command value deviation ⁇ MW0, and steam turbine equipment 25, a steam flow rate control unit 55 for calculating the steam flow rate to be extracted from the air flow rate 25 and a valve opening degree control unit 56 for adjusting the opening degree of the extraction flow rate control valve 9 are provided.
  • the rated output value MWD0 that is the sum of the rated outputs of the gas turbine facility 20 and the steam turbine facility 25 (that is, the combined cycle facility) and the output command value MWD are input to the subtracting unit 50.
  • the subtracting unit 50 subtracts the rated output value MWD0 from the output command value MWD, and calculates a deviation (output command value deviation) ⁇ MW0 between the output command value MWD and the rated output value MWD0.
  • the output command deviation value ⁇ MW0 calculated by the subtraction unit 50 is output to the maximum selection unit 51 and the minimum selection unit 54.
  • the maximum selection unit 51 compares the output command deviation value ⁇ MW0 with a numerical value 0 (zero), and when the output command deviation value ⁇ MW0 is positive (that is, the output command value MWD exceeds the rated output value MWD0, the demand (MWD) On the other hand, when the output (MWD0) is insufficient), the maximum value ⁇ MWH of the deviation value ⁇ MW0 is output to the water amount control unit 52.
  • the atmospheric temperature Ta is input from the temperature measuring device 7 to the water amount control unit 52.
  • the water amount control unit 52 calculates the water amount GwacD from the deviation maximum value ⁇ MWH by proportional-integral calculation so that the actual output MW of the power supply system approaches the output command value MWD.
  • the water amount control unit 52 corrects the value of the water amount GwacD according to the atmospheric temperature Ta.
  • amendment according to atmospheric temperature Ta is added to the water quantity GwacD, the motive power fall of the compressor 2 by an air temperature fluctuation
  • the water amount GwacD calculated by the water amount control unit 52 is output to the valve opening degree control unit 53.
  • a signal SW from the plant control unit 102 is input to the valve opening degree control unit 53.
  • the valve opening degree control unit 53 determines the opening degree of the water amount adjustment valve 8 based on the water amount GwacD, and calculates an opening degree command CVwac that holds the calculated opening degree.
  • the opening degree command CVwac calculated by the valve opening degree control unit 53 is output to the water amount adjustment valve 8.
  • the minimum selection unit 54 compares the output command deviation value ⁇ MW0 with the numerical value 0 (zero), and when the output command deviation value ⁇ MW0 is negative (that is, the output command value MWD falls below the rated output value MWD0, the demand (MWD) ) (When the output (MWD0) becomes excessive), the minimum value (absolute value maximum value in a negative number) ⁇ MWL of the deviation value ⁇ MW0 is output to the steam flow rate controller 55.
  • the atmospheric temperature Ta is input from the temperature measuring device 7 to the steam flow rate control unit 55.
  • the steam flow rate control unit 55 calculates the extraction flow rate GblsD from the minimum deviation value ⁇ MWL by proportional integration so that the actual output MW of the power supply system approaches the output command value MWD.
  • the steam flow rate control unit 55 corrects the value of the extraction flow rate GblsD according to the atmospheric temperature Ta.
  • amendment according to atmospheric temperature Ta is added to extraction flow GblsD, the output excess of the steam turbine equipment 25 by temperature fluctuation can be suppressed.
  • the extraction flow rate GblsD calculated by the steam flow rate control unit 55 is output to the valve opening degree control unit 56.
  • a signal SW from the plant control unit 102 is input to the valve opening degree control unit 56.
  • the valve opening degree control unit 56 determines the opening degree of the extraction flow rate adjusting valve 9 based on the extraction flow rate GblsD, and calculates an opening degree command CVbls that holds the calculated opening degree.
  • the opening degree command CVbls calculated by the valve opening degree control unit 56 is output to the extraction flow rate adjusting valve 9.
  • the opening degree command CVbls that outputs the opening degree 0 is output. Then, steam extraction is stopped.
  • FIG. 4 is a diagram showing an example of plant operation characteristics when the optimum operation is not performed.
  • the upper diagram is a diagram showing the daily change of the atmospheric temperature Ta
  • the lower diagram is a diagram showing the daily change of the output command value MWD and the output MW of the power supply system at that time.
  • the fuel flow rate supplied to the gas turbine equipment of the power supply system and the steam flow rate supplied to the steam turbine equipment are constant.
  • the output command value MWD required by the plant rises in the daytime (10 to 22:00) and increases at night (0 (10:00 to 20:00 to 24:00).
  • the total MW of the actual output of the gas turbine facility and the steam turbine facility that is, the actual output of the combined cycle facility
  • the total MW of the actual output of the gas turbine facility and the steam turbine facility tends to decrease in the daytime and increase in the night as opposed to the atmospheric temperature change.
  • a heat exchanger or the like used for cooling natural gas or the first and second refrigerants during cold weather (for example, at night).
  • 47b because the cooling performance of the condenser 46) is relatively improved, the required power of the refrigerant compressors 10 and 11 for heating and compressing the first and second refrigerants is reduced, and the output command value MWD tends to be reduced.
  • This characteristic is opposite to the characteristic of the combined cycle facility in which the output increases in cold weather, and the efficiency decrease due to surplus steam during cold weather becomes even more remarkable. For example, in the example shown in FIG. 4, a deviation of ⁇ MW occurs at the maximum in the power supply and demand due to the daily change in the atmospheric temperature Ta.
  • the power supply system has an extraction pipe 64 that supplies steam extracted from the steam turbine facility 25 to the water production apparatus 30, an extraction flow rate control valve 9, and an output from the plant.
  • the command value MWD is lower than the rated output value MWD0 of the gas turbine equipment 20 and the steam turbine equipment 25, the rated output value MWD0 is set so that the total output MW of the gas turbine equipment 20 and the steam turbine equipment 25 approaches the output command value MWD.
  • a control device 110 determines a steam flow rate GblsD to be extracted from the steam turbine equipment 25 based on the deviation ⁇ MW of the output command value MWD, and holds the extraction flow rate adjustment valve 9 at the opening degree CVbls determined based on the steam flow rate GblsD. ing.
  • the CC auxiliary control unit 101 of the control device 110 first calculates the extraction flow rate GblsD from the output command deviation value ⁇ MW0 and the atmospheric temperature Ta, and based on the calculated extraction flow rate GblsD, the opening degree command CVbls. Is calculated. Next, the CC auxiliary control unit 101 outputs the calculated opening degree command CVbls to the extraction flow rate adjustment valve 9, and the opening degree of the extraction flow rate adjustment valve 9 so that the output MW follows the change in the output command value MWD. Adjust.
  • the output MW can be brought close to the output command value MWD while the gas turbine facility 20 is operated near the rating.
  • the steam extracted from the steam turbine facility 25 is supplied to the water production device 30 to produce pure water required by the intake spray device 6 when the temperature rises. The generated steam can be used effectively.
  • the output MW can follow the change in the output command value MWD while operating the gas turbine facility 20 near the rating even when the atmospheric temperature is lowered. Efficiency can be improved.
  • FIG. 5 is a diagram showing an example of plant operation characteristics when the optimum operation is performed.
  • the upper diagram shows the daily change of the output MW when the atmospheric temperature Ta changes as shown in the upper diagram of FIG. 4, and the lower diagram shows the water amount adjustment valve 8 and the bleed flow rate at that time. It is a figure which shows the opening degree (%) of the control valve.
  • output command value MWD ⁇ rated output value MWD0 (ie, output command deviation value ⁇ MW0 ⁇ 0)” is established between 0-10 o'clock and 22-24 o'clock, and “output command value MWD> rated rating between 10-22 o'clock”.
  • the rated output value MWD0 of the power supply system is set so that the output value MWD0 (that is, the output command deviation value ⁇ MW0> 0) is established.
  • the output command deviation value ⁇ MW0 is negative between midnight and morning (0-10 o'clock, 22-24 o'clock) when the atmospheric temperature Ta is relatively low, so the output of the steam turbine equipment 25 is reduced.
  • control is performed to bring the output MW closer to the output command value MWD.
  • control is performed to keep the output MW constant from 0 to 8 o'clock, and the opening degree of the extraction flow rate adjusting valve 9 is held at ⁇ .
  • the output of the steam turbine equipment 25 can be reduced from the rating by ⁇ MWbld (see the upper part of FIG. 5).
  • the output MW can be brought close to the output command value MWD while operating the facility 20 near the rating.
  • the power supply system of the present embodiment includes an intake spray device 6 that sprays water on the intake air of the gas turbine equipment 20, a water tank 31 that stores water supplied to the intake spray device 6, and a water tank 31.
  • Spray water pipe 63 that connects to the intake spray device 6, a water amount adjustment valve 8 provided in the spray water pipe 63, a temperature measuring device 7 that measures the atmospheric temperature, and an output command value MWD from the plant is the gas turbine equipment 20 and the rated output value MWD0 of the steam turbine equipment 25, the deviation ⁇ MW between the rated output value MWD0 and the output command value MWD so that the total output MW of the gas turbine equipment 20 and the steam turbine equipment 25 approaches the output command value MWD.
  • the water amount GwacD supplied from the water tank 31 to the intake spray device 6 is determined, and the water amount Gwa is determined. Further comprising a control device 110 for holding the water amount adjusting valve 8 to an opening CVwac determined based on D.
  • the CC auxiliary control unit 101 of the control device 110 determines the amount of water GwacD supplied to the intake spray device 6 based on the deviation ⁇ MW of the output command value MWD and the atmospheric temperature Ta. Then, the CC auxiliary control unit 101 outputs the opening degree command CVwac determined based on the water amount GwacD to the water amount adjustment valve 8, and opens the water amount adjustment valve 8 so that the output MW follows the change in the output command value MWD. Adjust the degree.
  • the water amount adjustment valve 8 is held at the opening degree ⁇ at 12 to 20:00 when the atmospheric temperature rises, and the intake spray is performed on the inlet of the compressor 2.
  • the output of the combined cycle facility increases by ⁇ MWwac, so that the output MW can be made to follow the output command value MWD required by the plant even when the atmospheric temperature increases.
  • control is performed to keep the output MW constant at 0-8 o'clock and 12-20 o'clock, but the deviation between the output command value MWD and the output MW approaches zero over the entire time period.
  • the output MW may be controlled. In this case, the efficiency of the power supply system can be further improved.
  • the output MW while operating the gas turbine equipment 20 near the rating can be made constant, and the efficient operation of the entire plant becomes possible.
  • FIG. 6 is a schematic diagram of a plant power supply system according to a second embodiment of the present invention.
  • the same parts as those in the previous figure are denoted by the same reference numerals and description thereof is omitted.
  • the power supply system of the present embodiment is different from that of the first embodiment in that the drive shaft of the first refrigerant compressor 10A is connected to the turbine 1, and the second refrigerant compressor 11A is connected to the turbine 5.
  • the drive shaft is connected.
  • the power supply system shown in FIG. 6 directly drives the first refrigerant compressor 10 with the power obtained by the gas turbine equipment 20, and the second refrigerant compressor 11 with the power obtained by the steam turbine equipment 25. Is driving directly.
  • the opening degree command CVwac to the water amount adjusting valve 8 can be calculated from the deviation of the output of the gas turbine equipment 20 and the necessary power of the first refrigerant compressor 10.
  • the opening degree command CVbls to the extraction flow rate adjusting valve 9 can be calculated from the deviation of the output of the steam turbine equipment 25 and the necessary power of the second refrigerant compressor 11. Therefore, according to the present embodiment, the outputs of the gas turbine facility 20 and the steam turbine facility 25 can be individually controlled by controlling the opening degree commands CVwac and CVbls. Thereby, it can respond flexibly also when the required motive power of the 1st refrigerant
  • the configuration in which the first refrigerant compressor 10 is driven by the gas turbine equipment 20 and the second refrigerant compressor 11 is driven by the steam turbine equipment 25 has been taken up.
  • the second refrigerant compressor 11 may be driven by 20 and the first refrigerant compressor 10 may be driven by the steam turbine equipment 25.
  • a generator (not shown) is added to the rotating shaft of the gas turbine equipment 20 or the rotating shaft of the steam turbine 25 shown in FIG. 6, and the first refrigerant compressor 10 or the second refrigerant compressor 11 becomes redundant. Electric power may be generated with a different driving force. If the generator is added in this way, the surplus output that is not used for driving the refrigerant compressors 10 and 11 can be supplied as electric power to other equipment in the plant, so that the output generated by the combined cycle equipment can be used. Efficiency can be further improved.
  • the supply destination of the steam extracted from the steam turbine facility 25 is the water production apparatus 30, but one end of the extraction pipe 64 is connected to a steam utilization facility such as a heat pump or district heating / cooling, and extraction
  • a steam utilization facility such as a heat pump or district heating / cooling
  • the power supply system of the natural gas liquefaction plant has been described as an example, but besides this, the power supply consistent with the power demand of the plant is always required due to the nature of the plant, and the The present invention can be applied to any plant that requires stable power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

A motive power supply system for a plant includes a gas turbine machine (20), an exhaust heat recovery boiler (3) to generate vapor with exhaust gas from the gas turbine machine, a vapor turbine machine (25) which is driven with vapor from the exhaust heat recovery boiler, a bleed piping (64) to supply vapor bled from the vapor turbine machine to a water manufacturing machine (30), a bleed air flow rate regulating valve (9) provided on the bleed piping, and a controller (110) to set up a flow rate (GblsD) of vapor bled from the vapor turbine machine in accordance with an output command deviation (ΔMW0) such that a total output (MW) of the gas turbine machine and the vapor turbine machine comes close to an output command value (MWD) when the output command value (MWD) from a plant which is changed with daily variation in ambient temperature drops below rated output values (MWD0) of the gas turbine machine and the vapor turbine machine. Such a configuration assures operation of the gas turbine machine in the vicinity of its rated output even in the event of drop in ambient temperature, thereby allowing to improve efficiency of the motive power supply system for a plant.

Description

プラント用動力供給システム、その運転方法及び改造方法Power supply system for plant, its operation method and remodeling method
 本発明は、プラントに動力を供給するプラント用動力供給システムと、その運転方法及び改造方法に関する。 The present invention relates to a power supply system for a plant that supplies power to a plant, and an operation method and a modification method thereof.
 各種プラントの中には、そのプラントの生産物の特性等に起因して、プラントに動力(電力や駆動力等)を供給するシステム(プラント用動力供給システム)に対して継続的かつ安定的な動力を要求するものがある。また、このようなプラントには、燃焼ガスで駆動されるガスタービン設備と、このガスタービン設備からの排ガスで蒸気を発生させる排熱回収ボイラと、この排熱回収ボイラからの蒸気で駆動される蒸気タービン設備とを組み合わせたコンバインドサイクル設備を動力供給システムとして利用し、エネルギー効率の向上を図っているものがある。 Among various plants, due to the characteristics of the products of the plant, etc., continuous and stable with respect to a system (plant power supply system) that supplies power (electric power, driving force, etc.) to the plant. Some require power. Further, in such a plant, the gas turbine equipment driven by the combustion gas, the exhaust heat recovery boiler that generates steam from the exhaust gas from the gas turbine equipment, and the steam from the exhaust heat recovery boiler are driven. Some of them use a combined cycle facility combined with a steam turbine facility as a power supply system to improve energy efficiency.
 この種のプラントの一例としては、ガス田から採掘した天然ガスを精製・液化する天然ガス液化プラントがある。このプラントでは、天然ガスの品質を一定とし、かつ生産量を最大とするために、継続的かつ安定的な動力供給が不可欠となっている。また、天然ガス液化プラントでは、井戸元が他の工業施設から離れた地域に立地している等の制約に対応するために、コンバインドサイクル設備を利用して必要な動力をプラント内で自給しているものがある。 An example of this type of plant is a natural gas liquefaction plant that purifies and liquefies natural gas extracted from a gas field. In this plant, continuous and stable power supply is indispensable in order to maintain the quality of natural gas and maximize the production volume. Also, in natural gas liquefaction plants, the necessary power is supplied within the plant by using a combined cycle facility in order to cope with constraints such as the location of the well being located in an area away from other industrial facilities. There is something.
 ところで、コンバインドサイクル設備には、昼夜あるいは年間の大気温度変動により発電出力が変動するという設備特性がある。特に、日中あるいは夏季等の温暖時には、他の時間や季節と比較して相対的に大気温度が上昇するので、ガスタービン出力が相対的に低下するという課題がある。かかる課題に対しては、温暖時にガスタービン吸気に水を噴霧してガスタービン出力を増加させる方法が提案されている(特開2003-206750号公報等参照)。 By the way, combined cycle equipment has the characteristic that the power generation output fluctuates due to daytime and nighttime or annual atmospheric temperature fluctuations. In particular, there is a problem in that the gas turbine output is relatively decreased during warm weather such as daytime or summer, because the atmospheric temperature relatively increases as compared with other times and seasons. In order to deal with this problem, a method has been proposed in which water is sprayed on the gas turbine intake air during warm weather to increase the gas turbine output (see JP 2003-206750 A).
特開2003-206750号公報JP 2003-206750 A
 しかし、その一方で、夜間あるいは冬季などの寒冷時には、他の時間や季節と比較して相対的に大気温度が低下するので、ガスタービン出力が相対的に増加して排熱回収ボイラで発生する蒸気が余剰となる。このように余剰蒸気が発生すると、蒸気タービン設備への蒸気供給量と蒸気タービン出力が余剰となり蒸気利用効率が低下してしまう。 However, on the other hand, when it is cold at night or in winter, the air temperature is relatively decreased compared to other times and seasons, so the gas turbine output is relatively increased and generated in the exhaust heat recovery boiler. Steam is surplus. When surplus steam is generated in this way, the amount of steam supplied to the steam turbine equipment and the output of the steam turbine become surplus, and the steam utilization efficiency decreases.
 これに関連して、天然ガス液化プラントでは、寒冷時には、天然ガスや冷媒(天然ガス冷却用冷媒(混合媒体やプロパン等))の冷却に用いる熱交換器等の冷却性能が相対的に向上するため、冷媒を加圧・圧縮する圧縮機の必要動力が低減し、プラントが要求する動力が減少する傾向がある。この特性は、寒冷時に出力が増加するコンバインドサイクル設備の特性と逆のものであり、寒冷時の余剰蒸気による効率低下はさらに顕著となる。 In this regard, in a natural gas liquefaction plant, the cooling performance of a heat exchanger or the like used for cooling natural gas or refrigerant (natural gas cooling refrigerant (mixed medium, propane, etc.)) is relatively improved during cold weather. Therefore, the required power of the compressor that pressurizes and compresses the refrigerant is reduced, and the power required by the plant tends to be reduced. This characteristic is opposite to the characteristic of the combined cycle facility in which the output increases in cold weather, and the efficiency decrease due to surplus steam during cold weather becomes even more remarkable.
 かかる課題に対し、ガスタービン出力を低下することで蒸気の生成を抑制する方法があるが、ガスタービン設備を中間負荷で運転すると定格付近で運転する場合と比較してエネルギー効率が低下するため、燃料使用の観点から経済的にデメリットがある。 For such a problem, there is a method of suppressing the generation of steam by reducing the gas turbine output, but when the gas turbine equipment is operated at an intermediate load, the energy efficiency is reduced compared to the case of operating near the rating, There are economic disadvantages from the viewpoint of fuel use.
 本発明の目的は、プラントに継続的かつ安定的な動力を供給しながら、大気温度が低下した際の効率低下を抑制できるプラント用動力供給システムを提供することにある。 An object of the present invention is to provide a power supply system for a plant that can suppress a decrease in efficiency when the atmospheric temperature is lowered while supplying continuous and stable power to the plant.
 本発明は、上記目的を達成するために、燃料と吸気を燃焼して得た燃焼ガスで駆動されるガスタービン設備と、該ガスタービン設備からの排ガスで蒸気を発生させる排熱回収ボイラと、この排熱回収ボイラからの蒸気で駆動される蒸気タービン設備と、該蒸気タービン設備から抽気した蒸気を蒸気利用設備に供給する抽気配管と、該抽気配管に設けられた抽気流量調節弁と、大気温度の日変化とともに変化するプラントからの出力指令値(MWD)が前記ガスタービン設備及び前記蒸気タービン設備の定格出力値(MWD0)を下回るとき、前記ガスタービン設備及び前記蒸気タービン設備の合計出力(MW)が前記出力指令値(MWD)に近づくように、前記定格出力値(MWD0)と前記出力指令値(MWD)の偏差(ΔMW)に基づいて前記蒸気タービン設備から前記抽気配管を介して抽気する蒸気流量(GblsD)を決定し、該蒸気流量(GblsD)に基づいて決定した開度(CVbls)に前記抽気流量調節弁を設定する制御装置とを備える。 In order to achieve the above object, the present invention provides a gas turbine facility driven by combustion gas obtained by burning fuel and intake air, an exhaust heat recovery boiler that generates steam from exhaust gas from the gas turbine facility, Steam turbine equipment driven by steam from the exhaust heat recovery boiler, extraction piping for supplying steam extracted from the steam turbine facility to the steam utilization facility, extraction flow rate control valve provided in the extraction piping, air When the output command value (MWD) from the plant that changes with the daily change in temperature is lower than the rated output value (MWD0) of the gas turbine equipment and the steam turbine equipment, the total output of the gas turbine equipment and the steam turbine equipment ( MW) is based on a deviation (ΔMW) between the rated output value (MWD0) and the output command value (MWD) so that the output command value (MWD) approaches. And a control device for determining a steam flow rate (GblsD) extracted from the steam turbine equipment via the extraction piping and setting the extraction flow rate control valve at an opening degree (CVbls) determined based on the steam flow rate (GblsD). With.
 本発明によれば、大気温度が低下してもガスタービン設備を定格付近で運転することができるので、プラント用動力供給システムの効率を向上することができる。 According to the present invention, since the gas turbine equipment can be operated near the rating even when the atmospheric temperature decreases, the efficiency of the power supply system for the plant can be improved.
本発明の第1の実施の形態に係るプラント用動力供給システムが備えられた天然ガス液化プラントの概略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic of the natural gas liquefaction plant provided with the power supply system for plants which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係るプラント用動力供給システムの概略図。The schematic diagram of the power supply system for plants concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係るプラント用動力供給システムのコンバインドサイクル補助制御部101の回路図。The circuit diagram of the combined cycle auxiliary control part 101 of the power supply system for plants which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る最適運転を実施しない場合のプラント運転特性の一例を示す図。The figure which shows an example of the plant operation characteristic when not performing the optimal operation which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る最適運転を実施した際のプラント運転特性の一例を示す図。The figure which shows an example of the plant operation characteristic at the time of implementing the optimal operation which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係るプラント用動力供給システムの概略図。The schematic diagram of the power supply system for plants concerning a 2nd embodiment of the present invention.
符号の説明Explanation of symbols
  1   タービン
  2   圧縮機
  3   排熱回収ボイラ
  5   タービン
  6   吸気噴霧装置
  7   温度計測器
  8   水量調整弁
  9   抽気流量調節弁
 10   第1冷媒圧縮機
 11   第2冷媒圧縮機
 20   ガスタービン設備
 23   流量調節弁
 25   蒸気タービン設備
 30   水製造装置
 31   水タンク
 60   第1冷凍サイクル系統
 61   第2冷凍サイクル系統
 63   噴霧水配管
 64   抽気配管
100   コンバインドサイクル制御部
101   コンバインドサイクル補助制御部
102   プラント制御部
110   制御装置
GblsD 蒸気流量
CVbls 開度指令
GwacD 水量
CVwac 開度指令
MWD   出力指令値
MWD0  定格出力値
ΔMW0  出力指令値偏差
MW    出力
DESCRIPTION OF SYMBOLS 1 Turbine 2 Compressor 3 Waste heat recovery boiler 5 Turbine 6 Intake spraying device 7 Temperature measuring device 8 Water quantity adjustment valve 9 Extraction flow rate adjustment valve 10 1st refrigerant compressor 11 2nd refrigerant compressor 20 Gas turbine equipment 23 Flow rate adjustment valve 25 Steam turbine equipment 30 Water production device 31 Water tank 60 First refrigeration cycle system 61 Second refrigeration cycle system 63 Spray water piping 64 Extraction piping 100 Combined cycle control unit 101 Combined cycle auxiliary control unit 102 Plant control unit 110 Controller GblsD Steam flow rate CVbls Opening command GwacD Water volume CVwac Opening command MWD Output command value MWD0 Rated output value ΔMW0 Output command value deviation MW Output
 以下、本発明の実施の形態を図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 まず、本発明の第1の実施の形態に係るプラント用動力供給システムが備えられた天然ガス液化プラントについて図1を用いて説明する。 First, a natural gas liquefaction plant equipped with a plant power supply system according to a first embodiment of the present invention will be described with reference to FIG.
 図1は、本発明の第1の実施の形態に係るプラント用動力供給システムが備えられた天然ガス液化プラントの概略図である。 FIG. 1 is a schematic view of a natural gas liquefaction plant provided with a plant power supply system according to a first embodiment of the present invention.
 天然ガス液化プラントは、ガス田から採掘した天然ガスを精製・液化し、液化天然ガス(LNG)48を製造する設備である。この図に示す天然ガス液化プラント(以下、適宜プラント)は、主に、主熱交換器40と、気液分離器41(セパレータ)と、第1冷凍サイクル系統(混合冷媒冷凍サイクル系統)60と、第2冷凍サイクル系統(プロパン冷凍サイクル系統)61を備えている。 The natural gas liquefaction plant is a facility for producing liquefied natural gas (LNG) 48 by refining and liquefying natural gas extracted from a gas field. The natural gas liquefaction plant (hereinafter referred to as appropriate plant) shown in this figure mainly includes a main heat exchanger 40, a gas-liquid separator 41 (separator), a first refrigeration cycle system (mixed refrigerant refrigeration cycle system) 60, A second refrigeration cycle system (propane refrigeration cycle system) 61 is provided.
 主熱交換器40は、天然ガス精製設備(図示せず)で不純物が分離された天然ガス(原料ガス49)を第1冷凍サイクル系統60からの第1冷媒で冷却して液化するものである。 The main heat exchanger 40 cools and liquefies natural gas (source gas 49) from which impurities have been separated by a natural gas refining facility (not shown) with the first refrigerant from the first refrigeration cycle system 60. .
 主熱交換器40には、天然ガス精製設備からの天然ガス導入配管62が導入されている。天然ガス導入配管62は、原料ガス49が流通するもので、主熱交換器40の内部を通過し、主熱交換器40の外部まで延びている。また、主熱交換器40は、第1冷凍サイクル系統60で冷却された第1冷媒が導入される気液分離器41と接続されている。気液分離器41で分離された第1冷媒の液相部分と気相部分は、別々に主熱交換器40に導かれて原料ガス49の冷却に用いられる。天然ガス精製設備から供給された原料ガス49は、主熱交換器40内を通過する際に第1冷媒によって冷却された後、膨張弁65を通過する際にさらに減温して液化天然ガス48となる。 In the main heat exchanger 40, a natural gas introduction pipe 62 from a natural gas purification facility is introduced. The natural gas introduction pipe 62 circulates the source gas 49 and passes through the main heat exchanger 40 and extends to the outside of the main heat exchanger 40. The main heat exchanger 40 is connected to a gas-liquid separator 41 into which the first refrigerant cooled by the first refrigeration cycle system 60 is introduced. The liquid phase portion and the gas phase portion of the first refrigerant separated by the gas-liquid separator 41 are separately led to the main heat exchanger 40 and used for cooling the raw material gas 49. The raw material gas 49 supplied from the natural gas refining facility is cooled by the first refrigerant when passing through the main heat exchanger 40, and then further cooled to pass through the expansion valve 65 to liquefy natural gas 48. It becomes.
 第1冷凍サイクル系統(混合冷媒冷凍サイクル系統)60は、主熱交換器40に供給するための第1冷媒を圧縮して冷却するものである。本実施の形態における第1冷凍サイクル系統60の作動流体(第1冷媒)は、メタン、エタン、及びプロパンを主成分とする混合冷媒(MCR)である。第1冷凍サイクル系統60は、主熱交換器40で天然ガスの冷却に用いられた第1冷媒を圧縮する低圧冷媒圧縮機10aと、低圧冷媒圧縮機10aで圧縮された第1冷媒を冷却する中間冷却器47aと、中間冷却器47aで冷却された第1冷媒を圧縮する高圧冷媒圧縮機10bと、高圧冷媒圧縮機10bで圧縮された第1冷媒を冷却する後置冷却器47bと、プラント用動力供給システム(後述)80から電力系統18(図2参照)を介して供給される電力によって低圧冷媒圧縮機10a及び高圧冷媒圧縮機10bを駆動する電気モータ16を備えている。低圧冷媒圧縮機10aの入口は主熱交換器40と接続されている。後置冷却器47bの出口は、第2冷凍サイクル系統61の冷却器群(第1冷却器43、第2冷却器44、第3冷却器45)を通過した後に気液分離器41に接続されている。なお、以降、低圧冷媒圧縮機10aと高圧冷媒圧縮機10bを合わせて、第1冷媒圧縮機10と適宜称する
 気液分離器41は、第2冷凍サイクル系統61の冷却器群を通過して冷却された第1冷媒の気液分離を行うもので、第3冷却器45の出口と接続されている。気液分離器41は、分離した第1冷媒の液相部分と気相部分を別々にして主熱交換器40に供給している。
The first refrigeration cycle system (mixed refrigerant refrigeration cycle system) 60 compresses and cools the first refrigerant to be supplied to the main heat exchanger 40. The working fluid (first refrigerant) of the first refrigeration cycle system 60 in the present embodiment is a mixed refrigerant (MCR) mainly composed of methane, ethane, and propane. The first refrigeration cycle system 60 cools the first refrigerant compressed by the low-pressure refrigerant compressor 10a and the low-pressure refrigerant compressor 10a that compresses the first refrigerant used for cooling the natural gas in the main heat exchanger 40. An intermediate cooler 47a, a high-pressure refrigerant compressor 10b that compresses the first refrigerant cooled by the intermediate cooler 47a, a post-cooler 47b that cools the first refrigerant compressed by the high-pressure refrigerant compressor 10b, and a plant And an electric motor 16 that drives the low-pressure refrigerant compressor 10a and the high-pressure refrigerant compressor 10b with electric power supplied from a power supply system 80 (described later) via a power system 18 (see FIG. 2). The inlet of the low-pressure refrigerant compressor 10a is connected to the main heat exchanger 40. The outlet of the post-cooler 47b is connected to the gas-liquid separator 41 after passing through the cooler group (the first cooler 43, the second cooler 44, and the third cooler 45) of the second refrigeration cycle system 61. ing. Hereinafter, the low-pressure refrigerant compressor 10a and the high-pressure refrigerant compressor 10b are collectively referred to as the first refrigerant compressor 10 and the gas-liquid separator 41 is cooled through the cooler group of the second refrigeration cycle system 61. The first refrigerant is subjected to gas-liquid separation, and is connected to the outlet of the third cooler 45. The gas-liquid separator 41 supplies the separated liquid phase portion and gas phase portion of the first refrigerant to the main heat exchanger 40 separately.
 第2冷凍サイクル系統(プロパン冷凍サイクル系統)61は、第1冷媒を冷却するための第2冷媒を圧縮して冷却し、第1冷凍サイクル系統60からの第1冷媒を第2冷媒で冷却するものである。第2冷凍サイクル系統61は、冷媒圧縮機(第2冷媒圧縮機)11と、電気モータ17と、凝縮器46と、受液器42と、第1冷却器43、第2冷却器44、及び第3冷却器45を備えている。なお、本実施の形態における第2冷凍サイクル系統61の作動流体(第2冷媒)はプロパンである。 The second refrigeration cycle system (propane refrigeration cycle system) 61 compresses and cools the second refrigerant for cooling the first refrigerant, and cools the first refrigerant from the first refrigeration cycle system 60 with the second refrigerant. Is. The second refrigeration cycle system 61 includes a refrigerant compressor (second refrigerant compressor) 11, an electric motor 17, a condenser 46, a liquid receiver 42, a first cooler 43, a second cooler 44, and A third cooler 45 is provided. Note that the working fluid (second refrigerant) of the second refrigeration cycle system 61 in the present embodiment is propane.
 冷媒圧縮機11は、第2冷媒を圧縮するもので、駆動軸に連結された電気モータ17によって駆動されている。冷媒圧縮機11の高圧段部分は第1冷却器43と、中圧段部分は第2冷却器44と、低圧段部分は第3冷却器45と接続されている。この接続路を介して冷却器43,44,45から冷媒圧縮機11に供給される第2冷媒(気体)は、冷媒圧縮機11内の第2冷媒を冷却する。電気モータ17の電力は電力系統18(図2参照)を介して動力供給システム80から供給されている。 The refrigerant compressor 11 compresses the second refrigerant and is driven by an electric motor 17 connected to a drive shaft. The refrigerant compressor 11 has a high pressure stage portion connected to the first cooler 43, an intermediate pressure stage portion connected to the second cooler 44, and a low pressure stage portion connected to the third cooler 45. The second refrigerant (gas) supplied from the coolers 43, 44, 45 to the refrigerant compressor 11 via this connection path cools the second refrigerant in the refrigerant compressor 11. Electric power of the electric motor 17 is supplied from a power supply system 80 via an electric power system 18 (see FIG. 2).
 凝縮器46は、冷媒圧縮機11の出口と接続されており、冷媒圧縮機11によって圧縮された第2冷媒を冷却して凝縮している。 The condenser 46 is connected to the outlet of the refrigerant compressor 11 and cools and condenses the second refrigerant compressed by the refrigerant compressor 11.
 受液器42は、凝縮器46の出口と接続されており、凝縮器46で凝縮した第2冷媒を受け入れている。受液器42内には凝縮して液化した第2冷媒が貯留されている。 The liquid receiver 42 is connected to the outlet of the condenser 46 and receives the second refrigerant condensed by the condenser 46. A second refrigerant condensed and liquefied is stored in the liquid receiver 42.
 第1冷却器43は、受液器42の出口と接続されており、膨張弁を介して減圧膨張し減温した第2冷媒を受け入れている。第2冷却器44は、第1冷却器43と接続されており、膨張弁を介してさらに減温された第2冷媒を受け入れている。第3冷却器45は、第2冷却器44と接続されており、膨張弁を介してまたさらに減温された第2冷媒を受け入れている。 The first cooler 43 is connected to the outlet of the liquid receiver 42, and receives the second refrigerant that has been expanded under reduced pressure and reduced in temperature via an expansion valve. The second cooler 44 is connected to the first cooler 43, and receives the second refrigerant further reduced in temperature via the expansion valve. The third cooler 45 is connected to the second cooler 44, and receives the second refrigerant whose temperature has been further reduced via the expansion valve.
 第1冷却器43、第2冷却器44、及び第3冷却器45の内部には第1冷媒(混合冷媒)が流通する配管が配されている。冷却器43,44,45に受け入れられた第2冷媒(プロパン)は、第1冷媒から熱を奪って蒸発し、第1冷媒を段階的に冷却する。これにより混合冷媒(第1冷媒)は、第3冷却器45を通過した時点で例えば-35℃程度まで冷却され、気液分離器41に供給される。 Inside the first cooler 43, the second cooler 44, and the third cooler 45, a pipe through which the first refrigerant (mixed refrigerant) flows is arranged. The second refrigerant (propane) received in the coolers 43, 44, and 45 takes heat from the first refrigerant and evaporates, thereby cooling the first refrigerant stepwise. As a result, the mixed refrigerant (first refrigerant) is cooled to about −35 ° C., for example, when it passes through the third cooler 45 and supplied to the gas-liquid separator 41.
 上記のプラントにおいて、天然ガスの品質を一定に保持するには、天然ガスの冷却に用いられる冷媒(第1冷媒及び第2冷媒)の温度変動を最小限に抑制する必要がある。第1冷媒及び第2冷媒の温度は、凝縮器46、中間冷却器47a、後置冷却器47bの熱交換量によって決定される。大気温度が相対的に高くなる日中や夏季等の温暖時には、これら熱交換器46,47a,47bのブロア風量や冷却水量を増加させ、冷媒の温度及び圧力を一定制御する。また、これに伴って、プラント全体或いは第1冷媒圧縮機10及び第2冷媒圧縮機11の必要とする動力(後述の出力指令値MWD)も変化する。 In the above plant, in order to keep the quality of the natural gas constant, it is necessary to minimize the temperature fluctuation of the refrigerant (first refrigerant and second refrigerant) used for cooling the natural gas. The temperature of a 1st refrigerant | coolant and a 2nd refrigerant | coolant is determined by the heat exchange amount of the condenser 46, the intermediate | middle cooler 47a, and the postcooler 47b. During warm days such as daytime and summer when the atmospheric temperature is relatively high, the blower air volume and cooling water volume of these heat exchangers 46, 47a, 47b are increased, and the temperature and pressure of the refrigerant are controlled to be constant. Along with this, the power required by the entire plant or the first refrigerant compressor 10 and the second refrigerant compressor 11 (output command value MWD described later) also changes.
 次に本発明の第1の実施の形態に係るプラント用動力供給システムについて説明する。 Next, a power supply system for a plant according to the first embodiment of the present invention will be described.
 図2は本発明の第1の実施の形態に係るプラント用動力供給システムの概略図である。 FIG. 2 is a schematic diagram of a power supply system for a plant according to the first embodiment of the present invention.
 この図に示すプラント用動力供給システム(動力供給システム)80は、ガスタービン設備20と、吸気噴霧装置6と、水量調節弁8と、水タンク31と、排熱回収ボイラ3と、蒸気タービン設備25と、復水器35と、水製造装置30と、電力系統18と、制御装置110を備えている。 The plant power supply system (power supply system) 80 shown in this figure includes a gas turbine facility 20, an intake spray device 6, a water amount adjustment valve 8, a water tank 31, an exhaust heat recovery boiler 3, and a steam turbine facility. 25, a condenser 35, a water production device 30, a power system 18, and a control device 110.
 ガスタービン設備20は、タービン1と、圧縮機2と、燃焼器(図示せず)を有しており、圧縮機2で圧縮した吸気と燃料を燃焼器で燃焼して燃焼ガスを発生させ、その燃焼ガスでタービン1を回転駆動している。タービン1には発電機14が接続されており、電力系統18を介してプラントに電力を供給している。電力系統18は、動力供給システムで発電された電力をプラントに供給するもので、その主な電力供給先としては、第1冷媒圧縮機を駆動するモータ16や、第2冷媒圧縮機11を駆動するモータ17がある。 The gas turbine facility 20 includes a turbine 1, a compressor 2, and a combustor (not shown). The intake air and fuel compressed by the compressor 2 are burned by the combustor to generate combustion gas. The turbine 1 is rotationally driven by the combustion gas. A generator 14 is connected to the turbine 1 and supplies power to the plant via the power system 18. The power system 18 supplies the power generated by the power supply system to the plant, and the main power supply destination is the motor 16 that drives the first refrigerant compressor and the second refrigerant compressor 11. There is a motor 17 to perform.
 圧縮機2の上流側には吸気噴霧装置6と温度計測器7が設けられている。 An intake spray device 6 and a temperature measuring device 7 are provided on the upstream side of the compressor 2.
 吸気噴霧装置6は、ガスタービン設備20の吸気に水を噴霧するもので、噴霧水配管63を介して水タンク31と接続されている。噴霧水配管63には、大気温度に応じて吸気噴霧装置6に供給する水量を調節する水量調節弁8と、水タンク31の水を汲み上げる水移送ポンプ32が設けられている。本実施の形態における水量調節弁8の開度はコンバインドサイクル補助制御部101(後述)から出力される開度指令(CVwac)によって調節されている。なお、吸気噴霧に用いる水としては、配管の腐食等を抑制するために純水が好ましい。 The intake spray device 6 sprays water on the intake air of the gas turbine equipment 20, and is connected to the water tank 31 via the spray water pipe 63. The spray water pipe 63 is provided with a water amount adjustment valve 8 that adjusts the amount of water supplied to the intake spray device 6 according to the atmospheric temperature, and a water transfer pump 32 that pumps up water in the water tank 31. The opening degree of the water amount adjustment valve 8 in the present embodiment is adjusted by an opening degree command (CVwac) output from a combined cycle auxiliary control unit 101 (described later). In addition, as water used for intake spraying, pure water is preferable in order to suppress corrosion and the like of piping.
 温度計測器7は、大気温度を計測するもので、計測した大気温度Taをコンバインドサイクル補助制御部101に出力している。 The temperature measuring device 7 measures the atmospheric temperature, and outputs the measured atmospheric temperature Ta to the combined cycle auxiliary control unit 101.
 水タンク31は吸気噴霧装置6に供給される水が貯蔵されるものである。本実施の形態の水タンク31には水製造装置30から純水が供給されている。なお、純水の供給源としては、水製造装置30の他にも、復水器35やその他の供給源を利用できるように構成しても良い。 The water tank 31 stores water supplied to the intake spray device 6. Pure water is supplied from the water production apparatus 30 to the water tank 31 of the present embodiment. In addition to the water production apparatus 30, the condenser 35 and other supply sources may be used as the pure water supply source.
 排熱回収ボイラ3は、復水器35から補給水ポンプ34を介して供給される水をガスタービン設備20からの排ガスで加熱し蒸気を発生させるものである。排熱回収ボイラ3はガスタービン設備20の排気が流通する方向の下流側に設けられている。排熱回収ボイラ3で発生した蒸気の大部分は流量調節弁23を介して蒸気タービン設備25に供給され、残りは煙突4を介して外部に放出されている。 The exhaust heat recovery boiler 3 heats the water supplied from the condenser 35 via the makeup water pump 34 with the exhaust gas from the gas turbine facility 20 to generate steam. The exhaust heat recovery boiler 3 is provided on the downstream side in the direction in which the exhaust gas from the gas turbine equipment 20 flows. Most of the steam generated in the exhaust heat recovery boiler 3 is supplied to the steam turbine equipment 25 via the flow rate control valve 23, and the rest is discharged to the outside via the chimney 4.
 蒸気タービン設備25は、排熱回収ボイラ3からの蒸気で駆動されるタービン5を有している。タービン5には発電機15が接続されており、蒸気タービン設備25は電力系統18を介してプラントに電力を供給している。蒸気タービン設備25には、蒸気タービン設備25を流通している蒸気の一部を抽気する抽気配管64が取り付けられている。なお、本実施の形態の抽気配管64は、タービン5の初段と最終段の間のいわゆる中間段部分に接続されている。 The steam turbine facility 25 has a turbine 5 driven by steam from the exhaust heat recovery boiler 3. A generator 15 is connected to the turbine 5, and the steam turbine facility 25 supplies power to the plant via the power system 18. The steam turbine facility 25 is attached with an extraction pipe 64 for extracting a part of the steam flowing through the steam turbine facility 25. Note that the extraction pipe 64 of the present embodiment is connected to a so-called intermediate stage portion between the first stage and the last stage of the turbine 5.
 抽気配管64は、水製造設備(蒸気利用設備)30に接続されており、蒸気タービン設備25から抽気した蒸気を水製造設備30に供給している。抽気配管64には大気温度に応じてタービン5からの蒸気の抽気流量を調節する抽気流量調節弁9が設けられている。本実施の形態における抽気流量調節弁9の開度はコンバインドサイクル補助制御部101(後述)から出力される開度指令(CVbls)によって調節されている。 The extraction pipe 64 is connected to the water production facility (steam utilization facility) 30 and supplies the steam extracted from the steam turbine facility 25 to the water production facility 30. The extraction pipe 64 is provided with an extraction flow rate adjusting valve 9 that adjusts the extraction flow rate of steam from the turbine 5 in accordance with the atmospheric temperature. The opening degree of the extraction flow rate adjusting valve 9 in the present embodiment is adjusted by an opening degree command (CVbls) output from a combined cycle auxiliary control unit 101 (described later).
 水製造装置30は、抽気配管64からの蒸気を利用して海水や河川水等から純水を製造するものである。純水の原料となる海水や河川水は取水ポンプ33によって水製造装置30に供給されている。本実施の形態では、取水ポンプ33によって汲み上げられた海水や河川水は復水器35にも供給されており、復水器35で蒸気タービン設備25からの蒸気の復水に利用されている。水製造装置30で製造された純水は、水タンク31や復水器35に供給されており、吸気噴霧や蒸気として利用される。 The water production device 30 produces pure water from seawater, river water, etc. using steam from the extraction pipe 64. Seawater or river water, which is a raw material of pure water, is supplied to the water production apparatus 30 by a water intake pump 33. In the present embodiment, seawater or river water pumped up by the intake pump 33 is also supplied to the condenser 35, and is used for condensing steam from the steam turbine equipment 25 by the condenser 35. The pure water produced by the water production apparatus 30 is supplied to the water tank 31 and the condenser 35 and used as intake spray or steam.
 制御装置110は、プラント全体の制御を行うもので、プラント制御部102と、コンバインドサイクル制御部(以下、CC制御部)100と、コンバインドサイクル補助制御部(以下、CC補助制御部)101を有している。 The control device 110 controls the entire plant, and includes a plant control unit 102, a combined cycle control unit (hereinafter referred to as CC control unit) 100, and a combined cycle auxiliary control unit (hereinafter referred to as CC auxiliary control unit) 101. is doing.
 プラント制御部102は、プラント全体が必要とする総出力(出力指令値MWD)と、本発明に係る最適制御の実行を動力供給システムに指示する信号SWとをCC制御部100及びCC補助制御部101に出力するもので、CC制御部100とCC補助制御部101と接続されている。出力指令値MWDは、後述の図4及び図5に示すように、大気温度Taの日変化とともに変化する。 The plant control unit 102 includes a CC control unit 100 and a CC auxiliary control unit that output a total output (output command value MWD) required by the entire plant and a signal SW that instructs the power supply system to execute the optimum control according to the present invention. 101 is connected to the CC control unit 100 and the CC auxiliary control unit 101. The output command value MWD changes with the daily change of the atmospheric temperature Ta, as shown in FIGS.
 信号SWは、ガスタービン設備20、蒸気タービン設備25、及び排熱回収ボイラ3からなるコンバインドサイクル設備がそれぞれ定格運転状態に達した後に、本発明に係る大気温度変化に基づくプラントの最適運転の開始又は中止を各制御部100,101に指令するための制御信号である。なお、信号SWを出力するタイミングは、プラント制御部102の制御回路で演算して自動的に決定しても良いし、制御装置110を操作する作業者が手動で決定しても良い。 The signal SW indicates the start of the optimum operation of the plant based on the atmospheric temperature change according to the present invention after the combined cycle facility including the gas turbine facility 20, the steam turbine facility 25, and the exhaust heat recovery boiler 3 reaches the rated operation state. Or it is a control signal for instruct | indicating cancellation to each control part 100,101. Note that the timing for outputting the signal SW may be determined automatically by calculation in the control circuit of the plant control unit 102, or may be determined manually by an operator operating the control device 110.
 CC制御部100は燃料流量調節弁22と接続されている。CC制御部100は、プラント制御部102から信号SWによる制御開始の合図を受けたら、出力指令値MWDに基づいて燃料流量調節弁22の開度を算出し、その算出した開度を保持する開度指令CVfuelを燃料流量調節弁22に出力するものである。開度指令CVfuelはガスタービン設備20の燃焼器への燃料供給量を決定するもので、これによりガスタービン設備20の出力及びタービン回転数と、排熱回収ボイラ3での蒸気発生量(すなわち、蒸気タービン設備25への蒸気供給量)が制御される。 The CC control unit 100 is connected to the fuel flow control valve 22. When the CC control unit 100 receives a signal to start control by the signal SW from the plant control unit 102, the CC control unit 100 calculates the opening degree of the fuel flow control valve 22 based on the output command value MWD, and holds the calculated opening degree. The degree command CVfuel is output to the fuel flow control valve 22. The opening degree command CVfuel determines the amount of fuel supplied to the combustor of the gas turbine equipment 20, and thereby the output of the gas turbine equipment 20 and the turbine rotational speed, and the amount of steam generated in the exhaust heat recovery boiler 3 (that is, The amount of steam supplied to the steam turbine equipment 25) is controlled.
 CC補助制御部101は、温度計測器7、水量調節弁8、及び抽気流量調節弁9と接続されている。CC補助制御部101は、プラント制御部102から信号SWによる制御開始の合図を受けたら、ガスタービン設備20と蒸気タービン設備25の実際の出力の合計(即ち、動力供給システムの実際の総出力(以下、出力MW))が出力指令値(MWD)に近づくように、出力指令値MWD及び大気温度Taに基づいて、吸気噴霧装置6に供給する噴霧水量(GwacD)と、蒸気タービン設備25から抽気する蒸気流量(GblsD)とを調節するものである。 The CC auxiliary control unit 101 is connected to the temperature measuring device 7, the water amount adjustment valve 8, and the extraction flow rate adjustment valve 9. When the CC auxiliary control unit 101 receives a signal to start control by the signal SW from the plant control unit 102, the CC auxiliary control unit 101 sums the actual outputs of the gas turbine facility 20 and the steam turbine facility 25 (that is, the actual total output of the power supply system ( Hereinafter, based on the output command value MWD and the atmospheric temperature Ta so that the output MW)) approaches the output command value (MWD), the amount of spray water (GwacD) supplied to the intake spray device 6 and the extraction from the steam turbine equipment 25 The steam flow rate (GblsD) to be adjusted is adjusted.
 なお、上記の説明ではガスタービン設備20を1台のみ図示したが、プラントが要求する動力に応じて複数台のガスタービン設備を電力系統18に接続しても良い。複数のガスタービン設備を設置し、各ガスタービン設備から電力系統18を介してプラントに電力を供給するような構成とすると、複数のガスタービン設備の内いずれかの出力が故障や点検等で低下した場合にも、他のガスタービン設備からの出力で必要な電力を補うことができる。これによりガスタービン設備と冷媒圧縮機を直結する場合と比較して、動力供給システムの信頼性を向上させることができる。なお、この場合、複数台ガスタービン設備と連携する蒸気タービン設備を適宜設け、コンバインドサイクルシステムを構築しても勿論良い。 In the above description, only one gas turbine facility 20 is shown, but a plurality of gas turbine facilities may be connected to the power system 18 according to the power required by the plant. When multiple gas turbine facilities are installed and power is supplied from each gas turbine facility to the plant via the power system 18, the output of any of the multiple gas turbine facilities decreases due to failure or inspection. In this case, the necessary power can be supplemented by the output from other gas turbine equipment. Thereby, compared with the case where gas turbine equipment and a refrigerant compressor are connected directly, the reliability of a power supply system can be improved. In this case, a combined cycle system may be constructed by appropriately providing steam turbine equipment that cooperates with a plurality of gas turbine equipment.
 次に、CC補助制御部101の制御回路の一例を図3を用いて説明する。 Next, an example of the control circuit of the CC auxiliary control unit 101 will be described with reference to FIG.
 図3は本発明の第1の実施の形態に係る動力供給システムのCC補助制御部101の回路図である。 FIG. 3 is a circuit diagram of the CC auxiliary control unit 101 of the power supply system according to the first embodiment of the present invention.
 この図に示すCC補助制御部101は、出力指令値偏差ΔMW0(後述)を算出する減算部50と、出力指令値偏差ΔMW0の最大値を選択する最大選択部51と、吸気噴霧装置6に供給すべき水量を算出する水量制御部52と、水量調節弁8の開度を調節する弁開度制御部53と、出力指令値偏差ΔMW0の最小値を選択する最小選択部54と、蒸気タービン設備25から抽気すべき蒸気流量を算出する蒸気流量制御部55と、抽気流量調節弁9の開度を調節する弁開度制御部56を備えている。 The CC auxiliary control unit 101 shown in this figure supplies a subtraction unit 50 that calculates an output command value deviation ΔMW0 (described later), a maximum selection unit 51 that selects the maximum value of the output command value deviation ΔMW0, and an intake spray device 6. A water amount control unit 52 for calculating the amount of water to be calculated, a valve opening degree control unit 53 for adjusting the opening amount of the water amount control valve 8, a minimum selection unit 54 for selecting the minimum value of the output command value deviation ΔMW0, and steam turbine equipment 25, a steam flow rate control unit 55 for calculating the steam flow rate to be extracted from the air flow rate 25 and a valve opening degree control unit 56 for adjusting the opening degree of the extraction flow rate control valve 9 are provided.
 減算部50には、ガスタービン設備20及び蒸気タービン設備25(即ち、コンバインドサイクル設備)の定格出力の合計である定格出力値MWD0と、出力指令値MWDが入力されている。減算部50は、出力指令値MWDから定格出力値MWD0を減算し、出力指令値MWDと定格出力値MWD0の偏差(出力指令値偏差)ΔMW0を算出する。減算部50で算出された出力指令偏差値ΔMW0は、最大選択部51と最小選択部54に出力される。 The rated output value MWD0 that is the sum of the rated outputs of the gas turbine facility 20 and the steam turbine facility 25 (that is, the combined cycle facility) and the output command value MWD are input to the subtracting unit 50. The subtracting unit 50 subtracts the rated output value MWD0 from the output command value MWD, and calculates a deviation (output command value deviation) ΔMW0 between the output command value MWD and the rated output value MWD0. The output command deviation value ΔMW0 calculated by the subtraction unit 50 is output to the maximum selection unit 51 and the minimum selection unit 54.
 最大選択部51は、出力指令偏差値ΔMW0と数値0(ゼロ)を比較して出力指令偏差値ΔMW0が正のとき(即ち、出力指令値MWDが定格出力値MWD0を上回り、需要(MWD)に対して出力(MWD0)が不足するとき)、その偏差値ΔMW0の最大値ΔMWHを水量制御部52に出力する。 The maximum selection unit 51 compares the output command deviation value ΔMW0 with a numerical value 0 (zero), and when the output command deviation value ΔMW0 is positive (that is, the output command value MWD exceeds the rated output value MWD0, the demand (MWD) On the other hand, when the output (MWD0) is insufficient), the maximum value ΔMWH of the deviation value ΔMW0 is output to the water amount control unit 52.
 水量制御部52には、偏差最大値ΔMWHの他に、温度計測器7から大気温度Taが入力されている。水量制御部52は、動力供給システムの実際の出力MWが出力指令値MWDに近づくように、比例積分演算によって偏差最大値ΔMWHから水量GwacDを算出する。このとき、水量制御部52は、大気温度Taに応じて水量GwacDの値を補正する。このように水量GwacDに大気温度Taに応じた補正を加えると、気温変動による圧縮機2の動力低下を抑制することができる。水量制御部52で算出された水量GwacDは弁開度制御部53に出力される。 In addition to the maximum deviation value ΔMWH, the atmospheric temperature Ta is input from the temperature measuring device 7 to the water amount control unit 52. The water amount control unit 52 calculates the water amount GwacD from the deviation maximum value ΔMWH by proportional-integral calculation so that the actual output MW of the power supply system approaches the output command value MWD. At this time, the water amount control unit 52 corrects the value of the water amount GwacD according to the atmospheric temperature Ta. Thus, when the correction | amendment according to atmospheric temperature Ta is added to the water quantity GwacD, the motive power fall of the compressor 2 by an air temperature fluctuation | variation can be suppressed. The water amount GwacD calculated by the water amount control unit 52 is output to the valve opening degree control unit 53.
 弁開度制御部53には、水量GwacDの他に、プラント制御部102からの信号SWが入力されている。弁開度制御部53は、水量GwacDに基づいて水量調節弁8の開度を決定し、その算出した開度を保持する開度指令CVwacを算出する。弁開度制御部53で算出された開度指令CVwacは水量調節弁8に出力される。 In addition to the water amount GwacD, a signal SW from the plant control unit 102 is input to the valve opening degree control unit 53. The valve opening degree control unit 53 determines the opening degree of the water amount adjustment valve 8 based on the water amount GwacD, and calculates an opening degree command CVwac that holds the calculated opening degree. The opening degree command CVwac calculated by the valve opening degree control unit 53 is output to the water amount adjustment valve 8.
 また、ガスタービン設備20、蒸気タービン設備25、及び排熱回収ボイラ3が定格で運転しない場合、あるいは信号SWがプラント最適運転を指令しない場合には、開度0となる開度指令CVwacが出力され吸気噴霧が停止される。 In addition, when the gas turbine equipment 20, the steam turbine equipment 25, and the exhaust heat recovery boiler 3 are not operated at rated values, or when the signal SW does not command the plant optimum operation, an opening degree command CVwac that outputs 0 is output. Then, the intake spray is stopped.
 上記のように圧縮機2に吸気噴霧すると、圧縮機2内部における空気温度の上昇を抑制するので、圧縮機2の動力が低下してガスタービン設備20の出力を上昇することができる。これにより大気温度が上昇して需要(MWD)に対して出力(MWD0)が不足するときにも、実際の出力MWを出力指令値MWDに近づけることができる。なお、本実施の形態では、吸気噴霧装置6で純水を充分に微粒化し、圧縮機2内部で完全に蒸発させた場合の出力の上昇幅はおおよそ10%と見積もられ、吸気噴霧によるプラント全体の出力調整幅は定格出力値MWD0の6%程度と見込まれる。したがって、この出力調整幅を考慮して動力供給システムの定格出力値MWD0を決定することが好ましい。 When the intake air spray is applied to the compressor 2 as described above, an increase in the air temperature inside the compressor 2 is suppressed, so that the power of the compressor 2 can be reduced and the output of the gas turbine equipment 20 can be increased. Thereby, even when the atmospheric temperature rises and the output (MWD0) is insufficient with respect to the demand (MWD), the actual output MW can be brought close to the output command value MWD. In this embodiment, when the pure water is sufficiently atomized by the intake spray device 6 and completely evaporated inside the compressor 2, the increase in output is estimated to be approximately 10%. The overall output adjustment range is expected to be about 6% of the rated output value MWD0. Therefore, it is preferable to determine the rated output value MWD0 of the power supply system in consideration of this output adjustment range.
 一方、最小選択部54は、出力指令偏差値ΔMW0と数値0(ゼロ)を比較して出力指令偏差値ΔMW0が負のとき(即ち、出力指令値MWDが定格出力値MWD0を下回り、需要(MWD)に対して出力(MWD0)が過剰になるとき)、その偏差値ΔMW0の最小値(負数における絶対値最大値)ΔMWLを蒸気流量制御部55に出力する。 On the other hand, the minimum selection unit 54 compares the output command deviation value ΔMW0 with the numerical value 0 (zero), and when the output command deviation value ΔMW0 is negative (that is, the output command value MWD falls below the rated output value MWD0, the demand (MWD) ) (When the output (MWD0) becomes excessive), the minimum value (absolute value maximum value in a negative number) ΔMWL of the deviation value ΔMW0 is output to the steam flow rate controller 55.
 蒸気流量制御部55には、偏差最小値ΔMWLの他に、温度計測器7から大気温度Taが入力されている。蒸気流量制御部55は、動力供給システムの実際の出力MWが出力指令値MWDに近づくように、比例積分演算によって偏差最小値ΔMWLから抽気流量GblsDを算出する。このとき、蒸気流量制御部55は、大気温度Taに応じて抽気流量GblsDの値を補正する。このように抽気流量GblsDに大気温度Taに応じた補正を加えると、気温変動による蒸気タービン設備25の出力過剰を抑制することができる。蒸気流量制御部55で算出された抽気流量GblsDは弁開度制御部56に出力される。 In addition to the minimum deviation value ΔMWL, the atmospheric temperature Ta is input from the temperature measuring device 7 to the steam flow rate control unit 55. The steam flow rate control unit 55 calculates the extraction flow rate GblsD from the minimum deviation value ΔMWL by proportional integration so that the actual output MW of the power supply system approaches the output command value MWD. At this time, the steam flow rate control unit 55 corrects the value of the extraction flow rate GblsD according to the atmospheric temperature Ta. Thus, when the correction | amendment according to atmospheric temperature Ta is added to extraction flow GblsD, the output excess of the steam turbine equipment 25 by temperature fluctuation can be suppressed. The extraction flow rate GblsD calculated by the steam flow rate control unit 55 is output to the valve opening degree control unit 56.
 弁開度制御部56には、抽気流量GblsDの他に、プラント制御部102からの信号SWが入力されている。弁開度制御部56は、抽気流量GblsDに基づいて抽気流量調節弁9の開度を決定し、その算出した開度を保持する開度指令CVblsを算出する。弁開度制御部56で算出された開度指令CVblsは抽気流量調節弁9に出力される。 In addition to the extraction flow rate GblsD, a signal SW from the plant control unit 102 is input to the valve opening degree control unit 56. The valve opening degree control unit 56 determines the opening degree of the extraction flow rate adjusting valve 9 based on the extraction flow rate GblsD, and calculates an opening degree command CVbls that holds the calculated opening degree. The opening degree command CVbls calculated by the valve opening degree control unit 56 is output to the extraction flow rate adjusting valve 9.
 また、ガスタービン設備20、蒸気タービン設備25、及び排熱回収ボイラ3が定格で運転しない場合、あるいは信号SWがプラント最適運転を指令しない場合には、開度0となる開度指令CVblsが出力され蒸気の抽気が停止される。 In addition, when the gas turbine equipment 20, the steam turbine equipment 25, and the exhaust heat recovery boiler 3 are not operated at the rated value, or when the signal SW does not command the plant optimum operation, the opening degree command CVbls that outputs the opening degree 0 is output. Then, steam extraction is stopped.
 上記のように蒸気タービン設備25から蒸気を抽気すると、蒸気タービン設備25の出力が低減できるとともに、余剰な蒸気を利用して水製造装置30で純水を製造することができる。これにより大気温度が低下して需要(MWD)に対して出力(MWD0)が過剰になるときにも、ガスタービン設備20の出力を低下させることなく実際の出力MWを出力指令値MWDに近づけることができる。 When steam is extracted from the steam turbine equipment 25 as described above, the output of the steam turbine equipment 25 can be reduced, and pure water can be produced by the water production apparatus 30 using surplus steam. As a result, even when the atmospheric temperature decreases and the output (MWD0) becomes excessive with respect to the demand (MWD), the actual output MW is brought close to the output command value MWD without reducing the output of the gas turbine equipment 20. Can do.
 なお、上記では、減算部50の算出する出力指令値偏差ΔMW0が正負になる場合についてのみ説明したが、出力指令値偏差ΔMW0がゼロとなる場合には、信号SWがプラント最適運転を指令しない場合と同様に、各調節弁8,9に開度0となる開度指令を出力するものとする。また、出力指令値偏差ΔMW0がゼロとならない場合でも、出力指令値偏差ΔMW0をゼロとみなす閾値を予め定めておき、出力指令値偏差ΔMW0がその閾値内に収まれば、各調節弁8,9に開度0となる開度指令を出力するように制御しても良い。 In the above description, only the case where the output command value deviation ΔMW0 calculated by the subtracting unit 50 is positive or negative has been described. However, when the output command value deviation ΔMW0 is zero, the signal SW does not command the optimum plant operation. In the same manner as described above, an opening degree command for opening degree 0 is output to each of the control valves 8 and 9. Further, even when the output command value deviation ΔMW0 does not become zero, a threshold value for regarding the output command value deviation ΔMW0 as zero is determined in advance, and if the output command value deviation ΔMW0 falls within the threshold value, the control valves 8 and 9 You may control to output the opening degree command which becomes the opening degree 0.
 次に、本発明の第1の実施の形態の効果について図4及び図5を用いて説明する。 Next, effects of the first embodiment of the present invention will be described with reference to FIGS.
 図4は最適運転を実施しない場合のプラント運転特性の一例を示す図である。図4において、上段の図は大気温度Taの日変化を示す図であり、下段の図はそのときの出力指令値MWDと動力供給システムの出力MWの日変化を示す図である。なお、下段の図では、動力供給システムのガスタービン設備に供給される燃料流量と、蒸気タービン設備に供給される蒸気流量は、それぞれ一定と仮定している。 FIG. 4 is a diagram showing an example of plant operation characteristics when the optimum operation is not performed. In FIG. 4, the upper diagram is a diagram showing the daily change of the atmospheric temperature Ta, and the lower diagram is a diagram showing the daily change of the output command value MWD and the output MW of the power supply system at that time. In the lower diagram, it is assumed that the fuel flow rate supplied to the gas turbine equipment of the power supply system and the steam flow rate supplied to the steam turbine equipment are constant.
 図4の上段の図に示すように大気温度Taが変化する場合、プラントが必要とする出力指令値MWDは、大気温度変化と同様に、昼間(10~22時)に上昇して夜間(0~10時、22時~24時)に下降する傾向がある。これに対してガスタービン設備と蒸気タービン設備の実際の出力の合計MW(即ち、コンバインドサイクル設備の実際の出力)は、大気温度変化と反対に昼間に下降して夜間に上昇する傾向がある。 As shown in the upper diagram of FIG. 4, when the atmospheric temperature Ta changes, the output command value MWD required by the plant rises in the daytime (10 to 22:00) and increases at night (0 (10:00 to 20:00 to 24:00). On the other hand, the total MW of the actual output of the gas turbine facility and the steam turbine facility (that is, the actual output of the combined cycle facility) tends to decrease in the daytime and increase in the night as opposed to the atmospheric temperature change.
 特に本実施の形態のような天然ガス液化プラントでは、寒冷時(例えば夜間)に天然ガスや第1及び第2冷媒の冷却に用いる熱交換器等(例えば、中間冷却器47a、後置冷却器47b、凝縮器46)の冷却性能が相対的に向上するため、第1及び第2冷媒を加熱圧縮する冷媒圧縮機10,11の必要動力が低減し、出力指令値MWDが減少する傾向がある。この特性は、寒冷時に出力が増加するコンバインドサイクル設備の特性と逆のものであり、寒冷時の余剰蒸気による効率低下はさらに顕著となる。例えば、図4に示す例では、大気温度Taの日変化によって電力需給量に最大でΔMWの偏差が生じる。 In particular, in the natural gas liquefaction plant as in the present embodiment, a heat exchanger or the like (for example, an intercooler 47a, a post-cooler) used for cooling natural gas or the first and second refrigerants during cold weather (for example, at night). 47b, because the cooling performance of the condenser 46) is relatively improved, the required power of the refrigerant compressors 10 and 11 for heating and compressing the first and second refrigerants is reduced, and the output command value MWD tends to be reduced. . This characteristic is opposite to the characteristic of the combined cycle facility in which the output increases in cold weather, and the efficiency decrease due to surplus steam during cold weather becomes even more remarkable. For example, in the example shown in FIG. 4, a deviation of ΔMW occurs at the maximum in the power supply and demand due to the daily change in the atmospheric temperature Ta.
 この電力需給量の偏差ΔMWを低減する方策の1つには、コンバインドサイクル設備を部分負荷運転する方法があるが、これではコンバインドサイクル設備を定格付近で運転する場合と比較して発電効率が低下し、プラント全体としての燃料利用率も低下してしまう。 One way to reduce this deviation in power supply and demand ΔMW is to perform partial load operation of the combined cycle facility, but this reduces the power generation efficiency compared to operating the combined cycle facility near the rating. And the fuel utilization rate as the whole plant will also fall.
 このような課題に対して、本実施の形態の動力供給システムは、蒸気タービン設備25から抽気した蒸気を水製造装置30に供給する抽気配管64と、抽気流量調節弁9と、プラントからの出力指令値MWDがガスタービン設備20及び蒸気タービン設備25の定格出力値MWD0を下回るとき、ガスタービン設備20及び蒸気タービン設備25の合計出力MWが出力指令値MWDに近づくように、定格出力値MWD0と出力指令値MWDの偏差ΔMWに基づいて蒸気タービン設備25から抽気する蒸気流量GblsDを決定し、その蒸気流量GblsDに基づいて決定した開度CVblsに抽気流量調節弁9を保持する制御装置110を備えている。 In response to such a problem, the power supply system according to the present embodiment has an extraction pipe 64 that supplies steam extracted from the steam turbine facility 25 to the water production apparatus 30, an extraction flow rate control valve 9, and an output from the plant. When the command value MWD is lower than the rated output value MWD0 of the gas turbine equipment 20 and the steam turbine equipment 25, the rated output value MWD0 is set so that the total output MW of the gas turbine equipment 20 and the steam turbine equipment 25 approaches the output command value MWD. A control device 110 is provided that determines a steam flow rate GblsD to be extracted from the steam turbine equipment 25 based on the deviation ΔMW of the output command value MWD, and holds the extraction flow rate adjustment valve 9 at the opening degree CVbls determined based on the steam flow rate GblsD. ing.
 このように構成された動力供給システムにおいて、大気温度が低下して出力指令値MWD(需要電力)が定格出力値MWD0(供給電力)を下回ると判断された場合(即ち、出力指令偏差値ΔMW0が負のとき)には、制御装置110のCC補助制御部101は、まず、出力指令偏差値ΔMW0と大気温度Taから抽気流量GblsDを算出し、その算出した抽気流量GblsDに基づいて開度指令CVblsを算出する。次に、CC補助制御部101は、算出したその開度指令CVblsを抽気流量調節弁9に出力して、出力指令値MWDの変化に出力MWが追従するように抽気流量調節弁9の開度を調節する。 In the power supply system configured as described above, when it is determined that the atmospheric temperature decreases and the output command value MWD (demand power) falls below the rated output value MWD0 (supply power) (that is, the output command deviation value ΔMW0 is When negative, the CC auxiliary control unit 101 of the control device 110 first calculates the extraction flow rate GblsD from the output command deviation value ΔMW0 and the atmospheric temperature Ta, and based on the calculated extraction flow rate GblsD, the opening degree command CVbls. Is calculated. Next, the CC auxiliary control unit 101 outputs the calculated opening degree command CVbls to the extraction flow rate adjustment valve 9, and the opening degree of the extraction flow rate adjustment valve 9 so that the output MW follows the change in the output command value MWD. Adjust.
 このように出力指令値MWDの変化に出力MWが追従するように蒸気タービン設備25からの蒸気の抽気流量を調節すると、蒸気タービン設備25の出力を出力指令値MWDの変化に応じて低減することができるので、ガスタービン設備20を定格付近で運転しながら出力MWを出力指令値MWDに近づけることができる。また、本実施の形態では蒸気タービン設備25から抽気した蒸気を水製造装置30に供給し、気温上昇時に吸気噴霧装置6で必要となる純水を製造しているので、排熱回収ボイラ3で発生した蒸気を有効利用することができる。すなわち、本実施の形態によれば、大気温度が低下してもガスタービン設備20を定格付近で運転しながら出力指令値MWDの変化に出力MWを追従させることができるので、プラント用動力供給システムの効率を向上することができる。 When the steam extraction flow rate from the steam turbine equipment 25 is adjusted so that the output MW follows the change in the output command value MWD in this way, the output of the steam turbine equipment 25 is reduced according to the change in the output command value MWD. Therefore, the output MW can be brought close to the output command value MWD while the gas turbine facility 20 is operated near the rating. Further, in the present embodiment, the steam extracted from the steam turbine facility 25 is supplied to the water production device 30 to produce pure water required by the intake spray device 6 when the temperature rises. The generated steam can be used effectively. In other words, according to the present embodiment, the output MW can follow the change in the output command value MWD while operating the gas turbine facility 20 near the rating even when the atmospheric temperature is lowered. Efficiency can be improved.
 ここで上記効果の具体例を図5を用いて説明する。 Here, a specific example of the above effect will be described with reference to FIG.
 図5は最適運転を実施した際のプラント運転特性の一例を示す図である。図5において、上段の図は大気温度Taが図4の上段の図のように変化した場合の出力MWの日変化を示す図であり、下段の図はそのときの水量調節弁8と抽気流量調節弁9の開度(%)を示す図である。 FIG. 5 is a diagram showing an example of plant operation characteristics when the optimum operation is performed. In FIG. 5, the upper diagram shows the daily change of the output MW when the atmospheric temperature Ta changes as shown in the upper diagram of FIG. 4, and the lower diagram shows the water amount adjustment valve 8 and the bleed flow rate at that time. It is a figure which shows the opening degree (%) of the control valve.
 この図5に示す例では、信号SWによってプラント最適運転が常にされているものとする。また、0~10時と22~24時の間に「出力指令値MWD<定格出力値MWD0(即ち、出力指令偏差値ΔMW0<0)」が成立し、10~22時の間に「出力指令値MWD>定格出力値MWD0(即ち、出力指令偏差値ΔMW0>0)」が成立するように動力供給システムの定格出力値MWD0が設定されているものとする。 In the example shown in FIG. 5, it is assumed that the plant optimum operation is always performed by the signal SW. Further, “output command value MWD <rated output value MWD0 (ie, output command deviation value ΔMW0 <0)” is established between 0-10 o'clock and 22-24 o'clock, and “output command value MWD> rated rating between 10-22 o'clock”. Assume that the rated output value MWD0 of the power supply system is set so that the output value MWD0 (that is, the output command deviation value ΔMW0> 0) is established.
 この場合において、大気温度Taが相対的に低い深夜から朝の間(0~10時、22~24時)には、出力指令偏差値ΔMW0が負となるので、蒸気タービン設備25の出力を低減して出力MWを出力指令値MWDに近づける制御が行われる。特に、この例では、0~8時にかけて出力MWを一定に保持する制御が行われており、抽気流量調節弁9の開度がαに保持されている。このように抽気流量調節弁9の開度を出力指令値MWDの変化に応じて調節すると、蒸気タービン設備25の出力を定格からΔMWbld(図5上段参照)だけ低下させることができるので、ガスタービン設備20を定格付近で運転しながら出力MWを出力指令値MWDに近づけることができる。 In this case, the output command deviation value ΔMW0 is negative between midnight and morning (0-10 o'clock, 22-24 o'clock) when the atmospheric temperature Ta is relatively low, so the output of the steam turbine equipment 25 is reduced. Thus, control is performed to bring the output MW closer to the output command value MWD. In particular, in this example, control is performed to keep the output MW constant from 0 to 8 o'clock, and the opening degree of the extraction flow rate adjusting valve 9 is held at α. Thus, when the opening degree of the extraction flow rate adjusting valve 9 is adjusted in accordance with the change in the output command value MWD, the output of the steam turbine equipment 25 can be reduced from the rating by ΔMWbld (see the upper part of FIG. 5). The output MW can be brought close to the output command value MWD while operating the facility 20 near the rating.
 ところで、本実施の形態の動力供給システムは、ガスタービン設備20の吸気に水を噴霧する吸気噴霧装置6と、吸気噴霧装置6に供給される水が貯蔵された水タンク31と、水タンク31と吸気噴霧装置6を接続する噴霧水配管63と、噴霧水配管63に設けられた水量調節弁8と、大気温度を計測する温度計測器7と、プラントからの出力指令値MWDがガスタービン設備20及び蒸気タービン設備25の定格出力値MWD0を上回るとき、ガスタービン設備20及び蒸気タービン設備25の合計出力MWが出力指令値MWDに近づくように、定格出力値MWD0と出力指令値MWDの偏差ΔMW及び温度計測器7からの大気温度Taに基づいて、水タンク31から吸気噴霧装置6に供給する水量GwacDを決定し、その水量GwacDに基づいて決定した開度CVwacに水量調節弁8を保持する制御装置110をさらに備えている。 By the way, the power supply system of the present embodiment includes an intake spray device 6 that sprays water on the intake air of the gas turbine equipment 20, a water tank 31 that stores water supplied to the intake spray device 6, and a water tank 31. Spray water pipe 63 that connects to the intake spray device 6, a water amount adjustment valve 8 provided in the spray water pipe 63, a temperature measuring device 7 that measures the atmospheric temperature, and an output command value MWD from the plant is the gas turbine equipment 20 and the rated output value MWD0 of the steam turbine equipment 25, the deviation ΔMW between the rated output value MWD0 and the output command value MWD so that the total output MW of the gas turbine equipment 20 and the steam turbine equipment 25 approaches the output command value MWD. And based on the atmospheric temperature Ta from the temperature measuring device 7, the water amount GwacD supplied from the water tank 31 to the intake spray device 6 is determined, and the water amount Gwa is determined. Further comprising a control device 110 for holding the water amount adjusting valve 8 to an opening CVwac determined based on D.
 このように構成された動力供給システムにおいて、大気温度が上昇して出力指令値MWD(需要電力)が定格出力値MWD0(供給電力)を上回ると判断された場合(即ち、出力指令偏差値ΔMW0が正のとき)には、制御装置110のCC補助制御部101は、出力指令値MWDの偏差ΔMWと大気温度Taに基づいて、吸気噴霧装置6に供給する水量GwacDを決定する。そして、CC補助制御部101は、その水量GwacDに基づいて決定した開度指令CVwacを水量調節弁8に出力し、出力指令値MWDの変化に出力MWが追従するように水量調節弁8の開度を調節する。 In the power supply system configured as described above, when it is determined that the atmospheric temperature rises and the output command value MWD (demand power) exceeds the rated output value MWD0 (supply power) (that is, the output command deviation value ΔMW0 is When positive, the CC auxiliary control unit 101 of the control device 110 determines the amount of water GwacD supplied to the intake spray device 6 based on the deviation ΔMW of the output command value MWD and the atmospheric temperature Ta. Then, the CC auxiliary control unit 101 outputs the opening degree command CVwac determined based on the water amount GwacD to the water amount adjustment valve 8, and opens the water amount adjustment valve 8 so that the output MW follows the change in the output command value MWD. Adjust the degree.
 このように出力指令値MWDの変化に出力MWが追従するように圧縮機2入口への吸気噴霧量を調整すると、出力指令値MWDの変化に応じて圧縮機2の駆動力を低減することができるので、ガスタービン設備20の出力を出力指令値MWDの変化に応じて定格から増加することができる。これにより、大気温度が上昇しても出力指令値MWDの変化に出力MWを追従させることができるので、プラント用動力供給システムの効率をさらに向上することができる。 When the intake spray amount to the inlet of the compressor 2 is adjusted so that the output MW follows the change in the output command value MWD in this way, the driving force of the compressor 2 can be reduced according to the change in the output command value MWD. Therefore, the output of the gas turbine equipment 20 can be increased from the rating according to the change in the output command value MWD. Thereby, even if atmospheric temperature rises, since output MW can be made to follow change of output command value MWD, the efficiency of the power supply system for plants can further be improved.
 上記の制御に関して、図5に示した例では、大気温度が上昇する12~20時に水量調節弁8を開度βに保持して圧縮機2の入口に対して吸気噴霧を行っている。これによりコンバインドサイクル設備の出力がΔMWwacだけ上昇するので、大気温度が上昇した場合にも出力MWをプラントが求める出力指令値MWDに追従させることができる。 With respect to the above control, in the example shown in FIG. 5, the water amount adjustment valve 8 is held at the opening degree β at 12 to 20:00 when the atmospheric temperature rises, and the intake spray is performed on the inlet of the compressor 2. As a result, the output of the combined cycle facility increases by ΔMWwac, so that the output MW can be made to follow the output command value MWD required by the plant even when the atmospheric temperature increases.
 なお、図5の例では、0~8時と12~20時において出力MWを一定に保持する制御を行ったが、全時間帯に亘って出力指令値MWDと出力MWの偏差がゼロに近づくように出力MWを制御しても良い。この場合には動力供給システムの効率を更に向上させることができる。 In the example of FIG. 5, control is performed to keep the output MW constant at 0-8 o'clock and 12-20 o'clock, but the deviation between the output command value MWD and the output MW approaches zero over the entire time period. Thus, the output MW may be controlled. In this case, the efficiency of the power supply system can be further improved.
 以上のように、本実施の形態によれば、プラントが要求する出力指令値MWDに大気温度Taの日変化による上下変動が発生しても、ガスタービン設備20を定格付近で運転しながら出力MWを調節できるので、コンバインドサイクル設備の発電効率及びプラント全体の燃料利用率を一定にでき、プラント全体としての効率運用が可能となる。 As described above, according to the present embodiment, even if the output command value MWD required by the plant fluctuates up and down due to the daily change of the atmospheric temperature Ta, the output MW while operating the gas turbine equipment 20 near the rating. Therefore, the power generation efficiency of the combined cycle facility and the fuel utilization rate of the entire plant can be made constant, and the efficient operation of the entire plant becomes possible.
 次の本発明の第2の実施の形態に係るプラント用動力供給システムについて説明する。 Next, a plant power supply system according to a second embodiment of the present invention will be described.
 図6は本発明の第2の実施の形態に係るプラント用動力供給システムの概略図である。先の図と同じ部分には同じ符号を付し説明は省略する。 FIG. 6 is a schematic diagram of a plant power supply system according to a second embodiment of the present invention. The same parts as those in the previous figure are denoted by the same reference numerals and description thereof is omitted.
 本実施の形態の動力供給システムが第1の実施の形態のものと異なる点は、タービン1に第1冷媒圧縮機10Aの駆動軸が接続されており、タービン5に第2冷媒圧縮機11Aの駆動軸が接続されている点にある。この構成により、図6に示す動力供給システムは、ガスタービン設備20で得られた動力で第1冷媒圧縮機10を直接駆動し、蒸気タービン設備25で得られた動力で第2冷媒圧縮機11を直接駆動している。 The power supply system of the present embodiment is different from that of the first embodiment in that the drive shaft of the first refrigerant compressor 10A is connected to the turbine 1, and the second refrigerant compressor 11A is connected to the turbine 5. The drive shaft is connected. With this configuration, the power supply system shown in FIG. 6 directly drives the first refrigerant compressor 10 with the power obtained by the gas turbine equipment 20, and the second refrigerant compressor 11 with the power obtained by the steam turbine equipment 25. Is driving directly.
 従来、このようにタービン1,5の回転軸を冷媒圧縮機10,11の駆動軸に直結した場合には、各冷媒圧縮機10,11の必要動力が個別に変化した場合、その必要動力の変化にコンバインドサイクル設備の出力を追従させることが難しかった。 Conventionally, when the rotating shafts of the turbines 1 and 5 are directly connected to the drive shafts of the refrigerant compressors 10 and 11 as described above, when the required power of each of the refrigerant compressors 10 and 11 changes individually, It was difficult to make the output of the combined cycle equipment follow changes.
 ところが上記のように構成した本実施の形態によれば、水量調整弁8への開度指令CVwacは、ガスタービン設備20の出力及び第1冷媒圧縮機10の必要動力の偏差から計算することができ、抽気流量調整弁9への開度指令CVblsは、蒸気タービン設備25の出力及び第2冷媒圧縮機11の必要動力の偏差から計算することができる。したがって、本実施の形態によれば、開度指令CVwac,CVblsを制御することにより、ガスタービン設備20と蒸気タービン設備25の出力を個別に制御することができる。これにより、第1冷媒圧縮機10と第2冷媒圧縮機11の必要動力が個別に変化した場合にも柔軟に対応することができる。 However, according to the present embodiment configured as described above, the opening degree command CVwac to the water amount adjusting valve 8 can be calculated from the deviation of the output of the gas turbine equipment 20 and the necessary power of the first refrigerant compressor 10. The opening degree command CVbls to the extraction flow rate adjusting valve 9 can be calculated from the deviation of the output of the steam turbine equipment 25 and the necessary power of the second refrigerant compressor 11. Therefore, according to the present embodiment, the outputs of the gas turbine facility 20 and the steam turbine facility 25 can be individually controlled by controlling the opening degree commands CVwac and CVbls. Thereby, it can respond flexibly also when the required motive power of the 1st refrigerant | coolant compressor 10 and the 2nd refrigerant | coolant compressor 11 changes separately.
 なお、上記の説明では、ガスタービン設備20で第1冷媒圧縮機10を駆動し、蒸気タービン設備25で第2冷媒圧縮機11を駆動する構成を取り上げたが、これとは逆にガスタービン設備20で第2冷媒圧縮機11を、蒸気タービン設備25で第1冷媒圧縮機10を駆動する構成としても良い。 In the above description, the configuration in which the first refrigerant compressor 10 is driven by the gas turbine equipment 20 and the second refrigerant compressor 11 is driven by the steam turbine equipment 25 has been taken up. The second refrigerant compressor 11 may be driven by 20 and the first refrigerant compressor 10 may be driven by the steam turbine equipment 25.
 また、図6に示したガスタービン設備20の回転軸あるいは蒸気タービン25の回転軸に発電機(図示せず)を追加し、第1冷媒圧縮機10又は第2冷媒圧縮機11で余剰となった駆動力で電力を発生しても良い。このように発電機を追加すれば、冷媒圧縮機10,11の駆動に用いられず余剰となった出力をプラント内の他の設備に電力として供給できるので、コンバインドサイクル設備が発生した出力の利用効率を更に向上することができる。 Further, a generator (not shown) is added to the rotating shaft of the gas turbine equipment 20 or the rotating shaft of the steam turbine 25 shown in FIG. 6, and the first refrigerant compressor 10 or the second refrigerant compressor 11 becomes redundant. Electric power may be generated with a different driving force. If the generator is added in this way, the surplus output that is not used for driving the refrigerant compressors 10 and 11 can be supplied as electric power to other equipment in the plant, so that the output generated by the combined cycle equipment can be used. Efficiency can be further improved.
 ところで、上記各実施の形態では、天然ガスを冷却する冷媒として混合冷媒及びプロパンを利用する方式(プロパン予冷式MCR方式)を取り上げて説明したが、天然ガスの液化方式には種々の方法が提案されており、これは天然ガス冷却の一方法にすぎない。本発明の動力供給システムは大型圧縮機を駆動する天然ガス液化プラントならばどの方式でも適用可能であり、上記に例示した冷却・液化方式に依存しない。 By the way, in each said embodiment, although the system (propane pre-cooling MCR system) using a mixed refrigerant and propane as a refrigerant which cools natural gas was taken up and explained, various methods are proposed for a natural gas liquefaction system. This is just one way of cooling natural gas. The power supply system of the present invention can be applied to any system as long as it is a natural gas liquefaction plant that drives a large compressor, and does not depend on the cooling / liquefaction system exemplified above.
 また、上記の各実施の形態では、蒸気タービン設備25から抽気した蒸気の供給先を水製造装置30としたが、抽気配管64の一端をヒートポンプや地域冷暖房等の蒸気利用設備に接続し、抽気した蒸気を他の設備の熱源として利用しても良い。 In each of the above-described embodiments, the supply destination of the steam extracted from the steam turbine facility 25 is the water production apparatus 30, but one end of the extraction pipe 64 is connected to a steam utilization facility such as a heat pump or district heating / cooling, and extraction The steam thus used may be used as a heat source for other equipment.
 さらに、上記では、天然ガス液化プラントの動力供給システムを例に挙げて説明したが、この他にも、そのプラントの性質上、プラントの動力需要に合致した動力供給が常に求められ、継続的かつ安定的な動力が求められるプラントであれば本発明は適用可能である。 Furthermore, in the above description, the power supply system of the natural gas liquefaction plant has been described as an example, but besides this, the power supply consistent with the power demand of the plant is always required due to the nature of the plant, and the The present invention can be applied to any plant that requires stable power.

Claims (10)

  1.  燃料と吸気を燃焼して得た燃焼ガスで駆動されるガスタービン設備と、
     該ガスタービン設備からの排ガスで蒸気を発生させる排熱回収ボイラと、
     該排熱回収ボイラからの蒸気で駆動される蒸気タービン設備と、
     該蒸気タービン設備から抽気した蒸気を蒸気利用設備に供給する抽気配管と、
     該抽気配管に設けられた抽気流量調節弁と、
     大気温度の日変化とともに変化するプラントからの出力指令値が前記ガスタービン設備及び前記蒸気タービン設備の定格出力値を下回るとき、前記ガスタービン設備及び前記蒸気タービン設備の合計出力が前記出力指令値に近づくように、前記定格出力値と前記出力指令値の偏差に基づいて前記蒸気タービン設備から前記抽気配管を介して抽気する蒸気流量を決定し、該蒸気流量に基づいて決定した開度に前記抽気流量調節弁を設定する制御装置とを備えることを特徴とするプラント用動力供給システム。
    Gas turbine equipment driven by combustion gas obtained by burning fuel and intake air,
    An exhaust heat recovery boiler that generates steam from the exhaust gas from the gas turbine facility;
    Steam turbine equipment driven by steam from the exhaust heat recovery boiler;
    An extraction pipe for supplying steam extracted from the steam turbine facility to the steam utilization facility;
    An extraction flow control valve provided in the extraction pipe;
    When the output command value from the plant that changes with the daily change of the atmospheric temperature is lower than the rated output value of the gas turbine equipment and the steam turbine equipment, the total output of the gas turbine equipment and the steam turbine equipment becomes the output command value. A steam flow to be extracted from the steam turbine equipment via the extraction piping is determined based on a deviation between the rated output value and the output command value so as to approach, and the extraction is determined at an opening determined based on the steam flow. A power supply system for a plant, comprising: a control device that sets a flow control valve.
  2.  請求項1記載のプラント用動力供給システムにおいて、
     前記ガスタービン設備の吸気に水を噴霧する吸気噴霧装置と、
     該吸気噴霧装置に供給される水が貯蔵された水タンクと、
     該水タンクと前記吸気噴霧装置を接続する噴霧水配管と、
     該噴霧水配管に設けられた水量調節弁と、
     大気温度を計測する温度計測器とをさらに備え、
     前記制御装置は、さらに、大気温度の日変化とともに変化するプラントからの出力指令値が前記ガスタービン設備及び前記蒸気タービン設備の定格出力値を上回るとき、前記ガスタービン設備及び前記蒸気タービン設備の合計出力が出力指令値に近づくように、前記定格出力値と前記出力指令値の偏差及び前記温度計測器からの大気温度に基づいて前記水タンクから前記噴霧水配管を介して前記吸気噴霧装置に供給する水量を決定し、該水量に基づいて決定した開度に前記水量調節弁を設定することを特徴とするプラント用動力供給システム。
    The power supply system for a plant according to claim 1,
    An intake air spray device for spraying water into the intake air of the gas turbine equipment;
    A water tank storing water to be supplied to the intake spray device;
    Spray water piping connecting the water tank and the intake spray device;
    A water amount adjusting valve provided in the spray water pipe;
    A temperature measuring device for measuring the atmospheric temperature,
    The control device further includes a sum of the gas turbine equipment and the steam turbine equipment when an output command value from the plant that changes with a daily change in atmospheric temperature exceeds a rated output value of the gas turbine equipment and the steam turbine equipment. Supplied from the water tank to the intake spray device via the spray water pipe based on the deviation between the rated output value and the output command value and the atmospheric temperature from the temperature measuring device so that the output approaches the output command value A power supply system for a plant, wherein the amount of water to be determined is determined, and the water amount adjustment valve is set to an opening determined based on the amount of water.
  3.  請求項2記載のプラント用動力供給システムにおいて、
     前記蒸気利用設備は前記水タンクに供給される水を製造する水製造装置であることを特徴とするプラント用動力供給システム。
    The power supply system for a plant according to claim 2,
    The plant power supply system, wherein the steam utilization facility is a water production apparatus for producing water to be supplied to the water tank.
  4.  請求項1記載のプラント用動力供給システムにおいて、
     前記ガスタービン設備と前記蒸気タービン設備には、前記プラントに電力供給する発電機が接続されていることを特徴とするプラント用動力供給システム。
    The power supply system for a plant according to claim 1,
    A power supply system for a plant, wherein a generator for supplying electric power to the plant is connected to the gas turbine facility and the steam turbine facility.
  5.  請求項1記載のプラント用動力供給システムにおいて、
     前記ガスタービン設備と前記蒸気タービン設備には、前記プラントの回転駆動装置が接続されていることを特徴とするプラント用動力供給システム。
    The power supply system for a plant according to claim 1,
    A power supply system for a plant, wherein a rotation drive device of the plant is connected to the gas turbine facility and the steam turbine facility.
  6.  請求項5記載のプラント用動力供給システムにおいて、
     前記ガスタービン設備と前記蒸気タービン設備の少なくとも一方には、前記プラントに電力供給する発電機が接続されていることを特徴とするプラント用動力供給システム。
    The power supply system for a plant according to claim 5,
    A power supply system for a plant, wherein a generator for supplying electric power to the plant is connected to at least one of the gas turbine facility and the steam turbine facility.
  7.  請求項1から6いずれかに記載のプラント用動力供給システムにおいて、
     前記プラントは天然ガス液化プラントであることを特徴とするプラント用動力供給システム。
    In the power supply system for plants in any one of Claim 1 to 6,
    The plant power supply system, wherein the plant is a natural gas liquefaction plant.
  8.  燃料と吸気を燃焼して得た燃焼ガスで駆動されるガスタービン設備と、このガスタービン設備からの排ガスで蒸気を発生させる排熱回収ボイラと、この排熱回収ボイラからの蒸気で駆動される蒸気タービン設備とを備えるプラント用動力供給システムの運転方法において、
     大気温度の日変化とともに変化するプラントからの出力指令値が前記ガスタービン設備及び前記蒸気タービン設備の定格出力値を下回るとき、前記ガスタービン設備及び前記蒸気タービン設備の合計出力が前記出力指令値に近づくように、前記定格出力値と前記出力指令値の偏差に基づいて前記蒸気タービン設備から抽気する蒸気流量を決定し、
     該決定した蒸気流量に基づいて前記蒸気タービン設備から蒸気利用設備に供給する蒸気流量を調節することを特徴とするプラント用動力供給システムの運転方法。
    Gas turbine equipment driven by combustion gas obtained by burning fuel and intake air, an exhaust heat recovery boiler that generates steam from exhaust gas from the gas turbine equipment, and driven by steam from the exhaust heat recovery boiler In a method for operating a power supply system for a plant comprising a steam turbine facility,
    When the output command value from the plant that changes with the daily change of the atmospheric temperature is lower than the rated output value of the gas turbine equipment and the steam turbine equipment, the total output of the gas turbine equipment and the steam turbine equipment becomes the output command value. The steam flow to be extracted from the steam turbine equipment is determined based on the deviation between the rated output value and the output command value so as to approach,
    A method for operating a power supply system for a plant, comprising: adjusting a flow rate of steam supplied from the steam turbine facility to a steam utilization facility based on the determined steam flow rate.
  9.  請求項8記載のプラント用動力供給システムの運転方法において、
     さらに、大気温度の日変化とともに変化するプラントからの出力指令値が前記ガスタービン設備及び前記蒸気タービン設備の定格出力値を上回るとき、前記ガスタービン設備及び前記蒸気タービン設備の合計出力が出力指令値に近づくように、前記定格出力値と前記出力指令値の偏差及び大気温度に基づいて前記ガスタービン設備の吸気に噴霧する水量を決定し、
     該決定した水量に基づいて前記ガスタービン設備の吸気に噴霧する水量を調節することを特徴とするプラント用動力供給システムの運転方法。
    The operation method of the power supply system for a plant according to claim 8,
    Further, when the output command value from the plant that changes with the daily change of the atmospheric temperature exceeds the rated output value of the gas turbine equipment and the steam turbine equipment, the total output of the gas turbine equipment and the steam turbine equipment is the output command value. To determine the amount of water sprayed to the intake of the gas turbine equipment based on the deviation between the rated output value and the output command value and the atmospheric temperature,
    A method for operating a power supply system for a plant, wherein the amount of water sprayed on the intake air of the gas turbine equipment is adjusted based on the determined amount of water.
  10.  燃料と吸気を燃焼して得た燃焼ガスで駆動されるガスタービン設備と、該ガスタービン設備からの排ガスで蒸気を発生させる排熱回収ボイラと、該排熱回収ボイラからの蒸気で駆動される蒸気タービン設備とを備えるプラント用動力供給システムに対して、
     前記蒸気タービン設備から抽気した蒸気を蒸気利用設備に供給する抽気配管と、
     該抽気配管に設けられた抽気流量調節弁と、
     大気温度の日変化とともに変化するプラントからの出力指令値が前記ガスタービン設備及び前記蒸気タービン設備の定格出力値を下回るとき、前記ガスタービン設備及び前記蒸気タービン設備の合計出力が前記出力指令値に近づくように、前記定格出力値と前記出力指令値の偏差に基づいて前記蒸気タービン設備から前記抽気配管を介して抽気する蒸気流量を決定し、該蒸気流量に基づいて決定した開度に前記抽気流量調節弁を設定する制御装置とを追設することを特徴とするプラント用動力供給システムの改造方法。
    Gas turbine equipment driven by combustion gas obtained by burning fuel and intake air, exhaust heat recovery boiler that generates steam from exhaust gas from the gas turbine equipment, and steam driven from the exhaust heat recovery boiler For power supply systems for plants with steam turbine equipment,
    An extraction pipe for supplying steam extracted from the steam turbine facility to the steam utilization facility;
    An extraction flow control valve provided in the extraction pipe;
    When the output command value from the plant that changes with the daily change of the atmospheric temperature is lower than the rated output value of the gas turbine equipment and the steam turbine equipment, the total output of the gas turbine equipment and the steam turbine equipment becomes the output command value. A steam flow to be extracted from the steam turbine equipment via the extraction piping is determined based on a deviation between the rated output value and the output command value so as to approach, and the extraction is determined at an opening determined based on the steam flow. A remodeling method for a power supply system for a plant, wherein a control device for setting a flow control valve is additionally provided.
PCT/JP2008/051573 2008-01-31 2008-01-31 Motive power supply system for plant, method for operating the same, and method for modifying the same WO2009096028A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009506827A JP4910042B2 (en) 2008-01-31 2008-01-31 Power supply system for plant, its operation method and remodeling method
PCT/JP2008/051573 WO2009096028A1 (en) 2008-01-31 2008-01-31 Motive power supply system for plant, method for operating the same, and method for modifying the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/051573 WO2009096028A1 (en) 2008-01-31 2008-01-31 Motive power supply system for plant, method for operating the same, and method for modifying the same

Publications (1)

Publication Number Publication Date
WO2009096028A1 true WO2009096028A1 (en) 2009-08-06

Family

ID=40912397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/051573 WO2009096028A1 (en) 2008-01-31 2008-01-31 Motive power supply system for plant, method for operating the same, and method for modifying the same

Country Status (2)

Country Link
JP (1) JP4910042B2 (en)
WO (1) WO2009096028A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189894A (en) * 2010-03-16 2011-09-29 Hitachi Plant Technologies Ltd Vacuum environmental testing apparatus
WO2012032557A1 (en) * 2010-09-06 2012-03-15 株式会社 日立製作所 Gas turbine power generation system
JP2012140959A (en) * 2011-01-03 2012-07-26 General Electric Co <Ge> Power generation apparatus
EP2792858A3 (en) * 2013-03-15 2015-03-25 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine power plant
US10126048B2 (en) 2014-04-07 2018-11-13 Mitsubishi Heavy Industries Compressor Corporation Floating liquefied-gas production facility
JP2019503840A (en) * 2015-12-02 2019-02-14 ランドバーグ・エルエルシー System, apparatus, and method for improving turbine operation using electrostatic precipitator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172808A (en) * 1984-09-18 1986-04-14 Toshiba Corp Output controlling equipment for combined cycle generating plant
JPH10266812A (en) * 1997-03-25 1998-10-06 Mitsubishi Heavy Ind Ltd Electric power control method of steam supply power generating gas turbine combined plant
JP2001234755A (en) * 2000-02-21 2001-08-31 Hitachi Ltd Gas turbine plant
JP2005147111A (en) * 2003-02-21 2005-06-09 Hitachi Ltd Fuel gas pipeline facility with booster, payout plan support system for estimating payout possibility of exhaust heat recovery compressor
JP2006503252A (en) * 2002-10-07 2006-01-26 コノコフィリップス カンパニー Improved drive and compressor system for natural gas liquefaction
JP2007198201A (en) * 2006-01-25 2007-08-09 Hitachi Ltd Gas turbine plant system and method for remodeling gas turbine plant system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172029A (en) * 1997-06-30 1999-03-16 Hitachi Ltd Gas turbine having output increasing mechanism by water atomization
US6981360B2 (en) * 2001-04-09 2006-01-03 Hitachi, Ltd. Gas turbine power generator having humidifying and cooling means

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172808A (en) * 1984-09-18 1986-04-14 Toshiba Corp Output controlling equipment for combined cycle generating plant
JPH10266812A (en) * 1997-03-25 1998-10-06 Mitsubishi Heavy Ind Ltd Electric power control method of steam supply power generating gas turbine combined plant
JP2001234755A (en) * 2000-02-21 2001-08-31 Hitachi Ltd Gas turbine plant
JP2006503252A (en) * 2002-10-07 2006-01-26 コノコフィリップス カンパニー Improved drive and compressor system for natural gas liquefaction
JP2005147111A (en) * 2003-02-21 2005-06-09 Hitachi Ltd Fuel gas pipeline facility with booster, payout plan support system for estimating payout possibility of exhaust heat recovery compressor
JP2007198201A (en) * 2006-01-25 2007-08-09 Hitachi Ltd Gas turbine plant system and method for remodeling gas turbine plant system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189894A (en) * 2010-03-16 2011-09-29 Hitachi Plant Technologies Ltd Vacuum environmental testing apparatus
WO2012032557A1 (en) * 2010-09-06 2012-03-15 株式会社 日立製作所 Gas turbine power generation system
JPWO2012032557A1 (en) * 2010-09-06 2013-10-31 株式会社日立製作所 Gas turbine power generation system
JP5460877B2 (en) * 2010-09-06 2014-04-02 株式会社日立製作所 Gas turbine power generation system
JP2012140959A (en) * 2011-01-03 2012-07-26 General Electric Co <Ge> Power generation apparatus
EP2792858A3 (en) * 2013-03-15 2015-03-25 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine power plant
US10126048B2 (en) 2014-04-07 2018-11-13 Mitsubishi Heavy Industries Compressor Corporation Floating liquefied-gas production facility
JP2019503840A (en) * 2015-12-02 2019-02-14 ランドバーグ・エルエルシー System, apparatus, and method for improving turbine operation using electrostatic precipitator

Also Published As

Publication number Publication date
JPWO2009096028A1 (en) 2011-05-26
JP4910042B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
US11578623B2 (en) Cryogenic combined cycle power plant
EP1701006B1 (en) Electric power-generating and desalination combined plant and operation method of the same
JP4884527B2 (en) Natural gas liquefaction plant and power supply equipment for natural gas liquefaction plant
RU2719413C2 (en) Systems with closed regenerative thermodynamic cycle of electric power generation and methods of their operation
JP4910042B2 (en) Power supply system for plant, its operation method and remodeling method
EP2133515A1 (en) Power supply equipment for natural gas liquefaction plant
US9383105B2 (en) Compressed air energy storage system having variable generation modes
JP5023148B2 (en) Power supply facility for natural gas liquefaction plant, control device and control method thereof, and natural gas liquefaction plant
US11300010B2 (en) Cooling equipment, combined cycle plant comprising same, and cooling method
JP2013540925A (en) Apparatus and method using a multi-stage cryogenic hydraulic turbine
US10830105B2 (en) System and method for improving output and heat rate for a liquid natural gas combined cycle power plant
JP4828954B2 (en) Power generation / desalination complex plant and operation method thereof
Pattanayak et al. Liquefied natural gas re-gasification cold energy hybrid system integration in gas-steam combined cycle power plant model: Enhancement in power generation and performance
JP4879321B2 (en) Natural gas liquefaction plant and operation method thereof
JPWO2008139528A1 (en) Cooling cycle system, natural gas liquefaction facility, cooling cycle system operating method and remodeling method
US6851265B2 (en) Steam cooling control for a combined cycle power plant
RU89874U1 (en) INSTALLATION FOR THE PRODUCTION OF LIQUEFIED GAS ON THE BASIS OF GAS HEAT POWER PLANTS
EP3306044A1 (en) Fast frequency response systems with thermal storage for combined cycle power plants
JPH03185224A (en) Gas turbine installation
KR101995325B1 (en) System liquefy carbon dioxide, with the constant-pressure and waste pressure generation of natural gas
US11913719B2 (en) Liquefaction apparatus
US11408674B2 (en) System for treating and cooling a hydrocarbon stream
RU2689508C1 (en) Method of heating fuel gas in a non-volatile gas transfer unit
JP4127541B2 (en) Power generation / desalination complex plant and operation method thereof
CN115288815A (en) Energy-saving starting system of coal-fired power plant and operation method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009506827

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08710671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08710671

Country of ref document: EP

Kind code of ref document: A1