JP5023148B2 - Power supply facility for natural gas liquefaction plant, control device and control method thereof, and natural gas liquefaction plant - Google Patents

Power supply facility for natural gas liquefaction plant, control device and control method thereof, and natural gas liquefaction plant Download PDF

Info

Publication number
JP5023148B2
JP5023148B2 JP2009513872A JP2009513872A JP5023148B2 JP 5023148 B2 JP5023148 B2 JP 5023148B2 JP 2009513872 A JP2009513872 A JP 2009513872A JP 2009513872 A JP2009513872 A JP 2009513872A JP 5023148 B2 JP5023148 B2 JP 5023148B2
Authority
JP
Japan
Prior art keywords
flow rate
intake air
temperature
steam
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009513872A
Other languages
Japanese (ja)
Other versions
JPWO2008139527A1 (en
Inventor
幸徳 片桐
正明 坂内
康雄 福島
睦 堀次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2008139527A1 publication Critical patent/JPWO2008139527A1/en
Application granted granted Critical
Publication of JP5023148B2 publication Critical patent/JP5023148B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0236Heat exchange integration providing refrigeration for different processes treating not the same feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0242Waste heat recovery, e.g. from heat of compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0268Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0284Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0289Use of different types of prime drivers of at least two refrigerant compressors in a cascade refrigeration system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0296Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
    • F25J1/0297Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink using an externally chilled fluid, e.g. chilled water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/70Steam turbine, e.g. used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • F25J2240/82Hot exhaust gas turbine combustion engine with waste heat recovery, e.g. in a combined cycle, i.e. for generating steam used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/906External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by heat driven absorption chillers

Description

本発明は、天然ガス液化プラント用動力供給設備、その制御装置及び制御方法、並びに天然ガス液化プラントに関する。   The present invention relates to a power supply facility for a natural gas liquefaction plant, a control device and control method therefor, and a natural gas liquefaction plant.

天然ガス液化プラントはガス田や油田から採掘した天然ガスを冷媒で冷却して液化天然ガスを精製している。こうしたプラントは、他の工業施設から離れて立地していることが多く、プラント運用に必要な動力(駆動力、電力)を発生する動力供給設備をプラント内に設けている場合が多い。このような天然ガス液化プラント用の動力供給設備としては、例えば、ガスタービンプラントやコンバインドサイクルプラントが用いられている。   The natural gas liquefaction plant purifies liquefied natural gas by cooling natural gas extracted from gas fields and oil fields with a refrigerant. Such plants are often located away from other industrial facilities, and power supply equipment for generating power (driving power, electric power) necessary for plant operation is often provided in the plant. As such a power supply facility for a natural gas liquefaction plant, for example, a gas turbine plant or a combined cycle plant is used.

ところで、液化天然ガスの品質及び生産効率を保持する観点からは、天然ガス液化プラントの冷媒の圧縮に用いられる冷媒圧縮機を一定負荷で運転することが望ましい。そのため、天然ガス液化プラント用動力供給設備には、この冷媒圧縮機が要求する動力を常に供給し続けることが求められている。   By the way, from the viewpoint of maintaining the quality and production efficiency of liquefied natural gas, it is desirable to operate the refrigerant compressor used for compressing the refrigerant in the natural gas liquefaction plant at a constant load. Therefore, it is required for the power supply equipment for the natural gas liquefaction plant to always supply the power required by the refrigerant compressor.

この種の技術として、ガスタービンの軸駆動力で冷媒圧縮機を直接駆動するプラントにおいて、冷媒圧縮機の要求する動力がガスタービンの発生動力を上回ったときには、ガスタービン以外で得られる動力で不足分を補填するように構成したものがある(特開平8−219571号公報等参照)。   As a technology of this kind, in a plant that directly drives the refrigerant compressor with the axial driving force of the gas turbine, when the power required by the refrigerant compressor exceeds the power generated by the gas turbine, the power obtained outside the gas turbine is insufficient. There is one configured to compensate for the minute (see JP-A-8-219571, etc.).

特開平8−219571号公報JP-A-8-219571

しかし、上記の動力供給設備を季節や昼夜の違い等で大気温度が変化する地域で利用すると、吸気温度の変化によってガスタービン出力が変動するので、プラント全体の運転効率が低下することがある。特に、天然ガスの採掘地は、夏季がある地域や、砂漠地帯、低緯度地域等、比較的高温となる地域が多く、ガスタービン出力の低下による効率低下は顕著となる。さらに、場合によっては、上記技術を適用してもプラントに必要な動力を供給できないことも考えられる。   However, when the above power supply equipment is used in an area where the atmospheric temperature changes due to a difference in season or day and night, the gas turbine output fluctuates due to a change in the intake air temperature, which may reduce the operation efficiency of the entire plant. In particular, there are many natural gas mining sites that have relatively high temperatures, such as regions with summer seasons, desert regions, and low-latitude regions, and the reduction in efficiency due to a decrease in gas turbine output becomes significant. Furthermore, in some cases, it may be impossible to supply necessary power to the plant even if the above technique is applied.

本発明の目的は、大気温度が変化した際のプラント運転効率を改善できる天然ガス液化プラント用動力供給設備、その制御装置及び制御方法、並びに天然ガス液化プラントを提供することにある。   An object of the present invention is to provide a power supply facility for a natural gas liquefaction plant, a control device and a control method thereof, and a natural gas liquefaction plant that can improve the plant operation efficiency when the atmospheric temperature changes.

本発明は、上記目的を達成するために、冷媒を圧縮する冷媒圧縮機と、この冷媒圧縮機によって圧縮された冷媒を冷却し凝縮する凝縮器と、この凝縮器で凝縮した冷媒を受け入れる受液器と、この受液器からの冷媒を膨張させて他の冷媒を冷却する冷却器とを備える天然ガス液化プラントに動力を供給する天然ガス液化プラント用動力供給設備において、燃料と吸気を燃焼して得た燃焼ガスによって駆動されるガスタービンと、このガスタービンからの排ガスによって蒸気を発生させるボイラと、このボイラからの蒸気によって駆動される蒸気タービンと、この蒸気タービンからの蒸気、及び冷却水によって冷水を発生させる冷凍機と、この冷凍機からの冷水によって前記ガスタービンの吸気を冷却する吸気冷却装置と、前記蒸気タービンから前記冷凍機への蒸気流量を調整するための第1流量調整手段と、前記冷凍機から前記吸気冷却装置への冷水流量を調整するための第2流量調整手段と、前記冷凍機に入るときの冷却水の温度を検出する第1温度検出器と、前記吸気冷却装置から出るときの吸気の温度を検出する第2温度検出器と、前記冷凍機が発生させる冷水の温度を保持するために設定した目標流量に前記蒸気タービンから前記冷凍機への蒸気流量が近づくように前記第1温度検出器の検出値に基づいて前記第1流量調整手段の開度を調整するとともに、前記ガスタービンの出力を保持するために設定した目標温度に前記吸気冷却装置から出るときの吸気の温度が近づくように前記第2温度検出器の検出値に基づいて前記第2流量調整手段の開度を調整する制御装置とを備え、前記冷媒圧縮機は、前記ガスタービン及び前記蒸気タービンの少なくともいずれかからの動力によって駆動され、前記凝縮器は、前記冷凍機からの冷水で冷媒を冷却し凝縮するものとする。 In order to achieve the above object, the present invention provides a refrigerant compressor that compresses a refrigerant, a condenser that cools and condenses the refrigerant compressed by the refrigerant compressor, and a liquid receiver that receives the refrigerant condensed in the condenser. In a power supply facility for a natural gas liquefaction plant that supplies power to a natural gas liquefaction plant that includes a chiller and a cooler that expands the refrigerant from the receiver and cools other refrigerants, the fuel and intake air are burned A gas turbine driven by the combustion gas obtained in this way, a boiler that generates steam by exhaust gas from the gas turbine, a steam turbine driven by steam from the boiler, steam from the steam turbine, and cooling water a refrigerator for generating cold water by an intake cooler for cooling the intake air of the gas turbine by the cold water from the refrigerator, or the steam turbine A first flow rate adjusting means for adjusting a steam flow rate to the refrigerator, a second flow rate adjusting means for adjusting a cold water flow rate from the refrigerator to the intake air cooling device, and when entering the refrigerator A first temperature detector that detects the temperature of the cooling water, a second temperature detector that detects the temperature of the intake air as it exits the intake air cooling device, and a temperature setting for maintaining the temperature of the cold water generated by the refrigerator The opening degree of the first flow rate adjusting means is adjusted based on the detection value of the first temperature detector so that the steam flow rate from the steam turbine to the refrigerator approaches the target flow rate, and the output of the gas turbine Control for adjusting the opening of the second flow rate adjusting means based on the detection value of the second temperature detector so that the temperature of the intake air when coming out of the intake air cooling device approaches the target temperature set to hold the With the device For example, the refrigerant compressor, the driven by the gas turbine and power from at least one of the steam turbine, the condenser, and cools and condenses the refrigerant with cold water from the refrigerator.

本発明によれば、大気温度が変化してもガスタービン出力の低下を抑制することができるので、大気温度が変化した際のプラント運転効率を改善することができる。   According to the present invention, even if the atmospheric temperature changes, a decrease in gas turbine output can be suppressed, so that the plant operation efficiency when the atmospheric temperature changes can be improved.

図1は、本発明の第1の実施の形態である天然ガス液化プラントの冷媒予冷設備と動力供給設備の概略図である。FIG. 1 is a schematic diagram of refrigerant precooling equipment and power supply equipment of a natural gas liquefaction plant according to a first embodiment of the present invention. 図2は、本発明の第1の実施の形態である天然ガス液化プラントの概略図である。FIG. 2 is a schematic diagram of the natural gas liquefaction plant according to the first embodiment of the present invention. 図3は、本発明の第2の実施の形態である天然ガス液化プラントの冷媒予冷設備と動力供給設備の概略図である。FIG. 3 is a schematic diagram of the refrigerant precooling facility and the power supply facility of the natural gas liquefaction plant according to the second embodiment of the present invention. 図4は、本発明の第2の実施の形態である天然ガス液化プラントにおける制御装置30の構成を示すブロック図である。FIG. 4 is a block diagram showing a configuration of the control device 30 in the natural gas liquefaction plant according to the second embodiment of the present invention. 図5は、本発明の第2の実施の形態である天然ガス液化プラントの動力供給設備とその比較例における蒸気収支の比較表である。FIG. 5 is a comparative table of steam balances in a power supply facility and a comparative example of a natural gas liquefaction plant according to a second embodiment of the present invention.

符号の説明Explanation of symbols

1 冷媒圧縮機
2 モータ
3 凝縮器
4 受液器
5〜7 冷却器
11 第1冷媒
20 圧縮機
22 ガスタービン
24 ボイラ
25 蒸気タービン
28 冷凍機
29 吸気冷却装置
30 制御装置
32 流量調整弁
34 流量調整弁
51 大気温度検出器
52 吸気温度検出器
53 蒸気流量検出器
54 冷却水温度検出器
62 冷水温度制御部
63 吸気温度制御部
100 冷媒予冷設備
120 気液分離器
140 主熱交換器
160 冷媒予冷設備
200 動力供給設備
DESCRIPTION OF SYMBOLS 1 Refrigerant compressor 2 Motor 3 Condenser 4 Receivers 5-7 Cooler 11 1st refrigerant 20 Compressor 22 Gas turbine 24 Boiler 25 Steam turbine 28 Refrigerator 29 Intake air cooling device 30 Control device 32 Flow rate adjustment valve 34 Flow rate adjustment Valve 51 Air temperature detector 52 Intake air temperature detector 53 Steam flow rate detector 54 Cooling water temperature detector 62 Cold water temperature control unit 63 Intake air temperature control unit 100 Refrigerant precooling equipment 120 Gas-liquid separator 140 Main heat exchanger 160 Refrigerant precooling equipment 200 Power supply equipment

以下、本発明の実施の形態を図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の第1の実施の形態である天然ガス液化プラントの冷媒予冷設備と動力供給設備の概略図である。   FIG. 1 is a schematic diagram of refrigerant precooling equipment and power supply equipment of a natural gas liquefaction plant according to a first embodiment of the present invention.

この図に示した天然ガス液化プラントは、天然ガスの液化に用いる冷媒を冷却する冷媒予冷設備100と、天然ガス液化プラント内の設備に動力(駆動力や電力)を供給する動力供給設備200を備えている。   The natural gas liquefaction plant shown in this figure includes a refrigerant precooling facility 100 that cools a refrigerant used for liquefaction of natural gas, and a power supply facility 200 that supplies power (driving power and electric power) to facilities in the natural gas liquefaction plant. I have.

冷媒予冷設備100は、冷媒圧縮機1と、モータ2と、凝縮器3と、受液器4と、第1冷却器5、第2冷却器6、及び第3冷却器7を備えており、天然ガスの液化に用いる冷媒(以下、第1冷媒)11を他の冷媒(以下、第2冷媒)によって冷却している。本実施の形態では、第1冷媒11としてメタン、エタン、及びプロパンを主成分とする混合冷媒を利用しており、第2冷媒としてプロパンを利用している。   The refrigerant precooling facility 100 includes a refrigerant compressor 1, a motor 2, a condenser 3, a liquid receiver 4, a first cooler 5, a second cooler 6, and a third cooler 7. A refrigerant (hereinafter referred to as a first refrigerant) 11 used for liquefaction of natural gas is cooled by another refrigerant (hereinafter referred to as a second refrigerant). In the present embodiment, a mixed refrigerant mainly containing methane, ethane, and propane is used as the first refrigerant 11, and propane is used as the second refrigerant.

冷媒圧縮機1は、第1冷媒11を冷却する第2冷媒を圧縮するものであり、駆動軸に連結されたモータ2によって駆動されている。また、特に図示しないが、本実施の形態の冷媒圧縮機1は、高圧圧縮機、中圧圧縮機、低圧圧縮機の3段から構成されており、高圧圧縮機は冷却器5と、中圧圧縮機は冷却器6と、低圧圧縮機は冷却器7と接続されている。モータ2の電力は動力供給設備200から供給されている。   The refrigerant compressor 1 compresses the second refrigerant that cools the first refrigerant 11, and is driven by a motor 2 connected to a drive shaft. Although not particularly illustrated, the refrigerant compressor 1 according to the present embodiment includes three stages of a high pressure compressor, an intermediate pressure compressor, and a low pressure compressor. The high pressure compressor includes a cooler 5 and an intermediate pressure. The compressor is connected to the cooler 6, and the low-pressure compressor is connected to the cooler 7. The electric power of the motor 2 is supplied from the power supply facility 200.

凝縮器3は、冷媒圧縮機1の出口と配管13を介して接続されており、冷凍機28(後述)からの冷水が流通する配管14を内部に有している。凝縮器3は、冷媒圧縮機1によって圧縮された第2冷媒と冷水を配管14を介して熱交換させており、これによって第2冷媒を冷却し凝縮している。これにより本実施の形態の第2冷媒は例えば50℃程度にまで冷却される。   The condenser 3 is connected to the outlet of the refrigerant compressor 1 via a pipe 13 and has a pipe 14 through which cold water from a refrigerator 28 (described later) flows. The condenser 3 exchanges heat between the second refrigerant and the cold water compressed by the refrigerant compressor 1 via the pipe 14, thereby cooling and condensing the second refrigerant. Thereby, the 2nd refrigerant | coolant of this Embodiment is cooled to about 50 degreeC, for example.

受液器4は、凝縮器3の出口と配管15を介して接続されており、凝縮器3で凝縮した第2冷媒を受け入れている。受液器4内には凝縮して液化した第2冷媒が貯留されている。   The liquid receiver 4 is connected to the outlet of the condenser 3 via the pipe 15 and receives the second refrigerant condensed by the condenser 3. A second refrigerant condensed and liquefied is stored in the liquid receiver 4.

第1冷却器5は、受液器4の出口と配管16を介して接続されており、配管16に設けられた膨張弁(図示せず)を介して減圧膨張し減温した第2冷媒を受け入れている。第2冷却器6は、第1冷却器5と配管17を介して接続されており、配管17に設けられた膨張弁(図示せず)を介してさらに減温した第2冷媒を受け入れている。第3冷却器7は、第2冷却器6と配管18を介して接続されており、配管18に設けられた膨張弁(図示せず)を介してまたさらに減温した第2冷媒を受け入れている。   The first cooler 5 is connected to the outlet of the liquid receiver 4 through a pipe 16, and the second refrigerant that has been decompressed and expanded through an expansion valve (not shown) provided in the pipe 16 to reduce the temperature. Accept. The second cooler 6 is connected to the first cooler 5 via a pipe 17 and receives the second refrigerant further reduced in temperature via an expansion valve (not shown) provided in the pipe 17. . The third cooler 7 is connected to the second cooler 6 via a pipe 18 and receives the second refrigerant further reduced in temperature via an expansion valve (not shown) provided in the pipe 18. Yes.

第1冷却器5、第2冷却器6、及び第3冷却器7の内部には第1冷媒11が流通する配管19が配されている。冷却器5,6,7に受け入れられた第2冷媒は、配管19を流通する第1冷媒11から熱を奪って蒸発し、第1冷媒11を段階的に冷却している。これにより本実施の形態の第1冷媒11は、第3冷却器7を通過した時点で、例えばー30℃程度まで冷却される。また、第1冷却器5,第2冷却器6,第3冷却器7は、冷媒圧縮機1の高圧圧縮機、中圧圧縮機、低圧圧縮機とそれぞれ接続されており、圧縮機1内の第2冷媒の中間冷却も行っている。   Inside the first cooler 5, the second cooler 6, and the third cooler 7, a pipe 19 through which the first refrigerant 11 flows is arranged. The second refrigerant received in the coolers 5, 6, 7 evaporates by taking heat from the first refrigerant 11 flowing through the pipe 19, thereby cooling the first refrigerant 11 in a stepwise manner. Thereby, the 1st refrigerant | coolant 11 of this Embodiment is cooled to about -30 degreeC, for example when it passes the 3rd cooler 7. FIG. The first cooler 5, the second cooler 6, and the third cooler 7 are connected to the high-pressure compressor, the medium-pressure compressor, and the low-pressure compressor of the refrigerant compressor 1, respectively. Intermediate cooling of the second refrigerant is also performed.

動力供給設備200は、圧縮機20と、燃焼器21と、ガスタービン22と、発電機23と、ボイラ24と、蒸気タービン25と、発電機26と、煙突27と、冷凍機28と、吸気冷却装置29を備えている。   The power supply facility 200 includes a compressor 20, a combustor 21, a gas turbine 22, a generator 23, a boiler 24, a steam turbine 25, a generator 26, a chimney 27, a refrigerator 28, an intake air A cooling device 29 is provided.

圧縮機20は大気から取り込んだ燃焼空気を圧縮している。   The compressor 20 compresses the combustion air taken from the atmosphere.

燃焼器21は、流量調整弁31を介して供給される燃料と圧縮機20からの圧縮空気を燃焼させて燃焼ガスを発生させるもので、圧縮機20の出口と接続されている。流量調整弁31は燃焼器21へ供給する燃料流量を調整するためのものである。燃焼器21に供給する燃料は、エネルギー効率やプラント運転効率等を向上させる観点から、採掘した天然ガスを使用することが好ましい。   The combustor 21 generates combustion gas by combusting fuel supplied via the flow rate adjustment valve 31 and compressed air from the compressor 20, and is connected to the outlet of the compressor 20. The flow rate adjustment valve 31 is for adjusting the flow rate of fuel supplied to the combustor 21. As the fuel supplied to the combustor 21, it is preferable to use mined natural gas from the viewpoint of improving energy efficiency, plant operation efficiency, and the like.

ガスタービン22は、燃焼器21からの燃焼ガスによって駆動されるもので、燃焼器21の出口と接続されている。ガスタービン22は、圧縮機20と発電機23を駆動し、発電機23によって電力を発生させている。この電力は天然ガス液化プラント内の設備に動力として供給される。   The gas turbine 22 is driven by the combustion gas from the combustor 21 and is connected to the outlet of the combustor 21. The gas turbine 22 drives the compressor 20 and the generator 23 and generates electric power by the generator 23. This power is supplied as power to equipment in the natural gas liquefaction plant.

ボイラ(排熱回収ボイラ)24は、ガスタービン22の排ガスによって蒸気を発生させるもので、排ガスの流通方向の下流側に設けられている。煙突27は、ボイラ24で熱回収された排ガスを排気するものである。   The boiler (exhaust heat recovery boiler) 24 generates steam by the exhaust gas of the gas turbine 22, and is provided on the downstream side in the exhaust gas flow direction. The chimney 27 exhausts the exhaust gas heat recovered by the boiler 24.

蒸気タービン25は、ボイラ24からの蒸気によって駆動され、発電機26と連結されている。蒸気タービン25は発電機26を駆動することによって電力を発生させている。発電機23,26によって得られた電力は、天然ガス液化プラント内の設備に動力として供給される。   The steam turbine 25 is driven by steam from the boiler 24 and is connected to the generator 26. The steam turbine 25 generates electric power by driving a generator 26. The electric power obtained by the generators 23 and 26 is supplied as power to equipment in the natural gas liquefaction plant.

冷凍機28は、蒸気タービン25からの蒸気、及び冷却水によって冷水(例えば、ー5〜10℃程度)を発生させるものである。冷凍機28には、蒸気タービン25からの蒸気が流通する配管41と、冷却水が流通する配管42と、冷却対象である水(冷水)が流通する配管43が配されている。   The refrigerator 28 generates cold water (for example, about −5 to 10 ° C.) with steam from the steam turbine 25 and cooling water. The refrigerator 28 is provided with a pipe 41 through which steam from the steam turbine 25 circulates, a pipe 42 through which cooling water circulates, and a pipe 43 through which water to be cooled (cold water) circulates.

配管41は蒸気タービン25から蒸気が供給される配管44と接続されている。この配管44との接続部を基点として、配管41の一方側は冷凍機28内に導入されており、その他方側は流量調整弁32を介して復水器(図示せず)と接続されている。復水器へ流入した蒸気は凝縮して水となり、ボイラ24の給水として再利用される。流量調整弁32は、蒸気タービン25から冷凍機28への蒸気流量を調整するためのものである。流量調整弁32の開度を大きくすれば冷凍機28に供給される蒸気流量が低減し、逆に開度を小さくすれば蒸気流量が増加するようになっている。   The pipe 41 is connected to a pipe 44 to which steam is supplied from the steam turbine 25. Starting from the connection with the pipe 44, one side of the pipe 41 is introduced into the refrigerator 28, and the other side is connected to a condenser (not shown) via the flow rate adjustment valve 32. Yes. The steam that has flowed into the condenser is condensed into water, which is reused as water supply for the boiler 24. The flow rate adjustment valve 32 is for adjusting the steam flow rate from the steam turbine 25 to the refrigerator 28. If the opening degree of the flow rate adjusting valve 32 is increased, the steam flow rate supplied to the refrigerator 28 is reduced. Conversely, if the opening degree is reduced, the steam flow rate is increased.

配管42にはポンプ45が設けられており、冷凍機28内の冷媒を冷却するための冷却水がポンプ45によって圧送されている。配管43にはポンプ46が設けられており、冷凍機28で冷却される水(冷水)がポンプ46によって圧送されている。   The pipe 42 is provided with a pump 45, and cooling water for cooling the refrigerant in the refrigerator 28 is pumped by the pump 45. The pipe 43 is provided with a pump 46, and water (cold water) cooled by the refrigerator 28 is pumped by the pump 46.

なお、本実施の形態に用いる冷凍機としては、蒸気タービン25から供給される蒸気の熱を利用し、冷水を発生させるものであれば良い。この種の冷凍機としては、例えば、吸収式冷凍機がある。水と臭化リチウムの混合冷媒を利用する吸収式冷凍機の場合、蒸気は、混合冷媒を加熱して水と臭化リチウムを分離する際の熱源として利用される。   In addition, as a refrigerator used for this Embodiment, the thing using the heat | fever of the steam supplied from the steam turbine 25 and generating cold water should just be used. An example of this type of refrigerator is an absorption refrigerator. In the case of an absorption refrigerator that uses a mixed refrigerant of water and lithium bromide, the steam is used as a heat source when the mixed refrigerant is heated to separate water and lithium bromide.

配管43の冷凍機28の下流側には、冷凍機28が発生させた冷水を複数の供給先へ送るための冷水ヘッダ35が設けられている。冷水ヘッダ35には、凝縮器3の内部に導入される配管14と、吸気冷却装置29の内部に導入される配管48が接続されている。   A cold water header 35 for sending the cold water generated by the refrigerator 28 to a plurality of supply destinations is provided on the downstream side of the refrigerator 28 in the pipe 43. A pipe 14 introduced into the condenser 3 and a pipe 48 introduced into the intake air cooling device 29 are connected to the cold water header 35.

配管14には冷凍機28から凝縮器3へ冷水流量を調整するための流量調整弁33が設けられており、配管48には冷凍機28から吸気冷却装置29への冷水流量を調整するための流量調整弁34が設けられている。   The pipe 14 is provided with a flow rate adjusting valve 33 for adjusting the flow rate of cold water from the refrigerator 28 to the condenser 3, and the pipe 48 is used for adjusting the flow rate of cold water from the refrigerator 28 to the intake air cooling device 29. A flow rate adjustment valve 34 is provided.

吸気冷却装置29は、圧縮機20に導入される燃焼空気(吸気)を冷却するもので、圧縮機20の上流側に設けられている。吸気冷却装置29の内部には配管48が配されており、配管48内を流通する冷水によってガスタービン22の吸気が冷却されている。   The intake air cooling device 29 cools combustion air (intake air) introduced into the compressor 20, and is provided on the upstream side of the compressor 20. A pipe 48 is disposed inside the intake air cooling device 29, and the intake air of the gas turbine 22 is cooled by cold water flowing through the pipe 48.

上記のように構成される天然ガス液化プラントにおいて、動力供給設備200のボイラ25で発生された蒸気は、蒸気タービン25を駆動した後に配管41を介して冷凍機28に導入される。冷凍機28は、この蒸気を熱源として利用する一方で、配管42を介して導入される冷却水を冷媒の冷却に利用し、配管43を介して供給される水を冷却し冷水を発生させる。冷凍機28で発生された冷水は、冷水ヘッダ35を介して、吸気冷却装置29及び凝縮器3に供給される。   In the natural gas liquefaction plant configured as described above, the steam generated in the boiler 25 of the power supply facility 200 is introduced into the refrigerator 28 via the pipe 41 after driving the steam turbine 25. While the refrigerator 28 uses this steam as a heat source, the cooling water introduced through the pipe 42 is used for cooling the refrigerant, and the water supplied through the pipe 43 is cooled to generate cold water. The cold water generated by the refrigerator 28 is supplied to the intake air cooling device 29 and the condenser 3 via the cold water header 35.

吸気冷却装置29に供給された冷水は、圧縮機20の吸気温度を低下させる。これにより圧縮機20の負荷が低下するので、燃料流量を増やすことなくタービン出力を増加することができる。また、凝縮器3に供給された冷水は、第2冷媒を冷却して凝縮させる。これにより、外気や海水等の大気温度変化の影響を受ける冷媒を使用する場合より、第2冷媒を効果的に冷却することができるので、天然ガスの液化に用いる第1冷媒を効率良く冷却することができる。   The cold water supplied to the intake air cooling device 29 reduces the intake air temperature of the compressor 20. As a result, the load on the compressor 20 decreases, so that the turbine output can be increased without increasing the fuel flow rate. The cold water supplied to the condenser 3 cools and condenses the second refrigerant. Thereby, since the second refrigerant can be cooled more effectively than the case where the refrigerant affected by the atmospheric temperature change such as outside air or seawater is used, the first refrigerant used for liquefaction of natural gas is efficiently cooled. be able to.

なお、冷媒予冷設備100の第2冷媒としては、上記に示したプロパンが好ましい。これは、プロパンの飽和温度が比較的高く、凝縮器3において冷水(例えば、−5〜10℃)に冷却されて容易に凝縮されるため、冷凍機28と組み合わせたサイクルの冷媒として好適だからである。また、第2冷媒は、プロパンの他にも、プロピレンや、プロパン、メタン、及びエタンを主成分とする混合冷媒等に代替することが可能である。   In addition, as a 2nd refrigerant | coolant of the refrigerant | coolant precooling equipment 100, the propane shown above is preferable. This is because propane has a relatively high saturation temperature and is easily condensed by being cooled to cold water (for example, −5 to 10 ° C.) in the condenser 3, so that it is suitable as a refrigerant for a cycle combined with the refrigerator 28. is there. In addition to propane, the second refrigerant can be replaced with propylene, a mixed refrigerant containing propane, methane, and ethane as main components.

図2は本発明の第1の実施の形態である天然ガス液化プラントの概略図である。なお、先の図と同じ部分には同じ符号を付し、その部分の説明は省略する(後の図も同じとする)。   FIG. 2 is a schematic view of the natural gas liquefaction plant according to the first embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same part as the previous figure, and description of the part is abbreviate | omitted (it is assumed that the subsequent figure is the same).

この図に示した天然ガス液化プラントは、図1に示した冷媒予冷設備100と、冷媒予冷設備100で冷却された第1冷媒11を気相と液相に分離する気液分離器120と、第1冷媒11を利用して天然ガスを冷却して液化する主熱交換器140と、天然ガスと熱交換して主熱交換器140内に貯留した第1冷媒11を冷却する冷媒予冷設備160を備えている。   The natural gas liquefaction plant shown in this figure includes the refrigerant precooling equipment 100 shown in FIG. 1, a gas-liquid separator 120 that separates the first refrigerant 11 cooled by the refrigerant precooling equipment 100 into a gas phase and a liquid phase, A main heat exchanger 140 that cools and liquefies natural gas using the first refrigerant 11, and a refrigerant precooling facility 160 that cools the first refrigerant 11 stored in the main heat exchanger 140 by exchanging heat with natural gas. It has.

気液分離器120は、冷媒予冷設備100の出口(即ち、第3冷却器7(図1参照)の出口)と配管19を介して接続されている。気液分離器120には、第1冷媒11の液相が流通する配管141と、気相が流通する配管142が接続されている。   The gas-liquid separator 120 is connected to the outlet of the refrigerant precooling facility 100 (that is, the outlet of the third cooler 7 (see FIG. 1)) via the pipe 19. The gas-liquid separator 120 is connected to a pipe 141 through which the liquid phase of the first refrigerant 11 flows and a pipe 142 through which the gas phase flows.

配管141は、主熱交換器140の内部に導入された後に、いったん主熱交換器140の外部に出され、その後、再び主熱交換器140の内部に導入されてノズル143と接続されている。配管141は、主熱交換器140の内部に設けられた伝熱経路144と、主熱交換器140の外部に設けられた膨張弁145を有している。配管142も同様にいったん主熱交換器140の外部に出された後に、主熱交換器140内のノズル146と接続されている。配管142は、主熱交換器140の内部に設けられた伝熱経路147,148と、主熱交換器140の外部に設けられた膨張弁149を有している。   After being introduced into the main heat exchanger 140, the pipe 141 is once taken out of the main heat exchanger 140, and then introduced into the main heat exchanger 140 again and connected to the nozzle 143. . The pipe 141 has a heat transfer path 144 provided inside the main heat exchanger 140 and an expansion valve 145 provided outside the main heat exchanger 140. Similarly, the pipe 142 is once taken out of the main heat exchanger 140 and then connected to the nozzle 146 in the main heat exchanger 140. The pipe 142 has heat transfer paths 147 and 148 provided inside the main heat exchanger 140 and an expansion valve 149 provided outside the main heat exchanger 140.

配管150は、液化される天然ガスが流通するもので、主熱交換器140の内部を通過した後、主熱交換器140の外部まで延びている。配管150は、主熱交換器140の内部に設けられた伝熱経路151,152と、主熱交換器140の外部に設けられた膨張弁153を有している。   The piping 150 circulates the natural gas to be liquefied, and extends to the outside of the main heat exchanger 140 after passing through the inside of the main heat exchanger 140. The pipe 150 has heat transfer paths 151 and 152 provided inside the main heat exchanger 140 and an expansion valve 153 provided outside the main heat exchanger 140.

冷媒予冷設備160は、天然ガスの液化に用いられた第1冷媒11を冷却するもので、モータ161で駆動される圧縮機162,163と、圧縮された第1冷媒11を冷却する冷却器164,165を備えている。モータ161は動力供給設備200から供給される電力によって圧縮機162,163を駆動している。圧縮機162は配管166を介して主熱交換器120と接続されている。   The refrigerant precooling facility 160 cools the first refrigerant 11 used for liquefaction of natural gas, and includes compressors 162 and 163 driven by a motor 161 and a cooler 164 that cools the compressed first refrigerant 11. , 165. The motor 161 drives the compressors 162 and 163 with electric power supplied from the power supply facility 200. The compressor 162 is connected to the main heat exchanger 120 via a pipe 166.

次に、上記のように構成される天然ガス液化プラントにおける天然ガス液化工程について説明する。   Next, the natural gas liquefaction process in the natural gas liquefaction plant configured as described above will be described.

上記の冷媒予冷設備100で第2冷媒によって所定温度(例えば、−35℃程度)まで冷却された第1冷媒11は、配管19を介して気液分離器120に供給され、気相成分と液相成分に分離される。   The first refrigerant 11 cooled to a predetermined temperature (for example, about −35 ° C.) by the second refrigerant in the refrigerant precooling facility 100 is supplied to the gas-liquid separator 120 via the pipe 19, and the gas phase component and liquid Separated into phase components.

気液分離器120内の第1冷媒11の液相成分は、配管141を介して主熱交換器140の内部に導入され、伝熱経路144を通過しながら主熱交換器140内の冷媒(さらに冷却された第1冷媒11)によって冷却される。伝熱経路144を通過した第1冷媒11は、膨張弁145で断熱膨張して所定温度(例えば、−120℃程度)まで冷却され、ノズル143を介して主熱交換器140内に冷媒として散布される。   The liquid phase component of the first refrigerant 11 in the gas-liquid separator 120 is introduced into the main heat exchanger 140 via the pipe 141, and passes through the heat transfer path 144 while the refrigerant in the main heat exchanger 140 ( It is further cooled by the cooled first refrigerant 11). The first refrigerant 11 that has passed through the heat transfer path 144 is adiabatically expanded by the expansion valve 145, cooled to a predetermined temperature (for example, about −120 ° C.), and dispersed as a refrigerant in the main heat exchanger 140 through the nozzle 143. Is done.

一方、気液分離器120内の第1冷媒11の気相成分は、配管142を介して主熱交換器140の内部に導入され、伝熱経路147,148を通過しながら冷却される。伝熱経路147,148を通過した第1冷媒11は、膨張弁149で所定温度(例えば、−170℃程度)まで冷却され、ノズル146を介して主熱交換器140内に冷媒として散布される。   On the other hand, the gas phase component of the first refrigerant 11 in the gas-liquid separator 120 is introduced into the main heat exchanger 140 through the pipe 142 and cooled while passing through the heat transfer paths 147 and 148. The first refrigerant 11 that has passed through the heat transfer paths 147 and 148 is cooled to a predetermined temperature (for example, about −170 ° C.) by the expansion valve 149, and is dispersed as a refrigerant in the main heat exchanger 140 through the nozzle 146. .

また、配管150内を流通する天然ガスは、主熱交換器140内を通過する際に、上記のように散布される第1冷媒11によって伝熱経路151,152で所定温度(例えば、−150℃程度)まで冷却される。この後、主熱交換器140の外部に導かれた天然ガスは、膨張弁153を通過することで更に冷却され、所定温度(例えば、−162℃)の液化天然ガスとなる。なお、特に図示していないが、配管150の上流側には、酸性ガス除去工程や、水分除去工程などを行う設備が設けられており、配管150にはこれらの前処理工程を終えた天然ガスが導かれている。   Further, the natural gas flowing in the pipe 150 passes through the main heat exchanger 140, and the predetermined temperature (for example, −150) in the heat transfer paths 151 and 152 by the first refrigerant 11 dispersed as described above when passing through the main heat exchanger 140. It is cooled to about ° C. Thereafter, the natural gas guided to the outside of the main heat exchanger 140 is further cooled by passing through the expansion valve 153, and becomes a liquefied natural gas having a predetermined temperature (for example, −162 ° C.). Although not particularly shown, an upstream side of the pipe 150 is provided with equipment for performing an acid gas removal process, a water removal process, and the like, and the natural gas that has undergone these pretreatment processes is provided in the pipe 150. Has been led.

天然ガスの冷却に利用された第1冷媒11は、主熱交換器140内に貯留し、配管166を介して冷媒予冷設備160へ導入される。このように冷媒予冷設備160に導かれた第1冷媒11は、圧縮機162,163と冷却器164,165によって適宜圧縮、冷却されて所定の状態(例えば、40℃,5MPa)となって、冷媒予冷設備100に配管19を介して導入される。   The first refrigerant 11 used for cooling the natural gas is stored in the main heat exchanger 140 and introduced into the refrigerant precooling facility 160 via the pipe 166. Thus, the first refrigerant 11 guided to the refrigerant precooling facility 160 is appropriately compressed and cooled by the compressors 162 and 163 and the coolers 164 and 165 to be in a predetermined state (for example, 40 ° C., 5 MPa), The refrigerant is introduced into the refrigerant precooling facility 100 through the pipe 19.

次に、本実施の形態の効果について説明する。   Next, the effect of this embodiment will be described.

上記で説明した本実施の形態の天然ガス液化プラントと異なり、吸気冷却装置29の無い動力供給設備や、外気や海水等の大気温度変化の影響を受ける冷媒を使用している凝縮器を冷媒予冷設備に備えたプラントでは、大気温度が上昇するとガスタービンの吸気と凝縮器の冷媒の温度も上昇するので、ガスタービン出力と凝縮器の冷却能力が低下してしまう。したがって、このような構成から成るプラントを大気温度が比較的高い季節や地域等で利用すると、プラントの運転効率が低下する恐れがあった。   Unlike the natural gas liquefaction plant according to the present embodiment described above, a power supply facility without the intake air cooling device 29 or a condenser using a refrigerant affected by changes in the atmospheric temperature such as outside air or seawater is precooled with the refrigerant. In the plant equipped with the equipment, when the atmospheric temperature rises, the temperature of the gas turbine intake and the condenser refrigerant also rises, so that the gas turbine output and the condenser cooling capacity are lowered. Therefore, when a plant having such a configuration is used in a season or region where the atmospheric temperature is relatively high, the operation efficiency of the plant may be reduced.

これに対し、本実施の形態の天然ガス液化プラントは、動力供給設備200から排出される蒸気を利用して冷水を発生させる冷凍機28を備えている。このように構成した本実施の形態によれば、冷凍機28で発生させた冷水を吸気冷却装置29及び凝縮器3に供給することができる。吸気冷却装置29に供給された冷水はガスタービン22の吸気温度を低下させるので、圧縮機20への負荷が低減し、燃料流量を増やすことなくタービン出力を増加することができる。また、凝縮器3に供給された冷水は、大気温度が変化した場合に凝縮器3の冷却能力が低下することを抑制するので、天然ガスの液化に用いる第1冷媒を効率良く冷却することができる。   On the other hand, the natural gas liquefaction plant of the present embodiment includes a refrigerator 28 that generates cold water using steam discharged from the power supply facility 200. According to the present embodiment configured as described above, the cold water generated by the refrigerator 28 can be supplied to the intake air cooling device 29 and the condenser 3. Since the cold water supplied to the intake air cooling device 29 lowers the intake air temperature of the gas turbine 22, the load on the compressor 20 is reduced, and the turbine output can be increased without increasing the fuel flow rate. Moreover, since the cold water supplied to the condenser 3 suppresses a decrease in the cooling capacity of the condenser 3 when the atmospheric temperature changes, it is possible to efficiently cool the first refrigerant used for natural gas liquefaction. it can.

このように、本実施の形態によれば、ガスタービン出力と凝縮器の冷却能力の低下を抑制することができるので、大気温度が上昇した際のプラント運転効率を改善することができる。また、本実施の形態によれば、大気に放出していた蒸気熱を利用して冷水を発生することができるので、プラントの熱効率も改善することができる。   Thus, according to this Embodiment, since the fall of the gas turbine output and the cooling capacity of a condenser can be suppressed, the plant operation efficiency when atmospheric temperature rises can be improved. Moreover, according to this Embodiment, since cold water can be generated using the steam heat released to the atmosphere, the thermal efficiency of the plant can also be improved.

次に本発明の第2の実施の形態について説明する。本実施の形態の特徴は、ガスタービン22の吸気温度と冷凍機28の冷水温度を制御する制御装置30を備えている点にある。   Next, a second embodiment of the present invention will be described. The feature of this embodiment is that a control device 30 for controlling the intake air temperature of the gas turbine 22 and the cold water temperature of the refrigerator 28 is provided.

図3は本発明の第2の実施の形態である天然ガス液化プラントの冷媒予冷設備と動力供給設備の概略図である。   FIG. 3 is a schematic diagram of refrigerant precooling equipment and power supply equipment of a natural gas liquefaction plant according to a second embodiment of the present invention.

この図に示す動力供給設備200Aは、大気温度検出器51と、吸気温度検出器52と、蒸気流量検出器53と、冷却水温度検出器54と、制御装置30を備えている点で上記動力供給設備200と異なる。   The power supply facility 200A shown in this figure includes the above-described power in that it includes an atmospheric temperature detector 51, an intake air temperature detector 52, a steam flow rate detector 53, a cooling water temperature detector 54, and a control device 30. Different from the supply facility 200.

大気温度検出器51は、吸気冷却装置29に入るときの吸気の温度(即ち、大気の温度)を検出するもので、吸気冷却装置29の上流側に設けられている。大気温度検出器51の検出値(大気温度Ta)は制御装置30に出力されている。吸気温度検出器52は、吸気冷却装置29から出るときの吸気の温度を検出するもので、吸気冷却装置29の下流側かつ圧縮機20の上流側に設けられている。吸気温度検出器52の検出値(吸気温度Tao)は制御装置30に出力されている。蒸気流量検出器53は、冷凍機28に入る蒸気の流量を検出するもので、配管44との接続部から冷凍機28側の配管41上に設けられている。蒸気流量検出器53の検出値(蒸気流量Gsi)は制御装置30に出力されている。冷却水温度検出器54は、冷凍機28に入るときの冷却水の温度を検出するもので、配管42の冷凍機28から上流側に設けられている。冷却水温度検出器54の検出値(冷却水温度Tw)は制御装置30に出力されている。   The atmospheric temperature detector 51 detects the temperature of intake air (that is, the temperature of the atmosphere) when entering the intake air cooling device 29, and is provided on the upstream side of the intake air cooling device 29. The detection value (atmospheric temperature Ta) of the atmospheric temperature detector 51 is output to the control device 30. The intake air temperature detector 52 detects the temperature of the intake air as it exits the intake air cooling device 29, and is provided downstream of the intake air cooling device 29 and upstream of the compressor 20. The detection value (intake air temperature Tao) of the intake air temperature detector 52 is output to the control device 30. The steam flow rate detector 53 detects the flow rate of the steam entering the refrigerator 28, and is provided on the pipe 41 on the refrigerator 28 side from the connection portion with the pipe 44. The detection value (steam flow rate Gsi) of the steam flow detector 53 is output to the control device 30. The cooling water temperature detector 54 detects the temperature of the cooling water when entering the refrigerator 28, and is provided upstream of the refrigerator 28 in the pipe 42. The detection value (cooling water temperature Tw) of the cooling water temperature detector 54 is output to the control device 30.

図4は制御装置30の構成を示すブロック図である。
この図において、制御装置30は、ガスタービン制御部61と、冷水温度制御部62と、吸気温度制御部63を備えており、大気温度検出器51、吸気温度検出器52、蒸気流量検出器53、冷却水温度検出器54、流量調整弁31、流量調整弁32、及び流量調整弁34と接続されている。各検出器51,52,53,54から制御部30には、それぞれの検出値(Ta,Tao,Gsi,Tw)が入力されている。制御部30から各流量調整弁31,32,34には、それぞれの開度指令(Cv1,Cv2,Cv3)が操作信号として出力されている。また、この他にも、制御部30には、動力供給設備200に対する発電出力指令MWDが入力されている。この発電出力指令MWDは、天然ガス液化プラント全体が要求する総電力量に基づいて決定されるものであり、例えば、プラント全体の制御を行うプラント制御装置(図示せず)等から出力される。
FIG. 4 is a block diagram showing the configuration of the control device 30.
In this figure, the control device 30 includes a gas turbine control unit 61, a cold water temperature control unit 62, and an intake air temperature control unit 63, and an atmospheric temperature detector 51, an intake air temperature detector 52, and a steam flow rate detector 53. The coolant temperature detector 54, the flow rate adjustment valve 31, the flow rate adjustment valve 32, and the flow rate adjustment valve 34 are connected. The detection values (Ta, Tao, Gsi, Tw) are input from the detectors 51, 52, 53, 54 to the control unit 30. The opening degree commands (Cv1, Cv2, Cv3) are output as operation signals from the control unit 30 to the flow rate adjusting valves 31, 32, 34, respectively. In addition, a power generation output command MWD for the power supply facility 200 is input to the control unit 30. This power generation output command MWD is determined based on the total amount of power required by the entire natural gas liquefaction plant, and is output from, for example, a plant control device (not shown) that controls the entire plant.

ガスタービン制御部61は、発電出力指令MWDに基づいてガスタービン22の起動停止時や負荷運転時における制御を担当する部分で、目標燃料流量設定部64と、流量調整弁制御部65を備えている。   The gas turbine control unit 61 is a part in charge of control when the gas turbine 22 is started and stopped or during load operation based on the power generation output command MWD, and includes a target fuel flow rate setting unit 64 and a flow rate adjustment valve control unit 65. Yes.

目標燃料流量設定部64は、発電出力指令MWDの要求を満たすガスタービン22の目標出力を決定し、その目標出力を達成するために要する燃料流量(目標燃料流量)を設定する部分である。流量調整弁制御部65は、燃焼器21に供給される燃料流量が上記の目標燃料流量に近づくように流量調整弁31の開度を調整する部分であり、流量調整弁31に開度指令Cv1を出力している。   The target fuel flow rate setting unit 64 is a part that determines a target output of the gas turbine 22 that satisfies the request of the power generation output command MWD and sets a fuel flow rate (target fuel flow rate) required to achieve the target output. The flow rate adjusting valve control unit 65 is a part that adjusts the opening degree of the flow rate adjusting valve 31 so that the fuel flow rate supplied to the combustor 21 approaches the target fuel flow rate. Is output.

冷水温度制御部62は、冷凍機28が発生させる冷水の温度制御を担当する部分で、目標蒸気流量設定部66と、流量調整弁制御部67を備えている。   The chilled water temperature control unit 62 is responsible for controlling the temperature of the chilled water generated by the refrigerator 28 and includes a target steam flow rate setting unit 66 and a flow rate adjustment valve control unit 67.

目標蒸気流量設定部66は、冷凍機28が発生させる冷水の温度を保持するために蒸気タービン25から冷凍機28へ供給すべき蒸気流量(目標蒸気流量GsiD)を設定する部分であり、冷却水温度検出器54から入力される冷却水温度Twに基づいて目標蒸気流量GsiDを設定している。流量調整弁制御部67は、蒸気タービン25から冷凍機28への蒸気流量Gsiが目標蒸気流量GsiDに近づくように流量調整弁32の開度を調整する部分であり、流量調整弁32に開度指令Cv2を出力している。   The target steam flow rate setting unit 66 is a part for setting a steam flow rate (target steam flow rate GsiD) to be supplied from the steam turbine 25 to the refrigerator 28 in order to maintain the temperature of the cold water generated by the refrigerator 28. A target steam flow rate GsiD is set based on the coolant temperature Tw input from the temperature detector 54. The flow rate adjusting valve control unit 67 is a part that adjusts the opening degree of the flow rate adjusting valve 32 so that the steam flow rate Gsi from the steam turbine 25 to the refrigerator 28 approaches the target steam flow rate GsiD. Command Cv2 is output.

一般的に、冷凍機では熱源や冷却水の温度・流量変化に対する冷水温度の応答が遅く、産業用の大型機ではその時定数が1時間を超えるものも存在する。そのため本実施の形態では、冷却水の温度変化に基づいて冷凍機28に供給する蒸気流量を調節することで冷水の温度制御を先行的に行っている。これにより、大気温度変化に起因して冷却水温度が変化した場合にも冷凍機28の出口における冷水の温度変化を抑制することができるので、吸気冷却装置29と凝縮器3に安定した温度の冷水を供給することができる。   Generally, in a refrigerator, the response of the cold water temperature to a change in the temperature and flow rate of the heat source and the cooling water is slow, and there are some industrial large machines whose time constant exceeds one hour. Therefore, in the present embodiment, the temperature control of the cold water is performed in advance by adjusting the flow rate of the steam supplied to the refrigerator 28 based on the temperature change of the cooling water. Thereby, even when the cooling water temperature changes due to the atmospheric temperature change, the temperature change of the cold water at the outlet of the refrigerator 28 can be suppressed, so that the intake air cooling device 29 and the condenser 3 have a stable temperature. Cold water can be supplied.

ここで、冷水温度制御部62が行う制御の一例を説明する。   Here, an example of control performed by the cold water temperature control unit 62 will be described.

Figure 0005023148
Figure 0005023148

Figure 0005023148
Figure 0005023148

上記式(1)は、目標蒸気流量GsiDを算出するためのもので、関数f1と関数f2から成っている。関数f1は、発電出力指令MWDに基づいて冷凍機28へ供給すべき蒸気流量のベース値を算出するものであり、関数f2は、冷凍機28へ供給される冷却水の温度Twに基づいて蒸気流量の補正を行うものである。目標蒸気流量設定部66は、式(1)を利用して発電出力指令MWDと冷却水温度Twから目標蒸気流量GsiDを得る。   The above equation (1) is for calculating the target steam flow rate GsiD, and consists of a function f1 and a function f2. The function f1 calculates a base value of the steam flow rate to be supplied to the refrigerator 28 based on the power generation output command MWD, and the function f2 is a steam based on the temperature Tw of the cooling water supplied to the refrigerator 28. The flow rate is corrected. The target steam flow rate setting unit 66 obtains the target steam flow rate GsiD from the power generation output command MWD and the cooling water temperature Tw using the formula (1).

上記式(2)は、目標蒸気流量GsiDから開度指令Cv2を算出するためのもので、冷凍機28に供給される蒸気流量Gsiが目標蒸気流量GsiDに一致するようにフィードバック制御による修正を加えている。なお、式(2)中のTTwは積分時定数である。流量調整弁制御部67は、目標蒸気流量設定部66が得た目標蒸気流量GsiDと蒸気流量Gsiから式(2)を利用して開度指令Cv2を算出し、流量調整弁32に操作信号として出力する。これにより、流量調整弁32が開度指令Cv2に応じた開度に調整されるので、大気温度変化に伴って冷却水温度が変化しても冷凍機28から出る冷水の温度を保持することができる。   The above equation (2) is for calculating the opening degree command Cv2 from the target steam flow rate GsiD, and is corrected by feedback control so that the steam flow rate Gsi supplied to the refrigerator 28 matches the target steam flow rate GsiD. ing. In the equation (2), TTw is an integration time constant. The flow rate adjusting valve control unit 67 calculates the opening degree command Cv2 from the target steam flow rate GsiD and the steam flow rate Gsi obtained by the target steam flow rate setting unit 66 by using the equation (2), and sends the operation signal to the flow rate adjusting valve 32. Output. As a result, the flow rate adjustment valve 32 is adjusted to an opening degree corresponding to the opening degree command Cv2, so that the temperature of the cold water coming out of the refrigerator 28 can be maintained even if the cooling water temperature changes with the atmospheric temperature change. it can.

なお、上記の例では、発電出力指令MWDと冷却水温度Twに基づいて目標蒸気流量GsiDを設定する制御と、蒸気流量検出器53の検出値(蒸気流量Gsi)と目標蒸気流量GsiDに基づいて流量調整弁32の開度を調整する制御を行うことにより、プラントの運転状況に適した冷水温度制御を行っている。しかし、冷水温度を一定に保持する観点からは、冷却水温度Twに基づいて目標蒸気流量GsiDを設定し、この目標蒸気流量GsiDに基づいて流量調整弁32の開度を制御すれば足りる。すなわち、このように制御を単純化すれば、蒸気流量検出器53を省略することができるので、プラントの構成を単純にすることができる。   In the above example, based on the control for setting the target steam flow rate GsiD based on the power generation output command MWD and the cooling water temperature Tw, the detection value of the steam flow rate detector 53 (steam flow rate Gsi), and the target steam flow rate GsiD. By performing control to adjust the opening degree of the flow rate adjustment valve 32, chilled water temperature control suitable for the operation state of the plant is performed. However, from the viewpoint of keeping the cold water temperature constant, it is sufficient to set the target steam flow rate GsiD based on the cooling water temperature Tw and to control the opening degree of the flow rate adjusting valve 32 based on the target steam flow rate GsiD. That is, if the control is simplified in this manner, the steam flow rate detector 53 can be omitted, and the configuration of the plant can be simplified.

吸気温度制御部63は、吸気冷却装置29から出るときの吸気の温度制御を担当する部分で、目標吸気温度設定部68と、目標冷水流量設定部69と、流量調整弁制御部70を備えている。   The intake air temperature control unit 63 is in charge of intake air temperature control when leaving the intake air cooling device 29, and includes a target intake air temperature setting unit 68, a target cold water flow rate setting unit 69, and a flow rate adjustment valve control unit 70. Yes.

目標吸気温度設定部68は、ガスタービン22に要求される発電出力に適した吸気温度(目標吸気温度TaoD)を設定する部分であり、発電出力指令MWDに基づいて目標吸気温度TaoDを設定している。目標冷水流量設定部69は、大気温度変化によるガスタービン22の出力変動を抑制するために冷凍機28から吸気冷却装置29へ供給すべき冷水流量(目標冷水流量GwD)を設定する部分であり、吸気温度検出器52から入力される吸気温度Taoが目標吸気温度TaoDに近づくように目標冷水流量GwDを設定している。流量調整弁制御部70は、吸気冷却装置29への冷水流量が目標冷水流量GwDに近づくように流量調整弁34を調整する部分であり、流量調整弁34に開度指令Cv3を出力している。   The target intake air temperature setting unit 68 is a part that sets an intake air temperature (target intake air temperature TaoD) suitable for the power generation output required for the gas turbine 22, and sets the target intake air temperature TaoD based on the power generation output command MWD. Yes. The target chilled water flow rate setting unit 69 is a part for setting a chilled water flow rate (target chilled water flow rate GwD) to be supplied from the refrigerator 28 to the intake air cooling device 29 in order to suppress the output fluctuation of the gas turbine 22 due to the atmospheric temperature change. The target cold water flow rate GwD is set so that the intake air temperature Tao input from the intake air temperature detector 52 approaches the target intake air temperature TaoD. The flow rate adjustment valve control unit 70 is a part that adjusts the flow rate adjustment valve 34 so that the cold water flow rate to the intake air cooling device 29 approaches the target cold water flow rate GwD, and outputs an opening degree command Cv3 to the flow rate adjustment valve 34. .

ここで、吸気温度制御部63が行う制御の一例を説明する。   Here, an example of control performed by the intake air temperature control unit 63 will be described.

Figure 0005023148
Figure 0005023148

Figure 0005023148
Figure 0005023148

Figure 0005023148
Figure 0005023148

上記式(3)は、発電出力指令MWDに基づいて目標吸気温度TaoDを算出するための関数f3から成っている。目標吸気温度設定部68は、式(3)を利用して発電出力指令MWDから目標吸気温度TaoDを得る。   The above equation (3) includes a function f3 for calculating the target intake air temperature TaoD based on the power generation output command MWD. The target intake air temperature setting unit 68 obtains the target intake air temperature TaoD from the power generation output command MWD using Expression (3).

上記式(4)は、目標吸気温度TaoDから目標冷水流量GwDを算出するためのもので、関数f4、関数f5、及びフィードバック関数から成っている。関数f4は、発電出力指令MWDに基づいて吸気冷却装置29へ供給すべき冷水流量のベース値を算出するものであり、関数f5は、大気温度Taに基づいて冷水流量の補正を行うものである。フィードバック関数は、吸気温度Taoが目標吸気温度TaoDに一致するようにフィードバック制御による修正を冷水流量に加えるものである。なお、式(4)中のTTaは積分時定数である。目標冷水流量設定部69は、式(4)を利用して、発電出力指令MWD、大気温度Ta、吸気温度Tao及び目標吸気温度TaoDから、目標冷水流量GwDを得る。   The above equation (4) is for calculating the target cold water flow rate GwD from the target intake air temperature TaoD, and is composed of a function f4, a function f5, and a feedback function. The function f4 calculates the base value of the chilled water flow rate to be supplied to the intake air cooling device 29 based on the power generation output command MWD, and the function f5 corrects the chilled water flow rate based on the atmospheric temperature Ta. . The feedback function adds correction by feedback control to the cold water flow rate so that the intake air temperature Tao matches the target intake air temperature TaoD. Note that TTa in equation (4) is an integration time constant. The target chilled water flow rate setting unit 69 obtains the target chilled water flow rate GwD from the power generation output command MWD, the atmospheric temperature Ta, the intake air temperature Tao, and the target intake air temperature TaoD using the equation (4).

上記式(5)は、目標冷水流量GwDから開度指令Cv3を算出するための関数f6から成っている。流量調整弁制御部70は、目標冷水流量設定部69が得た目標冷水流量GwDから式(5)を利用して開度指令Cv3を算出し、流量調整弁34に操作信号として出力する。これにより、流量調整弁34がCv3に応じた開度に調整されるので、大気温度が変化してもガスタービン22の吸気温度を目標吸気温度TaoDに保持することができる。   The above equation (5) is composed of a function f6 for calculating the opening degree command Cv3 from the target cold water flow rate GwD. The flow rate adjustment valve control unit 70 calculates the opening degree command Cv3 from the target cold water flow rate GwD obtained by the target cold water flow rate setting unit 69 using the formula (5), and outputs the opening degree command Cv3 to the flow rate adjustment valve 34 as an operation signal. As a result, the flow rate adjustment valve 34 is adjusted to an opening corresponding to Cv3, so that the intake temperature of the gas turbine 22 can be maintained at the target intake air temperature TaoD even if the atmospheric temperature changes.

なお、上記の例では、発電出力指令MWDに基づいて目標吸気温度TaoDを算出する制御と、発電出力指令MWD、大気温度Ta、及び目標吸気温度TaoDに基づいて目標冷水流量GwDを算出する制御を行うことにより、プラントの運転状況に適した吸気温度制御を行っている。しかし、吸気温度を目標吸気温度TaoDに保持する観点からは、目標吸気温度TaoDと吸気温度Taoに基づいて目標冷水流量GwDを設定し、この目標冷水流量GwDに基づいて流量調整弁34の開度を制御すれば足りる。すなわち、このように制御を単純化すれば大気温度検出器51を省略することができるので、プラントの構成を単純にすることができる。   In the above example, the control for calculating the target intake air temperature TaoD based on the power generation output command MWD and the control for calculating the target cold water flow rate GwD based on the power generation output command MWD, the atmospheric temperature Ta, and the target intake air temperature TaoD. By doing so, intake air temperature control suitable for the operation state of the plant is performed. However, from the viewpoint of maintaining the intake air temperature at the target intake air temperature TaoD, the target cold water flow rate GwD is set based on the target intake air temperature TaoD and the intake air temperature Tao, and the opening degree of the flow rate adjusting valve 34 is set based on the target cold water flow rate GwD. Control is sufficient. That is, if the control is simplified in this way, the atmospheric temperature detector 51 can be omitted, and the configuration of the plant can be simplified.

また、上記の本実施の形態に係る天然ガス液化プラントの動力供給設備200Aも、第1の実施の形態のものと同様に、気液分離器120、主熱交換器140、及び冷媒予冷設備160等と連携させることによって天然ガス液化プラントを構成することができる。   In addition, the power supply facility 200A for the natural gas liquefaction plant according to the present embodiment is the same as that of the first embodiment, the gas-liquid separator 120, the main heat exchanger 140, and the refrigerant precooling facility 160. A natural gas liquefaction plant can be configured by cooperating with the above.

上記のように構成される天然ガス液化プラントにおいて、季節や昼夜の変化などによって大気温度Taが上昇すると冷却水温度Twも上昇し、冷凍機28の冷水の温度が低下し始める。このとき、制御装置30は、冷水温度の低下を抑制するために、以下のように動作する。   In the natural gas liquefaction plant configured as described above, when the atmospheric temperature Ta rises due to changes in the season or day and night, the cooling water temperature Tw also rises, and the temperature of the cold water in the refrigerator 28 begins to drop. At this time, the control device 30 operates as follows in order to suppress a decrease in the cold water temperature.

冷水温度制御部62内の目標蒸気流量設定部66は、冷凍機28の冷水の温度を保持するために、冷却水温度検出器54から入力された冷却水温度Twに基づいて冷凍機28へ供給すべき目標蒸気流量GsiDを設定し、これを流量調整弁制御部67へ出力する。目標蒸気流量GsiDが入力された流量調整弁制御部67は、冷凍機28への蒸気流量を目標蒸気流量GsiDに近づけるために、目標蒸気流量GsiDから開度指令Cv2を算出し、これを流量調整弁32に操作信号として出力する。流量調整弁制御部67から開度指令Cv2を受けた流量調整弁32は指定された開度に保持されるので、目標蒸気流量GsiDと同程度の流量の蒸気が冷凍機28に供給される。これにより制御装置30は、大気温度Ta(冷却水温度Tw)が変化しても冷凍機28からの冷水温度を保持することができる。   The target steam flow rate setting unit 66 in the chilled water temperature control unit 62 is supplied to the refrigerator 28 based on the cooling water temperature Tw input from the cooling water temperature detector 54 in order to maintain the temperature of the chilled water of the refrigerator 28. A target steam flow rate GsiD to be set is set, and this is output to the flow rate adjustment valve control unit 67. The flow rate adjustment valve control unit 67 to which the target steam flow rate GsiD is input calculates an opening degree command Cv2 from the target steam flow rate GsiD and adjusts the flow rate so that the steam flow rate to the refrigerator 28 approaches the target steam flow rate GsiD. An operation signal is output to the valve 32. The flow rate adjusting valve 32 that has received the opening degree command Cv2 from the flow rate adjusting valve control unit 67 is held at the specified opening degree, so that steam having a flow rate similar to the target steam flow rate GsiD is supplied to the refrigerator 28. Thereby, the control apparatus 30 can hold | maintain the cold water temperature from the refrigerator 28 even if atmospheric temperature Ta (cooling water temperature Tw) changes.

冷凍機28が発生させた冷水は、一定の温度を保持しながら、冷水ヘッダ35を介して冷媒予冷設備100内の凝縮器3と吸気冷却装置29へ供給される。凝縮器3へ供給される冷水の温度は大気温度Taが変化しても上記のように制御装置30によって保持されるので、凝縮器3は一定の凝縮性能を保持しながら第2冷媒を凝縮し続けることができる。   The cold water generated by the refrigerator 28 is supplied to the condenser 3 and the intake air cooling device 29 in the refrigerant precooling facility 100 via the cold water header 35 while maintaining a constant temperature. Since the temperature of the cold water supplied to the condenser 3 is maintained by the control device 30 as described above even when the atmospheric temperature Ta changes, the condenser 3 condenses the second refrigerant while maintaining a constant condensation performance. You can continue.

一方、上記のように大気温度Taが変化すると、ガスタービン22の吸気温度が上昇して圧縮機20の負荷が増大し、タービン出力が低下し始める。これを抑制するために、制御装置30は以下のように動作する。   On the other hand, when the atmospheric temperature Ta changes as described above, the intake temperature of the gas turbine 22 increases, the load on the compressor 20 increases, and the turbine output begins to decrease. In order to suppress this, the control device 30 operates as follows.

吸気温度制御部63内の目標吸気温度設定部68は、発電出力指令MWDに基づいて目標吸気温度TaoDを設定し、これを目標冷水流量設定部69に出力している。目標吸気温度TaoDが入力された目標冷水流量設定部69は、ガスタービン22の吸気温度を目標吸気温度TaoDに保持するために、吸気温度検出器52から入力される吸気温度Taoに基づいて吸気冷却装置29へ供給すべき目標冷水流量GwDを設定し、これを流量調整弁制御部70へ出力する。目標冷水流量GwDが入力された流量調整弁制御部70は、吸気冷却装置29への冷水流量を目標冷水流量GwDに近づけるために、目標冷水流量GwDから開度指令Cv3を算出し、これを流量調整弁34に操作信号として出力する。流量調整弁制御部70から開度指令Cv3を受けた流量調整弁34は指定された開度に保持されるので、目標冷水流量GwDと同程度の流量の冷水が吸気冷却装置29に供給される。このとき、冷水温度は上記のように冷水温度制御部62によって保持されるので、吸気冷却装置29への冷水流量を調整するだけで容易に吸気温度を調整することができる。このように、制御装置30は、大気温度Ta(冷却水温度Tw)が変化してもガスタービン22の吸気温度Taoを目標吸気温度TaoDに保持することができる。   The target intake air temperature setting unit 68 in the intake air temperature control unit 63 sets the target intake air temperature TaoD based on the power generation output command MWD, and outputs this to the target cold water flow rate setting unit 69. The target chilled water flow rate setting unit 69 to which the target intake air temperature TaoD has been input, performs intake air cooling based on the intake air temperature Tao input from the intake air temperature detector 52 in order to maintain the intake air temperature of the gas turbine 22 at the target intake air temperature TaoD. A target cold water flow rate GwD to be supplied to the device 29 is set, and this is output to the flow rate adjustment valve control unit 70. The flow rate adjusting valve control unit 70 to which the target cold water flow rate GwD has been input calculates an opening degree command Cv3 from the target cold water flow rate GwD in order to bring the cold water flow rate to the intake air cooling device 29 closer to the target cold water flow rate GwD. An operation signal is output to the regulating valve 34. The flow rate adjustment valve 34 that has received the opening degree command Cv3 from the flow rate adjustment valve control unit 70 is held at the designated opening degree, so that chilled water having a flow rate approximately equal to the target chilled water flow rate GwD is supplied to the intake air cooling device 29. . At this time, since the cold water temperature is held by the cold water temperature control unit 62 as described above, the intake air temperature can be easily adjusted only by adjusting the flow rate of the cold water to the intake air cooling device 29. As described above, the control device 30 can maintain the intake air temperature Tao of the gas turbine 22 at the target intake air temperature TaoD even if the atmospheric temperature Ta (cooling water temperature Tw) changes.

次に本実施の形態の効果を説明する。
一般的に、天然ガス液化プラントは、大気温度変化の影響を受ける水や空気等の媒体を凝縮器での冷媒やガスタービンの吸気等として利用して運転しているため、大気温度変化の程度によってはプラント内の設備の運転状態が変動する場合がある(例えば、大気温度が上昇すると、圧縮機の負荷が増大してタービン出力が低下するし、凝縮器の冷媒に空気を利用している場合には凝縮器の冷却性能は低下してしまう)。この一方、プラントの製品である液化天然ガスの品質及び生産性を考慮すると、プラント内の設備は常に一定の状態で運用することが好ましく、大気温度変化に応じた最適な運用とプラント全体での効率向上が求められている。
Next, the effect of this embodiment will be described.
Generally, natural gas liquefaction plants are operated using a medium such as water or air that is affected by changes in the atmospheric temperature as refrigerant in a condenser or intake air of a gas turbine. Depending on the situation, the operating state of the equipment in the plant may fluctuate (for example, when the atmospheric temperature rises, the load on the compressor increases and the turbine output decreases, and air is used as the refrigerant for the condenser. In this case, the cooling performance of the condenser will be reduced). On the other hand, considering the quality and productivity of liquefied natural gas, which is a product of the plant, it is preferable to operate the equipment in the plant at a constant state at all times. There is a need for improved efficiency.

ここで、本実施の形態の天然ガス液化プラントは、上記第1の実施の形態の構成に加えて、ガスタービン22の吸気温度と冷凍機28の冷水温度を制御する制御装置30を備えている。このように構成した天然ガス液化プラントによれば、大気温度が変動して冷凍機28の冷却水温度が上昇した場合にも、冷凍機28へ供給する蒸気流量を調整することにより冷水温度を保持することができる。これにより凝縮器3の冷却性能を保持することができるので、第2冷媒を一定の状態で冷却し続けることができる。また、本実施の形態によれば、大気温度が変動して吸気温度が上昇する場合にも、吸気冷却装置29へ供給する冷水流量を調整することにより吸気温度を保持することができる。これにより圧縮機20の負荷の増加が抑制されガスタービン22の出力を保持することができるので、冷媒圧縮機28に一定の動力を供給し続けることができる。   Here, in addition to the configuration of the first embodiment, the natural gas liquefaction plant of the present embodiment includes a control device 30 that controls the intake air temperature of the gas turbine 22 and the cold water temperature of the refrigerator 28. . According to the natural gas liquefaction plant thus configured, even when the atmospheric temperature fluctuates and the cooling water temperature of the refrigerator 28 rises, the cold water temperature is maintained by adjusting the flow rate of steam supplied to the refrigerator 28. can do. Thereby, since the cooling performance of the condenser 3 can be maintained, the second refrigerant can be continuously cooled in a constant state. Further, according to the present embodiment, even when the atmospheric temperature fluctuates and the intake air temperature rises, the intake air temperature can be maintained by adjusting the flow rate of the cold water supplied to the intake air cooling device 29. As a result, an increase in the load of the compressor 20 is suppressed and the output of the gas turbine 22 can be maintained, so that constant power can be continuously supplied to the refrigerant compressor 28.

このように、本実施の形態によれば、大気温度が変化してもガスタービン22の出力と凝縮器3の冷却性能を保持することができるので、ガスタービン22と冷媒予冷設備100を設計段階で設定した最適値(性能計画点)付近で運用し続けることができる。これにより大気温度が変化しても最適なプラント運用ができるので、プラント運転効率を改善することができる。   Thus, according to the present embodiment, the output of the gas turbine 22 and the cooling performance of the condenser 3 can be maintained even when the atmospheric temperature changes, so the gas turbine 22 and the refrigerant precooling facility 100 are designed. Operation can be continued near the optimum value (performance planned point) set in step 1. As a result, even if the atmospheric temperature changes, the optimum plant operation can be performed, so that the plant operation efficiency can be improved.

次に、本実施の形態の効果をプラントの熱効率の観点から詳しく説明する。
図5は本発明の第2の実施の形態である天然ガス液化プラントの動力供給設備とその比較例における蒸気収支の比較表である。
Next, the effect of this embodiment will be described in detail from the viewpoint of the thermal efficiency of the plant.
FIG. 5 is a comparative table of steam balances in a power supply facility of a natural gas liquefaction plant according to a second embodiment of the present invention and a comparative example thereof.

この図における「Ta」は大気温度、「ガスタービン出力」は動力供給設備内のガスタービンの出力、「蒸気発生量」は動力供給設備内のボイラにおける蒸気の発生量、「Tw」は冷凍機への冷却水温度、「蒸気消費量」は動力設備内の冷凍機における蒸気の消費量、「蒸気収支」は蒸気発生量から蒸気消費量を差し引いた蒸気の収支を示す。各ケースの上段は、大気温度が標準状態のとき(Ta=15℃)のデータで、下段は大気温度が上昇したとき(Ta=40℃)のデータである。なお、「ガスタービン出力」、「蒸気発生量」、及び「蒸気消費量」の数値は、標準状態(Ta=15℃)を基準とした場合の変化率で示している。   In this figure, “Ta” is the atmospheric temperature, “Gas turbine output” is the output of the gas turbine in the power supply facility, “Steam generation amount” is the steam generation amount in the boiler in the power supply facility, and “Tw” is the refrigerator. The cooling water temperature, “steam consumption” indicates the steam consumption in the refrigerator in the power equipment, and “steam balance” indicates the steam balance obtained by subtracting the steam consumption from the steam generation amount. The upper part of each case shows data when the atmospheric temperature is in a standard state (Ta = 15 ° C.), and the lower part shows data when the atmospheric temperature rises (Ta = 40 ° C.). In addition, the numerical values of “gas turbine output”, “steam generation amount”, and “steam consumption amount” are shown as change rates when the standard state (Ta = 15 ° C.) is used as a reference.

ケース1は、本実施の形態の動力供給設備200Aから、冷凍機28、吸気冷却装置29、及び制御装置30を省略した場合の蒸気収支であり、冷凍機28による冷水の製造は行っていない。このケースにおいて、大気温度Taが15℃(標準状態)から40℃に上昇すると、吸気温度上昇による圧縮機20の動力増加によってガスタービン出力が21%減少し、それに応じて蒸気発生量が14%減少する。   Case 1 is a steam balance when the refrigerator 28, the intake air cooling device 29, and the control device 30 are omitted from the power supply facility 200A of the present embodiment, and cold water is not manufactured by the refrigerator 28. In this case, when the atmospheric temperature Ta rises from 15 ° C. (standard state) to 40 ° C., the output of the gas turbine is reduced by 21% due to an increase in the power of the compressor 20 due to the intake air temperature rise, and the amount of steam generated is 14% accordingly Decrease.

ケース2は、本実施の形態の動力供給設備200Aから、吸気冷却装置29及び制御装置30を省略した場合の蒸気収支である。このケースの動力供給設備では、ガスタービン22の排熱を用いて冷凍機28で冷水を製造し、冷媒予冷設備100の凝縮器3に供給している。このケースにおいて、大気温度Taが40℃まで上昇すると、ケース1と同様に、蒸気発生量は14%減少する。さらに、大気温度Taの上昇に伴って冷却水温度Twも36℃まで上昇するので、冷凍機28で冷水を製造するための蒸気消費量は15%増加する。したがって、プラント全体の蒸気収支は、標準状態と比較して29%不足する結果となる。   Case 2 is a steam balance when the intake air cooling device 29 and the control device 30 are omitted from the power supply facility 200A of the present embodiment. In the power supply facility of this case, cold water is produced by the refrigerator 28 using the exhaust heat of the gas turbine 22 and is supplied to the condenser 3 of the refrigerant precooling facility 100. In this case, when the atmospheric temperature Ta rises to 40 ° C., the amount of generated steam is reduced by 14% as in the case 1. Further, as the atmospheric temperature Ta rises, the cooling water temperature Tw also rises to 36 ° C., so the steam consumption for producing cold water by the refrigerator 28 increases by 15%. Therefore, the steam balance of the entire plant results in 29% shortage compared to the standard state.

ケース3は、本実施の形態の動力供給設備200Aにおける蒸気収支である。このケースの動力供給設備は、上記に説明したように、制御装置30を用いて吸気冷却装置29と冷凍機28を制御している。このケースにおいて、大気温度上昇時に吸気冷却装置29を利用して、圧縮機20の入口空気温度(吸気温度)を標準状態から上下1℃の範囲(即ち、14〜16℃)に収まるように制御したとする。この場合、ガスタービン出力は1%の低下、蒸気発生量にあっては3%の低下にとどめることができる。また、冷却水温度Twが上昇するので冷凍機28で冷水を製造するための蒸気消費量は、ケース2同様、15%増加するが、ガスタービン22を標準状態付近で運転することができるので、蒸気収支は18%の不足に抑えることができる。   Case 3 is a steam balance in the power supply facility 200A of the present embodiment. The power supply facility in this case controls the intake air cooling device 29 and the refrigerator 28 using the control device 30 as described above. In this case, when the atmospheric temperature rises, the intake air cooling device 29 is used to control the inlet air temperature (intake air temperature) of the compressor 20 so that it falls within a range of 1 ° C. above and below the standard state (ie, 14 to 16 ° C.). Suppose that In this case, the gas turbine output can be reduced by 1%, and the steam generation amount can be reduced by 3%. Further, since the cooling water temperature Tw rises, the steam consumption for producing the cold water by the refrigerator 28 increases by 15% as in the case 2, but the gas turbine 22 can be operated near the standard state. The steam balance can be kept at 18%.

ところで、上記のケース2の動力供給設備において、大気温度上昇に伴って蒸気収支が不足した場合には、配管41から復水器へ導入している蒸気を流量調整弁32を絞ることで冷凍機28内に導いて蒸気不足を解消する。そのため、大気温度が上昇しても冷水温度が低減しないように、標準状態から大気温度上昇時に必要となる蒸気量を見込んで蒸気を生成しておくことが必要となる。ところが、標準状態ではその分の蒸気は余剰となるので、プラントの熱効率の低下に繋がっていた。   By the way, in the power supply equipment of the case 2 described above, when the steam balance is insufficient as the atmospheric temperature rises, the steam introduced from the pipe 41 to the condenser is throttled through the flow rate adjustment valve 32, so that the refrigerator It leads to 28 and eliminates the shortage of steam. For this reason, it is necessary to generate steam in consideration of the amount of steam required when the atmospheric temperature rises from the standard state so that the cold water temperature does not decrease even if the atmospheric temperature rises. However, in the standard state, the amount of steam is excessive, leading to a decrease in the thermal efficiency of the plant.

これに対して、本実施の形態は、制御装置30によってガスタービン22の吸気温度を保持することができるので、大気温度が上昇した場合の蒸気収支を上記のように改善することができる。これにより標準状態における余剰蒸気量を削減することができるので、プラントの熱効率を向上させることができる。   In contrast, in the present embodiment, since the intake temperature of the gas turbine 22 can be held by the control device 30, the steam balance when the atmospheric temperature rises can be improved as described above. Thereby, since the surplus steam amount in the standard state can be reduced, the thermal efficiency of the plant can be improved.

また、上記の各実施の形態における動力供給設備200,200Aのように、モータ2を介して冷媒予冷設備100に電力を供給するように構成すれば、ガスタービン22等と駆動対象を直結する場合と比較して、プラント内の設備の需要に合わせた柔軟な電力供給を行うことができる。したがって、本実施の形態に係る動力供給設備200,200Aを既存のプラントに容易に追設することができる。なお、モータ2を省略して、冷媒圧縮機1、圧縮機20、及びガスタービン22の駆動軸を共有化し、ガスタービン22を用いて冷媒圧縮機1を直接駆動するように構成しても良い。このようにガスタービン22とその駆動対象を直結すれば、モータを利用する場合と比較して、冷媒圧縮機1等の駆動対象を高効率で駆動することができる。   Further, when power is supplied to the refrigerant precooling facility 100 via the motor 2 as in the power supply facilities 200 and 200A in the above embodiments, the gas turbine 22 and the like are directly connected to the drive target. Compared with, it is possible to perform flexible power supply in accordance with the demand for equipment in the plant. Therefore, the power supply facilities 200 and 200A according to the present embodiment can be easily added to the existing plant. The motor 2 may be omitted, and the drive shafts of the refrigerant compressor 1, the compressor 20, and the gas turbine 22 may be shared, and the refrigerant compressor 1 may be directly driven using the gas turbine 22. . If the gas turbine 22 and its driving target are directly connected in this way, the driving target such as the refrigerant compressor 1 can be driven with higher efficiency than in the case of using a motor.

なお、上記の第2の実施の形態では、制御装置30によって吸気温度と冷水温度を制御する場合についてのみ説明したが、上記と同等の制御方法によるものであれば勿論代替可能である。例えば、現在の吸気温度Taoや冷却水温度Twが表示される操作盤を別途設け、操作者がこれらの温度を見ながら流量調整弁32,34等の開度を適宜調整できるように構成する等しても良い。   In the second embodiment described above, only the case where the intake air temperature and the cold water temperature are controlled by the control device 30 has been described. However, it is of course possible to use a control method equivalent to the above. For example, an operation panel for displaying the current intake air temperature Tao and the coolant temperature Tw is separately provided, and the operator can adjust the opening degree of the flow rate adjusting valves 32, 34 and the like as appropriate while watching these temperatures. You may do it.

Claims (8)

冷媒を圧縮する冷媒圧縮機と、
この冷媒圧縮機によって圧縮された冷媒を冷却し凝縮する凝縮器と、
この凝縮器で凝縮した冷媒を受け入れる受液器と、
この受液器からの冷媒を膨張させて他の冷媒を冷却する冷却器とを備える天然ガス液化プラントに動力を供給する天然ガス液化プラント用動力供給設備において、
燃料と吸気を燃焼して得た燃焼ガスによって駆動されるガスタービンと、
このガスタービンからの排ガスによって蒸気を発生させるボイラと、
このボイラからの蒸気によって駆動される蒸気タービンと、
この蒸気タービンからの蒸気、及び冷却水によって冷水を発生させる冷凍機と、
この冷凍機からの冷水によって前記ガスタービンの吸気を冷却する吸気冷却装置と、
前記蒸気タービンから前記冷凍機への蒸気流量を調整するための第1流量調整手段と、
前記冷凍機から前記吸気冷却装置への冷水流量を調整するための第2流量調整手段と、
前記冷凍機に入るときの冷却水の温度を検出する第1温度検出器と、
前記吸気冷却装置から出るときの吸気の温度を検出する第2温度検出器と、
前記冷凍機が発生させる冷水の温度を保持するために設定した目標流量に前記蒸気タービンから前記冷凍機への蒸気流量が近づくように前記第1温度検出器の検出値に基づいて前記第1流量調整手段の開度を調整するとともに、前記ガスタービンの出力を保持するために設定した目標温度に前記吸気冷却装置から出るときの吸気の温度が近づくように前記第2温度検出器の検出値に基づいて前記第2流量調整手段の開度を調整する制御装置とを備え
前記冷媒圧縮機は、前記ガスタービン及び前記蒸気タービンの少なくともいずれかからの動力によって駆動され、
前記凝縮器は、前記冷凍機からの冷水で冷媒を冷却し凝縮することを特徴とする天然ガス液化プラント用動力供給設備。
A refrigerant compressor for compressing the refrigerant;
A condenser that cools and condenses the refrigerant compressed by the refrigerant compressor;
A liquid receiver for receiving the refrigerant condensed in the condenser;
In a power supply facility for a natural gas liquefaction plant that supplies power to a natural gas liquefaction plant comprising a cooler that expands the refrigerant from the receiver and cools other refrigerants,
A gas turbine driven by combustion gas obtained by burning fuel and intake air;
A boiler that generates steam from the exhaust gas from the gas turbine;
A steam turbine driven by steam from this boiler;
A refrigerator that generates cold water by steam from the steam turbine and cooling water;
An intake air cooling device that cools the intake air of the gas turbine with cold water from the refrigerator;
First flow rate adjusting means for adjusting a steam flow rate from the steam turbine to the refrigerator;
Second flow rate adjusting means for adjusting the flow rate of cold water from the refrigerator to the intake air cooling device;
A first temperature detector for detecting a temperature of cooling water when entering the refrigerator;
A second temperature detector for detecting the temperature of the intake air as it exits the intake air cooling device;
The first flow rate based on the detection value of the first temperature detector so that the steam flow rate from the steam turbine to the refrigerator approaches a target flow rate set to hold the temperature of the cold water generated by the refrigerator. While adjusting the opening degree of the adjusting means, the detected value of the second temperature detector is adjusted so that the temperature of the intake air when coming out of the intake air cooling device approaches the target temperature set for maintaining the output of the gas turbine. A control device for adjusting the opening of the second flow rate adjusting means based on ,
The refrigerant compressor is driven by power from at least one of the gas turbine and the steam turbine,
The power supply equipment for a natural gas liquefaction plant , wherein the condenser cools and condenses the refrigerant with cold water from the refrigerator .
請求項記載の天然ガス液化プラント用動力供給設備において、
前記目標温度は前記ガスタービンの出力に基づいて設定することを特徴とする天然ガス液化プラント用動力供給設備。
In the power supply equipment for a natural gas liquefaction plant according to claim 1 ,
The target temperature is set based on the output of the gas turbine, the power supply equipment for a natural gas liquefaction plant.
請求項1又は2記載の天然ガス液化プラント用動力供給設備において、
前記吸気冷却装置に入るときの吸気の温度を検出する第3温度検出器を備え、
前記制御装置は、前記吸気冷却装置から出るときの吸気の温度が前記目標温度に近づくように、前記第2温度検出器の検出値及び前記第3温度検出器の検出値に基づいて前記第2流量調整手段の開度を調整することを特徴とする天然ガス液化プラント用動力供給設備。
In the power supply equipment for a natural gas liquefaction plant according to claim 1 or 2 ,
A third temperature detector for detecting the temperature of the intake air when entering the intake air cooling device;
The control device is configured to control the second temperature detector based on the detection value of the second temperature detector and the detection value of the third temperature detector so that the temperature of the intake air as it exits the intake air cooling device approaches the target temperature. A power supply facility for a natural gas liquefaction plant, wherein the opening degree of the flow rate adjusting means is adjusted.
請求項1又は2記載の天然ガス液化プラント用動力供給設備において、
前記冷凍機に入る蒸気の流量を検出する流量検出器を備え、
前記制御装置は、前記蒸気タービンから前記冷凍機への蒸気流量が前記目標流量に近づくように、前記第1温度検出器の検出値及び前記流量検出器の検出値に基づいて前記第1流量調整手段の開度を調整することを特徴とする天然ガス液化プラント用動力供給設備。
In the power supply equipment for a natural gas liquefaction plant according to claim 1 or 2 ,
A flow rate detector for detecting the flow rate of steam entering the refrigerator;
The control device adjusts the first flow rate based on a detection value of the first temperature detector and a detection value of the flow rate detector so that a steam flow rate from the steam turbine to the refrigerator approaches the target flow rate. A power supply facility for a natural gas liquefaction plant, wherein the opening degree of the means is adjusted.
請求項1記載の天然ガス液化プラント用動力供給設備において、
前記冷媒圧縮機はモータを有し、
前記ガスタービンは前記モータを介して前記冷媒圧縮機に動力を供給していることを特徴とする天然ガス液化プラント用動力供給設備。
In the power supply equipment for a natural gas liquefaction plant according to claim 1,
The refrigerant compressor has a motor,
A power supply facility for a natural gas liquefaction plant, wherein the gas turbine supplies power to the refrigerant compressor via the motor.
請求項1記載の天然ガス液化プラント用動力供給設備において、
前記ガスタービンは前記冷媒圧縮機と直結されていることを特徴とする天然ガス液化プラント用動力供給設備。
In the power supply equipment for a natural gas liquefaction plant according to claim 1,
The power supply equipment for a natural gas liquefaction plant, wherein the gas turbine is directly connected to the refrigerant compressor.
請求項1記載の天然ガス液化プラント用動力供給設備において、
前記冷媒は、プロパン、プロピレン、又はメタンとプロパンとエタンを含む混合冷媒のうちいずれかであることを特徴とする天然ガス液化プラント用動力供給設備。
In the power supply equipment for a natural gas liquefaction plant according to claim 1,
The power supply facility for a natural gas liquefaction plant, wherein the refrigerant is any one of propane, propylene, or a mixed refrigerant containing methane, propane, and ethane.
冷媒を圧縮する冷媒圧縮機と、この冷媒圧縮機によって圧縮された冷媒を冷却し凝縮する凝縮器と、この凝縮器で凝縮した冷媒を受け入れる受液器と、この受液器からの冷媒を膨張させて他の冷媒を冷却する冷却器とを備える天然ガス液化プラントに動力を供給するために、
燃料と吸気を燃焼して得た燃焼ガスによって駆動され前記天然ガス液化プラントに動力を供給するガスタービンと、このガスタービンからの排ガスによって蒸気を発生させるボイラと、このボイラからの蒸気によって駆動され前記天然ガス液化プラントに動力を供給する蒸気タービンと、前記ガスタービンの吸気を冷却する吸気冷却装置と、前記吸気冷却装置及び前記凝縮器に供給する冷水を前記蒸気タービンからの蒸気及び冷却水によって発生させる冷凍機と、前記蒸気タービンから前記冷凍機への蒸気流量を調整するための第1流量調整手段と、前記冷凍機から前記吸気冷却装置への冷水流量を調整するための第2流量調整手段と、前記冷凍機に入るときの冷却水の温度を検出する第1温度検出器と、前記吸気冷却装置から出るときの吸気の温度を検出する第2温度検出器とを備える天然ガス液化プラント用動力供給設備の制御装置であって、
前記冷凍機が発生させる冷水の温度を保持するために設定した目標流量に前記蒸気タービンから前記冷凍機への蒸気流量が近づくように、前記第1温度検出器の検出値に基づいて前記第1流量調整手段の開度を調整する冷水温度制御部と、
前記ガスタービンの出力を保持するために設定した目標温度に前記吸気冷却装置から出るときの吸気の温度が近づくように、前記第2温度検出器の検出値に基づいて前記第2流量調整手段の開度を調整する吸気温度制御部とを備えることを特徴とする天然ガス液化プラント用動力供給設備の制御装置。
A refrigerant compressor that compresses the refrigerant, a condenser that cools and condenses the refrigerant compressed by the refrigerant compressor, a liquid receiver that receives the refrigerant condensed by the condenser, and a refrigerant that is expanded from the liquid receiver To power a natural gas liquefaction plant with a cooler that cools other refrigerants,
A gas turbine that is driven by combustion gas obtained by burning fuel and intake air and supplies power to the natural gas liquefaction plant, a boiler that generates steam by exhaust gas from the gas turbine, and a steam that is driven by steam from the boiler A steam turbine that supplies power to the natural gas liquefaction plant, an intake air cooling device that cools intake air of the gas turbine, and cold water that is supplied to the intake air cooling device and the condenser is obtained by using steam and cooling water from the steam turbine. A refrigerator to be generated, a first flow rate adjusting means for adjusting a steam flow rate from the steam turbine to the refrigerator, and a second flow rate adjustment for adjusting a cold water flow rate from the refrigerator to the intake air cooling device Means, a first temperature detector for detecting the temperature of the cooling water as it enters the refrigerator, and an intake air as it exits the intake air cooling device. A control apparatus for motive power supply equipment and a second temperature detector for detecting the temperature of,
Based on the detection value of the first temperature detector, the steam flow rate from the steam turbine to the refrigerator approaches a target flow rate set to hold the temperature of the cold water generated by the refrigerator. A chilled water temperature control unit for adjusting the opening degree of the flow rate adjusting means;
Based on the detection value of the second temperature detector, the second flow rate adjusting means is arranged so that the temperature of the intake air as it exits the intake air cooling device approaches the target temperature set to maintain the output of the gas turbine. A control device for a power supply facility for a natural gas liquefaction plant, comprising: an intake air temperature control unit that adjusts an opening.
JP2009513872A 2007-04-27 2007-04-27 Power supply facility for natural gas liquefaction plant, control device and control method thereof, and natural gas liquefaction plant Expired - Fee Related JP5023148B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/059216 WO2008139527A1 (en) 2007-04-27 2007-04-27 Power supply facility for natural gas liquefaction plant, system and method for control of the power supply facility, and natural gas liquefaction plant

Publications (2)

Publication Number Publication Date
JPWO2008139527A1 JPWO2008139527A1 (en) 2010-07-29
JP5023148B2 true JP5023148B2 (en) 2012-09-12

Family

ID=40001763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009513872A Expired - Fee Related JP5023148B2 (en) 2007-04-27 2007-04-27 Power supply facility for natural gas liquefaction plant, control device and control method thereof, and natural gas liquefaction plant

Country Status (2)

Country Link
JP (1) JP5023148B2 (en)
WO (1) WO2008139527A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944095B1 (en) * 2009-04-03 2011-06-03 Total Sa NATURAL GAS LIQUEFACTION PROCESS USING LOW TEMPERATURE EXHAUST GAS TURBINES
FR2957141B1 (en) * 2010-03-08 2012-08-17 Total Sa NATURAL GAS LIQUEFACTION PROCESS USING CO2 / HFC MIXTURE AS REFRIGERANT FLUID
FR2957140B1 (en) * 2010-03-08 2014-09-12 Total Sa NATURAL GAS LIQUEFACTION PROCESS USING ENRICHED NITROGEN AS REFRIGERANT FLUID
US20120204598A1 (en) * 2011-02-16 2012-08-16 Conocophillips Company Integrated waste heat recovery in liquefied natural gas facility
CN103352761B (en) * 2013-06-20 2016-05-18 华电电力科学研究院 Combustion machine air inlet cooling device based on UTILIZATION OF VESIDUAL HEAT IN
JP5976951B2 (en) 2014-04-07 2016-08-24 三菱重工コンプレッサ株式会社 Floating liquefied gas production facility
WO2017163275A1 (en) 2016-03-23 2017-09-28 千代田化工建設株式会社 Intake air cooling system and intake air cooling method for gas turbine
WO2018083747A1 (en) * 2016-11-02 2018-05-11 日揮株式会社 Natural gas liquefaction facility
FR3086373B1 (en) * 2018-09-20 2020-12-11 Air Liquide INSTALLATION AND PROCEDURE FOR CLEANING AND LIQUEFACING NATURAL GAS

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835736A (en) * 1994-07-21 1996-02-06 Mitsubishi Heavy Ind Ltd Compression and absorption type compound refrigerator
JPH08219571A (en) * 1995-02-14 1996-08-30 Chiyoda Corp Compressor driving device for natural gas liquefying plant
JP2005315127A (en) * 2004-04-27 2005-11-10 Mitsubishi Heavy Ind Ltd Gas turbine
JP2006516715A (en) * 2003-01-31 2006-07-06 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method to obtain liquefied natural gas by liquefying gaseous raw material rich in methane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835736A (en) * 1994-07-21 1996-02-06 Mitsubishi Heavy Ind Ltd Compression and absorption type compound refrigerator
JPH08219571A (en) * 1995-02-14 1996-08-30 Chiyoda Corp Compressor driving device for natural gas liquefying plant
JP2006516715A (en) * 2003-01-31 2006-07-06 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method to obtain liquefied natural gas by liquefying gaseous raw material rich in methane
JP2005315127A (en) * 2004-04-27 2005-11-10 Mitsubishi Heavy Ind Ltd Gas turbine

Also Published As

Publication number Publication date
JPWO2008139527A1 (en) 2010-07-29
WO2008139527A1 (en) 2008-11-20

Similar Documents

Publication Publication Date Title
JP5023148B2 (en) Power supply facility for natural gas liquefaction plant, control device and control method thereof, and natural gas liquefaction plant
US20120116594A1 (en) Jet pump system for heat and cold management, apparatus, arrangement and methods of use
CN105042952A (en) Device for controlling closed circuit operating according to rankine cycle and method using the same
US20200333050A1 (en) Refrigeration cycle for liquid oxygen densification
JP4879321B2 (en) Natural gas liquefaction plant and operation method thereof
JPWO2008139528A1 (en) Cooling cycle system, natural gas liquefaction facility, cooling cycle system operating method and remodeling method
EP3018351A2 (en) Two-stage-compression refrigerating cycle apparatus, and device and method for controlling the apparatus
JP4910042B2 (en) Power supply system for plant, its operation method and remodeling method
EP2921761B1 (en) Tank internal pressure suppression device
JP5048059B2 (en) Natural gas liquefaction equipment
JP4563269B2 (en) Refrigeration capacity control device for turbine-type refrigerator
CN112651140A (en) Method for analyzing double-stage compression refrigeration system
US20190211734A1 (en) Waste heat recovery apparatus and control method therefor
US20100251760A1 (en) System for refrigeration, heating or air-conditioning technology, particularly refrigeration systems
US10641132B2 (en) Supercritical CO2 power generating system for preventing cold-end corrosion
KR101325586B1 (en) Natural gas liquefaction system
US20220389870A1 (en) Refrigeration system for a gas turbine
US20180038639A1 (en) Robust recovery of natural gas letdown energy for small scale liquefied natural gas production
US20060242974A1 (en) Evaporation process control for use in refrigeration technology
KR101837994B1 (en) Apparatus for generation and method having the same
JP2009198123A (en) Heat source system and method of operating the same
US11913719B2 (en) Liquefaction apparatus
US11408674B2 (en) System for treating and cooling a hydrocarbon stream
JP2013057495A (en) Cold heat equipment
EP2431695B1 (en) Reduction of diluent nitrogen compressor power using vapor absorption chiller

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees