JP4879321B2 - Natural gas liquefaction plant and operation method thereof - Google Patents

Natural gas liquefaction plant and operation method thereof Download PDF

Info

Publication number
JP4879321B2
JP4879321B2 JP2009513879A JP2009513879A JP4879321B2 JP 4879321 B2 JP4879321 B2 JP 4879321B2 JP 2009513879 A JP2009513879 A JP 2009513879A JP 2009513879 A JP2009513879 A JP 2009513879A JP 4879321 B2 JP4879321 B2 JP 4879321B2
Authority
JP
Japan
Prior art keywords
natural gas
power generation
gas turbine
turbine power
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009513879A
Other languages
Japanese (ja)
Other versions
JPWO2008139536A1 (en
Inventor
知己 小金沢
秀文 荒木
眞一 樋口
康広 堀内
睦 堀次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2008139536A1 publication Critical patent/JPWO2008139536A1/en
Application granted granted Critical
Publication of JP4879321B2 publication Critical patent/JP4879321B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/224Heating fuel before feeding to the burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/46Emergency fuel control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0087Propane; Propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/0231Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the working-up of the hydrocarbon feed, e.g. reinjection of heavier hydrocarbons into the liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0248Stopping of the process, e.g. defrosting or deriming, maintenance; Back-up mode or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0268Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0284Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/66Separating acid gases, e.g. CO2, SO2, H2S or RSH
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/42Integration in an installation using nitrogen, e.g. as utility gas, for inerting or purging purposes in IGCC, POX, GTL, PSA, float glass forming, incineration processes, for heat recovery or for enhanced oil recovery
    • F25J2260/44Integration in an installation using nitrogen, e.g. as utility gas, for inerting or purging purposes in IGCC, POX, GTL, PSA, float glass forming, incineration processes, for heat recovery or for enhanced oil recovery using nitrogen for cooling purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/80Integration in an installation using carbon dioxide, e.g. for EOR, sequestration, refrigeration etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

本発明は、複数のガスタービン発電装置を備えた天然ガス液化プラント及びその運転方法に関する。   The present invention relates to a natural gas liquefaction plant including a plurality of gas turbine power generators and an operation method thereof.

天然ガス液化プラントは、少なくとも1つの冷凍サイクル系統を有し、精製された天然ガスを冷凍サイクル系統の冷媒により冷却して液化するものである。例えば冷凍サイクル系統の冷媒圧縮機は、ガスタービンが直結されて駆動するものが知られているが、一般にガスタービンは作動回転数が限られているため、冷媒圧縮機の作動条件の自由度が小さくなる。そこで、例えば冷媒圧縮機に電動機を直結させるとともに、この電動機に電力を供給するガスタービン発電装置を設けた構成が開示されている(例えば、特許文献1参照)。   The natural gas liquefaction plant has at least one refrigeration cycle system, and purifies natural gas with a refrigerant of the refrigeration cycle system for liquefaction. For example, a refrigerant compressor of a refrigeration cycle system is known to be driven by a gas turbine connected directly. Generally, since a gas turbine has a limited number of operating revolutions, the operating conditions of the refrigerant compressor have a high degree of freedom. Get smaller. Therefore, for example, a configuration in which an electric motor is directly connected to a refrigerant compressor and a gas turbine power generator that supplies electric power to the electric motor is provided is disclosed (for example, see Patent Document 1).

特表2003−515720号公報Special table 2003-515720 gazette

例えば何らかの理由でガスタービン発電装置が故障して稼働停止した場合、冷媒圧縮機を駆動する電動機が電力不足となるため、運転条件の変更が余儀なくされて液化天然ガスの製造量が低下するか、若しくはプラント停止に至る可能性がある。そこで、これに対応するため、予備機を含め複数のガスタービン発電装置を備えさせ、例えば複数のガスタービン発電装置のうちのいずれかが故障して稼働停止した場合に、予備機を起動させる方法が考えられる。ところが、この場合でも、予備機が起動するまでに数分から数十分程度の時間を要し、その間は発電量が低下するため、やはり液化天然ガスの製造量が低下する可能性がある。かといって、予備機を常にスタンバイ状態とすれば、起動時間を無くすことができるものの、燃料を無駄に消費し発電効率が低下することとなる。   For example, if the gas turbine power generation device breaks down due to some reason, the electric motor that drives the refrigerant compressor becomes insufficient in power, so the operating conditions are forced to change, and the production amount of liquefied natural gas decreases, Or there is a possibility of plant stoppage. Therefore, in order to cope with this, a method of providing a plurality of gas turbine power generators including a spare machine and starting the spare machine when, for example, one of the plurality of gas turbine power generators fails and stops operation Can be considered. However, even in this case, it takes about several minutes to several tens of minutes until the spare machine is started, and during this time, the amount of power generation decreases, so the production amount of liquefied natural gas may also decrease. However, if the spare machine is always in the standby state, the startup time can be eliminated, but the fuel is wasted and the power generation efficiency is reduced.

本願発明者らは、上述した観点から、予備機が起動するまでの間、稼働継続中のガスタービン発電装置を一時的に過負荷運転させて発電量を増加させることが望ましいとの考えに至った。しかしながら、ガスタービン発電装置を過負荷運転させる方法として例えば燃料を増加させる場合は、ガスタービン発電装置の高温部が通常運転時よりも高温となるため、冷却手段の能力を予め大きくするか新たな冷却手段を設ける必要があり、コスト増大の要因となる。また、ガスタービン発電装置を過負荷運転させる方法として例えば作動流体とは異なる流体を混入させて流量を増加させる場合は、その流体を新たに用意する必要があり、コスト増大の要因となる。   From the viewpoints described above, the inventors of the present application have led to the idea that it is desirable to temporarily overload the gas turbine power generator that is in operation until the spare machine is started to increase the power generation amount. It was. However, as a method of overloading the gas turbine power generation device, for example, when increasing the fuel, the high temperature portion of the gas turbine power generation device is hotter than during normal operation. It is necessary to provide a cooling means, which causes an increase in cost. Further, as a method of overloading the gas turbine power generator, for example, when a flow rate is increased by mixing a fluid different from the working fluid, it is necessary to newly prepare the fluid, which causes an increase in cost.

本発明の目的は、コスト低減を図りつつガスタービン発電装置を過負荷運転させることができ、プラント電源の安定化しいてはプラント操業の安定化を図ることができる天然ガス液化プラント及びその運転方法を提供することにある。   An object of the present invention is to provide a natural gas liquefaction plant capable of overloading a gas turbine power generator while reducing costs, and stabilizing the plant operation by stabilizing the plant power supply and its operating method. It is to provide.

上記目的を達成するために、本発明は、少なくとも1つの冷凍サイクル系統を有し、精製された天然ガスを前記冷凍サイクル系統の冷媒により冷却して液化する天然ガス液化設備と、前記冷凍サイクル系統の冷媒圧縮機を駆動する電動機に電力を供給する複数のガスタービン発電装置を有する発電設備とを備えた天然ガス液化プラントにおいて、天然ガスの精製過程で得られた二酸化炭素又は窒素を前記複数のガスタービン発電装置に弁を介して供給する供給系統と、前記複数のガスタービン発電装置のうちのいずれかが稼働停止した場合、前記供給系統の弁を開放する指令信号を出力して稼働継続中の前記ガスタービン発電装置に二酸化炭素又は窒素を供給し、稼働継続中の前記ガスタービン発電装置を過負荷運転させる制御手段とを備える。   In order to achieve the above object, the present invention comprises at least one refrigeration cycle system, a natural gas liquefaction facility for cooling and liquefying purified natural gas with a refrigerant of the refrigeration cycle system, and the refrigeration cycle system In a natural gas liquefaction plant comprising a plurality of gas turbine power generators that supply electric power to an electric motor that drives the refrigerant compressor, carbon dioxide or nitrogen obtained in a natural gas purification process is A supply system that supplies a gas turbine power generation device via a valve, and when one of the plurality of gas turbine power generation devices stops operating, a command signal for opening the valve of the supply system is output to continue operation Control means for supplying carbon dioxide or nitrogen to the gas turbine power generator and overloading the gas turbine power generator during operation. .

本発明によれば、コスト低減を図りつつガスタービン発電装置を過負荷運転させることができ、プラント電源の安定化しいてはプラント操業の安定化を図ることができる。   According to the present invention, the gas turbine power generator can be overloaded while reducing costs, and the plant power can be stabilized and the plant operation can be stabilized.

本発明の天然ガス液化プラントの第1の実施形態の構成を表す概略図である。It is the schematic showing the structure of 1st Embodiment of the natural gas liquefaction plant of this invention. 本発明の天然ガス液化プラントの第1の実施形態を構成する天然ガス液化設備の構成を表す概略図である。It is the schematic showing the structure of the natural gas liquefying equipment which comprises 1st Embodiment of the natural gas liquefaction plant of this invention. 本発明の天然ガス液化プラントの第2の実施形態の構成を表す概略図である。It is the schematic showing the structure of 2nd Embodiment of the natural gas liquefaction plant of this invention. 本発明の天然ガス液化プラントの第3の実施形態の構成を表す概略図である。It is the schematic showing the structure of 3rd Embodiment of the natural gas liquefaction plant of this invention.

符号の説明Explanation of symbols

1 冷媒圧縮機
5 電動機
23 低圧段冷媒圧縮機
24 高圧段冷媒圧縮機
60 第一の冷凍サイクル系統
61 第二の冷凍サイクル系統
65 電動機
68 天然ガス液化設備
71 発電設備
72a〜72e ガスタービン発電装置
77 冷凍装置
78 貯蔵タンク
79 遮断弁
79a〜79e 弁
80 蒸発器
81 全体制御装置(制御手段)
81a〜81e 制御装置(制御手段)
85 供給系統
85A 供給系統
85B 供給系統
86a〜86e 分岐系統
87a〜87e 分岐系統
88a〜88c 注入系統
DESCRIPTION OF SYMBOLS 1 Refrigerant compressor 5 Electric motor 23 Low pressure stage refrigerant compressor 24 High pressure stage refrigerant compressor 60 First refrigeration cycle system 61 Second refrigeration cycle system 65 Electric motor 68 Natural gas liquefaction equipment 71 Power generation equipment 72a to 72e Gas turbine power generator 77 Refrigeration device 78 Storage tank 79 Shut-off valves 79a to 79e Valve 80 Evaporator 81 Overall control device (control means)
81a to 81e Control device (control means)
85 Supply system 85A Supply system 85B Supply system 86a to 86e Branch system 87a to 87e Branch system 88a to 88c Injection system

以下、本発明の実施形態を、図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の第1の実施形態を図1及び図2により説明する。   A first embodiment of the present invention will be described with reference to FIGS.

図1は、本実施形態による天然ガス液化プラントの構成を表す概略図であり、図2は、天然ガス液化設備の構成を表す概略図である。   FIG. 1 is a schematic diagram illustrating a configuration of a natural gas liquefaction plant according to the present embodiment, and FIG. 2 is a schematic diagram illustrating a configuration of a natural gas liquefaction facility.

これら図1及び図2において、天然ガス液化プラントは、大きく分けて、配管69から導入した天然ガス原料を精製する天然ガス精製設備70と、この天然ガス精製設備70で精製した天然ガス(気体状態)を冷却して液化する天然ガス液化設備68と、発電設備71とを備えている。天然ガス精製設備70は、天然ガスの液化のために必要な例えば酸性ガス除去工程や水分除去工程等の精製処理(前処理)を行い、天然ガス原料から二酸化炭素等を含む酸性ガスや水分等を分離するようになっている。   1 and 2, the natural gas liquefaction plant is roughly divided into a natural gas purification facility 70 for purifying a natural gas raw material introduced from a pipe 69, and a natural gas (gas state) purified by the natural gas purification facility 70. ) Liquefying natural gas liquefaction equipment 68 and power generation equipment 71. The natural gas refining equipment 70 performs refining treatment (pretreatment) such as an acid gas removal step and a water removal step necessary for liquefaction of natural gas, and acid gas or water containing carbon dioxide from natural gas raw materials. Are supposed to be separated.

天然ガス液化設備68は、天然ガス精製設備70から配管20を介して導入した高圧の天然ガスを例えば混合冷媒により冷却して液化する主熱交換器21と、この主熱交換器21に供給する混合冷媒を作動流体とした冷凍サイクル系統60と、この冷凍サイクル系統60の混合冷媒を冷却する例えばプロパン冷媒を作動流体とした冷媒サイクル系統61とを備えている。   The natural gas liquefaction facility 68 supplies the high-pressure natural gas introduced from the natural gas purification facility 70 via the pipe 20 to the main heat exchanger 21, for example, by cooling with a mixed refrigerant and liquefying the main heat exchanger 21. A refrigeration cycle system 60 using mixed refrigerant as a working fluid and a refrigerant cycle system 61 using propane refrigerant as a working fluid for cooling the mixed refrigerant in the refrigeration cycle system 60 are provided.

冷凍サイクル系統60は、例えばメタン、エタン、及びプロパンからなる混合冷媒を作動流体としており、この混合冷媒を圧縮する低圧段冷媒圧縮機23と、この低圧段冷媒圧縮機23で圧縮した混合冷媒を冷却する中間冷却器25と、この中間冷却器25で冷却した混合冷媒を圧縮する高圧段冷媒圧縮機24と、この高圧段冷媒圧縮機24で圧縮した混合冷媒を冷却する後置冷却器26と、この後置冷却器26で冷却した混合冷媒をさらに段階的に冷却する高圧蒸発器15、中圧蒸発器16、及び低圧蒸発器17と、この低圧蒸発器17で例えば−35℃程度まで冷却した混合冷媒を気液分離する気液分離器27とを有している。低圧段冷媒圧縮機23及び高圧段冷媒圧縮機24は、電動機65に同軸で連結されており、電動機65は、発電設備71からの電力が供給されるようになっている。   The refrigeration cycle system 60 uses, for example, a mixed refrigerant composed of methane, ethane, and propane as a working fluid. The low-pressure refrigerant compressor 23 that compresses the mixed refrigerant and the mixed refrigerant compressed by the low-pressure refrigerant compressor 23 are used. An intermediate cooler 25 for cooling, a high-pressure refrigerant compressor 24 for compressing the mixed refrigerant cooled by the intermediate cooler 25, and a post-cooler 26 for cooling the mixed refrigerant compressed by the high-pressure refrigerant compressor 24 The high-pressure evaporator 15, the intermediate-pressure evaporator 16, and the low-pressure evaporator 17 that cool the mixed refrigerant cooled by the post-cooler 26 in a stepwise manner, and the low-pressure evaporator 17 cool to, for example, about −35 ° C. And a gas-liquid separator 27 for gas-liquid separation of the mixed refrigerant. The low-pressure stage refrigerant compressor 23 and the high-pressure stage refrigerant compressor 24 are coaxially connected to an electric motor 65, and the electric motor 65 is supplied with electric power from the power generation equipment 71.

主熱交換器21の内部には、天然ガス製造設備70からの配管20が延在しており、主熱交換器21の内部における配管20には伝熱経路31,32が設けられている。また、主熱交換器21の内部には、気液分離器27の液体出口側と接続された配管43が延在しており、主熱交換器23の内部における配管43には伝熱経路28が設けられている。配管43の伝熱経路28の下流側は、主熱交換器23の外部に取り出されて膨張弁33が設けられ、この膨張弁33の下流側には、主熱交換器23の内部に配置されたノズル35が接続されている。また、主熱交換器23の内部には、気液分離器27の気体出口側と接続された配管44が延在しており、主熱交換器23の内部における配管44には伝熱経路29,30が設けられている。配管44の伝熱経路30の下流側は、主熱交換器23の外部に取り出されて膨張弁34が設けられ、この膨張弁34の下流側には、主熱交換器23の内部に配置されたノズル36が接続されている。   A pipe 20 from the natural gas production facility 70 extends inside the main heat exchanger 21, and heat transfer paths 31 and 32 are provided in the pipe 20 inside the main heat exchanger 21. Further, a pipe 43 connected to the liquid outlet side of the gas-liquid separator 27 extends inside the main heat exchanger 21, and the heat transfer path 28 is connected to the pipe 43 inside the main heat exchanger 23. Is provided. The downstream side of the heat transfer path 28 of the pipe 43 is taken out of the main heat exchanger 23 and provided with an expansion valve 33. The downstream side of the expansion valve 33 is disposed inside the main heat exchanger 23. A nozzle 35 is connected. In addition, a pipe 44 connected to the gas outlet side of the gas-liquid separator 27 extends inside the main heat exchanger 23, and a heat transfer path 29 is connected to the pipe 44 inside the main heat exchanger 23. , 30 are provided. A downstream side of the heat transfer path 30 of the pipe 44 is taken out of the main heat exchanger 23 and provided with an expansion valve 34. A downstream side of the expansion valve 34 is disposed inside the main heat exchanger 23. A nozzle 36 is connected.

そして、配管43,44を流通する混合冷媒は、膨張弁33,34で断熱膨張して温度が低下し、ノズル35,36から主熱交換器21の内部に散布されるようになっている。これにより、配管43を流通する液相の混合冷媒は、散布された混合冷媒と伝熱経路28において熱交換して自冷却されるようになっている。また、配管44を流通する気相の混合冷媒は、散布された混合冷媒と伝熱経路29,30において熱交換して自冷却され、その大部分が凝縮するようになっている。また、配管20を流通する天然ガスは、散布された混合冷媒と伝熱経路31,32において熱交換して、例えば−150℃程度まで冷却されるようになっている。そして、主熱交換器21で冷却された天然ガスは、配管22を経由し膨張弁37に導かれ、膨張弁37で断熱膨張して温度が低下するようになっている。一方、主熱交換器21の内部に散布された冷媒は、伝熱経路28〜32における熱交換により温度上昇して蒸発し、配管40を介し低圧段圧縮機23に供給されるようになっている。   Then, the mixed refrigerant flowing through the pipes 43 and 44 is adiabatically expanded by the expansion valves 33 and 34 to decrease the temperature, and is sprayed from the nozzles 35 and 36 into the main heat exchanger 21. Thus, the liquid-phase mixed refrigerant flowing through the pipe 43 is self-cooled by exchanging heat with the sprayed mixed refrigerant in the heat transfer path 28. The gas-phase mixed refrigerant flowing through the pipe 44 is self-cooled through heat exchange with the dispersed refrigerant mixed in the heat transfer paths 29 and 30, and most of the refrigerant is condensed. Moreover, the natural gas which distribute | circulates the piping 20 heat-exchanges with the spread mixed refrigerant in the heat-transfer paths 31 and 32, and is cooled to about -150 degreeC, for example. And the natural gas cooled with the main heat exchanger 21 is guide | induced to the expansion valve 37 via the piping 22, and adiabatic expansion is carried out with the expansion valve 37, and temperature falls. On the other hand, the refrigerant sprayed inside the main heat exchanger 21 rises in temperature due to heat exchange in the heat transfer paths 28 to 32 and evaporates, and is supplied to the low-pressure stage compressor 23 via the pipe 40. Yes.

冷凍サイクル系統61は、作動流体であるプロパン冷媒を圧縮する冷媒圧縮機1と、この冷媒圧縮機1で圧縮したプロパン冷媒を大気又は海水等に放熱して凝縮させる凝縮器10と、この凝縮器10で凝縮したプロパン冷媒を受け入れる受液器11と、この受液器11からのプロパン冷媒を段階的に膨張させて温度を低下させる高圧膨張弁12、中圧膨張弁13、及び低圧膨張弁14と、これら膨張弁12,13,14で低温となったプロパン冷媒との熱交換により上記冷凍サイクル系統60の混合冷媒を段階的に冷却する上記高圧蒸発器15、中圧蒸発器16、及び低圧蒸発器17とで構成されている。冷媒圧縮機1は、低圧段冷媒圧縮機2、中圧段冷媒圧縮機3、及び高圧段冷媒圧縮機4で構成され、これら冷媒圧縮機2,3,4は電動機5に同軸で連結されており、電動機5は、発電設備70からの電力が供給されるようになっている。   The refrigeration cycle system 61 includes a refrigerant compressor 1 that compresses propane refrigerant that is a working fluid, a condenser 10 that radiates and condenses the propane refrigerant compressed by the refrigerant compressor 1 to the atmosphere or seawater, and the condenser. A liquid receiver 11 that receives the propane refrigerant condensed in 10, and a high-pressure expansion valve 12, an intermediate-pressure expansion valve 13, and a low-pressure expansion valve 14 that expand the propane refrigerant from the liquid receiver 11 stepwise to lower the temperature. And the high-pressure evaporator 15, the intermediate-pressure evaporator 16, and the low-pressure that cool the mixed refrigerant of the refrigeration cycle system 60 in stages by heat exchange with the propane refrigerant that has become low temperature by the expansion valves 12, 13, and 14. It comprises an evaporator 17. The refrigerant compressor 1 includes a low-pressure stage refrigerant compressor 2, an intermediate-pressure stage refrigerant compressor 3, and a high-pressure stage refrigerant compressor 4, and these refrigerant compressors 2, 3, and 4 are coaxially connected to an electric motor 5. The electric motor 5 is supplied with electric power from the power generation facility 70.

高圧蒸発器15は配管51を介し受液器11に接続され、その配管51に高圧膨張弁12が設けられている。また、中圧蒸発器16は配管52を介し高圧蒸発器15の液体出口側に接続され、その配管52に中圧膨張弁13が設けられている。また、低圧蒸発器17は配管53を介し中圧蒸発器16の液体出口側に接続され、その配管53に低圧膨張弁14が設けられている。   The high pressure evaporator 15 is connected to the liquid receiver 11 through a pipe 51, and the high pressure expansion valve 12 is provided in the pipe 51. The intermediate pressure evaporator 16 is connected to the liquid outlet side of the high pressure evaporator 15 via a pipe 52, and the intermediate pressure expansion valve 13 is provided in the pipe 52. The low-pressure evaporator 17 is connected to the liquid outlet side of the intermediate-pressure evaporator 16 through a pipe 53, and the low-pressure expansion valve 14 is provided in the pipe 53.

高圧蒸発器15の気体出口側は配管54を介し高圧段冷媒圧縮機4の吸込側に接続され、その配管54に高圧吸込調整機構62が設けられている。また、中圧蒸発器16の気体出口側は配管55を介し中圧段冷媒圧縮機3の吸込側に接続され、その配管55に中圧吸込調整機構63が設けられている。また、低圧蒸発器17の気体出口側は配管56を介し低圧段冷媒圧縮機2の吸込側に接続され、その配管56に低圧吸込調整機構64が設けられている。これら吸込調整機構62,63,64は、運転状態に応じて操作され、冷媒圧縮機1の吸気流量を調整可能としている。   A gas outlet side of the high-pressure evaporator 15 is connected to a suction side of the high-pressure refrigerant compressor 4 via a pipe 54, and a high-pressure suction adjusting mechanism 62 is provided in the pipe 54. Further, the gas outlet side of the intermediate pressure evaporator 16 is connected to the suction side of the intermediate pressure stage refrigerant compressor 3 via the pipe 55, and the intermediate pressure suction adjusting mechanism 63 is provided in the pipe 55. The gas outlet side of the low-pressure evaporator 17 is connected to the suction side of the low-pressure refrigerant compressor 2 via a pipe 56, and a low-pressure suction adjustment mechanism 64 is provided in the pipe 56. These suction adjustment mechanisms 62, 63, 64 are operated according to the operating state, and can adjust the intake flow rate of the refrigerant compressor 1.

そして、高圧蒸発器15は、高圧膨張弁12で断熱膨張されて温度が低下し気液混合状態となったプロパン冷媒が導入され、プロパン冷媒の液相の一部が蒸発して、その蒸発潜熱を奪うことにより後置冷却器26からの混合冷媒を冷却するようになっている。また、高圧蒸発器15は、気相のプロパン冷媒を高圧段冷媒圧縮機4に供給し、液相のプロパン冷媒を中圧蒸発器16に供給するようになっている。中圧蒸発器16は、中圧膨張弁13で断熱膨張されて温度が低下し気液混合状態となったプロパン冷媒が導入され、プロパン冷媒の液相の一部が蒸発して、その蒸発潜熱を奪うことにより高圧蒸発器15からの混合冷媒をさらに冷却するようになっている。また、中圧蒸発器16は、気相のプロパン冷媒を中圧段冷媒圧縮機3に供給し、液相のプロパン冷媒を低圧蒸発器17に供給するようになっている。低圧蒸発器17は、低圧膨張弁14で断熱膨張されて温度が低下し気液混合状態となったプロパン冷媒が導入され、プロパン冷媒の液相の全部が蒸発し、その蒸発潜熱を奪うことにより中圧蒸発器16からの混合冷媒をさらに冷却するようになっている。また、低圧蒸発器17は、気相のプロパン冷媒を低圧段冷媒圧縮機2に供給するようになっている。   The high-pressure evaporator 15 is introduced with propane refrigerant that has been adiabatically expanded by the high-pressure expansion valve 12 to lower its temperature and become a gas-liquid mixed state, and a part of the liquid phase of the propane refrigerant evaporates, and its latent heat of evaporation. The mixed refrigerant from the post-cooler 26 is cooled by depriving it. The high-pressure evaporator 15 supplies gas-phase propane refrigerant to the high-pressure stage refrigerant compressor 4 and supplies liquid-phase propane refrigerant to the medium-pressure evaporator 16. The intermediate pressure evaporator 16 is introduced with propane refrigerant that has been adiabatically expanded by the intermediate pressure expansion valve 13 to lower its temperature and become a gas-liquid mixed state, and a part of the liquid phase of the propane refrigerant evaporates, and its latent heat of evaporation. The mixed refrigerant from the high-pressure evaporator 15 is further cooled. Further, the intermediate pressure evaporator 16 supplies a gas phase propane refrigerant to the intermediate pressure stage refrigerant compressor 3 and supplies a liquid phase propane refrigerant to the low pressure evaporator 17. The low-pressure evaporator 17 is adiabatically expanded by the low-pressure expansion valve 14 to introduce the propane refrigerant that has fallen in temperature and is in a gas-liquid mixed state, evaporates all of the liquid phase of the propane refrigerant, and takes away the latent heat of evaporation. The mixed refrigerant from the intermediate pressure evaporator 16 is further cooled. Further, the low-pressure evaporator 17 supplies a gas-phase propane refrigerant to the low-pressure stage refrigerant compressor 2.

発電設備71は、例えば5つのガスタービン発電装置72a〜72eと、これらガスタービン装置72a〜72eに係わる機器をそれぞれ制御する制御装置81a〜81e(制御手段)と、ガスタービン発電装置72a〜72eの運転状態等に係わる情報を取得するとともに、それらの情報に応じて所定の演算処理が行って生成した指令信号を制御装置81a〜81e等に出力する全体制御装置81(制御手段)とを備えている。ガスタービン発電装置72a〜72eは、例えばこの種のものとして公知のシンプルサイクルガスタービンであり、それぞれ、吸気ダクト(図示せず)から外気を吸入して圧縮する空気圧縮機74と、圧縮した空気と燃料を混合して燃焼させ高温高圧の燃焼ガスを生成する燃焼器75と、燃焼ガスを膨張させて運動エネルギーに変換するタービン76と、このタービン76の運動エネルギーを電力に変換する発電機73とを備えている。なお、本実施形態では、通常運転時、4つのガスタービン発電装置72a〜72dを稼働させ、1つのガスタービン発電装置72eは予備機として停止させるものとする。   The power generation facility 71 includes, for example, five gas turbine power generation devices 72a to 72e, control devices 81a to 81e (control means) that control devices related to the gas turbine devices 72a to 72e, and gas turbine power generation devices 72a to 72e. And a general control device 81 (control means) that obtains information related to the operating state and outputs a command signal generated by performing a predetermined arithmetic processing according to the information to the control devices 81a to 81e. Yes. The gas turbine power generators 72a to 72e are, for example, known simple cycle gas turbines of this type, each of which includes an air compressor 74 that sucks and compresses outside air from an intake duct (not shown), and compressed air. And a combustor 75 that mixes and burns to generate high-temperature and high-pressure combustion gas, a turbine 76 that expands the combustion gas to convert it into kinetic energy, and a generator 73 that converts the kinetic energy of the turbine 76 into electric power. And. In the present embodiment, during normal operation, the four gas turbine power generators 72a to 72d are operated, and the one gas turbine power generator 72e is stopped as a spare machine.

ところで、本実施形態の天然ガス精製設備70は、例えばガス田で採掘された天然ガス原料を精製しており、天然ガス原料に多く含まれる二酸化炭素(気体状態)を分離している。そのため、分離された二酸化炭素を処理する処理装置83と、天然ガス精製設備70から弁82を介し処理装置83に二酸化炭素を供給する処理系統84とが設けられている。   By the way, the natural gas purification equipment 70 of this embodiment refine | purifies the natural gas raw material mined, for example in the gas field, and has isolate | separated the carbon dioxide (gas state) much contained in a natural gas raw material. Therefore, a processing device 83 for processing the separated carbon dioxide and a processing system 84 for supplying carbon dioxide from the natural gas purification facility 70 to the processing device 83 via the valve 82 are provided.

そして、本実施形態の大きな特徴として、処理系統84の弁82の上流側で分岐接続され、二酸化炭素を発電設備71のガスタービン発電装置72a〜72eに供給する供給系統85が設けられている。供給系統85は、遮断弁79と、この遮断弁79の下流側で分岐接続され、二酸化炭素をガスタービン発電72a〜72dのタービン76の高温部(例えば動翼や静翼等)を冷却する冷却系統にそれぞれ注入する分岐系統86a〜86eと、これら分岐系統86a〜86eにそれぞれ設けた弁79a〜79eとを有している。そして、通常は、処理系統84の弁82が開き状態、供給系統85の遮断弁79が閉じ状態にあり、天然ガス精製設備70で分離された二酸化炭素は、処理系統84を介し処理装置83に供給されて処理されるようになっている。   As a major feature of the present embodiment, a supply system 85 that is branched and connected upstream of the valve 82 of the processing system 84 and supplies carbon dioxide to the gas turbine power generators 72 a to 72 e of the power generation facility 71 is provided. The supply system 85 is branched and connected to a shutoff valve 79 on the downstream side of the shutoff valve 79, and cools the high temperature portion (for example, moving blades and stationary blades) of the turbine 76 of the gas turbine power generation 72a to 72d with carbon dioxide. It has branch systems 86a to 86e that are respectively injected into the system, and valves 79a to 79e provided in the branch systems 86a to 86e, respectively. Normally, the valve 82 of the processing system 84 is in the open state and the shutoff valve 79 of the supply system 85 is in the closed state, and the carbon dioxide separated by the natural gas purification equipment 70 is sent to the processing device 83 via the processing system 84. It is supplied and processed.

次に、本実施形態の動作及び作用効果を説明する。   Next, the operation and effect of this embodiment will be described.

例えば何らかの理由でガスタービン発電装置72aが故障して稼働停止した場合、全体制御装置81は、取得した停止情報に応じて制御装置81eに起動指令信号を出力し、これに応じて制御装置81eは、予備機であるガスタービン発電装置72eを起動させる。しかし、この起動には数分から数十分程度の時間を要する。そこで、全体制御装置81は、制御装置81b〜81dに出力増加指令信号を出力し、これに応じて制御装置81b〜81dは、稼働継続中のガスタービン発電装置72b〜72dの燃焼器75に供給する燃料を増加させて、ガスタービン発電装置72b〜72dを過負荷運転させる。これにより、燃焼器75の燃焼ガス温度が上昇し、ガスタービン発電装置72b〜72dの発電量が増加する。本実施形態では、ガスタービン発電装置72b〜72dのそれぞれの発電量増加分は、通常運転時の1台当たりの発電量の1/3に設定されており、合計すると通常運転時の4台分の発電量を確保することができ、プラント電源の安定化しいてはプラント操業の安定化を図ることができる。すなわち、天然ガス液化設備68の運転条件を維持することができ、プラント能力を維持することができる。   For example, when the gas turbine power generation device 72a fails and stops operation for some reason, the overall control device 81 outputs a start command signal to the control device 81e according to the acquired stop information, and the control device 81e responds accordingly. Then, the gas turbine power generator 72e, which is a spare machine, is started. However, this activation takes several minutes to several tens of minutes. Therefore, the overall control device 81 outputs an output increase command signal to the control devices 81b to 81d, and in response to this, the control devices 81b to 81d supply the combustors 75 of the gas turbine power generation devices 72b to 72d that are in operation. The fuel to be operated is increased, and the gas turbine power generators 72b to 72d are overloaded. Thereby, the combustion gas temperature of the combustor 75 rises, and the power generation amount of the gas turbine power generators 72b to 72d increases. In this embodiment, the amount of increase in power generation amount of each of the gas turbine power generation devices 72b to 72d is set to 1/3 of the power generation amount per unit during normal operation, and the total is equivalent to four units during normal operation. Power generation amount can be secured, and the plant power can be stabilized by stabilizing the plant power supply. That is, the operating conditions of the natural gas liquefaction facility 68 can be maintained, and the plant capacity can be maintained.

また、このガスタービン発電装置72b〜72dの過負荷運転において、全体制御装置81は、処理系統84の弁82に制御信号を出力して閉じ状態に切換えるとともに、供給系統85の遮断弁79に制御信号を出力して開き状態に切換える。また、制御装置80b〜80dは、供給系統85の弁79b〜79dに制御信号を出力して開き状態とする。これにより、天然ガス精製設備70で分離された二酸化炭素は、供給系統85を介しガスタービン発電装置72b〜72dのタービン76の高温部を冷却する冷却系統に供給されて、タービン76の高温部を冷却する。その結果、燃焼ガス温度の増加に伴って通常運転時よりも高温となるタービン76の高温部の冷却能力を高めることができ、高温部のメタル温度を設計許容値に抑えて健全性を保つことができ、寿命を維持することができる。   Further, in the overload operation of the gas turbine power generators 72b to 72d, the overall control device 81 outputs a control signal to the valve 82 of the processing system 84 to switch to the closed state, and controls the shut-off valve 79 of the supply system 85. Output a signal to switch to the open state. In addition, the control devices 80b to 80d output control signals to the valves 79b to 79d of the supply system 85 to make them open. Thereby, the carbon dioxide separated in the natural gas purification facility 70 is supplied to the cooling system that cools the high temperature part of the turbine 76 of the gas turbine power generation devices 72b to 72d via the supply system 85, and the high temperature part of the turbine 76 is supplied. Cooling. As a result, it is possible to increase the cooling capacity of the high temperature portion of the turbine 76 that becomes higher than in normal operation as the combustion gas temperature increases, and keep the metal temperature of the high temperature portion at the design tolerance and maintain soundness. Can be maintained.

その後、予備機であるガスタービン発電装置72eが定格発電運転に達すると、全体制御装置81は、制御装置81b〜81dに出力増加の解除指令信号を出力し、これに応じて制御装置81b〜81dは、ガスタービン発電装置72b〜72dを通常運転に復帰させる。同時に、全体制御装置81は、供給系統85の遮断弁79に制御信号を出力して閉じ状態に切換えるとともに、処理系統84の弁82に制御信号を出力して開き状態に切換える。また、制御装置81b〜81dは、供給系統85の弁79b〜79dに制御信号を出力して閉じ状態とする。   Thereafter, when the gas turbine power generation device 72e, which is a spare machine, reaches the rated power generation operation, the overall control device 81 outputs an output increase cancel command signal to the control devices 81b to 81d, and in response thereto, the control devices 81b to 81d. Returns the gas turbine power generators 72b to 72d to normal operation. At the same time, the overall control device 81 outputs a control signal to the shutoff valve 79 of the supply system 85 to switch to the closed state, and outputs a control signal to the valve 82 of the processing system 84 to switch to the open state. Further, the control devices 81b to 81d output control signals to the valves 79b to 79d of the supply system 85 so as to be closed.

このようにして本実施形態においては、ガスタービン発電装置を過負荷運転させた場合に通常運転時よりも高温となるタービン76の高温部の冷却材として、天然ガスの精製過程で得られ通常処分される二酸化炭素を有効利用することができる。また、ガスタービン発電装置のタービン76の高温部を冷却する冷却材を新たに用意する必要がないため、コストの低減を図ることができる。したがって、コスト低減を図りつつガスタービン発電装置を過負荷運転させることができ、プラント電源の安定化しいてはプラント操業の安定化を図ることができる。   In this way, in the present embodiment, when the gas turbine power generator is overloaded, it is obtained as a coolant in the high temperature portion of the turbine 76 that is hotter than during normal operation, and is normally disposed of in the natural gas purification process. Carbon dioxide can be used effectively. Further, since it is not necessary to prepare a new coolant for cooling the high temperature portion of the turbine 76 of the gas turbine power generation device, the cost can be reduced. Therefore, the gas turbine power generator can be overloaded while reducing the cost, and the plant operation can be stabilized by stabilizing the plant power supply.

本発明の第2の実施形態を図3により説明する。本実施形態は、例えば天然ガス原料に含まれる二酸化炭素が少ない場合に適用したものであり、天然ガス精製設備70で分離された二酸化炭素を液化して貯蔵する実施形態である。   A second embodiment of the present invention will be described with reference to FIG. This embodiment is applied when, for example, the carbon dioxide contained in the natural gas raw material is small, and is an embodiment in which the carbon dioxide separated by the natural gas purification facility 70 is liquefied and stored.

図3は、本実施形態による天然ガス液化プラントの構成を表す概略図である。なお、この図3において、上記第1の実施形態と同等の部分には同一の符号を付し、適宜説明を省略する。   FIG. 3 is a schematic diagram showing the configuration of the natural gas liquefaction plant according to the present embodiment. In FIG. 3, parts that are the same as in the first embodiment are given the same reference numerals, and descriptions thereof are omitted as appropriate.

本実施形態では、天然ガス精製設備70で分離された二酸化炭素を発電設備71のガスタービン発電装置72a〜72eに供給する供給系統85Aが設けられている。供給系統85Aは、天然ガス精製設備70で分離された二酸化炭素(気体状態)を液化する冷凍装置77と、この冷凍装置77で液化した二酸化炭素を貯蔵する貯蔵タンク78と、この貯蔵タンク78から遮断弁79を介し供給された二酸化炭素を気化する蒸発器80と、この蒸発器80からの二酸化炭素(気体状態)をガスタービン発電装置72a〜72eのタービン76の高温部(例えばタービン76の動翼や静翼等)を冷却する冷却系統にそれぞれ注入する分岐系統86a〜86eと、これら分岐系統86a〜86eにそれぞれ設けた弁79a〜79eとを有している。   In the present embodiment, a supply system 85A that supplies carbon dioxide separated by the natural gas purification facility 70 to the gas turbine power generation devices 72a to 72e of the power generation facility 71 is provided. The supply system 85 </ b> A includes a refrigeration device 77 that liquefies carbon dioxide (gas state) separated by the natural gas purification equipment 70, a storage tank 78 that stores the carbon dioxide liquefied by the refrigeration device 77, and the storage tank 78. An evaporator 80 that vaporizes carbon dioxide supplied through the shut-off valve 79, and carbon dioxide (gas state) from the evaporator 80 are converted into a high temperature portion of the turbine 76 of the gas turbine power generators 72a to 72e (for example, the operation of the turbine 76). A branch system 86a to 86e for injecting into a cooling system for cooling the blades and the stationary blades, and valves 79a to 79e provided in the branch systems 86a to 86e, respectively.

冷凍装置77は、詳細を図示しないが、例えば天然ガス液化設備68の冷凍サイクル系統60又は61の冷媒の一部を用いて、二酸化炭素を冷却するようになっている。貯蔵タンク78の容量は、予備機であるガスタービン発電装置72eが起動した際の定格発電運転に達するまでの時間に基づいて決められている。また、貯蔵タンク78は、ガスタービン発電装置72a〜72eのタービン76の高温部への注入に十分な内部圧力が確保できるように設定されている。なお、貯蔵タンク78の出口側に加圧ポンプを設けることにより、貯蔵タンク78の内部圧力を低くして壁厚みを小さくすることも可能である。   Although the details are not shown in the refrigeration apparatus 77, for example, a part of the refrigerant of the refrigeration cycle system 60 or 61 of the natural gas liquefaction facility 68 is used to cool carbon dioxide. The capacity of the storage tank 78 is determined based on the time required to reach the rated power generation operation when the gas turbine power generation device 72e as a spare machine is started. Moreover, the storage tank 78 is set so that sufficient internal pressure can be ensured for injection into the high temperature part of the turbine 76 of the gas turbine power generators 72a to 72e. In addition, by providing a pressure pump on the outlet side of the storage tank 78, the internal pressure of the storage tank 78 can be lowered to reduce the wall thickness.

以上のように構成された本実施形態においても、上記第1の実施形態と同様、コスト低減を図りつつガスタービン発電装置を過負荷運転させることができ、プラント電源の安定化しいてはプラント操業の安定化を図ることができる。また本実施形態においては、二酸化炭素を液化して貯蔵するので、例えば二酸化炭素を気相のまま貯蔵する場合に比べ、貯蔵タンク78の内部圧力が低くなり、その壁厚みを小さくしコスト低減を図ることができる。また、貯蔵タンク78の容積が減少し、スペース低減を図ることができる。   In the present embodiment configured as described above, similarly to the first embodiment, the gas turbine power generator can be overloaded while reducing the cost, and the plant power can be stabilized if the plant power is stabilized. Stabilization can be achieved. In the present embodiment, since carbon dioxide is liquefied and stored, the internal pressure of the storage tank 78 is lower and the wall thickness is reduced and the cost is reduced as compared with, for example, storing carbon dioxide in the gas phase. Can be planned. Further, the volume of the storage tank 78 is reduced, and the space can be reduced.

なお、上記第1及び第2の実施形態においては、特に説明しなかったが、全体制御装置81及び制御装置81a〜81eは、ガスタービン発電装置を過負荷運転させる場合に燃料の増加量がそれぞれ異なるように制御してもよく、燃料の増加量に応じて弁79a〜79eの開度をそれぞれ制御してもよい。このような場合も、上記同様の効果を得ることができる。   Although not specifically described in the first and second embodiments, the overall control device 81 and the control devices 81a to 81e each increase the amount of fuel when the gas turbine power generation device is overloaded. It may be controlled differently, and the opening degree of each of the valves 79a to 79e may be controlled according to the amount of fuel increase. In such a case, the same effect as described above can be obtained.

また、上記第1及び第2の実施形態においては、供給系統85,85Aは、ガスタービン発電装置のタービン76の高温部(例えば動翼や静翼等)を冷却する冷却系統に二酸化炭素を供給して冷却させる場合を例にとって説明したが、これに限られない。すなわち、他の高温部として、例えば燃焼器ライナ、燃焼器とタービンとを接続するダクト、及びタービン排気ディフューザ等に供給して冷却させてもよい。この場合も、上記同様の効果を得ることができる。   In the first and second embodiments, the supply systems 85 and 85A supply carbon dioxide to the cooling system that cools the high-temperature part (for example, the moving blade and the stationary blade) of the turbine 76 of the gas turbine power generation device. However, the present invention is not limited to this example. That is, as another high temperature portion, for example, a combustor liner, a duct connecting the combustor and the turbine, a turbine exhaust diffuser, and the like may be supplied and cooled. In this case, the same effect as described above can be obtained.

また、上記第1及び第2の実施形態においては、特に説明しなかったが、例えばタービン76の高温部を冷却した後の二酸化炭素を、タービン76のガス流路に流出させてもよい。また、例えば供給系統85,85Aの分岐系統86a〜86bはそれぞれ、圧縮機74の出口又は燃焼器75の入口に二酸化炭素を注入する注入系統を設けてもよい。これらの場合には、作動流体の流量が増加し、ガスタービン発電装置の発電量をさらに増加させることができる。   Further, although not particularly described in the first and second embodiments, for example, carbon dioxide after cooling the high temperature portion of the turbine 76 may flow out to the gas flow path of the turbine 76. Further, for example, the branch systems 86a to 86b of the supply systems 85 and 85A may each be provided with an injection system for injecting carbon dioxide into the outlet of the compressor 74 or the inlet of the combustor 75. In these cases, the flow rate of the working fluid is increased, and the power generation amount of the gas turbine power generation device can be further increased.

本発明の第3の実施形態を図4により説明する。本実施形態は、貯蔵タンク78で貯蔵した液相の二酸化炭素をそのままガスタービン発電装置72a〜72eに供給する実施形態である。   A third embodiment of the present invention will be described with reference to FIG. In the present embodiment, the liquid phase carbon dioxide stored in the storage tank 78 is supplied to the gas turbine power generators 72a to 72e as they are.

図4は、本実施形態による天然ガス液化プラントの構成を表す概略図である。なお、この図4において、上記第2の実施形態と同等の部分には同一の符号を付し、適宜説明を省略する。   FIG. 4 is a schematic diagram illustrating the configuration of the natural gas liquefaction plant according to the present embodiment. In FIG. 4, the same parts as those in the second embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.

本実施形態では、供給系統85Bは、天然ガス精製設備70で分離された二酸化炭素(気体状態)を液化する冷凍装置77と、この冷凍装置77で液化した二酸化炭素を貯蔵する貯蔵タンク78と、この貯蔵タンク78からの二酸化炭素(液体状態)を遮断弁79を介しガスタービン発電装置72a〜72eにそれぞれ供給する分岐系統87a〜87eと、これら分岐系統87a〜87eにそれぞれ設けた弁79a〜79eとを有している。分岐系統87aの弁79aの下流側には、圧縮機の73の吸気側に二酸化炭素を注入する注入系統88aと、圧縮機73の中間段に二酸化炭素を注入する注入系統88bと、圧縮機73の出口又は燃焼器の入口に二酸化炭素を注入する注入系統88cとが分岐して設けられている。また、分岐系統87b〜87eにも、同様の注入系統88a〜88cがそれぞれ設けられている。   In the present embodiment, the supply system 85B includes a refrigeration device 77 that liquefies carbon dioxide (gas state) separated by the natural gas purification facility 70, a storage tank 78 that stores the carbon dioxide liquefied by the refrigeration device 77, and Branch systems 87a to 87e that supply carbon dioxide (liquid state) from the storage tank 78 to the gas turbine power generators 72a to 72e via the shut-off valve 79, and valves 79a to 79e provided in the branch systems 87a to 87e, respectively. And have. On the downstream side of the valve 79 a of the branch system 87 a, an injection system 88 a for injecting carbon dioxide into the intake side of the compressor 73, an injection system 88 b for injecting carbon dioxide into the intermediate stage of the compressor 73, and the compressor 73 And an injection system 88c for injecting carbon dioxide at the outlet of the combustion chamber or the inlet of the combustor. Moreover, the same injection | pouring system | strains 88a-88c are provided also in the branch system | strains 87b-87e, respectively.

次に、本実施形態の動作及び作用効果を説明する。   Next, the operation and effect of this embodiment will be described.

例えば何らかの理由でガスタービン発電装置72aが故障して稼働停止した場合、全体制御装置81は、取得した停止情報に応じて制御装置81eに起動指令信号を出力し、制御装置81eは、予備機であるガスタービン発電装置72eを起動させる。また、全体制御装置81は、供給系統85Bの遮断弁79に制御信号を出力して開き状態に切換えるとともに、制御装置81b〜81dに出力増加指令信号を出力する。これに応じて、制御装置81a〜81dは、供給系統85の弁79b〜79dに制御信号を出力して開き状態とする。そして、注入系統88aから注入した二酸化炭素が蒸発し、その蒸発潜熱を奪うことにより圧縮機73の吸気が冷却されて密度が大きくなり、かつ蒸発した二酸化炭素が混入することによって作動流体の流量が増加する。また、注入系統88bから注入した二酸化炭素が蒸発し、その蒸発潜熱を奪うことにより圧縮機73の圧縮過程の空気が冷却されて後段の圧縮動力が低減する。また、注入系統88cから注入した二酸化炭素が混入することによって作動流体の流量が増加する。その結果、燃焼ガス温度が通常時と同じであっても、ガスタービン発電装置72a〜72dの発電量を増加させることができる。   For example, when the gas turbine power generation device 72a fails and stops operation for some reason, the overall control device 81 outputs a start command signal to the control device 81e according to the acquired stop information, and the control device 81e is a spare machine. A certain gas turbine power generator 72e is activated. The overall control device 81 outputs a control signal to the shutoff valve 79 of the supply system 85B to switch to the open state, and outputs an output increase command signal to the control devices 81b to 81d. In response to this, the control devices 81a to 81d output control signals to the valves 79b to 79d of the supply system 85 to make them open. Then, the carbon dioxide injected from the injection system 88a evaporates, and the intake heat of the compressor 73 is cooled by taking away the latent heat of evaporation, and the density increases, and the flow rate of the working fluid is increased by mixing the evaporated carbon dioxide. To increase. In addition, carbon dioxide injected from the injection system 88b evaporates and takes away its latent heat of vaporization, whereby the air in the compression process of the compressor 73 is cooled and the subsequent compression power is reduced. Further, the flow rate of the working fluid increases due to the mixing of carbon dioxide injected from the injection system 88c. As a result, even if the combustion gas temperature is the same as normal, the power generation amount of the gas turbine power generators 72a to 72d can be increased.

このように本実施形態においては、ガスタービン発電装置を過負荷運転させるために作動流体に混入させる流体として、天然ガスの精製過程で得られて通常処分される二酸化炭素を有効利用することができる。また、作動流体に混入させる流体を新たに用意する必要がないため、コストの低減を図ることができる。したがって、コスト低減を図りつつ、ガスタービン発電装置を過負荷運転させることができる。   As described above, in the present embodiment, carbon dioxide obtained in the process of refining natural gas and normally disposed of can be effectively used as a fluid to be mixed into the working fluid in order to overload the gas turbine power generator. . Further, since it is not necessary to prepare a new fluid to be mixed into the working fluid, the cost can be reduced. Therefore, the gas turbine power generator can be overloaded while reducing costs.

なお、上記第3の実施形態においては、供給系統85Bは、液体状態の二酸化炭素を圧縮機74の吸気側、圧縮機74の中間段、圧縮機74の出口又は燃焼器75の入口に注入する場合を例にとって説明したが、これに限られない。すなわち、例えば液体状態の二酸化炭素をガスタービン発電装置の高温部(例えばタービン動翼や静翼、燃焼器ライナ、燃焼器とタービンとを接続するダクト、及びタービン排気ディフューザ等)に供給してもよい。但し、この場合、注入部の低温側メタル温度が低下しすぎて熱応力が増加する可能性があるため、注入部位及び注入量の設計には細心の注意を払う必要がある。   In the third embodiment, the supply system 85B injects liquid carbon dioxide into the intake side of the compressor 74, the intermediate stage of the compressor 74, the outlet of the compressor 74, or the inlet of the combustor 75. Although the case has been described as an example, the present invention is not limited to this. That is, for example, liquid carbon dioxide is supplied to a high-temperature portion of a gas turbine power generator (for example, a turbine rotor blade and a stationary blade, a combustor liner, a duct connecting the combustor and the turbine, and a turbine exhaust diffuser). Good. However, in this case, since the metal temperature on the low temperature side of the injection portion is too low and thermal stress may increase, it is necessary to pay close attention to the design of the injection site and the injection amount.

なお、以上においては、天然ガスの精製過程で得られた二酸化炭素をガスタービン発電装置に供給する場合を例にとって説明したが、これに限られない。すなわち、例えば天然ガスの精製過程で得られた窒素をガスタービン発電装置に供給するようにしてもよく、この場合も上記同様の効果を得ることができる。但し、窒素に比べて二酸化炭素は、液化温度が低いので液化しやすく、蒸発潜熱が大きいので冷却効果が高いため、好ましい。   In the above description, the case where carbon dioxide obtained in the process of refining natural gas is supplied to the gas turbine power generator has been described as an example. However, the present invention is not limited thereto. That is, for example, nitrogen obtained in the process of refining natural gas may be supplied to the gas turbine power generator, and in this case, the same effect as described above can be obtained. However, carbon dioxide is preferable because it has a low liquefaction temperature and is easy to liquefy, and has a large cooling effect because of large latent heat of vaporization.

また、ガスタービン発電装置72a〜72eは、シンプルサイクルガスタービンの構成とする場合を例にとって説明したが、これに限られず、例えば蒸気タービン等と組み合わせたコンバインドサイクルガスタービンの構成としてもよいことは言うまでもない。   In addition, the gas turbine power generators 72a to 72e have been described by way of example of a simple cycle gas turbine, but the present invention is not limited to this, and for example, a combined cycle gas turbine combined with a steam turbine or the like may be used. Needless to say.

Claims (7)

少なくとも1つの冷凍サイクル系統を有し、精製された天然ガスを前記冷凍サイクル系統の冷媒により冷却して液化する天然ガス液化設備と、前記冷凍サイクル系統の冷媒圧縮機を駆動する電動機に電力を供給する複数のガスタービン発電装置を有する発電設備とを備えた天然ガス液化プラントにおいて、
天然ガスの精製過程で得られた二酸化炭素又は窒素を前記複数のガスタービン発電装置に弁を介して供給する供給系統と、
前記複数のガスタービン発電装置のうちのいずれかが稼働停止した場合、前記供給系統の弁を開放する指令信号を出力して稼働継続中の前記ガスタービン発電装置に二酸化炭素又は窒素を供給し、稼働継続中の前記ガスタービン発電装置を過負荷運転させる制御手段とを備えたことを特徴とする天然ガス液化プラント。
Supplying power to a natural gas liquefaction facility having at least one refrigeration cycle system for cooling and liquefying the purified natural gas with the refrigerant of the refrigeration cycle system, and an electric motor that drives the refrigerant compressor of the refrigeration cycle system In a natural gas liquefaction plant comprising a power generation facility having a plurality of gas turbine power generation devices,
A supply system for supplying carbon dioxide or nitrogen obtained in the refining process of natural gas to the plurality of gas turbine power generators via a valve;
When any one of the plurality of gas turbine power generation devices is stopped, a command signal for opening the valve of the supply system is output to supply carbon dioxide or nitrogen to the gas turbine power generation device in operation. A natural gas liquefaction plant, comprising: control means for overloading the gas turbine power generation device in operation.
請求項1記載の天然ガス液化プラントにおいて、前記供給系統は、稼働継続中の前記ガスタービン発電装置の高温部に二酸化炭素又は窒素を供給する系統を有することを特徴とする天然ガス液化プラント。  2. The natural gas liquefaction plant according to claim 1, wherein the supply system has a system for supplying carbon dioxide or nitrogen to a high temperature part of the gas turbine power generation device that is in operation. 3. 請求項1記載の天然ガス液化プラントにおいて、前記供給系統は、稼働継続中の前記ガスタービン発電装置の作動流体に混入するように二酸化炭素又は窒素を供給する系統を有することを特徴とする天然ガス液化プラント。  2. The natural gas liquefaction plant according to claim 1, wherein the supply system has a system for supplying carbon dioxide or nitrogen so as to be mixed into a working fluid of the gas turbine power generation device that is in operation. Liquefaction plant. 請求項1記載の天然ガス液化プラントにおいて、前記供給系統は、二酸化炭素又は窒素を液化する冷凍装置と、前記冷凍装置で液化した二酸化炭素又は窒素を貯蔵する貯蔵タンクとを有することを特徴とする天然ガス液化プラント。  2. The natural gas liquefaction plant according to claim 1, wherein the supply system includes a refrigeration apparatus for liquefying carbon dioxide or nitrogen, and a storage tank for storing carbon dioxide or nitrogen liquefied by the refrigeration apparatus. Natural gas liquefaction plant. 請求項4記載の天然ガス液化プラントにおいて、前記供給系統は、前記貯蔵タンクからの前記二酸化炭素又は窒素を気化する蒸発器を有することを特徴とする天然ガス液化プラント。  5. The natural gas liquefaction plant according to claim 4, wherein the supply system includes an evaporator for vaporizing the carbon dioxide or nitrogen from the storage tank. 少なくとも1つの冷凍サイクル系統を有し、精製された天然ガスを前記冷凍サイクル系統の冷媒により冷却して液化する天然ガス液化設備と、前記冷凍サイクル系統の冷媒圧縮機を駆動する電動機に電力を供給する複数のガスタービン発電装置を有する発電設備とを備えた天然ガス液化プラントの運転方法において、
前記複数のガスタービン発電装置のうちのいずれかが稼働停止した場合、稼働継続中の前記ガスタービン発電装置の燃料を増加させるとともに、天然ガスの精製過程で得られた二酸化炭素又は窒素を稼働継続中の前記ガスタービン発電装置の高温部に供給することを特徴とする天然ガス液化プラントの運転方法。
Supplying power to a natural gas liquefaction facility having at least one refrigeration cycle system for cooling and liquefying the purified natural gas with the refrigerant of the refrigeration cycle system, and an electric motor that drives the refrigerant compressor of the refrigeration cycle system In a method of operating a natural gas liquefaction plant comprising a power generation facility having a plurality of gas turbine power generation devices,
When one of the gas turbine power generation devices stops operating, the fuel of the gas turbine power generation device in operation is increased and the carbon dioxide or nitrogen obtained in the natural gas refining process is continuously operated. An operation method of a natural gas liquefaction plant, characterized in that it is supplied to a high-temperature part of the gas turbine power generation device.
少なくとも1つの冷凍サイクル系統を有し、精製された天然ガスを前記冷凍サイクル系統の冷媒により冷却して液化する天然ガス液化設備と、前記冷凍サイクル系統の冷媒圧縮機を駆動する電動機に電力を供給する複数のガスタービン発電装置を有する発電設備とを備えた天然ガス液化プラントの運転方法において、
前記複数のガスタービン発電装置のうちのいずれかが稼働停止した場合、稼働継続中の前記ガスタービン発電装置の燃料を増加させるとともに、天然ガスの精製過程で得られた二酸化炭素又は窒素を稼働継続中の前記ガスタービン発電装置の作動流体に混入するように供給することを特徴とする天然ガス液化プラントの運転方法。
Supplying power to a natural gas liquefaction facility having at least one refrigeration cycle system for cooling and liquefying the purified natural gas with the refrigerant of the refrigeration cycle system, and an electric motor that drives the refrigerant compressor of the refrigeration cycle system In a method of operating a natural gas liquefaction plant comprising a power generation facility having a plurality of gas turbine power generation devices,
When one of the gas turbine power generation devices stops operating, the fuel of the gas turbine power generation device in operation is increased and the carbon dioxide or nitrogen obtained in the natural gas refining process is continuously operated. An operation method for a natural gas liquefaction plant, characterized in that the gas turbine generator is supplied so as to be mixed with the working fluid of the gas turbine power generator.
JP2009513879A 2007-04-27 2007-04-27 Natural gas liquefaction plant and operation method thereof Expired - Fee Related JP4879321B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/059255 WO2008139536A1 (en) 2007-04-27 2007-04-27 Natural gas liquefaction plant and method of operating the same

Publications (2)

Publication Number Publication Date
JPWO2008139536A1 JPWO2008139536A1 (en) 2010-07-29
JP4879321B2 true JP4879321B2 (en) 2012-02-22

Family

ID=40001772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009513879A Expired - Fee Related JP4879321B2 (en) 2007-04-27 2007-04-27 Natural gas liquefaction plant and operation method thereof

Country Status (2)

Country Link
JP (1) JP4879321B2 (en)
WO (1) WO2008139536A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8631639B2 (en) * 2009-03-30 2014-01-21 General Electric Company System and method of cooling turbine airfoils with sequestered carbon dioxide
MX336605B (en) * 2009-06-05 2016-01-25 Exxonmobil Upstream Res Co Combustor systems and methods for using same.
US8741225B2 (en) * 2009-09-24 2014-06-03 General Electric Company Carbon capture cooling system and method
JP5913712B1 (en) * 2015-10-06 2016-04-27 昭和電工ガスプロダクツ株式会社 Painting equipment
JP5913713B1 (en) * 2015-10-06 2016-04-27 昭和電工ガスプロダクツ株式会社 Painting equipment
RU2713556C1 (en) 2016-03-10 2020-02-05 ДжГК Корпорейшн New production equipment and method of producing liquefied hydrogen and liquefied natural gas
WO2022137296A1 (en) * 2020-12-21 2022-06-30 日揮グローバル株式会社 Complex natural gas treatment system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269469A (en) * 1995-03-31 1996-10-15 Chugoku Electric Power Co Inc:The Recycle of natural gas liquefaction energy
JPH09296736A (en) * 1996-05-08 1997-11-18 Nippon Sanso Kk Gas turbine power generating method and device thereof
JP2006501432A (en) * 2002-09-30 2006-01-12 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Fully electrified LNG system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269469A (en) * 1995-03-31 1996-10-15 Chugoku Electric Power Co Inc:The Recycle of natural gas liquefaction energy
JPH09296736A (en) * 1996-05-08 1997-11-18 Nippon Sanso Kk Gas turbine power generating method and device thereof
JP2006501432A (en) * 2002-09-30 2006-01-12 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Fully electrified LNG system and method

Also Published As

Publication number Publication date
JPWO2008139536A1 (en) 2010-07-29
WO2008139536A1 (en) 2008-11-20

Similar Documents

Publication Publication Date Title
JP4879321B2 (en) Natural gas liquefaction plant and operation method thereof
KR101419069B1 (en) Method and apparatus for the reliquefaction of a vapour
AU2008332005B2 (en) Method and system for regulation of cooling capacity of a cooling system based on a gas expansion process.
JP4884527B2 (en) Natural gas liquefaction plant and power supply equipment for natural gas liquefaction plant
JP5877451B2 (en) Apparatus and method using a multi-stage cryogenic hydraulic turbine
KR20150100799A (en) Method and apparatus for reliquefying natural gas
BR112019017533B1 (en) NATURAL GAS BLENDING SYSTEM
US11913716B2 (en) Thermodynamic system containing a fluid, and method for reducing pressure therein
US20150192065A1 (en) Process and apparatus for generating electric energy
JP5023148B2 (en) Power supply facility for natural gas liquefaction plant, control device and control method thereof, and natural gas liquefaction plant
JPWO2008139528A1 (en) Cooling cycle system, natural gas liquefaction facility, cooling cycle system operating method and remodeling method
EP2921761B1 (en) Tank internal pressure suppression device
US10571189B2 (en) System and method for operating a liquefaction train
JP4976426B2 (en) Refrigerating cycle system, natural gas liquefaction facility, and remodeling method of refrigeration cycle system
JP5048059B2 (en) Natural gas liquefaction equipment
WO2018132785A1 (en) Refrigeration cycle for liquid oxygen densification
JP3211942B2 (en) Method and apparatus for driving coal gasification combined cycle system
JP4929350B2 (en) An operation method of a complex plant having a power generation facility that combines an LNG production facility and a water production facility and a complex plant having a power generation facility that combines an LNG production facility and a water production facility.
JP4879606B2 (en) Cold supply system
WO2020228986A1 (en) Compressor train with combined gas turbine and steam turbine cycle
EP3309488A1 (en) System for treating and cooling a hydrocarbon stream
Chiu et al. Improve Energy Efficiency in LNG Production for Baseload LNG Plants
CN101387207A (en) Inner energy power machine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees