JPWO2008139528A1 - Cooling cycle system, natural gas liquefaction facility, cooling cycle system operating method and remodeling method - Google Patents

Cooling cycle system, natural gas liquefaction facility, cooling cycle system operating method and remodeling method Download PDF

Info

Publication number
JPWO2008139528A1
JPWO2008139528A1 JP2007555365A JP2007555365A JPWO2008139528A1 JP WO2008139528 A1 JPWO2008139528 A1 JP WO2008139528A1 JP 2007555365 A JP2007555365 A JP 2007555365A JP 2007555365 A JP2007555365 A JP 2007555365A JP WO2008139528 A1 JPWO2008139528 A1 JP WO2008139528A1
Authority
JP
Japan
Prior art keywords
refrigerant
cooling
compressor
cycle system
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007555365A
Other languages
Japanese (ja)
Inventor
荒木 秀文
秀文 荒木
坂内 正明
正明 坂内
福島 康雄
康雄 福島
堀次 睦
睦 堀次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2008139528A1 publication Critical patent/JPWO2008139528A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0087Propane; Propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0236Heat exchange integration providing refrigeration for different processes treating not the same feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0242Waste heat recovery, e.g. from heat of compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0247Different modes, i.e. 'runs', of operation; Process control start-up of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0268Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0284Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0298Safety aspects and control of the refrigerant compression system, e.g. anti-surge control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • F25J2240/82Hot exhaust gas turbine combustion engine with waste heat recovery, e.g. in a combined cycle, i.e. for generating steam used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/906External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by heat driven absorption chillers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/10Control for or during start-up and cooling down of the installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids

Abstract

冷媒を圧縮する冷媒圧縮機1と、この冷媒圧縮機1で圧縮された冷媒を冷却し凝縮させる凝縮器10と、この凝縮器10で凝縮された冷媒を受け入れる受液器11と、この受液器11からの冷媒を膨張させる膨張機構18と、この膨張機構18で膨張させた冷媒と熱交換させて冷却対象を冷却し冷媒圧縮機1に供給される冷媒を蒸発させる蒸発機構19と、補助冷媒を流通させ受液器11内を通る配管47を有し、この配管47を流通する補助冷媒と熱交換させることにより冷媒圧縮機1の起動前に受液器11内の冷媒を冷却する補助冷却機構62とを備えた冷却サイクル系統61を構成する。これにより、冷媒圧縮機の起動時の所要動力を低減し、起動時の発生トルクの小さな駆動源を用いても冷媒圧縮機を安定に起動することができる。A refrigerant compressor 1 that compresses the refrigerant, a condenser 10 that cools and condenses the refrigerant compressed by the refrigerant compressor 1, a receiver 11 that receives the refrigerant condensed in the condenser 10, and the liquid receiver An expansion mechanism 18 that expands the refrigerant from the container 11, an evaporation mechanism 19 that causes heat exchange with the refrigerant expanded by the expansion mechanism 18 to cool the object to be cooled and evaporate the refrigerant supplied to the refrigerant compressor 1, and an auxiliary Auxiliary for cooling the refrigerant in the liquid receiver 11 before starting the refrigerant compressor 1 by having a pipe 47 for circulating the refrigerant and passing through the pipe 11 and exchanging heat with the auxiliary refrigerant flowing through the pipe 47 A cooling cycle system 61 including a cooling mechanism 62 is configured. Thereby, the required power at the time of starting of a refrigerant compressor can be reduced, and a refrigerant compressor can be started stably even if it uses a drive source with small generated torque at the time of starting.

Description

本発明は、冷却サイクル系統、天然ガス液化設備、冷却サイクル系統の運転方法及び改造方法に関する。   The present invention relates to a cooling cycle system, a natural gas liquefaction facility, a method for operating the cooling cycle system, and a modification method.

気体の天然ガスを輸送に適した液化天然ガスにするためには、天然ガスを加圧した状態で−150℃程度の低温まで冷却してから外気圧近傍まで膨張させる必要がある。この冷却は、プロパンや混合冷媒等の複数の冷却サイクルの組合せにより実現されている。これらの冷却サイクルの起動の際には、プロセス内の冷媒の温度・圧力が定格運転時と異なるため、冷媒圧縮機の起動に必要なトルク(以下、起動トルクという)が定格運転時よりも大きくなり、駆動源のトルク特性によっては冷媒圧縮機が起動できなくなる可能性が指摘されている。この問題の解決のため、(a)冷媒圧縮機の吸い込みラインに絞り機構を設置して起動時に吸い込み流量を絞る方法、(b)予め容量が大きい駆動源を設置する方法、(c)冷媒圧縮機の吐出側に放出口を設けて冷媒を外部に排出する方法が一般に知られている。特許文献1によると、圧縮機の吸い込みラインに設置した絞り機構の開度を圧縮機の回転数に応じて操作して圧縮機を起動する方法が示されている。   In order to convert a gaseous natural gas into a liquefied natural gas suitable for transportation, it is necessary to cool the natural gas to a low temperature of about −150 ° C. in a pressurized state and then expand it to the vicinity of the external pressure. This cooling is realized by a combination of a plurality of cooling cycles such as propane and mixed refrigerant. When starting up these cooling cycles, the temperature and pressure of the refrigerant in the process differs from that during rated operation, so the torque required to start the refrigerant compressor (hereinafter referred to as starting torque) is greater than that during rated operation. Therefore, it has been pointed out that the refrigerant compressor may not be started depending on the torque characteristics of the drive source. To solve this problem, (a) a method of installing a throttle mechanism in the suction line of the refrigerant compressor to reduce the suction flow rate at startup, (b) a method of installing a drive source having a large capacity in advance, and (c) refrigerant compression A method is generally known in which a discharge port is provided on the discharge side of the machine to discharge the refrigerant to the outside. According to Patent Document 1, there is shown a method of starting a compressor by operating an opening degree of a throttle mechanism installed in a suction line of the compressor according to the rotational speed of the compressor.

特開2002−322996号公報JP 2002-322996 A

冷媒圧縮機の吸い込み部における冷媒の温度と圧力は、上流側の蒸発器で蒸発させた冷媒の温度とその温度に対応する飽和圧力に等しい。上記特許文献1に記載された技術を含め、起動時に圧縮機の吸い込み流量を絞る方法は、吸気の体積流量の低減には奏功するものの、起動時の冷媒温度ひいては飽和圧力は吸気流量を絞らない場合と変わらないので、吸気の質量流量を低下させ、起動時に必要なトルクを軽減する効果は限られている。   The temperature and pressure of the refrigerant in the suction section of the refrigerant compressor are equal to the temperature of the refrigerant evaporated by the upstream evaporator and the saturation pressure corresponding to that temperature. Although the method of reducing the suction flow rate of the compressor at the time of start-up including the technique described in Patent Document 1 is effective in reducing the volume flow rate of the intake air, the refrigerant temperature and the saturation pressure at the time of start-up do not restrict the intake air flow rate. Since it is not different from the case, the effect of reducing the mass flow rate of the intake air and reducing the torque required at startup is limited.

また、予め容量が大きい駆動源を設置する方法は、定格運転時の駆動源の効率を低下させる場合があり、設備コストも増大する。   In addition, the method of installing a drive source having a large capacity in advance may reduce the efficiency of the drive source during rated operation, which increases the equipment cost.

起動時に冷媒圧縮機から吐出される冷媒を外部に排出する方法は、冷媒圧縮機のサージの回避や起動トルクの低減には奏功するが、冷媒圧縮機の吐出圧力の上昇に時間がかかり冷却サイクルの起動完了までに要する時間が延びる傾向にある。また冷媒を浪費することもデメリットである。   Although the method of discharging the refrigerant discharged from the refrigerant compressor to the outside at the start works well for avoiding the surge of the refrigerant compressor and reducing the starting torque, it takes time to increase the discharge pressure of the refrigerant compressor and the cooling cycle. There is a tendency that the time required for completing the start-up of the system is extended. It is also a disadvantage to waste the refrigerant.

そこで本発明は、冷媒圧縮機の起動時の所要動力を低減し、起動時の発生トルクの小さな駆動源を用いても冷媒圧縮機を安定に起動することができる冷却サイクル系統、天然ガス液化設備、冷却サイクル系統の運転方法及び改造方法を提供することを目的とする。   Accordingly, the present invention provides a cooling cycle system and a natural gas liquefaction facility capable of reducing the required power at the time of starting the refrigerant compressor and stably starting the refrigerant compressor even when using a drive source with a small torque generated at the time of starting. An object is to provide an operation method and a modification method of a cooling cycle system.

上記目的を達成するために、冷媒を圧縮する冷媒圧縮機、この冷媒圧縮機で圧縮された後で凝縮された冷媒を受け入れる受液器、及びこの受液器内に補助冷媒を通し上記冷媒圧縮機の起動前に受液器内の冷媒を冷却する補助冷却機構を備える。   To achieve the above object, a refrigerant compressor for compressing refrigerant, a liquid receiver for receiving the refrigerant condensed after being compressed by the refrigerant compressor, and the refrigerant compression through the auxiliary refrigerant in the liquid receiver An auxiliary cooling mechanism is provided for cooling the refrigerant in the liquid receiver before the machine is started.

本発明によれば、冷媒圧縮機の起動時の所要動力を低減し、起動時の発生トルクの小さな駆動源を用いても冷媒圧縮機を安定に起動することができる。   ADVANTAGE OF THE INVENTION According to this invention, the required motive power at the time of starting of a refrigerant compressor can be reduced, and a refrigerant compressor can be started stably even if it uses a drive source with a small generated torque at the time of starting.

本発明の第1の実施の形態に係る冷却サイクル系統を用いた天然ガス液化設備の全体構成図1 is an overall configuration diagram of a natural gas liquefaction facility using a cooling cycle system according to a first embodiment of the present invention. 冷媒圧縮機の起動時の回転数変化と吸込調整機構の開度変化を表す図The figure showing the rotation speed change at the time of starting of a refrigerant compressor, and the opening change of a suction adjustment mechanism 本発明の第1の実施の形態に係る冷媒圧縮機の起動時の圧力及び流量の変化を表した図The figure showing the change of the pressure at the time of starting of the refrigerant compressor concerning a 1st embodiment of the present invention, and a flow rate 比較例の冷媒圧縮機の起動時の圧力及び流量変化を表す図The figure showing the pressure and flow rate change at the time of starting of the refrigerant compressor of a comparative example 本発明の第1の実施の形態に係る冷媒圧縮機の起動時のトルク変化を表す図The figure showing the torque change at the time of starting of the refrigerant compressor concerning a 1st embodiment of the present invention. 比較例の冷媒圧縮機の起動時のトルク変化を表す図The figure showing the torque change at the time of starting of the refrigerant compressor of a comparative example 本発明の第2の実施の形態に係る冷却サイクル系統を用いた天然ガス液化設備の全体構成図Overall configuration diagram of natural gas liquefaction equipment using a cooling cycle system according to a second embodiment of the present invention

符号の説明Explanation of symbols

1 冷媒圧縮機
10 凝縮器
11 受液器
18 膨張機構
19 蒸発機構
21 熱交換器
47 配管
60 第2冷却サイクル系統
61 第1冷却サイクル系統
62 補助冷却機構
62A 補助冷却機構
68 蒸発器
80 蒸発器
81 圧縮機
82 凝縮器
83 膨張弁
86 燃焼器
90 吸気冷却熱交換器
91 空気圧縮機
92 発電機
93 タービン
94 排熱回収ボイラ
96 吸収式冷却機
97 温度検出手段
98 制御装置
99 調節弁
101 バイパス配管
DESCRIPTION OF SYMBOLS 1 Refrigerant compressor 10 Condenser 11 Receiver 18 Expansion mechanism 19 Evaporation mechanism 21 Heat exchanger 47 Piping 60 2nd cooling cycle system 61 1st cooling cycle system 62 Auxiliary cooling mechanism 62A Auxiliary cooling mechanism 68 Evaporator 80 Evaporator 81 Compressor 82 Condenser 83 Expansion valve 86 Combustor 90 Intake cooling heat exchanger 91 Air compressor 92 Generator 93 Turbine 94 Waste heat recovery boiler 96 Absorption-type cooler 97 Temperature detection means 98 Control device 99 Control valve 101 Bypass piping

以下に図面を用いて本発明の実施の形態を説明する。
本発明に係る冷却サイクル系統は、冷媒と熱交換させることで被冷却媒体を冷却するものである。冷却後の被冷却媒体は、これを冷熱源として利用する熱利用施設に供給される。熱利用施設の一例としては、例えば気体の状態の天然ガスを冷却し液化する施設が挙げられる。天然ガスは液化することにより体積が減少し運搬効率が向上する。勿論、天然ガスを液化する施設に限らず冷却後の被冷却媒体を熱源として利用できる施設であれば、本発明の冷却サイクル系統の被冷却媒体の利用先とすることができる。
Embodiments of the present invention will be described below with reference to the drawings.
The cooling cycle system according to the present invention cools the medium to be cooled by exchanging heat with the refrigerant. The cooled medium after cooling is supplied to a heat utilization facility that uses this medium as a cold heat source. An example of a heat utilization facility is a facility that cools and liquefies natural gas in a gaseous state, for example. When natural gas is liquefied, its volume is reduced and transportation efficiency is improved. Of course, any facility that can use the cooled medium as a heat source is not limited to the facility that liquefies natural gas, and can be used as the cooling medium of the cooling cycle system of the present invention.

<第1の実施の形態>
(構成)
図1は本発明の第1の実施の形態に係る冷却サイクル系統を用いた天然ガス液化設備の全体構成図である。
<First Embodiment>
(Constitution)
FIG. 1 is an overall configuration diagram of a natural gas liquefaction facility using a cooling cycle system according to a first embodiment of the present invention.

図示した天然ガス液化設備の主要な構成要素としては、天然ガス導入配管20から導入した天然ガス(気体状態)を冷却して液化する主熱交換器21、作動媒体である冷媒(以下“第1冷媒”と記載する)により天然ガスを冷却する冷媒(以下“第2冷媒”と記載する)を冷却する第1冷却サイクル系統61、及び第1冷却サイクル系統61により冷却された第2冷媒を主熱交換器21に供給する第2冷却サイクル系統60が挙げられる。第1冷却サイクル系統61が、作動媒体である冷媒(以下“補助冷媒”と記載する)により第1冷媒を冷却する補助冷却機構62を備えている点が特徴的構成である。   The main components of the illustrated natural gas liquefaction facility include a main heat exchanger 21 that cools and liquefies natural gas (gas state) introduced from the natural gas introduction pipe 20, and a refrigerant (hereinafter referred to as “first”). A first cooling cycle system 61 that cools a refrigerant that cools natural gas (hereinafter referred to as a “second refrigerant”) and a second refrigerant that is cooled by the first cooling cycle system 61. The 2nd cooling cycle system 60 supplied to the heat exchanger 21 is mentioned. The first cooling cycle system 61 is characterized in that it includes an auxiliary cooling mechanism 62 that cools the first refrigerant with a refrigerant that is a working medium (hereinafter referred to as “auxiliary refrigerant”).

第1冷却サイクル系統61は、プロパンを作動流体としており、冷媒圧縮機1、凝縮器10、受液器11、膨張機構18、蒸発機構19を有している。   The first cooling cycle system 61 uses propane as a working fluid, and includes a refrigerant compressor 1, a condenser 10, a liquid receiver 11, an expansion mechanism 18, and an evaporation mechanism 19.

冷媒圧縮機1は、蒸発機構19からの第1冷媒を圧縮するもので、低圧圧縮機2、中圧圧縮機3、高圧圧縮機4の複数段(本例では3段)の圧縮機を備えている。低圧圧縮機2、中圧圧縮機3、高圧圧縮機4には、それぞれ配管56,55,54を介して蒸発機構19からの第1冷媒が導かれるようになっている。冷媒圧縮機1を構成する低圧圧縮機2・中圧圧縮機3・高圧圧縮機4は駆動源である電動機5と同軸に連結され、電動機5の回転動力により回転駆動する。電動機5はガスタービン発電装置(図示せず)からの供給電力により駆動される。   The refrigerant compressor 1 compresses the first refrigerant from the evaporation mechanism 19, and includes a plurality of stages (three stages in this example) of a low-pressure compressor 2, an intermediate-pressure compressor 3, and a high-pressure compressor 4. ing. The first refrigerant from the evaporation mechanism 19 is guided to the low-pressure compressor 2, the intermediate-pressure compressor 3, and the high-pressure compressor 4 through pipes 56, 55, and 54, respectively. The low-pressure compressor 2, the intermediate-pressure compressor 3, and the high-pressure compressor 4 constituting the refrigerant compressor 1 are coaxially connected to an electric motor 5 that is a drive source, and are rotationally driven by the rotational power of the electric motor 5. The electric motor 5 is driven by electric power supplied from a gas turbine power generator (not shown).

上記凝縮器10は、冷媒圧縮機1の出口に配管50を介して接続しており、外気又は海水等の冷熱源と熱交換させることにより、冷媒圧縮機1で圧縮された第1冷媒を冷却して凝縮させる。   The condenser 10 is connected to the outlet of the refrigerant compressor 1 via a pipe 50, and cools the first refrigerant compressed by the refrigerant compressor 1 by exchanging heat with a cold heat source such as outside air or seawater. To condense.

受液器11は、配管49を介して凝縮器10に接続しており、凝縮器10で凝縮した第1冷媒を受け入れる。   The liquid receiver 11 is connected to the condenser 10 via the pipe 49 and receives the first refrigerant condensed in the condenser 10.

膨張機構18は、受液器11から供給された液体の第1冷媒を膨張させるもので、本実施の形態では、高圧膨張弁12、中圧膨張弁13、低圧膨張弁14の複数の膨張弁で膨張機構18を構成することで、第1冷媒を段階的に膨張させ減温させるようになっている。   The expansion mechanism 18 expands the liquid first refrigerant supplied from the liquid receiver 11. In the present embodiment, the expansion mechanism 18 includes a plurality of expansion valves including a high pressure expansion valve 12, an intermediate pressure expansion valve 13, and a low pressure expansion valve 14. By configuring the expansion mechanism 18, the first refrigerant is expanded stepwise to reduce the temperature.

蒸発機構19は、配管41を通る第2冷媒から熱を奪うとともに奪った熱で第1冷却サイクル系統61の第1冷媒を蒸発させるものである。本実施の形態では、高圧蒸発器15、中圧蒸発器16、低圧蒸発器17の複数の蒸発器で蒸発機構19を構成することにより、膨張機構18で膨張させて低温化させた第1冷媒と熱交換させて配管41を流通する第2冷媒を順次冷却すると同時に膨張機構18で膨張した第1冷媒を蒸発させる。   The evaporating mechanism 19 evaporates the first refrigerant of the first cooling cycle system 61 by taking heat from the second refrigerant passing through the pipe 41 and using the taken heat. In the present embodiment, the evaporation mechanism 19 is configured by a plurality of evaporators of the high-pressure evaporator 15, the intermediate-pressure evaporator 16, and the low-pressure evaporator 17, so that the first refrigerant is expanded and reduced in temperature by the expansion mechanism 18. The second refrigerant flowing through the piping 41 is sequentially cooled and simultaneously the first refrigerant expanded by the expansion mechanism 18 is evaporated.

高圧蒸発器15は配管51を介して受液器11に接続しており、高圧膨張弁12は配管51の途中に設けられている。中圧蒸発器16は配管52を介して高圧蒸発器15に接続しており、中圧膨張弁13は配管52の途中に設けられている。低圧蒸発器17は配管53を介して中圧蒸発器16に接続しており、低圧膨張弁14は配管53の途中に設けられている。蒸発器15−17は、それぞれ配管54,55,56を介して冷媒圧縮機1の高圧圧縮機4・中圧圧縮機3・低圧圧縮機2に接続している。   The high-pressure evaporator 15 is connected to the liquid receiver 11 via a pipe 51, and the high-pressure expansion valve 12 is provided in the middle of the pipe 51. The intermediate pressure evaporator 16 is connected to the high pressure evaporator 15 via a pipe 52, and the intermediate pressure expansion valve 13 is provided in the middle of the pipe 52. The low pressure evaporator 17 is connected to the intermediate pressure evaporator 16 via a pipe 53, and the low pressure expansion valve 14 is provided in the middle of the pipe 53. The evaporator 15-17 is connected to the high-pressure compressor 4, the intermediate-pressure compressor 3, and the low-pressure compressor 2 of the refrigerant compressor 1 through pipes 54, 55, and 56, respectively.

蒸発器15−17をそれぞれ圧縮機4,3,2に接続する配管54−56の途中には、高圧吸込調整機構71、中圧吸込調整機構72、低圧吸込調整機構73がそれぞれ設けられており、運転状態に応じて冷媒圧縮機1の吸気流量を調整することができる構成となっている。これら吸込調整機構71−73は、図1に示したように弁で構成することもできるし、圧縮機2−4に入口案内羽根(IGV:インレットガイドベーン)を用いることもできる。   A high-pressure suction adjustment mechanism 71, a medium-pressure suction adjustment mechanism 72, and a low-pressure suction adjustment mechanism 73 are provided in the middle of the pipes 54-56 that connect the evaporator 15-17 to the compressors 4, 3, and 2, respectively. The intake air flow rate of the refrigerant compressor 1 can be adjusted according to the operating state. These suction adjusting mechanisms 71-73 can be constituted by valves as shown in FIG. 1, or inlet guide vanes (IGV: inlet guide vanes) can be used for the compressor 2-4.

第2冷却サイクル系統60の第2冷媒を流通する配管41は気液分離器27に接続しており、第1冷却サイクル系統61により所定温度(例えば−35℃)まで冷却された第2冷媒は気液分離器27によって気液分離され、液相成分が配管43を介して、気相成分が配管44を介してそれぞれ気液分離器27から主熱交換器21内部に流通される。   The pipe 41 that circulates the second refrigerant of the second cooling cycle system 60 is connected to the gas-liquid separator 27, and the second refrigerant cooled to a predetermined temperature (for example, −35 ° C.) by the first cooling cycle system 61 is Gas-liquid separation is performed by the gas-liquid separator 27, and the liquid phase component is circulated from the gas-liquid separator 27 to the inside of the main heat exchanger 21 via the pipe 43 and the gas phase component via the pipe 44.

気液分離器27から延びる配管43,44は、主熱交換器21の内部を通った後で一旦主熱交換器21の外部に取り出され、主熱交換器21の内部に設置したノズル35,36に再び接続している。配管43,44の主熱交換器21の外部に一旦導かれた部分には、それぞれ膨張弁33,34が設けられており、配管43,44を流通する第2冷媒は膨張弁33,34で断熱膨張し温度を低下させ、これにより低温化された第2冷媒がノズル35,36から主熱交換器21の内部に散布される。   The pipes 43, 44 extending from the gas-liquid separator 27 are taken out of the main heat exchanger 21 after passing through the inside of the main heat exchanger 21, and the nozzles 35, installed inside the main heat exchanger 21. 36 is connected again. Expansion valves 33 and 34 are respectively provided in portions of the pipes 43 and 44 once led to the outside of the main heat exchanger 21, and the second refrigerant flowing through the pipes 43 and 44 is the expansion valves 33 and 34, respectively. The second refrigerant, which is adiabatically expanded to lower the temperature and thus lowered in temperature, is sprayed from the nozzles 35 and 36 into the main heat exchanger 21.

主熱交換器21は、伝熱経路28,29,30,31,32を内部に備えている。伝達経路28は配管43の途中に設けられており、気液分離器27で気相成分と分離された第2冷却サイクル系統60における第2冷媒の液相成分を主熱交換器21内のさらに低温の第2冷媒と熱交換させる。伝達経路29,30は配管44の途中に設けられており、気液分離器27からの第2冷媒の気相成分を主熱交換器21内の第2冷媒と熱交換させる。伝達経路31,32は天然ガス導入配管20の途中に設けられており、配管20を流通する天然ガスを主熱交換器21内の第2冷媒と熱交換させる。   The main heat exchanger 21 includes heat transfer paths 28, 29, 30, 31, and 32 therein. The transmission path 28 is provided in the middle of the pipe 43, and the liquid phase component of the second refrigerant in the second cooling cycle system 60 separated from the gas phase component by the gas-liquid separator 27 is further fed into the main heat exchanger 21. Heat exchange is performed with a low-temperature second refrigerant. The transmission paths 29 and 30 are provided in the middle of the pipe 44 to exchange heat between the gas phase component of the second refrigerant from the gas-liquid separator 27 and the second refrigerant in the main heat exchanger 21. The transmission paths 31 and 32 are provided in the middle of the natural gas introduction pipe 20 to exchange heat between the natural gas flowing through the pipe 20 and the second refrigerant in the main heat exchanger 21.

なお、特に図示していないが、天然ガス導入配管20には、その上流側において、酸性ガス除去工程、水分除去工程など、液化工程に必要な前処理工程を終えた天然ガスが導かれる。また、天然ガス導入配管20は、主熱交換器21を通った後、主熱交換器21の外部に延在している。天然ガス導入配管20における主熱交換器21の下流側には膨張弁37が設けられている。   Although not particularly illustrated, natural gas that has been subjected to pretreatment steps necessary for the liquefaction step, such as an acid gas removal step and a water removal step, is led to the natural gas introduction pipe 20 on the upstream side. Further, the natural gas introduction pipe 20 extends to the outside of the main heat exchanger 21 after passing through the main heat exchanger 21. An expansion valve 37 is provided on the downstream side of the main heat exchanger 21 in the natural gas introduction pipe 20.

第2冷却サイクル系統60は、例えばメタン・エタン・プロパンからなる混合冷媒を作動流体(すなわち第2冷媒)としており、低圧圧縮機23、高圧圧縮機24、中間冷却器25、後置冷却器26、電動機85を備えている。低圧圧縮機23は配管40を介して主熱交換器21に接続しており、低圧圧縮機23には主熱交換器21内に一次貯留された第2冷媒が配管40を介して低圧圧縮機23の入口に導かれる。低圧圧縮機23と高圧圧縮機24は配管48を介して接続しており、低圧圧縮機23から吐出された第2冷媒は配管48を介して高圧圧縮機24の入口に導かれる。高圧圧縮機24の出口には第1冷却サイクル系統61を通る配管41が接続しており、第2冷却サイクル系統60を経た第2冷媒は配管41を流通して第1冷却サイクル系統61に導かれる。中間冷却器25は配管48に設けられ、後置冷却器26は配管41に設けられている。また、低圧圧縮機23及び高圧圧縮機24はその駆動装置である電動機85と同軸に連結される。電動機85は、図示しないガスタービン発電装置からの供給電力により駆動される。   The second cooling cycle system 60 uses, for example, a mixed refrigerant composed of methane, ethane, and propane as a working fluid (that is, a second refrigerant). The low-pressure compressor 23, the high-pressure compressor 24, the intermediate cooler 25, and the post-cooler 26 are used. The electric motor 85 is provided. The low-pressure compressor 23 is connected to the main heat exchanger 21 via a pipe 40, and the second refrigerant first stored in the main heat exchanger 21 is connected to the low-pressure compressor 23 via the pipe 40. 23 to the entrance. The low-pressure compressor 23 and the high-pressure compressor 24 are connected via a pipe 48, and the second refrigerant discharged from the low-pressure compressor 23 is guided to the inlet of the high-pressure compressor 24 via the pipe 48. A pipe 41 that passes through the first cooling cycle system 61 is connected to the outlet of the high-pressure compressor 24, and the second refrigerant that has passed through the second cooling cycle system 60 flows through the pipe 41 and is guided to the first cooling cycle system 61. It is burned. The intermediate cooler 25 is provided in the pipe 48, and the post-cooler 26 is provided in the pipe 41. Further, the low-pressure compressor 23 and the high-pressure compressor 24 are coaxially connected to an electric motor 85 that is a driving device thereof. The electric motor 85 is driven by electric power supplied from a gas turbine power generator (not shown).

補助冷却機構62は、配管47内を流通する補助冷媒と熱交換させることで受液器11内に貯留された第1冷媒を冷却し、第1冷却サイクル系統61の第1冷媒を冷却する。本実施の形態では、補助冷却機構62でもプロパンを冷媒としているが、補助冷却機構62で用いる補助冷媒の種類は限定されない。補助冷却機構62は、電動機84、電動機84によって駆動される圧縮機81、圧縮機81で圧縮された補助冷媒を大気あるいは海水に放熱して凝縮させる凝縮器82、凝縮器82で凝縮させた補助冷媒を膨張させて低温を発生させる膨張弁83、膨張弁83で膨張して得られた低温の補助冷媒と熱交換させて受液器11内の第1冷媒を冷却する蒸発器80からなっている。配管47は圧縮機81の吐出口から受液器11内の蒸発器80を通って圧縮機81の吸込口に接続する。凝縮器82・膨張弁83は、配管47の圧縮機81から蒸発器80に接続する部分に上流側からこの順で設けられている。   The auxiliary cooling mechanism 62 cools the first refrigerant stored in the liquid receiver 11 by exchanging heat with the auxiliary refrigerant flowing in the pipe 47, and cools the first refrigerant of the first cooling cycle system 61. In the present embodiment, propane is also used as the refrigerant in the auxiliary cooling mechanism 62, but the type of auxiliary refrigerant used in the auxiliary cooling mechanism 62 is not limited. The auxiliary cooling mechanism 62 includes an electric motor 84, a compressor 81 driven by the electric motor 84, a condenser 82 that radiates and condenses the auxiliary refrigerant compressed by the compressor 81 to the atmosphere or seawater, and an auxiliary that is condensed by the condenser 82. An expansion valve 83 that expands the refrigerant to generate a low temperature, and an evaporator 80 that cools the first refrigerant in the liquid receiver 11 by exchanging heat with the low-temperature auxiliary refrigerant obtained by expansion by the expansion valve 83. Yes. The pipe 47 is connected to the suction port of the compressor 81 from the discharge port of the compressor 81 through the evaporator 80 in the liquid receiver 11. The condenser 82 and the expansion valve 83 are provided in this order from the upstream side at a portion of the pipe 47 connected from the compressor 81 to the evaporator 80.

なお、補助冷却機構62の補助冷媒がプロパンである必要は必ずしもないが、プロパンは、自然冷媒であって地球温暖化への影響が小さいこと、第1冷却サイクル系統61と共用できること、入手が容易であること等のメリットがある。   Although the auxiliary refrigerant of the auxiliary cooling mechanism 62 does not necessarily need to be propane, propane is a natural refrigerant and has little influence on global warming, can be shared with the first cooling cycle system 61, and is easily available. There are advantages such as being.

(定常運転時の動作)
まず、図1に示した天然ガス液化設備の定常運転時の動作を説明する。なお、以下に適宜記載されるプラント各所の温度・圧力は、運転時に想定される状態量の一例であってプラントの仕様を限定するものではない。
(Operation during steady operation)
First, the operation at the time of steady operation of the natural gas liquefaction facility shown in FIG. 1 will be described. Note that the temperature and pressure at various places in the plant as described below are examples of state quantities assumed during operation, and do not limit the specifications of the plant.

第1冷却サイクル系統61において、受液器11に貯蔵された40℃,1.5MPa程度の液体プロパンの第1冷媒は、配管51を流れる途中で高圧膨張弁12により0.63MPa程度まで減圧され、断熱膨張することによって0.63MPaのプロパンの飽和温度に対応した9℃程度の気液混合状態となる。   In the first cooling cycle system 61, the first refrigerant of liquid propane of about 40 ° C. and about 1.5 MPa stored in the receiver 11 is decompressed to about 0.63 MPa by the high-pressure expansion valve 12 while flowing through the pipe 51. By adiabatic expansion, a gas-liquid mixed state of about 9 ° C. corresponding to the saturation temperature of propane of 0.63 MPa is obtained.

高圧蒸発器15では、9℃程度の第1冷媒のうち液相部分が蒸発し、蒸発潜熱を奪うことにより、配管41から供給される約40℃の第2冷却サイクル系統60の第2冷媒を冷却する。その後、気相の第1冷媒は配管54を経由して高圧圧縮機4に供給され、1.5MPa程度まで圧縮される。一方、液相の第1冷媒は、配管52を経由して中圧膨張弁13に供給され、0.25MPa程度まで断熱膨張することにより飽和温度である−19℃程度の気液混合状態となる。   In the high-pressure evaporator 15, the liquid phase portion of the first refrigerant at about 9 ° C. evaporates and the latent heat of evaporation is taken away, so that the second refrigerant of the second cooling cycle system 60 at about 40 ° C. supplied from the pipe 41 is removed. Cooling. Thereafter, the gas-phase first refrigerant is supplied to the high-pressure compressor 4 via the pipe 54 and compressed to about 1.5 MPa. On the other hand, the first refrigerant in the liquid phase is supplied to the intermediate pressure expansion valve 13 via the pipe 52 and is adiabatically expanded to about 0.25 MPa to be in a gas-liquid mixed state at a saturation temperature of about −19 ° C. .

中圧蒸発器16では、−19℃程度の第1冷媒のうち液相部分が蒸発し、蒸発潜熱を奪うことにより、第2冷却サイクル系統60の第2冷媒をさらに低温まで冷却する。その後、気相の第1冷媒は配管55を経由して中圧圧縮機3に供給され、0.63MPa程度まで圧縮される。一方、液相の第1冷媒は、配管53を経由して低圧膨張弁14に供給され、0.1MPa程度まで断熱膨張することにより、飽和温度である−41℃程度の気液混合状態となる。   In the intermediate pressure evaporator 16, the liquid phase portion of the first refrigerant at about −19 ° C. evaporates, and the second refrigerant in the second cooling cycle system 60 is cooled to a lower temperature by taking away the latent heat of evaporation. Thereafter, the gas-phase first refrigerant is supplied to the intermediate pressure compressor 3 via the pipe 55 and compressed to about 0.63 MPa. On the other hand, the first refrigerant in the liquid phase is supplied to the low-pressure expansion valve 14 via the pipe 53 and adiabatically expands to about 0.1 MPa, so that a gas-liquid mixed state of about −41 ° C. which is a saturation temperature is obtained. .

低圧蒸発器17では、−41℃程度の第1冷媒の全てを蒸発させて第2冷却サイクル系統60の第2冷媒を−35℃程度まで冷却する。蒸発した第1冷媒は、配管56を経由して低圧圧縮機2に供給され圧縮される。   The low pressure evaporator 17 evaporates all of the first refrigerant at about −41 ° C. to cool the second refrigerant in the second cooling cycle system 60 to about −35 ° C. The evaporated first refrigerant is supplied to the low-pressure compressor 2 via the pipe 56 and compressed.

一方、−35℃程度まで冷却された第2冷却サイクル系統60の第2冷媒は、一部が液化されるので気液分離器27で気液分離させる。気液分離器27で分離された液相の第2冷媒は、配管43から主熱交換器21の伝熱経路28に供給されて、さらに低温の第2冷媒と熱交換し約−100℃程度まで冷却される。約−100℃の第2冷媒は、膨張弁33で断熱膨張することで約−120℃まで冷却され、主熱交換器21のノズル35に供給される。ノズル35から散布された第2冷媒は、主熱交換器21の内部で、伝熱経路28の液相の第2冷媒、伝熱経路29の気相の第2冷媒、伝熱経路30の天然ガスをそれぞれ冷却する。   On the other hand, since the second refrigerant of the second cooling cycle system 60 cooled to about −35 ° C. is partially liquefied, it is gas-liquid separated by the gas-liquid separator 27. The second refrigerant in the liquid phase separated by the gas-liquid separator 27 is supplied from the pipe 43 to the heat transfer path 28 of the main heat exchanger 21, and further exchanges heat with the second refrigerant having a lower temperature, and is about -100 ° C. Until cooled. The second refrigerant at about −100 ° C. is cooled to about −120 ° C. by adiabatic expansion by the expansion valve 33 and is supplied to the nozzle 35 of the main heat exchanger 21. The second refrigerant sprayed from the nozzle 35 is a liquid phase second refrigerant in the heat transfer path 28, a gas phase second refrigerant in the heat transfer path 29, and a natural heat transfer path 30 inside the main heat exchanger 21. Cool each gas.

気液分離器27の気相の第2冷媒は、配管44から主熱交換器21の伝熱経路29に供給され、さらに低温の第2冷媒と熱交換し約−100℃まで冷却される。さらに、下流側の伝熱経路30で、ノズル35から散布される約−170℃の第2冷媒と熱交換して約−150℃まで冷却され、大部分が凝縮する。この約−150℃の第2冷媒は、膨張弁34で断熱膨張することで約−170℃まで冷却され、主熱交換器21のノズル36に供給される。ノズル36から散布された低温の第2冷媒は、主熱交換器21の内部で、伝熱経路30の第2冷媒、伝熱経路32の天然ガスをそれぞれ約−150℃まで冷却する。   The gas-phase second refrigerant of the gas-liquid separator 27 is supplied from the pipe 44 to the heat transfer path 29 of the main heat exchanger 21, further heat-exchanged with the low-temperature second refrigerant and cooled to about −100 ° C. Further, in the heat transfer path 30 on the downstream side, heat is exchanged with the second refrigerant having a temperature of about −170 ° C. sprayed from the nozzle 35 to be cooled to about −150 ° C., and most of the water is condensed. The second refrigerant at about −150 ° C. is adiabatically expanded by the expansion valve 34 to be cooled to about −170 ° C. and supplied to the nozzle 36 of the main heat exchanger 21. The low-temperature second refrigerant sprayed from the nozzle 36 cools the second refrigerant in the heat transfer path 30 and the natural gas in the heat transfer path 32 to about −150 ° C. inside the main heat exchanger 21.

このようにして約−150℃まで冷却された天然ガスは、配管45を経由して膨張弁37に導かれ、そこで大気圧近くまで断熱膨張し−162℃程度の液化天然ガスとして取り出される。   The natural gas thus cooled to about −150 ° C. is led to the expansion valve 37 via the pipe 45, where it is adiabatically expanded to near atmospheric pressure and taken out as a liquefied natural gas of about −162 ° C.

伝熱経路30,32で熱交換して温度上昇した第2冷媒は、下流側で伝熱経路28−30の冷却に再利用される。伝熱経路28−30を冷却した後の第2冷媒は、配管40により、第2冷却サイクル系統60の低圧圧縮機23に供給される。以下、低圧圧縮機23による圧縮と中間冷却器25による冷却、高圧圧縮機24による圧縮と後置冷却器26による冷却を経て、約40℃,5MPaとなった第2冷媒は、第1冷却サイクル系統61により約−35℃まで冷却されて再び主熱交換器21に供給され、原料天然ガスの液化に利用される。   The second refrigerant whose temperature has increased by heat exchange in the heat transfer paths 30 and 32 is reused for cooling the heat transfer paths 28-30 on the downstream side. The second refrigerant after cooling the heat transfer path 28-30 is supplied to the low-pressure compressor 23 of the second cooling cycle system 60 through the pipe 40. Hereinafter, the second refrigerant having reached about 40 ° C. and 5 MPa through the compression by the low-pressure compressor 23 and the cooling by the intermediate cooler 25, the compression by the high-pressure compressor 24, and the cooling by the post-cooler 26 is the first cooling cycle. It is cooled to about −35 ° C. by the system 61 and supplied again to the main heat exchanger 21 to be used for liquefaction of the raw material natural gas.

(起動時の動作)
続いて図1−図3で起動時の動作を説明する。
(Operation at startup)
Next, the operation at the time of activation will be described with reference to FIGS.

天然ガス液化設備を構成する各設備は、補助冷却機構62、第1冷却サイクル系統61、第2冷却サイクル系統60、主熱交換器21の順で起動することが望ましい。   It is desirable that each facility constituting the natural gas liquefaction facility is started in the order of the auxiliary cooling mechanism 62, the first cooling cycle system 61, the second cooling cycle system 60, and the main heat exchanger 21.

起動前の時点で、第1冷却サイクル系統61の受液器11の第1冷媒の温度は外気によって温められて約40℃まで上昇しており、受液器11及び配管49−56の内部は40℃の第1冷媒(プロパン)の飽和圧力である約1.4MPaとなっている。本実施の形態では、この時点(冷媒圧縮機1の起動前)で補助冷却機構62を起動し、第1冷却サイクル系統61の受液器11の第1冷媒を想定冷却温度である約−25℃まで冷却する。受液器11の第1冷媒を−25℃程度まで冷却することにより、第1冷却サイクル系統61の第1冷媒の圧力は、−25℃のプロパンの飽和圧力である0.2MPa程度まで低下する。   Before the start-up, the temperature of the first refrigerant in the liquid receiver 11 of the first cooling cycle system 61 is warmed by the outside air to about 40 ° C., and the interior of the liquid receiver 11 and the piping 49-56 is The saturation pressure of the first refrigerant (propane) at 40 ° C. is about 1.4 MPa. In the present embodiment, the auxiliary cooling mechanism 62 is activated at this time (before the refrigerant compressor 1 is activated), and the first refrigerant of the liquid receiver 11 of the first cooling cycle system 61 is assumed to have an estimated cooling temperature of about −25. Cool to ° C. By cooling the first refrigerant in the liquid receiver 11 to about −25 ° C., the pressure of the first refrigerant in the first cooling cycle system 61 decreases to about 0.2 MPa, which is the saturation pressure of propane at −25 ° C. .

このとき、高圧膨張弁12・中圧膨張弁13・低圧膨張弁14の開度は、定格運転時の各弁の出口圧力がそれぞれ0.63MPa,0.25MPa,0.1MPa程度となるように予め設定されている。   At this time, the openings of the high pressure expansion valve 12, the intermediate pressure expansion valve 13, and the low pressure expansion valve 14 are set so that the outlet pressure of each valve during rated operation is about 0.63 MPa, 0.25 MPa, and 0.1 MPa, respectively. It is set in advance.

図2(a)は起動後の第1冷却サイクル系統61の冷媒圧縮機1の回転数変化(運転スケジュール)の一例を表した図である。   FIG. 2A is a diagram illustrating an example of a change in the rotational speed (operation schedule) of the refrigerant compressor 1 of the first cooling cycle system 61 after startup.

この図2(a)に示した運転スケジュールでは、冷媒圧縮機1の負荷が許容範囲以下であれば、回転数が30秒程度で定格値に達するように想定されている。   In the operation schedule shown in FIG. 2 (a), it is assumed that the rotational speed reaches the rated value in about 30 seconds if the load of the refrigerant compressor 1 is below the allowable range.

図2(b)は高圧吸込調整機構71・中圧吸込調整機構72・低圧吸込調整機構73の開度の変化を表した図である。   FIG. 2B is a diagram showing changes in the opening degree of the high pressure suction adjustment mechanism 71, the medium pressure suction adjustment mechanism 72, and the low pressure suction adjustment mechanism 73.

図2(b)に示したように、起動時にはこれら吸込調整機構71−73の微開(例えば開度30%程度)とし、低圧圧縮機2・中圧圧縮機3・高圧圧縮機4の吸込流量と吸込圧力を低下させ、起動トルク・吸込圧力・吐出圧力を低下させる。その後、時間の経過とともに、吸込調整機構71−73の開度を増加させ、吸込流量・吸込圧力を定格値(全開:開度100%)まで増加させる。   As shown in FIG. 2B, at the time of start-up, the suction adjusting mechanisms 71-73 are slightly opened (for example, about 30% of opening degree), and the suction of the low pressure compressor 2, the intermediate pressure compressor 3, and the high pressure compressor 4 is performed. Reduce the flow rate and suction pressure, and reduce the starting torque, suction pressure, and discharge pressure. Thereafter, with the passage of time, the opening degree of the suction adjustment mechanism 71-73 is increased, and the suction flow rate / suction pressure is increased to the rated value (fully opened: opening degree 100%).

図3は本実施の形態における冷媒圧縮機1の起動時の圧力・流量の変化を表した図である。   FIG. 3 is a diagram showing changes in pressure and flow rate when the refrigerant compressor 1 according to the present embodiment is started.

ここでは図3を用いて起動時の低圧圧縮機2・中圧圧縮機3・高圧圧縮機4の動作について述べる。   Here, the operation of the low-pressure compressor 2, the intermediate-pressure compressor 3, and the high-pressure compressor 4 at the time of starting will be described with reference to FIG.

本実施の形態では、受液器11に保有する冷媒が−25℃程度まで冷却されており、起動時の第1冷却サイクル系統61内の第1冷媒の圧力は、−25℃のプロパンの飽和圧力である0.2MPa程度となっている。したがって、冷媒圧縮機1の起動直後における受液器11の内部圧力は0.2MPa程度であるが、低圧膨張弁14及び低圧吸込調整機構73の圧力損失作用により、低圧圧縮機2の吸込配管56の圧力は定格運転条件である0.1MPaに向かって低下する(図3(a))。低圧圧縮機2の圧力比は冷媒圧縮機1の回転数とともに上昇し、低圧圧縮機2の吐出圧力は定格条件である0.25MPaに向かって上昇する(図3(b))。   In the present embodiment, the refrigerant held in the liquid receiver 11 is cooled to about −25 ° C., and the pressure of the first refrigerant in the first cooling cycle system 61 at the time of start-up is saturated with propane at −25 ° C. The pressure is about 0.2 MPa. Therefore, although the internal pressure of the liquid receiver 11 immediately after the start of the refrigerant compressor 1 is about 0.2 MPa, the suction pipe 56 of the low pressure compressor 2 is caused by the pressure loss action of the low pressure expansion valve 14 and the low pressure suction adjustment mechanism 73. The pressure decreases to 0.1 MPa, which is the rated operating condition (FIG. 3A). The pressure ratio of the low-pressure compressor 2 increases with the rotational speed of the refrigerant compressor 1, and the discharge pressure of the low-pressure compressor 2 increases toward the rated condition of 0.25 MPa (FIG. 3B).

中圧圧縮機3の吸込圧力は、配管55からの吸気流量と低圧圧縮機2の吐出圧力により決まるが、冷媒圧縮機1の回転数上昇に伴って定格運転条件である0.25MPaに向かって上昇する(図3(a))。中圧圧縮機3の圧力比は冷媒圧縮機1の回転数とともに上昇し、中圧圧縮機3の吐出圧力は定格条件の0.63MPaに向かって上昇する(図3(b))。   The suction pressure of the intermediate pressure compressor 3 is determined by the intake flow rate from the pipe 55 and the discharge pressure of the low pressure compressor 2, but toward the rated operating condition of 0.25 MPa as the refrigerant compressor 1 increases in rotation speed. It rises (FIG. 3 (a)). The pressure ratio of the intermediate pressure compressor 3 increases with the rotation speed of the refrigerant compressor 1, and the discharge pressure of the intermediate pressure compressor 3 increases toward the rated condition of 0.63 MPa (FIG. 3B).

高圧圧縮機4の吸込圧力は、配管54からの吸気流量と中圧圧縮機3の吐出圧力により決まるが、冷媒圧縮機1の回転数上昇に伴って定格運転条件である0.63MPaに向かって増加する(図3(a))。高圧圧縮機4の圧力比は冷媒圧縮機1の回転数とともに上昇し、高圧圧縮機4の吐出圧力は定格条件の1.5MPaに向かって上昇する(図3(b))。   The suction pressure of the high-pressure compressor 4 is determined by the intake flow rate from the pipe 54 and the discharge pressure of the intermediate-pressure compressor 3, but toward the rated operating condition of 0.63 MPa as the rotational speed of the refrigerant compressor 1 increases. It increases (Fig. 3 (a)). The pressure ratio of the high-pressure compressor 4 increases with the rotational speed of the refrigerant compressor 1, and the discharge pressure of the high-pressure compressor 4 increases toward the rated condition of 1.5 MPa (FIG. 3 (b)).

これらの冷媒圧縮機1の内部を流れる第1冷媒の質量流量の時間変化は図3(c)のようになる。同図では定格運転時の高圧圧縮機4の吸込質量流量を1.0とする相対値で示してある。中圧圧縮機3に流入する第1冷媒は、配管55から吸い込まれる第1冷媒と低圧圧縮機2から吐出された第1冷媒が合流するため、低圧圧縮機2の流量よりも多くなっている。また、高圧圧縮機4に流入する第1冷媒は、配管54から吸い込まれる第1冷媒と中圧圧縮機3から吐出された第1冷媒が合流するため、中圧圧縮機3の流量よりもさらに多くなる。これらの流量の変化特性は、それぞれの冷媒圧縮機1の回転数・吸込温度・入口圧力・出口圧力で決まる。   The time change of the mass flow rate of the first refrigerant flowing in the refrigerant compressor 1 is as shown in FIG. In the figure, the relative value with the suction mass flow rate of the high-pressure compressor 4 during rated operation as 1.0 is shown. The first refrigerant flowing into the intermediate pressure compressor 3 is larger than the flow rate of the low pressure compressor 2 because the first refrigerant sucked from the pipe 55 and the first refrigerant discharged from the low pressure compressor 2 merge. . Further, the first refrigerant flowing into the high-pressure compressor 4 joins the first refrigerant sucked from the pipe 54 and the first refrigerant discharged from the intermediate-pressure compressor 3, so that the flow rate of the intermediate-pressure compressor 3 is further increased. Become more. These flow rate change characteristics are determined by the rotational speed, suction temperature, inlet pressure, and outlet pressure of each refrigerant compressor 1.

高圧圧縮機4から吐出する第1冷媒は、100℃を超える高温となるが凝縮器10により40℃程度まで冷却され、圧力条件に応じて液体または気液混合の状態で受液器11に流入する。受液器11では、当初−25℃程度であった第1冷媒と混合され最終的には40℃程度まで温度上昇する。定格運転時の高圧圧縮機4の吐出圧力は1.5MPa程度で飽和圧力よりも高圧であるため、第1冷媒は液体として受液器11に貯蔵される。   The first refrigerant discharged from the high-pressure compressor 4 becomes a high temperature exceeding 100 ° C., but is cooled to about 40 ° C. by the condenser 10 and flows into the receiver 11 in a liquid or gas-liquid mixed state depending on the pressure condition. To do. In the liquid receiver 11, the temperature is increased to about 40 ° C. by being mixed with the first refrigerant that was initially about −25 ° C. Since the discharge pressure of the high-pressure compressor 4 during rated operation is about 1.5 MPa, which is higher than the saturation pressure, the first refrigerant is stored in the liquid receiver 11 as a liquid.

受液器11の第1冷媒は、高圧膨張弁12により減圧され、高圧膨張弁12の出口では最終的に定格条件である0.63MPa程度となり、温度は飽和温度である9℃程度となる。   The first refrigerant in the liquid receiver 11 is depressurized by the high-pressure expansion valve 12, and finally reaches the rated condition of about 0.63 MPa at the outlet of the high-pressure expansion valve 12, and the temperature is about 9 ° C. which is the saturation temperature.

高圧蒸発器15では、第1冷媒の液相部分が蒸発し、蒸発潜熱を奪うことにより第2冷却サイクル系統60の第2冷媒を冷却する。気相の第1冷媒は配管54から高圧圧縮機4に供給され圧縮される。一方、液相の第1冷媒は配管52から中圧膨張弁13に供給され、断熱膨張して定格運転条件である0.25MPa,−19℃の状態に向かう。   In the high-pressure evaporator 15, the liquid phase portion of the first refrigerant evaporates, and the second refrigerant of the second cooling cycle system 60 is cooled by removing latent heat of evaporation. The gas-phase first refrigerant is supplied to the high-pressure compressor 4 through the pipe 54 and compressed. On the other hand, the first refrigerant in the liquid phase is supplied from the pipe 52 to the intermediate pressure expansion valve 13 and adiabatically expands toward the state of 0.25 MPa and −19 ° C., which are rated operating conditions.

中圧蒸発器16では、中圧膨張弁13で断熱膨張した液相の第1冷媒が蒸発し、蒸発潜熱を奪うことにより第2冷却サイクル系統60の第2冷媒をさらに冷却する。気相のプロパン冷媒は配管55から中圧圧縮機3に供給され、圧縮される。一方、液相の第1冷媒は、配管53から低圧膨張弁14に供給され、断熱膨張して定格運転条件である0.1MPa,−41℃の状態に向かう。   In the intermediate pressure evaporator 16, the liquid first refrigerant adiabatically expanded by the intermediate pressure expansion valve 13 evaporates, and the second refrigerant of the second cooling cycle system 60 is further cooled by taking away latent heat of evaporation. The gas-phase propane refrigerant is supplied from the pipe 55 to the intermediate pressure compressor 3 and compressed. On the other hand, the first refrigerant in the liquid phase is supplied from the pipe 53 to the low-pressure expansion valve 14 and adiabatically expands toward the rated operation conditions of 0.1 MPa and −41 ° C.

低圧蒸発器17では、低圧膨張弁14で断熱膨張した液相の第1冷媒が蒸発して、第2冷却サイクル系統60の第2冷媒を冷却し、蒸発した第1冷媒は配管56から低圧圧縮機2に供給され圧縮される。   In the low-pressure evaporator 17, the liquid-phase first refrigerant adiabatically expanded by the low-pressure expansion valve 14 evaporates to cool the second refrigerant in the second cooling cycle system 60, and the evaporated first refrigerant is low-pressure compressed from the pipe 56. Supplied to machine 2 and compressed.

(作用効果)
図5は本実施の形態におけるプロパン冷媒圧縮機の起動時のトルク変化を表した図である。
(Function and effect)
FIG. 5 is a diagram showing a change in torque when the propane refrigerant compressor is started in the present embodiment.

冷媒圧縮機1の駆動トルクは、必要動力を回転数で除したものに比例し、必要動力は圧縮機の吸込質量流量と比エンタルピ変化に比例する。図5における「低圧」「中圧」「高圧」という記載は、それぞれ低圧圧縮機2、中圧圧縮機3、高圧圧縮機4の必要トルクであり、「合計」という記載は、それら必要トルクの合計値である。また、同図における「駆動源」という記載は、一般的な誘導電動機のトルク曲線である。誘導電動機は、定格回転数よりもやや低い回転数で最大トルクを発生する特性を持ち、起動過程では常に定格運転時よりも駆動トルクが大きく、図2で示したような冷媒圧縮機1の運転スケジュールと吸込調整機構の操作により無理なく起動できることが判る。   The driving torque of the refrigerant compressor 1 is proportional to the required power divided by the rotational speed, and the required power is proportional to the suction mass flow rate of the compressor and the specific enthalpy change. The descriptions “low pressure”, “medium pressure”, and “high pressure” in FIG. 5 are the required torques of the low pressure compressor 2, the intermediate pressure compressor 3, and the high pressure compressor 4, respectively. It is the total value. In addition, the description “drive source” in the figure is a torque curve of a general induction motor. The induction motor has a characteristic of generating a maximum torque at a rotational speed slightly lower than the rated rotational speed, and has a driving torque that is always larger than that during rated operation in the starting process, and the operation of the refrigerant compressor 1 as shown in FIG. It can be seen that it can be started without difficulty by operating the schedule and suction adjustment mechanism.

一方、補助冷却機構62を省略した場合の起動時の圧縮機出入り口の圧力、質量流量の変化を比較例として図4に示す。   On the other hand, FIG. 4 shows changes in the pressure at the inlet / outlet of the compressor and the mass flow rate at the time of startup when the auxiliary cooling mechanism 62 is omitted as a comparative example.

この比較例でも、起動前の第1冷却サイクル系統61の受液器11の第1冷媒の温度は、外気によって温められて40℃程度まで上昇する。また、受液器11及び配管49−56の内部は、40℃のプロパンの飽和圧力である1.4MPa程度まで上昇する。   Also in this comparative example, the temperature of the 1st refrigerant | coolant of the liquid receiver 11 of the 1st cooling cycle system | strain 61 before a start is warmed by external air, and rises to about 40 degreeC. Moreover, the inside of the liquid receiver 11 and the piping 49-56 rises to about 1.4 MPa which is the saturation pressure of propane at 40 ° C.

冷媒圧縮機1を起動した後、低圧圧縮機2・中圧圧縮機3・高圧圧縮機4の吸込圧力は定格値に向かって徐々に低下する(図4(a))。これら圧縮機2−4の吐出圧力も圧縮機の圧力比特性に従って一旦上昇した後、定格値に向かって徐々に低下する(図4(b))。   After starting the refrigerant compressor 1, the suction pressure of the low-pressure compressor 2, the intermediate-pressure compressor 3, and the high-pressure compressor 4 gradually decreases toward the rated value (FIG. 4 (a)). The discharge pressure of these compressors 2-4 once rises according to the pressure ratio characteristics of the compressor and then gradually decreases toward the rated value (FIG. 4 (b)).

圧縮機2−4の内部を流れる第1冷媒の質量流量は図4(c)に示したような傾向になる。圧縮機2−4の吸込流量は、回転数が同一であれば体積流量がほぼ一定となる特性があり、流体の圧力が高い場合には質量流量が増加する。図4(c)では定格運転時の高圧圧縮機4の吸込質量流量を1.0とした相対値を示しているが、起動後、系内の圧力が低下するまでの間、高圧圧縮機4の吸込質量流量は定格値の1.5から2倍にも達することがわかる。   The mass flow rate of the first refrigerant flowing inside the compressor 2-4 tends to be as shown in FIG. The suction flow rate of the compressor 2-4 has a characteristic that the volume flow rate is substantially constant when the rotation speed is the same, and the mass flow rate increases when the fluid pressure is high. FIG. 4C shows a relative value where the suction mass flow rate of the high-pressure compressor 4 during rated operation is 1.0, but after the start-up, the high-pressure compressor 4 continues until the pressure in the system decreases. It can be seen that the suction mass flow rate reaches 1.5 to twice the rated value.

図6は図4の比較例における冷媒圧縮機1の起動時のトルク変化を示した図である。   FIG. 6 is a diagram showing a change in torque when the refrigerant compressor 1 is started in the comparative example of FIG.

図6の各線の示す内容は図5に対応させてある。比較例では、起動直後に、吸込質量流量が定格時よりも増加することから、起動時に必要なトルクは定格運転時よりも大きく、駆動源の発生トルクを超過することが判る。従って、図4の比較例では図2で示した運転スケジュールは成立せず、第1冷却サイクル系統61を起動することができない。   The content indicated by each line in FIG. 6 corresponds to FIG. In the comparative example, immediately after startup, the suction mass flow rate increases from that at the time of rating, so it can be seen that the torque required at startup is greater than that during rated operation and exceeds the torque generated by the drive source. Therefore, in the comparative example of FIG. 4, the operation schedule shown in FIG. 2 is not established, and the first cooling cycle system 61 cannot be started.

それに対して本実施の形態では、前述した通り補助冷却機構62で冷媒圧縮機1の起動前に第1冷媒を冷却しておくことで、冷媒圧縮機1の吸気の質量流量を大幅に低減することができるので、冷媒圧縮機1の起動に必要な駆動トルク(所要動力)を低減することができ、仮に起動時の駆動源の発生トルクが小さくても、安定に第1冷却サイクル系統61、具体的には冷媒圧縮機1を起動することができる。   In contrast, in the present embodiment, as described above, the auxiliary cooling mechanism 62 cools the first refrigerant before the refrigerant compressor 1 is started, thereby greatly reducing the mass flow rate of the intake air of the refrigerant compressor 1. Therefore, the driving torque (required power) required for starting the refrigerant compressor 1 can be reduced, and even if the generated torque of the driving source at the time of starting is small, the first cooling cycle system 61, Specifically, the refrigerant compressor 1 can be started.

また、起動時に冷媒圧縮機1から吐出される冷媒を外部に排出しないので、冷媒圧縮機1の吐出圧力の上昇にかかる時間を短縮し、冷却サイクルの起動完了までに要する時間を短縮することができる。また冷媒が浪費されることもない。   Further, since the refrigerant discharged from the refrigerant compressor 1 is not discharged to the outside at the time of startup, the time required for increasing the discharge pressure of the refrigerant compressor 1 can be reduced, and the time required for completing the startup of the cooling cycle can be reduced. it can. Also, the refrigerant is not wasted.

ここで、上述したように、補助冷却機構62を冷媒圧縮機1の起動時に駆動させることにより、第1冷却サイクル系統61の起動時のトルクを低減させることができるが、定常運転時には、補助冷却機構62、具体的には電動機84及び圧縮機81を動作させる必要は必ずしもない。ただし、定常運転時に補助冷却機構62を動作させた場合、受液器11の第1冷媒の温度を低下させる効果があり、気象条件などにより凝縮器10の冷却能力が不足した場合でも、受液器11の第1冷媒を冷却することができ、により大気温度や海水温度が高くても第1冷却サイクル系統61の冷媒流量を定格流量に維持する効果が期待でき、年間を通した液化天然ガスの安定生産への寄与にも期待できる。   Here, as described above, by driving the auxiliary cooling mechanism 62 when the refrigerant compressor 1 is started, the torque at the start of the first cooling cycle system 61 can be reduced. It is not always necessary to operate the mechanism 62, specifically, the electric motor 84 and the compressor 81. However, when the auxiliary cooling mechanism 62 is operated during steady operation, there is an effect of lowering the temperature of the first refrigerant in the liquid receiver 11, and even if the cooling capacity of the condenser 10 is insufficient due to weather conditions or the like, the liquid receiver The first refrigerant of the vessel 11 can be cooled, so that the effect of maintaining the refrigerant flow rate of the first cooling cycle system 61 at the rated flow rate can be expected even when the atmospheric temperature or seawater temperature is high. It can also be expected to contribute to stable production.

<第2の実施の形態>
(構成)
図7は本発明の第2の実施の形態に係る冷却サイクル系統を用いた天然ガス液化設備の全体構成図である。
<Second Embodiment>
(Constitution)
FIG. 7 is an overall configuration diagram of a natural gas liquefaction facility using a cooling cycle system according to the second embodiment of the present invention.

本実施の形態は、第1の実施の形態と同じく冷却サイクル系統を備えた天然ガス液化設備に係るものであるが、第1冷却サイクル系統61や第2冷却サイクル系統60、主熱交換器21の構成は第1の実施の形態と同様であるので第1冷却サイクル系統61の一部を除いて図示省略してある。第1冷却サイクル系統61については、冷媒圧縮機1、凝縮器10、受液器11、膨張機構18、蒸発機構19のみ簡略的に図示してある。本実施の形態でも、第1冷却サイクル系統61や冷却サイクル60の各圧縮機は電動機により駆動する構成であり、本実施の形態の天然ガス液化設備には、これら電動機に供給する電力を発電する発電用ガスタービン設備100と、このガスタービン設備100の吸気を冷却する吸気冷却系統200が設けられている。   The present embodiment relates to a natural gas liquefaction facility having a cooling cycle system as in the first embodiment, but the first cooling cycle system 61, the second cooling cycle system 60, and the main heat exchanger 21. Since this configuration is the same as that of the first embodiment, the illustration is omitted except for a part of the first cooling cycle system 61. For the first cooling cycle system 61, only the refrigerant compressor 1, the condenser 10, the liquid receiver 11, the expansion mechanism 18, and the evaporation mechanism 19 are illustrated in a simplified manner. Also in the present embodiment, the compressors of the first cooling cycle system 61 and the cooling cycle 60 are configured to be driven by electric motors, and the natural gas liquefaction facility of the present embodiment generates electric power supplied to these electric motors. A power generation gas turbine facility 100 and an intake air cooling system 200 for cooling the intake air of the gas turbine facility 100 are provided.

発電用ガスタービン設備100は、吸気ダクト87から外気を吸入して圧縮する空気圧縮機91、圧縮した空気と燃料を混合して燃焼させ高温高圧の燃焼ガスを生成する燃焼器86、燃焼ガスを膨張させて運動エネルギーに変換するタービン93、タービン93の運動エネルギーを電力に変換する発電機92を備えている。発電用ガスタービン設備100には、タービン93の排気から排熱を回収して水蒸気を発生させる排熱回収ボイラ94、排熱回収ボイラ94を通過した排気を大気に放出するスタック95が接続してある。   The power generation gas turbine equipment 100 includes an air compressor 91 that sucks and compresses outside air from an intake duct 87, a combustor 86 that mixes and burns the compressed air and fuel, and generates high-temperature and high-pressure combustion gas. A turbine 93 that is expanded and converted into kinetic energy, and a generator 92 that converts the kinetic energy of the turbine 93 into electric power are provided. The power generation gas turbine facility 100 is connected to a waste heat recovery boiler 94 that recovers exhaust heat from the exhaust of the turbine 93 to generate water vapor, and a stack 95 that releases the exhaust gas that has passed through the exhaust heat recovery boiler 94 to the atmosphere. is there.

発電用ガスタービン設備100の吸気を冷却する吸気冷却系統200は、吸気冷却熱交換器90により吸入した外気を冷却する吸気冷却熱交換器90と、吸気冷却熱交換器90は補助冷却機構62Aの補助冷媒と熱交換するための蒸発器68とを備えている。   An intake air cooling system 200 that cools the intake air of the power generation gas turbine equipment 100 includes an intake air cooling heat exchanger 90 that cools outside air drawn by the intake air cooling heat exchanger 90, and an intake air cooling heat exchanger 90 that includes an auxiliary cooling mechanism 62A. An evaporator 68 for exchanging heat with the auxiliary refrigerant is provided.

吸気冷却熱交換器90は、吸気ダクト87における空気圧縮機91の上流側に設けられており、蒸発器68と配管65,66を介してループ上に接続されている。配管65,66内を流通する冷媒(以下“第3冷媒”と記載する)は、エチレングリコール混合水などの不凍液であって、配管66の途中に設けたポンプ69により配管65,66内を循環し、蒸発器68を通過する際に吸収式冷却機96(後述)の補助冷媒と熱交換して冷却され、配管65を経由して吸気冷却熱交換器90に戻り空気圧縮機92の吸気と熱交換して加熱された後、再び配管66を経由してポンプ69に吸入される構成となっている。   The intake air cooling heat exchanger 90 is provided on the upstream side of the air compressor 91 in the intake air duct 87, and is connected on the loop via an evaporator 68 and pipes 65 and 66. The refrigerant flowing in the pipes 65 and 66 (hereinafter referred to as “third refrigerant”) is an antifreeze liquid such as ethylene glycol mixed water and circulates in the pipes 65 and 66 by a pump 69 provided in the middle of the pipe 66. Then, when passing through the evaporator 68, it is cooled by exchanging heat with an auxiliary refrigerant of an absorption chiller 96 (described later), returning to the intake air cooling heat exchanger 90 via the pipe 65, and the intake air of the air compressor 92 After being heated by heat exchange, the pump 69 is again sucked into the pump 69 via the pipe 66.

さらに、吸気冷却系統200は、調節弁99を有するバイパス配管101と、配管65を流通する第3冷媒の温度を検出する温度検出手段97と、温度検出手段97の検出信号に応じて調節弁99の開度を制御する制御装置98を備えている。バイパス配管101は、配管66におけるポンプ69の吐出側と配管65を接続し、調整弁99を開くとポンプ69から吐出された第3冷媒の一部又は全部が蒸発器68を通過せずに配管65を流れる第3冷媒に合流する。温度検出手段97は配管65に設置されており、温度検出手段97の検出信号は制御装置98に出力される。制御装置98は、予め設定された冷媒温度と調節弁99の開度の相関関係を基に、温度検出手段97からの検出信号に応じて調節弁99の開度を調整するように構成されている。   Further, the intake air cooling system 200 includes a bypass pipe 101 having a control valve 99, a temperature detection means 97 for detecting the temperature of the third refrigerant flowing through the pipe 65, and the control valve 99 according to a detection signal from the temperature detection means 97. Is provided with a control device 98 for controlling the opening degree. The bypass pipe 101 is connected to the discharge side of the pump 69 in the pipe 66 and the pipe 65, and when the adjustment valve 99 is opened, part or all of the third refrigerant discharged from the pump 69 does not pass through the evaporator 68. It merges with the third refrigerant flowing through 65. The temperature detection means 97 is installed in the pipe 65, and the detection signal of the temperature detection means 97 is output to the control device 98. The control device 98 is configured to adjust the opening degree of the control valve 99 according to the detection signal from the temperature detecting means 97 based on the correlation between the preset refrigerant temperature and the opening degree of the control valve 99. Yes.

補助冷却機構62Aは、配管57−59内を流通する補助冷媒と熱交換させることで受液器11内に貯留された第1冷媒を冷却し、第1冷却サイクル系統61の第1冷媒を冷却する。この補助冷却機構62Aは、受液器11内の蒸発器80の他、排熱回収ボイラ94から生成する水蒸気を熱源として駆動し補助冷媒を冷却する吸収式冷却機96を備えている。本実施の形態では吸収式冷却機96の補助冷媒として−60℃程度まで冷却可能なアンモニアが想定されるが、補助冷却機構62Aで用いる補助冷媒の種類は限定されない。   The auxiliary cooling mechanism 62A cools the first refrigerant stored in the liquid receiver 11 by exchanging heat with the auxiliary refrigerant flowing in the pipes 57-59, and cools the first refrigerant of the first cooling cycle system 61. To do. In addition to the evaporator 80 in the liquid receiver 11, the auxiliary cooling mechanism 62 </ b> A includes an absorption cooler 96 that drives the water vapor generated from the exhaust heat recovery boiler 94 as a heat source to cool the auxiliary refrigerant. In the present embodiment, ammonia that can be cooled to about −60 ° C. is assumed as an auxiliary refrigerant of the absorption chiller 96, but the type of auxiliary refrigerant used in the auxiliary cooling mechanism 62A is not limited.

吸収式冷却機96は、受液器11内の蒸発器80、蒸発器68、排熱回収ボイラ94に対してそれぞれ配管58,59,102を介して接続している。また、吸収式冷却機96と蒸発器68を接続する配管58は、蒸発器68を通って受液器11内の蒸発器80と吸収式冷却機96を接続する配管59に合流している。配管58から分岐した配管57は、受液器11内の蒸発器80に接続し、蒸発器80内を通る配管を介して配管59に接続している。   The absorption chiller 96 is connected to the evaporator 80, the evaporator 68, and the exhaust heat recovery boiler 94 in the liquid receiver 11 via pipes 58, 59, and 102, respectively. The pipe 58 connecting the absorption cooler 96 and the evaporator 68 joins the pipe 59 connecting the evaporator 80 in the liquid receiver 11 and the absorption cooler 96 through the evaporator 68. The pipe 57 branched from the pipe 58 is connected to the evaporator 80 in the liquid receiver 11, and is connected to the pipe 59 through a pipe passing through the evaporator 80.

配管57,59の途中には、それぞれ遮断弁75a,75bが設けられており、配管58における蒸発器68の上流側及び下流側には、それぞれ遮断弁76a,76bが設けられている。   In the middle of the pipes 57 and 59, shut-off valves 75a and 75b are respectively provided. On the upstream side and the downstream side of the evaporator 68 in the pipe 58, shut-off valves 76a and 76b are respectively provided.

吸収式冷却機96で生成した低温の補助冷媒の供給先は、前述したように配管を構成したことにより、遮断弁75a,75b,76a,76bの切り替え操作することで、冷却サイクル61の受液器11の蒸発器80とガスタービンの吸気冷却系統の蒸発器68に切り替え可能である。   The supply destination of the low-temperature auxiliary refrigerant generated by the absorption chiller 96 is configured as described above, and by switching the shut-off valves 75a, 75b, 76a, and 76b, the liquid receiving liquid of the cooling cycle 61 is received. It is possible to switch between the evaporator 80 of the vessel 11 and the evaporator 68 of the intake air cooling system of the gas turbine.

(起動時の動作)
プロパン冷媒サイクル61の起動時には、発電用ガスタービン設備100が起動した後、まず遮断弁75a,75bを開き、遮断弁76a,76bを閉じた状態で、補助冷却機構62を動作させる。すると、排熱回収ボイラ94からの水蒸気により駆動する吸収式冷却機96から低温の補助冷媒が蒸発器80に供給され、補助冷媒が蒸発器80で蒸発することによって冷却サイクル61の受液器11の第1冷媒が冷却される。第2冷却サイクル系統60や主熱交換器21の動作は第1の実施の形態と同様である。
(Operation at startup)
When the propane refrigerant cycle 61 is activated, after the power generation gas turbine equipment 100 is activated, the auxiliary cooling mechanism 62 is operated with the cutoff valves 75a and 75b first opened and the cutoff valves 76a and 76b closed. Then, a low-temperature auxiliary refrigerant is supplied to the evaporator 80 from the absorption cooler 96 driven by water vapor from the exhaust heat recovery boiler 94, and the auxiliary refrigerant evaporates in the evaporator 80, whereby the liquid receiver 11 of the cooling cycle 61. The first refrigerant is cooled. The operations of the second cooling cycle system 60 and the main heat exchanger 21 are the same as those in the first embodiment.

次に、プロパン冷媒サイクル61の起動後は、遮断弁75a,75bを閉じ、遮断弁76a,76bを開いて、ガスタービンの吸気冷却系統の蒸発器68に補助冷媒を供給する。すると蒸発器68では、ポンプ69に駆動された温度15℃程度の第3冷媒が、補助冷媒の蒸発に伴って−30℃程度まで冷却される。−30℃程度まで冷却された第3冷媒は、調節弁99の経路から流入する温度15℃程度の第3冷媒と混合して、5℃程度の第3冷媒となる。5℃程度の第3冷媒は、配管65から吸気冷却熱交換器90に供給され、ガスタービンの吸気と熱交換して15℃程度まで加熱される。その際、ガスタービンの吸気は、吸気ダクト87からの吸入時に30℃程度だったものが10℃程度まで冷却され、空気圧縮機91に供給される。   Next, after starting the propane refrigerant cycle 61, the shutoff valves 75a and 75b are closed, the shutoff valves 76a and 76b are opened, and the auxiliary refrigerant is supplied to the evaporator 68 of the intake cooling system of the gas turbine. Then, in the evaporator 68, the third refrigerant having a temperature of about 15 ° C. driven by the pump 69 is cooled to about −30 ° C. along with the evaporation of the auxiliary refrigerant. The third refrigerant cooled to about −30 ° C. is mixed with the third refrigerant having a temperature of about 15 ° C. flowing from the path of the control valve 99 to become a third refrigerant of about 5 ° C. The third refrigerant at about 5 ° C. is supplied to the intake air cooling heat exchanger 90 from the pipe 65, and is heated to about 15 ° C. by exchanging heat with the intake air of the gas turbine. At that time, the intake air of the gas turbine, which was about 30 ° C. at the time of intake from the intake duct 87, is cooled to about 10 ° C. and supplied to the air compressor 91.

このとき、調節弁99の弁解度は、温度検出手段97の出力信号を受けた制御装置98により、配管65に流入する第3冷媒の温度が5℃程度となるようにフィードバック制御されている。   At this time, the degree of solution of the control valve 99 is feedback-controlled by the control device 98 that has received the output signal of the temperature detecting means 97 so that the temperature of the third refrigerant flowing into the pipe 65 becomes about 5 ° C.

(作用効果)
本実施の形態においても補助冷却機構62Aを設けたことにより第1の実施の形態と同様の効果を得ることができる。
(Function and effect)
Also in the present embodiment, the same effect as that of the first embodiment can be obtained by providing the auxiliary cooling mechanism 62A.

加えて、例えば夏季等の気温が高い条件では吸気の密度低下によりガスタービンの出力低下を招く恐れがあるが、本実施の形態ではガスタービンの吸気を冷却することによりガスタービンの出力低下を抑制することができる。また、ガスタービンの出力低下を補う目的で別の発電設備を準備することがあるが、本実施の形態の場合、発電設備を別途用意せざるを得ない状況が生じ難く、発電設備を必要最小限に抑えることもできる。   In addition, the gas turbine output may be reduced due to a decrease in intake air density under high temperature conditions such as in summer, but in this embodiment, the gas turbine intake air is cooled to suppress the gas turbine output decrease. can do. In addition, another power generation facility may be prepared for the purpose of compensating for the decrease in the output of the gas turbine. However, in the case of this embodiment, it is difficult to create a separate power generation facility, and the power generation facility is the minimum necessary. It can also be kept to a limit.

さらに、ガスタービンの吸気冷却系統において、調節弁99を有するバイパス経路により第3冷媒の温度を調節することにより、過度の冷却により吸気冷却熱交換器90の表面で吸気中の湿分が凍結することを防止するメリットもある。   Further, in the intake air cooling system of the gas turbine, by adjusting the temperature of the third refrigerant by the bypass path having the control valve 99, the moisture in the intake air freezes on the surface of the intake air cooling heat exchanger 90 due to excessive cooling. There is also a merit to prevent this.

<改造方法>
補助冷却設備62,62Aは、圧縮機を有する冷却サイクル系統の冷媒を冷却し、それにより冷却サイクル系統の圧縮機の起動トルクを軽減するものである。したがって、既存の冷却サイクル系統に対して追加可能なものであり、補助冷却機構62,62Aを追加設置することで、本発明の冷却サイクル系統を構成することができる。具体的には、冷媒を圧縮する冷媒圧縮機と、この冷媒圧縮機で圧縮された冷媒を冷却し凝縮させる凝縮器と、この凝縮器で凝縮された冷媒を受け入れる受液器と、この受液器からの冷媒を膨張させる膨張機構と、この膨張機構で膨張させた冷媒と熱交換させて冷却対象を冷却し冷媒圧縮機に供給される冷媒を蒸発させる蒸発機構とを備えた冷却サイクル系統が既にあれば、この既存の冷却サイクル系統に対して、補助冷媒を流通させる配管を上記受液器内に通し、この配管を流通する補助冷媒と熱交換させることにより上記冷媒圧縮機の起動前に受液器内の冷媒を冷却するようになすことで、本発明の冷却サイクル系統が構成可能である。
<How to modify>
The auxiliary cooling facilities 62 and 62A cool the refrigerant of the cooling cycle system having the compressor, thereby reducing the starting torque of the compressor of the cooling cycle system. Therefore, it can be added to the existing cooling cycle system, and the cooling cycle system of the present invention can be configured by additionally installing the auxiliary cooling mechanisms 62 and 62A. Specifically, a refrigerant compressor that compresses the refrigerant, a condenser that cools and condenses the refrigerant compressed by the refrigerant compressor, a receiver that receives the refrigerant condensed by the condenser, and the liquid receiver A cooling cycle system comprising: an expansion mechanism for expanding the refrigerant from the vessel; and an evaporation mechanism for heat-exchanging the refrigerant expanded by the expansion mechanism to cool a cooling target and evaporate the refrigerant supplied to the refrigerant compressor If it already exists, the piping for circulating the auxiliary refrigerant is passed through the receiver for the existing cooling cycle system, and heat exchange is performed with the auxiliary refrigerant flowing through the piping before the refrigerant compressor is started. The cooling cycle system of the present invention can be configured by cooling the refrigerant in the liquid receiver.

<その他>
なお、以上においては、冷却サイクル61の冷媒圧縮機1や冷却サイクル60の圧縮機23,24の駆動源に電動機を用いたが、ガスタービンを各圧縮機の駆動軸に連結しガスタービンを駆動源として用いることもできる。ガスタービンは一軸式でも二軸式でも良いが、起動時の発生トルクが小さな一軸式ガスタービンの方が本発明の適用効果が大きい。ガスタービンを圧縮機の駆動源に用いる場合、前述した第2の実施の形態ではガスタービンの吸気を冷却して発電出力低下を防止する構成としたが、冷却サイクル61の冷媒圧縮機1や冷却サイクル60の圧縮機23,24の駆動用ガスタービンの吸気を冷却する構成とすることもできる。この場合、気温が高い場合でも、各冷却サイクルの圧縮機の出力低下を防止することができ、年間を通じて天然ガス液化の生産量を安定に保持する効果が得られる。
<Others>
In the above description, an electric motor is used as a drive source for the refrigerant compressor 1 of the cooling cycle 61 and the compressors 23 and 24 of the cooling cycle 60. However, the gas turbine is connected to the drive shaft of each compressor to drive the gas turbine. It can also be used as a source. The gas turbine may be a single-shaft type or a double-shaft type, but a single-shaft gas turbine that generates a small amount of torque at the time of startup has a greater effect of applying the present invention. In the case where the gas turbine is used as a drive source of the compressor, in the second embodiment described above, the intake of the gas turbine is cooled to prevent the power generation output from being lowered. A configuration may also be adopted in which the intake air of the gas turbine for driving the compressors 23 and 24 in the cycle 60 is cooled. In this case, even when the temperature is high, it is possible to prevent the output of the compressor of each cooling cycle from being lowered, and the effect of stably maintaining the production amount of natural gas liquefaction throughout the year can be obtained.

また、補助冷却機構62,62Aで用いる補助冷媒としてプロパンやアンモニアを用いたが、冷却温度の条件を満たすものであれば他の冷媒物質を用いても良い。また、補助冷却機構62,62Aを用いて受液器11の第1冷媒の冷却温度を−25℃程度と想定したが、冷媒圧縮機1の起動トルクの低減に働く想定温度であれば良い。例えば、補助冷却機構62,62Aによる冷媒圧縮機1の起動時点での受液器11内の第1冷媒の想定冷却温度の例としては、凝縮器10の出口の冷媒温度以下、或いは、冷媒圧縮機1の定格運転時の吸い込み圧力に対応する冷媒の飽和温度以下が挙げられる。しかし、第1冷媒の冷却温度が低いほど起動時のトルクは小さくはなるが、冷却温度が低過ぎると定格運転時の温度条件との差が大きくなり起動後に定格運転条件に到達するまでの時間が長くなる場合がある。したがって、冷媒圧縮機1の駆動源のトルクを上回らないよう、実際の駆動源のトルク特性に合わせて過冷却とならない程度に受液器11内の第1冷媒の冷却温度を設定すれば良い。   Further, although propane or ammonia is used as the auxiliary refrigerant used in the auxiliary cooling mechanisms 62 and 62A, other refrigerant substances may be used as long as the cooling temperature condition is satisfied. Moreover, although the cooling temperature of the 1st refrigerant | coolant of the liquid receiver 11 was assumed to be about -25 degreeC using the auxiliary | assistant cooling mechanisms 62 and 62A, what is necessary is just the assumption temperature which acts on reduction of the starting torque of the refrigerant compressor 1. For example, as an example of the assumed cooling temperature of the first refrigerant in the receiver 11 at the time of starting the refrigerant compressor 1 by the auxiliary cooling mechanisms 62 and 62A, the refrigerant temperature is equal to or lower than the refrigerant temperature at the outlet of the condenser 10 Below the saturation temperature of the refrigerant corresponding to the suction pressure during the rated operation of the machine 1. However, the lower the cooling temperature of the first refrigerant, the smaller the torque at the time of starting, but if the cooling temperature is too low, the difference from the temperature condition at the rated operation becomes large, and the time until the rated operating condition is reached after starting. May become longer. Therefore, the cooling temperature of the first refrigerant in the liquid receiver 11 may be set so as not to overcool in accordance with the torque characteristics of the actual drive source so as not to exceed the torque of the drive source of the refrigerant compressor 1.

さらに、本実施の形態では、単独の第1冷却サイクル系統61に、専用の補助冷却機構62,62Aを設ける場合を例に挙げて説明したが、冷媒圧縮機を有する複数の冷却サイクル系統に共用の補助冷却機構を設けることも考えられる。その場合、各冷却サイクル系統を起動するタイミングをずらすように運転スケジュールを組めば、各冷却サイクル系統の受液器内に設置する蒸発器以外の機器(図1の圧縮機81・凝縮器82・膨張弁83・電動機84、図7の吸収式冷却器96等)は増設する必要がないので設備コストの増加を抑制することができる。   Furthermore, in the present embodiment, the case where the dedicated auxiliary cooling mechanisms 62 and 62A are provided in the single first cooling cycle system 61 has been described as an example, but it is shared by a plurality of cooling cycle systems having refrigerant compressors. It is also possible to provide an auxiliary cooling mechanism. In that case, if an operation schedule is made so as to shift the timing of starting each cooling cycle system, devices other than the evaporator installed in the liquid receiver of each cooling cycle system (the compressor 81, the condenser 82, Since the expansion valve 83, the electric motor 84, the absorption cooler 96 in FIG. 7 and the like do not need to be added, an increase in equipment cost can be suppressed.

Claims (10)

冷媒を圧縮する冷媒圧縮機と、
この冷媒圧縮機で圧縮された冷媒を冷却し凝縮させる凝縮器と、
この凝縮器で凝縮された冷媒を受け入れる受液器と、
この受液器からの冷媒を膨張させる膨張機構と、
この膨張機構で膨張させた冷媒と熱交換させて冷却対象を冷却し前記冷媒圧縮機に供給される冷媒を蒸発させる蒸発機構と、
補助冷媒を流通させ前記受液器内を通る配管を有し、この配管を流通する補助冷媒と熱交換させることにより前記冷媒圧縮機の起動前に前記受液器内の冷媒を冷却する補助冷却機構と
を備えることを特徴とする冷却サイクル系統。
A refrigerant compressor for compressing the refrigerant;
A condenser that cools and condenses the refrigerant compressed by the refrigerant compressor;
A liquid receiver for receiving the refrigerant condensed in the condenser;
An expansion mechanism for expanding the refrigerant from the liquid receiver;
An evaporating mechanism that heat-exchanges with the refrigerant expanded by the expansion mechanism to cool the object to be cooled and evaporate the refrigerant supplied to the refrigerant compressor;
Auxiliary cooling for cooling the refrigerant in the liquid receiver before starting the refrigerant compressor by exchanging heat with the auxiliary refrigerant flowing through the pipe through the auxiliary refrigerant and passing through the pipe A cooling cycle system comprising a mechanism.
請求項1の冷却サイクル系統において、前記補助冷却機構が、前記冷媒圧縮機の起動前に前記凝縮器の出口の冷媒温度以下に前記受液器内の冷媒を冷却することを特徴とする冷却サイクル系統。   2. The cooling cycle system according to claim 1, wherein the auxiliary cooling mechanism cools the refrigerant in the liquid receiver below a refrigerant temperature at an outlet of the condenser before the refrigerant compressor is started. system. 請求項1の冷却サイクル系統において、前記補助冷却機構が、前記冷媒圧縮機の起動前に前記冷媒圧縮機の定格運転時の吸い込み圧力に対応する冷媒の飽和温度以下に前記受液器内の冷媒を冷却することを特徴とする冷却サイクル系統。   2. The cooling cycle system according to claim 1, wherein the auxiliary cooling mechanism has a refrigerant in the receiver that is equal to or lower than a saturation temperature of a refrigerant corresponding to a suction pressure during a rated operation of the refrigerant compressor before the refrigerant compressor is started. Cooling cycle system characterized by cooling. 請求項1の冷却サイクル系統において、前記補助冷却機構が、補助冷媒を圧縮する圧縮機、この圧縮機で圧縮された補助冷媒を凝縮させる凝縮器、この凝縮器で凝縮させた補助冷媒を膨張させる膨張弁、及び前記受液器内に設置され前記膨張弁で膨張し前記配管を流通する補助冷媒と熱交換させて前記受液器内の冷媒を冷却する蒸発器を備えていることを特徴とする冷却サイクル系統。   2. The cooling cycle system according to claim 1, wherein the auxiliary cooling mechanism expands the compressor that compresses the auxiliary refrigerant, the condenser that condenses the auxiliary refrigerant compressed by the compressor, and the auxiliary refrigerant condensed by the condenser. An expansion valve and an evaporator that is installed in the liquid receiver and expands by the expansion valve and exchanges heat with an auxiliary refrigerant that flows through the pipe to cool the refrigerant in the liquid receiver, Cooling cycle system. 請求項1の冷却サイクル系統において、前記補助冷却機構が、補助冷媒を冷却する吸収式冷却機、及び前記受液器内に設置され前記吸収式冷却機で冷却され前記配管を流通する補助冷媒と熱交換させて前記受液器内の冷媒を冷却する蒸発器を備えていることを特徴とする冷却サイクル系統。   2. The cooling cycle system according to claim 1, wherein the auxiliary cooling mechanism is an absorption chiller that cools the auxiliary refrigerant, and an auxiliary refrigerant that is installed in the receiver and is cooled by the absorption chiller and flows through the pipe. A cooling cycle system comprising an evaporator for heat exchange to cool the refrigerant in the liquid receiver. 請求項1〜5のいずれかの冷却サイクル系統である第1冷却サイクル系統と、
この第1冷却サイクル系統で冷却された被冷却媒体を冷媒として天然ガスを冷却し液化する熱交換器と、
この交換器で天然ガスを冷却した被冷却媒体を圧縮し前記第1冷却サイクル系統に供給する第2冷却サイクル系統と
を備えた天然ガス液化設備。
A first cooling cycle system which is the cooling cycle system according to claim 1;
A heat exchanger that cools and liquefies natural gas using the cooled medium cooled in the first cooling cycle system as a refrigerant;
A natural gas liquefaction facility comprising: a second cooling cycle system that compresses a medium to be cooled that has cooled natural gas by the exchanger and supplies the compressed medium to the first cooling cycle system.
請求項5の冷却サイクル系統を備えた天然ガス液化設備において、
発電用のガスタービン、このガスタービンの排気から排熱を回収して水蒸気を発生させる排熱回収ボイラ、前記ガスタービンの吸気を冷却する吸気冷却系統、及びこの吸気冷却系統に設けられ前記補助冷却系統の補助冷媒と吸気冷却用の冷媒を熱交換させる蒸発器をさらに備え、
前記補助冷却機構が、前記受液器内に設置した蒸発器と前記吸気冷却系統に設置した蒸発器とに、補助冷媒の供給先が切り替え可能なように配管が構成されていることを特徴とする天然ガス液化設備。
In the natural gas liquefaction equipment provided with the cooling cycle system of claim 5,
Gas turbine for power generation, exhaust heat recovery boiler that recovers exhaust heat from the exhaust of the gas turbine to generate water vapor, an intake air cooling system that cools the intake air of the gas turbine, and the auxiliary cooling that is provided in the intake air cooling system An evaporator for exchanging heat between the auxiliary refrigerant of the system and the refrigerant for cooling the intake air;
The auxiliary cooling mechanism is configured such that a pipe is configured so that an auxiliary refrigerant supply destination can be switched between an evaporator installed in the receiver and an evaporator installed in the intake air cooling system. Natural gas liquefaction equipment.
冷媒を圧縮する冷媒圧縮機と、この冷媒圧縮機で圧縮された冷媒を冷却し凝縮させる凝縮器と、この凝縮器で凝縮された冷媒を受け入れる受液器と、この受液器からの冷媒を膨張させる膨張機構と、この膨張機構で膨張させた冷媒と熱交換させて冷却対象を冷却し前記冷媒圧縮機に供給される冷媒を蒸発させる蒸発機構とを備えた冷却サイクル系統の運転方法において、
前記受液器内に補助冷媒を通し補助冷媒と熱交換させることにより前記冷媒圧縮機の起動前に前記受液器内の冷媒を冷却する
ことを特徴とする冷却サイクル系統の運転方法。
A refrigerant compressor that compresses the refrigerant, a condenser that cools and condenses the refrigerant compressed by the refrigerant compressor, a liquid receiver that receives the refrigerant condensed by the condenser, and a refrigerant from the liquid receiver In an operation method of a cooling cycle system comprising: an expansion mechanism that expands; and an evaporation mechanism that causes heat exchange with the refrigerant expanded by the expansion mechanism to cool a cooling target and evaporate the refrigerant supplied to the refrigerant compressor.
An operation method of a cooling cycle system, wherein the refrigerant in the liquid receiver is cooled before the refrigerant compressor is started by passing an auxiliary refrigerant through the liquid receiver and exchanging heat with the auxiliary refrigerant.
請求項8の冷却サイクル系統の運転方法において、前記冷媒圧縮機を起動させた後、前記受液器内に設置した蒸発器に供給していた補助冷媒をガスタービンの吸気冷却用の冷媒に用いることを特徴とする冷却サイクル系統の運転方法。   9. The operation method of the cooling cycle system according to claim 8, wherein after starting the refrigerant compressor, the auxiliary refrigerant supplied to the evaporator installed in the liquid receiver is used as a refrigerant for cooling the intake air of the gas turbine. An operation method of a cooling cycle system characterized by the above. 冷媒を圧縮する冷媒圧縮機と、この冷媒圧縮機で圧縮された冷媒を冷却し凝縮させる凝縮器と、この凝縮器で凝縮された冷媒を受け入れる受液器と、この受液器からの冷媒を膨張させる膨張機構と、この膨張機構で膨張させた冷媒と熱交換させて冷却対象を冷却し前記冷媒圧縮機に供給される冷媒を蒸発させる蒸発機構とを備えた冷却サイクル系統の改造方法において、
補助冷媒を流通させる配管を前記受液器内に通し、この配管を流通する補助冷媒と熱交換させることにより前記冷媒圧縮機の起動前に前記受液器内の冷媒を冷却するようになす
ことを特徴とする冷却サイクル系統の改造方法。
A refrigerant compressor that compresses the refrigerant, a condenser that cools and condenses the refrigerant compressed by the refrigerant compressor, a liquid receiver that receives the refrigerant condensed by the condenser, and a refrigerant from the liquid receiver In a remodeling method of a cooling cycle system comprising: an expansion mechanism that expands; and an evaporation mechanism that causes heat exchange with the refrigerant expanded by the expansion mechanism to cool a cooling target and evaporate the refrigerant supplied to the refrigerant compressor.
Passing a pipe through which the auxiliary refrigerant flows through the receiver, and heat exchange with the auxiliary refrigerant flowing through the pipe, thereby cooling the refrigerant in the receiver before starting the refrigerant compressor. Remodeling method of cooling cycle system characterized by
JP2007555365A 2007-04-27 2007-04-27 Cooling cycle system, natural gas liquefaction facility, cooling cycle system operating method and remodeling method Pending JPWO2008139528A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/059218 WO2008139528A1 (en) 2007-04-27 2007-04-27 Cooling cycle system, natural gas liquefaction equipment, method for operating cooling cycle system, and method for modifying cooling cycle system

Publications (1)

Publication Number Publication Date
JPWO2008139528A1 true JPWO2008139528A1 (en) 2010-07-29

Family

ID=40001764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007555365A Pending JPWO2008139528A1 (en) 2007-04-27 2007-04-27 Cooling cycle system, natural gas liquefaction facility, cooling cycle system operating method and remodeling method

Country Status (3)

Country Link
JP (1) JPWO2008139528A1 (en)
CN (1) CN101449115B (en)
WO (1) WO2008139528A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2215414A2 (en) * 2007-12-04 2010-08-11 Shell Internationale Research Maatschappij B.V. Method and apparatus for cooling and/or liquefying a hydrocarbon stream
FR2944095B1 (en) * 2009-04-03 2011-06-03 Total Sa NATURAL GAS LIQUEFACTION PROCESS USING LOW TEMPERATURE EXHAUST GAS TURBINES
WO2017072632A1 (en) * 2015-10-30 2017-05-04 Sabic Global Technologies B.V. Hybrid propylene and absorption chiller system
US11913716B2 (en) 2018-01-12 2024-02-27 Nuovo Pignone Tecnologie—S.R.L. Thermodynamic system containing a fluid, and method for reducing pressure therein
US10935312B2 (en) * 2018-08-02 2021-03-02 Air Products And Chemicals, Inc. Balancing power in split mixed refrigerant liquefaction system
JP2022020088A (en) * 2020-06-26 2022-02-01 キヤノン株式会社 Cooling device, semiconductor manufacturing apparatus and semiconductor manufacturing method
IT202000020476A1 (en) * 2020-08-26 2022-02-26 Nuovo Pignone Tecnologie Srl A SYSTEM AND METHOD FOR REDUCING SETTLEMENT PRESSURE USING MULTIPLE COLLECTOR TANK SECTIONS
WO2022042879A1 (en) * 2020-08-26 2022-03-03 Nuovo Pignone Tecnologie - S.R.L. A system and a method for reducing settle-out pressure using an auxiliary compressor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768455U (en) * 1980-10-13 1982-04-24
JPS6048470A (en) * 1983-08-26 1985-03-16 株式会社東芝 Refrigerator
JPS62280559A (en) * 1986-05-26 1987-12-05 三菱電機株式会社 Refrigerator
JPH11125471A (en) * 1997-10-21 1999-05-11 Denso Corp Supercritical refrigeration cycle
JP2001066042A (en) * 1999-08-23 2001-03-16 Sanyo Electric Co Ltd Low-temperature cabinet
JP2002277078A (en) * 2001-03-16 2002-09-25 Mitsubishi Electric Corp Refrigerating cycle
JP2002322996A (en) * 2001-04-26 2002-11-08 Hitachi Ltd Method of driving and controlling centrifugal compressor and apparatus of driving and controlling the same
JP2005145389A (en) * 2003-11-19 2005-06-09 Denso Corp Refrigerating cycle device
JP2005315127A (en) * 2004-04-27 2005-11-10 Mitsubishi Heavy Ind Ltd Gas turbine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI314637B (en) * 2003-01-31 2009-09-11 Shell Int Research Process of liquefying a gaseous, methane-rich feed to obtain liquefied natural gas

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768455U (en) * 1980-10-13 1982-04-24
JPS6048470A (en) * 1983-08-26 1985-03-16 株式会社東芝 Refrigerator
JPS62280559A (en) * 1986-05-26 1987-12-05 三菱電機株式会社 Refrigerator
JPH11125471A (en) * 1997-10-21 1999-05-11 Denso Corp Supercritical refrigeration cycle
JP2001066042A (en) * 1999-08-23 2001-03-16 Sanyo Electric Co Ltd Low-temperature cabinet
JP2002277078A (en) * 2001-03-16 2002-09-25 Mitsubishi Electric Corp Refrigerating cycle
JP2002322996A (en) * 2001-04-26 2002-11-08 Hitachi Ltd Method of driving and controlling centrifugal compressor and apparatus of driving and controlling the same
JP2005145389A (en) * 2003-11-19 2005-06-09 Denso Corp Refrigerating cycle device
JP2005315127A (en) * 2004-04-27 2005-11-10 Mitsubishi Heavy Ind Ltd Gas turbine

Also Published As

Publication number Publication date
CN101449115B (en) 2011-09-14
WO2008139528A1 (en) 2008-11-20
CN101449115A (en) 2009-06-03

Similar Documents

Publication Publication Date Title
JP5241707B2 (en) Method and apparatus for reliquefying steam
US8857186B2 (en) Heat engine cycles for high ambient conditions
US8572972B2 (en) System and method for secondary energy production in a compressed air energy storage system
US7971424B2 (en) Heat cycle system and composite heat cycle electric power generation system
JPWO2008139528A1 (en) Cooling cycle system, natural gas liquefaction facility, cooling cycle system operating method and remodeling method
JP4884527B2 (en) Natural gas liquefaction plant and power supply equipment for natural gas liquefaction plant
RU2719413C2 (en) Systems with closed regenerative thermodynamic cycle of electric power generation and methods of their operation
US11300010B2 (en) Cooling equipment, combined cycle plant comprising same, and cooling method
US11913716B2 (en) Thermodynamic system containing a fluid, and method for reducing pressure therein
JP4990112B2 (en) Refrigeration cycle system, natural gas liquefaction facility, heat pump system, and method for remodeling refrigeration cycle system
CN104884886A (en) Process and apparatus for generating electric energy
JP5023148B2 (en) Power supply facility for natural gas liquefaction plant, control device and control method thereof, and natural gas liquefaction plant
JP4879321B2 (en) Natural gas liquefaction plant and operation method thereof
US11293671B2 (en) Refrigeration cycle for liquid oxygen densification
CN116317177A (en) Carbon dioxide energy storage system capable of adapting to wide energy storage pressure range and control method thereof
JP4976426B2 (en) Refrigerating cycle system, natural gas liquefaction facility, and remodeling method of refrigeration cycle system
EP2921761B1 (en) Tank internal pressure suppression device
JP5048059B2 (en) Natural gas liquefaction equipment
JP2000291447A (en) Low-temperature turbine power generating system
JP3211942B2 (en) Method and apparatus for driving coal gasification combined cycle system
KR102216716B1 (en) Gas heat-pump system
KR20190046080A (en) Gas heat-pump system
WO2020228986A1 (en) Compressor train with combined gas turbine and steam turbine cycle
WO2020251480A1 (en) Water sourced heating-cooling machine with refrigerant cooling unit that cools with an external cooling source and heating-cooling method
WO2022042879A1 (en) A system and a method for reducing settle-out pressure using an auxiliary compressor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703