JP2005145389A - Refrigerating cycle device - Google Patents

Refrigerating cycle device Download PDF

Info

Publication number
JP2005145389A
JP2005145389A JP2003389745A JP2003389745A JP2005145389A JP 2005145389 A JP2005145389 A JP 2005145389A JP 2003389745 A JP2003389745 A JP 2003389745A JP 2003389745 A JP2003389745 A JP 2003389745A JP 2005145389 A JP2005145389 A JP 2005145389A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
compressor
radiator
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003389745A
Other languages
Japanese (ja)
Other versions
JP4352867B2 (en
Inventor
Hiromi Ota
宏已 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003389745A priority Critical patent/JP4352867B2/en
Publication of JP2005145389A publication Critical patent/JP2005145389A/en
Application granted granted Critical
Publication of JP4352867B2 publication Critical patent/JP4352867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle device capable of reliably protecting each equipment by determining the effect by the high-pressure side pressure accompanied by the refrigerant temperature from the starting stage. <P>SOLUTION: The refrigerating cycle device comprises a compressor 1 to compress sucked refrigerant, a radiator 2 to radiate the heat of the refrigerant compressed by the compressor 1 into outside air to perform cooling, a pressure control means 3 which decompresses the refrigerant cooled by the radiator 2 and controls the refrigerant pressure on the outlet side of the radiator 2 based on the refrigerant temperature at the outlet side of the radiator 2, a temperature detection means 6 to detect the refrigerant temperature, and a control device 8 to control the compressor 1. The control device 8 determines the operation of the compressor 1 according to the refrigerant temperature detected by the temperature detection means 6 when starting the compressor 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、放熱器出口側の冷媒温度に基づいて、放熱器出口側の冷媒圧力を制御すると共に、二酸化炭素(CO)を冷媒として高圧側圧力が臨界圧力を超える領域で使用されるものに適用して好適な冷凍サイクル装置に関するものである。 The present invention controls the refrigerant pressure on the radiator outlet side based on the refrigerant temperature on the radiator outlet side, and is used in a region where the high pressure side pressure exceeds the critical pressure using carbon dioxide (CO 2 ) as a refrigerant. The present invention relates to a refrigeration cycle apparatus suitable for application to the above.

従来の冷凍サイクル装置として、特許文献1に示されるものが知られている。即ち、この冷凍サイクル装置は、冷媒として例えば二酸化炭素(CO)が用いられ、圧縮機の高圧側圧力が臨界圧力を超える領域で使用される車両用の超臨界冷凍サイクル装置としており、圧縮機から吐出される冷媒を冷却する放熱器の出口側の冷媒温度を検出する温度検出手段が設けられている。そして、温度検出手段によって検出された冷媒温度から放熱器出口側の冷媒圧力が推定されるようにしており、冷凍サイクル装置の作動中において、冷媒温度が所定温度を超えた時に、圧縮機が停止されるようにしている。 As a conventional refrigeration cycle apparatus, one disclosed in Patent Document 1 is known. That is, this refrigeration cycle apparatus is a supercritical refrigeration cycle apparatus for vehicles that uses, for example, carbon dioxide (CO 2 ) as a refrigerant and is used in a region where the high pressure side pressure of the compressor exceeds the critical pressure. Temperature detecting means for detecting the refrigerant temperature on the outlet side of the radiator that cools the refrigerant discharged from the radiator is provided. Then, the refrigerant pressure on the radiator outlet side is estimated from the refrigerant temperature detected by the temperature detecting means, and the compressor is stopped when the refrigerant temperature exceeds a predetermined temperature during the operation of the refrigeration cycle apparatus. To be.

これにより、例えばフロン系の冷媒を用いた冷凍サイクル装置おける圧力検出手段(高圧側圧力センサ)を不要として、製造原価上昇を抑制しつつ、冷凍サイクル装置内の各機器を保護(高圧側圧力に対する保護)できるようにしている。
特開平11−125471号公報
This eliminates the need for pressure detection means (high pressure side pressure sensor) in a refrigeration cycle apparatus using, for example, a chlorofluorocarbon refrigerant, and protects each device in the refrigeration cycle apparatus while suppressing an increase in manufacturing costs (for high pressure side pressure). Protection).
Japanese Patent Laid-Open No. 11-125471

しかしながら、上記従来技術は、車両の通常走行時において、冷凍サイクル装置(圧縮機)を作動させている場合に、冷媒温度に応じて圧縮機の作動を停止するものであり、圧縮機の起動時の段階から高圧側圧力に対して各機器を保護しようとする思想は無い。   However, the above-described prior art stops the operation of the compressor according to the refrigerant temperature when the refrigeration cycle apparatus (compressor) is operated during normal driving of the vehicle. There is no idea to protect each device against the high pressure side pressure from this stage.

即ち、例えば走行後でエンジンルーム内の温度が高い状態で、風の無い場所に車両が停止されると、エンジンルーム内の高温の空気によって放熱器が加熱される場合がある。   That is, for example, when the vehicle is stopped at a place where there is no wind in a state where the temperature in the engine room is high after traveling, the radiator may be heated by the high-temperature air in the engine room.

この状態でエンジンを始動し、同時に冷凍サイクル装置(圧縮機)も起動させると、放熱器の温度が高いために、冷媒は放熱器で充分に冷却されずに、比容積が大きいまま圧力制御弁(減圧手段)に流入する。すると、比容積の大きくなった冷媒は、通常の弁開度では充分に圧力制御弁を流通できなくなるので、その分、放熱器側に圧力が跳ね返り、高圧側圧力が急上昇して一気に異常高圧に到達してしまうと言う問題があった。   When the engine is started in this state and the refrigeration cycle device (compressor) is started at the same time, the temperature of the radiator is high, so the refrigerant is not sufficiently cooled by the radiator and the pressure control valve remains large in specific volume. Flows into (pressure reducing means). As a result, the refrigerant with a large specific volume cannot sufficiently flow through the pressure control valve at the normal valve opening, so that the pressure rebounds to the radiator side, and the high-pressure side pressure suddenly rises to an abnormally high pressure. There was a problem that it would reach.

本発明の目的は、上記問題に鑑み、起動時の段階から冷媒温度に伴う高圧側圧力による影響を判断して、各機器の保護を確実に行うことのできる冷凍サイクル装置を提供することにある。   In view of the above problems, an object of the present invention is to provide a refrigeration cycle apparatus that can reliably protect each device by determining the influence of the high-pressure side pressure accompanying the refrigerant temperature from the start-up stage. .

本発明は上記目的を達成するために、以下の技術的手段を採用する。   In order to achieve the above object, the present invention employs the following technical means.

請求項1に記載の発明では、吸入した冷媒を圧縮する圧縮機(1)と、この圧縮機(1)で圧縮された冷媒の熱を外部空気に放熱して冷却する放熱器(2)と、この放熱器(2)により冷却された冷媒を減圧すると共に、放熱器(2)出口側の冷媒圧力を放熱器(2)出口側の冷媒温度に基づいて制御する圧力制御手段(3)と、放熱器(2)出口側の冷媒温度を検出する温度検出手段(6)と、圧縮機(1)を制御する制御装置(8)とを有する冷凍サイクル装置において、制御装置(8)は、圧縮機(1)を起動させる際に、温度検出手段(6)によって検出される冷媒温度に応じて、圧縮機(1)の作動を決定することを特徴としている。   In the first aspect of the present invention, a compressor (1) that compresses the sucked refrigerant, and a radiator (2) that radiates and cools the heat of the refrigerant compressed by the compressor (1) to external air. A pressure control means (3) for reducing the pressure of the refrigerant cooled by the radiator (2) and controlling the refrigerant pressure on the outlet side of the radiator (2) based on the refrigerant temperature on the outlet side of the radiator (2); In the refrigeration cycle apparatus having the temperature detecting means (6) for detecting the refrigerant temperature on the outlet side of the radiator (2) and the control device (8) for controlling the compressor (1), the control device (8) includes: When starting the compressor (1), the operation of the compressor (1) is determined according to the refrigerant temperature detected by the temperature detecting means (6).

これにより、起動時の段階から冷媒温度に基づいて圧縮機(1)の作動を制御することで、冷凍サイクル内が異常高圧に到達する頻度を低減して、各機器の保護を確実に行うことができる。   Thereby, by controlling the operation of the compressor (1) based on the refrigerant temperature from the start-up stage, the frequency at which the inside of the refrigeration cycle reaches an abnormally high pressure is reduced, and each device is reliably protected. Can do.

請求項2に記載の発明では、制御装置(8)は、冷媒温度が予め定めた所定温度より高い時に、圧縮機(1)の吐出量を必要吐出量に対して低吐出量側にする、あるいは圧縮機(1)自身の起動を禁止することを特徴としている。   In the invention according to claim 2, when the refrigerant temperature is higher than a predetermined temperature, the control device (8) sets the discharge amount of the compressor (1) to the low discharge amount side with respect to the required discharge amount. Alternatively, the compressor (1) itself is prohibited from starting.

これにより、高圧側圧力が一気に異常高圧に到達してしまうのを防止することができる。   As a result, it is possible to prevent the high-pressure side pressure from reaching an abnormally high pressure at once.

請求項3に記載の発明では、放熱器(2)には、放熱を促進させる送風機(2a)が設けられており、制御装置(2)は、圧縮機(1)の吐出量を必要吐出量に対して低吐出量側にする、あるいは圧縮機(1)自身の起動を禁止する間に送風機(2a)を作動させることを特徴としている。   In the invention according to claim 3, the radiator (2) is provided with a blower (2a) that promotes heat radiation, and the control device (2) determines the discharge amount of the compressor (1) as the required discharge amount. The blower (2a) is operated while the discharge amount is set to the lower side or the start of the compressor (1) is prohibited.

これにより、放熱器(2)内の冷媒を早急に冷却でき、冷媒圧力を低下させることができるので、短時間で通常の圧縮機(1)の起動に移行することができる。   Thereby, since the refrigerant | coolant in a heat radiator (2) can be cooled rapidly and a refrigerant | coolant pressure can be reduced, it can transfer to starting of a normal compressor (1) in a short time.

請求項4に記載の発明では、圧力制御手段(3)により減圧された冷媒を蒸発させて空調用空気を冷却する蒸発器(4)を有し、圧力制御手段(3)は、放熱器(2)から流出する冷媒を減圧膨張させて、蒸発器(4)で蒸発された気相冷媒を吸引すると共に、膨張エネルギーを圧力エネルギーに変換して圧縮機(1)の吸入圧を上昇させるエジェクタ(3a)であることを特徴としている。   In invention of Claim 4, it has the evaporator (4) which evaporates the refrigerant | coolant decompressed by the pressure control means (3), and cools the air for an air conditioning, A pressure control means (3) is a radiator ( An ejector that expands the refrigerant flowing out from 2) under reduced pressure, sucks the vapor-phase refrigerant evaporated in the evaporator (4), and converts the expansion energy into pressure energy to increase the suction pressure of the compressor (1). (3a).

これにより、エジェクタ(3a)においては、滑らかに縮小するノズル部を有する分、温度上昇に伴って比容積の大きくなった冷媒による影響(高圧側圧力が急上昇する)を受けやすいので、本発明を用いて好適である。   As a result, the ejector (3a) is susceptible to the influence of the refrigerant whose specific volume increases as the temperature rises (the pressure on the high-pressure side suddenly rises) because the nozzle portion is smoothly reduced. It is suitable for use.

請求項5に記載の発明では、温度検出手段(6)は、放熱器(2)出口側の冷媒配管に設けられた冷媒温度センサ(6)であることを特徴としており、容易に冷媒温度を検出することができる。   The invention according to claim 5 is characterized in that the temperature detecting means (6) is a refrigerant temperature sensor (6) provided in the refrigerant pipe on the outlet side of the radiator (2), and the temperature of the refrigerant can be easily measured. Can be detected.

また、請求項6に記載の発明のように、温度検出手段(6)は、放熱器(2)近傍の外部空気の温度を検出する空気温度センサとしても良く、上記請求項5に記載の発明と同様に、容易に冷媒温度を検出できると共に、通常、冷凍サイクル装置に設定される外気温度検出用の温度センサと兼用することも可能であり、兼用する場合は安価な対応が可能となる。   Further, as in the invention described in claim 6, the temperature detecting means (6) may be an air temperature sensor for detecting the temperature of the external air in the vicinity of the radiator (2), and the invention described in claim 5 above. Similarly to the above, it is possible to easily detect the refrigerant temperature, and it is also possible to commonly use a temperature sensor for detecting the outside air temperature set in the refrigeration cycle apparatus.

請求項7に記載の発明では、圧縮機(1)によって圧縮される冷媒の圧力は、臨界圧力を超えるように設定されたことを特徴としている。   The invention described in claim 7 is characterized in that the pressure of the refrigerant compressed by the compressor (1) is set to exceed the critical pressure.

これにより、作動圧力(高圧側圧力)が高い分、各機器の圧力に対する保護を行う上で有用なものとなる。   As a result, since the operating pressure (high-pressure side pressure) is high, it is useful for protecting the pressure of each device.

そして、請求項8に記載の発明のように、請求項7に記載の発明において、冷媒としてCOを用いることができる。 Then, as in the invention according to claim 8, in the invention described in claim 7, it is possible to use CO 2 as a refrigerant.

尚、上記各手段の括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows a corresponding relationship with the specific means of embodiment description mentioned later.

(第1実施形態)
本発明の第1実施形態を図1〜図4に示す。図1は、二酸化炭素(CO)を冷媒とする車両用の冷凍サイクル装置100を示す模式図であり、1は吸入した冷媒を高温高圧に圧縮する圧縮機であり、2は圧縮機1から吐出された冷媒の熱を外部空気に放熱して、この冷媒を冷却する放熱器(ガスクーラ)である。尚、圧縮機1は、電磁クラッチ1aを介して車両走行用エンジンから駆動力を得て駆動される。また、放熱器2には電動モータによって回転駆動すると共に、放熱器2での放熱を促進させる冷却ファン(本発明における送風機に対応)2aが設けられており、後述する制御装置8によってその作動が制御される。
(First embodiment)
A first embodiment of the present invention is shown in FIGS. FIG. 1 is a schematic diagram showing a refrigeration cycle apparatus 100 for a vehicle using carbon dioxide (CO 2 ) as a refrigerant, wherein 1 is a compressor that compresses the sucked refrigerant to high temperature and high pressure, and 2 is a compressor 1. A radiator (gas cooler) that radiates the heat of the discharged refrigerant to the outside air and cools the refrigerant. The compressor 1 is driven by obtaining a driving force from the vehicle travel engine via the electromagnetic clutch 1a. In addition, the radiator 2 is provided with a cooling fan (corresponding to a blower in the present invention) 2a that is driven to rotate by an electric motor and promotes heat radiation in the radiator 2, and the operation is controlled by a control device 8 described later. Be controlled.

3は放熱器2から流出した高圧(最大15MPa)の冷媒を減圧すると共に、放熱器2出口側の冷媒圧力を制御する圧力制御弁(本発明における圧力制御手段に対応)であり、この圧力制御弁3の弁開度は、放熱器2出口側の冷媒温度に応じて後述する制御装置8によって調節される。   Reference numeral 3 denotes a pressure control valve (corresponding to the pressure control means in the present invention) that controls the refrigerant pressure at the outlet side of the radiator 2 while reducing the pressure of the high-pressure (up to 15 MPa) refrigerant flowing out of the radiator 2. The valve opening degree of the valve 3 is adjusted by the control device 8 described later according to the refrigerant temperature on the outlet side of the radiator 2.

また、4は圧力制御弁3にて減圧されて気液2相状態となった冷媒の液相成分を蒸発させて車室内に吹出す空調用空気を冷却する蒸発器である。車室内に吹出す空調用空気は、電動モータによって回転駆動するブロワ4aによって発生されるようにしており、このブロワ4aは、後述する制御装置8によってその作動が制御される。更に、蒸発器4の空調用空気流れ後方には、冷却された空調用空気の温度を検出する空気温度センサ4bが設けられており、検出された温度信号(以下、蒸発器後方温度と呼ぶ)は、後述する制御装置8に出力される。   Reference numeral 4 denotes an evaporator that evaporates the liquid phase component of the refrigerant that has been depressurized by the pressure control valve 3 to be in a gas-liquid two-phase state, and cools the air-conditioning air that is blown into the passenger compartment. The air-conditioning air blown into the passenger compartment is generated by a blower 4a that is rotationally driven by an electric motor, and the operation of the blower 4a is controlled by a control device 8 to be described later. Further, an air temperature sensor 4b for detecting the temperature of the cooled air-conditioning air is provided behind the air-conditioning air flow of the evaporator 4, and a detected temperature signal (hereinafter referred to as an evaporator rear temperature). Is output to the control device 8 to be described later.

5は蒸発器4から流出される冷媒のうち、気相状態の冷媒と液相状態の冷媒とを分離すると共に、気相状態の冷媒を一時的に蓄えるアキュムレータである。上記の圧縮機1、放熱器2、圧力制御弁3、蒸発器4およびアキュムレータ5は、それぞれ冷媒配管によって順次接続されて閉回路を形成している。   Reference numeral 5 denotes an accumulator that separates the gas-phase refrigerant and the liquid-phase refrigerant from among the refrigerant flowing out of the evaporator 4 and temporarily stores the gas-phase refrigerant. The compressor 1, the radiator 2, the pressure control valve 3, the evaporator 4 and the accumulator 5 are sequentially connected by a refrigerant pipe to form a closed circuit.

そして、放熱器2の冷媒出口側には、放熱器2出口側の冷媒温度を検出し、検出された温度信号(冷媒温度)を後述する制御装置8に出力するサーミスタ式の出口温度センサ(本発明の温度検出手段に対応)6が設けられている。また、圧縮機1の吐出側には、圧縮機1によって圧縮された冷媒圧力を検出し、検出された圧力信号(吐出圧力)を後述する制御装置8に出力する圧力センサ7が設けられている。   On the refrigerant outlet side of the radiator 2, a thermistor-type outlet temperature sensor (this one) detects the refrigerant temperature at the outlet side of the radiator 2 and outputs the detected temperature signal (refrigerant temperature) to the control device 8 described later. (Corresponding to the temperature detecting means of the invention) 6 is provided. A pressure sensor 7 is provided on the discharge side of the compressor 1 to detect the refrigerant pressure compressed by the compressor 1 and output the detected pressure signal (discharge pressure) to a control device 8 described later. .

制御装置8は、圧力センサ7によって得られた吐出圧力に対して、圧力センサ7から放熱器2の出口側に至るまでの圧力損失分を差し引いて放熱器2出口側の冷媒圧力を算出する。そして、上記空気温度センサ4b、出口温度センサ6からの検出信号および圧力センサ7からの検出信号、算出値に基づいて、圧縮機1(電磁クラッチ1a)、冷却ファン2a、圧力制御弁3およびブロワ4aの作動を制御する。   The control device 8 calculates the refrigerant pressure on the outlet side of the radiator 2 by subtracting the pressure loss from the pressure sensor 7 to the outlet side of the radiator 2 from the discharge pressure obtained by the pressure sensor 7. Based on the detection signal from the air temperature sensor 4b, the outlet temperature sensor 6, the detection signal from the pressure sensor 7, and the calculated value, the compressor 1 (electromagnetic clutch 1a), the cooling fan 2a, the pressure control valve 3 and the blower Control the operation of 4a.

次に、冷凍サイクル装置100の作動について説明する。まず、COを冷媒とするこの冷凍サイクルの通常作動は、原理的には通常冷凍サイクルの作動と同じである。即ち、圧縮機1で気相状態の冷媒を圧縮し、この高温高圧の超臨界状態の冷媒を放熱器2にて冷却する。そして、圧力制御弁3により減圧して、気液2相状態となった冷媒を蒸発器4により蒸発させて、車室内に吹出す空調用空気から蒸発潜熱を奪って冷却する。更に、蒸発器4から流出される冷媒を、アキュムレータ5によって気液2相に分離し、気相状態の冷媒を圧縮機1に吸引させる。 Next, the operation of the refrigeration cycle apparatus 100 will be described. First, the normal operation of this refrigeration cycle using CO 2 as a refrigerant is in principle the same as the operation of the normal refrigeration cycle. That is, the refrigerant in the gas phase is compressed by the compressor 1, and the high-temperature and high-pressure supercritical refrigerant is cooled by the radiator 2. Then, the pressure is reduced by the pressure control valve 3, the refrigerant in a gas-liquid two-phase state is evaporated by the evaporator 4, and the latent heat of evaporation is taken away from the air-conditioning air blown into the passenger compartment to cool the refrigerant. Further, the refrigerant flowing out of the evaporator 4 is separated into two phases of gas and liquid by the accumulator 5, and the refrigerant in the gas phase is sucked into the compressor 1.

この時、制御装置8は、空気温度センサ4bによって得られる実際の蒸発器後方温度が予め定めた蒸発器所定温度を超えた時に圧縮機1(電磁クラッチ1a)をONさせ、また、蒸発器後方温度が蒸発器所定温度以下となった時には圧縮機1(電磁クラッチ1a)をOFFさせて蒸発器4のフロストを防止する。   At this time, the control device 8 turns on the compressor 1 (electromagnetic clutch 1a) when the actual evaporator rear temperature obtained by the air temperature sensor 4b exceeds a predetermined evaporator predetermined temperature, and the evaporator rear When the temperature falls below the predetermined temperature of the evaporator, the compressor 1 (electromagnetic clutch 1a) is turned off to prevent the evaporator 4 from being frosted.

また、制御装置8は、放熱器2出口側の冷媒温度に対して冷凍サイクルの成績係数COP(蒸発過程のエンタルピ変化量Δi/圧縮過程のエンタルピ変化量ΔL)が最大となるように、圧力制御弁3の弁開度を調節して放熱器2出口側の冷媒圧力(上述したように圧力センサ7によって得られる吐出圧力から算出した圧力)を制御する。   Further, the control device 8 controls the pressure so that the coefficient of performance COP of the refrigeration cycle (an enthalpy change amount Δi in the evaporation process / an enthalpy change amount ΔL in the compression process) of the refrigeration cycle is maximized with respect to the refrigerant temperature on the outlet side of the radiator 2. The refrigerant pressure on the outlet side of the radiator 2 (pressure calculated from the discharge pressure obtained by the pressure sensor 7 as described above) is controlled by adjusting the valve opening of the valve 3.

即ち、図2に示すように、この冷凍サイクルにおいては、放熱器2出口側の冷媒温度(T1、T2、T3・・・)をパラメータとした時に、成績係数COPが最大となる放熱器2出口側の冷媒圧力が存在し、図3に示すように、放熱器2出口側の冷媒温度に対して成績係数COPが最大と成る放熱器2出口側の冷媒圧力の関係が得られる。制御装置8には、この図3に示す制御特性が予め記憶されており、制御装置8は、出口温度センサ6によって得られた放熱器2出口側の冷媒温度(例えばT1)に対して、目標冷媒圧力(P1)を設定する。そして、冷凍サイクル作動時における放熱器2出口側の冷媒圧力が目標冷媒圧力(P1)となるように圧力制御弁3の弁開度を調節する訳である。   That is, as shown in FIG. 2, in this refrigeration cycle, when the refrigerant temperature (T1, T2, T3...) On the radiator 2 outlet side is used as a parameter, the radiator 2 outlet where the coefficient of performance COP is maximized. As shown in FIG. 3, the relationship between the refrigerant pressure at the outlet side of the radiator 2 at which the coefficient of performance COP is maximized with respect to the refrigerant temperature at the outlet side of the radiator 2 is obtained. The control characteristics shown in FIG. 3 are stored in the control device 8 in advance, and the control device 8 sets the target with respect to the refrigerant temperature (for example, T1) on the outlet side of the radiator 2 obtained by the outlet temperature sensor 6. The refrigerant pressure (P1) is set. Then, the valve opening degree of the pressure control valve 3 is adjusted so that the refrigerant pressure on the outlet side of the radiator 2 during the operation of the refrigeration cycle becomes the target refrigerant pressure (P1).

また、制御装置8は、圧縮機1の作動中において、圧力センサ7によって得られる吐出圧力が、予め定めた許容圧力を超えた時には、圧縮機1を停止させ、各機器の保護を図るようにしている。ここでは、冷凍サイクル中で最も圧力の高い部位で圧力を検出するようにしているので、作動圧力の高いCOサイクルの安全性を高めている。 Further, when the discharge pressure obtained by the pressure sensor 7 exceeds a predetermined allowable pressure during the operation of the compressor 1, the control device 8 stops the compressor 1 to protect each device. ing. Here, since the pressure is detected at the highest pressure portion in the refrigeration cycle, the safety of the CO 2 cycle having a high operating pressure is enhanced.

そして、本発明では、冷凍サイクル(圧縮機1)を起動させる際の制御に特徴を持たせており、以下その詳細について、図4に示すフローチャートを用いて説明する。   And in this invention, it has the characteristics in the control at the time of starting a refrigerating cycle (compressor 1), The detail is demonstrated using the flowchart shown in FIG. 4 below.

まず、起動時のA/CスイッチがONされたことを確認すると(ステップS100)、冷却ファン2aを作動させる(ステップS110)。続いて出口温度センサ6によって放熱器2出口側の冷媒温度を検出し(ステップS120)、検出された冷媒温度が予め定めた所定温度より高いか否かを判定する(ステップS130)。ここで、所定温度というのは冷媒温度条件によって圧縮機1を起動させた後に、短時間(例えば、5〜10秒)で高圧側圧力が許容上限圧力に到達してしまう場合の温度としている。そして、ステップS130でYESと判定すると、上記のステップS120に戻り、ステップS120、ステップS130を繰り返す。   First, when it is confirmed that the A / C switch at the time of activation is turned on (step S100), the cooling fan 2a is operated (step S110). Subsequently, the refrigerant temperature at the outlet side of the radiator 2 is detected by the outlet temperature sensor 6 (step S120), and it is determined whether or not the detected refrigerant temperature is higher than a predetermined temperature (step S130). Here, the predetermined temperature is a temperature when the high pressure side pressure reaches the allowable upper limit pressure in a short time (for example, 5 to 10 seconds) after the compressor 1 is started according to the refrigerant temperature condition. And if it determines with YES by step S130, it will return to said step S120 and will repeat step S120 and step S130.

しかし、ステップS130でNOと判定すると、圧縮機1を起動させる(電磁クラッチ1aをONさせる)。即ち、本発明では、冷媒温度が所定温度より高い間は、圧縮機1の作動を禁止させる訳である。そして、ステップS150に進んで、上記で説明したような通常制御に移行する。   However, if NO is determined in step S130, the compressor 1 is started (the electromagnetic clutch 1a is turned on). That is, in the present invention, the operation of the compressor 1 is prohibited while the refrigerant temperature is higher than the predetermined temperature. And it progresses to step S150 and transfers to normal control as demonstrated above.

これにより、起動時の段階から放熱器2出口側の冷媒温度に基づいて圧縮機1の作動を制御することで、冷凍サイクル内が異常高圧に到達する頻度を低減して、各機器の保護を確実に行うことができる。即ち、高圧側圧力が一気に異常高圧に到達してしまうのを防止することができる訳である。   This controls the operation of the compressor 1 based on the refrigerant temperature at the outlet side of the radiator 2 from the start-up stage, thereby reducing the frequency at which the inside of the refrigeration cycle reaches an abnormally high pressure and protecting each device. It can be done reliably. That is, the high pressure side pressure can be prevented from reaching an abnormal high pressure all at once.

また、A/CスイッチがONされて、圧縮機1が停止されている間も冷却ファン2aを作動させるようにしているので、放熱器2内の冷媒を早急に冷却して、冷媒圧力を低下させることができ、短時間で通常の圧縮機1の起動に移行することができる。   Further, since the cooling fan 2a is operated even when the A / C switch is turned on and the compressor 1 is stopped, the refrigerant in the radiator 2 is rapidly cooled to lower the refrigerant pressure. Thus, the normal compressor 1 can be started in a short time.

ここでは、冷媒としてCOを用いて臨界圧力を超える領域で使用する冷凍サイクル装置100としているので、作動圧力(高圧側圧力)が高い分、各機器の圧力に対する保護を行う上で本発明が有用なものとなる。 Here, since the refrigeration cycle apparatus 100 is used in a region exceeding the critical pressure using CO 2 as the refrigerant, the present invention is effective in protecting the pressure of each device because the operating pressure (high pressure side pressure) is high. It will be useful.

尚、図4に示すフローチャートにおいて、放熱器2出口側の冷媒温度が所定温度より高い間は、圧縮機1の冷媒吐出量を冷房能力を満たす必要吐出量に対して低吐出量側に落として起動させるようにしても良い。   In the flowchart shown in FIG. 4, while the refrigerant temperature on the outlet side of the radiator 2 is higher than a predetermined temperature, the refrigerant discharge amount of the compressor 1 is lowered to the low discharge amount side with respect to the necessary discharge amount satisfying the cooling capacity. You may make it start.

また、圧力センサ7は、放熱器2出口側に設けるようにしても良く、これにより、放熱器2出口側の冷媒圧力を直接的に検出できる。   Moreover, you may make it provide the pressure sensor 7 in the radiator 2 exit side, and can detect the refrigerant | coolant pressure by the side of the radiator 2 directly by this.

(第2実施形態)
本発明の第2実施形態を図5に示す。第2実施形態は、上記第1実施形態に対して、圧力制御手段として圧力制御弁3に代えてエジェクタ3aを用いて、エジェクタ3aとアキュムレータ5の間を冷媒配管で繋ぎ、蒸発器4とアキュムレータ5の間に減圧弁5aを設けた、いわゆるエジェクタサイクルに本発明を適用したものとしている。
(Second Embodiment)
A second embodiment of the present invention is shown in FIG. The second embodiment uses an ejector 3a instead of the pressure control valve 3 as pressure control means, and connects the ejector 3a and the accumulator 5 with a refrigerant pipe to the evaporator 4 and the accumulator. The present invention is applied to a so-called ejector cycle in which a pressure reducing valve 5a is provided between the two.

因みに、エジェクタ3aは、滑らかに縮小するノズルと混合部およびディフューザから成る昇圧部とが内部に設けられた周知のものである。即ち、エジェクタ3aは、ノズルによって放熱器2から流出した高圧冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を減圧膨張させる。そして、ノズルから噴出する高い速度の冷媒流により蒸発器4にて蒸発した気相冷媒を吸引して、膨張冷媒と吸引冷媒とを混合部にて混合させながらディフューザにおいて速度エネルギーを圧力エネルギーに変換して、冷媒の圧力を昇圧して圧縮機1に吸入させるものである。   Incidentally, the ejector 3a is a well-known one in which a nozzle that smoothly contracts and a boosting unit that includes a mixing unit and a diffuser are provided. That is, the ejector 3a converts the pressure energy of the high-pressure refrigerant that has flowed out of the radiator 2 by the nozzle into velocity energy, and decompresses and expands the refrigerant. Then, the vapor phase refrigerant evaporated in the evaporator 4 is sucked by the high-speed refrigerant flow ejected from the nozzle, and the velocity energy is converted into pressure energy in the diffuser while mixing the expansion refrigerant and the suction refrigerant in the mixing section. Thus, the pressure of the refrigerant is increased and sucked into the compressor 1.

このようなエジェクタサイクルに上記第1実施形態と同一の起動時制御(図4のフローチャート)を適用している。   The same startup control (flowchart in FIG. 4) as in the first embodiment is applied to such an ejector cycle.

これにより、エジェクタ3aにおいては、滑らかに縮小するノズル部を有する分、温度上昇に伴って比容積の大きくなった冷媒による影響(高圧側圧力が急上昇する)を受けやすいので、本発明を用いて好適となる。   As a result, the ejector 3a is susceptible to the influence of the refrigerant whose specific volume increases as the temperature rises (the pressure on the high-pressure side rises sharply) by having the nozzle portion that smoothly shrinks. Preferred.

(その他の実施形態)
上記第1、第2実施形態では放熱器2出口側の冷媒温度を冷媒配管に設けた出口温度センサ6によって検出するようにしたが、これに限らず、放熱器2近傍の外部空気温度を検出する空気温度センサとしても良い。この時、外部空気温度と冷媒温度との関係から冷媒温度を推定するようにすれば良い。
(Other embodiments)
In the first and second embodiments, the refrigerant temperature at the outlet side of the radiator 2 is detected by the outlet temperature sensor 6 provided in the refrigerant pipe. However, the present invention is not limited to this, and the external air temperature in the vicinity of the radiator 2 is detected. It is good also as an air temperature sensor. At this time, the refrigerant temperature may be estimated from the relationship between the external air temperature and the refrigerant temperature.

これにより、上記第1、第2実施形態と同様に、容易に冷媒温度を検出できると共に、通常、冷凍サイクル装置に設定される外気温度検出用の温度センサと兼用することも可能であり、兼用する場合は安価な対応が可能となる。   As a result, similar to the first and second embodiments, the refrigerant temperature can be easily detected, and it can also be used as a temperature sensor for detecting the outside air temperature that is normally set in the refrigeration cycle apparatus. If this is the case, an inexpensive response is possible.

また、圧力制御弁3は、制御装置8によってその弁開度が調節されるものとして説明したが、これに限らず、放熱器2出口側の冷媒温度に基づいて冷媒圧力を機械的に制御するものとしても良い。   Further, the pressure control valve 3 has been described on the assumption that the opening degree of the pressure control valve 3 is adjusted by the control device 8. It is good as a thing.

また、本発明は、冷媒がCOに限定されるものではなく、例えば、エチレン、エタン、酸化窒素等を冷媒とする超臨界サイクルにも適用することができる。更には、フロン系の冷媒を用いる通常の冷凍サイクルにも適用できる。 In addition, the present invention is not limited to CO 2 as a refrigerant, and can be applied to a supercritical cycle using ethylene, ethane, nitrogen oxide or the like as a refrigerant, for example. Furthermore, the present invention can also be applied to a normal refrigeration cycle using a chlorofluorocarbon refrigerant.

本発明の第1実施形態における冷凍サイクル装置を示す模式図である。It is a mimetic diagram showing the refrigerating cycle device in a 1st embodiment of the present invention. 冷媒温度をパラメータとして冷媒圧力に対する成績係数の関係を示す特性図である。It is a characteristic view which shows the relationship of the coefficient of performance with respect to a refrigerant | coolant pressure by making refrigerant | coolant temperature into a parameter. 成績係数が最大と成る時の冷媒温度に対する冷媒圧力の関係を示す特性図である。It is a characteristic view which shows the relationship of the refrigerant | coolant pressure with respect to the refrigerant | coolant temperature when a coefficient of performance becomes the maximum. 起動時における作動制御を示すフローチャートである。It is a flowchart which shows the operation control at the time of starting. 本発明の第2実施形態における冷凍サイクル装置を示す模式図である。It is a schematic diagram which shows the refrigerating-cycle apparatus in 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 圧縮機
2 放熱器
2a 冷却ファン(送風機)
3 圧力制御弁(圧力制御手段)
3a エジェクタ
4 蒸発器
6 出口温度センサ(温度検出手段)
8 制御装置
100 冷凍サイクル装置
1 Compressor 2 Radiator 2a Cooling fan (blower)
3 Pressure control valve (pressure control means)
3a Ejector 4 Evaporator 6 Outlet temperature sensor (temperature detection means)
8 Control device 100 Refrigeration cycle device

Claims (8)

吸入した冷媒を圧縮する圧縮機(1)と、
前記圧縮機(1)で圧縮された前記冷媒の熱を外部空気に放熱して冷却する放熱器(2)と、
前記放熱器(2)により冷却された前記冷媒を減圧すると共に、前記放熱器(2)出口側の冷媒圧力を前記放熱器(2)出口側の冷媒温度に基づいて制御する圧力制御手段(3)と、
前記冷媒温度を検出する温度検出手段(6)と、
前記圧縮機(1)を制御する制御装置(8)とを有する冷凍サイクル装置において、
前記制御装置(8)は、前記圧縮機(1)を起動させる際に、前記温度検出手段(6)によって検出される前記冷媒温度に応じて、前記圧縮機(1)の作動を決定することを特徴とする冷凍サイクル装置。
A compressor (1) for compressing the sucked refrigerant;
A radiator (2) that radiates and cools the heat of the refrigerant compressed by the compressor (1) to outside air; and
Pressure control means (3) for reducing the pressure of the refrigerant cooled by the radiator (2) and controlling the refrigerant pressure on the outlet side of the radiator (2) based on the refrigerant temperature on the outlet side of the radiator (2) )When,
Temperature detection means (6) for detecting the refrigerant temperature;
In the refrigeration cycle apparatus having the control device (8) for controlling the compressor (1),
The control device (8) determines the operation of the compressor (1) according to the refrigerant temperature detected by the temperature detection means (6) when starting the compressor (1). A refrigeration cycle apparatus characterized by.
前記制御装置(8)は、前記冷媒温度が予め定めた所定温度より高い時に、前記圧縮機(1)の吐出量を必要吐出量に対して低吐出量側にする、あるいは前記圧縮機(1)自身の起動を禁止することを特徴とする請求項1に記載の冷凍サイクル装置。   When the refrigerant temperature is higher than a predetermined temperature, the control device (8) sets the discharge amount of the compressor (1) to a lower discharge amount side than the required discharge amount, or the compressor (1 2. The refrigeration cycle apparatus according to claim 1, wherein starting of the apparatus is prohibited. 前記放熱器(2)には、前記放熱を促進させる送風機(2a)が設けられており、
前記制御装置(2)は、前記圧縮機(1)の吐出量を必要吐出量に対して低吐出量側にする、あるいは前記圧縮機(1)自身の起動を禁止する間に前記送風機(2a)を作動させることを特徴とする請求項2に記載の冷凍サイクル装置。
The radiator (2) is provided with a blower (2a) for promoting the heat dissipation,
The control device (2) sets the blower (2a) while the discharge amount of the compressor (1) is set to the low discharge amount side with respect to the required discharge amount or the start of the compressor (1) itself is prohibited. The refrigeration cycle apparatus according to claim 2, wherein the refrigeration cycle apparatus is operated.
前記圧力制御手段(3)により減圧された前記冷媒を蒸発させて空調用空気を冷却する蒸発器(4)を有し、
前記圧力制御手段(3)は、前記放熱器(2)から流出する前記冷媒を減圧膨張させて、前記蒸発器(4)で蒸発された気相冷媒を吸引すると共に、膨張エネルギーを圧力エネルギーに変換して前記圧縮機(1)の吸入圧を上昇させるエジェクタ(3a)であることを特徴とする請求項1〜請求項3のいずれかに記載の冷凍サイクル装置。
An evaporator (4) for evaporating the refrigerant decompressed by the pressure control means (3) to cool air-conditioning air;
The pressure control means (3) decompresses and expands the refrigerant flowing out of the radiator (2), sucks the gas-phase refrigerant evaporated in the evaporator (4), and converts the expansion energy into pressure energy. The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the refrigeration cycle apparatus is an ejector (3a) that converts and raises the suction pressure of the compressor (1).
前記温度検出手段(6)は、前記放熱器(2)出口側の冷媒配管に設けられた冷媒温度センサ(6)であることを特徴とする請求項1〜請求項4のいずれかに記載の冷凍サイクル装置。   The said temperature detection means (6) is the refrigerant | coolant temperature sensor (6) provided in the refrigerant | coolant piping by the side of the said heat radiator (2), The Claim 1 characterized by the above-mentioned. Refrigeration cycle equipment. 前記温度検出手段(6)は、前記放熱器(2)近傍の前記外部空気の温度を検出する空気温度センサとしたことを特徴とする請求項1〜請求項4のいずれかに記載の冷凍サイクル装置。   The refrigeration cycle according to any one of claims 1 to 4, wherein the temperature detection means (6) is an air temperature sensor that detects the temperature of the external air in the vicinity of the radiator (2). apparatus. 前記圧縮機(1)によって圧縮される前記冷媒の圧力は、臨界圧力を超えるように設定されたことを特徴とする請求項1〜請求項6のいずれかに記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 6, wherein a pressure of the refrigerant compressed by the compressor (1) is set to exceed a critical pressure. 前記冷媒は、COを用いたことを特徴とする請求項7に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 7, wherein CO 2 is used as the refrigerant.
JP2003389745A 2003-11-19 2003-11-19 Refrigeration cycle equipment Expired - Fee Related JP4352867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003389745A JP4352867B2 (en) 2003-11-19 2003-11-19 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003389745A JP4352867B2 (en) 2003-11-19 2003-11-19 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2005145389A true JP2005145389A (en) 2005-06-09
JP4352867B2 JP4352867B2 (en) 2009-10-28

Family

ID=34696389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003389745A Expired - Fee Related JP4352867B2 (en) 2003-11-19 2003-11-19 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4352867B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008139528A1 (en) * 2007-04-27 2010-07-29 株式会社日立製作所 Cooling cycle system, natural gas liquefaction facility, cooling cycle system operating method and remodeling method
JP2017088139A (en) * 2015-11-17 2017-05-25 株式会社ヴァレオジャパン Vehicular air conditioner and vehicle comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008139528A1 (en) * 2007-04-27 2010-07-29 株式会社日立製作所 Cooling cycle system, natural gas liquefaction facility, cooling cycle system operating method and remodeling method
JP2017088139A (en) * 2015-11-17 2017-05-25 株式会社ヴァレオジャパン Vehicular air conditioner and vehicle comprising the same

Also Published As

Publication number Publication date
JP4352867B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
JP5040256B2 (en) Refrigeration cycle apparatus and control method thereof
JP2006327569A (en) Refrigeration cycle device for vehicle
JP6628878B2 (en) Cooling system
JP4408413B2 (en) Refrigeration apparatus and air conditioner using the same
JP2009127502A (en) Electric compressor
JP2009192090A (en) Refrigerating cycle device
JP2006266172A (en) Compressor displacement control device and refrigeration cycle device
JP3356142B2 (en) Refrigeration cycle device
JP2000234811A (en) Refrigerating cycle device
JPH09178306A (en) Refrigerating cycle unit
JP4155084B2 (en) Electric compressor
JPH11257762A (en) Refrigeration cycle system
US6935125B2 (en) Air conditioning system
JP2006329540A (en) Control device for refrigerating cycle
JP4631721B2 (en) Vapor compression refrigeration cycle
JP2006308230A (en) Refrigerating cycle control device
JP2007292390A (en) Heat pump type water heater
JP2000320936A (en) Safety unit for refrigeration cycle
JP4400533B2 (en) Ejector refrigeration cycle
JP2007322022A (en) Compressor device and refrigerant circulating device
JP4352867B2 (en) Refrigeration cycle equipment
JP4338539B2 (en) Air conditioner for vehicles
JP2006118726A (en) Ejector cycle
JP2009243784A (en) Refrigerant shortage detection device
JP2001354028A (en) Thermo-compression type refrigerating cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees